1
|
Liu D, Deng H, Song H. Insights into the functional mechanisms of the sesquiterpene synthase GEAS and GERDS in lavender. Int J Biol Macromol 2025; 299:140195. [PMID: 39848388 DOI: 10.1016/j.ijbiomac.2025.140195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
Lavenders are economically significant plants cultivated worldwide for their essential oils (EOs) containing sesquiterpenes. These EOs contribute to the cosmetic, personal hygiene, and pharmaceutical industries. The biosynthesis of lavender sesquiterpenes involves enzymes like sesquiterpene synthases GEAS and GERDS. The structure and functional mechanism of these sesquiterpene synthases (GEAS or GERDS) are not fully understood. Here, we achieved the successful expression and purification of monomeric proteins at high purity. The results of the molecular docking revealed that negatively charged residues interact electrostatically with magnesium ions (Mg2+), thereby stabilizing and neutralizing negatively charged phosphate groups on the substrate. Notably, deletion of the N-terminus (∆N-terminus) significantly increased the enzymatic activity compared to the wild-type protein. These findings offer insights into the regulatory mechanisms underlying sesquiterpene biosynthesis in lavender, and suggest potential avenues for improving essential oils through genetic engineering and developing cosmetic and personal care products and alternative medicines.
Collapse
Affiliation(s)
- Dafeng Liu
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, Yining 835000, Xinjiang, China; School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China.
| | - Huashui Deng
- School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Hongying Song
- School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| |
Collapse
|
2
|
Donadu MG, Ferrari M, Behzadi P, Trong Le N, Usai D, Fiamma M, Battah B, Barac A, Bellardi MG, Hoai TN, Mazzarello V, Rubino S, Cappuccinelli P, Zanetti S. Multifactorial action of lavender and lavandin oils against filamentous fungi. Nat Prod Res 2025; 39:1520-1528. [PMID: 38293715 DOI: 10.1080/14786419.2024.2301741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 02/01/2024]
Abstract
AIMS In this study, five essential oils (EOs) from different species of Lavandula hybrida abrialis, for Lavandula hybrida R.C., Lavandula hybrida 'super A', Lavandula hybrida 'super Z' and Lavandula vera and its hybrids Lavender were evaluated against 26 dust-isolated fungal strains from North Africa. METHODS AND RESULTS The composition of the different EOs was determined from volume to dry weight. The photochemical analyses were performed via gas chromatography (GC). The cytotoxic effect of five lavender EOs on human epithelial colorectal adenocarcinoma cells (Caco-2) cell line was done. A total of 26 strains of filamentous fungi including Aspergillus spp., Botrytis cinerea, Ceriporia spp., Fusarium spp. and Penicillium glabrum were isolated from sand dust samples via molecular diagnostic tool of PCR. Fungal strains with the lowest minimal lethal concentration (MLC) were Penicillium glabrum, Ceriporia spp. and a strain of Aspergillus spp. CONCLUSIONS More studies are needed to verify the activity of this EO against more different fungal species, and determine the active ingredients.Significance and impact of study: MIC of the antifungal efficacy relating to EOs was evaluated. The EOs tests showed no cytotoxic effect at very low concentrations, ranging from 0.03% (IC50 0.9132 mg/mL) (L. hybrid Abrialis) to 0.001% (IC50 1.631 mg/mL) (L. hybrid R.C.).
Collapse
Affiliation(s)
- Matthew Gavino Donadu
- Department of Biomedical Science, University of Sassari, Sassari, Italy
- Hospital Pharmacy, Giovanni Paolo II Hospital, ASL Gallura, Olbia, Italy
| | - Marco Ferrari
- Department of Biomedical Science, University of Sassari, Sassari, Italy
| | - Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Nhan Trong Le
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Donatella Usai
- Department of Biomedical Science, University of Sassari, Sassari, Italy
| | - Maura Fiamma
- Analysis Laboratory, Hospital 'San Francesco', Nuoro, Italy
| | - Basem Battah
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Syrian Private University (SPU), Daraa International Highway, Damascus, Syria
| | - Aleksandra Barac
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Hospital for Infectious and Tropical Diseases, Clinical Center of Serbia, Belgrade, Serbia
| | | | - Thi Nguyen Hoai
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | | | - Salvatore Rubino
- Department of Biomedical Science, University of Sassari, Sassari, Italy
| | | | - Stefania Zanetti
- Department of Biomedical Science, University of Sassari, Sassari, Italy
| |
Collapse
|
3
|
Ren YL, Chu WW, Yang XW, Xin L, Gao JX, Yan GZ, Wang C, Chen YN, Xie JF, Spruyt K, Lin JS, Hou YP, Shao YF. Lavender improves sleep through olfactory perception and GABAergic neurons of the central amygdala. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118942. [PMID: 39426576 DOI: 10.1016/j.jep.2024.118942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The use of lavender as sleep aid or hypnotic agent can be traced back as early as ancient Romans and Greeks. Yet, objective experimental data on whether and how lavender enhances sleep duration or/and sleep quality remain lacking. AIM OF THE STUDY We aimed to characterize the sleep-wake regulating effects of lavender in the mouse and to demonstrate the brain targets and neural circuits involved. MATERIALS AND METHODS A self-made precise odor delivery system combined with chronic polysomnographic recordings was employed to assess the sleep-wake effects of inhalation with lavender essential oil (LEO, extracted from lavender) and its different constituents during the light and dark phases in free-moving C57BL/6J mice. Neuroviral labeling, in situ hybridization and pharmacogenetics were combined to identify the neural circuits and targets involved. Finally, an insomniac model of DL-4-Chlorophenylalanine (PCPA)-treated mice was established to examine the sleep-inducing potential of LEO. RESULTS We found that inhalation of LEO with a concentration at 25.0% during the light (inactive) phase significantly shortened the latency to non-rapid eye movement (NREM) sleep, increased the total amount of NREM sleep at the expense of wakefulness (W), and enhanced cortical EEG slow wave activities, notably delta power spectra density. We further identified linalool, d-limonene, 1,8-cineole, linalyl acetate and terpinene-4-ol as the major effective sleep-promoting monomer components. Importantly, we found that LEO no longer produced any of the above sleep-promoting effect following either nasal injection of zinc sulfate which interrupts the olfactory pathway, or pharmacogenetics silencing of central amygdala GABAergic neurons. Finally, LEO reestablished NREM sleep with short latency in PCPA-treated insomniac mice, effects comparable with those induced by a potent sedative diazepam. CONCLUSIONS We have characterized the quantitative and qualitative sleep-promoting effects of LEO and its effective components via the olfactory pathway and central amygdala GABA neuronal targets. The hypnotic property of LEO is reinforced by its ability to restore sleep in insomnia. Our study thus establishes a neurobiological basis for aromatherapy of sleep disorders using lavender.
Collapse
Affiliation(s)
- Yan-Li Ren
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Wei-Wei Chu
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xing-Wen Yang
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Le Xin
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China; Department of Anesthesiology, Anshan Central Hospital, Anshan, 114032, China
| | - Jin-Xian Gao
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China; Department of Pharmacy, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Gui-Zhong Yan
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Can Wang
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China; School of Medical Imaging, Shandong Second Medical University, Weifang, 261053, China
| | - Yu-Nong Chen
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China; Department of Pharmacology, Xi'an Medical University, Xi'an, 710021, China
| | - Jun-Fan Xie
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Karen Spruyt
- NeuroDiderot-INSERM, Université de Paris, Paris, 75019, France
| | - Jian-Sheng Lin
- Integrative Physiology of the Brain Arousal Systems, CRNL, INSERM U1028-CNRS UMR 5292, University Claude Bernard Lyon 1, Centre Hospitalier Le Vinatier-Neurocampus Michel Jouvet, CEDEX, Bron, 69675, France
| | - Yi-Ping Hou
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Yu-Feng Shao
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
4
|
El-Hefny M, Hussien MK. Enhancing the growth and essential oil components of Lavandula latifolia using Malva parviflora extract and humic acid as biostimulants in a field experiment. Sci Rep 2025; 15:774. [PMID: 39755703 PMCID: PMC11700101 DOI: 10.1038/s41598-024-82127-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/02/2024] [Indexed: 01/06/2025] Open
Abstract
Natural extracts as biostimulants have the potential to enhance the productivity and growth of many medicinal and aromatic plants. This study aimed to enhance the growth, and essential oil (EO) content, as well as composition of Lavandula latifolia Medik. by using Malva parviflora L. extract (ME) as a biostimulant in combination with humic acid (HA) in a field experiment in two successive seasons of 2022 and 2023. The phenolic, flavonoid and water-soluble vitamins of the ME were analyzed using an HPLC. The protein amino acids of the ME were identified by an amino acid analyzer. The prepared concentrations of HA (0, 1, 2, and 4 g/L) were applied to the soil. While, they for ME (0, 2, 4, and 6 g/L) were added as a foliar spray. The EO compositions collected from the leaves of the treated L. latifolia plants were subjected to the hydro-distillation method and analyzed using GC-MS. The most prevalent vitamins found in ME were vitamin B12, vitamin C, and folic acid. Besides, several phenolic compounds were found in ME, such as catechol, cinnamic acid and syringic acid, while flavonoid chemicals, such as luteolin and quercetin. Also, alanine, ammonia, aspartic acid, glutamic acid, glycine, and tyrosine were the ME's most prominent nitrogenous and amino acid components. The most effective treatments of HA and ME on the plant height, the number of branches/plant, and plant fresh weight were 4 + 6 g/L and 4 + 2 g/L for leaf area and chlorophyll content, it was 4 + 4 g/L; and for EO percentage were 4 + 0 g/L, 2 + 0 g/L, and 4 + 4 g/L, compared to the control treatment for each characteristic. The main EO compounds eucalyptol, camphor, α-pinene, β-pinene, Δ-elemene, germacrene D-4-ol, isoborneol, β-caryophyllene oxide, and tau.-cadinol identified in the leaves were found in the range of 28.74-46.19%, 15.34-30.49%, 3.39-7.16%, 0-5.08%, 0-5.18%, 0-3.20%, 0-3.31% and 0-3.40%, respectively. It can be concluded that a combination treatment of HA and ME as natural biostimulant compounds at 4 + 4 g/L could be recommended for good plant growth, and EO quantity of L. latifolia plants.
Collapse
Affiliation(s)
- Mervat El-Hefny
- Department of Floriculture, Ornamental Horticulture and Garden Design, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt.
| | - Mahmoud Khattab Hussien
- Department of Floriculture, Ornamental Horticulture and Garden Design, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt.
| |
Collapse
|
5
|
Hedayati S, Tarahi M, Madani A, Mazloomi SM, Hashempur MH. Towards a Greener Future: Sustainable Innovations in the Extraction of Lavender ( Lavandula spp.) Essential Oil. Foods 2025; 14:100. [PMID: 39796388 PMCID: PMC11720256 DOI: 10.3390/foods14010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/04/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Lavender is one of the most appreciated aromatic plants, with high economic value in food, cosmetics, perfumery, and pharmaceutical industries. Lavender essential oil (LEO) is known to have demonstrative antimicrobial, antioxidant, therapeutic, flavor and fragrance properties. Conventional extraction methods, e.g., steam distillation (SD) and hydro-distillation (HD), have been traditionally employed to extract LEO. However, the low yield, high energy consumption, and long extraction time of conventional methods have prompted the introduction of novel extraction technologies. Some of these innovative approaches, such as ohmic-assisted, microwave-assisted, supercritical fluid, and subcritical water extraction approaches, are used as substitutes to conventional extraction methods. While other methods, e.g., sonication, pulsed electric field, and cold plasma, can be used as a pre-treatment that is preceded by conventional or emerging extraction technologies. These innovative approaches have a great significance in reducing the energy consumption, shortening the extraction time, and increasing the extraction yield and the quality of EOs. Therefore, they can be considered as sustainable extraction technologies. However, the scale-up of emerging technologies to an industrial level should also be investigated from the techno-economic points of view in future studies.
Collapse
Affiliation(s)
- Sara Hedayati
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz 7193635899, Iran;
| | - Mohammad Tarahi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 7144165186, Iran;
| | - Arghavan Madani
- Department of Food Hygiene Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz 7193635899, Iran; (A.M.); (S.M.M.)
| | - Seyed Mohammad Mazloomi
- Department of Food Hygiene Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz 7193635899, Iran; (A.M.); (S.M.M.)
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| |
Collapse
|
6
|
Poveda J, Vítores D, Sánchez-Gómez T, Santamaría Ó, Velasco P, Zunzunegui I, Rodríguez VM, Herrero B, Martín-García J. Use of by-products from the industrial distillation of lavandin (Lavandula x intermedia) essential oil as effective bioherbicides. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123723. [PMID: 39689529 DOI: 10.1016/j.jenvman.2024.123723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
Weeds are one of the main problems causing losses in agricultural crops, which are nowadays mainly combated by the massive use of chemical herbicides. The development of new effective, sustainable, environmentally and health-friendly bioherbicides is a fundamental need worldwide. In this work, hydrolates and lavandin distilled straws produced during the distillation of the essential oil of lavandin (Lavandula x intermedia) were tested as potential bioherbicides. The weeds used were brome, annual ryegrass (monocotyledons), goosefoot and mat amaranth (dicotyledons) and the crops wheat, barley (monocotyledons), lentil and vetch (dicotyledons). The herbicidal capacity of both by-products was studied by applying the hydrolates in vitro on seeds and mixing the distillation straws with the growing substrate. Lavandin hydrolates significantly inhibited germination and growth of the four weeds used, being also phytotoxic for monocotyledonous crops, but hardly showed a phytotoxic effect on the dicotyledonous crops (lentil and vetch). With respect to lavandin distilled straws, they had an allelopathic effect of growth inhibition on all weeds and crops used in the work. In both by-products, lysophosphatidylcholine was identified as one of the major metabolites, while coumaroyl hexoside and feruloyl hexoside were identified as major metabolites only present in the straws. So far, only the phytotoxic capacity of the metabolites lysophosphatidylcholine and coumaroyl hexoside had been described. Therefore, by-products from the industrial distillation of lavandin could be used in the development of effective and sustainable bioherbicides, due to the allelopathic capacity of the metabolites present.
Collapse
Affiliation(s)
- Jorge Poveda
- Recognised Research Group AGROBIOTECH, UIC-370 (JCyL), Department of Plant Production and Forest Resources, Higher Technical School of Agricultural Engineering of Palencia, University Institute for Research in Sustainable Forest Management (iuFOR), University of Valladolid, Avda. Madrid 57, 34004, Palencia, Spain.
| | - Daniel Vítores
- Recognised Research Group AGROBIOTECH, UIC-370 (JCyL), Department of Plant Production and Forest Resources, Higher Technical School of Agricultural Engineering of Palencia, University Institute for Research in Sustainable Forest Management (iuFOR), University of Valladolid, Avda. Madrid 57, 34004, Palencia, Spain
| | - Tamara Sánchez-Gómez
- Recognised Research Group AGROBIOTECH, UIC-370 (JCyL), Department of Plant Production and Forest Resources, Higher Technical School of Agricultural Engineering of Palencia, University Institute for Research in Sustainable Forest Management (iuFOR), University of Valladolid, Avda. Madrid 57, 34004, Palencia, Spain
| | - Óscar Santamaría
- Recognised Research Group AGROBIOTECH, UIC-370 (JCyL), Department of Plant Production and Forest Resources, Higher Technical School of Agricultural Engineering of Palencia, University Institute for Research in Sustainable Forest Management (iuFOR), University of Valladolid, Avda. Madrid 57, 34004, Palencia, Spain
| | - Pablo Velasco
- Group of Genetics, Breeding and Biochemistry of Brassicas. Mision Biologica de Galicia (MBG-CSIC), Pontevedra, 36143, Spain
| | - Irene Zunzunegui
- Recognised Research Group AGROBIOTECH, UIC-370 (JCyL), Department of Plant Production and Forest Resources, Higher Technical School of Agricultural Engineering of Palencia, University Institute for Research in Sustainable Forest Management (iuFOR), University of Valladolid, Avda. Madrid 57, 34004, Palencia, Spain
| | - Víctor M Rodríguez
- Group of Genetics, Breeding and Biochemistry of Brassicas. Mision Biologica de Galicia (MBG-CSIC), Pontevedra, 36143, Spain
| | - Baudilio Herrero
- Recognised Research Group AGROBIOTECH, UIC-370 (JCyL), Department of Plant Production and Forest Resources, Higher Technical School of Agricultural Engineering of Palencia, University Institute for Research in Sustainable Forest Management (iuFOR), University of Valladolid, Avda. Madrid 57, 34004, Palencia, Spain
| | - Jorge Martín-García
- Recognised Research Group AGROBIOTECH, UIC-370 (JCyL), Department of Plant Production and Forest Resources, Higher Technical School of Agricultural Engineering of Palencia, University Institute for Research in Sustainable Forest Management (iuFOR), University of Valladolid, Avda. Madrid 57, 34004, Palencia, Spain.
| |
Collapse
|
7
|
Wang J, Liu X, Zhang M, Liu R. The mitochondrial genome of Lavandula angustifolia Mill. (Lamiaceae) sheds light on its genome structure and gene transfer between organelles. BMC Genomics 2024; 25:929. [PMID: 39367299 PMCID: PMC11451270 DOI: 10.1186/s12864-024-10841-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Lavandula angustifolia holds importance as an aromatic plant with extensive applications spanning the fragrance, perfume, cosmetics, aromatherapy, and spa sectors. Beyond its aesthetic and sensory applications, this plant offers medicinal benefits as a natural herbal remedy and finds use in household cleaning products. While extensive genomic data, inclusive of plastid and nuclear genomes, are available for this species, researchers have yet to characterize its mitochondrial genome. This gap in knowledge hampers deeper understanding of the genome organization and its evolutionary significance. RESULTS Through the course of this study, we successfully assembled and annotated the mitochondrial genome of L. angustifolia, marking a first in this domain. This assembled genome encompasses 61 genes, which comprise 34 protein-coding genes, 24 transfer RNA genes, and three ribosomal RNA genes. We identified a chloroplast sequence insertion into the mitogenome, which spans a length of 10,645 bp, accounting for 2.94% of the mitogenome size. Within these inserted sequences, there are seven intact tRNA genes (trnH-GUG, trnW-CCA, trnD-GUC, trnS-GGA, trnN-GUU, trnT-GGU, trnP-UGG) and four complete protein-coding genes (psbA, rps15, petL, petG) of chloroplast derivation. Additional discoveries include 88 microsatellites, 15 tandem repeats, 74 palindromic repeats, and 87 forward long repeats. An RNA editing analysis highlighted an elevated count of editing sites in the cytochrome c oxidase genes, notably ccmB with 34 editing sites, ccmFN with 32, and ccmC with 29. All protein-coding genes showed evidence of cytidine-to-uracil conversion. A phylogenetic analysis, utilizing common protein-coding genes from 23 Lamiales species, yielded a tree with consistent topology, supported by high confidence values. CONCLUSIONS Analysis of the current mitogenome resource revealed its typical circular genome structure. Notably, sequences originally from the chloroplast genome were found within the mitogenome, pointing to the occurrence of horizontal gene transfer between organelles. This assembled mitogenome stands as a valuable resource for subsequent studies on mitogenome structures, their evolution, and molecular biology.
Collapse
Affiliation(s)
- Jun Wang
- Bao'an Central Hospital of Shenzhen, Shenzhen, 518000, China
- Wuhan Benagen Technology Co., Ltd, Wuhan, 430074, China
| | - Xiaoyan Liu
- Hubei University of Chinese Medicine, Wuhan, 430056, China
| | - Mengting Zhang
- Jianmin Pharmaceutical Group Co., Ltd, Wuhan, 430052, China
| | - Renbin Liu
- Bao'an Central Hospital of Shenzhen, Shenzhen, 518000, China.
| |
Collapse
|
8
|
Chelu M. Hydrogels with Essential Oils: Recent Advances in Designs and Applications. Gels 2024; 10:636. [PMID: 39451288 PMCID: PMC11508064 DOI: 10.3390/gels10100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024] Open
Abstract
The innovative fusion of essential oils with hydrogel engineering offers an optimistic perspective for the design and development of next-generation materials incorporating natural bioactive compounds. This review provides a comprehensive overview of the latest advances in the use of hydrogels containing essential oils for biomedical, dental, cosmetic, food, food packaging, and restoration of cultural heritage applications. Polymeric sources, methods of obtaining, cross-linking techniques, and functional properties of hydrogels are discussed. The unique characteristics of polymer hydrogels containing bioactive agents are highlighted. These include biocompatibility, nontoxicity, effective antibacterial activity, control of the sustained and prolonged release of active substances, optimal porosity, and outstanding cytocompatibility. Additionally, the specific characteristics and distinctive properties of essential oils are explored, along with their extraction and encapsulation methods. The advantages and disadvantages of these methods are also discussed. We have considered limitations due to volatility, solubility, environmental factors, and stability. The importance of loading essential oils in hydrogels, their stability, and biological activity is analyzed. This review highlights through an in-depth analysis, the recent innovations, challenges, and future prospects of hydrogels encapsulated with essential oils and their potential for multiple applications including biomedicine, dentistry, cosmetics, food, food packaging, and cultural heritage conservation.
Collapse
Affiliation(s)
- Mariana Chelu
- "Ilie Murgulescu" Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| |
Collapse
|
9
|
Aiduang W, Jatuwong K, Luangharn T, Jinanukul P, Thamjaree W, Teeraphantuvat T, Waroonkun T, Lumyong S. A Review Delving into the Factors Influencing Mycelium-Based Green Composites (MBCs) Production and Their Properties for Long-Term Sustainability Targets. Biomimetics (Basel) 2024; 9:337. [PMID: 38921217 PMCID: PMC11202202 DOI: 10.3390/biomimetics9060337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/12/2024] [Accepted: 05/26/2024] [Indexed: 06/27/2024] Open
Abstract
Mycelium-based green composites (MBCs) represent an eco-friendly material innovation with vast potential across diverse applications. This paper provides a thorough review of the factors influencing the production and properties of MBCs, with a particular focus on interdisciplinary collaboration and long-term sustainability goals. It delves into critical aspects such as fungal species selection, substrate type selection, substrate preparation, optimal conditions, dehydrating methods, post-processing techniques, mold design, sterilization processes, cost comparison, key recommendations, and other necessary factors. Regarding fungal species selection, the paper highlights the significance of considering factors like mycelium species, decay type, hyphal network systems, growth rate, and bonding properties in ensuring the safety and suitability of MBCs fabrication. Substrate type selection is discussed, emphasizing the importance of chemical characteristics such as cellulose, hemicellulose, lignin content, pH, organic carbon, total nitrogen, and the C: N ratio in determining mycelium growth and MBC properties. Substrate preparation methods, optimal growth conditions, and post-processing techniques are thoroughly examined, along with their impacts on MBCs quality and performance. Moreover, the paper discusses the importance of designing molds and implementing effective sterilization processes to ensure clean environments for mycelium growth. It also evaluates the costs associated with MBCs production compared to traditional materials, highlighting potential cost savings and economic advantages. Additionally, the paper provides key recommendations and precautions for improving MBC properties, including addressing fungal strain degeneration, encouraging research collaboration, establishing biosecurity protocols, ensuring regulatory compliance, optimizing storage conditions, implementing waste management practices, conducting life cycle assessments, and suggesting parameters for desirable MBC properties. Overall, this review offers valuable insights into the complex interplay of factors influencing MBCs production and provides guidance for optimizing processes to achieve sustainable, high-quality composites for diverse applications.
Collapse
Affiliation(s)
- Worawoot Aiduang
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (W.A.); (K.J.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kritsana Jatuwong
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (W.A.); (K.J.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thatsanee Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Praween Jinanukul
- Faculty of Architecture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.J.); (T.W.)
| | - Wandee Thamjaree
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | | | - Tanut Waroonkun
- Faculty of Architecture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.J.); (T.W.)
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| |
Collapse
|
10
|
Prosche S, Stappen I. Flower Power: An Overview on Chemistry and Biological Impact of Selected Essential Oils from Blossoms. PLANTA MEDICA 2024; 90:595-626. [PMID: 38843799 DOI: 10.1055/a-2215-2791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Natural raw materials such as essential oils have received more and more attention in recent decades, whether in the food industry, as flavorings and preservatives, or as insecticides and insect repellents. They are, furthermore, very popular as fragrances in perfumes, cosmetics, and household products. In addition, aromatherapy is widely used to complement conventional medicine. This review summarizes investigations on the chemical composition and the most important biological impacts of essential oils and volatile compounds extracted from selected aromatic blossoms, including Lavandula angustifolia, Matricaria recutita, Rosa x damascena, Jasminum grandiflorum, Citrus x aurantium, Cananga odorata, and Michelia alba. The literature was collected from PubMed, Google Scholar, and Science Direct. Blossom essential oils discussed in this work are used in a wide variety of clinical issues. The application is consistently described as safe in studies and meta-analyses, although there are notes that using essential oils can also have side effects, especially dermatologically. However, it can be considered as confirmed that essential oils have positive influences on humans and can improve quality of life in patients with psychiatric disorders, critically ill patients, and patients in other exceptional situations. Although the positive effect of essential oils from blossoms has repeatedly been reported, evidence-based clinical investigations are still underrepresented, and the need for research is demanded.
Collapse
Affiliation(s)
- Sinah Prosche
- Department of Pharmaceutical Sciences, University of Vienna, Austria
| | - Iris Stappen
- Department of Pharmaceutical Sciences, University of Vienna, Austria
| |
Collapse
|
11
|
Piskernik S, Jeršek M, Klančnik A, Smole Možina S, Bucar F, Jeršek B. Chemical composition and antimicrobial activity of essential oils made from Lavandula x intermedia from Hvar (Croatia). Nat Prod Res 2023; 37:4018-4022. [PMID: 36565292 DOI: 10.1080/14786419.2022.2161539] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022]
Abstract
The aim of the study was to investigate the essential oil (EO) of Lavandula x intermedia cv. Bila, which has not been studied before. The EOs were distilled from plants collected in two consecutive years on the island of Hvar (Croatia) and in the Karst (Slovenia) and analysed for chemical composition and antimicrobial activity. The main component of EOs was linalool, but the EOs from Hvar had higher contents of Z-β-ocimene and borneol + lavandulol than the EOs from Karst, in which camphor, linalyl acetate and 1,8-cineole predominated. The antimicrobial activity was evaluated using the minimum inhibitory concentration and proved that the EOs were effective against Candida spp. Studies have shown that the composition of L. x intermedia EO depends on the variety and the climatic and geographical characteristics of the plant growth. The antimicrobial activity of EO is also influenced by the type and strain of microorganisms involved in the research.
Collapse
Affiliation(s)
- Saša Piskernik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Miha Jeršek
- Slovenian Museum of Natural History, Ljubljana, Slovenia
| | - Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Sonja Smole Možina
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Franz Bucar
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Graz, Austria
| | - Barbara Jeršek
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
12
|
Jeddi M, El Hachlafi N, Fadil M, Benkhaira N, Jeddi S, Benziane Ouaritini Z, Fikri-Benbrahim K. Combination of Chemically-Characterized Essential Oils from Eucalyptus polybractea, Ormenis mixta, and Lavandula burnatii: Optimization of a New Complete Antibacterial Formulation Using Simplex-Centroid Mixture Design. Adv Pharmacol Pharm Sci 2023; 2023:5593350. [PMID: 37645561 PMCID: PMC10462449 DOI: 10.1155/2023/5593350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
This study aims to identify the volatile profile of three essential oils obtained from Eucalyptus polybractea cryptonifera (EPEO), Ormenis mixta (OMEO), and Lavandula burnatii briquet (LBEO) and to examine their combined antibacterial activity that affords the optimal inhibitory ability against S. aureus and E. coli using simplex-centroid mixture design and checkerboard assay. Essential oils (EOs) were isolated by hydrodistillation and characterized using gas chromatography-mass spectrometry (GC-MS) and gas chromatography coupled with flame-ionization detector (GC-FID). The antibacterial activity was performed using disc diffusion and microdilution assays. The chemical analysis revealed that 1,8-cineole (23.75%), p-cymene (22.47%), and α-pinene (11.20%) and p-menthane-1,8-diol (18.19%), α-pinene (10.81%), and D-germacrene (9.17%) were the main components detected in E. polybractea and O. mixta EOs, respectively. However, L. burnatii EO was mainly represented by linalool (24.40%) and linalyl acetate (18.68%). The EPEO, LBEO, and OMEO had a strong antibacterial effect on S. aureus with minimal inhibitory concentrations (MICs) values ranging from 0.25 to 0.5% (v/v). Furthermore, the combination of 1/2048 MICEPEO + 1/4 MICLBEO showed a synergistic antibacterial effect on S. aureus with a FIC index of 0.25, while the formulation of 1/4 MICEPEO + 1/4 MICOMEO demonstrated an antibacterial synergistic activity on E. coli with a FIC index of 0.5. Moreover, the simplex-centroid mixture design reported that the most effective combinations on E. coli and S. aureus correspond to 32%/28%/40% and 35%/30%/35% of E. polybractea, O. mixta, and L. burnatii, respectively. Presented information highlights the action of antibacterial formulations of these EOs and suggests their potential applications as alternatives to commercialized drugs to contract the development of bacteria causing serious infections and food deterioration.
Collapse
Affiliation(s)
- Mohamed Jeddi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Imouzzer Road, Fez, Morocco
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30 000, Morocco
| | - Naoufal El Hachlafi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Imouzzer Road, Fez, Morocco
| | - Mouhcine Fadil
- Laboratory of Applied Organic Chemistry, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Road of Imouzzer, Fez, Morocco
| | - Nesrine Benkhaira
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Imouzzer Road, Fez, Morocco
| | - Samir Jeddi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Imouzzer Road, Fez, Morocco
| | - Zineb Benziane Ouaritini
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30 000, Morocco
| | - Kawtar Fikri-Benbrahim
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Imouzzer Road, Fez, Morocco
| |
Collapse
|
13
|
Dippong T, Cadar O, Kovacs MH, Dan M, Senila L. Chemical Analysis of Various Tea Samples Concerning Volatile Compounds, Fatty Acids, Minerals and Assessment of Their Thermal Behavior. Foods 2023; 12:3063. [PMID: 37628061 PMCID: PMC10453188 DOI: 10.3390/foods12163063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/29/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Tea is the most consumed drink worldwide due to its pleasant taste and various beneficial effects on human health. This paper assesses the physicochemical analysis of different varieties of tea (leaves, flowers, and instant) after prior drying and fine grinding. The thermal decomposition behavior of the tea components shows that the tea has three stages of decomposition, depending on temperature. The first stage was attributed to the volatilization of water, while the second stage involved the degradation of volatiles, polyphenols, and fatty acids. The degradation of cellulose, hemicellulose, and lignin content occurs at the highest temperature of 400 °C in the third stage. A total of 66 volatile compounds, divided into eight classes, were identified in the tea samples. The volatile compounds were classified into nine odor classes: floral, fruity, green, sweet, chemical, woody, citrus, roasted, and alcohol. In all flower and leaf tea samples, monounsaturated (MUFAs), polyunsaturated (PUFAs), and saturated fatty acids (SFAs) were identified. A high content of omega-6 was quantified in acacia, Saint John's Wort, rose, and yarrow, while omega-3 was found in mint, Saint John's Wort, green, blueberry, and lavender samples. The flower and leaf tea samples studied could be a good dietary source of polyphenolic compounds, essential elements. In instant tea samples, a low quantity of polyphenols and major elements were identified. The physicochemical analysis demonstrated that both flower and leaf teas have high-quality properties when compared to instant tea.
Collapse
Affiliation(s)
- Thomas Dippong
- Department of Chemistry and Biology, Technical University of Cluj-Napoca, 76 Victoriei Street, 430122 Baia Mare, Romania;
| | - Oana Cadar
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania; (O.C.); (M.H.K.)
| | - Melinda Haydee Kovacs
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania; (O.C.); (M.H.K.)
| | - Monica Dan
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania;
| | - Lacrimioara Senila
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania; (O.C.); (M.H.K.)
| |
Collapse
|
14
|
Habán M, Korczyk-Szabó J, Čerteková S, Ražná K. Lavandula Species, Their Bioactive Phytochemicals, and Their Biosynthetic Regulation. Int J Mol Sci 2023; 24:ijms24108831. [PMID: 37240177 DOI: 10.3390/ijms24108831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Lavandula species are one of the most useful aromatic and medicinal plants and have great economic potential. The phytopharmaceutical contribution of the secondary metabolites of the species is unquestionable. Most recent studies have been focusing on the elucidation of the genetic background of secondary metabolite production in lavender species. Therefore, knowledge of not only genetic but especially epigenetic mechanisms for the regulation of secondary metabolites is necessary for the modification of those biosynthesis processes and the understanding of genotypic differences in the content and compositional variability of these products. The review discusses the genetic diversity of Lavandula species in relation to the geographic area, occurrence, and morphogenetic factors. The role of microRNAs in secondary-metabolites biosynthesis is described.
Collapse
Affiliation(s)
- Miroslav Habán
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Joanna Korczyk-Szabó
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Simona Čerteková
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Katarína Ražná
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| |
Collapse
|
15
|
Cáceres-Cevallos GJ, Quílez M, Ortiz de Elguea-Culebras G, Melero-Bravo E, Sánchez-Vioque R, Jordán MJ. Agronomic Evaluation and Chemical Characterization of Lavandula latifolia Medik. under the Semiarid Conditions of the Spanish Southeast. PLANTS (BASEL, SWITZERLAND) 2023; 12:1986. [PMID: 37653903 PMCID: PMC10221659 DOI: 10.3390/plants12101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/28/2023] [Accepted: 05/13/2023] [Indexed: 09/02/2023]
Abstract
Lavandula latifolia is one of the main rainfed crops of aromatic and medicinal plants produced in Spain. As a global concern, the agronomic productivity of this aromatic crop is also threatened by the consequences of imminent climate change. On this basis, the study of the agronomic production of two drought-tolerant ecotypes, after three years of cultivations practices, constitutes the main objective of the present study. For this trial, clones of the two pre-selected ecotypes, along with clones from two commercial plants (control), were grown in an experimental plot. The main results confirmed an increase in biomass and essential oil production with plant age. The essential oil chemotype defined by 1,8-cineol, linalool, and camphor was maintained over time, but a decrease in 1,8-cineol in the benefit of linalool was detected. In the phenolic profile, 14 components were identified, with salvianic acid and a rosmarinic acid derivate being the main compounds quantified. These phenolic extracts showed potent in vitro antioxidant capacity, and after the second year of cultivation practices, both phenolic compounds and antioxidant capacity remained stable. Thus, under semiarid conditions, L. latifolia drought-tolerant ecotypes reach a good level of production after the second year of crop establishment.
Collapse
Affiliation(s)
- Gustavo J. Cáceres-Cevallos
- Research Group on Rainfed Agriculture for Rural Development, Department of Rural Development, Oenology and Sustainable Agriculture, Murcia Institute of Agri-Food and Environmental Research (IMIDA), La Alberca de las Torres, 30150 Murcia, Spain; (G.J.C.-C.); (M.Q.)
| | - María Quílez
- Research Group on Rainfed Agriculture for Rural Development, Department of Rural Development, Oenology and Sustainable Agriculture, Murcia Institute of Agri-Food and Environmental Research (IMIDA), La Alberca de las Torres, 30150 Murcia, Spain; (G.J.C.-C.); (M.Q.)
| | - Gonzalo Ortiz de Elguea-Culebras
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla La Mancha (IRIAF), CIAF de Albaladejito, Carretera Toledo-Cuenca km 174, 16194 Cuenca, Spain; (G.O.d.E.-C.); (E.M.-B.); (R.S.-V.)
| | - Enrique Melero-Bravo
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla La Mancha (IRIAF), CIAF de Albaladejito, Carretera Toledo-Cuenca km 174, 16194 Cuenca, Spain; (G.O.d.E.-C.); (E.M.-B.); (R.S.-V.)
| | - Raúl Sánchez-Vioque
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla La Mancha (IRIAF), CIAF de Albaladejito, Carretera Toledo-Cuenca km 174, 16194 Cuenca, Spain; (G.O.d.E.-C.); (E.M.-B.); (R.S.-V.)
| | - María J. Jordán
- Research Group on Rainfed Agriculture for Rural Development, Department of Rural Development, Oenology and Sustainable Agriculture, Murcia Institute of Agri-Food and Environmental Research (IMIDA), La Alberca de las Torres, 30150 Murcia, Spain; (G.J.C.-C.); (M.Q.)
| |
Collapse
|
16
|
Gravina C, Formato M, Piccolella S, Fiorentino M, Stinca A, Pacifico S, Esposito A. Lavandula austroapennina (Lamiaceae): Getting Insights into Bioactive Polyphenols of a Rare Italian Endemic Vascular Plant. Int J Mol Sci 2023; 24:ijms24098038. [PMID: 37175744 PMCID: PMC10178519 DOI: 10.3390/ijms24098038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Lavandula austroapennina N.G. Passal., Tundis and Upon has recently been described as a new species endemic to the southern Apennines (Italy). Locally, this species has a long ethnobotanical tradition of use for curative and decoration purposes and has been the protagonist of a flourishing essential oil production chain. Currently, while this tradition has long since ended, attention to the species is necessary, with a view to enhancing marginal and rural areas, as a recovery of a precious resource to (i) get insights into its (poly)phenolic fraction and (ii) address new and innovative uses of all its organs in various application fields (e.g., cosmeceutical sector). Therefore, after field sampling and dissection of its organs (i.e., corolla, calyx, leaf, stem and root), the latter, previously deterpenated and defatted, were subjected to accelerated ultrasound extraction and the related alcoholic extracts were obtained. Chemical composition, explored by UHPLC-QqTOF-MS/MS, and the following multivariate data analysis showed that the hydroxycinnamoyl derivatives are abundant in the leaf, stem and root, while flavonoids are more present in corolla and calyx. In particular, coumaroyl flavonoids with glyconic portion containing also hexuronyl moieties differentiated corolla organ, while yunnaneic acid D isomers and esculin distinguished root. When antiradical and reducing properties were evaluated (by means of ABTS, DPPH and PFRAP tests), a similar clustering of organs was achieved and the marked antioxidant efficacy of leaf, stem and root extracts was found. Thus, following cytotoxicity screening by MTT test on HaCaT keratinocytes, the protective effects of the organ extracts were assessed by wound closure observed after the scratch test. In addition, the extracts from corolla, leaf and stem were particularly active at low doses inducing rapid wound closure on HaCaT cells at a concentration of 1 μg/mL. The diversity in (poly)phenols of each organ and the promising bioactivity preliminarily assessed suggest further investigation to be carried out to fully recover and valorize this precious endemic vascular plant.
Collapse
Affiliation(s)
- Claudia Gravina
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Marialuisa Formato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Simona Piccolella
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Marika Fiorentino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Adriano Stinca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Assunta Esposito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
17
|
Odoom JF, Aboagye CI, Acheampong P, Asiamah I, Darko G, Borquaye LS. Chemical Composition, Antioxidant, and Antimicrobial Activities of the Leaf and Fruit Essential Oils of the West African Plum, Vitex doniana. J CHEM-NY 2023. [DOI: 10.1155/2023/9959296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Vitex doniana (West African plum or black plum) is a plant with varying phytoconstituents and biological activities across different countries. In this study, essential oils extracted from the leaves and fruits of Vitex doniana cultivated in Ghana were investigated for their antimicrobial and antioxidant activities. The antioxidant actions of the essential oils were determined using hydrogen peroxide (H2O2), phosphomolybdenum, thiobarbituric acid reactive substances (TBARS), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays. For both essential oils, the total antioxidant capacities ranged from 44 to 68 µg/g AAE, the IC50 values for H2O2 scavenging activity were between 87 and 242 µg/mL, whereas that for DPPH assay were between 322 and 599 µg/mL. The IC50 for the TBARS assay for both essential oils also ranged from 247 to 414 µg/mL. The antimicrobial activities of the essential oils were investigated using the broth dilution assay. The minimum inhibition concentration for the essential oils ranged from 12.5 to 50 mg/mL. Biofilm inhibitory activity was also evaluated for both essential oils, and the fruit essential oil showed a half-maximal inhibition of biofilm formation (BIC50) at 44.40 ± 0.6 mg/mL, whereas the BIC50 value of the leaf essential oil was 109.1 ± 0.9 mg/mL. The fruit essential oil was superior to the leaf essential oil in inhibiting the secretion of pyoverdine. Molecular docking analyses suggested that methyl cinnamate, ethyl cinnamate, p-menth-4-en-3-one, trans-α-ionone, benzyl benzoate, isobutyl cinnamate, and folic acid likely interacted with LasR and algC proteins, and hence, contributed to the inhibition of biofilm formation and pyoverdine secretion. Essential oils from Vitex doniana could, therefore, be exploited as a natural source of radical scavenging and antimicrobial agents and could be useful in the pharmaceutical, food, and cosmetic industries.
Collapse
|
18
|
Pokajewicz K, Czarniecka-Wiera M, Krajewska A, Maciejczyk E, Wieczorek PP. Lavandula x intermedia-A Bastard Lavender or a Plant of Many Values? Part II. Biological Activities and Applications of Lavandin. Molecules 2023; 28:2986. [PMID: 37049749 PMCID: PMC10095729 DOI: 10.3390/molecules28072986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
This review article is the second in a series aimed at providing an in-depth overview of Lavandula x intermedia (lavandin). In part I, the biology and chemistry of lavandin were addressed. In part II, the focus is on the functional properties of lavandin and its applications in industry and daily life. While reviewing the biological properties, only original research articles employing lavandin were considered. Lavandin essential oil has been found to have antioxidant and biocidal activity (antimicrobial, nematicidal, antiprotozoal, insecticidal, and allelopathic), as well as other potential therapeutic effects such as anxiolytic, neuroprotective, improving sleep quality, antithrombotic, anti-inflammatory, and analgesic. Other lavandin preparations have been investigated to a much lesser extent. The research is either limited or inconsistent across all studies, and further evidence is needed to support these properties. Unlike its parent species-Lavandula angustifolia (LA)-lavandin essential oil is not officially recognized as a medicinal raw material in European Pharmacopeia. However, whenever compared to LA in shared studies, it has shown similar effects (or even more pronounced in the case of biocidal activities). This suggests that lavandin has similar potential for use in medicine.
Collapse
Affiliation(s)
| | | | - Agnieszka Krajewska
- Department of Biotechnology and Food Science, Lodz University of Technology, 90-530 Lodz, Poland
| | - Ewa Maciejczyk
- Department of Biotechnology and Food Science, Lodz University of Technology, 90-530 Lodz, Poland
| | | |
Collapse
|
19
|
Pokajewicz K, Czarniecka-Wiera M, Krajewska A, Maciejczyk E, Wieczorek PP. Lavandula × intermedia-A Bastard Lavender or a Plant of Many Values? Part I. Biology and Chemical Composition of Lavandin. Molecules 2023; 28:2943. [PMID: 37049706 PMCID: PMC10096058 DOI: 10.3390/molecules28072943] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
This review article is the first in a series that provides an overview of the biology, chemistry, biological effects, and applications of Lavandula × intermedia (lavandin, LI). Despite its prevalence in cultivation and on the essential oil market, lavandin has received limited attention from the scientific community. Remarkably more attention is paid to Lavandula angustifolia (LA), which is commonly regarded as the superior lavender and has been extensively researched. Our goal is to provide a comprehensive review of LI, as none currently exists, and assess whether its inferior status is merited. In the first part, we outline the biological and chemical characteristics of the plant and compare it to the parent species. The chemical composition of lavandin oil is similar to that of LA but contains more terpenes, giving camphor notes that are less valued in perfumery. Nevertheless, lavandin has some advantages, including a higher essential oil yield, resulting in reduced production cost, and therefore, it is a preferred lavender crop for cultivation.
Collapse
Affiliation(s)
| | | | - Agnieszka Krajewska
- Institute of Natural Products and Cosmetics, Faculty of Biotechnology and Food Science, Lodz University of Technology, 90-530 Łódź, Poland
| | - Ewa Maciejczyk
- Institute of Natural Products and Cosmetics, Faculty of Biotechnology and Food Science, Lodz University of Technology, 90-530 Łódź, Poland
| | | |
Collapse
|
20
|
Domingues J, Delgado F, Gonçalves JC, Zuzarte M, Duarte AP. Mediterranean Lavenders from Section Stoechas: An Undervalued Source of Secondary Metabolites with Pharmacological Potential. Metabolites 2023; 13:metabo13030337. [PMID: 36984777 PMCID: PMC10054607 DOI: 10.3390/metabo13030337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Globally, climate change and wildfires are disrupting natural ecosystems, thus setting several endemic species at risk. The genus Lavandula is widely present in the Mediterranean region and its species, namely, those included in the section Stoechas, are valuable resources of active compounds with several biological assets. Since ancient times lavenders have been used in traditional medicine and for domestic purposes. These species are melliferous, decorative, and essential oil-producing plants with a high economic interest in the pharmaceutical, flavor, fragrance, and food industries. The essential oils of Lavandula section Stoechas are characterized by high amounts of 1,8-cineole, camphor, fenchone, and specifically for L. stoechas subsp. luisieri one of the major compounds is trans-α-necrodyl acetate. On the other hand, the diversity of non-volatile components like phenolic compounds, such as phenolic acids and flavonoids, make these species an important source of phytochemicals with pharmacological interest. Rosmarinic, caffeic, and salvianolic B acids are the major phenolic acids, and luteolin and eriodictyol-O-glucuronide are the main reported flavonoids. However, the concentration of these secondary metabolites is strongly affected by the plant’s phenological phase and varies in Lavandula sp. from different areas of origin. Indeed, lavender extracts have shown promising antioxidant, antimicrobial, anti-inflammatory, and anticancer properties as well as several other beneficial actions with potential for commercial applications. Despite several studies on the bioactive potential of lavenders from the section Stoechas, a systematized and updated review of their chemical profile is lacking. Therefore, we carried out the present review that gathers relevant information on the different types of secondary metabolites found in these species as well as their bioactive potential.
Collapse
Affiliation(s)
- Joana Domingues
- Plant Biotechnology Centre of Beira Interior (CBPBI), 6001-909 Castelo Branco, Portugal
- Health Sciences Research Centre (CICS), University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Fernanda Delgado
- Plant Biotechnology Centre of Beira Interior (CBPBI), 6001-909 Castelo Branco, Portugal
- Polytechnic Institute of Castelo Branco-School of Agriculture (IPCB-ESA), 6001-909 Castelo Branco, Portugal
- Research Centre for Natural Resources, Environment and Society, Polytechnic Institute of Castelo Branco (CERNAS-IPCB), 6001-909 Castelo Branco, Portugal
| | - José Carlos Gonçalves
- Plant Biotechnology Centre of Beira Interior (CBPBI), 6001-909 Castelo Branco, Portugal
- Polytechnic Institute of Castelo Branco-School of Agriculture (IPCB-ESA), 6001-909 Castelo Branco, Portugal
- Research Centre for Natural Resources, Environment and Society, Polytechnic Institute of Castelo Branco (CERNAS-IPCB), 6001-909 Castelo Branco, Portugal
| | - Mónica Zuzarte
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-531 Coimbra, Portugal
| | - Ana Paula Duarte
- Health Sciences Research Centre (CICS), University of Beira Interior, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
21
|
Application of Lavender-Oil Microcapsules to Functionalized PET Fibers. Polymers (Basel) 2023; 15:polym15040917. [PMID: 36850201 PMCID: PMC9964015 DOI: 10.3390/polym15040917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
Surface treatments for textile substrates have received significant attention from researchers around the world. Ozone and plasma treatments trigger a series of surface alterations in textile substrates that can improve the anchoring of other molecules or particles on these substrates. This work aims to evaluate the effect of ozone and plasma treatments on the impregnation of polymeric microcapsules containing lavender oil in polyester fabrics (PES). Microcapsules with walls of chitosan and gum arabic were prepared by complex coacervation and impregnated in PES, plasma-treated PES, and ozone-treated PES by padding. The microcapsules were characterized for their size and morphology and the surface-treated PES was evaluated by FTIR, TGA, SEM, and lavender release. The microcapsules were spherical in shape, with smooth surfaces. The FTIR analyses of the textile substrates with microcapsules showed bands referring to the polymers of the microcapsules, but not to the lavender; this was most likely because the smooth surface of the outer wall did not retain the lavender. The mass loss and the degradation temperatures measured by TGA were similar for all the ozone-treated and plasma-treated polyester samples. In the SEM images, spherical microcapsules and the impregnation of the microcapsules of larger sizes were perceived. Through the lavender release, it was observed that the plasma and ozone treatments interfered both with the amount of lavender delivered and with the control of the delivery.
Collapse
|
22
|
De Falco E, Rigano D, Fico V, Vitti A, Barile G, Pergola M. Spontaneous Officinal Plants in the Cilento, Vallo di Diano and Alburni National Park: Tradition, Protection, Enhancement, and Recovery. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030465. [PMID: 36771560 PMCID: PMC9919598 DOI: 10.3390/plants12030465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 05/27/2023]
Abstract
The aim of this study was to deepen our knowledge on the heritage and traditional uses of some medicinal plants of the Cilento, Vallo di Diano and Alburni National Park (Salerno province) and to evaluate their productive potential, in order to increase possible uses to recover and enhance the territory. Biometric surveys and biomass evaluation were carried out. Two types of aqueous extract were prepared using air-dried samples of six harvested species and tested for anti-germination activity on Lepidium sativum L. Hydrolates were recovered via steam distillation from aromatic species and the chemical-physical characteristics were determined. Historical evidence of industrial activity was collected in the territory of Sanza on Monte Cervati, where lavender essential oil has been distilled in the past century, and characterization of the essential oil components was carried out. The ethnobotanical uses detected mainly concerned traditional medicine and nutritional, ritual, or religious uses. The experimental results highlight that spontaneous medicinal plants could become potential sources of local economic development, with uses not only in the phytotherapeutic sector, but also in others, such as food and agriculture for weed control. Moreover, the evidence derived from industrial archeology could represent a further driving force for the enhancement of the territory's resources.
Collapse
Affiliation(s)
- Enrica De Falco
- Degree Course of Agriculture, Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Daniela Rigano
- Dipartimento di Farmacia, Università di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Vito Fico
- Associazione “Sanza Città della Lavanda”, 84030 Sanza, Italy
| | - Antonella Vitti
- Degree Course of Agriculture, Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Gaia Barile
- Degree Course of Agriculture, Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Maria Pergola
- Degree Course of Agriculture, Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
23
|
Comparison between the Chemical Composition of Essential Oil from Commercial Products and Biocultivated Lavandula angustifolia Mill. Int J Anal Chem 2023; 2023:1997157. [PMID: 36684478 PMCID: PMC9859693 DOI: 10.1155/2023/1997157] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/24/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
The main aim of this study was to assess the differences in the chemical composition of essential oil from biocultivated Lavandula angustifolia in the Thracian Lowland floristic region, Bulgaria, and commercially available products from Bulgarian markets. Following the analytical results conducted with gas chromatography-mass spectrometry, we have established some differences in the chemical composition of the tested samples. The essential oil of biocultivated lavender contained 35 compounds, which represent 94.13% of the total oil. Samples from commercial products contained 28-42 compounds that represent 93.03-98.69% of the total oil. All the examined samples were rich in monoterpene hydrocarbons (1.68-12.77%), oxygenated monoterpenes (70.42-87.96%), sesquiterpene hydrocarbons (4.03-13.78%), and oxygenated sesquiterpenes (0.14-0.76%). The dominant components in all examined samples were linalool (20.0-45.0%) and linalyl acetate (20.79-39.91%). All the examined commercial samples contained linalool and linalyl acetate as was described in the European Pharmacopoeia, but in one of the samples, the quality of linalyl acetate is lower than that recommended in the European Pharmacopoeia.
Collapse
|
24
|
Crișan I, Ona A, Vârban D, Muntean L, Vârban R, Stoie A, Mihăiescu T, Morea A. Current Trends for Lavender ( Lavandula angustifolia Mill.) Crops and Products with Emphasis on Essential Oil Quality. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020357. [PMID: 36679071 PMCID: PMC9861439 DOI: 10.3390/plants12020357] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 05/24/2023]
Abstract
Lavender is in the research spotlight due to its increasing economic importance, while market demand is expected to continue to grow. Among the hundreds of essential-oil-bearing plants, Lavandula angustifolia Mill. remains one of the most valuable. This paper explores the lavender chain timeline from crop to products, examining the expanding knowledge on the characteristics, phytochemical profile and functional potential of lavender that could lead to new products and uses. Lavender crops can be expanded without competing for productive land, instead using marginal, contaminated or unproductive land. A novel cultivation trend proposes leveraging agri-background biodiversity, arbuscular mycorrhiza and the natural enemies of pests for healthy crops. Together with breeding efforts targeting highly performant genotypes with complex volatile profiles coupled with resistance to specific biotic (particularly Phytoplasma) and abiotic (salt, heavy metals) stressors, industry could have a steady supply of high-quality raw material. Besides the expansion of the uses of essential oil in cosmetics, pharmaceuticals, food and environmental and agri-applications, novel channels have appeared for the use of the solid by-product, which is rich in polyphenols and polysaccharides; these channels have the potential to create additional streams of value. The stabilization and optimization of techno-functional delivery systems through the encapsulation of essential oil can extend shelf-life and enhance biological activity efficiency.
Collapse
Affiliation(s)
- Ioana Crișan
- Department of Botany, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur Street No. 3-5, 400372 Cluj-Napoca, Romania
| | - Andreea Ona
- Department of Genetics and Plant Breeding, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur Street No. 3-5, 400372 Cluj-Napoca, Romania
| | - Dan Vârban
- Department of Crop Technologies, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur Street No. 3-5, 400372 Cluj-Napoca, Romania
| | - Leon Muntean
- Department of Genetics and Plant Breeding, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur Street No. 3-5, 400372 Cluj-Napoca, Romania
| | - Rodica Vârban
- Department of Botany, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur Street No. 3-5, 400372 Cluj-Napoca, Romania
| | - Andrei Stoie
- Department of Botany, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur Street No. 3-5, 400372 Cluj-Napoca, Romania
| | - Tania Mihăiescu
- Department of Engineering and Environmental Protection, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur Street No. 3-5, 400372 Cluj-Napoca, Romania
| | - Adriana Morea
- Department of Agritourism and Processing of Agricultural Products, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur Street No. 3-5, 400372 Cluj-Napoca, Romania
| |
Collapse
|
25
|
Chemical Profiles, In Vitro Antioxidant and Antifungal Activity of Four Different Lavandula angustifolia L. EOs. Molecules 2023; 28:molecules28010392. [PMID: 36615586 PMCID: PMC9822278 DOI: 10.3390/molecules28010392] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Lavandula angustifolia L., known as lavender, is an economically important Lamiaceae due to the production of essential oils (EOs) for the food, cosmetic, pharmaceutical and medical industries. The purpose of this study was to determine the chemical composition of EOs isolated from four inflorescences of L. angustifolia L. collected in different geographical areas: central-southern Italy (LaCC, LaPE, LaPS) and southern France (LaPRV). The essential oils, obtained by steam distillation from plants at the full flowering stage, were analyzed using gas chromatography coupled with mass spectrometry (GC-MS). More than 70 components identified in each sample showed significant variability among the main constituents. The four EOs analyzed contained the following as main component: linalool (from 30.02% to 39.73%), borneol (13.65% in LaPE and 16.83% in La PS), linalyl acetate (24.34% in LaCC and 31.07% in LaPRV). The EOs were also evaluated for their in vitro antifungal activity against two white rot fungi (Phanerochaete chrysosporium and Trametes cingulata) as potential natural biodeteriogens in the artworks field, and against Sclerotium rolfsii, Botrytis cinerea and Fusarium verticilloides responsible for significant crop yield losses in tropical and subtropical areas. The results confirm a concentration-dependent toxicity pattern, where the fungal species show different sensitivity to the four EOs. The in vitro antioxidant activity by DPPH assay showed better scavenging activity on LaCC (IC50 26.26 mg/mL) and LaPRV (IC50 33.53 mg/mL), followed by LaPE (IC50 48.00 mg/mL) and LaPS (IC50 49.63 mg/mL). The potential application of EOs as a green method to control biodeterioration phenomena on a work of art on wood timber dated 1876 was evaluated.
Collapse
|
26
|
Nedeltcheva-Antonova D, Gechovska K, Bozhanov S, Antonov L. Exploring the Chemical Composition of Bulgarian Lavender Absolute ( Lavandula Angustifolia Mill.) by GC/MS and GC-FID. PLANTS (BASEL, SWITZERLAND) 2022; 11:3150. [PMID: 36432879 PMCID: PMC9692913 DOI: 10.3390/plants11223150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Lavender (L. angustifolia Mill.) is an important essential oil-bearing and medicinal plant with high commercial value. Lavender scent components can be derived not only as an essential oil but also as lavender concrete or absolute. The development of reliable analytical methods for origin assessment and quality assurance is of significant fundamental importance and high practical interest. Therefore, a comprehensive chemical profiling of seven industrial samples of Bulgarian lavender absolute (L. angustifolia Mill.) was performed by means of gas chromatography-mass spectrometry (GC/MS) and gas chromatography with flame ionization detection (GC-FID). As a result, 111 individual compounds were identified by GC/MS, and their quantitative content was simultaneously determined by GC-FID, representing 94.28-97.43% of the total contents of the lavender absolute. According to our results, the main constituents of lavender absolute (LA) are representatives of the terpene compounds (with the dominating presence of oxygenated monoterpenes, 52.83-80.55%), followed by sesquiterpenes (7.80-15.21%) and triterpenoids (as minor components). Coumarins in various amounts (1.79-14.73%) and aliphatic compounds (hydrocarbons, ketones, esters, etc.) are found, as well. The acyclic monoterpene linalool is the main terpene alcohol and, together with its ester linalyl acetate, are the two main constituents in the LAs. Linalool was found in concentrations of 27.33-38.24% in the LA1-LA6 samples and 20.74% in the LA7 samples. The amount of linalyl acetate was in the range of 26.58 to 37.39% in the LA1-LA6 samples, while, surprisingly, it was not observed in LA7. This study shows that the chemical profile of the studied LAs is close to the lavender essential oil (LO), fulfilling most of the requirements of the International Standard ISO 3515:2002.
Collapse
Affiliation(s)
- Daniela Nedeltcheva-Antonova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Kamelia Gechovska
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | | | - Liudmil Antonov
- Institute of Electronics, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria
| |
Collapse
|
27
|
Olfactory Stimulation Successfully Modulates the Neurochemical, Biochemical and Behavioral Phenotypes of the Visceral Pain. Molecules 2022; 27:molecules27217659. [DOI: 10.3390/molecules27217659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Visceral pain (VP) is the organ-derived nociception in which increased inflammatory reaction and exaggerated activation of the central nucleus of the amygdala (CeA) may contribute to this deficiency. Considering the amygdala also serves as the integration center for olfaction, the present study aimed to determine whether olfactory stimulation (OS) would effectively depress over-activation and inflammatory reaction in CeA, and successfully relieve VP-induced abnormalities. Adult rats subjected to intraperitoneal injection of acetic acid inhaled lavender essential oil for 2 or 4 h. The potential benefits of OS were determined by measuring the pro-inflammatory cytokine level, intracellular potassium and the upstream small-conductance calcium-activated potassium (SK) channel expression, together with detecting the stress transmitters that participated in the modulation of CeA activity. Results indicated that in VP rats, strong potassium intensity, reduced SK channel protein level, and increased corticotropin-releasing factor, c-fos, and substance P immuno-reactivities were detected in CeA. Enhanced CeA activation corresponded well with increased inflammatory reaction and decreased locomotion, respectively. However, in rats subjected to VP and received OS, all above parameters were significantly returned to normal levels with higher change detected in treating OS of 4h. As OS successfully depresses inflammation and CeA over-activation, application of OS may serve as an alternative and effective strategy to efficiently relieve VP-induced deficiency.
Collapse
|
28
|
Mardani A, Maleki M, Hanifi N, Borghei Y, Vaismoradi M. A systematic review of the effect of lavender on cancer complications. Complement Ther Med 2022; 67:102836. [DOI: 10.1016/j.ctim.2022.102836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/05/2022] [Accepted: 04/19/2022] [Indexed: 02/08/2023] Open
|
29
|
Ramić D, Ogrizek J, Bucar F, Jeršek B, Jeršek M, Možina SS. Campylobacter jejuni Biofilm Control with Lavandin Essential Oils and By-Products. Antibiotics (Basel) 2022; 11:854. [PMID: 35884108 PMCID: PMC9312237 DOI: 10.3390/antibiotics11070854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
The food industry is constantly struggling with one of the most prevalent biofilm-forming and food-borne pathogenic bacteria, Campylobacter jejuni. Different approaches are used to control biofilms in the food production chain, but none is fully effective. In this study, we aim to produce and determine the chemical profile of essential oils (EOs), ethanolic extracts of flowers prior to distillation (EFs), and ethanolic extracts of post-distillation waste material (EWMs) from Lavandula × intermedia 'Bila', 'Budrovka' St Nicholas and 'Budrovka', which were further used to reduce C. jejuni intercellular signaling, adhesion, and biofilm formation, as well as to test their antioxidant activity. Glycosides of hydroxycinnamic acids were the major constituents of both types of lavandin ethanolic extract, while linalool, linalyl acetate, 1,8-cineol, and camphor were the major compounds found in lavandin EOs. Tested EOs showed the best antibacterial activity with a minimal inhibitory concentration of 0.25 mg/mL. Lavandin EFs proved more effective in reducing C. jejuni intercellular signaling and adhesion compared to lavandin EOs and EWMs, while lavandin EOs showed a slightly better effect against biofilm formation. Interestingly, the best antioxidant activity was determined for lavandin EWMs. A positive and moderate correlation was found between the reduction of C. jejuni intercellular signaling and adhesion, as well as between adhesion and biofilm formation. These findings mean novel bacterial targets are of interest for biofilm control with alternative natural agents throughout the whole food production chain.
Collapse
Affiliation(s)
- Dina Ramić
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (D.R.); (J.O.); (B.J.)
| | - Janja Ogrizek
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (D.R.); (J.O.); (B.J.)
| | - Franz Bucar
- Department of Pharmacognosy, Institute for Pharmaceutical Sciences, University of Graz, A-8010 Graz, Austria;
| | - Barbka Jeršek
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (D.R.); (J.O.); (B.J.)
| | - Miha Jeršek
- Slovenian Museum of Natural History, Prešernova Cesta 20, 1001 Ljubljana, Slovenia;
| | - Sonja Smole Možina
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (D.R.); (J.O.); (B.J.)
| |
Collapse
|
30
|
Essential Oil Content and Compositional Variability of Lavandula Species Cultivated in the Mid Hill Conditions of the Western Himalaya. Molecules 2022; 27:molecules27113391. [PMID: 35684332 PMCID: PMC9182314 DOI: 10.3390/molecules27113391] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/05/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022] Open
Abstract
The increase in the utilization of Lavandula essential oil in industries led to an impressive rise in the demand for quality essential oils. However, a post-harvest drying of Lavandula species can be a decisive factor to determine the quantity and quality of essential oil. The study was conducted in western Himalayan conditions to assess the essential oil content and composition of two Lavandula species viz., lavender (Lavandula angustifolia Mill.), and lavandin (Lavandula × intermedia Emeric ex Loisel), at four different drying duration (0 h, 24 h, 48 h and 72 h after the harvest). The higher growth attributes viz., plant height (71.7 cm), ear length (8.8 cm), number of spikes (18.1), and number of flowers per ear (47.5) were higher in lavandin, while the number of branches (17.1) was higher in lavender. Essential oil content (%) and moisture reduction (%) were significantly higher at 72 h than at 0 h. The major components of lavender and lavandin essential oil were linalool (33.6–40.5%), linalyl acetate (10.8–13.6%), lavandulyl acetate (2.8–14.5%), and linalyl propionate (5.3–14.1%) in both the Lavandula species. There was a decreasing trend in linalool and an increasing trend in linalyl acetate content in lavandin, with an increase in drying duration up to 72 h; while in lavender, no regular trend was observed in linalool and linalyl acetate content. It was observed that linalool and linalyl acetate levels were the highest at 24 and 0 h of drying in lavender and lavandin, respectively, and essential oil extraction can be done according to the desire of the constituent at varied drying duration.
Collapse
|
31
|
dos Santos ÉRQ, Maia JGS, Fontes-Júnior EA, Maia CDSF. Linalool as a Therapeutic and Medicinal Tool in Depression Treatment: A Review. Curr Neuropharmacol 2022; 20:1073-1092. [PMID: 34544345 PMCID: PMC9886818 DOI: 10.2174/1570159x19666210920094504] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/18/2021] [Accepted: 09/09/2021] [Indexed: 11/22/2022] Open
Abstract
Depression is a prevalent disease worldwide, limiting psychosocial functioning and thequality of life. Linalool is the main constituent of some essential oils from aromatic plants, representing about 70% of these volatile concentrates. Evidence of the linalool activity on the central nervous system, mainly acting as an antidepressant agent, is increasingly abundant. This review aimed to extend the knowledge of linalool's antidepressant action mechanisms, which is fundamental for future research, intending to highlight this natural compound as a new antidepressant phytomedication. A critical analysis is proposed here with probable hypotheses of the synergic mechanisms that support the evidence of antidepressant effects of the linalool. The literature search has been conducted in databases for published scientific articles before December 2020, using relevant keywords. Several pieces of evidence point to the anticonvulsant, sedative, and anxiolytic actions. In addition to these activities, other studies have revealed that linalool acts on the monoaminergic and neuroendocrine systems, inflammatory process, oxidative stress, and neurotrophic factors, such as BDNF, resulting in considerable advances in the knowledge of the etiology of depression. In this context, linalool emerges as a promising bioactive compound in the therapeutic arsenal, capable of interacting with numerous pathophysiological factors and acting on several targets. This review claims to contribute to future studies, highlighting the gaps in the linalool knowledge, such as its kinetics, doses, routes of administration, and multiple targets of interaction, to clarify its antidepressant activity.
Collapse
Affiliation(s)
- Éverton Renan Quaresma dos Santos
- Laboratório de Farmacologia da Inflamação e Comportamento, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil;
| | - José Guilherme S. Maia
- Programa de Pós-Graduação em Química, Centro de Ciências Exatas e Tecnologia, Universidade Federal do Maranhão, 65080-805 São Luís, MA, Brazil
| | - Enéas Andrade Fontes-Júnior
- Laboratório de Farmacologia da Inflamação e Comportamento, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil;
| | - Cristiane do Socorro Ferraz Maia
- Laboratório de Farmacologia da Inflamação e Comportamento, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil; ,Address correspondence to this author at the Laboratório de Farmacologia da Inflamação e do Comportamento, Instituto de Ciências da Saúde, Universidade Federal do Pará, Rua Augusto Corrêa 1, Campus do Guamá, Belém-Pará 66075-900, Brazil; Tel: +55 (91) 3201-7202; E-mails: ;
| |
Collapse
|
32
|
Abstract
Lavandula sp. essential oil and hydrolate are commercially valuable in various industry branches with the potential for wide-ranging applications. This study aimed to evaluate the quality of these products obtained from L. x intermedia cv. ‘Budrovka’ for the first time cultivated on Fruška Gora Mt. (Serbia) during three successive seasons (2019, 2020, and 2021). Essential oil extraction was obtained by steam distillation, and the composition and influence of weather conditions were also assessed, using flowering tops. The obtained essential oils and hydrolates were analysed by gas chromatography with a flame ionization detector (GC-FID) and gas chromatography coupled to mass spectrometry (GC-MS). A linear regression model was developed to predict L. x intermedia cv. ‘Budrovka’ essential oil volatile compound content and hydrolate composition during three years, according to temperature and precipitation data, and the appropriate regression coefficients were calculated, while the correlation analysis was employed to analyse the correlations in hydrolate and essential oil compounds. To completely describe the structure of the research data that would present a better insight into the similarities and differences among the diverse L. x intermedia cv. ‘Budrovka’ samples, the PCA was used. The most dominant in L. intermedia cv. ‘Budrovka’ essential oil and hydrolate were oxygenated monoterpenes: linalool, 1,8-cineole, borneol, linalyl acetate, and terpinene-4-ol. It is established that the temperature was positively correlated with all essential oil and hydrolate compounds. The precipitations were positively correlated with the main compounds (linalool, 1,8-cineole, and borneol), while the other compounds’ content negatively correlated to precipitation. The results indicated that Fruška Gora Mt. has suitable agro-ecological requirements for cultivating Lavandula sp. and providing satisfactory essential oil and hydrolate.
Collapse
|
33
|
Dębczak A, Tyśkiewicz K, Fekner Z, Kamiński P, Florkowski G, Konkol M, Rój E, Grzegorczyk A, Malm A. Molecular Distillation of Lavender Supercritical Extracts: Physicochemical and Antimicrobial Characterization of Feedstocks and Assessment of Distillates Enriched with Oxygenated Fragrance Components. Molecules 2022; 27:1470. [PMID: 35268571 PMCID: PMC8911675 DOI: 10.3390/molecules27051470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 11/17/2022] Open
Abstract
Lavandula angustifolia is one of the most widely cultivated non-food crops used in the production of essential oil; it is used in perfumery, aromatherapy, pharmaceutical preparations, and food ingredients. In this study, supercritical fluid extraction (SFE) and molecular distillation (MD) were combined, primarily to enrich scCO2 extracts with lavender oxygenated monoterpenes, avoiding thermal degradation, hydrolysis, and solvent contamination, and maintaining the natural characteristics of the obtained oils. Molecular distillation was developed for the first time for the extraction of crucial lavender fragrance ingredients, i.e., from two scCO2 extracts obtained from dry flower stems of lavender cultivated in Poland and Bulgaria. The best results for high-quality distillates were obtained at 85 °C (EVT) and confirmed that linalyl acetate content increased from 51.54 mg/g (initial Bulgarian lavender extract, L-Bg-E) and 89.53 mg/g (initial Polish lavender extract, L-Pl-E) to 118.41 and 185.42 mg/g, respectively, corresponding to increases of 2.3 and 2.1 times in both distillate streams, respectively. The distillates, light oils, and extracts from lavender were also evaluated for their antimicrobial properties by determining the minimum inhibitory concentration (MIC) by the broth microdilution method. Generally, Gram-positive bacteria and Candida spp. were more sensitive to all distilled fractions and extracts than Escherichia coli (Gram-negative bacteria).
Collapse
Affiliation(s)
- Agnieszka Dębczak
- Łukasiewicz Research Network—New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13A, 24-110 Puławy, Poland; (K.T.); (Z.F.); (P.K.); (G.F.); (M.K.); (E.R.)
| | - Katarzyna Tyśkiewicz
- Łukasiewicz Research Network—New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13A, 24-110 Puławy, Poland; (K.T.); (Z.F.); (P.K.); (G.F.); (M.K.); (E.R.)
| | - Zygmunt Fekner
- Łukasiewicz Research Network—New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13A, 24-110 Puławy, Poland; (K.T.); (Z.F.); (P.K.); (G.F.); (M.K.); (E.R.)
| | - Piotr Kamiński
- Łukasiewicz Research Network—New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13A, 24-110 Puławy, Poland; (K.T.); (Z.F.); (P.K.); (G.F.); (M.K.); (E.R.)
| | - Grzegorz Florkowski
- Łukasiewicz Research Network—New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13A, 24-110 Puławy, Poland; (K.T.); (Z.F.); (P.K.); (G.F.); (M.K.); (E.R.)
| | - Marcin Konkol
- Łukasiewicz Research Network—New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13A, 24-110 Puławy, Poland; (K.T.); (Z.F.); (P.K.); (G.F.); (M.K.); (E.R.)
| | - Edward Rój
- Łukasiewicz Research Network—New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13A, 24-110 Puławy, Poland; (K.T.); (Z.F.); (P.K.); (G.F.); (M.K.); (E.R.)
| | - Agnieszka Grzegorczyk
- Chair and Department of Pharmaceutical Microbiology, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland; (A.G.); (A.M.)
| | - Anna Malm
- Chair and Department of Pharmaceutical Microbiology, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland; (A.G.); (A.M.)
| |
Collapse
|
34
|
Philippe F, Dubrulle N, Marteaux B, Bonnet B, Choisy P, Berthon J, Garnier L, Leconte N, Milesi S, Morvan P, Saunois A, Sun J, Weber S, Giraud N. Combining DNA Barcoding and Chemical fingerprints to authenticate Lavender raw material. Int J Cosmet Sci 2022; 44:91-102. [PMID: 34860432 PMCID: PMC9305429 DOI: 10.1111/ics.12757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/19/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE This study was initiated and conducted by several laboratories, 3 of the main cosmetic ingredient suppliers and 4 brands of cosmetics in France. Its objective is to show the interest and robustness of coupling chemical and genetic analyses in the identification of plant species. In this study, the Lavandula genus was used. METHODS In this study, we used two analytical methods. Chemical analysis from UHPLC (ultra-high-performance liquid chromatography) and genetic analysis from barcoding with genetic markers. RESULTS Eleven lavender species were selected (botanically authenticated) and analysed. The results show that three chemical compounds (coumaric acid hexoside, ferulic acid hexoside and rosmarinic acid) and three genetic markers (RbcL, trnH-psbA and ITS) are of interest for the differentiation of species of the genus lavandula. CONCLUSION The results show that the combination of complementary analytical methods is a relevant system to prove the botanical identification of lavender species. This first study, carried out on a plant of interest for cosmetics, demonstrates the need for authentication using a tool combining genetic and chemical analysis as an advance over traditional investigation methods used alone, in terms of identification and authentication reliability.
Collapse
Affiliation(s)
| | - Nelly Dubrulle
- DNA Gensee17 rue du lac saint andréLe Bourget du Lac73370France
| | | | | | | | | | | | | | | | | | | | - Jian‐Sheng Sun
- Structure et Instabilite des GénomesMuséum national d’Histoire naturelleCNRSINSERM43 rue CuvierParis75005France
| | | | - Nicole Giraud
- DNA Gensee17 rue du lac saint andréLe Bourget du Lac73370France
| |
Collapse
|
35
|
Angelova G, Brazkova M, Stefanova P, Blazheva D, Vladev V, Petkova N, Slavov A, Denev P, Karashanova D, Zaharieva R, Enev A, Krastanov A. Waste Rose Flower and Lavender Straw Biomass-An Innovative Lignocellulose Feedstock for Mycelium Bio-Materials Development Using Newly Isolated Ganoderma resinaceum GA1M. J Fungi (Basel) 2021; 7:jof7100866. [PMID: 34682287 PMCID: PMC8541479 DOI: 10.3390/jof7100866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022] Open
Abstract
In this study, for the first time, the potential of rose flowers and lavender straw waste biomass was studied as feeding lignocellulose substrates for the cultivation of newly isolated in Bulgaria Ganoderma resinaceum GA1M with the objective of obtaining mycelium-based bio-composites. The chemical characterization and Fourier Transform Infrared (FTIR) spectroscopy established that the proximate composition of steam distilled lavender straw (SDLS) and hexane extracted rose flowers (HERF) was a serious prerequisite supporting the self-growth of mycelium bio-materials with improved antibacterial and aromatic properties. The basic physico-mechanical properties of the developed bio-composites were determined. The apparent density of the mycelium HERF-based bio-composites (462 kg/m3) was higher than that of the SDLS-based bio-composite (347 kg/m3) and both were much denser than expanded polystyren (EPS), lighter than medium-density fiber board (MDF) and oriented strand board (OSB) and similar to hempcrete. The preliminary testing of their compressive behavior revealed that the compressive resistance of SDLS-based bio-composite was 718 kPa, while for HERF-based bio-composite it was 1029 kPa and both values are similar to the compressive strength of hempcrete with similar apparent density. Water absorbance analysis showed, that both mycelium HERF- and SDLS-based bio-composites were hydrophilic and further investigations are needed to limit the hydrophilicity of the lignocellulose fibers, to tune the density and to improve compressive resistance.
Collapse
Affiliation(s)
- Galena Angelova
- Department of Biotechnology, University of Food Technology, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (G.A.); (P.S.); (A.K.)
| | - Mariya Brazkova
- Department of Biotechnology, University of Food Technology, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (G.A.); (P.S.); (A.K.)
- Correspondence:
| | - Petya Stefanova
- Department of Biotechnology, University of Food Technology, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (G.A.); (P.S.); (A.K.)
| | - Denica Blazheva
- Department of Microbiology, University of Food Technology, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria;
| | - Veselin Vladev
- Department of Mathematics, Physics and Information Technologies, Faculty of Economics, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria;
| | - Nadejda Petkova
- Department of Organic and Inorganic Chemistry, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (N.P.); (A.S.)
| | - Anton Slavov
- Department of Organic and Inorganic Chemistry, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (N.P.); (A.S.)
| | - Petko Denev
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria;
| | - Daniela Karashanova
- Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, Acad. Georgy Bonchev Str., 1113 Sofia, Bulgaria;
| | - Roumiana Zaharieva
- Department of Building Materials and Insulation, Faculty of Structural Engineering, University of Architecture, Civil Engineering and Geodesy, 1046 Sofia, Bulgaria;
| | | | - Albert Krastanov
- Department of Biotechnology, University of Food Technology, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (G.A.); (P.S.); (A.K.)
| |
Collapse
|
36
|
Physiological response and secondary metabolites of three lavender genotypes under water deficit. Sci Rep 2021; 11:19164. [PMID: 34580379 PMCID: PMC8476503 DOI: 10.1038/s41598-021-98750-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/08/2021] [Indexed: 12/27/2022] Open
Abstract
Lavandula genus is a considerable medicinal plant in pharmaceutical and cosmetics industries. Considering increasing threat of drought in the world, it is important to identify genotypes which can tolerate drought. It is also important to characterize quantity and quality of essential oils, and tolerance indicators of these genotypes against drought stress. Therefore, an experiment was conducted in Gorgan University of Agricultural Sciences and Natural Resources, Iran, during 2017 and 2018, to investigate these factors. It was a factorial experiment based on randomized complete block design with two treatments, three genotypes (Lavandula angustifolia cv. Hidcote, Lavandula angustifolia cv. Munstead, and Lavandula stricta), and four levels of drought stress (irrigation regimes) (I1: 100–90% (control), I2: 80–70%, I3: 60–50% and I4: 30–40% of field capacity) which was done with three repetitions. Drought increased amount of proline in leaves, antioxidant activity, activity of catalase, peroxidase, ascorbate peroxidase, and superoxide enzymes, malondialdehyde content, total flavonoids, total phenol, total sugar and essential oil percentage. The PCA analysis of different irrigation regimes showed that in the first component, the best traits are antioxidant enzymes CAT, SOD, APX, while in the second component, only the trait Catalase is the best trait. The results of PCA analysis in lavender genotypes showed that L. stricta exhibits the most affected physiological changes while trying to adjust to changes in the water status of the environment, under the imposed conditions and shows the highest resistance. But it reduced dry weight of aerial parts, relative water content of leaves, and efficacy of essential oil. Lavandula stricta genotype had the highest amount of essential oil, but the highest dry weight of the aerial parts and essential oil yield were related to L. angustifolia cv. Hidcote and L. angustifolia cv. Munstead genotypes. In all evaluated genotypes, with increasing drought stress, monoterpene compounds were decreased and sesquiterpene compounds were increased. Totally it was shown that drought effect on evaluated traits depends on genotype and nature of traits; this indicates that by choosing drought-tolerant genotypes in breeding programs, high quantity and quality of essential oil, as well as tolerance to drought stress can be achieved.
Collapse
|
37
|
Liao Z, Huang Q, Cheng Q, Khan S, Yu X. Seasonal Variation in Chemical Compositions of Essential Oils Extracted from Lavandin Flowers in the Yun-Gui Plateau of China. Molecules 2021; 26:5639. [PMID: 34577110 PMCID: PMC8465160 DOI: 10.3390/molecules26185639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 11/19/2022] Open
Abstract
Lavandin, as an important cash crop, is cultivated in Kunming, Yun-Gui Plateau of China. For the special growing environment, Lavandin was grown here and used to investigate the changes in the yield and chemical compositions of essential oils extracted from the flowers in different seasons. The essential oils were extracted by hydro-distillation and analysis by gas chromatography-mass spectrometry (GC-MS). Results indicated great changes in chemical composition depending on the season of harvesting. The yields of essential oils ranged from 2.0% to 3.8% among the seasons, and the highest yield was in the summer. Chemical composition data showed that the extracted oils were rich in oxygenated monoterpenes (55.4-81.4%), eucalyptol (38.7-49.8%), camphor (8.41-14.26%), α-bisabolol (6.6-25.5%), and linalool (4.6-12.5%). The contents of eucalyptol and α-bisabolol changed in a contrary trend with seasonal variations. The results provided new insight for Chinese Lavandin germplasm to be used in application and development, and reference to the researcher, the farmer, and investor for sustainable industrialization of the plant grown in the Yun-Gui Plateau of China, but also the similar plateau area of the sustainable developments.
Collapse
Affiliation(s)
- Zhenni Liao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (Z.L.); (Q.C.); (S.K.)
- Chenzhou Institute of Forestry, Chenzhou 423000, China
| | - Qing Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (Z.L.); (Q.C.); (S.K.)
- College of Ecology & Environment, Hainan University, Haikou 570228, China
- Center for Eco-Environmental Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Qiming Cheng
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (Z.L.); (Q.C.); (S.K.)
| | - Sardar Khan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (Z.L.); (Q.C.); (S.K.)
| | - Xiaoying Yu
- Horticulture College, Hunan Agricultural University, Changsha 410128, China;
| |
Collapse
|
38
|
Seo E, Shin YK, Hsieh YS, Lee JM, Seol GH. Linalyl acetate as a potential preventive agent against muscle wasting in rheumatoid arthritis rats chronically exposed to nicotine. J Pharmacol Sci 2021; 147:27-32. [PMID: 34294369 DOI: 10.1016/j.jphs.2021.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/25/2021] [Accepted: 05/07/2021] [Indexed: 12/24/2022] Open
Abstract
Cigarette smoking has detrimental effects on rheumatoid arthritis (RA), characterized by muscle wasting. Linalyl acetate (LA), the main component of Lavandula angustifolia Mill (lavender) oil, has anti-inflammatory properties. We investigated the detrimental effects of chronic nicotine exposure in rats with RA, as well as the abilities of lavender oil and LA to prevent muscle wasting. Rats with RA induced by type II collagen were exposed to nicotine for 22 days from day 1. Lavender oil or LA was administered twice a week during the experiment. Compared with control, collagen-induced arthritis (CIA) and chronic nicotine exposure plus CIA (NicoCIA) showed increases in hind paw thickness and serum interleukin (IL)-6 and decreases in body weight and serum insulin-like growth factor (IGF)-1 levels. Moreover, weight and fiber cross-sectional area of the gastrocnemius muscle were much lower, and mitochondrial membrane potential of the gastrocnemius muscle was higher, in the NicoCIA than in the CIA. These alterations in the NicoCIA were prevented by lavender oil and LA. Importantly, LA showed greater activity than lavender oil in preventing IGF-1 reduction in the NicoCIA. These findings suggest that lavender oil and LA may have preventive benefit in RA by counteracting muscle wasting associated with chronic nicotine exposure.
Collapse
Affiliation(s)
- Eunhye Seo
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul, Republic of Korea
| | - You Kyoung Shin
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul, Republic of Korea
| | - Yu Shan Hsieh
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul, Republic of Korea; School of Nursing, National Taipei University of Nursing and Health Science, Taipei, Taiwan
| | - Jeong-Min Lee
- KT&G Central Research Institute, Daejeon, Republic of Korea
| | - Geun Hee Seol
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul, Republic of Korea; BK21 FOUR Program of Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
39
|
Virgiliou C, Zisi C, Kontogiannopoulos KN, Nakas A, Iakovakis A, Varsamis V, Gika HG, Assimopoulou AN. Headspace gas chromatography-mass spectrometry in the analysis of lavender's essential oil: Optimization by response surface methodology. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1179:122852. [PMID: 34274641 DOI: 10.1016/j.jchromb.2021.122852] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022]
Abstract
A static headspace gas chromatography - mass spectrometry (HS-GC/MS) method was developed and optimized with the aim to be applied in the analysis of lavender essential oil. To obtain a comprehensive profile of the essential oil, the optimum HS-GC/MS method parameters were selected based on a Design of Experiments (DοE) process. Plackett-Burman experimental design was applied by utilizing seven parameters of the HS injection system. Incubation equilibration temperature and time, agitator's vortex speed, post injection dwell time, inlet temperature, split ratio and injection flow rate were screened to select the optimum conditions on the basis of the number and the intensity of the identified compounds. Other parameters, such as sample volume and dilution solvent ratio, were also examined to achieve a comprehensive profile in a chromatographic run of 55 min. With the obtained optimum method, more than 40 volatile compounds were identified in lavender's essential oils from different geographical regions in Greece. The method can be utilized for the quality assessment of lavender's essential oil and provide information on its characteristic aroma and discrimination among species based on the acquired GC-MS profiles.
Collapse
Affiliation(s)
- Christina Virgiliou
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Center for Bioanalysis & Omics (BIOMIC_AUTH), CIRI Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
| | - Chrysostomi Zisi
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos N Kontogiannopoulos
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Natural Products Research Centre of Excellence (NatPro-AUTH), Center for Interdisciplinary Research and Innovation of Aristotle University of Thessaloniki (CIRI-AUTH), 57001 Thessaloniki, Greece
| | - Alexandros Nakas
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Natural Products Research Centre of Excellence (NatPro-AUTH), Center for Interdisciplinary Research and Innovation of Aristotle University of Thessaloniki (CIRI-AUTH), 57001 Thessaloniki, Greece
| | - Achilleas Iakovakis
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Center for Bioanalysis & Omics (BIOMIC_AUTH), CIRI Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
| | | | - Helen G Gika
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Center for Bioanalysis & Omics (BIOMIC_AUTH), CIRI Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece.
| | - Andreana N Assimopoulou
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Natural Products Research Centre of Excellence (NatPro-AUTH), Center for Interdisciplinary Research and Innovation of Aristotle University of Thessaloniki (CIRI-AUTH), 57001 Thessaloniki, Greece.
| |
Collapse
|
40
|
Ultrasound-Assisted Extraction of Lavender (Lavandula angustifolia Miller, Cultivar Rosa) Solid By-Products Remaining after the Distillation of the Essential Oil. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11125495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
FINNOVER is an EU Interreg-Alcotra project that aims to bring new perspectives to floriculture enterprises by recovering useful bioproducts from the waste produced during processing of several aromatic species. In this study, a new operation strategy to recover lavender (Lavandula angustifolia Mill.) solid by-products remaining after the extraction of the essential oil was developed. Pulsed ultrasound-assisted extraction was employed as a sustainable and eco-compatible technology to extract, in a very short time (10 min), this agricultural waste using a food-grade solvent (a mixture of ethanol/water). All the extracts obtained from both flower and leaf waste and flower-only residues, exhibit a promising total phenolic content (38–40 mg gallic acid/g of dry waste), radical scavenging activity (107–110 mg Trolox/g of dry waste) and total flavonoid content (0.11–0.13 mg quercetin/g of dry waste). Moreover, the chromatographic analysis of these extracts has shown that this overlooked agriculture waste can represent a valuable source of multifunctional compounds. Particularly, they exhibit a content of polyphenols and flavonoids up to 200 times higher than the corresponding leachate, and they are a valuable source of gentisic acid (1.4–13 mg/g dry waste) representing a new low-cost ingredient usable in different fields (i.e., cosmetic).
Collapse
|
41
|
Greff B, Szigeti J, Varga Á, Lakatos E, Sáhó A, Varga L. Effect of bacterial inoculation on co-composting of lavender ( Lavandula angustifolia Mill.) waste and cattle manure. 3 Biotech 2021; 11:306. [PMID: 34189009 PMCID: PMC8167000 DOI: 10.1007/s13205-021-02860-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/25/2021] [Indexed: 12/21/2022] Open
Abstract
The primary purpose of this study was to investigate the influence of Cellulomonas flavigena and Streptomyces viridosporus, as a bacterial inoculant, on the compostability of post-extraction lavender waste. The major physicochemical, microbiological, and biological properties of the composting materials were monitored for 161 days. The technology developed was shown to improve the compostability of recalcitrant herbal residues. The use of lavender waste beneficially affected the composting process by extending the thermophilic phase, accelerating the degradation of organic matter, and elevating the viable counts of useful microorganisms; however, adverse effects were also observed, including an increased carbon-to-nitrogen ratio (19.05) and a decreased germination index (93.4%). Bacterial inoculation was found to preserve the nitrogen content (2.50%) and improve the efficiency of biodegradation. The Salmonella- and Escherichia coli-free final composting products were mature, stable, and ready for soil application. To the authors' knowledge, no previous research has investigated the compostability of lavender waste. Likewise, this is the first study that has used strains of C. flavigena and S. viridosporus in combination to facilitate a composting process.
Collapse
Affiliation(s)
- Babett Greff
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, Mosonmagyaróvár, 9200 Hungary
| | - Jenő Szigeti
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, Mosonmagyaróvár, 9200 Hungary
| | - Ágnes Varga
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, Mosonmagyaróvár, 9200 Hungary
| | - Erika Lakatos
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, Mosonmagyaróvár, 9200 Hungary
| | - András Sáhó
- Kisalföldi Agricultural Ltd, Fő út 1., Nagyszentjános, 9072 Hungary
| | - László Varga
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, Mosonmagyaróvár, 9200 Hungary
| |
Collapse
|
42
|
Vairinhos J, Miguel MG. Essential oils of spontaneous species of the genus Lavandula from Portugal: a brief review. ACTA ACUST UNITED AC 2021; 75:233-245. [PMID: 32452196 DOI: 10.1515/znc-2020-0044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/24/2020] [Indexed: 12/29/2022]
Abstract
Spontaneous lavender growing in uncultivated fields in Portugal have been used in traditional medicine for internal and external uses. The essential oils (EOs) of Lavandula stoechas subsp. luisieri are characterized by the presence of trans-α-necrodyl acetate and trans-necrodol. These EOs are able to prevent the generation and deposition of neurotoxic β-amyloid peptide in Alzheimer's disease. The EOs also present antibacterial, anti-fungal, anti-Leishmania, antioxidant, anti-inflammatory and antifeedant effects. In the case of hydrodistillation, the predominant compound of Lavandula viridis EO was 1,8-cineole, nevertheless in the case of supercritical fluid extraction, the main constituent was camphor. In in vitro shoots EOs, 1,8-cineole and α-pinene were the most important compounds. The EOs presented anti-fungal activity particularly against Cryptococcus neoformans and dermatophytes. The antioxidant and anti-protozoal activities of L. viridis EOs were lower than L. stoechas subsp. luisieri EOs, with hydrodistillation being the best method for obtaining samples with higher antioxidant and anti-acetylcholinesterase activities. The presence of fenchone, 1,8-cineole and camphor was a common trace of the Lavandula pedunculata subsp. pedunculata EOs and in in vitro axillary shoots EOs. Lavandula pedunculata subsp. lusitanica EOs were predominantly constituted of fenchone and camphor. The antioxidant activity of L. pedunculata subsp. lusitanica EOs was poorer than other Lavandula EOs from Portugal.
Collapse
Affiliation(s)
- Jessica Vairinhos
- Department of Chemistry and Pharmacy, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Maria Graça Miguel
- Mediterranean Institute for Agriculture, Environment and Development, Department of Chemistry and Pharmacy, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
43
|
Enhanced Biological Activity of a Novel Preparation of Lavandula angustifolia Essential Oil. Molecules 2021; 26:molecules26092458. [PMID: 33922508 PMCID: PMC8122903 DOI: 10.3390/molecules26092458] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/02/2022] Open
Abstract
Lavandula angustifolia, one of the most popular medicinal plants, is the source of a bioactive essential oil characterized by a wide spectrum of biological activity, e.g., antiseptic, analgesic, and anticancer effects. In dermatology, the oil helps to relieve skin inflammation and exhibit wound healing potential. However, the mechanism of action of the lavender oil depends on its composition, which in turn is dependent on the origin and growing conditions. Our study aimed to compare the composition and proregenerative properties of the commercially-available narrow-leaved lavender oil produced in Provence, France, with the oil obtained from the narrow-leaved lavender cultivated locally in Poland. GC/MS analysis showed that self-manufactured essential oil had lower linalool content than commercial oil (23.2 vs. 40.2%), comparable linalyl acetate content (40.6 vs. 44%), while the proportion of lavandulyl acetate was significantly higher (23.2 vs. 5.5%). To determine the influence of lavender oil on the production of proinflammatory cytokines and proregenerative growth factors, gene expression of the selected signaling molecules by HaCaT cells was investigated using real-time PCR. Results showed a concentration-dependent effect of lavender oils on the production of IL-6, IL-8, and VEGF by the keratinocyte cell line. Finally, the potential of the lavender oil to increase the production of VEGF, the most important angiogenic factor, with the in-house preparation performing significantly better in the in vitro cell models was identified.
Collapse
|
44
|
Nakamura Y, Ochiai T, Makino K, Shimada N. Boronic Acid-Catalyzed Final-Stage Site-Selective Acylation for the Total Syntheses of O-3'-Acyl Bisabolol β-D-Fucopyranoside Natural Products and Their Analogues. Chem Pharm Bull (Tokyo) 2021; 69:281-285. [PMID: 33642477 DOI: 10.1248/cpb.c20-00834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The first concise total syntheses of O-3'-senecioyl α-bisabolol β-D-fucopyranoside (4a) and O-3'-isovaleroyl α-bisabolol β-D-fucopyranoside (4b) were achieved through final-stage site-selective acylation via the activation of cis-vicinal diols by imidazole-containing boronic acid catalysts as a key step. This synthetic method was also effective for the syntheses of unnatural analogues with modified acyl side chains or carbohydrate moiety.
Collapse
Affiliation(s)
- Yuki Nakamura
- Laboratory of Organic Chemistry for Drug Development and Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University
| | - Takayuki Ochiai
- Laboratory of Organic Chemistry for Drug Development and Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University
| | - Kazuishi Makino
- Laboratory of Organic Chemistry for Drug Development and Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University
| | - Naoyuki Shimada
- Laboratory of Organic Chemistry for Drug Development and Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University
| |
Collapse
|
45
|
Lieshchova MA, Brygadyrenko VV. Influence of Lavandula angustifolia, Melissa officinalis and Vitex angus-castus on the organism of rats fed with excessive fat-containing diet. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Plant food additives are becoming more and more popular and broadly applied products, though the information on risks they poses to the organism is limited and contradictive. Obesity and overeating are some of the commonest health issues around the world, and people are increasingly consuming workability-enhancing preparations as a simple and fast method of weight control. The plant-based preparations are considered less harmful than the synthetic chemical ones. Lavandula angustifolia Mill., Melissa officinalis L. and Vitex angus-castus L. are broadly used as food additives and medicinal plants, despite the fact that their complex physiological assessment on model animals in the conditions of obesity has not yet been performed. We carried out a 30-day experiment on white male rats. All the animals were given high-fat diet, and the experimental animals, in addition to this diet, received 5% crumbled dry herbs of L. angustifolia, M. officinalis or V. angus-castus. Taking into account the overall amount of consumed food, the mean daily gain in body weight; at the end of the experiment, we determined the index of the weight of the internal organs, biochemical and morphological blood parameters. At the beginning and the end of the experiment, the rats were examined for motor and orienting activities, and emotional status. Rats on high-fat diet gained up to 112% body weight by the end of the experiment, while rats that had received V. angus-castus gained up to 119%, M. officinalis – 135%, L. angustifolia – 139%, compared with the initial body weight. Addition of medicinal plants to the diet led to increase in average daily weight increment, significantly and reliably after consuming lavender and lemon balm, less significantly and unreliably after eating Vitex. L. angustifolia and M. officinalis reduced the relative brain weight, and ingestion of L. angustifolia and M. officinalis caused notable decrease in the relative mass of the thymus (down to 58% and 47% of the relative weight of thymus in animals of the control group respectively). Also, these plants decreased the motor and orienting activities of the rats by the end of the experiment. As for the biochemical parameters of blood, the activity of alkaline phosphatase significantly increased to 406% following consumption of Melissa, to 350% after consuming lavender, and to 406% after Vitex, compared to the control group. Furthermore, all the groups were observed to have increased AST and ALT activities. Intake of lavender led to increases in cholesterol (to 125%) and LDL cholesterol (to 228%), whereas the groups that consumed lemon balm were observed to have decreases in urea nitrogen (to 79%), totalbilirubin (to 63%) and triglycerides (to 63%). Addition of Vitex led to increase in the index of aterogenecity against the background of notable fall in HDL cholesterol (to 52% of the control group). The medicinal plants also contributed to the normalization of the glucose level. Morphological analysis of blood revealed no significant changes, except heightened content of monocytes in blood, which is characteristic of all groups, including the control. Effects of L. angustifolia, M. officinalis and V. angus-castus on the organism of rats on excessive-fat diet require additional histological, histochemical and immunological surveys.
Collapse
|
46
|
Valle JAB, Valle RDCSC, Bierhalz ACK, Bezerra FM, Hernandez AL, Lis Arias MJ. Chitosan microcapsules: Methods of the production and use in the textile finishing. J Appl Polym Sci 2021. [DOI: 10.1002/app.50482] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
47
|
Członka S, Kairytė A, Miedzińska K, Strąkowska A. Polyurethane Hybrid Composites Reinforced with Lavender Residue Functionalized with Kaolinite and Hydroxyapatite. MATERIALS (BASEL, SWITZERLAND) 2021; 14:415. [PMID: 33467655 PMCID: PMC7829896 DOI: 10.3390/ma14020415] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
Polyurethane (PUR) composites were modified with 2 wt.% of lavender fillers functionalized with kaolinite (K) and hydroxyapatite (HA). The impact of lavender fillers on selected properties of PUR composites, such as rheological properties (dynamic viscosity, foaming behavior), mechanical properties (compressive strength, flexural strength, impact strength), insulation properties (thermal conductivity), thermal characteristic (temperature of thermal decomposition stages), flame retardancy (e.g., ignition time, limiting oxygen index, heat peak release) and performance properties (water uptake, contact angle) was investigated. Among all modified types of PUR composites, the greatest improvement was observed for PUR composites filled with lavender fillers functionalized with kaolinite and hydroxyapatite. For example, on the addition of functionalized lavender fillers, the compressive strength was enhanced by ~16-18%, flexural strength by ~9-12%, and impact strength by ~7%. Due to the functionalization of lavender filler with thermally stable flame retardant compounds, such modified PUR composites were characterized by higher temperatures of thermal decomposition. Most importantly, PUR composites filled with flame retardant compounds exhibited improved flame resistance characteristics-in both cases, the value of peak heat release was reduced by ~50%, while the value of total smoke release was reduced by ~30%.
Collapse
Affiliation(s)
- Sylwia Członka
- Institute of Polymer & Dye Technology, Lodz University of Technology, 90-924 Lodz, Poland; (K.M.); (A.S.)
| | - Agnė Kairytė
- Laboratory of Thermal Insulating Materials and Acoustics, Institute of Building Materials, Faculty of Civil Engineering, Vilnius Gediminas Technical University, Linkmenu st. 28, LT-08217 Vilnius, Lithuania;
| | - Karolina Miedzińska
- Institute of Polymer & Dye Technology, Lodz University of Technology, 90-924 Lodz, Poland; (K.M.); (A.S.)
| | - Anna Strąkowska
- Institute of Polymer & Dye Technology, Lodz University of Technology, 90-924 Lodz, Poland; (K.M.); (A.S.)
| |
Collapse
|
48
|
Cervi A, Vo Y, Chai CLL, Banwell MG, Lan P, Willis AC. Gold(I)-Catalyzed Intramolecular Hydroarylation of Phenol-Derived Propiolates and Certain Related Ethers as a Route to Selectively Functionalized Coumarins and 2 H-Chromenes. J Org Chem 2021; 86:178-198. [PMID: 33253562 DOI: 10.1021/acs.joc.0c02011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Methods are reported for the efficient assembly of a series of phenol-derived propiolates, including the parent system 56, and their Au(I)-catalyzed cyclization (intramolecular hydroarylation) to give the corresponding coumarins (e.g., 1). Simple syntheses of natural products such as ayapin (144) and scoparone (145) have been realized by such means, and the first of these subject to single-crystal X-ray analysis. A related process is described for the conversion of propargyl ethers such as 156 into the isomeric 2H-chromene precocene I (159), a naturally occurring inhibitor of juvenile hormone biosynthesis.
Collapse
Affiliation(s)
- Aymeric Cervi
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Institute of Chemical and Engineering Sciences, 8 Biomedical Grove, #07-01 Neuros, 138665, Singapore
| | - Yen Vo
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Christina L L Chai
- Institute of Chemical and Engineering Sciences, 8 Biomedical Grove, #07-01 Neuros, 138665, Singapore.,Department of Pharmacy, National University of Singapore, 18 Science Drive 4, 117543, Singapore
| | - Martin G Banwell
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, Guangdong 510632, China
| | - Ping Lan
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, Guangdong 510632, China
| | - Anthony C Willis
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
49
|
(Lupoae) SDR, Mihalcea L, Aprodu I, Socaci SA, Cotârleț M, Enachi E, Crăciunescu O, Barbu V, Oancea A, Dulf FV, Alexe P, Bahrim GE, Râpeanu G, Stănciuc N. Fostering Lavender as a Source for Valuable Bioactives for Food and Pharmaceutical Applications through Extraction and Microencapsulation. Molecules 2020; 25:molecules25215001. [PMID: 33126733 PMCID: PMC7662620 DOI: 10.3390/molecules25215001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 11/17/2022] Open
Abstract
Lavender flowers were used in this study as a source of phytochemicals as naturally occurring antioxidants. Two different extraction techniques were applied, such as ultrasound-assisted (UAE) and supercritical fluids (SCE) methods. The comparative evaluation of the phytochemicals profile evidenced a higher content of chlorophyll a and b of 5.22 ± 0.12 mg/g dry weight (D.W.) and 2.95 ± 0.16 mg/g D.W, whereas the carotenoids content was 18.24 ± 0.04 mg/g D.W. in the SCE extract. Seven main compounds were found in both extracts: β-linalool, eucalyptol, linalool acetate, β-trans-ocimene, and limonene in SCE and linalool acetate, β-linalool, 6-methyl-2-(2-oxiranyl)-5-hepten-2-ol, linalool oxide, lavandulyl acetate and camphor in UAE. The (n-3) acids had a higher contribution in SCE. The extracts were microencapsulated in different combinations of wall materials based on polysaccharides and milk proteins. The four variants showed different phytochemical and morphological profiles, with a better encapsulating efficiency for proteins (up to 98%), but with a higher content of encapsulated carotenoids for polysaccharides, the latter showing remarkable antimicrobial activity against selected microorganisms. Carboxymethyl cellulose and whey proteins led to a double encapsulation of lipophilic compounds. The powders were tested in two food matrices as ingredients, with multiple targeted functions, such as flavoring, antimicrobial, antioxidant activity that can successfully replace synthetic additives.
Collapse
Affiliation(s)
- Simona Daniela Radu (Lupoae)
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (S.D.R.); (L.M.); (I.A.); (M.C.); (E.E.); (V.B.); (P.A.); (G.E.B.); (G.R.)
| | - Liliana Mihalcea
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (S.D.R.); (L.M.); (I.A.); (M.C.); (E.E.); (V.B.); (P.A.); (G.E.B.); (G.R.)
| | - Iuliana Aprodu
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (S.D.R.); (L.M.); (I.A.); (M.C.); (E.E.); (V.B.); (P.A.); (G.E.B.); (G.R.)
| | - Sonia A. Socaci
- Faculty of Food Science and Technology, Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Manastur 3-5, 400372 Cluj-Napoca, Romania;
| | - Mihaela Cotârleț
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (S.D.R.); (L.M.); (I.A.); (M.C.); (E.E.); (V.B.); (P.A.); (G.E.B.); (G.R.)
| | - Elena Enachi
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (S.D.R.); (L.M.); (I.A.); (M.C.); (E.E.); (V.B.); (P.A.); (G.E.B.); (G.R.)
| | - Oana Crăciunescu
- National Institute of Research and & Development for Biological Sciences, 296 Splaiul Independentei, 060031 București, Romania; (O.C.); (A.O.)
| | - Vasilica Barbu
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (S.D.R.); (L.M.); (I.A.); (M.C.); (E.E.); (V.B.); (P.A.); (G.E.B.); (G.R.)
| | - Anca Oancea
- National Institute of Research and & Development for Biological Sciences, 296 Splaiul Independentei, 060031 București, Romania; (O.C.); (A.O.)
| | - Francisc Vasile Dulf
- Faculty of Agriculture, Department of Environmental and Plant Protection, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Manastur 3-5, 400372 Cluj-Napoca, Romania;
| | - Petru Alexe
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (S.D.R.); (L.M.); (I.A.); (M.C.); (E.E.); (V.B.); (P.A.); (G.E.B.); (G.R.)
| | - Gabriela Elena Bahrim
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (S.D.R.); (L.M.); (I.A.); (M.C.); (E.E.); (V.B.); (P.A.); (G.E.B.); (G.R.)
| | - Gabriela Râpeanu
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (S.D.R.); (L.M.); (I.A.); (M.C.); (E.E.); (V.B.); (P.A.); (G.E.B.); (G.R.)
| | - Nicoleta Stănciuc
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (S.D.R.); (L.M.); (I.A.); (M.C.); (E.E.); (V.B.); (P.A.); (G.E.B.); (G.R.)
- Correspondence: ; Tel.: +40-0336-130-183
| |
Collapse
|
50
|
Lavender Oil Reduces Depressive Mood in Healthy Individuals and Enhances the Activity of Single Oxytocin Neurons of the Hypothalamus Isolated from Mice: A Preliminary Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5418586. [PMID: 32733584 PMCID: PMC7376415 DOI: 10.1155/2020/5418586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/07/2020] [Accepted: 06/15/2020] [Indexed: 12/27/2022]
Abstract
Background The aim of the present study was to assess the effects of lavender oil inhalation on blood pressure, pulse measurements, cortisol levels, depressive mood, and anxiety in healthy male adults. The mechanism was investigated by the action on oxytocin single neurons in the hypothalamus of rodents. Methods The participants (n = 7) were aged 20–40 years. After randomisation, they received an inhaled dose of lavender oil or distilled water for 20 min. They received the other treatment after a washout period of one week. We assessed the outcomes using the Self-Rating Depression Scale, State-Trait Anxiety Inventory, and self-rated unidimensional Visual Analogue Scale for depression; anxiety; and hunger, thirst, and appetite, respectively. Blood pressure, pulse rate, and cortisol concentration in the peripheral blood were assessed before and after inhalation. In the rodent study (n = 4), oxytocin single neurons were isolated from the mouse hypothalamus. Intracellular Ca2+ concentration in the oxytocin neurons isolated from the hypothalamus was measured following direct administration of lavender oil. Results Seven participants completed the study. Lavender inhalation decreased Self-Rating Depression Scale score and systolic and diastolic blood pressure. Ex vivo administration of lavender oil increased intracellular Ca2+ concentration in the hypothalamic oxytocin neurons. Conclusions Lavender oil might be a useful therapy for stress relief, and its mechanism of action may include activation of the central oxytocin neurons.
Collapse
|