1
|
Luo Y, Jin W, Zang J, Wang G, Zhu L, Kung HF. Development of [ 68Ga]Ga/[ 177Lu]Lu-DOTA-NI-FAPI-04 Containing a Nitroimidazole Moiety as New FAPI Radiotracers with Improved Tumor Uptake and Retention. J Med Chem 2025; 68:348-360. [PMID: 39710979 DOI: 10.1021/acs.jmedchem.4c02015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Fibroblast activation protein (FAP), which is overexpressed in cancer-associated fibroblasts (CAFs), represents a promising target for cancer diagnosis and therapy. Hypoxia is a common feature of solid tumors. A bivalent agent, DOTA-NI-FAPI-04 (1), was developed by incorporating hypoxia-sensitive nitroimidazole (NI) into the FAP-targeting agent FAPI-04. Compound 1 exhibited a strong FAP binding affinity with an IC50 of 7.44 nM. Radiolabeled [68Ga]Ga-1 and [177Lu]Lu-1 demonstrated enhanced in vitro cell uptake. In vivo positron emission tomography/computed tomography (PET/CT) imaging showed that [68Ga]Ga-1 displayed significantly higher specific uptake and retention in U87MG tumor-bearing mice compared to [68Ga]Ga-FAPI-04 (SUVavg: 7.87 vs 1.99% ID/mL at 120 min). Biodistribution studies confirmed superior tumor uptake of [68Ga]Ga-1 (48.15 vs 5.72% ID/g at 120 min). Similarly, [177Lu]Lu-1 exhibited higher tumor uptake than [177Lu]Lu-FAPI-04 (50.75 vs 20.48% ID/g at 120 min). These preliminary results suggest that a nitroimidazole-containing bivalent-targeting agent, [68Ga]Ga/[177Lu]Lu-1, is a promising candidate for tumor theranostics.
Collapse
Affiliation(s)
- Yang Luo
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wenbin Jin
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jie Zang
- Department of Nuclear Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Guochang Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Lin Zhu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hank F Kung
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Wang J, Serafini A, Kuker R, Ayubcha C, Cohen G, Nadel H, McKinney A, Alavi A, Yu JQ. The State-of-the-Art PET Tracers in Glioblastoma and High-grade Gliomas and Implications for Theranostics. PET Clin 2025; 20:147-164. [PMID: 39482219 DOI: 10.1016/j.cpet.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
MR imaging is currently the main imaging modality used for the diagnosis and post therapeutic assessment of glioblastomas. Recently, several innovative PET radioactive tracers have been investigated for the evaluation of glioblastomas (GBM). These radiotracers target several biochemical and pathophysiological processes seen in tumors. These include glucose metabolism, DNA synthesis and cell proliferation, amino acid transport, cell membrane biosynthesis, specific membrane antigens such as prostatic specific membrane antigens, fibroblast activation protein inhibitor, translocator protein and hypoxia sensing agents, and antibodies targeting specific cell receptor antigen. This review aims to discuss the clinical value of these PET radiopharmaceuticals in the evaluation and treatment of GBMs.
Collapse
Affiliation(s)
- Jiaqiong Wang
- Division of Nuclear Medicine, Department of Radiology, Temple University Health System, Fox Chase Cancer Center, Philadelphia, PA 19140, USA.
| | - Aldo Serafini
- Division of Nuclear Medicine, Department of Radiology, University of Miami Miller School of Medicine, Jackson Memorial Hospital, Miami, FL, USA
| | - Russ Kuker
- Division of Nuclear Medicine, Department of Radiology, University of Miami Miller School of Medicine, Jackson Memorial Hospital, Miami, FL, USA
| | - Cyrus Ayubcha
- Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gary Cohen
- Department of Radiology, Temple University Health System, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Helen Nadel
- Department of Radiology, Lucile Packard Children's Hospital at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexander McKinney
- Department of Radiology, University of Miami Miller School of Medicine, Jackson Memorial Hospital, Miami, FL, USA
| | - Abass Alavi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jian Q Yu
- Division of Nuclear Medicine, Department of Radiology, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
3
|
Shrestha B, Stern NB, Zhou A, Dunn A, Porter T. Current trends in the characterization and monitoring of vascular response to cancer therapy. Cancer Imaging 2024; 24:143. [PMID: 39438891 PMCID: PMC11515715 DOI: 10.1186/s40644-024-00767-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/26/2024] [Indexed: 10/25/2024] Open
Abstract
Tumor vascular physiology is an important determinant of disease progression as well as the therapeutic outcome of cancer treatment. Angiogenesis or the lack of it provides crucial information about the tumor's blood supply and therefore can be used as an index for cancer growth and progression. While standalone anti-angiogenic therapy demonstrated limited therapeutic benefits, its combination with chemotherapeutic agents improved the overall survival of cancer patients. This could be attributed to the effect of vascular normalization, a dynamic process that temporarily reverts abnormal vasculature to the normal phenotype maximizing the delivery and intratumor distribution of chemotherapeutic agents. Longitudinal monitoring of vascular changes following antiangiogenic therapy can indicate an optimal window for drug administration and estimate the potential outcome of treatment. This review primarily focuses on the status of various imaging modalities used for the longitudinal characterization of vascular changes before and after anti-angiogenic therapies and their clinical prospects.
Collapse
Affiliation(s)
- Binita Shrestha
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Noah B Stern
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Annie Zhou
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Tyrone Porter
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
4
|
Hammad M, Salma R, Balosso J, Rezvani M, Haghdoost S. Role of Oxidative Stress Signaling, Nrf2, on Survival and Stemness of Human Adipose-Derived Stem Cells Exposed to X-rays, Protons and Carbon Ions. Antioxidants (Basel) 2024; 13:1035. [PMID: 39334694 PMCID: PMC11429097 DOI: 10.3390/antiox13091035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Some cancers have a poor prognosis and often lead to local recurrence because they are resistant to available treatments, e.g., glioblastoma. Attempts have been made to increase the sensitivity of resistant tumors by targeting pathways involved in the resistance and combining it, for example, with radiotherapy (RT). We have previously reported that treating glioblastoma stem cells with an Nrf2 inhibitor increases their radiosensitivity. Unfortunately, the application of drugs can also affect normal cells. In the present study, we aim to investigate the role of the Nrf2 pathway in the survival and differentiation of normal human adipose-derived stem cells (ADSCs) exposed to radiation. We treated ADSCs with an Nrf2 inhibitor and then exposed them to X-rays, protons or carbon ions. All three radiation qualities are used to treat cancer. The survival and differentiation abilities of the surviving ADSCs were studied. We found that the enhancing effect of Nrf2 inhibition on cell survival levels was radiation-quality-dependent (X-rays > proton > carbon ions). Furthermore, our results indicate that Nrf2 inhibition reduces stem cell differentiation by 35% and 28% for adipogenesis and osteogenesis, respectively, using all applied radiation qualities. Interestingly, the results show that the cells that survive proton and carbon ion irradiations have an increased ability, compared with X-rays, to differentiate into osteogenesis and adipogenesis lineages. Therefore, we can conclude that the use of carbon ions or protons can affect the stemness of irradiated ADSCs at lower levels than X-rays and is thus more beneficial for long-time cancer survivors, such as pediatric patients.
Collapse
Affiliation(s)
- Mira Hammad
- Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP) UMR 6252, University of Caen Normandy, Cedex 04, F-14050 Caen, France
| | - Rima Salma
- Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP) UMR 6252, University of Caen Normandy, Cedex 04, F-14050 Caen, France
| | - Jacques Balosso
- Department of Radiation Oncology, Centre François Baclesse, F-14000 Caen, France
- Advanced Resource Center for HADrontherapy in Europe (ARCHADE), F-14000 Caen, France
| | - Mohi Rezvani
- Swiss Bioscience GmbH, Wagistrasse 27a, CH-8952 Schlieren, Switzerland
| | - Siamak Haghdoost
- Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP) UMR 6252, University of Caen Normandy, Cedex 04, F-14050 Caen, France
- Advanced Resource Center for HADrontherapy in Europe (ARCHADE), F-14000 Caen, France
- Le Laboratoire "Aliments, Bioprocédés, Toxicologie et Environnement (ABTE) UR 4651, ToxEMAC Team, University of Caen Normandy, Cedex 04, F-14050 Caen, France
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
5
|
Upadhyay DB, Nogales J, Mokariya JA, Vala RM, Tandon V, Banerjee S, Patel HM. One-pot synthesis of tetrahydropyrimidinecarboxamides enabling in vitro anticancer activity: a combinative study with clinically relevant brain-penetrant drugs. RSC Adv 2024; 14:27174-27186. [PMID: 39193280 PMCID: PMC11348845 DOI: 10.1039/d4ra04171b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
In this study, we describe a one-pot three-component synthesis of bioactive tetrahydopyrimidinecarboxamide derivatives employing lanthanum triflate as a catalyst. Out of the synthesized compounds, 4f had the most potent anti-cancer activity and impeded cell cycle progression effectively. Anti-cancer bioactivity was observed in 4f against liver, breast, and lung cancers as well as primary patient-derived glioblastoma cell lines. Compound 4f effectively inhibited the 3D neurosphere formation in primary patient-derived glioma stem cells. Specifically, 4f exhibited synergistic cytotoxicity with the EGFR inhibitor that is the clinical epidermal growth factor receptor inhibitor osimertinib. 4f does not exhibit anti-kinase activity and is cytostatic in nature, and further work is needed to understand the true molecular target of 4f and its derivatives. Through our current work, we establish a promising tetrahydopyrimidinecarboxamide-based lead compound with anti-cancer activity, which may exhibit potent anti-cancer activity in combination with specific clinically relevant small molecule kinase inhibitors.
Collapse
Affiliation(s)
- Dipti B Upadhyay
- Department of Chemistry, Sardar Patel University Vallabh Vidyanagar Gujarat India
| | - Joaquina Nogales
- Division of Cancer Research, School of Medicine, University of Dundee Dundee DD1 9SY UK
| | - Jaydeep A Mokariya
- Department of Chemistry, Sardar Patel University Vallabh Vidyanagar Gujarat India
| | - Ruturajsinh M Vala
- Department of Chemistry, Sardar Patel University Vallabh Vidyanagar Gujarat India
| | - Vasudha Tandon
- Division of Cancer Research, School of Medicine, University of Dundee Dundee DD1 9SY UK
| | - Sourav Banerjee
- Division of Cancer Research, School of Medicine, University of Dundee Dundee DD1 9SY UK
| | - Hitendra M Patel
- Department of Chemistry, Sardar Patel University Vallabh Vidyanagar Gujarat India
| |
Collapse
|
6
|
Fantin J, Toutain J, Pérès EA, Bernay B, Mehani SM, Helaine C, Bourgeois M, Brunaud C, Chazalviel L, Pontin J, Corroyer-Dulmont A, Valable S, Cherel M, Bernaudin M. Assessment of hypoxia and oxidative-related changes in a lung-derived brain metastasis model by [ 64Cu][Cu(ATSM)] PET and proteomic studies. EJNMMI Res 2023; 13:102. [PMID: 38006431 PMCID: PMC10676347 DOI: 10.1186/s13550-023-01052-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Brain metastases (BM) are the most frequent malignant brain tumors. The aim of this study was to characterize the tumor microenvironment (TME) of BM and particularly hypoxia and redox state, known to play a role in tumor growth and treatment resistance with multimodal PET and MRI imaging, immunohistochemical and proteomic approaches in a human lung cancer (H2030-BrM3)-derived BM model in rats. RESULTS First, in vitro studies confirmed that H2030-BrM3 cells respond to hypoxia with increasing expression of HIF-1, HIF-2 and their target genes. Proteomic analyses revealed, among expression changes, proteins associated with metabolism, oxidative stress, metal response and hypoxia signaling in particular in cortical BM. [64Cu][Cu(ATSM)] PET revealed a significant uptake by cortical BM (p < 0.01), while no uptake is observed in striatal BM 23 days after tumor implantation. Pimonidazole, HIF-1α, HIF-2α, CA-IX as well as GFAP, CTR1 and DMT1 immunostainings are positive in both BM. CONCLUSION Overall, [64Cu][Cu(ATSM)] imaging and proteomic results showed the presence of hypoxia and protein expression changes linked to hypoxia and oxidative stress in BM, which are more pronounced in cortical BM compared to striatal BM. Moreover, it emphasized the interest of [64Cu][Cu(ATSM)] PET to characterize TME of BM and depict inter-metastasis heterogeneity that could be useful to guide treatments.
Collapse
Affiliation(s)
- Jade Fantin
- Université de Caen Normandie, CNRS, Normandie Univ., ISTCT UMR6030, GIP CYCERON, F-14000, Caen, France
| | - Jérôme Toutain
- Université de Caen Normandie, CNRS, Normandie Univ., ISTCT UMR6030, GIP CYCERON, F-14000, Caen, France
| | - Elodie A Pérès
- Université de Caen Normandie, CNRS, Normandie Univ., ISTCT UMR6030, GIP CYCERON, F-14000, Caen, France
| | - Benoit Bernay
- Université de Caen Normandie, Normandie Univ., US EMerode, Plateforme Proteogen, F-14000, Caen, France
| | - Sarina Maya Mehani
- Université de Caen Normandie, CNRS, Normandie Univ., ISTCT UMR6030, GIP CYCERON, F-14000, Caen, France
| | - Charly Helaine
- Université de Caen Normandie, CNRS, Normandie Univ., ISTCT UMR6030, GIP CYCERON, F-14000, Caen, France
| | - Mickael Bourgeois
- CRCI2NA, INSERM UMR1307, CNRS-ERL6075, Université d'Angers, Université de Nantes, F-44000, Nantes, France
- GIP ARRONAX, F-44800, Saint-Herblain, France
| | - Carole Brunaud
- Université de Caen Normandie, CNRS, Normandie Univ., ISTCT UMR6030, GIP CYCERON, F-14000, Caen, France
| | - Laurent Chazalviel
- Université de Caen Normandie, CNRS, Normandie Univ., ISTCT UMR6030, GIP CYCERON, F-14000, Caen, France
| | - Julien Pontin
- Université de Caen Normandie, Normandie Univ., US EMerode, Plateforme Proteogen, F-14000, Caen, France
| | - Aurélien Corroyer-Dulmont
- Université de Caen Normandie, CNRS, Normandie Univ., ISTCT UMR6030, GIP CYCERON, F-14000, Caen, France
- Medical Physics Department, CLCC François Baclesse, F-14000, Caen, France
| | - Samuel Valable
- Université de Caen Normandie, CNRS, Normandie Univ., ISTCT UMR6030, GIP CYCERON, F-14000, Caen, France
| | - Michel Cherel
- CRCI2NA, INSERM UMR1307, CNRS-ERL6075, Université d'Angers, Université de Nantes, F-44000, Nantes, France
- GIP ARRONAX, F-44800, Saint-Herblain, France
| | - Myriam Bernaudin
- Université de Caen Normandie, CNRS, Normandie Univ., ISTCT UMR6030, GIP CYCERON, F-14000, Caen, France.
| |
Collapse
|
7
|
Wang Y, Fushimi Y, Arakawa Y, Shimizu Y, Sano K, Sakata A, Nakajima S, Okuchi S, Hinoda T, Oshima S, Otani S, Ishimori T, Tanji M, Mineharu Y, Yoshida K, Nakamoto Y. Evaluation of isocitrate dehydrogenase mutation in 2021 world health organization classification grade 3 and 4 glioma adult-type diffuse gliomas with 18F-fluoromisonidazole PET. Jpn J Radiol 2023; 41:1255-1264. [PMID: 37219717 PMCID: PMC10613590 DOI: 10.1007/s11604-023-01450-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
PURPOSE This study aimed to investigate the uptake characteristics of 18F-fluoromisonidazole (FMISO), in mutant-type isocitrate dehydrogenase (IDH-mutant, grade 3 and 4) and wild-type IDH (IDH-wildtype, grade 4) 2021 WHO classification adult-type diffuse gliomas. MATERIALS AND METHODS Patients with grade 3 and 4 adult-type diffuse gliomas (n = 35) were included in this prospective study. After registering 18F-FMISO PET and MR images, standardized uptake value (SUV) and apparent diffusion coefficient (ADC) were evaluated in hyperintense areas on fluid-attenuated inversion recovery (FLAIR) imaging (HIA), and in contrast-enhanced tumors (CET) by manually placing 3D volumes of interest. Relative SUVmax (rSUVmax) and SUVmean (rSUVmean), 10th percentile of ADC (ADC10pct), mean ADC (ADCmean) were measured in HIA and CET, respectively. RESULTS rSUVmean in HIA and rSUVmean in CET were significantly higher in IDH-wildtype than in IDH-mutant (P = 0.0496 and 0.03, respectively). The combination of FMISO rSUVmean in HIA and ADC10pct in CET, that of rSUVmax and ADC10pct in CET, that of rSUVmean in HIA and ADCmean in CET, were able to differentiate IDH-mutant from IDH-wildtype (AUC 0.80). When confined to astrocytic tumors except for oligodendroglioma, rSUVmax, rSUVmean in HIA and rSUVmean in CET were higher for IDH-wildtype than for IDH-mutant, but not significantly (P = 0.23, 0.13 and 0.14, respectively). The combination of FMISO rSUVmean in HIA and ADC10pct in CET was able to differentiate IDH-mutant (AUC 0.81). CONCLUSION PET using 18F-FMISO and ADC might provide a valuable tool for differentiating between IDH mutation status of 2021 WHO classification grade 3 and 4 adult-type diffuse gliomas.
Collapse
Affiliation(s)
- Yang Wang
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
| | - Yoshiki Arakawa
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yoichi Shimizu
- Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto, 606-8507, Japan
| | - Kohei Sano
- Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto, 606-8507, Japan
| | - Akihiko Sakata
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Satoshi Nakajima
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Sachi Okuchi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Takuya Hinoda
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Sonoko Oshima
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Sayo Otani
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Takayoshi Ishimori
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Masahiro Tanji
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yohei Mineharu
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Kazumichi Yoshida
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| |
Collapse
|
8
|
Mittal S, Mallia MB. Molecular imaging of tumor hypoxia: Evolution of nitroimidazole radiopharmaceuticals and insights for future development. Bioorg Chem 2023; 139:106687. [PMID: 37406518 DOI: 10.1016/j.bioorg.2023.106687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023]
Abstract
Though growing evidence has been collected in support of the concept of dose escalation based on the molecular level images indicating hypoxic tumor sub-volumes that could be radio-resistant, validation of the concept is still a work in progress. Molecular imaging of tumor hypoxia using radiopharmaceuticals is expected to provide the required input to plan dose escalation through Image Guided Radiation Therapy (IGRT) to kill/control the radio-resistant hypoxic tumor cells. The success of the IGRT, therefore, is heavily dependent on the quality of images obtained using the radiopharmaceutical and the extent to which the image represents the true hypoxic status of the tumor in spite of the heterogeneous nature of tumor hypoxia. Available literature on radiopharmaceuticals for imaging hypoxia is highly skewed in favor of nitroimidazole as the pharmacophore given their ability to undergo oxygen dependent reduction in hypoxic cells. In this context, present review on nitroimidazole radiopharmaceuticals would be immensely helpful to the researchers to obtain a birds-eye view on what has been achieved so far and what can be tried differently to obtain a better hypoxia imaging agent. The review also covers various methods of radiolabeling that could be utilized for developing radiotracers for hypoxia targeting applications.
Collapse
Affiliation(s)
- Sweety Mittal
- Radiopharmaceuticals Division, Bhabha Atomic Research Center, Mumbai 400085, India.
| | - Madhava B Mallia
- Radiopharmaceuticals Division, Bhabha Atomic Research Center, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
9
|
Aurélie FE, Sarah K, Charly H, Clément A, Sajjad G, Julie C, Romaric S, Benoit B, Laurent C, Svetlana M, Samuel V. Functional impact of oxygen-saturated zeolite nanoparticles on macrophages in the context of glioblastoma: an in vitro and in vivo study. Colloids Surf B Biointerfaces 2023; 230:113524. [PMID: 37634285 DOI: 10.1016/j.colsurfb.2023.113524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/29/2023]
Abstract
In the context of glioblastoma (GBM), hypoxia and inflammation are two main players of the tumor microenvironment. Hypoxia stimulates various features involves in tumor growth and also maintains a specific environment that favors protumor macrophages. Therefore, targeting hypoxia could potentially restore an anti-tumor M1 phenotype in macrophages. Besides, iron demonstrated its capacity to stimulate the polarization of macrophages towards an M1-like phenotype. In this paper we took advantages of microporous nanoparticles to co-deliver both oxygen and iron to bone marrow derived macrophages (BMDM) enabling the investigation of changes in polarization status and proteomic profiles. The nanoparticles were used in two in vivo models of glioblastoma, specifically, in both immunodeficient and immunocompetent settings. Our in vitro findings revealed that iron doped nanoparticles, saturated with oxygen were deemed safe for macrophages but did not demonstrate the capacity to change the M1 or M2 phenotypes. However, these nanoparticles induced some changes in proteomics pathways. The present study reports on in vivo experimentation that revealed the effects of nanoparticles on the hypoxic fraction, tumor volume, and macrophage phenotype in a GBM model. The findings indicated that the presence of nanoparticles led to a reduction in the hypoxic fraction in one of the GBM models, while no significant changes were observed in the tumor volume or macrophage phenotype. The present data showed that nanoparticles possess the capability of delivering both oxygen and iron to macrophages; though, they do not possess the ability to effectively repolarize M2 macrophages. Such strategies could be used in conjunction with other potent molecules to avoid M1 macrophages to inevitably differentiate to M2 macrophages.
Collapse
Affiliation(s)
- Ferré E Aurélie
- Normandie Univ., UNICAEN, CNRS, ISTCT, GIP CYCERON, 14000 Caen, France
| | - Komaty Sarah
- Normandie Univ., UNICAEN, CNRS, ENSICAEN, Laboratoire Catalyse et Spectrochimie, 14000 Caen, France
| | - Hélaine Charly
- Normandie Univ., UNICAEN, CNRS, ISTCT, GIP CYCERON, 14000 Caen, France
| | - Anfray Clément
- Normandie Univ., UNICAEN, CNRS, ISTCT, GIP CYCERON, 14000 Caen, France
| | - Ghojavand Sajjad
- Normandie Univ., UNICAEN, CNRS, ENSICAEN, Laboratoire Catalyse et Spectrochimie, 14000 Caen, France
| | - Coupey Julie
- Normandie Univ., UNICAEN, CNRS, ISTCT, GIP CYCERON, 14000 Caen, France
| | - Saulnier Romaric
- UAR3408/US50., UNICAEN, CNRS, INSERM, CEA, CYCERON, GIP CYCERON, 14000 Caen, France
| | - Bernay Benoit
- Normandie Univ., UNICAEN, Proteogen, US EMerode, 14000 Caen, France
| | | | - Mintova Svetlana
- Normandie Univ., UNICAEN, CNRS, ENSICAEN, Laboratoire Catalyse et Spectrochimie, 14000 Caen, France.
| | - Valable Samuel
- Normandie Univ., UNICAEN, CNRS, ISTCT, GIP CYCERON, 14000 Caen, France.
| |
Collapse
|
10
|
Fernández-Alvarez V, Linares-Sánchez M, Suárez C, López F, Guntinas-Lichius O, Mäkitie AA, Bradley PJ, Ferlito A. Novel Imaging-Based Biomarkers for Identifying Carotid Plaque Vulnerability. Biomolecules 2023; 13:1236. [PMID: 37627301 PMCID: PMC10452902 DOI: 10.3390/biom13081236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/30/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Carotid artery disease has traditionally been assessed based on the degree of luminal narrowing. However, this approach, which solely relies on carotid stenosis, is currently being questioned with regard to modern risk stratification approaches. Recent guidelines have introduced the concept of the "vulnerable plaque," emphasizing specific features such as thin fibrous caps, large lipid cores, intraplaque hemorrhage, plaque rupture, macrophage infiltration, and neovascularization. In this context, imaging-based biomarkers have emerged as valuable tools for identifying higher-risk patients. Non-invasive imaging modalities and intravascular techniques, including ultrasound, computed tomography, magnetic resonance imaging, intravascular ultrasound, optical coherence tomography, and near-infrared spectroscopy, have played pivotal roles in characterizing and detecting unstable carotid plaques. The aim of this review is to provide an overview of the evolving understanding of carotid artery disease and highlight the significance of imaging techniques in assessing plaque vulnerability and informing clinical decision-making.
Collapse
Affiliation(s)
- Verónica Fernández-Alvarez
- Department of Vascular and Endovascular Surgery, Hospital Universitario de Cabueñes, 33394 Gijón, Spain;
| | - Miriam Linares-Sánchez
- Department of Vascular and Endovascular Surgery, Hospital Universitario de Cabueñes, 33394 Gijón, Spain;
| | - Carlos Suárez
- Instituto de Investigacion Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (C.S.); (F.L.)
| | - Fernando López
- Instituto de Investigacion Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (C.S.); (F.L.)
- Department of Otorhinolaryngology, Hospital Universitario Central de Asturias, Instituto Universitario de Oncologia del Principado de Asturias, University of Oviedo, CIBERONC, 33011 Oviedo, Spain
| | | | - Antti A. Mäkitie
- Department of Otorhinolaryngology-Head and Neck Surgery, Helsinki University Hospital, University of Helsinki, P.O. Box 263, 00029 Helsinki, Finland;
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Patrick J. Bradley
- Department of ORLHNS, Queens Medical Centre Campus, Nottingham University Hospitals, Derby Road, Nottingham NG7 2UH, UK;
| | - Alfio Ferlito
- Coordinator of the International Head and Neck Scientific Group, 35100 Padua, Italy;
| |
Collapse
|
11
|
Perez RC, Kim D, Maxwell AWP, Camacho JC. Functional Imaging of Hypoxia: PET and MRI. Cancers (Basel) 2023; 15:3336. [PMID: 37444446 DOI: 10.3390/cancers15133336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Molecular and functional imaging have critical roles in cancer care. Existing evidence suggests that noninvasive detection of hypoxia within a particular type of cancer can provide new information regarding the relationship between hypoxia, cancer aggressiveness and altered therapeutic responses. Following the identification of hypoxia inducible factor (HIF), significant progress in understanding the regulation of hypoxia-induced genes has been made. These advances have provided the ability to therapeutically target HIF and tumor-associated hypoxia. Therefore, by utilizing the molecular basis of hypoxia, hypoxia-based theranostic strategies are in the process of being developed which will further personalize care for cancer patients. The aim of this review is to provide an overview of the significance of tumor hypoxia and its relevance in cancer management as well as to lay out the role of imaging in detecting hypoxia within the context of cancer.
Collapse
Affiliation(s)
- Ryan C Perez
- Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - DaeHee Kim
- Department of Diagnostic Imaging, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Aaron W P Maxwell
- Department of Diagnostic Imaging, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Juan C Camacho
- Department of Clinical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| |
Collapse
|
12
|
Nguyen AT, Kim HK. Recent Advances of 68Ga-Labeled PET Radiotracers with Nitroimidazole in the Diagnosis of Hypoxia Tumors. Int J Mol Sci 2023; 24:10552. [PMID: 37445730 DOI: 10.3390/ijms241310552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Positron emission tomography (PET) is a noninvasive molecular imaging method extensively applied in the detection and treatment of various diseases. Hypoxia is a common phenomenon found in most solid tumors. Nitroimidazole is a group of bioreducible pharmacophores that selectively accumulate in hypoxic regions of the body. Over the past few decades, many scientists have reported the use of radiopharmaceuticals containing nitroimidazole for the detection of hypoxic tumors. Gallium-68, a positron-emitting radioisotope, has a favorable half-life time of 68 min and can be conveniently produced by 68Ge/68Ga generators. Recently, there has been significant progress in the preparation of novel 68Ga-labeled complexes bearing nitroimidazole moieties for the diagnosis of hypoxia. This review provides a comprehensive overview of the current status of developing 68Ga-labeled radiopharmaceuticals with nitroimidazole moieties, their pharmacokinetics, and in vitro and in vivo studies, as well as PET imaging studies for hypoxic tumors.
Collapse
Affiliation(s)
- Anh Thu Nguyen
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
13
|
Laudicella R, Mantarro C, Catalfamo B, Alongi P, Gaeta M, Minutoli F, Baldari S, Bisdas S. PET Imaging in Gliomas. RADIOLOGY‐NUCLEAR MEDICINE DIAGNOSTIC IMAGING 2023:194-218. [DOI: 10.1002/9781119603627.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Precise gliomas therapy: Hypoxia-activated prodrugs sensitized by nano-photosensitizers. Biomaterials 2022; 289:121770. [DOI: 10.1016/j.biomaterials.2022.121770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 11/18/2022]
|
15
|
Weng ST, Lai QL, Cai MT, Wang JJ, Zhuang LY, Cheng L, Mo YJ, Liu L, Zhang YX, Qiao S. Detecting vulnerable carotid plaque and its component characteristics: Progress in related imaging techniques. Front Neurol 2022; 13:982147. [PMID: 36188371 PMCID: PMC9515377 DOI: 10.3389/fneur.2022.982147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Carotid atherosclerotic plaque rupture and thrombosis are independent risk factors for acute ischemic cerebrovascular disease. Timely identification of vulnerable plaque can help prevent stroke and provide evidence for clinical treatment. Advanced invasive and non-invasive imaging modalities such as computed tomography, magnetic resonance imaging, intravascular ultrasound, optical coherence tomography, and near-infrared spectroscopy can be employed to image and classify carotid atherosclerotic plaques to provide clinically relevant predictors used for patient risk stratification. This study compares existing clinical imaging methods, and the advantages and limitations of different imaging techniques for identifying vulnerable carotid plaque are reviewed to effectively prevent and treat cerebrovascular diseases.
Collapse
Affiliation(s)
- Shi-Ting Weng
- The Second Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Qi-Lun Lai
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Meng-Ting Cai
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jun-Jun Wang
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Li-Ying Zhuang
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Lin Cheng
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Ye-Jia Mo
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Lu Liu
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Yin-Xi Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Yin-Xi Zhang
| | - Song Qiao
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
- Song Qiao
| |
Collapse
|
16
|
Xu XX, Chen SY, Yi NB, Li X, Chen SL, Lei Z, Cheng DB, Sun T. Research progress on tumor hypoxia-associative nanomedicine. J Control Release 2022; 350:829-840. [PMID: 36100192 DOI: 10.1016/j.jconrel.2022.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 12/17/2022]
Abstract
Hypoxia at the solid tumor site is generally related to the unrestricted proliferation and metabolism of cancerous cells, which can cause tumor metastasis and aggravate tumor progression. Besides, hypoxia plays a substantial role in tumor treatment, and it is one of the main reasons that malignant tumors are difficult to cure and have a poor prognosis. On account of the tumor specific hypoxic environment, many hypoxia-associative nanomedicine have been proposed for tumor treatment. Considering the enhanced targeting effect, designing hypoxia-associative nanomedicine can not only minimize the adverse effects of drugs on normal tissues, but also achieve targeted therapy at the lesion site. Mostly, there can be three strategies for the treatment of hypoxic tumor, including improvement of hypoxic environment, hypoxia responsive drug release and hypoxia activated prodrug. The review describes the design principle and applications of tumor hypoxia-associative nanomedicine in recent years, and also explores its development trends in solid tumor treatment. Moreover, this review presents the current limitations of tumor hypoxia-associative nanomedicine in chemotherapy, radiotherapy, photodynamic therapy, sonodynamic therapy and immunotherapy, which may provide a reference for clinic translation of tumor hypoxia-associative nanomedicine.
Collapse
Affiliation(s)
- Xiao-Xue Xu
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, PR China
| | - Si-Yi Chen
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, PR China
| | - Ning-Bo Yi
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, PR China
| | - Xin Li
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, PR China
| | - Si-Lin Chen
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, PR China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, PR China.
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, PR China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, PR China.
| |
Collapse
|
17
|
Qin J, Tang Y, Wang B. Regional 18F-fluoromisonidazole PET images generated from multiple advanced MR images using neural networks in glioblastoma. Medicine (Baltimore) 2022; 101:e29572. [PMID: 35905276 PMCID: PMC9333488 DOI: 10.1097/md.0000000000029572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Generated 18F-fluoromisonidazole (18F-FMISO) positron emission tomography (PET) images for glioblastoma are highly sought after because 18F-FMISO can be radioactive, and the imaging procedure is not easy. This study aimed to explore the feasibility of using advanced magnetic resonance (MR) images to generate regional 18F-FMISO PET images and its predictive value for survival. Twelve kinds of advanced MR images of 28 patients from The Cancer Imaging Archive were processed. Voxel-by-voxel correlation analysis between 18F-FMISO images and advanced MR images was performed to select the MR images for generating regional 18F-FMISO images. Neural network algorithms provided by the MATLAB toolbox were used to generate regional 18F-FMISO images. The mean square error (MSE) was used to evaluate the regression effect. The prognostic value of generated 18F-FMISO images was evaluated by the Mantel-Cox test. A total of 299 831 voxels were extracted from the segmented regions of all patients. Eleven kinds of advanced MR images were selected to generate 18F-FMISO images. The best neural network algorithm was Bayesian regularization. The MSEs of the training, validation, and testing groups were 2.92E-2, 2.9E-2, and 2.92E-2, respectively. Both the maximum Tissue/Blood ratio (P = .017) and hypoxic volume (P = .023) of the generated images were predictive factors of overall survival, but only hypoxic volume (P = .029) was a predictive factor of progression-free survival. Multiple advanced MR images are feasible to generate qualified regional 18F-FMISO PET images using neural networks. The generated images also have predictive value in the prognostic evaluation of glioblastoma.
Collapse
Affiliation(s)
- Jianhua Qin
- School of Medicine, Qingdao University, Qingdao, P. R. China
- Department of Radiology, Rizhao Central Hospital, Rizhao, P. R. China
| | - Yu Tang
- Department of Radiology, Rizhao Central Hospital, Rizhao, P. R. China
| | - Bao Wang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, P. R. China
- *Correspondence: Bao Wang, Department of Radiology, Qilu Hospital of Shandong University, Jinan, P. R. China, 250012 (e-mail: )
| |
Collapse
|
18
|
Ferda J, Ferdová E, Vítovec M, Glanc D, Mírka H. The imaging of the hypoxic microenvironment in tumorous tissue using PET/CT and PET/MRI. Eur J Radiol 2022; 154:110458. [DOI: 10.1016/j.ejrad.2022.110458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/25/2022] [Indexed: 11/03/2022]
|
19
|
Galldiks N, Langen KJ, Albert NL, Law I, Kim MM, Villanueva-Meyer JE, Soffietti R, Wen PY, Weller M, Tonn JC. Investigational PET tracers in neuro-oncology-What's on the horizon? A report of the PET/RANO group. Neuro Oncol 2022; 24:1815-1826. [PMID: 35674736 DOI: 10.1093/neuonc/noac131] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many studies in patients with brain tumors evaluating innovative PET tracers have been published in recent years, and the initial results are promising. Here, the Response Assessment in Neuro-Oncology (RANO) PET working group provides an overview of the literature on novel investigational PET tracers for brain tumor patients. Furthermore, newer indications of more established PET tracers for the evaluation of glucose metabolism, amino acid transport, hypoxia, cell proliferation, and others are also discussed. Based on the preliminary findings, these novel investigational PET tracers should be further evaluated considering their promising potential. In particular, novel PET probes for imaging of translocator protein and somatostatin receptor overexpression as well as for immune system reactions appear to be of additional clinical value for tumor delineation and therapy monitoring. Progress in developing these radiotracers may contribute to improving brain tumor diagnostics and advancing clinical translational research.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937 Cologne, Germany.,Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany.,Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Düsseldorf, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany.,Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Düsseldorf, Germany.,Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig Maximilians-University of Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts, USA
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center University Hospital and University of Zurich, Zurich, Switzerland
| | - Joerg C Tonn
- Department of Neurosurgery, University Hospital of Munich (LMU), Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
20
|
Xu AL, Xue YY, Tao WT, Wang SQ, Xu HQ. Oleanolic acid combined with olaparib enhances radiosensitization in triple negative breast cancer and hypoxia imaging with 18F-FETNIM micro PET/CT. Biomed Pharmacother 2022; 150:113007. [PMID: 35483190 DOI: 10.1016/j.biopha.2022.113007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/15/2022] Open
Abstract
The heterogeneity of triple negative breast cancer (TNBC) results in the worst prognosis among breast cancer types, making its treatment strategy very challenging. A recent study showed that oleanolic acid (OA) has a radiosensitizing effect on tumor cells, but it does not show a good clinical effect when used alone in radiotherapy. The cytotoxicity of radiotherapy can be enhanced by modulating DNA repair, so new treatment options are being investigated to inhibit DNA repair pathways and sensitize tumors to radiation. Radiation induces DNA double-strand breaks (DSBs), and inhibition of Poly (ADP-Ribose) polymerase (PARP) can prevent the repair of these lesions. Hence, we evaluated the radiosensitization and the underlying mechanism of combination treatment with OA and olaparib in TNBC. Meanwhile, tumor hypoxia was monitored with 18F-Fluoroerythronitroimidazole (FETNIM) positron emission tomography/computed tomography (PET/CT) during radiosensitization therapy. Here, we found that OA and olaparib in combination with radiotherapy significantly inhibited cell proliferation compared with other groups. The results were observed using colony formation assays [sensitization enhancement ratios (SER) 1.16-1.65]. In vivo, tumor growth was significantly delayed in transplanted tumors receiving irradiation (IR) with OA and olaparib. 18F-FETNIM PET/CT can be utilized for tumor hypoxia monitoring and radiosensitization response evaluation. In conclusion, these results suggest that the combination of OA and olaparib with IR enhances the inhibition of MDA-MB-231 in cell culture and in mice, providing a potentially novel combination for the effective treatment of TNBC patients.
Collapse
Affiliation(s)
- A-Lei Xu
- Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yang-Yang Xue
- Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Wei-Tao Tao
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Si-Qi Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Hui-Qin Xu
- Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
21
|
Nardone V, Desideri I, D’Ambrosio L, Morelli I, Visani L, Di Giorgio E, Guida C, Clemente A, Belfiore MP, Cioce F, Spadafora M, Vinciguerra C, Mansi L, Reginelli A, Cappabianca S. Nuclear medicine and radiotherapy in the clinical management of glioblastoma patients. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00495-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Introduction
The aim of the narrative review was to analyse the applications of nuclear medicine (NM) techniques such as PET/CT with different tracers in combination with radiotherapy for the clinical management of glioblastoma patients.
Materials and methods
Key references were derived from a PubMed query. Hand searching and clinicaltrials.gov were also used.
Results
This paper contains a narrative report and a critical discussion of NM approaches in combination with radiotherapy in glioma patients.
Conclusions
NM can provide the Radiation Oncologist several aids that can be useful in the clinical management of glioblastoma patients. At the same, these results need to be validated in prospective and multicenter trials.
Collapse
|
22
|
Zhang M, Hu Y, Yang F, Zhang J, Zhang J, Yu W, Wang M, Lv X, Li J, Bai T, Chang F. Interaction between AhR and HIF-1 signaling pathways mediated by ARNT/HIF-1β. BMC Pharmacol Toxicol 2022; 23:26. [PMID: 35473600 PMCID: PMC9044668 DOI: 10.1186/s40360-022-00564-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 03/29/2022] [Indexed: 04/12/2024] Open
Abstract
Background The main causes of lung cancer are smoking, environmental pollution and genetic susceptibility. It is an indisputable fact that PAHs are related to lung cancer, and benzo(a) pyrene is a representative of PAHs. The purpose of the current investigation was to investigate the interaction between AhR and HIF-1 signaling pathways in A549 cells, which provide some experimental basis for scientists to find drugs that block AhR and HIF-1 signaling pathway to prevent and treat cancer. Methods This project adopts the CYP1A1 signaling pathways and the expression of CYP1B1 is expressed as a measure of AhR strength index. The expression of VEGF and CAIX volume as a measure of the strength of the signal path HIF-1 indicators. Through the construction of plasmid vector, fluorescence resonance energy transfer, real-time quantitative PCR, western blotting and immunoprecipitation, the interaction between AhR signaling pathway and HIF-1 signaling pathway was observed. Results BaP can enhance the binding ability of HIF-1α protein to HIF-1β/ARNT in a dose-dependent manner without CoCl2. However, the binding ability of AhR protein to HIF-1β/ARNT is inhibited by HIF-1α signaling pathway in a dose-dependent manner with CoCl2. Conclusion It is shown that activation of the AhR signaling pathway does not inhibit the HIF-1α signaling pathway, but activation of the HIF-1α signaling pathway inhibits the AhR signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s40360-022-00564-8.
Collapse
Affiliation(s)
- Mengdi Zhang
- Department of Pharmacy Experimental Teaching Center of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China.,Inner Mongolia Research Center for Drug Screening, Hohhot, China
| | - Yuxia Hu
- Inner Mongolia Research Center for Drug Screening, Hohhot, China.,The Center for New Drug Safety Evaluation and Research of Inner Mongolia Medical University, Hohhot, China
| | - Fan Yang
- School of Pharmaceutical Science, Shanxi Medical University, Hohhot, China
| | - Jingwen Zhang
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China
| | - Jianxin Zhang
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China
| | - Wanjia Yu
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China
| | - Minjie Wang
- Department of Pharmacology of Basic medical College, Inner Mongolia Medical university, Hohhot, China
| | - Xiaoli Lv
- Inner Mongolia Research Center for Drug Screening, Hohhot, China.,Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China
| | - Jun Li
- Inner Mongolia Research Center for Drug Screening, Hohhot, China.,The Center for New Drug Safety Evaluation and Research of Inner Mongolia Medical University, Hohhot, China
| | - Tuya Bai
- Inner Mongolia Research Center for Drug Screening, Hohhot, China. .,Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China.
| | - Fuhou Chang
- Inner Mongolia Research Center for Drug Screening, Hohhot, China. .,The Center for New Drug Safety Evaluation and Research of Inner Mongolia Medical University, Hohhot, China. .,Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China.
| |
Collapse
|
23
|
Stumpo V, Guida L, Bellomo J, Van Niftrik CHB, Sebök M, Berhouma M, Bink A, Weller M, Kulcsar Z, Regli L, Fierstra J. Hemodynamic Imaging in Cerebral Diffuse Glioma-Part B: Molecular Correlates, Treatment Effect Monitoring, Prognosis, and Future Directions. Cancers (Basel) 2022; 14:1342. [PMID: 35267650 PMCID: PMC8909110 DOI: 10.3390/cancers14051342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/05/2023] Open
Abstract
Gliomas, and glioblastoma in particular, exhibit an extensive intra- and inter-tumoral molecular heterogeneity which represents complex biological features correlating to the efficacy of treatment response and survival. From a neuroimaging point of view, these specific molecular and histopathological features may be used to yield imaging biomarkers as surrogates for distinct tumor genotypes and phenotypes. The development of comprehensive glioma imaging markers has potential for improved glioma characterization that would assist in the clinical work-up of preoperative treatment planning and treatment effect monitoring. In particular, the differentiation of tumor recurrence or true progression from pseudoprogression, pseudoresponse, and radiation-induced necrosis can still not reliably be made through standard neuroimaging only. Given the abundant vascular and hemodynamic alterations present in diffuse glioma, advanced hemodynamic imaging approaches constitute an attractive area of clinical imaging development. In this context, the inclusion of objective measurable glioma imaging features may have the potential to enhance the individualized care of diffuse glioma patients, better informing of standard-of-care treatment efficacy and of novel therapies, such as the immunotherapies that are currently increasingly investigated. In Part B of this two-review series, we assess the available evidence pertaining to hemodynamic imaging for molecular feature prediction, in particular focusing on isocitrate dehydrogenase (IDH) mutation status, MGMT promoter methylation, 1p19q codeletion, and EGFR alterations. The results for the differentiation of tumor progression/recurrence from treatment effects have also been the focus of active research and are presented together with the prognostic correlations identified by advanced hemodynamic imaging studies. Finally, the state-of-the-art concepts and advancements of hemodynamic imaging modalities are reviewed together with the advantages derived from the implementation of radiomics and machine learning analyses pipelines.
Collapse
Affiliation(s)
- Vittorio Stumpo
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Lelio Guida
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Jacopo Bellomo
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Christiaan Hendrik Bas Van Niftrik
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Martina Sebök
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Moncef Berhouma
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, 69500 Lyon, France;
| | - Andrea Bink
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
- Department of Neuroradiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Michael Weller
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
- Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Zsolt Kulcsar
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
- Department of Neuroradiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Luca Regli
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Jorn Fierstra
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| |
Collapse
|
24
|
Song PN, Mansur A, Lu Y, Della Manna D, Burns A, Samuel S, Heinzman K, Lapi SE, Yang ES, Sorace AG. Modulation of the Tumor Microenvironment with Trastuzumab Enables Radiosensitization in HER2+ Breast Cancer. Cancers (Basel) 2022; 14:cancers14041015. [PMID: 35205763 PMCID: PMC8869800 DOI: 10.3390/cancers14041015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Trastuzumab and radiation are used clinically to treat HER2-overexpressing breast cancers; however, the mechanistic synergy of anti-HER2 and radiation therapy has not been investigated. In this study, we identify that a subtherapeutic dose of trastuzumab sensitizes the tumor microenvironment to fractionated radiation. This results in longitudinal sustained response by triggering a state of innate immune activation through reduced DNA damage repair and increased tumor oxygenation. As positron emission tomography imaging can be used to longitudinally evaluate changes in tumor hypoxia, synergy of combination therapies is the result of both cellular and molecular changes in the tumor microenvironment. Abstract DNA damage repair and tumor hypoxia contribute to intratumoral cellular and molecular heterogeneity and affect radiation response. The goal of this study is to investigate anti-HER2-induced radiosensitization of the tumor microenvironment to enhance fractionated radiotherapy in models of HER2+ breast cancer. This is monitored through in vitro and in vivo studies of phosphorylated γ-H2AX, [18F]-fluoromisonidazole (FMISO)-PET, and transcriptomic analysis. In vitro, HER2+ breast cancer cell lines were treated with trastuzumab prior to radiation and DNA double-strand breaks (DSB) were quantified. In vivo, HER2+ human cell line or patient-derived xenograft models were treated with trastuzumab, fractionated radiation, or a combination and monitored longitudinally with [18F]-FMISO-PET. In vitro DSB analysis revealed that trastuzumab administered prior to fractionated radiation increased DSB. In vivo, trastuzumab prior to fractionated radiation significantly reduced hypoxia, as detected through decreased [18F]-FMISO SUV, synergistically improving long-term tumor response. Significant changes in IL-2, IFN-gamma, and THBS-4 were observed in combination-treated tumors. Trastuzumab prior to fractionated radiation synergistically increases radiotherapy in vitro and in vivo in HER2+ breast cancer which is independent of anti-HER2 response alone. Modulation of the tumor microenvironment, through increased tumor oxygenation and decreased DNA damage response, can be translated to other cancers with first-line radiation therapy.
Collapse
Affiliation(s)
- Patrick N. Song
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (P.N.S.); (Y.L.); (S.S.); (S.E.L.)
- Graduate Biomedical Sciences, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ameer Mansur
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.M.); (A.B.); (K.H.)
| | - Yun Lu
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (P.N.S.); (Y.L.); (S.S.); (S.E.L.)
- Graduate Biomedical Sciences, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Deborah Della Manna
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.D.M.); (E.S.Y.)
| | - Andrew Burns
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.M.); (A.B.); (K.H.)
| | - Sharon Samuel
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (P.N.S.); (Y.L.); (S.S.); (S.E.L.)
| | - Katherine Heinzman
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.M.); (A.B.); (K.H.)
| | - Suzanne E. Lapi
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (P.N.S.); (Y.L.); (S.S.); (S.E.L.)
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Eddy S. Yang
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.D.M.); (E.S.Y.)
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anna G. Sorace
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (P.N.S.); (Y.L.); (S.S.); (S.E.L.)
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.M.); (A.B.); (K.H.)
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence:
| |
Collapse
|
25
|
Stumpo V, Sebök M, van Niftrik CHB, Seystahl K, Hainc N, Kulcsar Z, Weller M, Regli L, Fierstra J. Feasibility of glioblastoma tissue response mapping with physiologic BOLD imaging using precise oxygen and carbon dioxide challenge. MAGMA (NEW YORK, N.Y.) 2022; 35:29-44. [PMID: 34874499 DOI: 10.1007/s10334-021-00980-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Innovative physiologic MRI development focuses on depiction of heterogenous vascular and metabolic features in glioblastoma. For this feasibility study, we employed blood oxygenation level-dependent (BOLD) MRI with standardized and precise carbon dioxide (CO2) and oxygen (O2) modulation to investigate specific tumor tissue response patterns in patients with newly diagnosed glioblastoma. MATERIALS AND METHODS Seven newly diagnosed untreated patients with suspected glioblastoma were prospectively included to undergo a BOLD study with combined CO2 and O2 standardized protocol. %BOLD signal change/mmHg during hypercapnic, hypoxic, and hyperoxic stimulus was calculated in the whole brain, tumor lesion and segmented volumes of interest (VOI) [contrast-enhancing (CE) - tumor, necrosis and edema] to analyze their tissue response patterns. RESULTS Quantification of BOLD signal change after gas challenges can be used to identify specific responses to standardized stimuli in glioblastoma patients. Integration of this approach with automatic VOI segmentation grants improved characterization of tumor subzones and edema. Magnitude of BOLD signal change during the 3 stimuli can be visualized at voxel precision through color-coded maps overlayed onto whole brain and identified VOIs. CONCLUSIONS Our preliminary investigation shows good feasibility of BOLD with standardized and precise CO2 and O2 modulation as an emerging physiologic imaging technique to detail specific glioblastoma characteristics. The unique tissue response patterns generated can be further investigated to better detail glioblastoma lesions and gauge treatment response.
Collapse
Affiliation(s)
- Vittorio Stumpo
- Department of Neurosurgery, University Hospital Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland. .,Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Martina Sebök
- Department of Neurosurgery, University Hospital Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland.,Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christiaan Hendrik Bas van Niftrik
- Department of Neurosurgery, University Hospital Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland.,Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Katharina Seystahl
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Nicolin Hainc
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | - Zsolt Kulcsar
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | - Michael Weller
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Luca Regli
- Department of Neurosurgery, University Hospital Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland.,Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jorn Fierstra
- Department of Neurosurgery, University Hospital Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland.,Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Björkblom B, Wibom C, Eriksson M, Bergenheim AT, Sjöberg RL, Jonsson P, Brännström T, Antti H, Sandström M, Melin B. OUP accepted manuscript. Neuro Oncol 2022; 24:1454-1468. [PMID: 35157758 PMCID: PMC9435506 DOI: 10.1093/neuonc/noac042] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Benny Björkblom
- Corresponding Author: Dr. Benny Björkblom, PhD, Department of Chemistry, Umeå University, Linnaeus väg 10, SE-901 87 Umeå, Sweden ()
| | - Carl Wibom
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Maria Eriksson
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - A Tommy Bergenheim
- Department of Clinical Science, Neuroscience, Umeå University, Umeå, Sweden
| | - Rickard L Sjöberg
- Department of Clinical Science, Neuroscience, Umeå University, Umeå, Sweden
| | - Pär Jonsson
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Henrik Antti
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Maria Sandström
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Beatrice Melin
- Corresponding Author: Professor Beatrice Melin, MD, PhD, Department of Radiation Sciences, Oncology, Umeå University, SE-901 87 Umeå, Sweden ()
| |
Collapse
|
27
|
Lilburn DM, Groves AM. The role of PET in imaging of the tumour microenvironment and response to immunotherapy. Clin Radiol 2021; 76:784.e1-784.e15. [DOI: 10.1016/j.crad.2021.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Collet S, Guillamo JS, Berro DH, Chakhoyan A, Constans JM, Lechapt-Zalcman E, Derlon JM, Hatt M, Visvikis D, Guillouet S, Perrio C, Bernaudin M, Valable S. Simultaneous Mapping of Vasculature, Hypoxia, and Proliferation Using Dynamic Susceptibility Contrast MRI, 18F-FMISO PET, and 18F-FLT PET in Relation to Contrast Enhancement in Newly Diagnosed Glioblastoma. J Nucl Med 2021; 62:1349-1356. [PMID: 34016725 PMCID: PMC8724903 DOI: 10.2967/jnumed.120.249524] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 01/14/2021] [Indexed: 11/16/2022] Open
Abstract
Conventional MRI plays a key role in the management of patients with high-grade glioma, but multiparametric MRI and PET tracers could provide further information to better characterize tumor metabolism and heterogeneity by identifying regions having a high risk of recurrence. In this study, we focused on proliferation, hypervascularization, and hypoxia, all factors considered indicative of poor prognosis. They were assessed by measuring uptake of 18F-3'-deoxy-3'-18F-fluorothymidine (18F-FLT), relative cerebral blood volume (rCBV) maps, and uptake of 18F-fluoromisonidazole (18F-FMISO), respectively. For each modality, the volumes and high-uptake subvolumes (hot spots) were semiautomatically segmented and compared with the contrast enhancement (CE) volume on T1-weighted gadolinium-enhanced (T1w-Gd) images, commonly used in the management of patients with glioblastoma. Methods: Dynamic susceptibility contrast-enhanced MRI (31 patients), 18F-FLT PET (20 patients), or 18F-FMISO PET (20 patients), for a total of 31 patients, was performed on preoperative glioblastoma patients. Volumes and hot spots were segmented on SUV maps for 18F-FLT PET (using the fuzzy locally adaptive bayesian algorithm) and 18F-FMISO PET (using a mean contralateral image + 3.3 SDs) and on rCBV maps (using a mean contralateral image + 1.96 SDs) for dynamic susceptibility contrast-enhanced MRI and overlaid on T1w-Gd images. For each modality, the percentages of the peripheral volumes and the peripheral hot spots outside the CE volume were calculated. Results: All tumors showed highly proliferated, hypervascularized, and hypoxic regions. The images also showed pronounced heterogeneity of both tracers regarding their uptake and rCBV maps, within each individual patient. Overlaid volumes on T1w-Gd images showed that some proliferative, hypervascularized, and hypoxic regions extended beyond the CE volume but with marked differences between patients. The ranges of peripheral volume outside the CE volume were 1.6%-155.5%, 1.5%-89.5%, and 3.1%-78.0% for 18F-FLT, rCBV, and 18F-FMISO, respectively. All patients had hyperproliferative hot spots outside the CE volume, whereas hypervascularized and hypoxic hot spots were detected mainly within the enhancing region. Conclusion: Spatial analysis of multiparametric maps with segmented volumes and hot spots provides valuable information to optimize the management and treatment of patients with glioblastoma.
Collapse
Affiliation(s)
- Solène Collet
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP Cyceron, Caen, France
- Radiophysics Department, Centre François Baclesse, Caen, France
| | - Jean-Sébastien Guillamo
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP Cyceron, Caen, France
- Department of Neurology, CHU de Caen, Caen, France
- Department of Neurology, CHU de Nimes, Nimes, France
| | - David Hassanein Berro
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP Cyceron, Caen, France
- Department of Neurosurgery, CHU de Caen, Caen, France
| | - Ararat Chakhoyan
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP Cyceron, Caen, France
| | - Jean-Marc Constans
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP Cyceron, Caen, France
- Department of Neuroradiology, CHU de Caen, Caen, France
| | - Emmanuèle Lechapt-Zalcman
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP Cyceron, Caen, France
- Department of Pathology, CHU de Caen, Caen, France
- Department of Neuropathology, GHU Paris Psychiatry and Neuroscience, Paris, France
| | - Jean-Michel Derlon
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP Cyceron, Caen, France
| | - Mathieu Hatt
- LaTIM, INSERM, UMR 1101, University of Brest, Brest, France; and
| | | | - Stéphane Guillouet
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/LDM-TEP Group, GIP Cyceron, Caen, France
| | - Cécile Perrio
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/LDM-TEP Group, GIP Cyceron, Caen, France
| | - Myriam Bernaudin
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP Cyceron, Caen, France
| | - Samuel Valable
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP Cyceron, Caen, France;
| |
Collapse
|
29
|
Huang Y, Fan J, Li Y, Fu S, Chen Y, Wu J. Imaging of Tumor Hypoxia With Radionuclide-Labeled Tracers for PET. Front Oncol 2021; 11:731503. [PMID: 34557414 PMCID: PMC8454408 DOI: 10.3389/fonc.2021.731503] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/19/2021] [Indexed: 01/27/2023] Open
Abstract
The hypoxic state in a solid tumor refers to the internal hypoxic environment that appears as the tumor volume increases (the maximum radius exceeds 180-200 microns). This state can promote angiogenesis, destroy the balance of the cell’s internal environment, and lead to resistance to radiotherapy and chemotherapy, as well as poor prognostic factors such as metastasis and recurrence. Therefore, accurate quantification, mapping, and monitoring of hypoxia, targeted therapy, and improvement of tumor hypoxia are of great significance for tumor treatment and improving patient survival. Despite many years of development, PET-based hypoxia imaging is still the most widely used evaluation method. This article provides a comprehensive overview of tumor hypoxia imaging using radionuclide-labeled PET tracers. We introduced the mechanism of tumor hypoxia and the reasons leading to the poor prognosis, and more comprehensively included the past, recent and ongoing studies of PET radiotracers for tumor hypoxia imaging. At the same time, the advantages and disadvantages of mainstream methods for detecting tumor hypoxia are summarized.
Collapse
Affiliation(s)
- Yuan Huang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Junying Fan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Oncology, Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Yue Chen
- Department of Oncology, Academician (Expert) Workstation of Sichuan Province, Luzhou, China.,Nuclear Medicine and Molecular Imaging key Laboratory of Sichuan Province, Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jingbo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Oncology, Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| |
Collapse
|
30
|
Ellingson BM, Wen PY, Cloughesy TF. Therapeutic Response Assessment of High-Grade Gliomas During Early-Phase Drug Development in the Era of Molecular and Immunotherapies. Cancer J 2021; 27:395-403. [PMID: 34570454 PMCID: PMC8480435 DOI: 10.1097/ppo.0000000000000543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Several new therapeutic strategies have emerged over the past decades to address unmet clinical needs in high-grade gliomas, including targeted molecular agents and various forms of immunotherapy. Each of these strategies requires addressing fundamental questions, depending on the stage of drug development, including ensuring drug penetration into the brain, engagement of the drug with the desired target, biologic effects downstream from the target including metabolic and/or physiologic changes, and identifying evidence of clinical activity that could be expanded upon to increase the likelihood of a meaningful survival benefit. The current review article highlights these strategies and outlines how imaging technology can be used for therapeutic response evaluation in both targeted and immunotherapies in early phases of drug development in high-grade gliomas.
Collapse
Affiliation(s)
- Benjamin M. Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Patrick Y. Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard University, Boston, MA
| | - Timothy F. Cloughesy
- UCLA Neuro Oncology Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
31
|
First Comparison between [18f]-FMISO and [18f]-Faza for Preoperative Pet Imaging of Hypoxia in Lung Cancer. Cancers (Basel) 2021; 13:cancers13164101. [PMID: 34439254 PMCID: PMC8392878 DOI: 10.3390/cancers13164101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/01/2021] [Accepted: 08/12/2021] [Indexed: 11/20/2022] Open
Abstract
Simple Summary The definition of the tumor hypoxia is important in oncology because this characteristic is linked to a poor prognosis. In this context, we compared two hypoxia tracers, FMISO and FAZA, before surgery for lung cancer. Hypoxia tracers correlate well with each other and FMISO is superior to FAZA in defining the hypoxia volume of lung cancers. However, there is no correlation with immunohistochemical findings (GLUT-1, CAIX, LDH-5, and HIF1-Alpha). Abstract Hypoxic areas are typically resistant to treatment. However, the fluorine-18-fluoroazomycin-arabinoside (FAZA) and fluorine 18 misonidazole (FMISO) tracers have never been compared in non small cell lung cancer (NSCLC). This study compares the capability of 18F-FAZA PET/CT with that of 18F-FMISO PET/CT for detecting hypoxic tumour regions in early and locally advanced NSCLC patients. We prospectively evaluated patients who underwent preoperative PET scans before surgery for localised NSCLC (i.e., fluorodeoxyglucose (FDG)-PET, FMISO-PET, and FAZA-PET). The PET data of the three tracers were compared with each other and then compared to immunohistochemical analysis (GLUT-1, CAIX, LDH-5, and HIF1-Alpha) after tumour resection. Overall, 19 patients with a mean age of 68.2 ± 8 years were included. There were 18 lesions with significant uptake (i.e., SUVmax >1.4) for the F-MISO and 17 for FAZA. The mean SUVmax was 3 (±1.4) with a mean volume of 25.8 cc (±25.8) for FMISO and 2.2 (±0.7) with a mean volume of 13.06 cc (±13.76) for FAZA. The SUVmax of F-MISO was greater than that of FAZA (p = 0.0003). The SUVmax of F-MISO shows a good correlation with that of FAZA at 0.86 (0.66–0.94). Immunohistochemical results are not correlated to hypoxia PET regardless of the staining. The two tracers show a good correlation with hypoxia, with FMISO being superior to FAZA. FMISO, therefore, remains the reference tracer for defining hypoxic volumes.
Collapse
|
32
|
Han Z, Ke M, Liu X, Wang J, Guan Z, Qiao L, Wu Z, Sun Y, Sun X. Molecular Imaging, How Close to Clinical Precision Medicine in Lung, Brain, Prostate and Breast Cancers. Mol Imaging Biol 2021; 24:8-22. [PMID: 34269972 DOI: 10.1007/s11307-021-01631-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 12/15/2022]
Abstract
Precision medicine is playing a pivotal role in strategies of cancer therapy. Unlike conventional one-size-fits-all chemotherapy or radiotherapy modalities, precision medicine could customize an individual treatment plan for cancer patients to acquire superior efficacy, while minimizing side effects. Precision medicine in cancer therapy relies on precise and timely tumor biological information. Traditional tissue biopsies, however, are often inadequate in meeting this requirement due to cancer heterogeneity, poor tolerance, and invasiveness. Molecular imaging could detect tumor biology characterization in a noninvasive and visual manner, and provide information about therapeutic targets, treatment response, and pharmacodynamic evaluation. This summates to significant value in guiding cancer precision medicine in aspects of patient screening, treatment monitoring, and estimating prognoses. Although growing clinical evidences support the further application of molecular imaging in precision medicine of cancer, some challenges remain. In this review, we briefly summarize and discuss representative clinical trials of molecular imaging in improving precision medicine of cancer patients, aiming to provide useful references for facilitating further clinical translation of molecular imaging to precision medicine of cancers.
Collapse
Affiliation(s)
- Zhaoguo Han
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 766 Xiangan N street, Harbin, 150028, Heilongjiang, China
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
- Biomedical Research Imaging Center, Department of Radiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Mingxing Ke
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 766 Xiangan N street, Harbin, 150028, Heilongjiang, China
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Xiang Liu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 766 Xiangan N street, Harbin, 150028, Heilongjiang, China
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Jing Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 766 Xiangan N street, Harbin, 150028, Heilongjiang, China
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Zhengqi Guan
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 766 Xiangan N street, Harbin, 150028, Heilongjiang, China
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Lina Qiao
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 766 Xiangan N street, Harbin, 150028, Heilongjiang, China
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Zhexi Wu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 766 Xiangan N street, Harbin, 150028, Heilongjiang, China
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Yingying Sun
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 766 Xiangan N street, Harbin, 150028, Heilongjiang, China
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Xilin Sun
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 766 Xiangan N street, Harbin, 150028, Heilongjiang, China.
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
33
|
Mapelli P, Callea M, Fallanca F, Castellano A, Bailo M, Scifo P, Bettinardi V, Conte GM, Monterisi C, Rancoita PMV, Incerti E, Vuozzo M, Gianolli L, Terreni M, Anzalone N, Picchio M. 18F-FAZA PET/CT in pretreatment assessment of hypoxic status in high-grade glioma: correlation with hypoxia immunohistochemical biomarkers. Nucl Med Commun 2021; 42:763-771. [PMID: 33741855 DOI: 10.1097/mnm.0000000000001396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND To investigate the correlation between 18F-labeled fluoroazomycinarabinoside (18F-FAZA) PET data and hypoxia immunohistochemical markers in patients with high-grade glioma (HGG). PATIENTS AND METHODS Prospective study including 20 patients with brain MRI suggestive for HGG and undergoing 18F-FAZA PET/CT before treatment for hypoxia assessment. For each 18F-FAZA PET scan SUVmax, SUVmean and 18F-FAZA tumour volume (FTV) at 40, 50 and 60% threshold of SUVmax were calculated; hypoxic volume was estimated by applying different thresholds (1.2, 1.3 and 1.4) to tumour/blood ratio. Seventeen patients were analysed. The immunohistochemical analysis assessed the following parameters: hypoxia-inducible factor 1α, carbonic anhydrase IX (CA-IX), glucose transporter-1, tumour vascularity and Ki-67. RESULTS 18F-FAZA PET showed a single lesion in 15/17 patients and multiple lesions in 2/17 patients. Twelve/17 patients had grade IV glioma and 5/17 with grade III glioma. Bioptic and surgical samples have been analysed separately. In the surgical subgroup (n = 7) a positive correlation was observed between CA-IX and SUVmax (P = 0.0002), SUVmean40 (P = 0.0058), SUVmean50 (P = 0.009), SUVmean60 (P = 0.0153), FTV-40-50-60 (P = 0.0424) and hypoxic volume1.2-1.3-1.4 (P = 0.0058). In the bioptic group (n = 10) tumour vascularisation was inversely correlated with SUVmax (P = 0.0094), SUVmean40 (P = 0.0107), SUVmean50 (P = 0.0094) and SUVmean60 (P = 0.0154). CONCLUSIONS The correlation of 18F-FAZA PET parameters with CD31 and CA-IX represents a reliable method for assessing tumour hypoxia in HGG. The inverse correlation between tumour vascularisation, SUVmax and SUVmean suggest that highly vascularized tumours might present more oxygen supply than hypoxia.
Collapse
Affiliation(s)
- Paola Mapelli
- Vita-Salute San Raffaele University
- Nuclear Medicine Department
| | | | | | | | - Michele Bailo
- Vita-Salute San Raffaele University
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele Scientific Institute
| | | | | | | | | | | | | | | | | | | | | | - Maria Picchio
- Vita-Salute San Raffaele University
- Nuclear Medicine Department
| |
Collapse
|
34
|
Jafari SH, Rabiei N, Taghizadieh M, Mirazimi SMA, Kowsari H, Farzin MA, Razaghi Bahabadi Z, Rezaei S, Mohammadi AH, Alirezaei Z, Dashti F, Nejati M. Joint application of biochemical markers and imaging techniques in the accurate and early detection of glioblastoma. Pathol Res Pract 2021; 224:153528. [PMID: 34171601 DOI: 10.1016/j.prp.2021.153528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 11/28/2022]
Abstract
Glioblastoma is a primary brain tumor with the most metastatic effect in adults. Despite the wide range of multidimensional treatments, tumor heterogeneity is one of the main causes of tumor spread and gives great complexity to diagnostic and therapeutic methods. Therefore, featuring noble noninvasive prognostic methods that are focused on glioblastoma heterogeneity is perceived as an urgent need. Imaging neuro-oncological biomarkers including MGMT (O6-methylguanine-DNA methyltransferase) promoter methylation status, tumor grade along with other tumor characteristics and demographic features (e.g., age) are commonly referred to during diagnostic, therapeutic and prognostic processes. Therefore, the use of new noninvasive prognostic methods focused on glioblastoma heterogeneity is considered an urgent need. Some neuronal biomarkers, including the promoter methylation status of the promoter MGMT, the characteristics and grade of the tumor, along with the patient's demographics (such as age and sex) are involved in diagnosis, treatment, and prognosis. Among the wide array of imaging techniques, magnetic resonance imaging combined with the more physiologically detailed technique of H-magnetic resonance spectroscopy can be useful in diagnosing neurological cancer patients. In addition, intracranial tumor qualitative analysis and sometimes tumor biopsies help in accurate diagnosis. This review summarizes the evidence for biochemical biomarkers being a reliable biomarker in the early detection and disease management in GBM. Moreover, we highlight the correlation between Imaging techniques and biochemical biomarkers and ask whether they can be combined.
Collapse
Affiliation(s)
- Seyed Hamed Jafari
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nikta Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women's Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sayad Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Kowsari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Amin Farzin
- Department of Laboratory Medicine, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Razaghi Bahabadi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Samaneh Rezaei
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Mohammadi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Alirezaei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Paramedical School, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
35
|
Galldiks N, Niyazi M, Grosu AL, Kocher M, Langen KJ, Law I, Minniti G, Kim MM, Tsien C, Dhermain F, Soffietti R, Mehta MP, Weller M, Tonn JC. Contribution of PET imaging to radiotherapy planning and monitoring in glioma patients - a report of the PET/RANO group. Neuro Oncol 2021; 23:881-893. [PMID: 33538838 DOI: 10.1093/neuonc/noab013] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The management of patients with glioma usually requires multimodality treatment including surgery, radiotherapy, and systemic therapy. Accurate neuroimaging plays a central role for radiotherapy planning and follow-up after radiotherapy completion. In order to maximize the radiation dose to the tumor and to minimize toxic effects on the surrounding brain parenchyma, reliable identification of tumor extent and target volume delineation is crucial. The use of positron emission tomography (PET) for radiotherapy planning and monitoring in gliomas has gained considerable interest over the last several years, but Class I data are not yet available. Furthermore, PET has been used after radiotherapy for response assessment and to distinguish tumor progression from pseudoprogression or radiation necrosis. Here, the Response Assessment in Neuro-Oncology (RANO) working group provides a summary of the literature and recommendations for the use of PET imaging for radiotherapy of patients with glioma based on published studies, constituting levels 1-3 evidence according to the Oxford Centre for Evidence-based Medicine.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-3,-4), Research Center Juelich, Juelich, Germany.,Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Düsseldorf, Cologne and Aachen, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Anca L Grosu
- Department of Radiation Oncology, University Hospital Freiburg, Freiburg, Germany
| | - Martin Kocher
- Institute of Neuroscience and Medicine (INM-3,-4), Research Center Juelich, Juelich, Germany.,Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3,-4), Research Center Juelich, Juelich, Germany.,Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Düsseldorf, Cologne and Aachen, Germany.,Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, University Hospital Copenhagen, Copenhagen, Denmark
| | - Giuseppe Minniti
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.,IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Christina Tsien
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Frederic Dhermain
- Department of Radiation Therapy, Institut de Cancerologie Gustave Roussy, Villejuif, France
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA.,Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Michael Weller
- Department of Neurology & Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Jörg-Christian Tonn
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.,Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
36
|
Corroyer-Dulmont A, Valable S, Fantin J, Chatre L, Toutain J, Teulier S, Bazille C, Letissier E, Levallet J, Divoux D, Ibazizène M, Guillouet S, Perrio C, Barré L, Serres S, Sibson NR, Chapon F, Levallet G, Bernaudin M. Multimodal evaluation of hypoxia in brain metastases of lung cancer and interest of hypoxia image-guided radiotherapy. Sci Rep 2021; 11:11239. [PMID: 34045576 PMCID: PMC8159969 DOI: 10.1038/s41598-021-90662-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/05/2021] [Indexed: 02/04/2023] Open
Abstract
Lung cancer patients frequently develop brain metastases (BM). Despite aggressive treatment including neurosurgery and external-radiotherapy, overall survival remains poor. There is a pressing need to further characterize factors in the microenvironment of BM that may confer resistance to radiotherapy (RT), such as hypoxia. Here, hypoxia was first evaluated in 28 biopsies from patients with non‑small cell lung cancer (NSCLC) BM, using CA-IX immunostaining. Hypoxia characterization (pimonidazole, CA-IX and HIF-1α) was also performed in different preclinical NSCLC BM models induced either by intracerebral injection of tumor cells (H2030-Br3M, H1915) into the cortex and striatum, or intracardial injection of tumor cells (H2030-Br3M). Additionally, [18F]-FMISO-PET and oxygen-saturation-mapping-MRI (SatO2-MRI) were carried out in the intracerebral BM models to further characterize tumor hypoxia and evaluate the potential of Hypoxia-image-guided-RT (HIGRT). The effect of RT on proliferation of BM ([18F]-FLT-PET), tumor volume and overall survival was determined. We showed that hypoxia is a major yet heterogeneous feature of BM from lung cancer both preclinically and clinically. HIGRT, based on hypoxia heterogeneity observed between cortical and striatal metastases in the intracerebrally induced models, showed significant potential for tumor control and animal survival. These results collectively highlight hypoxia as a hallmark of BM from lung cancer and the value of HIGRT in better controlling tumor growth.
Collapse
Affiliation(s)
- Aurélien Corroyer-Dulmont
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000, Caen, France
- Medical Physics Department, CLCC François Baclesse, 14000, Caen, France
| | - Samuel Valable
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000, Caen, France
| | - Jade Fantin
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000, Caen, France
| | - Laurent Chatre
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000, Caen, France
| | - Jérôme Toutain
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000, Caen, France
| | - Sylvain Teulier
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000, Caen, France
- Department of Pulmonology and Thoracic Oncology, University Hospital of Caen, Caen, France
| | - Céline Bazille
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000, Caen, France
- Department of Pathology, University Hospital of Caen, Caen, France
| | - Elise Letissier
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000, Caen, France
| | - Jérôme Levallet
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000, Caen, France
| | - Didier Divoux
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000, Caen, France
| | - Méziane Ibazizène
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/LDM-TEP Group, GIP CYCERON, 14000, Caen, France
| | - Stéphane Guillouet
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/LDM-TEP Group, GIP CYCERON, 14000, Caen, France
| | - Cécile Perrio
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/LDM-TEP Group, GIP CYCERON, 14000, Caen, France
| | - Louisa Barré
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/LDM-TEP Group, GIP CYCERON, 14000, Caen, France
| | - Sébastien Serres
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Nicola R Sibson
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Françoise Chapon
- Department of Pathology, University Hospital of Caen, Caen, France
| | - Guénaëlle Levallet
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000, Caen, France
- Department of Pathology, University Hospital of Caen, Caen, France
| | - Myriam Bernaudin
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000, Caen, France.
| |
Collapse
|
37
|
Florea A, Mottaghy FM, Bauwens M. Molecular Imaging of Angiogenesis in Oncology: Current Preclinical and Clinical Status. Int J Mol Sci 2021; 22:5544. [PMID: 34073992 PMCID: PMC8197399 DOI: 10.3390/ijms22115544] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis is an active process, regulating new vessel growth, and is crucial for the survival and growth of tumours next to other complex factors in the tumour microenvironment. We present possible molecular imaging approaches for tumour vascularisation and vitality, focusing on radiopharmaceuticals (tracers). Molecular imaging in general has become an integrated part of cancer therapy, by bringing relevant insights on tumour angiogenic status. After a structured PubMed search, the resulting publication list was screened for oncology related publications in animals and humans, disregarding any cardiovascular findings. The tracers identified can be subdivided into direct targeting of angiogenesis (i.e., vascular endothelial growth factor, laminin, and fibronectin) and indirect targeting (i.e., glucose metabolism, hypoxia, and matrix metallo-proteases, PSMA). Presenting pre-clinical and clinical data of most tracers proposed in the literature, the indirect targeting agents are not 1:1 correlated with angiogenesis factors but do have a strong prognostic power in a clinical setting, while direct targeting agents show most potential and specificity for assessing tumour vascularisation and vitality. Within the direct agents, the combination of multiple targeting tracers into one agent (multimers) seems most promising. This review demonstrates the present clinical applicability of indirect agents, but also the need for more extensive research in the field of direct targeting of angiogenesis in oncology. Although there is currently no direct tracer that can be singled out, the RGD tracer family seems to show the highest potential therefore we expect one of them to enter the clinical routine.
Collapse
Affiliation(s)
- Alexandru Florea
- Department of Nuclear Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany; (A.F.); (M.B.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University, 6229HX Maastricht, The Netherlands
| | - Felix M. Mottaghy
- Department of Nuclear Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany; (A.F.); (M.B.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University, 6229HX Maastricht, The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229HX Maastricht, The Netherlands
| | - Matthias Bauwens
- Department of Nuclear Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany; (A.F.); (M.B.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229HX Maastricht, The Netherlands
| |
Collapse
|
38
|
The Acidic Brain-Glycolytic Switch in the Microenvironment of Malignant Glioma. Int J Mol Sci 2021; 22:ijms22115518. [PMID: 34073734 PMCID: PMC8197239 DOI: 10.3390/ijms22115518] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Malignant glioma represents a fatal disease with a poor prognosis and development of resistance mechanisms against conventional therapeutic approaches. The distinct tumor zones of this heterogeneous neoplasm develop their own microenvironment, in which subpopulations of cancer cells communicate. Adaptation to hypoxia in the center of the expanding tumor mass leads to the glycolytic and angiogenic switch, accompanied by upregulation of different glycolytic enzymes, transporters, and other metabolites. These processes render the tumor microenvironment more acidic, remodel the extracellular matrix, and create energy gradients for the metabolic communication between different cancer cells in distinct tumor zones. Escape mechanisms from hypoxia-induced cell death and energy deprivation are the result. The functional consequences are more aggressive and malignant behavior with enhanced proliferation and survival, migration and invasiveness, and the induction of angiogenesis. In this review, we go from the biochemical principles of aerobic and anaerobic glycolysis over the glycolytic switch, regulated by the key transcription factor hypoxia-inducible factor (HIF)-1α, to other important metabolic players like the monocarboxylate transporters (MCTs)1 and 4. We discuss the metabolic symbiosis model via lactate shuttling in the acidic tumor microenvironment and highlight the functional consequences of the glycolytic switch on glioma malignancy. Furthermore, we illustrate regulation by micro ribonucleic acids (miRNAs) and the connection between isocitrate dehydrogenase (IDH) mutation status and glycolytic metabolism. Finally, we give an outlook about the diagnostic and therapeutic implications of the glycolytic switch and the relation to tumor immunity in malignant glioma.
Collapse
|
39
|
Sadaghiani MS, Sheikhbahaei S, Rowe SP, Pomper MG, Solnes LB. Cellular and Molecular Imaging with SPECT and PET in Brain Tumors. Radiol Clin North Am 2021; 59:363-375. [PMID: 33926683 DOI: 10.1016/j.rcl.2021.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This review highlights the 2 major molecular imaging modalities that are used in clinics, namely single-photon emission computed tomography (SPECT) and positron emission tomography (PET), and their added value in management of patients with brain tumors. There are a variety of SPECT and PET radiotracers that can allow imaging of different molecular processes. Those radiotracers target specific molecular features of tumors, resulting in improved specificity of these agents. Potential applications include staging of brain tumors and evaluating post-therapeutic changes.
Collapse
Affiliation(s)
- Mohammad S Sadaghiani
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 North Caroline Street, JHOC 3150, Baltimore, MD 21287, USA
| | - Sara Sheikhbahaei
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 North Caroline Street, JHOC 3150, Baltimore, MD 21287, USA
| | - Steven P Rowe
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 North Caroline Street, JHOC 3150, Baltimore, MD 21287, USA
| | - Martin G Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 North Caroline Street, JHOC 3150, Baltimore, MD 21287, USA
| | - Lilja B Solnes
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 North Caroline Street, JHOC 3150, Baltimore, MD 21287, USA.
| |
Collapse
|
40
|
Assessment of tumor hypoxia and perfusion in recurrent glioblastoma following bevacizumab failure using MRI and 18F-FMISO PET. Sci Rep 2021; 11:7632. [PMID: 33828310 PMCID: PMC8027395 DOI: 10.1038/s41598-021-84331-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/03/2021] [Indexed: 01/16/2023] Open
Abstract
Tumoral hypoxia correlates with worse outcomes in glioblastoma (GBM). While bevacizumab is routinely used to treat recurrent GBM, it may exacerbate hypoxia. Evofosfamide is a hypoxia-targeting prodrug being tested for recurrent GBM. To characterize resistance to bevacizumab and identify those with recurrent GBM who may benefit from evofosfamide, we ascertained MRI features and hypoxia in patients with GBM progression receiving both agents. Thirty-three patients with recurrent GBM refractory to bevacizumab were enrolled. Patients underwent MR and 18F-FMISO PET imaging at baseline and 28 days. Tumor volumes were determined, MRI and 18F-FMISO PET-derived parameters calculated, and Spearman correlations between parameters assessed. Progression-free survival decreased significantly with hypoxic volume [hazard ratio (HR) = 1.67, 95% confidence interval (CI) 1.14 to 2.46, P = 0.009] and increased significantly with time to the maximum value of the residue (Tmax) (HR = 0.54, 95% CI 0.34 to 0.88, P = 0.01). Overall survival decreased significantly with hypoxic volume (HR = 1.71, 95% CI 1.12 to 12.61, p = 0.01), standardized relative cerebral blood volume (srCBV) (HR = 1.61, 95% CI 1.09 to 2.38, p = 0.02), and increased significantly with Tmax (HR = 0.31, 95% CI 0.15 to 0.62, p < 0.001). Decreases in hypoxic volume correlated with longer overall and progression-free survival, and increases correlated with shorter overall and progression-free survival. Hypoxic volume and volume ratio were positively correlated (rs = 0.77, P < 0.0001), as were hypoxia volume and T1 enhancing tumor volume (rs = 0.75, P < 0.0001). Hypoxia is a key biomarker in patients with bevacizumab-refractory GBM. Hypoxia and srCBV were inversely correlated with patient outcomes. These radiographic features may be useful in evaluating treatment and guiding treatment considerations.
Collapse
|
41
|
Abou Khouzam R, Brodaczewska K, Filipiak A, Zeinelabdin NA, Buart S, Szczylik C, Kieda C, Chouaib S. Tumor Hypoxia Regulates Immune Escape/Invasion: Influence on Angiogenesis and Potential Impact of Hypoxic Biomarkers on Cancer Therapies. Front Immunol 2021; 11:613114. [PMID: 33552076 PMCID: PMC7854546 DOI: 10.3389/fimmu.2020.613114] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/30/2020] [Indexed: 01/19/2023] Open
Abstract
The environmental and metabolic pressures in the tumor microenvironment (TME) play a key role in molding tumor development by impacting the stromal and immune cell fractions, TME composition and activation. Hypoxia triggers a cascade of events that promote tumor growth, enhance resistance to the anti-tumor immune response and instigate tumor angiogenesis. During growth, the developing angiogenesis is pathological and gives rise to a haphazardly shaped and leaky tumor vasculature with abnormal properties. Accordingly, aberrantly vascularized TME induces immunosuppression and maintains a continuous hypoxic state. Normalizing the tumor vasculature to restore its vascular integrity, should hence enhance tumor perfusion, relieving hypoxia, and reshaping anti-tumor immunity. Emerging vascular normalization strategies have a great potential in achieving a stable normalization, resulting in mature and functional blood vessels that alleviate tumor hypoxia. Biomarkers enabling the detection and monitoring of tumor hypoxia could be highly advantageous in aiding the translation of novel normalization strategies to clinical application, alone, or in combination with other treatment modalities, such as immunotherapy.
Collapse
Affiliation(s)
- Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Klaudia Brodaczewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Aleksandra Filipiak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Nagwa Ahmed Zeinelabdin
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Stephanie Buart
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Faulty. De médecine Univ. Paris-Sud, University Paris-Saclay, Villejuif, France
| | - Cezary Szczylik
- Centre of Postgraduate Medical Education, Department of Oncology, European Health Centre, Otwock, Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland.,Centre for Molecular Biophysics, UPR CNRS 4301, Orléans, France
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates.,INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Faulty. De médecine Univ. Paris-Sud, University Paris-Saclay, Villejuif, France
| |
Collapse
|
42
|
Abstract
Over the last few years, cancer immunotherapy experienced tremendous developments and it is nowadays considered a promising strategy against many types of cancer. However, the exclusion of lymphocytes from the tumor nest is a common phenomenon that limits the efficiency of immunotherapy in solid tumors. Despite several mechanisms proposed during the years to explain the immune excluded phenotype, at present, there is no integrated understanding about the role played by different models of immune exclusion in human cancers. Hypoxia is a hallmark of most solid tumors and, being a multifaceted and complex condition, shapes in a unique way the tumor microenvironment, affecting gene transcription and chromatin remodeling. In this review, we speculate about an upstream role for hypoxia as a common biological determinant of immune exclusion in solid tumors. We also discuss the current state of ex vivo and in vivo imaging of hypoxic determinants in relation to T cell distribution that could mechanisms of immune exclusion and discover functional-morphological tumor features that could support clinical monitoring.
Collapse
|
43
|
Kamson D, Tsien C. Novel Magnetic Resonance Imaging and Positron Emission Tomography in the RT Planning and Assessment of Response of Malignant Gliomas. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00078-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
44
|
Solnes LB, Jacobs AH, Coughlin JM, Du Y, Goel R, Hammoud DA, Pomper MG. Central Nervous System Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00088-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
45
|
Scarpelli ML, Healey DR, Fuentes A, Kodibagkar VD, Quarles CC. Correlation of Tumor Hypoxia Metrics Derived from 18F-Fluoromisonidazole Positron Emission Tomography and Pimonidazole Fluorescence Images of Optically Cleared Brain Tissue. Tomography 2020; 6:379-388. [PMID: 33364428 PMCID: PMC7744194 DOI: 10.18383/j.tom.2020.00046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
18F-fluoromisonidazole (FMISO) positron emission tomography (PET) is a widely used noninvasive imaging modality for assessing hypoxia. We describe the first spatial comparison of FMISO PET with an ex vivo reference standard for hypoxia across whole tumor volumes. Eighteen rats were orthotopically implanted with C6 or 9L brain tumors and made to undergo FMISO PET scanning. Whole brains were excised, sliced into 1-mm-thick sections, optically cleared, and fluorescently imaged for pimonidazole using an in vivo imaging system. FMISO maximum tumor uptake, maximum tumor-to-cerebellar uptake (TCmax), and hypoxic fraction (extracted 110 minutes after FMISO injection) were correlated with analogous metrics derived from pimonidazole fluorescence images. FMISO SUVmax was not significantly different between C6 and 9L brain tumors (P = .70), whereas FMISO TCmax and hypoxic fraction were significantly greater for C6 tumors (P < .01). FMISO TCmax was significantly correlated with the maximum tumor pimonidazole intensity (ρ = 0.76, P < .01), whereas FMISO SUVmax was not. FMISO tumor hypoxic fraction was significantly correlated with the pimonidazole-derived hypoxic fraction (ρ = 0.78, P < .01). Given that FMISO TCmax and tumor hypoxic fraction had strong correlations with the pimonidazole reference standard, these metrics may offer more reliable measures of tumor hypoxia than conventional PET uptake metrics (SUVmax). The voxel-wise correlation between FMISO uptake and pimonidazole intensity for a given tumor was strongly dependent on the tumor's TCmax (ρ = 0.81, P < .01) and hypoxic fraction (ρ = 0.85, P < .01), indicating PET measurements within individual voxels showed greater correlation with pimonidazole reference standard in tumors with greater hypoxia.
Collapse
Affiliation(s)
- Matthew L. Scarpelli
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ; and
| | - Debbie R. Healey
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ; and
| | - Alberto Fuentes
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ; and
| | - Vikram D. Kodibagkar
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ; and
| | - C. Chad Quarles
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ; and
| |
Collapse
|
46
|
Lundy P, Domino J, Ryken T, Fouke S, McCracken DJ, Ormond DR, Olson JJ. The role of imaging for the management of newly diagnosed glioblastoma in adults: a systematic review and evidence-based clinical practice guideline update. J Neurooncol 2020; 150:95-120. [DOI: 10.1007/s11060-020-03597-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022]
|
47
|
Shankar A, Bomanji J, Hyare H. Hybrid PET-MRI Imaging in Paediatric and TYA Brain Tumours: Clinical Applications and Challenges. J Pers Med 2020; 10:jpm10040218. [PMID: 33182433 PMCID: PMC7711629 DOI: 10.3390/jpm10040218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Standard magnetic resonance imaging (MRI) remains the gold standard for brain tumour imaging in paediatric and teenage and young adult (TYA) patients. Combining positron emission tomography (PET) with MRI offers an opportunity to improve diagnostic accuracy. (2) Method: Our single-centre experience of 18F-fluorocholine (FCho) and 18fluoro-L-phenylalanine (FDOPA) PET–MRI in paediatric/TYA neuro-oncology patients is presented. (3) Results: Hybrid PET–MRI shows promise in the evaluation of gliomas and germ cell tumours in (i) assessing early treatment response and (ii) discriminating tumour from treatment-related changes. (4) Conclusions: Combined PET–MRI shows promise for improved diagnostic and therapeutic assessment in paediatric and TYA brain tumours.
Collapse
Affiliation(s)
- Ananth Shankar
- Children and Young People’s Cancer Services, University College London hospitals NHS Foundation Trust, London NW1 2PG, UK
- Correspondence: ; Tel.: +44-20-3447-9950
| | - Jamshed Bomanji
- Department of Nuclear Medicine, University College London hospitals NHS Foundation Trust, London NW1 2PG, UK;
| | - Harpreet Hyare
- Department of Radiology, University College London Hospitals NHS Foundation Trust, London NW1 2PG, UK;
- Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
48
|
Oughourlian TC, Yao J, Hagiwara A, Nathanson DA, Raymond C, Pope WB, Salamon N, Lai A, Ji M, Nghiemphu PL, Liau LM, Cloughesy TF, Ellingson BM. Relative oxygen extraction fraction (rOEF) MR imaging reveals higher hypoxia in human epidermal growth factor receptor (EGFR) amplified compared with non-amplified gliomas. Neuroradiology 2020; 63:857-868. [PMID: 33106922 DOI: 10.1007/s00234-020-02585-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/13/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Epidermal growth factor receptor (EGFR) amplification promotes gliomagenesis and is linked to lack of oxygen within the tumor microenvironment. Using hypoxia-sensitive spin-and-gradient echo echo-planar imaging and perfusion MRI, we investigated the influence of EGFR amplification on tissue oxygen availability and utilization in human gliomas. METHODS This study included 72 histologically confirmed EGFR-amplified and non-amplified glioma patients. Reversible transverse relaxation rate (R2'), relative cerebral blood volume (rCBV), and relative oxygen extraction fraction (rOEF) were calculated for the contrast-enhancing and non-enhancing tumor regions. Using Student t test or Wilcoxon rank-sum test, median R2', rCBV, and rOEF were compared between EGFR-amplified and non-amplified gliomas. ROC analysis was performed to assess the ability of imaging characteristics to discriminate EGFR amplification status. Overall survival (OS) was determined using univariate and multivariate cox models. Kaplan-Meier survival curves were plotted and compared using the log-rank test. RESULTS EGFR amplified gliomas exhibited significantly higher median R2' and rOEF than non-amplified gliomas. ROC analysis suggested that R2' (AUC = 0.7190; P = 0.0048) and rOEF (AUC = 0.6959; P = 0.0156) could separate EGFR status. Patients with EGFR-amplified gliomas had a significantly shorter OS than non-amplified patients. Univariate cox regression analysis determined both R2' and rOEF significantly influence OS. No significant difference was observed in rCBV between patient cohorts nor was rCBV found to be an effective differentiator of EGFR status. CONCLUSION Imaging of tumor oxygen characteristics revealed EGFR-amplified gliomas to be more hypoxic and contribute to shorter patient survival than EGFR non-amplified gliomas.
Collapse
Affiliation(s)
- Talia C Oughourlian
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Neuroscience Interdepartmental Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jingwen Yao
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Department of Bioengineering, Henry Samueli School of Engineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Akifumi Hagiwara
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA, 90024, USA
| | - David A Nathanson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Catalina Raymond
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA, 90024, USA
| | - Whitney B Pope
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA, 90024, USA
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA, 90024, USA
| | - Albert Lai
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Matthew Ji
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Phioanh L Nghiemphu
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Linda M Liau
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Timothy F Cloughesy
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA. .,Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA, 90024, USA.
| |
Collapse
|
49
|
Yoon J, Kang SY, Lee KH, Cheon GJ, Oh DY. Targeting Hypoxia Using Evofosfamide and Companion Hypoxia Imaging of FMISO-PET in Advanced Biliary Tract Cancer. Cancer Res Treat 2020; 53:471-479. [PMID: 33091966 PMCID: PMC8053876 DOI: 10.4143/crt.2020.577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Hypoxia is widely known as one of the mechanisms of chemoresistance and as an environmental condition which triggers invasion and metastasis of cancer. Evofosfamide is a hypoxia-activated prodrug of the cytotoxin bromo-isophosphoramide mustard conjugated with 2-nitroimidazole. Biliary tract cancer (BTC) is known to contain large hypoxic area. This study evaluated the efficacy and safety of evofosfamide as a second-line treatment of advanced BTC. Materials and Methods Patients received evofosfamide at a dose of 340 mg/m2 on days 1, 8, and 15 of every 28-day cycle. Primary end-point was progression-free survival (PFS) rate at 4-months (4m-PFSR). Secondary end-points included overall survival (OS), PFS, disease control rate (DCR), metabolic response by 18F-fluorodeoxyglucose positron emission tomography (PET), hypoxic parameters evaluated by 18F-fluoromisonidazole (FMISO) PET and toxicity. Results Twenty patients were treated with evofosfamide, with 16 response-evaluable patients. There was no objective response; stable disease was observed in nine patients, with a DCR of 56.25%. 4m-PFSR was 40.6%. Median PFS was 3.60 months (95% confidence interval [CI], 1.68 to 5.52). Median OS was 6.37 months (95% CI, 3.94 to 8.79). Reduction of tumor metabolic activity was observed in eight of 15 patients (53.3%). High baseline hypoxic parameters were associated with poor PFS. Change of hypoxic parameters between pretreatment and post-treatment reflected hypoxic-activated drug response. There was no treatment-related death. Conclusion Evofosfamide as second-line treatment of advanced BTC showed acceptable safety and comparable efficacy to other agents. Changes in volumetric parameters measured with FMISO PET, showing the degree of tumor hypoxia, reflected the response to evofosfamide based on the mode of action.
Collapse
Affiliation(s)
- Jeesun Yoon
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Seo Young Kang
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Kyung-Hun Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Do-Youn Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
50
|
Radioresistant tumours: From identification to targeting. Cancer Radiother 2020; 24:699-705. [PMID: 32753241 DOI: 10.1016/j.canrad.2020.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022]
Abstract
From surviving fraction to tumour curability, definitions of tumour radioresistance may vary depending on the view angle. Yet, mechanisms of radioresistance have been identified and involve tumour-specific oncogenic signalling pathways, tumour metabolism and proliferation, tumour microenvironment/hypoxia, genomics. Correlations between tumour biology (histology) and imaging allow theragnostic approaches that use non-invasive biological imaging using tracer functionalization of tumour pathway biomarkers, imaging of hypoxia, etc. Modelling dose prescription function based on their tumour radio-resistant factor enhancement ratio, related to metabolism, proliferation, hypoxia is an area of investigation. Yet, the delivery of dose painting by numbers/voxel-based radiotherapy with low lineal energy transfer particles may be limited by the degree of modulation complexity needed to achieve the doses needed to counteract radioresistance. Higher lineal energy transfer particles or combinations of different particles, or combinations with drugs and devices such as done with radioenhancing nanoparticles may be promising.
Collapse
|