1
|
Kim M, Oh M, Im JH, Lee EJ, Ryu H, Ro HS, Oh YL. Effect of a Mating Type Gene Editing in Lentinula edodes Using RNP/Nanoparticle Complex. J Fungi (Basel) 2024; 10:866. [PMID: 39728362 DOI: 10.3390/jof10120866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/27/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
Gene editing using CRISPR/Cas9 is an innovative tool for developing new mushroom strains, offering a promising alternative to traditional breeding methods that are time-consuming and labor-intensive. However, plasmid-based gene editing presents several challenges, including the need for selecting appropriate promoters for Cas9 expression, optimizing codons for the Cas9 gene, the unintended insertion of fragmented plasmid DNA into genomic DNA (gDNA), and regulatory concerns related to genetically modified organisms (GMOs). To address these issues, we utilized a Ribonucleoprotein (RNP) complex consisting of Cas9 and gRNA for gene editing to modify the A mating-type gene of Lentinula edodes. To overcome the challenges posed by the large size of the Cas9 protein, which limits its penetration through the protoplast membrane, and the susceptibility of sgRNA to degradation, we developed a nanoparticle complex using calcium phosphate and polyacrylic acid. This approach significantly improved gene editing efficiency. Consequently, we successfully edited the mating-controlling genes hd1 and hd2 in L. edodes and examined the effects of their disruption on mating. Disruption of the hd1 gene, which is known to influence mycelial growth, did not significantly affect growth or mating. In contrast, editing the hd2 gene disrupted mating with compatible partners, highlighting its critical role in the mating process. The RNP-based transformation technology presented here offers significant advancement over traditional plasmid-based methods, enhancing the efficiency of targeted gene modification while avoiding the insertion of foreign genetic material, thereby mitigating GMO-related regulatory concerns.
Collapse
Affiliation(s)
- Minseek Kim
- Mushroom Science Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Republic of Korea
| | - Minji Oh
- Mushroom Science Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Republic of Korea
| | - Ji-Hoon Im
- Mushroom Science Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Republic of Korea
| | - Eun-Ji Lee
- Mushroom Science Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Republic of Korea
| | - Hojin Ryu
- Department of Biology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hyeon-Su Ro
- Department of Bio and Medical Bigdata (BK21), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Youn-Lee Oh
- Mushroom Science Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Republic of Korea
| |
Collapse
|
2
|
Shen JY, Mao FH, Wang Q, Ou PP, Liu JK, Zhao Q, He QL. Efficient genome editing using CRISPR/Cas9 technology and its application for identifying Sesquiterpene synthases involved in the biosynthesis of Steperoxides in Steccherinum ochraceum. Fungal Genet Biol 2024; 175:103944. [PMID: 39592077 DOI: 10.1016/j.fgb.2024.103944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024]
Abstract
CRISPR technology has been widely used for gene editing in various species,but the genetic manipulation in basidiomycete mushrooms is still notoriously difficult for unknown endogenous promoters and inefficient DNA delivery. Steccherinum ochraceum is a white rot basidiomycete fungus with abundant secondary metabolites and plays an important ecological role worldwide. To facilitate the study of gene function in S. ochraceum, an effective CRISPR/Cas9 system was successfully developed by identifying highly efficient endogenous promoters, and utilizing the Agrobacterium-transformation method. Two efficient endogenous RNA polymerase II promoters (Psogpd and Psotef1) and one efficient RNA polymerase III promoter (Pu6-d) were identified and characterized, with an editing efficiency of 61.5 % at the ura3 locus. Using this optimized system, the sesquiterpene gene A0064, which could produce 10 possible sesquiterpenes in the heterologous expression system of A. oryzae, was knocked out to obtain A0064 knockout strain S. ochraceum (∆A0064). Steperoxide A could not be detected in S. ochraceum (∆A0064), demonstrating that A0064 was the only enzyme responsible for the biosynthesis of β-chamigrene (the sesquiterpene skeleton of steperoxide A) in S. ochraceum. This efficient system will enable precise targeting and multiplex editing of S. ochraceum genes, facilitating functional studies of genes involved in lignin degradation and natural product biosynthesis in S. ochraceum, and providing some valuable guidance for gene editing in tens of thousands of macrofungi.
Collapse
Affiliation(s)
- Jia-Yu Shen
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Fei-Hong Mao
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Qiwen Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Pei-Pei Ou
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Ji-Kai Liu
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Qunfei Zhao
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Qing-Li He
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
3
|
Zheng L, Zhang M, Zhao W. Enhanced mycelium biomass and polysaccharide production in genetically modified Pleurotus ostreatus using agricultural wastes. Int J Biol Macromol 2024; 278:134318. [PMID: 39111500 DOI: 10.1016/j.ijbiomac.2024.134318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/11/2024] [Accepted: 07/28/2024] [Indexed: 08/18/2024]
Abstract
Edible fungi, healthier for humans and sustainable for the planet, attract unprecedented attention. In the study, the genetically modified Pleurotus ostreatus overexpression phosphoglucomutase (PGM) was constructed. P. ostreatus overexpression PGM (Po::PGM) had 4.96-folds higher expression level of PGM. Po::PGM grew thicker mycelium and more mycelium branches. Additional Ca2+ can inhibit mycelium growth, and cyclic adenosine monophosphate completely inhibited their growth of Po::PGM. Secondly, Overexpression of PGM made P. ostreatus become more sensitive to cell wall disruptors, and caused 12.75 % reduction of β-1, 3-glucan and 40.53 % increase of chitin in cell wall. In submerged fermentation, the mycelia biomass yield and endopolysaccharide (IPS) production of Po::PGM in basic PDB can reach 11.18 g/l and 2.55 g/l, increasing by 20.86 % and 28.79 %, respectively. Whereas exopolysaccharide (EPS) reduced by 3.28 %. After replacing potato and glucose in PDB by wheat bran, mycelia biomass and EPS production of Po::PGM were all improved. The additional lactose in wheat bran did not only furtherly enhance mycelia biomass yield of Po::PGM to 27.78 g/l by 199.03 %, but IPS production also increased by 277.99 % to 6.07 g/l. The results provided us key ideas and important research directions that at least manipulating the PGM gene could obtain high-efficient use of agricultural wastes producing more fungus-based foods.
Collapse
Affiliation(s)
- Libing Zheng
- School of Food and Technology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Mengqing Zhang
- School of Food and Technology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Wei Zhao
- School of Food and Technology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China.
| |
Collapse
|
4
|
Thomas L, Mago P. Unearthing the therapeutic benefits of culinary-medicinal mushrooms for humans: Emerging sustainable bioresources of 21st century. J Basic Microbiol 2024; 64:e2400127. [PMID: 38774954 DOI: 10.1002/jobm.202400127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/18/2024] [Accepted: 05/09/2024] [Indexed: 08/06/2024]
Abstract
Global interest in mushroom farming techniques has grown in the last few years. Despite not making up a large amount of the human diet at the moment, the nutritional worth of mushrooms has prompted their usage. The three main segments of the global mushroom industry are wild, culinary (edible), and medicinal mushrooms. The quality food that mushrooms provide can be utilized to build agricultural ecosystems that are more sustainable for increasing productivity and enhancing the effectiveness of resource usage. This is mostly because mushrooms can be utilized for the recycling of biomass and remains from crop production. Culinary-medicinal mushrooms are becoming more and more important because of their nutrient density, dietary value, and health advantages. Given its many bioactive components, which include polysaccharides, proteins, vitamins, minerals, dietary fiber, and secondary metabolites, mushrooms have been utilized extensively as health foods. These mushrooms exhibit pharmacological activities and possess prebiotic and antibacterial capabilities. This review provides information on the latest advancements in the sustainable cultivation of mushrooms, particularly with nontraditional substrates, and their potential therapeutic uses. Furthermore, some of the newest developments and difficulties in the production of mushrooms are explored.
Collapse
Affiliation(s)
- Lebin Thomas
- Department of Botany, University of Delhi, New Delhi, Delhi, India
| | - Payal Mago
- Department of Botany, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, Delhi, India
- Campus of Open Learning, University of Delhi, New Delhi, Delhi, India
| |
Collapse
|
5
|
Tarafder E, Nizamani MM, Karunarathna SC, Das D, Zeng X, Rind RA, Wang Y, Tian F. Advancements in genetic studies of mushrooms: a comprehensive review. World J Microbiol Biotechnol 2024; 40:275. [PMID: 39034336 DOI: 10.1007/s11274-024-04079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
Genetic studies in mushrooms, driven by innovations such as CRISPR-Cas9 genome editing and RNA interference, transform our understanding of these enigmatic fungi and their multifaceted roles in agriculture, medicine, and conservation. This comprehensive review explores the rationale and significance of genetic research in mushrooms, delving into the ethical, regulatory, and ecological dimensions of this field. CRISPR-Cas9 emerges as a game-changing technology, enabling precise genome editing, targeted gene knockouts, and pathway manipulation. RNA interference complements these efforts by downregulating genes for improved crop yield and enhanced pest and disease resistance. Genetic studies also contribute to the conservation of rare species and developing more robust mushroom strains, fostering sustainable cultivation practices. Moreover, they unlock the potential for discovering novel medicinal compounds, offering new horizons in pharmaceuticals and nutraceuticals. As emerging technologies and ethical considerations shape the future of mushroom research, these studies promise to revolutionize our relationship with these fungi, paving the way for a more sustainable and innovative world.
Collapse
Affiliation(s)
- Entaj Tarafder
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China
| | - Mir Muhammad Nizamani
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China
| | - Samantha C Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, 655011, People's Republic of China
- National Institute of Fundamental Studies, Kandy, Sri Lanka
| | - Diptosh Das
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Xiangyu Zeng
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China
| | - Raza Ali Rind
- Department of Plant Breeding and Genetics, Sindh Agriculture University Tandojam, Hyderabad, Pakistan
| | - Yong Wang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.
| | - Fenghua Tian
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.
| |
Collapse
|
6
|
Li W, Zou G, Bao D, Wu Y. Current Advances in the Functional Genes of Edible and Medicinal Fungi: Research Techniques, Functional Analysis, and Prospects. J Fungi (Basel) 2024; 10:311. [PMID: 38786666 PMCID: PMC11121823 DOI: 10.3390/jof10050311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Functional genes encode various biological functions required for the life activities of organisms. By analyzing the functional genes of edible and medicinal fungi, varieties of edible and medicinal fungi can be improved to enhance their agronomic traits, growth rates, and ability to withstand adversity, thereby increasing yield and quality and promoting industrial development. With the rapid development of functional gene research technology and the publication of many whole-genome sequences of edible and medicinal fungi, genes related to important biological traits have been mined, located, and functionally analyzed. This paper summarizes the advantages and disadvantages of different functional gene research techniques and application examples for edible and medicinal fungi; systematically reviews the research progress of functional genes of edible and medicinal fungi in biological processes such as mating type, mycelium and fruit growth and development, substrate utilization and nutrient transport, environmental response, and the synthesis and regulation of important active substances; and proposes future research directions for functional gene research for edible and medicinal fungi. The overall aim of this study was to provide a valuable reference for further promoting the molecular breeding of edible and medicinal fungi with high yield and quality and to promote the wide application of edible and medicinal fungi products in food, medicine, and industry.
Collapse
Affiliation(s)
- Wenyun Li
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (G.Z.)
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Gen Zou
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (G.Z.)
| | - Dapeng Bao
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (G.Z.)
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yingying Wu
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (G.Z.)
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
7
|
Shen Q, Ruan H, Zhang H, Wu T, Zhu K, Han W, Dong R, Ming T, Qi H, Zhang Y. Utilization of CRISPR-Cas genome editing technology in filamentous fungi: function and advancement potentiality. Front Microbiol 2024; 15:1375120. [PMID: 38605715 PMCID: PMC11007153 DOI: 10.3389/fmicb.2024.1375120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024] Open
Abstract
Filamentous fungi play a crucial role in environmental pollution control, protein secretion, and the production of active secondary metabolites. The evolution of gene editing technology has significantly improved the study of filamentous fungi, which in the past was laborious and time-consuming. But recently, CRISPR-Cas systems, which utilize small guide RNA (sgRNA) to mediate clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas), have demonstrated considerable promise in research and application for filamentous fungi. The principle, function, and classification of CRISPR-Cas, along with its application strategies and research progress in filamentous fungi, will all be covered in the review. Additionally, we will go over general matters to take into account when editing a genome with the CRISPR-Cas system, including the creation of vectors, different transformation methodologies, multiple editing approaches, CRISPR-mediated transcriptional activation (CRISPRa) or interference (CRISPRi), base editors (BEs), and Prime editors (PEs).
Collapse
Affiliation(s)
| | - Haihua Ruan
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Azi F, Wang Z, Chen W, Lin D, Xu P. Developing Ganoderma lucidum as a next-generation cell factory for food and nutraceuticals. Trends Biotechnol 2024; 42:197-211. [PMID: 37659953 DOI: 10.1016/j.tibtech.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 09/04/2023]
Abstract
Ganoderma lucidum holds a colossal reservoir of hydrolytic enzymes and therapeutic compounds and can be a sustainable source of proteins and bioactive compounds. Its metabolic versatility, propelled by its rich genome content, provides excellent biosynthetic machinery for innovation-driven pathway engineering. However, robust regulatory networks and low frequency of homologous recombination are critical bottlenecks that limit the development of molecular tools and precise genetic markers for biomanufacturing innovations in this organism. Modern synthetic biology provides tools that could help to accelerate precise multiple gene targeting and editing and untangling the biosynthetic machinery of G. lucidum. This review provides insight into molecular strategies to unwind the regulatory bottlenecks and transform G. lucidum into efficient cell factories for food and nutraceuticals.
Collapse
Affiliation(s)
- Fidelis Azi
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China; Technion-Israel Institute of Technology, Haifa 3200002, Israel
| | - Zhe Wang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Wenhao Chen
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China; Technion-Israel Institute of Technology, Haifa 3200002, Israel
| | - Dewei Lin
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China; Technion-Israel Institute of Technology, Haifa 3200002, Israel
| | - Peng Xu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China; Technion-Israel Institute of Technology, Haifa 3200002, Israel; Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, GTIIT, Shantou, Guangdong 515063, China.
| |
Collapse
|
9
|
Tan Y, Yu X, Zhang Z, Tian J, Feng N, Tang C, Zou G, Zhang J. An Efficient CRISPR/Cas9 Genome Editing System for a Ganoderma lucidum Cultivated Strain by Ribonucleoprotein Method. J Fungi (Basel) 2023; 9:1170. [PMID: 38132771 PMCID: PMC10745038 DOI: 10.3390/jof9121170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/26/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023] Open
Abstract
The CRISPR/Cas9 system has become a popular approach to genome editing. Compared with the plasmid-dependent CRISPR system, the ribonucleoprotein (RNP) complex formed by the in vitro assembly of Cas9 and single-guide RNA (sgRNA) has many advantages. However, only a few examples have been reported and the editing efficiency has been relatively low. In this study, we developed and optimized an RNP-mediated CRISPR/Cas9 genome editing system for the monokaryotic strain L1 from the Ganoderma lucidum cultivar 'Hunong No. 1'. On selective media containing 5-fluoroorotic acid (5-FOA), the targeting efficiency of the genomic editing reached 100%. The editing efficiency of the orotidine 5'-monophosphate decarboxylase gene (ura3) was greater than 35 mutants/107 protoplasts, surpassing the previously reported G. lucidum CRISPR systems. Through insertion or substitution, 35 mutants introduced new sequences of 10-569 bp near the cleavage site of ura3 in the L1 genome, and the introduced sequences of 22 mutants (62.9%) were derived from the L1 genome itself. Among the 90 mutants, 85 mutants (94.4%) repaired DNA double-strand breaks (DSBs) through non-homologous end joining (NHEJ), and five mutants (5.6%) through microhomology-mediated end joining (MMEJ). This study revealed the repair characteristics of DSBs induced by RNA-programmed nuclease Cas9. Moreover, the G. lucidum genes cyp512a3 and cyp5359n1 have been edited using this system. This study is of significant importance for the targeted breeding and synthetic metabolic regulation of G. lucidum.
Collapse
Affiliation(s)
- Yi Tan
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Y.T.); (N.F.)
| | - Xianglin Yu
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China; (X.Y.); (J.T.)
| | - Zhigang Zhang
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China;
| | - Jialin Tian
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China; (X.Y.); (J.T.)
| | - Na Feng
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Y.T.); (N.F.)
| | - Chuanhong Tang
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Y.T.); (N.F.)
| | - Gen Zou
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Y.T.); (N.F.)
| | - Jingsong Zhang
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Y.T.); (N.F.)
| |
Collapse
|
10
|
Pepe M, Hesami M, de la Cerda KA, Perreault ML, Hsiang T, Jones AMP. A journey with psychedelic mushrooms: From historical relevance to biology, cultivation, medicinal uses, biotechnology, and beyond. Biotechnol Adv 2023; 69:108247. [PMID: 37659744 DOI: 10.1016/j.biotechadv.2023.108247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023]
Abstract
Psychedelic mushrooms containing psilocybin and related tryptamines have long been used for ethnomycological purposes, but emerging evidence points to the potential therapeutic value of these mushrooms to address modern neurological, psychiatric health, and related disorders. As a result, psilocybin containing mushrooms represent a re-emerging frontier for mycological, biochemical, neuroscience, and pharmacology research. This work presents crucial information related to traditional use of psychedelic mushrooms, as well as research trends and knowledge gaps related to their diversity and distribution, technologies for quantification of tryptamines and other tryptophan-derived metabolites, as well as biosynthetic mechanisms for their production within mushrooms. In addition, we explore the current state of knowledge for how psilocybin and related tryptamines are metabolized in humans and their pharmacological effects, including beneficial and hazardous human health implications. Finally, we describe opportunities and challenges for investigating the production of psychedelic mushrooms and metabolic engineering approaches to alter secondary metabolite profiles using biotechnology integrated with machine learning. Ultimately, this critical review of all aspects related to psychedelic mushrooms represents a roadmap for future research efforts that will pave the way to new applications and refined protocols.
Collapse
Affiliation(s)
- Marco Pepe
- Department of Plant Agriculture, University of Guelph, Ontario N1G 2W1, Guelph, Canada
| | - Mohsen Hesami
- Department of Plant Agriculture, University of Guelph, Ontario N1G 2W1, Guelph, Canada
| | - Karla A de la Cerda
- School of Environmental Sciences, University of Guelph, Ontario N1G 2W1, Guelph, Canada
| | - Melissa L Perreault
- Departments of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Ontario N1G 2W1, Guelph, Canada
| | | |
Collapse
|
11
|
Teng L, Wang C, Cui B, Zhang J, Zhou S, Pan X, Pan F, Dai Y, Feng N. Lanostane triterpenoids from mycelia-associated Ganoderma sinense and their anti-inflammatory activity. PHYTOCHEMISTRY 2023; 215:113870. [PMID: 37734511 DOI: 10.1016/j.phytochem.2023.113870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
Seven previously undescribed lanostane triterpenoids, ganoderic acid M1 (1), M2 (2), M3 (3), M4 (4), M5 (5), M6 (6), and M7 (7), together with eight known compounds, were isolated from mycelia of the basidiomycete Ganoderma sinense (Ganodermataceae). The structures of all compounds were elucidated by spectroscopic analysis. The possible biosynthetic pathway of these fifteen triterpenoids was proposed. Some of the compounds were evaluated for their anti-inflammatory activity by measuring the production of nitric oxide (NO), TNF-α, and IL-6 in RAW264.7 macrophage cells induced by lipopolysaccharide. Lanosta-7,9(11),24-trien-3β,15α,22β-triacetoxy-26-oic acid (14) exhibited the strongest inhibition of NO production with an IC50 of 0.6 ± 0.1 μM and completely inhibited the secretion of TNF-α and IL-6 at 10 μM. The structure-activity relationship of the anti-inflammatory activity is discussed.
Collapse
Affiliation(s)
- Liming Teng
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Chan Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China; School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Baokai Cui
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Jingsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Shuai Zhou
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Xinhua Pan
- Jiangxi Xiankelai Biotechnology Co., Ltd, Jiujiang, 332000, People's Republic of China
| | - Feng Pan
- Jiangxi Xiankelai Biotechnology Co., Ltd, Jiujiang, 332000, People's Republic of China
| | - Yucheng Dai
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| | - Na Feng
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China.
| |
Collapse
|
12
|
Peng R, Ba F, Li J, Cao J, Zhang R, Liu WQ, Ren J, Liu Y, Li J, Ling S. Embedding Living Cells with a Mechanically Reinforced and Functionally Programmable Hydrogel Fiber Platform. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305583. [PMID: 37498452 DOI: 10.1002/adma.202305583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Indexed: 07/28/2023]
Abstract
Living materials represent a new frontier in functional material design, integrating synthetic biology tools to endow materials with programmable, dynamic, and life-like characteristics. However, a major challenge in creating living materials is balancing the tradeoff between structural stability, mechanical performance, and functional programmability. To address this challenge, a sheath-core living hydrogel fiber platform that synergistically integrates living bacteria with hydrogel fibers to achieve both functional diversity and structural and mechanical robustness is proposed. In the design, microfluidic spinning is used to produce hydrogel fiber, which offers advantages in both structural and functional designability due to their hierarchical porous architectures that can be tailored and their mechanical performance that can be enhanced through a variety of post-processing approaches. By introducing living bacteria, the platform is endowed with programmable functionality and life-like capabilities. This work reconstructs the genetic circuits of living bacteria to express chromoproteins and fluorescent proteins as two prototypes that enable the coloration of living fibers and sensing water pollutants by monitoring the amount of fluorescent protein expressed. Altogether, this study establishes a structure-property-function optimized living hydrogel fiber platform, providing a new tool for accelerating the practical applications of the emerging living material systems.
Collapse
Affiliation(s)
- Ruoxuan Peng
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Fang Ba
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Jie Li
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Jiayi Cao
- College of Fashion and Design, Donghua University, 1882 West Yan'an Road, Shanghai, 200051, China
| | - Rong Zhang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Wan-Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Jing Ren
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Yifan Liu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| |
Collapse
|
13
|
Jeong E, Kim W, Son S, Yang S, Gwon D, Hong J, Cho Y, Jang CY, Steinegger M, Lim YW, Kang KB. Qualitative metabolomics-based characterization of a phenolic UDP-xylosyltransferase with a broad substrate spectrum from Lentinus brumalis. Proc Natl Acad Sci U S A 2023; 120:e2301007120. [PMID: 37399371 PMCID: PMC10334773 DOI: 10.1073/pnas.2301007120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/06/2023] [Indexed: 07/05/2023] Open
Abstract
Wood-decaying fungi are the major decomposers of plant litter. Heavy sequencing efforts on genomes of wood-decaying fungi have recently been made due to the interest in their lignocellulolytic enzymes; however, most parts of their proteomes remain uncharted. We hypothesized that wood-decaying fungi would possess promiscuous enzymes for detoxifying antifungal phytochemicals remaining in the dead plant bodies, which can be useful biocatalysts. We designed a computational mass spectrometry-based untargeted metabolomics pipeline for the phenotyping of biotransformation and applied it to 264 fungal cultures supplemented with antifungal plant phenolics. The analysis identified the occurrence of diverse reactivities by the tested fungal species. Among those, we focused on O-xylosylation of multiple phenolics by one of the species tested, Lentinus brumalis. By integrating the metabolic phenotyping results with publicly available genome sequences and transcriptome analysis, a UDP-glycosyltransferase designated UGT66A1 was identified and validated as an enzyme catalyzing O-xylosylation with broad substrate specificity. We anticipate that our analytical workflow will accelerate the further characterization of fungal enzymes as promising biocatalysts.
Collapse
Affiliation(s)
- Eunah Jeong
- College of Pharmacy, Sookmyung Women’s University, Seoul04310, Korea
- Research Institute of Pharmaceutical Sciences and Muscle Physiome Research Center, Sookmyung Women’s University, Seoul04310, Korea
| | - Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon57922, Korea
| | - Seungju Son
- College of Pharmacy, Sookmyung Women’s University, Seoul04310, Korea
| | - Sungyeon Yang
- College of Pharmacy, Sookmyung Women’s University, Seoul04310, Korea
| | - Dasom Gwon
- College of Pharmacy, Sookmyung Women’s University, Seoul04310, Korea
- Research Institute of Pharmaceutical Sciences and Muscle Physiome Research Center, Sookmyung Women’s University, Seoul04310, Korea
| | - Jihee Hong
- College of Pharmacy, Sookmyung Women’s University, Seoul04310, Korea
- Research Institute of Pharmaceutical Sciences and Muscle Physiome Research Center, Sookmyung Women’s University, Seoul04310, Korea
| | - Yoonhee Cho
- School of Biological Sciences, Seoul National University, Seoul08826, Korea
| | - Chang-Young Jang
- College of Pharmacy, Sookmyung Women’s University, Seoul04310, Korea
- Research Institute of Pharmaceutical Sciences and Muscle Physiome Research Center, Sookmyung Women’s University, Seoul04310, Korea
| | - Martin Steinegger
- School of Biological Sciences, Seoul National University, Seoul08826, Korea
- Artificial Intelligence Institute, Seoul National University, Seoul08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul08826, Korea
| | - Young Woon Lim
- School of Biological Sciences, Seoul National University, Seoul08826, Korea
- Institute of Microbiology, Seoul National University, Seoul08826, Korea
| | - Kyo Bin Kang
- College of Pharmacy, Sookmyung Women’s University, Seoul04310, Korea
- Research Institute of Pharmaceutical Sciences and Muscle Physiome Research Center, Sookmyung Women’s University, Seoul04310, Korea
| |
Collapse
|
14
|
Eom H, Choi YJ, Nandre R, Han HG, Kim S, Kim M, Oh YL, Nakazawa T, Honda Y, Ro HS. The Cas9-gRNA ribonucleoprotein complex-mediated editing of pyrG in Ganoderma lucidum and unexpected insertion of contaminated DNA fragments. Sci Rep 2023; 13:11133. [PMID: 37429890 DOI: 10.1038/s41598-023-38331-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023] Open
Abstract
Gene editing is a promising alternative to traditional breeding for the generation of new mushroom strains. However, the current approach frequently uses Cas9-plasmid DNA to facilitate mushroom gene editing, which can leave residual foreign DNA in the chromosomal DNA raising concerns regarding genetically modified organisms. In this study, we successfully edited pyrG of Ganoderma lucidum using a preassembled Cas9-gRNA ribonucleoprotein complex, which primarily induced a double-strand break (DSB) at the fourth position prior to the protospacer adjacent motif. Of the 66 edited transformants, 42 had deletions ranging from a single base to large deletions of up to 796 bp, with 30 being a single base deletion. Interestingly, the remaining 24 contained inserted sequences with variable sizes at the DSB site that originated from the fragmented host mitochondrial DNA, E. coli chromosomal DNA, and the Cas9 expression vector DNA. The latter two were thought to be contaminated DNAs that were not removed during the purification process of the Cas9 protein. Despite this unexpected finding, the study demonstrated that editing G. lucidum genes using the Cas9-gRNA complex is achievable with comparable efficiency to the plasmid-mediated editing system.
Collapse
Affiliation(s)
- Hyerang Eom
- Department of Bio&Medical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Yeon-Jae Choi
- Department of Bio&Medical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Rutuja Nandre
- Department of Bio&Medical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hui-Gang Han
- Department of Bio&Medical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Sinil Kim
- Department of Bio&Medical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Minseek Kim
- Mushroom Science Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, 27709, Republic of Korea
| | - Youn-Lee Oh
- Mushroom Science Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, 27709, Republic of Korea
| | - Takehito Nakazawa
- Laboratory of Forest Biochemistry, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Yoichi Honda
- Laboratory of Forest Biochemistry, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Hyeon-Su Ro
- Department of Bio&Medical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
15
|
Zhang Y, Chen S, Yang L, Zhang Q. Application progress of CRISPR/Cas9 genome-editing technology in edible fungi. Front Microbiol 2023; 14:1169884. [PMID: 37303782 PMCID: PMC10248459 DOI: 10.3389/fmicb.2023.1169884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/26/2023] [Indexed: 06/13/2023] Open
Abstract
Edible fungi are not only delicious but are also rich in nutritional and medicinal value, which is highly sought after by consumers. As the edible fungi industry continues to rapidly advance worldwide, particularly in China, the cultivation of superior and innovative edible fungi strains has become increasingly pivotal. Nevertheless, conventional breeding techniques for edible fungi can be arduous and time-consuming. CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9) is a powerful tool for molecular breeding due to its ability to mediate high-efficiency and high-precision genome modification, which has been successfully applied to many kinds of edible fungi. In this review, we briefly summarized the working mechanism of the CRISPR/Cas9 system and highlighted the application progress of CRISPR/Cas9-mediated genome-editing technology in edible fungi, including Agaricus bisporus, Ganoderma lucidum, Flammulina filiformis, Ustilago maydis, Pleurotus eryngii, Pleurotus ostreatus, Coprinopsis cinerea, Schizophyllum commune, Cordyceps militaris, and Shiraia bambusicola. Additionally, we discussed the limitations and challenges encountered using CRISPR/Cas9 technology in edible fungi and provided potential solutions. Finally, the applications of CRISPR/Cas9 system for molecular breeding of edible fungi in the future are explored.
Collapse
|
16
|
Luo N, Li Z, Ling J, Zhao J, Li Y, Yang Y, Mao Z, Xie B, Li H, Jiao Y. Establishment of a CRISPR/Cas9-Mediated Efficient Knockout System of Trichoderma hamatum T21 and Pigment Synthesis PKS Gene Knockout. J Fungi (Basel) 2023; 9:jof9050595. [PMID: 37233306 DOI: 10.3390/jof9050595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Trichoderma hamatum is a filamentous fungus that serves as a biological control agent for multiple phytopathogens and as an important resource promising for fungicides. However, the lack of adequate knockout technologies has hindered gene function and biocontrol mechanism research of this species. This study obtained a genome assembly of T. hamatum T21, with a 41.4 Mb genome sequence comprising 8170 genes. Based on genomic information, we established a CRISPR/Cas9 system with dual sgRNAs targets and dual screening markers. CRISPR/Cas9 plasmid and donor DNA recombinant plasmid were constructed for disruption of the Thpyr4 and Thpks1 genes. The result indicates the consistency between phenotypic characterization and molecular identification of the knockout strains. The knockout efficiencies of Thpyr4 and Thpks1 were 100% and 89.1%, respectively. Moreover, sequencing revealed fragment deletions between dual sgRNA target sites or GFP gene insertions presented in knockout strains. The situations were caused by different DNA repair mechanisms, nonhomologous end joining (NHEJ), and homologous recombination (HR). Overall, we have successfully constructed an efficient and convenient CRISPR/Cas9 system in T. hamatum for the first time, which has important scientific significance and application value for studies on functional genomics of Trichoderma and other filamentous fungi.
Collapse
Affiliation(s)
- Ning Luo
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zeyu Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jian Ling
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianlong Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuhong Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhenchuan Mao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bingyan Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huixia Li
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Jiao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
17
|
Zou G, Nielsen JB, Wei Y. Harnessing synthetic biology for mushroom farming. Trends Biotechnol 2023; 41:480-483. [PMID: 36307231 DOI: 10.1016/j.tibtech.2022.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022]
Abstract
Recent advances in synthetic biology have transformed mushroom farming from a focus on traditional cultivation to comprehensive applications based on cutting-edge biotechnologies. Synthetic biology has promising applications in this field, including precision breeding, mining biosynthetic gene clusters, developing mushroom chassis cells, and constructing cell factories for high value-added products.
Collapse
Affiliation(s)
- Gen Zou
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Fengxian, 201403, Shanghai, PR China
| | - Jens B Nielsen
- BioInnovation Institute, Ole Maaløes Vej 3, DK2200 Copenhagen N, Denmark; Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296 Gothenburg, Sweden
| | - Yongjun Wei
- School of Pharmaceutical Sciences, Laboratory of Synthetic Biology, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450051, PR China.
| |
Collapse
|
18
|
Jo C, Zhang J, Tam JM, Church GM, Khalil AS, Segrè D, Tang TC. Unlocking the magic in mycelium: Using synthetic biology to optimize filamentous fungi for biomanufacturing and sustainability. Mater Today Bio 2023; 19:100560. [PMID: 36756210 PMCID: PMC9900623 DOI: 10.1016/j.mtbio.2023.100560] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023] Open
Abstract
Filamentous fungi drive carbon and nutrient cycling across our global ecosystems, through its interactions with growing and decaying flora and their constituent microbiomes. The remarkable metabolic diversity, secretion ability, and fiber-like mycelial structure that have evolved in filamentous fungi have been increasingly exploited in commercial operations. The industrial potential of mycelial fermentation ranges from the discovery and bioproduction of enzymes and bioactive compounds, the decarbonization of food and material production, to environmental remediation and enhanced agricultural production. Despite its fundamental impact in ecology and biotechnology, molds and mushrooms have not, to-date, significantly intersected with synthetic biology in ways comparable to other industrial cell factories (e.g. Escherichia coli,Saccharomyces cerevisiae, and Komagataella phaffii). In this review, we summarize a suite of synthetic biology and computational tools for the mining, engineering and optimization of filamentous fungi as a bioproduction chassis. A combination of methods across genetic engineering, mutagenesis, experimental evolution, and computational modeling can be used to address strain development bottlenecks in established and emerging industries. These include slow mycelium growth rate, low production yields, non-optimal growth in alternative feedstocks, and difficulties in downstream purification. In the scope of biomanufacturing, we then detail previous efforts in improving key bottlenecks by targeting protein processing and secretion pathways, hyphae morphogenesis, and transcriptional control. Bringing synthetic biology practices into the hidden world of molds and mushrooms will serve to expand the limited panel of host organisms that allow for commercially-feasible and environmentally-sustainable bioproduction of enzymes, chemicals, therapeutics, foods, and materials of the future.
Collapse
Affiliation(s)
- Charles Jo
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| | - Jing Zhang
- Biological Design Center, Boston University, Boston, MA, USA
- Graduate Program in Bioinformatics, Boston, MA, USA
| | - Jenny M. Tam
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Ahmad S. Khalil
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Daniel Segrè
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Graduate Program in Bioinformatics, Boston, MA, USA
- Department of Biology, Boston University, Boston, MA, USA
- Department of Physics, Boston University, Boston, MA, USA
| | - Tzu-Chieh Tang
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
19
|
Gene complementation strategies for filamentous fungi biotechnology. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
20
|
Effects of glutamate oxaloacetate transaminase on reactive oxygen species in Ganoderma lucidum. Appl Microbiol Biotechnol 2023; 107:1845-1861. [PMID: 36754884 DOI: 10.1007/s00253-023-12417-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/15/2023] [Accepted: 01/22/2023] [Indexed: 02/10/2023]
Abstract
Nitrogen metabolism can regulate mycelial growth and secondary metabolism in Ganoderma lucidum. As an important enzyme in intracellular amino acid metabolism, glutamate oxaloacetate transaminase (GOT) has many physiological functions in animals and plants, but its function in fungi has been less studied. In the present study, two GOT isoenzymes were found in G. lucidum; one is located in the mitochondria (GOT1), and the other is located in the cytoplasm (GOT2). The reactive oxygen species (ROS) level was increased in got1 silenced strains and was approximately 1.5-fold higher than that in the wild-type (WT) strain, while silencing got2 did not affect the ROS level. To explore how GOT affects ROS in G. lucidum, experiments related to the generation and elimination of intracellular ROS were conducted. First, compared with that in the WT strain, the glutamate content, one of the substrates of GOT, decreased when got1 or got2 was knocked down, and the glutathione (l-γ-glutamyl-l-cysteinylglycine) (GSH) content decreased by approximately 38.6%, 19.3%, and 40.1% in got1 silenced strains, got2 silenced strains, and got1/2 co-silenced strains respectively. Second, GOT also affects glucose metabolism. The pyruvate (PA), acetyl-CoA and α-ketoglutarate (α-KG) contents decreased in got1 and got2 silenced strains, and the transcription levels of most genes involved in the glycolytic pathway and the tricarboxylic acid cycle increased. The NADH content was increased in got1 silenced strains and got2 silenced strains, and the NAD+/NADH ratio was decreased, which might result in mitochondrial ROS production. Compared with the WT strain, the mitochondrial ROS level was approximately 1.5-fold higher in the got1 silenced strains. In addition, silencing of got1 or got2 resulted in a decrease in antioxidant enzymes, including superoxide dismutase, catalase, glutathione reductase, and ascorbate peroxidase. Finally, ganoderic acid (GA) was increased by approximately 40% in got1 silenced strains compared with the WT strain, while silencing of got2 resulted in a 10% increase in GA biosynthesis. These findings provide new insights into the effect of GOT on ROS and secondary metabolism in fungi. KEY POINTS: • GOT plays important roles in ROS level in Ganoderma lucidum. • Silencing of got1 resulted in decrease in GSH content and antioxidant enzymes activities, but an increase in mitochondrial ROS level in G. lucidum. • Silencing of got1 and got2 resulted in an increase in ganoderic acid biosynthesis in G. lucidum.
Collapse
|
21
|
Jiang W, Wang J, Pan H, Yang R, Ma F, Luo J, Han C. Advances in Mechanism and Application of Molecular Breeding of Medicinal Mushrooms: A Review. Int J Med Mushrooms 2023; 25:65-74. [PMID: 37831513 DOI: 10.1615/intjmedmushrooms.2023050122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
With the development of molecular biology and genomics technology, mushroom breeding methods have changed from single traditional breeding to molecular breeding. Compared with traditional breeding methods, molecular breeding has the advantages of short time and high efficiency. It breaks through the restrictive factors of conventional breeding and improves the accuracy of breeding. Molecular breeding technology is gradually applied to mushroom breeding. This paper summarizes the concept of molecular breeding and the application progress of various molecular breeding technologies in mushroom breeding, in order to provide reference for future research on mushroom breeding.
Collapse
Affiliation(s)
- Wenming Jiang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Jing Wang
- Research and Development Center, Shandong Phoenix Biotechnology Co. Ltd., Taian, Shandong, 271000, P.R. China
| | - Hongyu Pan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, P.R. China
| | - Rui Yang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Feifei Ma
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Jiahao Luo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China; Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, 250355, People's Republic of China
| |
Collapse
|
22
|
Shi L, Ren A, Zhu J, Liu R, Zhao M. Research Progress on Edible Fungi Genetic System. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 184:269-284. [PMID: 35364695 DOI: 10.1007/10_2021_192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In order to obtain strains with targeted changes in genetic characteristics, molecular biology and genetic engineering techniques are used to integrate target gene fragments into the vector and transform them into recipient cells. Due to the different target genes and functional elements on the transformation plasmids, gene silencing, gene knockout, and gene overexpression can be carried out, which provides a new way to study the gene function of edible fungi. At present, the cloning vectors used in the transformation of edible fungi are modified by bacterial plasmids, among which pCAMBIA-1300 plasmid and pAN7 plasmid are the two most commonly used basic vectors. On this basis, some basic elements such as promoters, selective marker genes, and reporter genes were added to construct silencing vectors, knockout vectors, and overexpression vectors. At the same time, different expression vector systems are needed for different transformation methods. In this chapter, the main elements of the genetic system (promoters, screening markers), the current main genetic transformation methods (Agrobacterium-mediated transformation, liposome transformation, electroporation method), and the specific application of transformation were systematically summarized, which provides a reference for the study of the genetic system of edible fungi.
Collapse
Affiliation(s)
- Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Rui Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
23
|
Chang S, Buswell J. Medicinal Mushrooms: Past, Present and Future. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 184:1-27. [PMID: 35220455 DOI: 10.1007/10_2021_197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The survival of Homo sapiens is continually under threat from agencies capable of inflicting calamitous damage to the overall health and well-being of humankind. One strategy aimed at combatting this threat is focused on medicinal mushrooms and derivatives thereof. Mushrooms themselves have been consumed as part of the human diet for centuries, whereas 'mushroom nutriceuticals' is a more recently adopted term describing mushroom-derived products taken as dietary supplements to enhance general health and fitness. Among the most extensively studied pharmacologically active components of mushrooms are polysaccharides and polysaccharide-protein complexes, triterpenes, lectins, and fungal immunomodulatory proteins. Medicinal mushrooms have been credited with a wide range of therapeutic properties including antitumour/anti-cancer, antioxidant, hepatoprotective, anti-diabetic, antimicrobial, cholesterol-lowering and genoprotective activities as well as protection against atherosclerosis, cardiovascular, chronic inflammatory and autoimmune diseases, and neurodegenerative conditions. This review examines the past, present and future of medicinal mushroom development including the two legs concept for the mushroom industry and the pyramid model summarizing the various human applications of mushrooms. It considers numerous issues the industry needs to address to exploit fully the opportunities presented by the continued increasing demand for medicinal mushrooms, and by the future overall expansion of the medicinal mushroom movement.
Collapse
Affiliation(s)
- Shuting Chang
- Department of Biology, The Chinese University of Hong Kong, Shatin, New Territories, China
| | - John Buswell
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
24
|
Dong Y, Miao R, Feng R, Wang T, Yan J, Zhao X, Han X, Gan Y, Lin J, Li Y, Gan B, Zhao J. Edible and medicinal fungi breeding techniques, a review: Current status and future prospects. Curr Res Food Sci 2022; 5:2070-2080. [PMID: 36387595 PMCID: PMC9640942 DOI: 10.1016/j.crfs.2022.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/06/2022] Open
Abstract
Mushrooms of the edible and medicinal which are highly nutritious and environmentally friendly crops carry numerous medicinal benefits. For the abundant and high diversity of bioactive metabolites they possess, which are considered to be an important pool of bioresources. The efficient breeding technique is always a challenging task in mushrooms for obtaining better character strains, which are essential for developing healthy products and even consumption. This review comprehensively summarizes the breeding techniques applied to the edible and medicinal mushrooms. Including the traditional mutagenesis method, and even modern gene-editing breeding techniques, the effects of each method, and the comparison of each breeding technique are systematic illustrations. Strategies for mushroom breeding techniques in the future are also discussed in this review paper. With the ongoing sequencing of the mushroom genome, knowledge of the gene background of the strains and functions can be available for developing better markers for gene-editing breeding as CRISPR/Cas9 systems. Combine the metabolism engineering and in-silico tools analysis was the rational design of the novel strains. Modern physical mutagenesis techniques such as the ARTP and the combination of the other physical, and chemical breeding mutagens with cross-breeding techniques or the protoplasts fusion will also lead to superior strains for cultivation and pave the way for higher quality and yield.
Collapse
Affiliation(s)
- Yating Dong
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| | - Renyun Miao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| | - Rencai Feng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| | - Tao Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| | - Junjie Yan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| | - Xu Zhao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
- Gansu Academy of Agricultural Engineering Technology, 234 Xinzhen Road, Huangyang Town, Liangzhou District, Wuwei City, Gansu Province, 733006, China
| | - Xing Han
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| | - Ying Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| | - Junbin Lin
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| | - Yujia Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| | - Bingcheng Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| | - Jin Zhao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| |
Collapse
|
25
|
Zhang T, Cai G, Rong X, Wang Y, Gong K, Liu W, Wang L, Pang X, Yu L. A Combination of Genome Mining with an OSMAC Approach Facilitates the Discovery of and Contributions to the Biosynthesis of Melleolides from the Basidiomycete Armillaria tabescens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12430-12441. [PMID: 36134616 DOI: 10.1021/acs.jafc.2c04079] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Genome mining revealed that the genomes of basidiomycetes may include a considerable number of biosynthetic gene clusters (BGCs), yet numerous clusters remain unidentified. Herein, we report a combination of genome mining with an OSMAC (one strain, many compounds) approach to characterize the spectrum of melleolides produced by Armillaria tabescens CPCC 401429. Using F1 fermentation medium, the metabolic pathway of the gene cluster mel was successfully upregulated. From the extracts of the wild-type strain, two new melleolides (1 and 2), along with five new orsellinic acid-derived lactams (10-14), were isolated, and their structures were elucidated by LC-HR-ESIMS/MS and 2D-NMR. Several melleolides exhibited moderate anti-carcinoma (A549, NCI-H520, and H1299) effects with IC50 values of 4.0-48.8 μM. RNA-sequencing based transcriptomic profiling broadened our knowledge of the genetic background, regulation, and mechanisms of melleolide biosynthesis. These results may promote downstream metabolic engineering studies of melleolides. Our study demonstrates the approach is effective for discovering new secondary metabolites from Armillaria sp. and will facilitate the mining of the unexploited biosynthetic potential in other basidiomycetes.
Collapse
Affiliation(s)
- Tao Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Guowei Cai
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Xiaoting Rong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Yuquan Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - KaiKai Gong
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Wancang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lu Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xu Pang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Liyan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
26
|
Meng G, Wang X, Liu M, Wang F, Liu Q, Dong C. Efficient CRISPR/Cas9 system based on autonomously replicating plasmid with an AMA1 sequence and precisely targeted gene deletion in the edible fungus, Cordyceps militaris. Microb Biotechnol 2022; 15:2594-2606. [PMID: 35829671 PMCID: PMC9518986 DOI: 10.1111/1751-7915.14107] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/27/2022] Open
Abstract
Cordyceps militaris is a popular edible fungus with important economic value worldwide. In this study, an efficient CRISPR/Cas9 genome-editing system based on an autonomously replicating plasmid with an AMA1 sequence was constructed. Further, a precisely targeted gene deletion via homology-directed repair was effectively introduced in C. militaris. Gene editing was successful, with efficiencies of 55.1% and 89% for Cmwc-1 and Cmvvd, respectively. Precisely targeted gene deletion was achieved at an efficiency of 73.9% by a single guide RNA supplementation with donor DNAs. Double genes, Cmwc-1 and Cmvvd, were edited simultaneously with an efficiency of 10%. Plasmid loss was observed under non-selective culture conditions, which could permit recycling of the selectable marker and avoid the adverse effects of the CRISPR/Cas9 system on the fungus, which is beneficial for the generation of new cultivars. RNA Pol III promoters, endogenous tRNAPro of C. militaris, and chimeric AfU6-tRNAGly can be used to improve the efficiency. Polyethylene glycol-mediated protoplast transformation was markedly more efficient than Agrobacterium tumefaciens-mediated transformation of C. militaris. To our knowledge, this is the first description of genome editing and precisely targeted gene deletion in mushrooms based on AMA1 plasmids. Our findings will enable the modification of multiple genes in both functional genomics research and strain breeding.
Collapse
Affiliation(s)
- Guoliang Meng
- State Key Laboratory of MycologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xuping Wang
- State Key Laboratory of MycologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- China National Research Institute of Food and Fermentation Industries Co., LtdBeijingChina
| | - Mengqian Liu
- State Key Laboratory of MycologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Fen Wang
- State Key Laboratory of MycologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Qizheng Liu
- State Key Laboratory of MycologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Caihong Dong
- State Key Laboratory of MycologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
27
|
Wang PA, Zhang JM, Zhong JJ. CRISPR-Cas9 assisted in-situ complementation of functional genes in the basidiomycete Ganoderma lucidum. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
28
|
Liu J, Cui H, Wang R, Xu Z, Yu H, Song C, Lu H, Li Q, Xing D, Tan Q, Sun W, Zou G, Shang X. A Simple and Efficient CRISPR/Cas9 System Using A Ribonucleoprotein Method for Flammulina filiformis. J Fungi (Basel) 2022; 8:jof8101000. [PMID: 36294565 PMCID: PMC9604558 DOI: 10.3390/jof8101000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
CRISPR/Cas9 systems were established in some edible fungi based on in vivo expressed Cas9 and guide RNA. Compared with those systems, the in vitro assembled Cas9 and sgRNA ribonucleoprotein complexes (RNPs) have more advantages, but only a few examples were reported, and the editing efficiency is relatively low. In this study, we developed and optimized a CRISPR/Cas9 genome-editing method based on in vitro assembled ribonucleoprotein complexes in the mushroom Flammulina filiformis. The surfactant Triton X-100 played a critical role in the optimal method, and the targeting efficiency of the genomic editing reached 100% on a selective medium containing 5-FOA. This study is the first to use an RNP complex delivery to establish a CRISPR/Cas9 genome-editing system in F. filiformis. Moreover, compared with other methods, this method avoids the use of any foreign DNA, thus saving time and labor when it comes to plasmid construction.
Collapse
Affiliation(s)
- Jianyu Liu
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Haiyang Cui
- College of Marine Resources and Environment, Hebei Normal University of Science & Technology, Qinghuangdao 066004, China
| | - Ruijuan Wang
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Zhen Xu
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Hailong Yu
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Chunyan Song
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Huan Lu
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Qiaozhen Li
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Danrun Xing
- College of Marine Resources and Environment, Hebei Normal University of Science & Technology, Qinghuangdao 066004, China
| | - Qi Tan
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Weiming Sun
- College of Marine Resources and Environment, Hebei Normal University of Science & Technology, Qinghuangdao 066004, China
- Correspondence: (W.S.); (G.Z.); (X.S.); Tel.: +86-335-8058992 (W.S.); +86-13671512909 (G.Z.); +86-21-62209760 (X.S.)
| | - Gen Zou
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Correspondence: (W.S.); (G.Z.); (X.S.); Tel.: +86-335-8058992 (W.S.); +86-13671512909 (G.Z.); +86-21-62209760 (X.S.)
| | - Xiaodong Shang
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Correspondence: (W.S.); (G.Z.); (X.S.); Tel.: +86-335-8058992 (W.S.); +86-13671512909 (G.Z.); +86-21-62209760 (X.S.)
| |
Collapse
|
29
|
Chen B, Xue L, Wei T, Wang N, Zhong J, Ye Z, Guo L, Lin J. Multiplex gene precise editing and large DNA fragment deletion by the CRISPR-Cas9-TRAMA system in edible mushroom Cordyceps militaris. Microb Biotechnol 2022; 15:2982-2991. [PMID: 36134724 PMCID: PMC9733643 DOI: 10.1111/1751-7915.14147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/05/2022] [Accepted: 09/05/2022] [Indexed: 12/14/2022] Open
Abstract
The medicinal mushroom Cordyceps militaris contains abundant valuable bioactive ingredients that have attracted a great deal of attention in the pharmaceutical and cosmetic industries. However, the development of this valuable mushroom faces the obstacle of lacking powerful genomic engineering tools. Here, by excavating the endogenous tRNA-processed element, introducing the extrachromosomal plasmid and alongside with homologous template, we develop a marker-free CRISPR-Cas9-TRAMA genomic editing system to achieve the multiplex gene precise editing and large synthetic cluster deletion in C. militaris. We further operated editing in the synthetases of cordycepin and ergothioneine to demonstrate the application of Cas9-TRAMA system in protein modification, promoter strength evaluation and 10 kb metabolic synthetic cluster deletion. The Cas9-TRAMA system provides a scalable method for excavating the valuable metabolic resource of medicinal mushrooms and constructing a mystical cellular pathway to elucidate the complex cell behaviours of the edible mushroom.
Collapse
Affiliation(s)
- Bai‐Xiong Chen
- Institute of Food Biotechnology & College of Food ScienceSouth China Agricultural UniversityGuangzhouChina,Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong ProvinceGuangzhouChina
| | - Ling‐Na Xue
- Institute of Food Biotechnology & College of Food ScienceSouth China Agricultural UniversityGuangzhouChina,Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong ProvinceGuangzhouChina
| | - Tao Wei
- Institute of Food Biotechnology & College of Food ScienceSouth China Agricultural UniversityGuangzhouChina,Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong ProvinceGuangzhouChina
| | - Na Wang
- Guangzhou Alchemy Biotechnology Co., LtdGuangzhouChina
| | - Jing‐Ru Zhong
- Guangzhou Alchemy Biotechnology Co., LtdGuangzhouChina
| | - Zhi‐Wei Ye
- Institute of Food Biotechnology & College of Food ScienceSouth China Agricultural UniversityGuangzhouChina,Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong ProvinceGuangzhouChina
| | - Li‐Qiong Guo
- Institute of Food Biotechnology & College of Food ScienceSouth China Agricultural UniversityGuangzhouChina,Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong ProvinceGuangzhouChina
| | - Jun‐Fang Lin
- Institute of Food Biotechnology & College of Food ScienceSouth China Agricultural UniversityGuangzhouChina,Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong ProvinceGuangzhouChina
| |
Collapse
|
30
|
Yamasaki F, Nakazawa T, Oh M, Bao D, Kawauchi M, Sakamoto M, Honda Y. Gene targeting of dikaryotic Pleurotus ostreatus nuclei using the CRISPR/Cas9 system. FEMS Microbiol Lett 2022; 369:6674758. [PMID: 36001999 DOI: 10.1093/femsle/fnac083] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/07/2022] [Accepted: 08/22/2022] [Indexed: 11/14/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9)-assisted gene targeting is a promising method used in molecular breeding. We recently reported the successful introduction of this method in the monokaryotic Pleurotus ostreatus (oyster mushroom), PC9. However, considering their application in mushroom breeding, dikaryotic strains (with targeted gene mutations in both nuclei) need to be generated. This is laborious and time-consuming because a classical crossing technique is used. Herein, we report a technique that targets both nuclei of dikaryotic P. ostreatus, PC9×#64 in a transformation experiment using plasmid-based CRISPR/Cas9, with the aim of developing a method for efficient and rapid molecular breeding. As an example, we targeted strains with low basidiospore production ability through the meiosis-related genes mer3 or msh4. Four different plasmids containing expression cassettes for Cas9 and two different gRNAs targeting mer3 or msh4 were constructed and separately introduced into PC9×#64. Eight of the 38 dikaryotic transformants analyzed produced no basidiospores. Genomic PCR suggested that msh4 or mer3 mutations were introduced into both nuclei of seven out of eight strains. Thus, in this study, we demonstrated simultaneous gene targeting using our CRISPR/Cas9 system, which may be useful for the molecular breeding of cultivated agaricomycetes.
Collapse
Affiliation(s)
- Fuga Yamasaki
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Minji Oh
- Mushroom division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Bisan-ro, Eumseong-gun, Chungcheongbuk-do, 22709, Republic of Korea
| | - Dapeng Bao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Moriyuki Kawauchi
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
31
|
Xie Z, Zhong C, Liu X, Wang Z, Zhou R, Xie J, Zhang S, Jin J. Genome editing in the edible fungus Poria cocos using CRISPR-Cas9 system integrating genome-wide off-target prediction and detection. Front Microbiol 2022; 13:966231. [PMID: 36071963 PMCID: PMC9441760 DOI: 10.3389/fmicb.2022.966231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Poria cocos is an important edible and medicinal fungus with a long history. However, the lack of adequate genetic tools has hindered molecular genetic research and the genetic modification of this species. In this study, the endogenous U6 promoters were identified by mining data from the P. cocos genome, and the promoter sequence was used to construct a sgRNA expression vector pFC332-PcU6. Then, the protoplast isolation protocol was developed, and the sgRNA-Cas9 vector was successfully transformed into the cells of P. cocos via PEG/CaCl2-mediated transformation approach. Off-target sites were genome-widely predicted and detected. As a result, the target marker gene ura3 was successfully disrupted by the CRISPR-Cas9 system. This is the first report of genome editing in P. cocos using CRISPR-Cas9 system integrating genome-wide off-target prediction and detection. These data will open up new avenues for the investigation of genetic breeding and commercial production of edible and medicinal fungus.
Collapse
Affiliation(s)
- Zhenni Xie
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Can Zhong
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China
| | - Xiaoliu Liu
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Ziling Wang
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Rongrong Zhou
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China
| | - Jing Xie
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China
| | - Shuihan Zhang
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China
| | - Jian Jin
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China
- *Correspondence: Jian Jin,
| |
Collapse
|
32
|
CRISPR/Cas9 using a transient transformation system in Ceriporiopsis subvermispora. Appl Microbiol Biotechnol 2022; 106:5575-5585. [PMID: 35902408 DOI: 10.1007/s00253-022-12095-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 11/02/2022]
Abstract
Ceriporiopsis subvermispora is a white-rot fungus with great potential for industrial and biotechnological applications, such as the pretreatment of lignocellulose in biorefineries, as it decomposes the lignin in the plant cell wall without causing severe cellulose degradation. A genetic transformation system was recently developed; however, gene-targeting experiments to disrupt or modify the gene(s) of interest remain challenging, and this is a bottleneck for further molecular genetic studies and breeding of C. subvermispora. Herein, we report efficient clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9)-assisted gene mutagenesis in this fungus. Two plasmids expressing Cas9 together with a different pyrG-targeting single-guide RNA were separately introduced into the monokaryotic C. subvermispora strain FP-90031-Sp/1, which frequently generated strains that exhibited resistance to 5-fluoroorotic acid and uridine/uracil auxotrophy. Southern blot analyses and genomic polymerase chain reaction followed by DNA sequencing of some mutants revealed that they were pyrG mutants. We also observed that hygromycin resistance of the pyrG mutants was frequently lost after repeated subcultivations, indicating that a maker-free genome editing occurred successfully. It is also suggested that a gene mutation(s) can be introduced via a transient expression of Cas9 and a single-guide RNA; this feature, together with high-frequency gene targeting using the CRISPR/Cas9 system, would be helpful for studies on lignocellulose-degrading systems in C. subvermispora. KEY POINTS: • Efficient plasmid-based CRISPR/Cas9 was established in C. subvermispora. • The mutations can be introduced via a transient expression of Cas9 and sgRNA. • A maker-free CRISPR/Cas9 is established in this fungus.
Collapse
|
33
|
Liu X, Dong J, Liao J, Tian L, Qiu H, Wu T, Ge F, Zhu J, Shi L, Jiang A, Yu H, Zhao M, Ren A. Establishment of CRISPR/Cas9 Genome-Editing System Based on Dual sgRNAs in Flammulina filiformis. J Fungi (Basel) 2022; 8:jof8070693. [PMID: 35887449 PMCID: PMC9318071 DOI: 10.3390/jof8070693] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Flammulina filiformis, previously known as Asian Flammulina velutipes, is one of the most commercially important edible fungi, with nutritional value and medicinal properties worldwide. However, precision genome editing using CRISPR/Cas9, which is a revolutionary technology and provides a powerful tool for molecular breeding, has not been established in F. filiformis. Here, plasmids harboring expression cassettes of Basidiomycete codon-optimized Cas9 and dual sgRNAs targeting pyrG under the control of the gpd promoter and FfU6 promoter, respectively, were delivered into protoplasts of F. filiformis Dan3 strain through PEG-mediated transformation. The results showed that an efficient native U6 promoter of F. filiformis was identified, and ultimately several pyrG mutants exhibiting 5-fluorooric acid (5-FOA) resistance were obtained. Additionally, diagnostic PCR followed by Sanger sequencing revealed that fragment deletion between the two sgRNA target sites or small insertions and deletions (indels) were introduced in these pyrG mutants through the nonhomologous end joining (NHEJ) pathway, resulting in heritable changes in genomic information. Taken together, this is the first report in which a successful CRISPR/Cas9 genome-editing system based on dual sgRNAs was established in F. filiformis, which broadens the application of this advanced tool in Basidiomycetes.
Collapse
Affiliation(s)
- Xiaotian Liu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Jianghan Dong
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Jian Liao
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Li Tian
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Hao Qiu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Tao Wu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Feng Ge
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Jing Zhu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Liang Shi
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Ailiang Jiang
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Hanshou Yu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Mingwen Zhao
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Ang Ren
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
- Sanya Institute of Nanjing Agricultural University, Sanya 572025, China
- Institute of Biology, Guizhou Academy of Sciences, Guiyang 550009, China
- Correspondence: ; Tel./Fax: +86-25-84395602
| |
Collapse
|
34
|
Abstract
Plant-derived biomass is the most abundant biogenic carbon source on Earth. Despite this, only a small clade of organisms known as white-rot fungi (WRF) can efficiently break down both the polysaccharide and lignin components of plant cell walls. This unique ability imparts a key role for WRF in global carbon cycling and highlights their potential utilization in diverse biotechnological applications. To date, research on WRF has primarily focused on their extracellular ‘digestive enzymes’ whereas knowledge of their intracellular metabolism remains underexplored. Systems biology is a powerful approach to elucidate biological processes in numerous organisms, including WRF. Thus, here we review systems biology methods applied to WRF to date, highlight observations related to their intracellular metabolism, and conduct comparative extracellular proteomic analyses to establish further correlations between WRF species, enzymes, and cultivation conditions. Lastly, we discuss biotechnological opportunities of WRF as well as challenges and future research directions.
Collapse
|
35
|
Construction of CRISPR-Cas9 genome editing platform for white-rot fungus Cerrena unicolor BBP6 and its effects on extracellular ligninolytic enzyme biosynthesis. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
El Sheikha AF. Nutritional Profile and Health Benefits of Ganoderma lucidum "Lingzhi, Reishi, or Mannentake" as Functional Foods: Current Scenario and Future Perspectives. Foods 2022; 11:1030. [PMID: 35407117 PMCID: PMC8998036 DOI: 10.3390/foods11071030] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 02/07/2023] Open
Abstract
Ganoderma lucidum has a long history of medicinal uses in the Far East countries of more than 2000 years due to its healing properties. Recently, G. lucidum has come under scientific scrutiny to evaluate its content of bioactive components that affect human physiology, and has been exploited for potent components in the pharmacology, nutraceuticals, and cosmetics industries. For instance, evidence is accumulating on the potential of this mushroom species as a promising antiviral medicine for treating many viral diseases, such as dengue virus, enterovirus 71, and recently coronavirus disease of 2019 (COVID-19). Still, more research studies on the biotherapeutic components of G. lucidum are needed to ensure the safety and efficiency of G. lucidum and promote the development of commercial functional foods. This paper provides an extensive overview of the nutraceutical value of Ganoderma lucidum and the development of commercial functional food. Moreover, the geo-origin tracing strategies of this mushroom and its products are discussed, a highly important parameter to ensure product quality and safety. The discussed features will open new avenues and reveal more secrets to widely utilizing this mushroom in many industrial fields; i.e., pharmaceutical and nutritional ones, which will positively reflect the global economy.
Collapse
Affiliation(s)
- Aly Farag El Sheikha
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China;
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, 25 University Private, Ottawa, ON K1N 6N5, Canada
- Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
- Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
- Department of Food Science and Technology, Faculty of Agriculture, Minufiya University, Shibin El Kom 32511, Egypt
| |
Collapse
|
37
|
Zhang Q, Zhao L, Shen M, Liu J, Li Y, Xu S, Chen L, Shi G, Ding Z. Establishment of an Efficient Polyethylene Glycol (PEG)-Mediated Transformation System in Pleurotus eryngii var. ferulae Using Comprehensive Optimization and Multiple Endogenous Promoters. J Fungi (Basel) 2022; 8:jof8020186. [PMID: 35205941 PMCID: PMC8876744 DOI: 10.3390/jof8020186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
Pleurotus eryngii var. ferulae, a fungus of the genus Pleurotus, efficiently degrades lignin, especially during co-cultivation with other fungi. However, low transformation efficiency and heterologous gene expression restrict systematic studies of the molecular mechanisms and metabolic control of natural products in this mushroom. In this study, the homologous resistance marker carboxin (cbx) was used to establish a polyethylene glycol-mediated transformation (PMT) system in P. eryngii var. ferulae. Optimization of the transformation process greatly improved the number of positive transformants. In particular, we optimized: (i) protoplast preparation and regeneration; (ii) screening methods; and (iii) transformation-promoting factors. The optimized transformation efficiency reached 72.7 CFU/μg, which is higher than the average level of Pleurotus sp. (10–40 CFU/μg). Moreover, three endogenous promoters (Ppfgpd1, Ppfgpd2, and Ppfsar1) were screened and evaluated for different transcription initiation characteristics. A controllable overexpression system was established using these three promoters that satisfied various heterologous gene expression requirements, such as strong or weak, varied, or stable expression levels. This study lays the foundation for recombinant protein expression in P. eryngii var. ferulae and provides a method to investigate the underlying molecular mechanisms and secondary metabolic pathway modifications.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Q.Z.); (L.Z.); (M.S.); (J.L.); (L.C.); (G.S.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (Y.L.); (S.X.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Liting Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Q.Z.); (L.Z.); (M.S.); (J.L.); (L.C.); (G.S.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (Y.L.); (S.X.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Mengye Shen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Q.Z.); (L.Z.); (M.S.); (J.L.); (L.C.); (G.S.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (Y.L.); (S.X.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Jingyun Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Q.Z.); (L.Z.); (M.S.); (J.L.); (L.C.); (G.S.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (Y.L.); (S.X.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Youran Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (Y.L.); (S.X.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Sha Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (Y.L.); (S.X.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Lei Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Q.Z.); (L.Z.); (M.S.); (J.L.); (L.C.); (G.S.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (Y.L.); (S.X.)
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Q.Z.); (L.Z.); (M.S.); (J.L.); (L.C.); (G.S.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (Y.L.); (S.X.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Q.Z.); (L.Z.); (M.S.); (J.L.); (L.C.); (G.S.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (Y.L.); (S.X.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel.: +86-511-85918221
| |
Collapse
|
38
|
Zhang W, Chen X, Liu G, Jin G, Li Y, Li G, Yew Keong C, Lan J. Study on the chemical changes of Quercus acuttisima by Ganoderma lucidum cultivation after different years by FTIR analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 266:120443. [PMID: 34619507 DOI: 10.1016/j.saa.2021.120443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/12/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
The popularmedicinal mushroomGanodermalucidum was often cultivated by the natural-log. Generally the short log after cultivation were discarded and became pollutant. Rapid and less destructive method of analysis technical by Fourier Transform Infrared (FTIR) and Two-dimension Infrared (2DIR) correlation spectroscopy were selected to determine the composition changes of the logs after G.lucidum cultivation after first year to fifth year. The FTIR accumulated spectra formed without processed baseline showed the samples relied upon a sequenced increase of higher level than spectrum control Q (Q = Quercus acuttisima) from L + Q-5 (L = Lingzhi), L + Q-3, L + Q-1 to L + Q-2. The spectrum L + Q-4 has the optimum highest peak at box B, C and E from this lumped spectral view. The split spectra pinpointed on the fingerprint region of a sample begins from peak 1737 cm-1. ascribed C = O stretching vibration on acetyl and carboxyl hemicellulose group bonding gradually faded from L + Q-1 to L + Q-4 but appeared again on L + Q-5, possibly due to the degradation of hemicellulose. The absorption of peak around 1626 cm-1,1318 cm-1 and 781 cm-1 could be the characteristic absorption peak of calcium oxalate monohydrate. The correlation table indicated, most of the original structure of the building block of the wooden part was deteriorated and marked the lowest correlation value of the 4th year sample with control Q. The sudden changing pattern of 2nd derivative spectrum L + Q-3 to more flatten pattern spectrum L + Q-4 ascribed the changing contents of cellulose and hemicellulose included the lignin within one year during the G. lucidum cultivation. The 2DIR spectrum of the raw material sample precisely showed that the active site with red color was clustered with the area around 1800-1700 cm-1, 1450-800 cm-1 and 750-400 cm-1. In between, the range 1450-800 cm-1 was the most active cluster. Each of the sample showed the different sequence of autopeak comparison. This study has examined the impact of G. lucidum on the degradation of Q. acuttisima in term of their ecosystem life chain. The components of healthy Q. acuttisima wood including lignin, cellulose, hemicellulose and calcium oxalate monohydrate underwent changes after different years of G. lucidum cultivation.
Collapse
Affiliation(s)
- Weiwei Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Xiangdong Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China.
| | - Guohui Liu
- Fujian Xianzhilou Biological Science and Technology Co., Ltd, Fuzhou 300057, PR China
| | - Gaoping Jin
- Fujian Xianzhilou Biological Science and Technology Co., Ltd, Fuzhou 300057, PR China
| | - Ye Li
- Fujian Xianzhilou Biological Science and Technology Co., Ltd, Fuzhou 300057, PR China
| | - Guoqiang Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Choong Yew Keong
- Phytochemistry Unit, Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, 40170 Shah Alam, Selangor, Malaysia
| | - Jin Lan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China.
| |
Collapse
|
39
|
The β-1,3-glucan synthase gene GFGLS2 plays major roles in mycelial growth and polysaccharide synthesis in Grifola frondosa. Appl Microbiol Biotechnol 2021; 106:563-578. [PMID: 34939133 DOI: 10.1007/s00253-021-11734-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 10/19/2022]
Abstract
β-1,3-Glucans are well-known biological and health-promoting compounds in edible fungi. Our previous results characterized a glucan synthase gene (GFGLS) of Grifola frondosa for the first time to understand its role in mycelial growth and glucan biosynthesis. In the present study, we identified and functionally reannotated another glucan synthase gene, GFGLS2, based on our previous results. GFGLS2 had a full sequence of 5944 bp including 11 introns and 12 exons and a coding information for 1713 amino acids of a lower molecular weight (195.2 kDa) protein with different conserved domain sites than GFGLS (5927 bp with also 11 introns and a coding information for 1781 aa). Three dual-promoter RNA-silencing vectors, pAN7-iGFGLS-dual, pAN7-iGFGLS2-dual, and pAN7-CiGFGLS-dual, were constructed to downregulate GFGLS, GFGLS2, and GFGLS/GFGLS2 expression by targeting their unique exon sequence or conserved functional sequences. Silencing GFGLS2 resulted in higher downregulation efficiency than silencing GFGLS. Cosilencing GFGLS and GFGLS2 had a synergistic downregulation effect, with slower mycelial growth and glucan production by G. frondosa. These findings indicated that GFGLS2 plays major roles in mycelial growth and polysaccharide synthesis and provides a reference to understand the biosynthesis pathway of mushroom polysaccharides. KEY POINTS: • The 5944-bp glucan synthase gene GFGLS2 of G. frondosa was cloned and reannotated • GFGLS2 showed identity and significant differences with the previously identified GFGLS • GFGLS2 played a major role in fermentation and glucan biosynthesis.
Collapse
|
40
|
Moon S, An JY, Choi YJ, Oh YL, Ro HS, Ryu H. Construction of a CRISPR/Cas9-Mediated Genome Editing System in Lentinula edodes. MYCOBIOLOGY 2021; 49:599-603. [PMID: 35035251 PMCID: PMC8725921 DOI: 10.1080/12298093.2021.2006401] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/13/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
CRISPR/Cas9 genome editing systems have been established in a broad range of eukaryotic species. Herein, we report the first method for genetic engineering in pyogo (shiitake) mushrooms (Lentinula edodes) using CRISPR/Cas9. For in vivo expression of guide RNAs (gRNAs) targeting the mating-type gene HD1 (LeA1), we identified an endogenous LeU6 promoter in the L. edodes genome. We constructed a plasmid containing the LeU6 and glyceraldehyde-3-phosphate dehydrogenase (LeGPD) promoters to express the Cas9 protein. Among the eight gRNAs we tested, three successfully disrupted the LeA1 locus. Although the CRISPR-Cas9-induced alleles did not affect mating with compatible monokaryotic strains, disruption of the transcription levels of the downstream genes of LeHD1 and LeHD2 was detected. Based on this result, we present the first report of a simple and powerful genetic manipulation tool using the CRISPR/Cas9 toolbox for the scientifically and industrially important edible mushroom, L. edodes.
Collapse
Affiliation(s)
- Suyun Moon
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Korea
| | | | - Yeon-Jae Choi
- Department of Bio & Medical Big Data and Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Youn-Lee Oh
- Mushroom Science Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, Korea
| | - Hyeon-Su Ro
- Department of Bio & Medical Big Data and Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Hojin Ryu
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
41
|
Evolutionary Morphogenesis of Sexual Fruiting Bodies in Basidiomycota: Toward a New Evo-Devo Synthesis. Microbiol Mol Biol Rev 2021; 86:e0001921. [PMID: 34817241 DOI: 10.1128/mmbr.00019-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The development of sexual fruiting bodies is one of the most complex morphogenetic processes in fungi. Mycologists have long been fascinated by the morphological and developmental diversity of fruiting bodies; however, evolutionary developmental biology of fungi still lags significantly behind that of animals or plants. Here, we summarize the current state of knowledge on fruiting bodies of mushroom-forming Basidiomycota, focusing on phylogenetic and developmental biology. Phylogenetic approaches have revealed a complex history of morphological transformations and convergence in fruiting body morphologies. Frequent transformations and convergence is characteristic of fruiting bodies in contrast to animals or plants, where main body plans are highly conserved. At the same time, insights into the genetic bases of fruiting body development have been achieved using forward and reverse genetic approaches in selected model systems. Phylogenetic and developmental studies of fruiting bodies have each yielded major advances, but they have produced largely disjunct bodies of knowledge. An integrative approach, combining phylogenetic, developmental, and functional biology, is needed to achieve a true fungal evolutionary developmental biology (evo-devo) synthesis for fungal fruiting bodies.
Collapse
|
42
|
Zhang Q, Yuan C, Wang F, Xu S, Li Y, Shi G, Ding Z. Roles of Small Subunits of Laccase (ssPOXA3a/b) in Laccase Production by Pleurotus eryngii var. ferulae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13113-13124. [PMID: 34696587 DOI: 10.1021/acs.jafc.1c04777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The small subunit, ssPOXA3a/b, and the large subunit, POXA3, are indispensable components of typical heterodimeric laccase (Lacc2) in white rot fungi. However, the enzymatic and biological functions of ssPOXA3a/b remain unclear. The present study revealed that neither ssPOXA3a nor ssPOXA3b per se has a catalytic ability, whereas their combination with POXA3 (and especially ssPOXA3b) enhances the activity, thermostability, and pH stability of POXA3. In Pleurotus eryngii var. ferulae, there was no regulatory relationship between ssPOXA3a/b and POXA3 at the transcriptional level. However, sspoxa3a/b overexpression had a negative feedback effect on lacc6 transcription. By contrast, poxa3 transcripts had no effect on any other laccase isoenzyme. Overexpression of sspoxa3a/b resulted in small fungal pellets, thin mycelial walls, and facilitated laccase secretion. However, poxa3 overexpression had no influence on pellet morphology. Collectively, this work elucidated the functions of ssPOXA3a/b and laid an empirical foundation for the development of high-yield laccase.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Chang Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Feng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Sha Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Youran Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Guiyang Shi
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| |
Collapse
|
43
|
Targeted Gene Insertion and Replacement in the Basidiomycete Ganoderma lucidum by Inactivation of Nonhomologous End Joining Using CRISPR/Cas9. Appl Environ Microbiol 2021; 87:e0151021. [PMID: 34524900 DOI: 10.1128/aem.01510-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Targeted gene insertion or replacement is a promising genome-editing tool for molecular breeding and gene engineering. Although CRISPR/Cas9 works well for gene disruption and deletion in Ganoderma lucidum, targeted gene insertion and replacement remain a serious challenge due to the low efficiency of homologous recombination (HR) in this species. In this work, we demonstrate that the DNA double-strand breaks induced by Cas9 were mainly repaired via the nonhomologous end joining (NHEJ) pathway, at a frequency of 96.7%. To establish an efficient target gene insertion and replacement tool in Ganoderma, we first inactivated the NHEJ pathway via disruption of the Ku70 gene (ku70) using a dual single guide RNA (sgRNA)-directed gene deletion method. Disruption of the ku70 gene significantly decreased NHEJ activity in G. lucidum. Moreover, ku70 disruption strains exhibited 96.3% and 93.1% frequencies of targeted gene insertion and replacement, respectively, when target DNA with the orotidine 5'-monophosphate decarboxylase (ura3) gene and 1.5-kb homologous 5'- and 3'-flanking sequences was used as a donor template, compared to 3.3% and 0%, respectively, at these targeted sites for a control strain (Cas9 strain). Our results indicated that ku70 disruption strains were efficient recipients for targeted gene insertion and replacement. This tool will advance our understanding of functional genomics in G. lucidum. IMPORTANCE Functional genomic studies in Ganoderma have been hindered by the absence of adequate genome-engineering tools. Although CRISPR/Cas9 works well for gene disruption and deletion in G. lucidum, targeted gene insertion and replacement have remained a serious challenge due to the low efficiency of HR in these species, although such precise genome modifications, including site mutations, site-specific integrations, and allele or promoter replacements, would be incredibly valuable. In this work, we inactivated the NHEJ repair mechanism in G. lucidum by disrupting the ku70 gene using the CRISPR/Cas9 system. Moreover, we established a target gene insertion and replacement method in ku70-disrupted G. lucidum that possessed high-efficiency gene targeting. This technology will advance our understanding of the functional genomics of G. lucidum.
Collapse
|
44
|
Kowalczyk JE, Saha S, Mäkelä MR. Application of CRISPR/Cas9 Tools for Genome Editing in the White-Rot Fungus Dichomitus squalens. Biomolecules 2021; 11:1526. [PMID: 34680159 PMCID: PMC8533725 DOI: 10.3390/biom11101526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022] Open
Abstract
Dichomitus squalens is an emerging reference species that can be used to investigate white-rot fungal plant biomass degradation, as it has flexible physiology to utilize different types of biomass as sources of carbon and energy. Recent comparative (post-) genomic studies on D. squalens resulted in an increasingly detailed knowledge of the genes and enzymes involved in the lignocellulose breakdown in this fungus and showed a complex transcriptional response in the presence of lignocellulose-derived compounds. To fully utilize this increasing amount of data, efficient and reliable genetic manipulation tools are needed, e.g., to characterize the function of certain proteins in vivo and facilitate the construction of strains with enhanced lignocellulolytic capabilities. However, precise genome alterations are often very difficult in wild-type basidiomycetes partially due to extremely low frequencies of homology directed recombination (HDR) and limited availability of selectable markers. To overcome these obstacles, we assessed various Cas9-single guide RNA (sgRNA) ribonucleoprotein (RNP) -based strategies for selectable homology and non-homologous end joining (NHEJ) -based gene editing in D. squalens. We also showed an induction of HDR-based genetic modifications by using single-stranded oligodeoxynucleotides (ssODNs) in a basidiomycete fungus for the first time. This paper provides directions for the application of targeted CRISPR/Cas9-based genome editing in D. squalens and other wild-type (basidiomycete) fungi.
Collapse
Affiliation(s)
| | | | - Miia R. Mäkelä
- Department of Microbiology, University of Helsinki, Viikinkaari 9, 00790 Helsinki, Finland; (J.E.K.); (S.S.)
| |
Collapse
|
45
|
Grogan G. Hemoprotein Catalyzed Oxygenations: P450s, UPOs, and Progress toward Scalable Reactions. JACS AU 2021; 1:1312-1329. [PMID: 34604841 PMCID: PMC8479775 DOI: 10.1021/jacsau.1c00251] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 05/15/2023]
Abstract
The selective oxygenation of nonactivated carbon atoms is an ongoing synthetic challenge, and biocatalysts, particularly hemoprotein oxygenases, continue to be investigated for their potential, given both their sustainable chemistry credentials and also their superior selectivity. However, issues of stability, activity, and complex reaction requirements often render these biocatalytic oxygenations problematic with respect to scalable industrial processes. A continuing focus on Cytochromes P450 (P450s), which require a reduced nicotinamide cofactor and redox protein partners for electron transport, has now led to better catalysts and processes with a greater understanding of process requirements and limitations for both in vitro and whole-cell systems. However, the discovery and development of unspecific peroxygenases (UPOs) has also recently provided valuable complementary technology to P450-catalyzed reactions. UPOs need only hydrogen peroxide to effect oxygenations but are hampered by their sensitivity to peroxide and also by limited selectivity. In this Perspective, we survey recent developments in the engineering of proteins, cells, and processes for oxygenations by these two groups of hemoproteins and evaluate their potential and relative merits for scalable reactions.
Collapse
|
46
|
Boontawon T, Nakazawa T, Xu H, Kawauchi M, Sakamoto M, Honda Y. Gene targeting using pre-assembled Cas9 ribonucleoprotein and split-marker recombination in Pleurotus ostreatus. FEMS Microbiol Lett 2021; 368:6307511. [PMID: 34156066 DOI: 10.1093/femsle/fnab080] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/20/2021] [Indexed: 12/23/2022] Open
Abstract
Until recently, classical breeding has been used to generate improved commercial mushroom strains; however, classical breeding remains to be laborious and time-consuming. In this study, we performed gene mutagenesis using Cas9 ribonucleoprotein (Cas9 RNP) as a plasmid-free genome editing in Pleurotus ostreatus, which is one of the most economically important cultivated mushrooms. The pre-assembled Cas9/sgRNA targeting pyrG was introduced into protoplasts of a wild-type monokaryotic P. ostreatus strain PC9, which resulted in a generation of strains exhibiting resistance to 5-fluoroorotic acid. Small insertions/deletions at the target site were identified using genomic PCR followed by sequencing. The results showed Cas9 RNP-assisted gene mutagenesis could be applied for the molecular breeding in P. ostreatus and in other edible mushroom strains. Furthermore, gene disruption via split-marker recombination using the Cas9 RNP system was also successfully demonstrated in wild-type P. ostreatus PC9. This method could overcome the disadvantages of NHEJ-deficiency in conventional studies with gene targeting, and also difficulty in gene targeting in various non-model agaricomycetes.
Collapse
Affiliation(s)
- Tatpong Boontawon
- Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Haibo Xu
- Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Moriyuki Kawauchi
- Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
47
|
Boontawon T, Nakazawa T, Horii M, Tsuzuki M, Kawauchi M, Sakamoto M, Honda Y. Functional analyses of Pleurotus ostreatus pcc1 and clp1 using CRISPR/Cas9. Fungal Genet Biol 2021; 154:103599. [PMID: 34153439 DOI: 10.1016/j.fgb.2021.103599] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
Understanding the molecular mechanisms controlling dikaryon formation in Agaricomycetes, which is basically controlled by A and B mating-type loci, contributes to improving mushroom cultivation and breeding. In Coprinopsis cinerea, various mutations in the SRY-type high mobility group protein-encoding gene, pcc1, were shown to activate the A-regulated pathway to induce pseudoclamp (clamp cells without clamp connection) and fruiting body formation in monokaryons. The formation of clamp cells was blocked in AmutBmut strain 326 with clp1-1 mutation in C. cinerea. However, considering the diverse mechanisms of sexual development among Agaricomycetes, it remains unclear whether similar phenotypes are also observed in clp1 or pcc1 mutants in cultivated mushrooms. Therefore, phenotypic analyses of Pleurotus ostreatus pcc1 or clp1 (Popcc1 or Poclp1) mutants generated using CRISPR/Cas9 were performed in this study. Plasmids with Cas9 expression cassette and different single guide RNAs targeting Popcc1 or Poclp1 were individually introduced into a monokaryotic P. ostreatus strain PC9 to obtain the mutants. Unlike in C. cinerea, the pseudoclamp cell was not observed in monokaryotic Popcc1 mutants, but it was observed after crossing two compatible strains with Popcc1 mutations. In Poclp1 mutants, dikaryosis was impaired as clamp cells were not observed after crossing, suggesting that Poclp1 functions may be essential for clamp cell formation, like in C. cinerea. These results provided a clue with respect to conserved and diverse mechanisms underlying sexual development in Agaricomycetes (at least between C. cinerea and P. ostreatus).
Collapse
Affiliation(s)
- Tatpong Boontawon
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | - Masato Horii
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masami Tsuzuki
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Moriyuki Kawauchi
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
48
|
Cai M, Liang X, Liu Y, Hu H, Xie Y, Chen S, Gao X, Li X, Xiao C, Chen D, Wu Q. Transcriptional Dynamics of Genes Purportedly Involved in the Control of Meiosis, Carbohydrate, and Secondary Metabolism during Sporulation in Ganoderma lucidum. Genes (Basel) 2021; 12:genes12040504. [PMID: 33805512 PMCID: PMC8066989 DOI: 10.3390/genes12040504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 12/28/2022] Open
Abstract
Ganoderma lucidum spores (GLS), the mature germ cells ejected from the abaxial side of the pileus, have diverse pharmacological effects. However, the genetic regulation of sporulation in this fungus remains unknown. Here, samples corresponding to the abaxial side of the pileus were collected from strain YW-1 at three sequential developmental stages and were then subjected to a transcriptome assay. We identified 1598 differentially expressed genes (DEGs) and found that the genes related to carbohydrate metabolism were strongly expressed during spore morphogenesis. In particular, genes involved in trehalose and malate synthesis were upregulated, implying the accumulation of specific carbohydrates in mature G. lucidum spores. Furthermore, the expression of genes involved in triterpenoid and ergosterol biosynthesis was high in the young fruiting body but gradually decreased with sporulation. Finally, spore development-related regulatory pathways were explored by analyzing the DNA binding motifs of 24 transcription factors that are considered to participate in the control of sporulation. Our results provide a dataset of dynamic gene expression during sporulation in G. lucidum. They also shed light on genes potentially involved in transcriptional regulation of the meiotic process, metabolism pathways in energy provision, and ganoderic acids and ergosterol biosynthesis.
Collapse
Affiliation(s)
- Manjun Cai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.C.); (X.L.); (Y.L.); (H.H.); (Y.X.); (S.C.); (X.G.); (X.L.); (C.X.); (D.C.)
| | - Xiaowei Liang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.C.); (X.L.); (Y.L.); (H.H.); (Y.X.); (S.C.); (X.G.); (X.L.); (C.X.); (D.C.)
- Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou 510663, China
| | - Yuanchao Liu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.C.); (X.L.); (Y.L.); (H.H.); (Y.X.); (S.C.); (X.G.); (X.L.); (C.X.); (D.C.)
- Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou 510663, China
| | - Huiping Hu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.C.); (X.L.); (Y.L.); (H.H.); (Y.X.); (S.C.); (X.G.); (X.L.); (C.X.); (D.C.)
- Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou 510663, China
| | - Yizhen Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.C.); (X.L.); (Y.L.); (H.H.); (Y.X.); (S.C.); (X.G.); (X.L.); (C.X.); (D.C.)
- Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou 510663, China
| | - Shaodan Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.C.); (X.L.); (Y.L.); (H.H.); (Y.X.); (S.C.); (X.G.); (X.L.); (C.X.); (D.C.)
| | - Xiong Gao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.C.); (X.L.); (Y.L.); (H.H.); (Y.X.); (S.C.); (X.G.); (X.L.); (C.X.); (D.C.)
| | - Xiangmin Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.C.); (X.L.); (Y.L.); (H.H.); (Y.X.); (S.C.); (X.G.); (X.L.); (C.X.); (D.C.)
| | - Chun Xiao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.C.); (X.L.); (Y.L.); (H.H.); (Y.X.); (S.C.); (X.G.); (X.L.); (C.X.); (D.C.)
| | - Diling Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.C.); (X.L.); (Y.L.); (H.H.); (Y.X.); (S.C.); (X.G.); (X.L.); (C.X.); (D.C.)
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.C.); (X.L.); (Y.L.); (H.H.); (Y.X.); (S.C.); (X.G.); (X.L.); (C.X.); (D.C.)
- Correspondence:
| |
Collapse
|
49
|
Boontawon T, Nakazawa T, Inoue C, Osakabe K, Kawauchi M, Sakamoto M, Honda Y. Efficient genome editing with CRISPR/Cas9 in Pleurotus ostreatus. AMB Express 2021; 11:30. [PMID: 33609205 PMCID: PMC7897337 DOI: 10.1186/s13568-021-01193-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 02/12/2021] [Indexed: 12/30/2022] Open
Abstract
Pleurotus ostreatus is one of the most commercially produced edible mushrooms worldwide. Improved cultivated strains with more useful traits have been obtained using classical breeding, which is laborious and time-consuming. Here, we attempted efficient gene mutagenesis using plasmid-based CRISPR/Cas9 as the first step for non-genetically modified (non-GM) P. ostreatus generation. Plasmids harboring expression cassettes of Cas9 and different single guide RNAs targeting fcy1 and pyrG were individually transferred into fungal protoplasts of the PC9 strain, which generated some strains exhibiting resistance to 5-fluorocytosine and 5-fluoroorotic acid, respectively. Genomic PCR followed by sequencing revealed small insertions/deletions or insertion of a fragment from the plasmid at the target site in some of the drug-resistant strains. The results demonstrated efficient CRISPR/Cas9-assisted genome editing in P. ostreatus, which could contribute to the molecular breeding of non-GM cultivated strains in the future. Furthermore, a mutation in fcy1 via homology-directed repair using this CRISPR/Cas9 system was also efficiently introduced, which could be applied not only for precise gene disruption, but also for insertions leading to heterologous gene expression in this fungus.
Collapse
|
50
|
Wang T, Yue S, Jin Y, Wei H, Lu L. Advances allowing feasible pyrG gene editing by a CRISPR-Cas9 system for the edible mushroom Pleurotus eryngii. Fungal Genet Biol 2021; 147:103509. [PMID: 33400990 DOI: 10.1016/j.fgb.2020.103509] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 10/22/2022]
Abstract
For decades, the edible mushroom Pleurotus eryngii (P. eryngii) has been cultivated as important raw materials for food and pharmaceutical industries in most of Asian countries, especially in China. Unfortunately, the generation and improvement of new cultivars are very difficult since there are many barriers which have not been solved thoroughly by gene editing tools, even though the CRISPR-Cas9 technique has been widely applied in other species. In this study, we identified the point-mutated variant of the endogenous sdhB gene (cbxr) as a more stable selection marker than hygromycin B resistance gene (hph) in P. eryngii. Furthermore, using a codon-optimized Cas9, a predicted native U6 promoter-guided sgRNA, as well as an optimized protoplast transformation system, a highly efficient pyrG gene editing system was established in P. eryngii, that incorporated varied insertions and deletions (indels) by non-homologous end joining (NHEJ) and homology-directed repair (HDR). Findings for a successful targeted gene editing strategy in the edible mushroom P. eryngii may open a new chapter for the improvement of edible mushroom cultivars.
Collapse
Affiliation(s)
- Tingli Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Shang Yue
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yating Jin
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Hua Wei
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|