1
|
Antunes SS, Forn-Cuní G, Romeiro NC, Spaink HP, Verbeek FJ, Muzitano MF. Embryonic and larval zebrafish models for the discovery of new bioactive compounds against tuberculosis. Drug Discov Today 2024; 29:104163. [PMID: 39245344 DOI: 10.1016/j.drudis.2024.104163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Tuberculosis (TB) is a world health challenge the treatment of which is impacted by the rise of drug-resistant strains. Thus, there is an urgent need for new antitubercular compounds and novel approaches to improve current TB therapy. The zebrafish animal model has become increasingly relevant as an experimental system. It has proven particularly useful during early development for aiding TB drug discovery, supporting both the discovery of new insights into mycobacterial pathogenesis and the evaluation of therapeutical toxicity and efficacy in vivo. In this review, we summarize the past two decades of zebrafish-Mycobacterium marinum research and discuss its contribution to the field of bioactive antituberculosis therapy development.
Collapse
Affiliation(s)
- Stella S Antunes
- Institute of Pharmaceutical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriel Forn-Cuní
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Nelilma C Romeiro
- Institute of Pharmaceutical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Herman P Spaink
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Fons J Verbeek
- Leiden Institute of Advanced Computer Science, Leiden University, Leiden, the Netherlands
| | - Michelle F Muzitano
- Institute of Pharmaceutical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Habjan E, Schouten GK, Speer A, van Ulsen P, Bitter W. Diving into drug-screening: zebrafish embryos as an in vivo platform for antimicrobial drug discovery and assessment. FEMS Microbiol Rev 2024; 48:fuae011. [PMID: 38684467 PMCID: PMC11078164 DOI: 10.1093/femsre/fuae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/24/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024] Open
Abstract
The rise of multidrug-resistant bacteria underlines the need for innovative treatments, yet the introduction of new drugs has stagnated despite numerous antimicrobial discoveries. A major hurdle is a poor correlation between promising in vitro data and in vivo efficacy in animal models, which is essential for clinical development. Early in vivo testing is hindered by the expense and complexity of existing animal models. Therefore, there is a pressing need for cost-effective, rapid preclinical models with high translational value. To overcome these challenges, zebrafish embryos have emerged as an attractive model for infectious disease studies, offering advantages such as ethical alignment, rapid development, ease of maintenance, and genetic manipulability. The zebrafish embryo infection model, involving microinjection or immersion of pathogens and potential antibiotic hit compounds, provides a promising solution for early-stage drug screening. It offers a cost-effective and rapid means of assessing the efficacy, toxicity and mechanism of action of compounds in a whole-organism context. This review discusses the experimental design of this model, but also its benefits and challenges. Additionally, it highlights recently identified compounds in the zebrafish embryo infection model and discusses the relevance of the model in predicting the compound's clinical potential.
Collapse
Affiliation(s)
- Eva Habjan
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center,De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Gina K Schouten
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center,De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Alexander Speer
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center,De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Peter van Ulsen
- Section Molecular Microbiology of A-LIFE, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center,De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
- Section Molecular Microbiology of A-LIFE, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
3
|
Luo G, Zeng D, Liu J, Li D, Takiff HE, Song S, Gao Q, Yan B. Temporal and cellular analysis of granuloma development in mycobacterial infected adult zebrafish. J Leukoc Biol 2024; 115:525-535. [PMID: 37982587 DOI: 10.1093/jleuko/qiad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 09/25/2023] [Accepted: 11/01/2023] [Indexed: 11/21/2023] Open
Abstract
Because granulomas are a hallmark of tuberculosis pathogenesis, the study of the dynamic changes in their cellular composition and morphological character can facilitate our understanding of tuberculosis pathogenicity. Adult zebrafish infected with Mycobacterium marinum form granulomas that are similar to the granulomas in human patients with tuberculosis and therefore have been used to study host-mycobacterium interactions. Most studies of zebrafish granulomas, however, have focused on necrotic granulomas, while a systematic description of the different stages of granuloma formation in the zebrafish model is lacking. Here, we characterized the stages of granulomas in M. marinum-infected zebrafish, including early immune cell infiltration, nonnecrotizing granulomas, and necrotizing granulomas, using corresponding samples from patients with pulmonary tuberculosis as references. We combined hematoxylin and eosin staining and in situ hybridization to identify the different immune cell types and follow their spatial distribution in the different stages of granuloma development. The macrophages in zebrafish granulomas were shown to belong to distinct subtypes: epithelioid macrophages, foamy macrophages, and multinucleated giant cells. By defining the developmental stages of zebrafish granulomas and the spatial distribution of the different immune cells they contain, this work provides a reference for future studies of mycobacterial granulomas and their immune microenvironments.
Collapse
Affiliation(s)
- Geyang Luo
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity and Shanghai Public Health Clinical Center, Fudan University, 130 Dongan Rd., Xuhui District, 200032 Shanghai, People's Republic of China
| | - Dong Zeng
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Rd., Jinshan District, 201508 Shanghai, People's Republic of China
| | - Jianxin Liu
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Rd., Jinshan District, 201508 Shanghai, People's Republic of China
- School of Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai JiaoTong University, 639 Manufacturing Bureau Rd., Huangpu District, 200011 Shanghai, People's Republic of China
| | - Duoduo Li
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Rd., Jinshan District, 201508 Shanghai, People's Republic of China
| | - Howard E Takiff
- Instituto Venezolano de Investigaciones Científicas, Centro de Microbiología y Biología Celular, Caracas, 1020A, Venezuela
| | - Shu Song
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Rd., Jinshan District, 201508 Shanghai, People's Republic of China
| | - Qian Gao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity and Shanghai Public Health Clinical Center, Fudan University, 130 Dongan Rd., Xuhui District, 200032 Shanghai, People's Republic of China
| | - Bo Yan
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Rd., Jinshan District, 201508 Shanghai, People's Republic of China
| |
Collapse
|
4
|
Hunter L, Ruedas-Torres I, Agulló-Ros I, Rayner E, Salguero FJ. Comparative pathology of experimental pulmonary tuberculosis in animal models. Front Vet Sci 2023; 10:1264833. [PMID: 37901102 PMCID: PMC10602689 DOI: 10.3389/fvets.2023.1264833] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023] Open
Abstract
Research in human tuberculosis (TB) is limited by the availability of human tissues from patients, which is often altered by therapy and treatment. Thus, the use of animal models is a key tool in increasing our understanding of the pathogenesis, disease progression and preclinical evaluation of new therapies and vaccines. The granuloma is the hallmark lesion of pulmonary tuberculosis, regardless of the species or animal model used. Although animal models may not fully replicate all the histopathological characteristics observed in natural, human TB disease, each one brings its own attributes which enable researchers to answer specific questions regarding TB immunopathogenesis. This review delves into the pulmonary pathology induced by Mycobacterium tuberculosis complex (MTBC) bacteria in different animal models (non-human primates, rodents, guinea pigs, rabbits, cattle, goats, and others) and compares how they relate to the pulmonary disease described in humans. Although the described models have demonstrated some histopathological features in common with human pulmonary TB, these data should be considered carefully in the context of this disease. Further research is necessary to establish the most appropriate model for the study of TB, and to carry out a standard characterisation and score of pulmonary lesions.
Collapse
Affiliation(s)
- Laura Hunter
- Pathology Department, UK Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
- School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Inés Ruedas-Torres
- Pathology Department, UK Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
- Department of Anatomy and Comparative Pathology and Toxicology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, International Excellence Agrifood Campus, Córdoba, Spain
| | - Irene Agulló-Ros
- Pathology Department, UK Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
- Department of Anatomy and Comparative Pathology and Toxicology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, International Excellence Agrifood Campus, Córdoba, Spain
| | - Emma Rayner
- Pathology Department, UK Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| | - Francisco J. Salguero
- Pathology Department, UK Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| |
Collapse
|
5
|
van Alen I, Aguirre García MA, Maaskant JJ, Kuijl CP, Bitter W, Meijer AH, Ubbink M. Mycobacterium tuberculosis β-lactamase variant reduces sensitivity to ampicillin/avibactam in a zebrafish-Mycobacterium marinum model of tuberculosis. Sci Rep 2023; 13:15406. [PMID: 37717068 PMCID: PMC10505137 DOI: 10.1038/s41598-023-42152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023] Open
Abstract
The β-lactamase of Mycobacterium tuberculosis, BlaC, hydrolyzes β-lactam antibiotics, hindering the use of these antibiotics for the treatment of tuberculosis. Inhibitors, such as avibactam, can reversibly inhibit the enzyme, allowing for the development of combination therapies using both antibiotic and inhibitor. However, laboratory evolution studies using Escherichia coli resulted in the discovery of single amino acid variants of BlaC that reduce the sensitivity for inhibitors or show higher catalytic efficiency against antibiotics. Here, we tested these BlaC variants under more physiological conditions using the M. marinum infection model of zebrafish, which recapitulates hallmark features of tuberculosis, including the intracellular persistence of mycobacteria in macrophages and the induction of granuloma formation. To this end, the M. tuberculosis blaC gene was integrated into the chromosome of a blaC frameshift mutant of M. marinum. Subsequently, the resulting strains were used to infect zebrafish embryos in order to test the combinatorial effect of ampicillin and avibactam. The results show that embryos infected with an M. marinum strain producing BlaC show lower infection levels after treatment than untreated embryos. Additionally, BlaC K234R showed higher infection levels after treatment than those infected with bacteria producing the wild-type enzyme, demonstrating that the zebrafish host is less sensitive to the combinatorial therapy of β-lactam antibiotic and inhibitor. These findings are of interest for future development of combination therapies to treat tuberculosis.
Collapse
Affiliation(s)
- Ilona van Alen
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Mayra A Aguirre García
- Institute of Biology Leiden, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Janneke J Maaskant
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VUmc, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Coenraad P Kuijl
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VUmc, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VUmc, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Section of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Annemarie H Meijer
- Institute of Biology Leiden, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands.
| |
Collapse
|
6
|
Qi X, Zhang Y, Zhang Y, Luo F, Song K, Wang G, Ling F. Vitamin B 12 produced by Cetobacterium somerae improves host resistance against pathogen infection through strengthening the interactions within gut microbiota. MICROBIOME 2023; 11:135. [PMID: 37322528 PMCID: PMC10268390 DOI: 10.1186/s40168-023-01574-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/15/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Pathogen infections seriously affect host health, and the use of antibiotics increases the risk of the emergence of drug-resistant bacteria and also increases environmental and health safety risks. Probiotics have received much attention for their excellent ability to prevent pathogen infections. Particularly, explaining mechanism of action of probiotics against pathogen infections is important for more efficient and rational use of probiotics and the maintenance of host health. RESULTS Here, we describe the impacts of probiotic on host resistance to pathogen infections. Our findings revealed that (I) the protective effect of oral supplementation with B. velezensis against Aeromonas hydrophila infection was dependent on gut microbiota, specially the anaerobic indigenous gut microbe Cetobacterium; (II) Cetobacterium was a sensor of health, especially for fish infected with pathogenic bacteria; (III) the genome resolved the ability of Cetobacterium somerae CS2105-BJ to synthesize vitamin B12 de novo, while in vivo and in vitro metabolism assays also showed the ability of Cetobacterium somerae CS2105-BJ to produce vitamin B12; (IV) the addition of vitamin B12 significantly altered the gut redox status and the gut microbiome structure and function, and then improved the stability of the gut microbial ecological network, and enhanced the gut barrier tight junctions to prevent the pathogen infection. CONCLUSION Collectively, this study found that the effect of probiotics in enhancing host resistance to pathogen infections depended on function of B12 produced by an anaerobic indigenous gut microbe, Cetobacterium. Furthermore, as a gut microbial regulator, B12 exhibited the ability to strengthen the interactions within gut microbiota and gut barrier tight junctions, thereby improving host resistance against pathogen infection. Video Abstract.
Collapse
Affiliation(s)
- Xiaozhou Qi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yong Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yilin Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Fei Luo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Kaige Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Gaoxue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| | - Fei Ling
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
7
|
Park YM, Meyer MR, Müller R, Herrmann J. Optimization of Mass Spectrometry Imaging for Drug Metabolism and Distribution Studies in the Zebrafish Larvae Model: A Case Study with the Opioid Antagonist Naloxone. Int J Mol Sci 2023; 24:10076. [PMID: 37373226 DOI: 10.3390/ijms241210076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Zebrafish (ZF; Danio rerio) larvae have emerged as a promising in vivo model in drug metabolism studies. Here, we set out to ready this model for integrated mass spectrometry imaging (MSI) to comprehensively study the spatial distribution of drugs and their metabolites inside ZF larvae. In our pilot study with the overall goal to improve MSI protocols for ZF larvae, we investigated the metabolism of the opioid antagonist naloxone. We confirmed that the metabolic modification of naloxone is in high accordance with metabolites detected in HepaRG cells, human biosamples, and other in vivo models. In particular, all three major human metabolites were detected at high abundance in the ZF larvae model. Next, the in vivo distribution of naloxone was investigated in three body sections of ZF larvae using LC-HRMS/MS showing that the opioid antagonist is mainly present in the head and body sections, as suspected from published human pharmacological data. Having optimized sample preparation procedures for MSI (i.e., embedding layer composition, cryosectioning, and matrix composition and spraying), we were able to record MS images of naloxone and its metabolites in ZF larvae, providing highly informative distributional images. In conclusion, we demonstrate that all major ADMET (absorption, distribution, metabolism, excretion, and toxicity) parameters, as part of in vivo pharmacokinetic studies, can be assessed in a simple and cost-effective ZF larvae model. Our established protocols for ZF larvae using naloxone are broadly applicable, particularly for MSI sample preparation, to various types of compounds, and they will help to predict and understand human metabolism and pharmacokinetics.
Collapse
Affiliation(s)
- Yu Mi Park
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Markus R Meyer
- Center for Molecular Signaling (PZMS), Institute of Experimental and Clinical Pharmacology and Toxicology, Department of Experimental and Clinical Toxicology, Saarland University, 66421 Homburg, Germany
| | - Rolf Müller
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), 38124 Braunschweig, Germany
| | - Jennifer Herrmann
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), 38124 Braunschweig, Germany
| |
Collapse
|
8
|
Hammarén MM, Luukinen H, Sillanpää A, Remans K, Lapouge K, Custódio T, Löw C, Myllymäki H, Montonen T, Seeger M, Robertson J, Nyman TA, Savijoki K, Parikka M. In vitro and ex vivo proteomics of Mycobacterium marinum biofilms and the development of biofilm-binding synthetic nanobodies. mSystems 2023:e0107322. [PMID: 37184670 DOI: 10.1128/msystems.01073-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The antibiotic-tolerant biofilms present in tuberculous granulomas add an additional layer of complexity when treating mycobacterial infections, including tuberculosis (TB). For a more efficient treatment of TB, the biofilm forms of mycobacteria warrant specific attention. Here, we used Mycobacterium marinum (Mmr) as a biofilm-forming model to identify the abundant proteins covering the biofilm surface. We used biotinylation/streptavidin-based proteomics on the proteins exposed at the Mmr biofilm matrices in vitro to identify 448 proteins and ex vivo proteomics to detect 91 Mmr proteins from the mycobacterial granulomas isolated from adult zebrafish. In vitro and ex vivo proteomics data are available via ProteomeXchange with identifier PXD033425 and PXD039416, respectively. Data comparisons pinpointed the molecular chaperone GroEL2 as the most abundant Mmr protein within the in vitro and ex vivo proteomes, while its paralog, GroEL1, with a known role in biofilm formation, was detected with slightly lower intensity values. To validate the surface exposure of these targets, we created in-house synthetic nanobodies (sybodies) against the two chaperones and identified sybodies that bind the mycobacterial biofilms in vitro and those present in ex vivo granulomas. Taken together, the present study reports a proof-of-concept showing that surface proteomics in vitro and ex vivo proteomics combined are a valuable strategy to identify surface-exposed proteins on the mycobacterial biofilm. Biofilm-surface-binding nanobodies could be eventually used as homing agents to deliver biofilm-targeting treatments to the sites of persistent biofilm infection.
Collapse
Affiliation(s)
- Milka Marjut Hammarén
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Hanna Luukinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Alina Sillanpää
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kim Remans
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Karine Lapouge
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Tânia Custódio
- Centre for Structural Systems Biology, Hamburg, Germany
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- European Molecular Biology Laboratory, Hamburg, Germany
| | - Christian Löw
- Centre for Structural Systems Biology, Hamburg, Germany
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- European Molecular Biology Laboratory, Hamburg, Germany
| | - Henna Myllymäki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Toni Montonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Markus Seeger
- Institute for Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Joseph Robertson
- Department of Immunology, University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Tuula A Nyman
- Department of Immunology, University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Kirsi Savijoki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Mataleena Parikka
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
9
|
Abstract
The global burden of tuberculosis (TB) is aggravated by the continuously increasing emergence of drug resistance, highlighting the need for innovative therapeutic options. The concept of host-directed therapy (HDT) as adjunctive to classical antibacterial therapy with antibiotics represents a novel and promising approach for treating TB. Here, we have focused on repurposing the clinically used anticancer drug tamoxifen, which was identified as a molecule with strong host-directed activity against intracellular Mycobacterium tuberculosis (Mtb). Using a primary human macrophage Mtb infection model, we demonstrate the potential of tamoxifen against drug-sensitive as well as drug-resistant Mtb bacteria. The therapeutic effect of tamoxifen was confirmed in an in vivo TB model based on Mycobacterium marinum infection of zebrafish larvae. Tamoxifen had no direct antimicrobial effects at the concentrations used, confirming that tamoxifen acted as an HDT drug. Furthermore, we demonstrate that the antimycobacterial effect of tamoxifen is independent of its well-known target the estrogen receptor (ER) pathway, but instead acts by modulating autophagy, in particular the lysosomal pathway. Through RNA sequencing and microscopic colocalization studies, we show that tamoxifen stimulates lysosomal activation and increases the localization of mycobacteria in lysosomes both in vitro and in vivo, while inhibition of lysosomal activity during tamoxifen treatment partly restores mycobacterial survival. Thus, our work highlights the HDT potential of tamoxifen and proposes it as a repurposed molecule for the treatment of TB. IMPORTANCE Tuberculosis (TB) is the world's most lethal infectious disease caused by a bacterial pathogen, Mycobacterium tuberculosis. This pathogen evades the immune defenses of its host and grows intracellularly in immune cells, particularly inside macrophages. There is an urgent need for novel therapeutic strategies because treatment of TB patients is increasingly complicated by rising antibiotic resistance. In this study, we explored a breast cancer drug, tamoxifen, as a potential anti-TB drug. We show that tamoxifen acts as a so-called host-directed therapeutic, which means that it does not act directly on the bacteria but helps the host macrophages combat the infection more effectively. We confirmed the antimycobacterial effect of tamoxifen in a zebrafish model for TB and showed that it functions by promoting the delivery of mycobacteria to digestive organelles, the lysosomes. These results support the high potential of tamoxifen to be repurposed to fight antibiotic-resistant TB infections by host-directed therapy.
Collapse
|
10
|
Yan H, Guo L, Pang Y, Liu F, Liu T, Gao M. Clinical characteristics and predictive model of pulmonary tuberculosis patients with pulmonary fungal coinfection. BMC Pulm Med 2023; 23:56. [PMID: 36750804 PMCID: PMC9903523 DOI: 10.1186/s12890-023-02344-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND In clinical settings, pulmonary tuberculosis (PTB) patients were often found to have pulmonary fungal coinfection. This study aimed to assess the clinical characteristics of patients suffering from coinfection with TB and pulmonary fungal and construct a predictive model for evaluating the probability of pulmonary fungal coinfection in patients with pulmonary tuberculosis. METHODS The present case-control study retrospectively collected information from 286 patients affected by PTB who received treatment from December 6,2016- December 6,2021 at Beijing Chest Hospital, Capital Medical University. As control subjects, patients with sex and address corresponding to those of the case subjects were included in the study in a ratio of 1:1. These 286 patients were randomly divided into the training and internal validation sets in a ratio of 3:1. Chi-square test and logistic regression analysis were performed for the training set, and a predictive model was developed using the selected predictors. Bootstrapping was performed for internal validation. RESULTS Seven variables [illness course, pulmonary cavitation, broad-spectrum antibiotics use for at least 1 week, chemotherapy or immunosuppressants, surgery, bacterial pneumonia, and hypoproteinemia] were validated and used to develop a predictive model which showed good discrimination capability for both training set [area under the curve (AUC) = 0.860, 95% confidence interval (CI) = 0.811-0.909] and internal validation set (AUC = 0.884, 95% CI = 0.799-0.970). The calibration curves also showed that the probabilities predicted using the predictive model had satisfactory consistency with the actual probability for both training and internal validation sets. CONCLUSIONS We developed a predictive model that can predict the probability of pulmonary fungal coinfection in pulmonary tuberculosis patients. It showed potential clinical utility.
Collapse
Affiliation(s)
- Hongxuan Yan
- grid.24696.3f0000 0004 0369 153XBeijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Postal No 9, Beiguan Street, Tongzhou District, Beijing, 101149 People’s Republic of China
| | - Li Guo
- grid.417303.20000 0000 9927 0537Xuzhou Medical University, Jiangsu, China
| | - Yu Pang
- grid.24696.3f0000 0004 0369 153XBeijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Postal No 9, Beiguan Street, Tongzhou District, Beijing, 101149 People’s Republic of China
| | - Fangchao Liu
- grid.24696.3f0000 0004 0369 153XBeijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Postal No 9, Beiguan Street, Tongzhou District, Beijing, 101149 People’s Republic of China
| | - Tianhui Liu
- grid.24696.3f0000 0004 0369 153XBeijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Postal No 9, Beiguan Street, Tongzhou District, Beijing, 101149 People’s Republic of China
| | - Mengqiu Gao
- Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Postal No 9, Beiguan Street, Tongzhou District, Beijing, 101149, People's Republic of China.
| |
Collapse
|
11
|
Hu W, Koch BEV, Lamers GEM, Forn-Cuní G, Spaink HP. Specificity of the innate immune responses to different classes of non-tuberculous mycobacteria. Front Immunol 2023; 13:1075473. [PMID: 36741407 PMCID: PMC9890051 DOI: 10.3389/fimmu.2022.1075473] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023] Open
Abstract
Mycobacterium avium is the most common nontuberculous mycobacterium (NTM) species causing infectious disease. Here, we characterized a M. avium infection model in zebrafish larvae, and compared it to M. marinum infection, a model of tuberculosis. M. avium bacteria are efficiently phagocytosed and frequently induce granuloma-like structures in zebrafish larvae. Although macrophages can respond to both mycobacterial infections, their migration speed is faster in infections caused by M. marinum. Tlr2 is conservatively involved in most aspects of the defense against both mycobacterial infections. However, Tlr2 has a function in the migration speed of macrophages and neutrophils to infection sites with M. marinum that is not observed with M. avium. Using RNAseq analysis, we found a distinct transcriptome response in cytokine-cytokine receptor interaction for M. avium and M. marinum infection. In addition, we found differences in gene expression in metabolic pathways, phagosome formation, matrix remodeling, and apoptosis in response to these mycobacterial infections. In conclusion, we characterized a new M. avium infection model in zebrafish that can be further used in studying pathological mechanisms for NTM-caused diseases.
Collapse
|
12
|
Hernández-Silva D, Alcaraz-Pérez F, Pérez-Sánchez H, Cayuela ML. Virtual screening and zebrafish models in tandem, for drug discovery and development. Expert Opin Drug Discov 2022:1-13. [DOI: 10.1080/17460441.2022.2147503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- David Hernández-Silva
- Telomerase, Cancer and Aging Group (TCAG), Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca (IMIB-Arrixaca), 30120 Murcia, Spain
- Structural Bioinformatics and High-Performance Computing Research Group (BIOHPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), Guadalupe, 30107 Murcia, Spain
| | - Francisca Alcaraz-Pérez
- Telomerase, Cancer and Aging Group (TCAG), Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca (IMIB-Arrixaca), 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 30100 Murcia, Spain
| | - Horacio Pérez-Sánchez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 30100 Murcia, Spain
| | - Maria Luisa Cayuela
- Telomerase, Cancer and Aging Group (TCAG), Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca (IMIB-Arrixaca), 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 30100 Murcia, Spain
| |
Collapse
|
13
|
Dudziak K, Nowak M, Sozoniuk M. One Host-Multiple Applications: Zebrafish ( Danio rerio) as Promising Model for Studying Human Cancers and Pathogenic Diseases. Int J Mol Sci 2022; 23:10255. [PMID: 36142160 PMCID: PMC9499349 DOI: 10.3390/ijms231810255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/03/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, zebrafish (ZF) has been increasingly applied as a model in human disease studies, with a particular focus on cancer. A number of advantages make it an attractive alternative for mice widely used so far. Due to the many advantages of zebrafish, modifications can be based on different mechanisms and the induction of human disease can take different forms depending on the research goal. Genetic manipulation, tumor transplantation, or injection of the pathogen are only a few examples of using ZF as a model. Most of the studies are conducted in order to understand the disease mechanism, monitor disease progression, test new or alternative therapies, and select the best treatment. The transplantation of cancer cells derived from patients enables the development of personalized medicine. To better mimic a patient's body environment, immune-deficient models (SCID) have been developed. A lower immune response is mostly generated by genetic manipulation but also by irradiation or dexamethasone treatment. For many studies, using SCID provides a better chance to avoid cancer cell rejection. In this review, we describe the main directions of using ZF in research, explain why and how zebrafish can be used as a model, what kind of limitations will be met and how to overcome them. We collected recent achievements in this field, indicating promising perspectives for the future.
Collapse
Affiliation(s)
- Karolina Dudziak
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Michał Nowak
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Magdalena Sozoniuk
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| |
Collapse
|
14
|
Yuan J, Zhang Q, Chen S, Yan M, Yue L. LC3-Associated Phagocytosis in Bacterial Infection. Pathogens 2022; 11:pathogens11080863. [PMID: 36014984 PMCID: PMC9415076 DOI: 10.3390/pathogens11080863] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
LC3-associated phagocytosis (LAP) is a noncanonical autophagy process reported in recent years and is one of the effective mechanisms of host defense against bacterial infection. During LAP, bacteria are recognized by pattern recognition receptors (PRRs), enter the body, and then recruit LC3 onto a single-membrane phagosome to form a LAPosome. LC3 conjugation can promote the fusion of the LAPosomes with lysosomes, resulting in their maturation into phagolysosomes, which can effectively kill the identified pathogens. However, to survive in host cells, bacteria have also evolved strategies to evade killing by LAP. In this review, we summarized the mechanism of LAP in resistance to bacterial infection and the ways in which bacteria escape LAP. We aim to provide new clues for developing novel therapeutic strategies for bacterial infectious diseases.
Collapse
Affiliation(s)
- Jin Yuan
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China; (J.Y.); (Q.Z.); (S.C.)
| | - Qiuyu Zhang
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China; (J.Y.); (Q.Z.); (S.C.)
| | - Shihua Chen
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China; (J.Y.); (Q.Z.); (S.C.)
| | - Min Yan
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China; (J.Y.); (Q.Z.); (S.C.)
- Correspondence: (M.Y.); (L.Y.)
| | - Lei Yue
- The Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
- Correspondence: (M.Y.); (L.Y.)
| |
Collapse
|
15
|
Mehta K, Spaink HP, Ottenhoff THM, van der Graaf PH, van Hasselt JGC. Host-directed therapies for tuberculosis: quantitative systems pharmacology approaches. Trends Pharmacol Sci 2021; 43:293-304. [PMID: 34916092 DOI: 10.1016/j.tips.2021.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/26/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022]
Abstract
Host-directed therapies (HDTs) that modulate host-pathogen interactions offer an innovative strategy to combat Mycobacterium tuberculosis (Mtb) infections. When combined with tuberculosis (TB) antibiotics, HDTs could contribute to improving treatment outcomes, reducing treatment duration, and preventing resistance development. Translation of the interplay of host-pathogen interactions leveraged by HDTs towards therapeutic outcomes in patients is challenging. Quantitative understanding of the multifaceted nature of the host-pathogen interactions is vital to rationally design HDT strategies. Here, we (i) provide an overview of key Mtb host-pathogen interactions as basis for HDT strategies; and (ii) discuss the components and utility of quantitative systems pharmacology (QSP) models to inform HDT strategies. QSP models can be used to identify and optimize treatment targets, to facilitate preclinical to human translation, and to design combination treatment strategies.
Collapse
Affiliation(s)
| | | | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
16
|
Varela M, Meijer AH. A fresh look at mycobacterial pathogenicity with the zebrafish host model. Mol Microbiol 2021; 117:661-669. [PMID: 34714579 PMCID: PMC9297993 DOI: 10.1111/mmi.14838] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/25/2022]
Abstract
The zebrafish has earned its place among animal models to study tuberculosis and other infections caused by pathogenic mycobacteria. This model host is especially useful to study the role of granulomas, the inflammatory lesions characteristic of mycobacterial disease. The optically transparent zebrafish larvae provide a window on the initial stages of granuloma development in the context of innate immunity. Application of fluorescent dyes and transgenic markers enabled real-time visualization of how innate immune mechanisms, such as autophagy and inflammasomes, are activated in infected macrophages and how propagating calcium signals drive communication between macrophages during granuloma formation. A combination of imaging, genetic, and chemical approaches has revealed that the interplay between macrophages and mycobacteria is the main driver of tissue dissemination and granuloma development, while neutrophils have a protective function in early granulomas. Different chemokine signaling axes, conserved between humans and zebrafish, have been shown to recruit macrophages permissive to mycobacterial growth, control their microbicidal capacity, drive their spreading and aggregation, and mediate granuloma vascularization. Finally, zebrafish larvae are now exploited to explore cell death processes, emerging as crucial factors in granuloma expansion. In this review, we discuss recent advances in the understanding of mycobacterial pathogenesis contributed by zebrafish models.
Collapse
Affiliation(s)
- Monica Varela
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
17
|
Sharma S, Kumar M, Kumar J, Srivastava N, Hussain MA, Shelly A, Mazumder S. M. fortuitum-induced CNS-pathology: Deciphering the role of canonical Wnt signaling, blood brain barrier components and cytokines. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104111. [PMID: 33933535 DOI: 10.1016/j.dci.2021.104111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/24/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
Molecular underpinning of mycobacteria-induced CNS-pathology is not well understood. In the present study, zebrafish were infected with Mycobacterium fortuitum and the prognosis of CNS-pathogenesis studied. We observed M. fortuitum triggers extensive brain-pathology. Evans blue extravasation demonstrated compromised blood-brain barrier (BBB) integrity. Further, decreased expression in tight-junction (TJ) and adherens junction complex (AJC) genes were noted in infected brain. Wnt-signaling has emerged as a major player in host-mycobacterial immunity but its involvement/role in brain-infection is not well studied. Sustained expression of wnt2, wnt3a, fzd5, lrp5/6 and β-catenin, with concordant decline in degradation complex components axin, gsk3β and β-catenin regulator capn2a were observed. The surge in ifng1 and tnfa expression preceding il10 and il4 suggested cytokine-interplay critical in M. fortuitum-induced brain-pathology. Therefore, we suggest adult zebrafish as a viable model for studying CNS-pathology and using the same, conclude that M. fortuitum infection is associated with repressed TJ-AJC gene expression and compromised BBB permeability. Our results implicate Wnt/β-catenin pathway in M. fortuitum-induced CNS-pathology wherein Th1-type signals facilitate bacterial clearance and Th2-type signals prevent the disease sequel.
Collapse
Affiliation(s)
- Shagun Sharma
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Manmohan Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Jai Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Nidhi Srivastava
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India; Department of Zoology, School of Basic and Applied Sciences, Maharaja Agrasen University, Solan, Himachal Pradesh, 174103, India
| | - Md Arafat Hussain
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Asha Shelly
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India; Faculty of Life Sciences and Biotechnology, South Asian University, Delhi, 110021, India.
| |
Collapse
|
18
|
Rajme-Manzur D, Gollas-Galván T, Vargas-Albores F, Martínez-Porchas M, Hernández-Oñate MÁ, Hernández-López J. Granulomatous bacterial diseases in fish: An overview of the host's immune response. Comp Biochem Physiol A Mol Integr Physiol 2021; 261:111058. [PMID: 34419575 DOI: 10.1016/j.cbpa.2021.111058] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/26/2021] [Accepted: 08/17/2021] [Indexed: 11/15/2022]
Abstract
Bacterial diseases represent the main impediment to the development of fish aquaculture. Granulomatous diseases caused by bacteria lead to fish culture losses by high mortality rates and slow growth. Bacteria belonging to genera Streptococcus spp., Mycobacterium sp., Nocardia sp., Francisella sp., and Staphylococcus sp. have been implicated in the development of granulomatous processes. The granuloma formation and the fish's immune response continue to be the subject of scientific research. In fish, the first defense line is constituted by non-specific humoral factors through growth-inhibiting substances such as transferrin and antiproteases, or lytic effectors as lysozyme and antimicrobial peptides, and linking with non-specific phagocyte responses. If the first line is breached, fish produce antibody constituents for a specific humoral defense inhibiting bacterial adherence, as well as the mobilization of non-phagocytic host cells and counteracting toxins from bacteria. However, bacteria causing granulomatous diseases can be persistent microorganisms, difficult to eliminate that can cause chronic diseases, even using some immune system components to survive. Understanding the infectious process leading to granulomatosis and how the host's immune system responds against granulomatous diseases is crucial to know more about fish immunology and develop strategies to overcome granulomatous diseases.
Collapse
Affiliation(s)
- David Rajme-Manzur
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación de Ciencia y Tecnología de Alimentos de Origen Animal, Biology of Aquatic Organisms, Hermosillo, Sonora, Mexico
| | - Teresa Gollas-Galván
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación de Ciencia y Tecnología de Alimentos de Origen Animal, Biology of Aquatic Organisms, Hermosillo, Sonora, Mexico
| | - Francisco Vargas-Albores
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación de Ciencia y Tecnología de Alimentos de Origen Animal, Biology of Aquatic Organisms, Hermosillo, Sonora, Mexico
| | - Marcel Martínez-Porchas
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación de Ciencia y Tecnología de Alimentos de Origen Animal, Biology of Aquatic Organisms, Hermosillo, Sonora, Mexico.
| | - Miguel Ángel Hernández-Oñate
- CONACYT - Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación de Ciencia y Tecnología de Alimentos de Origen Vegetal, Hermosillo, Sonora, Mexico
| | - Jorge Hernández-López
- Centro de Investigaciones del Noroeste (CIBNOR), Unidad Hermosillo, Hermosillo, Sonora, Mexico
| |
Collapse
|
19
|
Nowik N, Prajsnar TK, Przyborowska A, Rakus K, Sienkiewicz W, Spaink HP, Podlasz P. The Role of Galanin during Bacterial Infection in Larval Zebrafish. Cells 2021; 10:cells10082011. [PMID: 34440783 PMCID: PMC8391356 DOI: 10.3390/cells10082011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 11/26/2022] Open
Abstract
Galanin is a peptide that is conserved among different species and plays various roles in an organism, although its entire role is not completely understood. For many years, galanin has been linked mainly with the neurotransmission in the nervous system; however, recent reports underline its role in immunity. Zebrafish (Danio rerio) is an intensively developing animal model to study infectious diseases. In this study, we used larval zebrafish to determine the role of galanin in bacterial infection. We showed that knockout of galanin in zebrafish leads to a higher bacterial burden and mortality during Mycobacterium marinum and Staphylococcus aureus infection, whereas administration of a galanin analogue, NAX 5055, improves the ability of fish to control the infection caused by both pathogens. Moreover, the transcriptomics data revealed that a lower number of genes were regulated in response to mycobacterial infection in gal−/− mutants compared with their gal+/+ wild-type counterparts. We also found that galanin deficiency led to significant changes in immune-related pathways, mostly connected with cytokine and chemokine functions. The results show that galanin acts not only as a neurotransmitter but is also involved in immune response to bacterial infections, demonstrating the complexity of the neuroendocrine system and its possible connection with immunity.
Collapse
Affiliation(s)
- Natalia Nowik
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (N.N.); (A.P.); (W.S.)
- Department of Animal Sciences and Health, Institute of Biology (IBL), Leiden University, 2333 BE Leiden, The Netherlands; (T.K.P.); (H.P.S.)
| | - Tomasz K. Prajsnar
- Department of Animal Sciences and Health, Institute of Biology (IBL), Leiden University, 2333 BE Leiden, The Netherlands; (T.K.P.); (H.P.S.)
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland;
| | - Anna Przyborowska
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (N.N.); (A.P.); (W.S.)
- Department of Pathophysiology, Forensic Veterinary and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland;
| | - Waldemar Sienkiewicz
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (N.N.); (A.P.); (W.S.)
| | - Herman P. Spaink
- Department of Animal Sciences and Health, Institute of Biology (IBL), Leiden University, 2333 BE Leiden, The Netherlands; (T.K.P.); (H.P.S.)
| | - Piotr Podlasz
- Department of Pathophysiology, Forensic Veterinary and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719 Olsztyn, Poland
- Correspondence: ; Tel.: +48-89-5245291
| |
Collapse
|
20
|
Xie Y, Xie J, Meijer AH, Schaaf MJM. Glucocorticoid-Induced Exacerbation of Mycobacterial Infection Is Associated With a Reduced Phagocytic Capacity of Macrophages. Front Immunol 2021; 12:618569. [PMID: 34046029 PMCID: PMC8148013 DOI: 10.3389/fimmu.2021.618569] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 04/13/2021] [Indexed: 01/20/2023] Open
Abstract
Glucocorticoids are effective drugs for treating immune-related diseases, but prolonged therapy is associated with an increased risk of various infectious diseases, including tuberculosis. In this study, we have used a larval zebrafish model for tuberculosis, based on Mycobacterium marinum (Mm) infection, to study the effect of glucocorticoids. Our results show that the synthetic glucocorticoid beclomethasone increases the bacterial burden and the dissemination of a systemic Mm infection. The exacerbated Mm infection was associated with a decreased phagocytic activity of macrophages, higher percentages of extracellular bacteria, and a reduced rate of infected cell death, whereas the bactericidal capacity of the macrophages was not affected. The inhibited phagocytic capacity of macrophages was associated with suppression of the transcription of genes involved in phagocytosis in these cells. The decreased bacterial phagocytosis by macrophages was not specific for Mm, since it was also observed upon infection with Salmonella Typhimurium. In conclusion, our results show that glucocorticoids inhibit the phagocytic activity of macrophages, which may increase the severity of bacterial infections like tuberculosis.
Collapse
Affiliation(s)
- Yufei Xie
- Institute of Biology, Leiden University, Leiden, Netherlands
| | - Jiajun Xie
- Institute of Biology, Leiden University, Leiden, Netherlands
| | | | | |
Collapse
|
21
|
Hosseini R, Lamers GEM, Bos E, Hogendoorn PCW, Koster AJ, Meijer AH, Spaink HP, Schaaf MJM. The adapter protein Myd88 plays an important role in limiting mycobacterial growth in a zebrafish model for tuberculosis. Virchows Arch 2021; 479:265-275. [PMID: 33559740 PMCID: PMC8364548 DOI: 10.1007/s00428-021-03043-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 11/27/2022]
Abstract
Tuberculosis (TB) is the most prevalent bacterial infectious disease in the world, caused by the pathogen Mycobacterium tuberculosis (Mtb). In this study, we have used Mycobacterium marinum (Mm) infection in zebrafish larvae as an animal model for this disease to study the role of the myeloid differentiation factor 88 (Myd88), the key adapter protein of Toll-like receptors. Previously, Myd88 has been shown to enhance innate immune responses against bacterial infections, and in the present study, we have investigated the effect of Myd88 deficiency on the granuloma morphology and the intracellular distribution of bacteria during Mm infection. Our results show that granulomas formed in the tail fin from myd88 mutant larvae have a more compact structure and contain a reduced number of leukocytes compared to the granulomas observed in wild-type larvae. These morphological differences were associated with an increased bacterial burden in the myd88 mutant. Electron microscopy analysis showed that the majority of Mm in the myd88 mutant are located extracellularly, whereas in the wild type, most bacteria were intracellular. In the myd88 mutant, intracellular bacteria were mainly present in compartments that were not electron-dense, suggesting that these compartments had not undergone fusion with a lysosome. In contrast, approximately half of the intracellular bacteria in wild-type larvae were found in electron-dense compartments. These observations in a zebrafish model for tuberculosis suggest a role for Myd88-dependent signalling in two important phenomena that limit mycobacterial growth in the infected tissue. It reduces the number of leukocytes at the site of infection and the acidification of bacteria-containing compartments inside these cells.
Collapse
Affiliation(s)
- Rohola Hosseini
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Gerda E M Lamers
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Erik Bos
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Pancras C W Hogendoorn
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333, Leiden, ZA, Netherlands.
| | - Abraham J Koster
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Herman P Spaink
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | | |
Collapse
|
22
|
Cabezas-Sainz P, Coppel C, Pensado-López A, Fernandez P, Muinelo-Romay L, López-López R, Rubiolo JA, Sánchez L. Morphological Abnormalities and Gene Expression Changes Caused by High Incubation Temperatures in Zebrafish Xenografts with Human Cancer Cells. Genes (Basel) 2021; 12:genes12010113. [PMID: 33477746 PMCID: PMC7832305 DOI: 10.3390/genes12010113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 11/24/2022] Open
Abstract
Published studies show that most of the human cancer xenograft studies in zebrafish embryos have used incubation temperatures in the range of 32–34 °C for 3–6 days post-injection, trying to find a compromise temperature between the zebrafish embryos (28 °C) and the human injected cells (37 °C). While this experimental setup is widely used, a question remains: is possible to overcome the drawbacks caused by a suboptimal temperature for the injected cells? To clarify the effect of temperature and injected cells on the host, in this study, we analyzed the development and health of the last in response to different temperatures in the presence or absence of injected human cancer cells. Comparing different incubation temperatures (28, 34 and 36 °C), we determined morphological abnormalities and developmental effects in injected and non-injected embryos at different time points. Besides this, the expression of selected genes was determined by qPCR to determine temperature affected metabolic processes in the embryos. The results indicate that an incubation temperature of 36 °C during a period of 48 h is suitable for xenotransplantation without morphological or metabolic changes that could be affecting the host or the injected cells, allowing them to proliferate near their optimal temperature.
Collapse
Affiliation(s)
- Pablo Cabezas-Sainz
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (P.C.-S.); (C.C.); (A.P.-L.); (P.F.)
| | - Carlos Coppel
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (P.C.-S.); (C.C.); (A.P.-L.); (P.F.)
| | - Alba Pensado-López
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (P.C.-S.); (C.C.); (A.P.-L.); (P.F.)
- Genomic Medicine Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Pedro Fernandez
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (P.C.-S.); (C.C.); (A.P.-L.); (P.F.)
| | - Laura Muinelo-Romay
- Liquid Biopsy Analysis Unit, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 29029 Madrid, Spain
| | - Rafael López-López
- Translational Laboratory, Medical Oncology Department, Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, 15706 Santiago de Compostela, Spain;
| | - Juan A. Rubiolo
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (P.C.-S.); (C.C.); (A.P.-L.); (P.F.)
- Correspondence: (J.A.R.); (L.S.); Tel.: +34-982-822-429 (L.S.)
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (P.C.-S.); (C.C.); (A.P.-L.); (P.F.)
- Preclinical Animal Models Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Correspondence: (J.A.R.); (L.S.); Tel.: +34-982-822-429 (L.S.)
| |
Collapse
|
23
|
Rodríguez-Ruiz L, Lozano-Gil JM, Lachaud C, Mesa-Del-Castillo P, Cayuela ML, García-Moreno D, Pérez-Oliva AB, Mulero V. Zebrafish Models to Study Inflammasome-Mediated Regulation of Hematopoiesis. Trends Immunol 2020; 41:1116-1127. [PMID: 33162327 DOI: 10.1016/j.it.2020.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022]
Abstract
Hematopoiesis is a complex process through which immature bone marrow precursor cells mature into all types of blood cells. Although the association of hematopoietic lineage bias (including anemia and neutrophilia) with chronic inflammatory diseases has long been appreciated, the causes involved are obscure. Recently, cytosolic multiprotein inflammasome complexes were shown to activate inflammatory and immune responses, and directly regulate hematopoiesis in zebrafish models; this was deemed to occur via cleavage and inactivation of the master erythroid transcription factor GATA1. Herein summarized are the zebrafish models that are currently available to study this unappreciated role of inflammasome-mediated regulation of hematopoiesis. Novel putative therapeutic strategies, for the treatment of hematopoietic alterations associated with chronic inflammatory diseases in humans, are also proposed.
Collapse
Affiliation(s)
- Lola Rodríguez-Ruiz
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Centro de Investigación Biomédica en Red de Enfermedades Raras, 30100 Murcia, Spain
| | - Juan M Lozano-Gil
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Centro de Investigación Biomédica en Red de Enfermedades Raras, 30100 Murcia, Spain
| | - Christophe Lachaud
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Pablo Mesa-Del-Castillo
- Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Centro de Investigación Biomédica en Red de Enfermedades Raras, 30120 Murcia, Spain
| | - María L Cayuela
- Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Centro de Investigación Biomédica en Red de Enfermedades Raras, 30120 Murcia, Spain
| | - Diana García-Moreno
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Centro de Investigación Biomédica en Red de Enfermedades Raras, 30100 Murcia, Spain.
| | - Ana B Pérez-Oliva
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Centro de Investigación Biomédica en Red de Enfermedades Raras, 30100 Murcia, Spain.
| | - Victoriano Mulero
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Centro de Investigación Biomédica en Red de Enfermedades Raras, 30100 Murcia, Spain.
| |
Collapse
|
24
|
van Wijk RC, Hu W, Dijkema SM, van den Berg DJ, Liu J, Bahi R, Verbeek FJ, Simonsson USH, Spaink HP, van der Graaf PH, Krekels EHJ. Anti-tuberculosis effect of isoniazid scales accurately from zebrafish to humans. Br J Pharmacol 2020; 177:5518-5533. [PMID: 32860631 PMCID: PMC7707096 DOI: 10.1111/bph.15247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/03/2020] [Accepted: 08/23/2020] [Indexed: 12/24/2022] Open
Abstract
Background and Purpose There is a clear need for innovation in anti‐tuberculosis drug development. The zebrafish larva is an attractive disease model in tuberculosis research. To translate pharmacological findings to higher vertebrates, including humans, the internal exposure of drugs needs to be quantified and linked to observed response. Experimental Approach In zebrafish studies, drugs are usually dissolved in the external water, posing a challenge to quantify internal exposure. We developed experimental methods to quantify internal exposure, including nanoscale blood sampling, and to quantify the bacterial burden, using automated fluorescence imaging analysis, with isoniazid as the test compound. We used pharmacokinetic–pharmacodynamic modelling to quantify the exposure–response relationship responsible for the antibiotic response. To translate isoniazid response to humans, quantitative exposure–response relationships in zebrafish were linked to simulated concentration–time profiles in humans, and two quantitative translational factors on sensitivity to isoniazid and stage of infection were included. Key Results Blood concentration was only 20% of the external drug concentration. The bacterial burden increased exponentially, and an isoniazid dose corresponding to 15 mg·L−1 internal concentration (minimum inhibitory concentration) leads to bacteriostasis of the mycobacterial infection in the zebrafish. The concentration–effect relationship was quantified, and based on that relationship and the translational factors, the isoniazid response was translated to humans, which correlated well with observed data. Conclusions and Implications This proof of concept study confirmed the potential of zebrafish larvae as tuberculosis disease models in translational pharmacology and contributes to innovative anti‐tuberculosis drug development, which is very clearly needed.
Collapse
Affiliation(s)
- Rob C van Wijk
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.,Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Wanbin Hu
- Division of Animal Sciences and Health, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Sharka M Dijkema
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Dirk-Jan van den Berg
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Jeremy Liu
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Rida Bahi
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Fons J Verbeek
- Imaging and Bioinformatics Group, Leiden Institute of Advanced Computer Science, Leiden University, Leiden, The Netherlands
| | | | - Herman P Spaink
- Division of Animal Sciences and Health, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Piet H van der Graaf
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.,QSP, Certara, Canterbury, UK
| | - Elke H J Krekels
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
25
|
Muñoz-Sánchez S, van der Vaart M, Meijer AH. Autophagy and Lc3-Associated Phagocytosis in Zebrafish Models of Bacterial Infections. Cells 2020; 9:cells9112372. [PMID: 33138004 PMCID: PMC7694021 DOI: 10.3390/cells9112372] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Modeling human infectious diseases using the early life stages of zebrafish provides unprecedented opportunities for visualizing and studying the interaction between pathogens and phagocytic cells of the innate immune system. Intracellular pathogens use phagocytes or other host cells, like gut epithelial cells, as a replication niche. The intracellular growth of these pathogens can be counteracted by host defense mechanisms that rely on the autophagy machinery. In recent years, zebrafish embryo infection models have provided in vivo evidence for the significance of the autophagic defenses and these models are now being used to explore autophagy as a therapeutic target. In line with studies in mammalian models, research in zebrafish has shown that selective autophagy mediated by ubiquitin receptors, such as p62, is important for host resistance against several bacterial pathogens, including Shigella flexneri, Mycobacterium marinum, and Staphylococcus aureus. Furthermore, an autophagy related process, Lc3-associated phagocytosis (LAP), proved host beneficial in the case of Salmonella Typhimurium infection but host detrimental in the case of S. aureus infection, where LAP delivers the pathogen to a replication niche. These studies provide valuable information for developing novel therapeutic strategies aimed at directing the autophagy machinery towards bacterial degradation.
Collapse
|
26
|
Park YM, Meyer MR, Müller R, Herrmann J. Drug Administration Routes Impact the Metabolism of a Synthetic Cannabinoid in the Zebrafish Larvae Model. Molecules 2020; 25:E4474. [PMID: 33003405 PMCID: PMC7582563 DOI: 10.3390/molecules25194474] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 12/18/2022] Open
Abstract
Zebrafish (Danio rerio) larvae have gained attention as a valid model to study in vivo drug metabolism and to predict human metabolism. The microinjection of compounds, oligonucleotides, or pathogens into zebrafish embryos at an early developmental stage is a well-established technique. Here, we investigated the metabolism of zebrafish larvae after microinjection of methyl 2-(1-(5-fluoropentyl)-1H-pyrrolo[2,3-b]pyridine-3-carboxamido)-3,3-dimethylbutanoate (7'N-5F-ADB) as a representative of recently introduced synthetic cannabinoids. Results were compared to human urine data and data from the in vitro HepaRG model and the metabolic pathway of 7'N-5F-ADB were reconstructed. Out of 27 metabolites detected in human urine samples, 19 and 15 metabolites were present in zebrafish larvae and HepaRG cells, respectively. The route of administration to zebrafish larvae had a major impact and we found a high number of metabolites when 7'N-5F-ADB was microinjected into the caudal vein, heart ventricle, or hindbrain. We further studied the spatial distribution of the parent compound and its metabolites by mass spectrometry imaging (MSI) of treated zebrafish larvae to demonstrate the discrepancy in metabolite profiles among larvae exposed through different administration routes. In conclusion, zebrafish larvae represent a superb model for studying drug metabolism, and when combined with MSI, the optimal administration route can be determined based on in vivo drug distribution.
Collapse
Affiliation(s)
- Yu Mi Park
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany;
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, 66123 Saarbrücken, Germany
| | - Markus R. Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, 66421 Homburg, Germany;
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany;
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig Germany, 38124 Braunschweig, Germany
| | - Jennifer Herrmann
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany;
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig Germany, 38124 Braunschweig, Germany
| |
Collapse
|
27
|
Cabezas-Sáinz P, Pensado-López A, Sáinz B, Sánchez L. Modeling Cancer Using Zebrafish Xenografts: Drawbacks for Mimicking the Human Microenvironment. Cells 2020; 9:E1978. [PMID: 32867288 PMCID: PMC7564051 DOI: 10.3390/cells9091978] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/07/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023] Open
Abstract
The first steps towards establishing xenografts in zebrafish embryos were performed by Lee et al., 2005 and Haldi et al., 2006, paving the way for studying human cancers using this animal species. Since then, the xenograft technique has been improved in different ways, ranging from optimizing the best temperature for xenografted embryo incubation, testing different sites for injection of human tumor cells, and even developing tools to study how the host interacts with the injected cells. Nonetheless, a standard protocol for performing xenografts has not been adopted across laboratories, and further research on the temperature, microenvironment of the tumor or the cell-host interactions inside of the embryo during xenografting is still needed. As a consequence, current non-uniform conditions could be affecting experimental results in terms of cell proliferation, invasion, or metastasis; or even overestimating the effects of some chemotherapeutic drugs on xenografted cells. In this review, we highlight and raise awareness regarding the different aspects of xenografting that need to be improved in order to mimic, in a more efficient way, the human tumor microenvironment, resulting in more robust and accurate in vivo results.
Collapse
Affiliation(s)
- Pablo Cabezas-Sáinz
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (P.C.-S.); (A.P.-L.)
| | - Alba Pensado-López
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (P.C.-S.); (A.P.-L.)
- Genomic Medicine Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Bruno Sáinz
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC-UAM, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, 28029 Madrid, Spain;
- Cancer Stem Cell and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer Area 3-Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (P.C.-S.); (A.P.-L.)
| |
Collapse
|
28
|
Illuminating Macrophage Contributions to Host-Pathogen Interactions In Vivo: the Power of Zebrafish. Infect Immun 2020; 88:IAI.00906-19. [PMID: 32179583 DOI: 10.1128/iai.00906-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Macrophages are a key cell type in innate immunity. Years of in vitro cell culture studies have unraveled myriad macrophage pathways that combat pathogens and demonstrated how pathogen effectors subvert these mechanisms. However, in vitro cell culture studies may not accurately reflect how macrophages fit into the context of an innate immune response in whole animals with multiple cell types and tissues. Larval zebrafish have emerged as an intermediate model of innate immunity and host-pathogen interactions to bridge the gap between cell culture studies and mammalian models. These organisms possess an innate immune system largely conserved with that of humans and allow state-of-the-art genetic and imaging techniques, all in the context of an intact organism. Using larval zebrafish, researchers are elucidating the function of macrophages in response to many different infections, including both bacterial and fungal pathogens. The goal of this review is to highlight studies in zebrafish that utilized live-imaging techniques to analyze macrophage activities in response to pathogens. Recent studies have explored the roles of specific pathways and mechanisms in macrophage killing ability, explored how pathogens subvert these responses, identified subsets of macrophages with differential microbicidal activities, and implicated macrophages as an intracellular niche for pathogen survival and trafficking. Research using this model continues to advance our understanding of how macrophages, and specific pathways inside these cells, fit into complex multicellular innate immune responses in vivo, providing important information on how pathogens evade these pathways and how we can exploit them for development of treatments against microbial infections.
Collapse
|
29
|
Schild Y, Mohamed A, Wootton EJ, Lewis A, Elks PM. Hif-1alpha stabilisation is protective against infection in zebrafish comorbid models. FEBS J 2020; 287:3925-3943. [PMID: 32485057 DOI: 10.1111/febs.15433] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/14/2020] [Accepted: 05/27/2020] [Indexed: 01/22/2023]
Abstract
Multi-drug-resistant tuberculosis is a worldwide problem, and there is an urgent need for host-derived therapeutic targets, circumventing emerging drug resistance. We have previously shown that hypoxia-inducible factor-1α (Hif-1α) stabilisation helps the host to clear mycobacterial infection via neutrophil activation. However, Hif-1α stabilisation has also been implicated in chronic inflammatory diseases caused by prolonged neutrophilic inflammation. Comorbid infection and inflammation can be found together in disease settings, and it remains unclear whether Hif-1α stabilisation would be beneficial in a holistic disease setting. Here, we set out to understand the effects of Hif-1α on neutrophil behaviour in a comorbid setting by combining two well-characterised in vivo zebrafish models - TB infection (Mycobacterium marinum infection) and sterile injury (tailfin transection). Using a local Mm infection near to the tailfin wound site caused neutrophil migration between the two sites that was reduced during Hif-1α stabilisation. During systemic Mm infection, wounding leads to increased infection burden, but the protective effect of Hif-1α stabilisation remains. Our data indicate that Hif-1α stabilisation alters neutrophil migration dynamics between comorbid sites and that the protective effect of Hif-1α against Mm is maintained in the presence of inflammation, highlighting its potential as a host-derived target against TB infection.
Collapse
Affiliation(s)
- Yves Schild
- The Bateson Centre, University of Sheffield, Sheffield, UK.,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.,Universität Duisburg Essen, Duisburg, Germany
| | - Abdirizak Mohamed
- The Bateson Centre, University of Sheffield, Sheffield, UK.,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Edward J Wootton
- The Bateson Centre, University of Sheffield, Sheffield, UK.,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Amy Lewis
- The Bateson Centre, University of Sheffield, Sheffield, UK.,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Philip M Elks
- The Bateson Centre, University of Sheffield, Sheffield, UK.,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| |
Collapse
|
30
|
Kent M, Sanders J, Spagnoli S, Al-Samarrie C, Murray K. Review of diseases and health management in zebrafish Danio rerio (Hamilton 1822) in research facilities. JOURNAL OF FISH DISEASES 2020; 43:637-650. [PMID: 32291793 PMCID: PMC7253333 DOI: 10.1111/jfd.13165] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/27/2020] [Accepted: 02/17/2020] [Indexed: 05/09/2023]
Abstract
The use of zebrafish (Danio rerio) in biomedical research has expanded at a tremendous rate over the last two decades. Along with increases in laboratories using this model, we are discovering new and important diseases. We review here the important pathogens and diseases based on some 20 years of research and findings from our diagnostic service at the NIH-funded Zebrafish International Resource Center. Descriptions of the present status of biosecurity programmes and diagnostic and treatment approaches are included. The most common and important diseases and pathogens are two parasites, Pseudoloma neurophilia and Pseudocapillaria tomentosa, and mycobacteriosis caused by Mycobacterium chelonae, M. marinum and M. haemophilum. Less common but deadly diseases are caused by Edwardsiella ictaluri and infectious spleen and kidney necrosis virus (ISKNV). Hepatic megalocytosis and egg-associated inflammation and fibroplasia are common, apparently non-infectious, in zebrafish laboratories. Water quality diseases include supersaturation and nephrocalcinosis. Common neoplasms are spindle cell sarcomas, ultimobranchial tumours, spermatocytic seminomas and a small-cell carcinoma that is caused by a transmissible agent. Despite the clear biosecurity risk, researchers continue to use fish from pet stores, and here, we document two novel coccidia associated with significant lesions in zebrafish from one of these stores.
Collapse
Affiliation(s)
- M.L Kent
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon 97331
| | - J.L. Sanders
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon 97331
| | - S. Spagnoli
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon 97331
| | - C.E. Al-Samarrie
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331
| | - K.N. Murray
- Zebrafish International Resource Center, Eugene, Oregon 97403
| |
Collapse
|
31
|
Kent ML, Sanders JL, Spagnoli S, Al-Samarrie CE, Murray KN. Review of diseases and health management in zebrafish Danio rerio (Hamilton 1822) in research facilities. JOURNAL OF FISH DISEASES 2020; 43:637-650. [PMID: 32291793 DOI: 10.1111/jfd.13165j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/27/2020] [Accepted: 02/17/2020] [Indexed: 05/22/2023]
Abstract
The use of zebrafish (Danio rerio) in biomedical research has expanded at a tremendous rate over the last two decades. Along with increases in laboratories using this model, we are discovering new and important diseases. We review here the important pathogens and diseases based on some 20 years of research and findings from our diagnostic service at the NIH-funded Zebrafish International Resource Center. Descriptions of the present status of biosecurity programmes and diagnostic and treatment approaches are included. The most common and important diseases and pathogens are two parasites, Pseudoloma neurophilia and Pseudocapillaria tomentosa, and mycobacteriosis caused by Mycobacterium chelonae, M. marinum and M. haemophilum. Less common but deadly diseases are caused by Edwardsiella ictaluri and infectious spleen and kidney necrosis virus (ISKNV). Hepatic megalocytosis and egg-associated inflammation and fibroplasia are common, apparently non-infectious, in zebrafish laboratories. Water quality diseases include supersaturation and nephrocalcinosis. Common neoplasms are spindle cell sarcomas, ultimobranchial tumours, spermatocytic seminomas and a small-cell carcinoma that is caused by a transmissible agent. Despite the clear biosecurity risk, researchers continue to use fish from pet stores, and here, we document two novel coccidia associated with significant lesions in zebrafish from one of these stores.
Collapse
Affiliation(s)
- M L Kent
- Department of Microbiology, Oregon State University, Corvallis, Oregon
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon
| | - J L Sanders
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon
| | - S Spagnoli
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon
| | - C E Al-Samarrie
- Department of Microbiology, Oregon State University, Corvallis, Oregon
| | - K N Murray
- Zebrafish International Resource Center, Eugene, Oregon
| |
Collapse
|
32
|
Model-Informed Drug Discovery and Development Strategy for the Rapid Development of Anti-Tuberculosis Drug Combinations. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The increasing emergence of drug-resistant tuberculosis requires new effective and safe drug regimens. However, drug discovery and development are challenging, lengthy and costly. The framework of model-informed drug discovery and development (MID3) is proposed to be applied throughout the preclinical to clinical phases to provide an informative prediction of drug exposure and efficacy in humans in order to select novel anti-tuberculosis drug combinations. The MID3 includes pharmacokinetic-pharmacodynamic and quantitative systems pharmacology models, machine learning and artificial intelligence, which integrates all the available knowledge related to disease and the compounds. A translational in vitro-in vivo link throughout modeling and simulation is crucial to optimize the selection of regimens with the highest probability of receiving approval from regulatory authorities. In vitro-in vivo correlation (IVIVC) and physiologically-based pharmacokinetic modeling provide powerful tools to predict pharmacokinetic drug-drug interactions based on preclinical information. Mechanistic or semi-mechanistic pharmacokinetic-pharmacodynamic models have been successfully applied to predict the clinical exposure-response profile for anti-tuberculosis drugs using preclinical data. Potential pharmacodynamic drug-drug interactions can be predicted from in vitro data through IVIVC and pharmacokinetic-pharmacodynamic modeling accounting for translational factors. It is essential for academic and industrial drug developers to collaborate across disciplines to realize the huge potential of MID3.
Collapse
|
33
|
Moreira JD, Koch BEV, van Veen S, Walburg KV, Vrieling F, Mara Pinto Dabés Guimarães T, Meijer AH, Spaink HP, Ottenhoff THM, Haks MC, Heemskerk MT. Functional Inhibition of Host Histone Deacetylases (HDACs) Enhances in vitro and in vivo Anti-mycobacterial Activity in Human Macrophages and in Zebrafish. Front Immunol 2020; 11:36. [PMID: 32117228 PMCID: PMC7008710 DOI: 10.3389/fimmu.2020.00036] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/08/2020] [Indexed: 12/27/2022] Open
Abstract
The rapid and persistent increase of drug-resistant Mycobacterium tuberculosis (Mtb) infections poses increasing global problems in combatting tuberculosis (TB), prompting for the development of alternative strategies including host-directed therapy (HDT). Since Mtb is an intracellular pathogen with a remarkable ability to manipulate host intracellular signaling pathways to escape from host defense, pharmacological reprogramming of the immune system represents a novel, potentially powerful therapeutic strategy that should be effective also against drug-resistant Mtb. Here, we found that host-pathogen interactions in Mtb-infected primary human macrophages affected host epigenetic features by modifying histone deacetylase (HDAC) transcriptomic levels. In addition, broad spectrum inhibition of HDACs enhanced the antimicrobial response of both pro-inflammatory macrophages (Mϕ1) and anti-inflammatory macrophages (Mϕ2), while selective inhibition of class IIa HDACs mainly decreased bacterial outgrowth in Mϕ2. Moreover, chemical inhibition of HDAC activity during differentiation polarized macrophages into a more bactericidal phenotype with a concomitant decrease in the secretion levels of inflammatory cytokines. Importantly, in vivo chemical inhibition of HDAC activity in Mycobacterium marinum-infected zebrafish embryos, a well-characterized animal model for tuberculosis, significantly reduced mycobacterial burden, validating our in vitro findings in primary human macrophages. Collectively, these data identify HDACs as druggable host targets for HDT against intracellular Mtb.
Collapse
Affiliation(s)
- Jôsimar D Moreira
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands.,Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Bjørn E V Koch
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Suzanne van Veen
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Kimberley V Walburg
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Frank Vrieling
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Tânia Mara Pinto Dabés Guimarães
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Herman P Spaink
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Mariëlle C Haks
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Matthias T Heemskerk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
34
|
Kan Y, Meng L, Xie L, Liu L, Dong W, Feng J, Yan Y, Zhao C, Peng G, Wang D, Lu M, Yang C, Niu C. Temporal modulation of host aerobic glycolysis determines the outcome of Mycobacterium marinum infection. FISH & SHELLFISH IMMUNOLOGY 2020; 96:78-85. [PMID: 31775059 DOI: 10.1016/j.fsi.2019.11.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Macrophages are the first-line host defense that the invading Mycobacterium tuberculosis (Mtb) encounters. It has been recently reported that host aerobic glycolysis was elevated post the infection by a couple of virulent mycobacterial species. However, whether this metabolic transition is required for host defense against intracellular pathogens and the underlying mechanisms remain to be further investigated. A pathogenic mycobacterial species, M. marinum, is genetically close to Mtb and was utilized in this study. Through analyzing cellular carbon metabolism of RAW 264.7 (a murine macrophage-like cell line) post M. marinum infection, a strong elevation of glycolysis was observed. Next, three glycolysis inhibitors were examined for their ability to inhibit mycobacterial proliferation inside RAW264.7 macrophages. Among them, a glucose analog, 2-deoxyglucose (2-DG) displayed a protective role against mycobacterial infection. Treatment with 2-DG at concentrations of 0.5 or 1 mM significantly induced autophagy and decreased the phagocytosis of M. marinum by macrophages. Moreover, 2-DG pre-treatment exerted a significantly protective effect on zebrafish larvae by limiting the proliferation of M. marinum, and such effect was correlated to tumor necrosis factor alpha (TNF-α) as the 2-DG pre-treatment increased the expression of TNF-α in both mouse peritoneal macrophages and zebrafish. On the contrary, the 2-DG treatment post infection did not restrain proliferation of M. marinum in WT zebrafish, and even accelerated bacterial replication in TNF-α-/- zebrafish. Together, modulation of glycolysis prior to infection boosts host immunity against M. marinum infection, indicating a potential intervention strategy to control mycobacterial infection.
Collapse
Affiliation(s)
- Yuanqing Kan
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lu Meng
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, China
| | - Lingling Xie
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lixia Liu
- Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes of Biologic Sciences (SIBS), Chinese Academy of Sciences, Shanghai, China
| | - Wenyue Dong
- Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes of Biologic Sciences (SIBS), Chinese Academy of Sciences, Shanghai, China
| | - Jintao Feng
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuchen Yan
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chao Zhao
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Gang Peng
- Institute of Brain Sciences, Fudan University, Shanghai, China
| | - Decheng Wang
- Medical College, China Three Gorges University, Yichang, 443002, China
| | - Mingfang Lu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chen Yang
- Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes of Biologic Sciences (SIBS), Chinese Academy of Sciences, Shanghai, China
| | - Chen Niu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
35
|
Hu W, Yang S, Shimada Y, Münch M, Marín-Juez R, Meijer AH, Spaink HP. Infection and RNA-seq analysis of a zebrafish tlr2 mutant shows a broad function of this toll-like receptor in transcriptional and metabolic control and defense to Mycobacterium marinum infection. BMC Genomics 2019; 20:878. [PMID: 31747871 PMCID: PMC6869251 DOI: 10.1186/s12864-019-6265-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
Background The function of Toll-like receptor 2 (TLR2) in host defense against pathogens, especially Mycobacterium tuberculosis (Mtb) is poorly understood. To investigate the role of TLR2 during mycobacterial infection, we analyzed the response of tlr2 zebrafish mutant larvae to infection with Mycobacterium marinum (Mm), a close relative to Mtb, as a model for tuberculosis. We measured infection phenotypes and transcriptome responses using RNA deep sequencing in mutant and control larvae. Results tlr2 mutant embryos at 2 dpf do not show differences in numbers of macrophages and neutrophils compared to control embryos. However, we found substantial changes in gene expression in these mutants, particularly in metabolic pathways, when compared with the heterozygote tlr2+/− control. At 4 days after Mm infection, the total bacterial burden and the presence of extracellular bacteria were higher in tlr2−/− larvae than in tlr2+/−, or tlr2+/+ larvae, whereas granuloma numbers were reduced, showing a function of Tlr2 in zebrafish host defense. RNAseq analysis of infected tlr2−/− versus tlr2+/− shows that the number of up-regulated and down-regulated genes in response to infection was greatly diminished in tlr2 mutants by at least 2 fold and 10 fold, respectively. Analysis of the transcriptome data and qPCR validation shows that Mm infection of tlr2 mutants leads to decreased mRNA levels of genes involved in inflammation and immune responses, including il1b, tnfb, cxcl11aa/ac, fosl1a, and cebpb. Furthermore, RNAseq analyses revealed that the expression of genes for Maf family transcription factors, vitamin D receptors, and Dicps proteins is altered in tlr2 mutants with or without infection. In addition, the data indicate a function of Tlr2 in the control of induction of cytokines and chemokines, such as the CXCR3-CXCL11 signaling axis. Conclusion The transcriptome and infection burden analyses show a function of Tlr2 as a protective factor against mycobacteria. Transcriptome analysis revealed tlr2-specific pathways involved in Mm infection, which are related to responses to Mtb infection in human macrophages. Considering its dominant function in control of transcriptional processes that govern defense responses and metabolism, the TLR2 protein can be expected to be also of importance for other infectious diseases and interactions with the microbiome.
Collapse
Affiliation(s)
- Wanbin Hu
- Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, the Netherlands
| | - Shuxin Yang
- Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, the Netherlands.,Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yasuhito Shimada
- Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, the Netherlands.,Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Magnus Münch
- Mathematical Institute, Leiden University, Leiden, the Netherlands.,Department of Epidemiology & Biostatistics, Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Rubén Marín-Juez
- Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, the Netherlands.,Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| | - Annemarie H Meijer
- Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, the Netherlands
| | - Herman P Spaink
- Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, the Netherlands.
| |
Collapse
|
36
|
The Case for Modeling Human Infection in Zebrafish. Trends Microbiol 2019; 28:10-18. [PMID: 31604611 DOI: 10.1016/j.tim.2019.08.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/19/2019] [Accepted: 08/16/2019] [Indexed: 12/25/2022]
Abstract
Zebrafish (Danio rerio) larvae are widely recognized for studying host-pathogen interactions in vivo because of their optical transparency, genetic manipulability, and translational potential. The development of the zebrafish immune system is well understood, thereby use of larvae enables investigation solely in the context of innate immunity. As a result, infection of zebrafish with natural fish pathogens including Mycobacterium marinum has significantly advanced our understanding of bacterial pathogenesis and vertebrate host defense. However, new work using a variety of human pathogens (bacterial, viral, and fungal) has illuminated the versatility of the zebrafish infection model, revealing unexpected and important concepts underlying infectious disease. We propose that this knowledge can inform studies in higher animal models and help to develop treatments to combat human infection.
Collapse
|
37
|
Lewis A, Elks PM. Hypoxia Induces Macrophage tnfa Expression via Cyclooxygenase and Prostaglandin E2 in vivo. Front Immunol 2019; 10:2321. [PMID: 31611882 PMCID: PMC6776637 DOI: 10.3389/fimmu.2019.02321] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/13/2019] [Indexed: 01/25/2023] Open
Abstract
Macrophage phenotypes are poorly characterized in disease systems in vivo. Appropriate macrophage activation requires complex coordination of local microenvironmental cues and cytokine signaling. If the molecular mechanisms underpinning macrophage activation were better understood, macrophages could be pharmacologically tuned during disease situations. Here, using zebrafish tnfa:GFP transgenic lines as in vivo readouts, we show that physiological hypoxia and stabilization of Hif-1α promotes macrophage tnfa expression. We demonstrate a new mechanism of Hif-1α-induced macrophage tnfa expression via a cyclooxygenase/prostaglandin E2 axis. These findings uncover a macrophage HIF/COX/TNF axis that links microenvironmental cues to macrophage phenotype, with important implications during inflammation, infection, and cancer, where hypoxia is a common microenvironmental feature and where cyclooxygenase and TNF are major mechanistic players.
Collapse
Affiliation(s)
| | - Philip M. Elks
- The Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
38
|
Murdoch CC, Rawls JF. Commensal Microbiota Regulate Vertebrate Innate Immunity-Insights From the Zebrafish. Front Immunol 2019; 10:2100. [PMID: 31555292 PMCID: PMC6742977 DOI: 10.3389/fimmu.2019.02100] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022] Open
Abstract
Microbial communities populate the mucosal surfaces of all animals. Metazoans have co-evolved with these microorganisms, forming symbioses that affect the molecular and cellular underpinnings of animal physiology. These microorganisms, collectively referred to as the microbiota, are found on many distinct body sites (including the skin, nasal cavity, and urogenital tract), however the most densely colonized host tissue is the intestinal tract. Although spatially confined within the intestinal lumen, the microbiota and associated products shape the development and function of the host immune system. Studies comparing gnotobiotic animals devoid of any microbes (germ free) with counterparts colonized with selected microbial communities have demonstrated that commensal microorganisms are required for the proper development and function of the immune system at homeostasis and following infectious challenge or injury. Animal model systems have been essential for defining microbiota-dependent shifts in innate immune cell function and intestinal physiology during infection and disease. In particular, the zebrafish has emerged as a powerful vertebrate model organism with unparalleled capacity for in vivo imaging, a full complement of genetic approaches, and facile methods to experimentally manipulate microbial communities. Here we review key insights afforded by the zebrafish into the impact of microbiota on innate immunity, including evidence that the perception of and response to the microbiota is evolutionarily conserved. We also highlight opportunities to strengthen the zebrafish model system, and to gain new insights into microbiota-innate immune interactions that would be difficult to achieve in mammalian models.
Collapse
Affiliation(s)
| | - John F. Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
39
|
Tan J, Yang D, Wang Z, Zheng X, Zhang Y, Liu Q. EvpP inhibits neutrophils recruitment via Jnk-caspy inflammasome signaling in vivo. FISH & SHELLFISH IMMUNOLOGY 2019; 92:851-860. [PMID: 31129187 DOI: 10.1016/j.fsi.2019.05.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
Innate immunity is regulated by phagocytic cells and is critical for host control of bacterial infection. In many bacteria, the type VI secretion system (T6SS) can affect bacterial virulence in certain environments, but little is known about the mechanisms underlying T6SS regulation of innate immune responses during infection in vivo. Here, we developed an infection model by microinjecting bacteria into the tail vein muscle of 3-day-post-fertilized zebrafish larvae, and found that both macrophages and neutrophils are essential for bacterial clearance. Further study revealed that EvpP plays a critical role in promoting the pathogenesis of Edwardsiella piscicida (E. piscicida) via inhibiting the phosphorylation of Jnk signaling to reduce the expression of chemokine (CXC motif) ligand 8 (cxcl8a), matrix metallopeptidase 13 (mmp13) and interleukin-1β (IL-1β) in vivo. Subsequently, by utilizing Tg (mpo:eGFP+/+) zebrafish larvae for E. piscicida infection, we found that the EvpP-inhibited Jnk-caspy (caspase-1 homolog) inflammasome signaling axis significantly suppressed the recruitment of neutrophils to infection sites, and the caspy- or IL-1β-morpholino (MO) knockdown larvae were more susceptible to infection and failed to restrict bacterial colonization in vivo. taken together, this interaction improves our understanding about the complex and contextual role of a bacterial T6SS effector in modulating the action of neutrophils during infection, and offers new insights into the warfare between bacterial weapons and host immunological surveillance.
Collapse
Affiliation(s)
- Jinchao Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Zhuang Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xin Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China.
| |
Collapse
|
40
|
Zebrafish in Inflammasome Research. Cells 2019; 8:cells8080901. [PMID: 31443239 PMCID: PMC6721725 DOI: 10.3390/cells8080901] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammasomes are cytosolic multiprotein complexes that regulate inflammatory responses to danger stimuli and infection, and their dysregulation is associated with an increasing number of autoinflammatory diseases. In recent years, zebrafish models of human pathologies to study inflammasome function in vivo have started to emerge. Here, we discuss inflammasome research in zebrafish in light of current knowledge about mammalian inflammasomes. We summarize the evolutionary conservation of inflammasome components between zebrafish and mammals, highlighting the similarities and possible divergence in functions of these components. We present new insights into the evolution of the caspase-1 family in the teleost lineage, and how its evolutionary origin may help contextualize its functions. We also review existing infectious and non-infectious models in zebrafish in which inflammasomes have been directly implicated. Finally, we discuss the advantages of zebrafish larvae for intravital imaging of inflammasome activation and summarize available tools that will help to advance inflammasome research.
Collapse
|
41
|
Rougeot J, Torraca V, Zakrzewska A, Kanwal Z, Jansen HJ, Sommer F, Spaink HP, Meijer AH. RNAseq Profiling of Leukocyte Populations in Zebrafish Larvae Reveals a cxcl11 Chemokine Gene as a Marker of Macrophage Polarization During Mycobacterial Infection. Front Immunol 2019; 10:832. [PMID: 31110502 PMCID: PMC6499218 DOI: 10.3389/fimmu.2019.00832] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/29/2019] [Indexed: 12/13/2022] Open
Abstract
Macrophages are phagocytic cells from the innate immune system, which forms the first line of host defense against invading pathogens. These highly dynamic immune cells can adopt specific functional phenotypes, with the pro-inflammatory M1 and anti-inflammatory M2 polarization states as the two extremes. Recently, the process of macrophage polarization during inflammation has been visualized by real time imaging in larvae of the zebrafish. This model organism has also become widely used to study macrophage responses to microbial pathogens. To support the increasing use of zebrafish in macrophage biology, we set out to determine the complete transcriptome of zebrafish larval macrophages. We studied the specificity of the macrophage signature compared with other larval immune cells and the macrophage-specific expression changes upon infection. We made use of the well-established mpeg1, mpx, and lck fluorescent reporter lines to sort and sequence the transcriptome of larval macrophages, neutrophils, and lymphoid progenitor cells, respectively. Our results provide a complete dataset of genes expressed in these different immune cell types and highlight their similarities and differences. Major differences between the macrophage and neutrophil signatures were found within the families of proteinases. Furthermore, expression of genes involved in antigen presentation and processing was specifically detected in macrophages, while lymphoid progenitors showed expression of genes involved in macrophage activation. Comparison with datasets of in vitro polarized human macrophages revealed that zebrafish macrophages express a strongly homologous gene set, comprising both M1 and M2 markers. Furthermore, transcriptome analysis of low numbers of macrophages infected by the intracellular pathogen Mycobacterium marinum revealed that infected macrophages change their transcriptomic response by downregulation of M2-associated genes and overexpression of specific M1-associated genes. Among the infection-induced genes, a homolog of the human CXCL11 chemokine gene, cxcl11aa, stood out as the most strongly overexpressed M1 marker. Upregulation of cxcl11aa in Mycobacterium-infected macrophages was found to require the function of Myd88, a critical adaptor molecule in the Toll-like and interleukin 1 receptor pathways that are central to pathogen recognition and activation of the innate immune response. Altogether, our data provide a valuable data mining resource to support infection and inflammation research in the zebrafish model.
Collapse
Affiliation(s)
- Julien Rougeot
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Vincenzo Torraca
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Ania Zakrzewska
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Zakia Kanwal
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | | | - Frida Sommer
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Herman P Spaink
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | | |
Collapse
|
42
|
Zhang R, Varela M, Vallentgoed W, Forn-Cuni G, van der Vaart M, Meijer AH. The selective autophagy receptors Optineurin and p62 are both required for zebrafish host resistance to mycobacterial infection. PLoS Pathog 2019; 15:e1007329. [PMID: 30818338 PMCID: PMC6413957 DOI: 10.1371/journal.ppat.1007329] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/12/2019] [Accepted: 01/24/2019] [Indexed: 12/22/2022] Open
Abstract
Mycobacterial pathogens are the causative agents of chronic infectious diseases like tuberculosis and leprosy. Autophagy has recently emerged as an innate mechanism for defense against these intracellular pathogens. In vitro studies have shown that mycobacteria escaping from phagosomes into the cytosol are ubiquitinated and targeted by selective autophagy receptors. However, there is currently no in vivo evidence for the role of selective autophagy receptors in defense against mycobacteria, and the importance of autophagy in control of mycobacterial diseases remains controversial. Here we have used Mycobacterium marinum (Mm), which causes a tuberculosis-like disease in zebrafish, to investigate the function of two selective autophagy receptors, Optineurin (Optn) and SQSTM1 (p62), in host defense against a mycobacterial pathogen. To visualize the autophagy response to Mm in vivo, optn and p62 zebrafish mutant lines were generated in the background of a GFP-Lc3 autophagy reporter line. We found that loss-of-function mutation of optn or p62 reduces autophagic targeting of Mm, and increases susceptibility of the zebrafish host to Mm infection. Transient knockdown studies confirmed the requirement of both selective autophagy receptors for host resistance against Mm infection. For gain-of-function analysis, we overexpressed optn or p62 by mRNA injection and found this to increase the levels of GFP-Lc3 puncta in association with Mm and to reduce the Mm infection burden. Taken together, our results demonstrate that both Optn and p62 are required for autophagic host defense against mycobacterial infection and support that protection against tuberculosis disease may be achieved by therapeutic strategies that enhance selective autophagy.
Collapse
Affiliation(s)
- Rui Zhang
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Monica Varela
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Wies Vallentgoed
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Gabriel Forn-Cuni
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | | | | |
Collapse
|
43
|
Intelectin 3 is dispensable for resistance against a mycobacterial infection in zebrafish (Danio rerio). Sci Rep 2019; 9:995. [PMID: 30700796 PMCID: PMC6353920 DOI: 10.1038/s41598-018-37678-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/07/2018] [Indexed: 12/20/2022] Open
Abstract
Tuberculosis is a multifactorial bacterial disease, which can be modeled in the zebrafish (Danio rerio). Abdominal cavity infection with Mycobacterium marinum, a close relative of Mycobacterium tuberculosis, leads to a granulomatous disease in adult zebrafish, which replicates the different phases of human tuberculosis, including primary infection, latency and spontaneous reactivation. Here, we have carried out a transcriptional analysis of zebrafish challenged with low-dose of M. marinum, and identified intelectin 3 (itln3) among the highly up-regulated genes. In order to clarify the in vivo significance of Itln3 in immunity, we created nonsense itln3 mutant zebrafish by CRISPR/Cas9 mutagenesis and analyzed the outcome of M. marinum infection in both zebrafish embryos and adult fish. The lack of functional itln3 did not affect survival or the mycobacterial burden in the zebrafish. Furthermore, embryonic survival was not affected when another mycobacterial challenge responsive intelectin, itln1, was silenced using morpholinos either in the WT or itln3 mutant fish. In addition, M. marinum infection in dexamethasone-treated adult zebrafish, which have lowered lymphocyte counts, resulted in similar bacterial burden in both WT fish and homozygous itln3 mutants. Collectively, although itln3 expression is induced upon M. marinum infection in zebrafish, it is dispensable for protective mycobacterial immune response.
Collapse
|
44
|
Abstract
Tuberculosis is still a global health burden. It is caused by Mycobacterium tuberculosis which afflicts around one third of the world's population and costs around 1.3 million people their lives every year. Bacillus Calmette-Guerin vaccine is inefficient to prevent overt infection. Additionally, the lengthy inconvenient course of treatment, along with the raising issue of antimicrobial resistance, result in incomplete eradication of this infectious disease. The lack of proper animal models that replicate the latent and active courses of human tuberculosis infection remains one of the main reasons behind the poor advancement in tuberculosis research. Danio rerio, commonly known as zebrafish, is catching more attention as an animal model in tuberculosis research field. This shift is based on the histological and pathological similarities between Mycobacterium marinum infection in zebrafish and Mycobacterium tuberculosis infection in humans. Being small, cheap, transparent, and easy to handle have added further advantages to the use of zebrafish model. Besides better understanding of the pathogenesis of tuberculosis, Mycobacterium marinum infected zebrafish model is useful for evaluating novel vaccines against human tuberculosis, high throughput small molecule screening, repurposing established drugs with possible antitubercular activity, and assessing novel antituberculars for hepatotoxicity.
Collapse
Affiliation(s)
- Ghada Bouz
- a Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove , Charles University , Hradec Kralove , Czech Republic
| | - Nada Al Hasawi
- b Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Kuwait University , Kuwait , State of Kuwait
| |
Collapse
|
45
|
Ogryzko NV, Lewis A, Wilson HL, Meijer AH, Renshaw SA, Elks PM. Hif-1α-Induced Expression of Il-1β Protects against Mycobacterial Infection in Zebrafish. THE JOURNAL OF IMMUNOLOGY 2018; 202:494-502. [PMID: 30552162 PMCID: PMC6321843 DOI: 10.4049/jimmunol.1801139] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/08/2018] [Indexed: 12/30/2022]
Abstract
Drug-resistant mycobacteria are a rising problem worldwide. There is an urgent need to understand the immune response to tuberculosis to identify host targets that, if targeted therapeutically, could be used to tackle these currently untreatable infections. In this study we use an Il-1β fluorescent transgenic line to show that there is an early innate immune proinflammatory response to well-established zebrafish models of inflammation and Mycobacterium marinum infection. We demonstrate that host-derived hypoxia signaling, mediated by the Hif-1α transcription factor, can prime macrophages with increased levels of Il-1β in the absence of infection, upregulating neutrophil antimicrobial NO production, leading to greater protection against infection. Our data link Hif-1α to proinflammatory macrophage Il-1β transcription in vivo during early mycobacterial infection and importantly highlight a host protective mechanism, via antimicrobial NO, that decreases disease outcomes and that could be targeted therapeutically to stimulate the innate immune response to better deal with infections.
Collapse
Affiliation(s)
- Nikolay V Ogryzko
- The Bateson Centre, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom.,Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Amy Lewis
- The Bateson Centre, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom.,Department of Infection and Immunity and Cardiovascular Disease, University of Sheffield, Western Bank, Sheffield S10 2RX, United Kingdom; and
| | - Heather L Wilson
- Department of Infection and Immunity and Cardiovascular Disease, University of Sheffield, Western Bank, Sheffield S10 2RX, United Kingdom; and
| | - Annemarie H Meijer
- Institute of Biology, Leiden University, 2333 CC Leiden, the Netherlands
| | - Stephen A Renshaw
- The Bateson Centre, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom.,Department of Infection and Immunity and Cardiovascular Disease, University of Sheffield, Western Bank, Sheffield S10 2RX, United Kingdom; and
| | - Philip M Elks
- The Bateson Centre, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom; .,Department of Infection and Immunity and Cardiovascular Disease, University of Sheffield, Western Bank, Sheffield S10 2RX, United Kingdom; and
| |
Collapse
|
46
|
Li Y, Spiropoulos J, Cooley W, Khara JS, Gladstone CA, Asai M, Bossé JT, Robertson BD, Newton SM, Langford PR. Galleria mellonella - a novel infection model for the Mycobacterium tuberculosis complex. Virulence 2018; 9:1126-1137. [PMID: 30067135 PMCID: PMC6086298 DOI: 10.1080/21505594.2018.1491255] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Animal models have long been used in tuberculosis research to understand disease pathogenesis and to evaluate novel vaccine candidates and anti-mycobacterial drugs. However, all have limitations and there is no single animal model which mimics all the aspects of mycobacterial pathogenesis seen in humans. Importantly mice, the most commonly used model, do not normally form granulomas, the hallmark of tuberculosis infection. Thus there is an urgent need for the development of new alternative in vivo models. The insect larvae, Galleria mellonella has been increasingly used as a successful, simple, widely available and cost-effective model to study microbial infections. Here we report for the first time that G. mellonella can be used as an infection model for members of the Mycobacterium tuberculosis complex. We demonstrate a dose-response for G. mellonella survival infected with different inocula of bioluminescent Mycobacterium bovis BCG lux, and demonstrate suppression of mycobacterial luminesence over 14 days. Histopathology staining and transmission electron microscopy of infected G. mellonella phagocytic haemocytes show internalization and aggregation of M. bovis BCG lux in granuloma-like structures, and increasing accumulation of lipid bodies within M. bovis BCG lux over time, characteristic of latent tuberculosis infection. Our results demonstrate that G. mellonella can act as a surrogate host to study the pathogenesis of mycobacterial infection and shed light on host-mycobacteria interactions, including latent tuberculosis infection.
Collapse
Affiliation(s)
- Yanwen Li
- a Section of Paediatric Infectious Diseases and Allergy, Department of Medicine , Imperial College London , London , UK
| | - John Spiropoulos
- b Department of Pathology , Animal and Plant Health Agency , Addlestone , UK
| | - William Cooley
- b Department of Pathology , Animal and Plant Health Agency , Addlestone , UK
| | - Jasmeet Singh Khara
- a Section of Paediatric Infectious Diseases and Allergy, Department of Medicine , Imperial College London , London , UK.,c Department of Pharmacy , National University of Singapore , Singapore
| | - Camilla A Gladstone
- a Section of Paediatric Infectious Diseases and Allergy, Department of Medicine , Imperial College London , London , UK
| | - Masanori Asai
- a Section of Paediatric Infectious Diseases and Allergy, Department of Medicine , Imperial College London , London , UK
| | - Janine T Bossé
- a Section of Paediatric Infectious Diseases and Allergy, Department of Medicine , Imperial College London , London , UK
| | - Brian D Robertson
- d MRC Centre for Molecular Bacteriology and Infection, Department of Medicine , Imperial College London , London , UK
| | - Sandra M Newton
- a Section of Paediatric Infectious Diseases and Allergy, Department of Medicine , Imperial College London , London , UK
| | - Paul R Langford
- a Section of Paediatric Infectious Diseases and Allergy, Department of Medicine , Imperial College London , London , UK
| |
Collapse
|
47
|
Fenaroli F, Repnik U, Xu Y, Johann K, Van Herck S, Dey P, Skjeldal FM, Frei DM, Bagherifam S, Kocere A, Haag R, De Geest BG, Barz M, Russell DG, Griffiths G. Enhanced Permeability and Retention-like Extravasation of Nanoparticles from the Vasculature into Tuberculosis Granulomas in Zebrafish and Mouse Models. ACS NANO 2018; 12:8646-8661. [PMID: 30081622 DOI: 10.1021/acsnano.8b04433] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The enhanced permeability and retention (EPR) effect is the only described mechanism enabling nanoparticles (NPs) flowing in blood to reach tumors by a passive targeting mechanism. Here, using the transparent zebrafish model infected with Mycobacterium marinum we show that an EPR-like process also occurs allowing different types of NPs to extravasate from the vasculature to reach granulomas that assemble during tuberculosis (TB) infection. PEGylated liposomes and other NP types cross endothelial barriers near infection sites within minutes after injection and accumulate close to granulomas. Although ∼100 and 190 nm NPs concentrated most in granulomas, even ∼700 nm liposomes reached these infection sites in significant numbers. We show by confocal microscopy that NPs can concentrate in small aggregates in foci on the luminal side of the endothelium adjacent to the granulomas. These spots are connected to larger foci of NPs on the ablumenal side of these blood vessels. EM analysis suggests that NPs cross the endothelium via the paracellular route. PEGylated NPs also accumulated efficiently in granulomas in a mouse model of TB infection with Mycobacterium tuberculosis, arguing that the zebrafish embryo model can be used to predict NP behavior in mammalian hosts. In earlier studies we and others showed that uptake of NPs by macrophages that are attracted to infection foci is one pathway for NPs to reach TB granulomas. This study reveals that when NPs are designed to avoid macrophage uptake, they can also efficiently target granulomas via an alternative mechanism that resembles EPR.
Collapse
Affiliation(s)
- Federico Fenaroli
- Department of Biosciences , University of Oslo , Blindernveien 31 , 0371 Oslo , Norway
| | - Urska Repnik
- Department of Biosciences , University of Oslo , Blindernveien 31 , 0371 Oslo , Norway
| | - Yitian Xu
- Department of Microbiology and Immunology , Cornell University College of Veterinary Medicine , C5 109 VMC, Ithaca , New York 14853 , United States
| | - Kerstin Johann
- Institute for Organic Chemistry , Johannes Gutenberg-University Mainz , Duesbergweg 10-14 , 55099 Mainz , Germany
| | - Simon Van Herck
- Faculty of Pharmaceutical Sciences, Department of Pharmaceutics , Ghent University , Ottergemsesteenweg 460 , 9000 Ghent , Belgium
| | - Pradip Dey
- Institute of Chemistry and Biochemistry-Organic Chemistry , Free University of Berlin , Takustrasse 3 , 14195 Berlin , Germany
| | | | - Dominik M Frei
- Department of Biosciences , University of Oslo , Blindernveien 31 , 0371 Oslo , Norway
| | - Shahla Bagherifam
- Department of Radiation Biology, Institute for Cancer Research , The Norwegian Radium Hospital , Montebello, N-0310 Oslo , Norway
| | - Agnese Kocere
- Department of Biosciences , University of Oslo , Blindernveien 31 , 0371 Oslo , Norway
| | - Rainer Haag
- Institute of Chemistry and Biochemistry-Organic Chemistry , Free University of Berlin , Takustrasse 3 , 14195 Berlin , Germany
| | - Bruno G De Geest
- Faculty of Pharmaceutical Sciences, Department of Pharmaceutics , Ghent University , Ottergemsesteenweg 460 , 9000 Ghent , Belgium
| | - Matthias Barz
- Institute for Organic Chemistry , Johannes Gutenberg-University Mainz , Duesbergweg 10-14 , 55099 Mainz , Germany
| | - David G Russell
- Department of Microbiology and Immunology , Cornell University College of Veterinary Medicine , C5 109 VMC, Ithaca , New York 14853 , United States
| | - Gareth Griffiths
- Department of Biosciences , University of Oslo , Blindernveien 31 , 0371 Oslo , Norway
| |
Collapse
|
48
|
Palmer MV. Emerging Understanding of Tuberculosis and the Granuloma by Comparative Analysis in Humans, Cattle, Zebrafish, and Nonhuman Primates. Vet Pathol 2018; 55:8-10. [PMID: 29254474 DOI: 10.1177/0300985817712795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Mitchell V Palmer
- 1 Infectious Bacterial Diseases of Livestock, National Animal Disease Center, United States Department of Agriculture, Ames, IA, USA
| |
Collapse
|
49
|
Lai LY, Lin TL, Chen YY, Hsieh PF, Wang JT. Role of the Mycobacterium marinum ESX-1 Secretion System in Sliding Motility and Biofilm Formation. Front Microbiol 2018; 9:1160. [PMID: 29899738 PMCID: PMC5988883 DOI: 10.3389/fmicb.2018.01160] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/14/2018] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium marinum is a close relative of Mycobacterium tuberculosis that can cause systemic tuberculosis-like infections in ectotherms and skin infections in humans. Sliding motility correlates with biofilm formation and virulence in most bacteria. In this study, we used a sliding motility assay to screen 2,304 transposon mutants of M. marinum NTUH-M6885 and identified five transposon mutants with decreased sliding motility. Transposons that interrupted the type VII secretion system (T7SS) ESX-1-related genes, espE (mmar_5439), espF (mmar_5440), and eccA1 (mmar_5443), were present in 3 mutants. We performed reverse-transcription polymerase chain reaction to verify genes from mmar_5438 to mmar_5450, which were found to belong to a single transcriptional unit. Deletion mutants of espE, espF, espG (mmar_5441), and espH (mmar_5442) displayed significant attenuation regarding sliding motility and biofilm formation. M. marinum NTUH-M6885 possesses a functional ESX-1 secretion system. However, deletion of espG or espH resulted in slightly decreased secretion of EsxB (which is also known as CFP-10). Thus, the M. marinum ESX-1 secretion system mediates sliding motility and is crucial for biofilm formation. These data provide new insight into M. marinum biofilm formation.
Collapse
Affiliation(s)
- Li-Yin Lai
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tzu-Lung Lin
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Yin Chen
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pei-Fang Hsieh
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jin-Town Wang
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
50
|
Gerry CJ, Schreiber SL. Chemical probes and drug leads from advances in synthetic planning and methodology. Nat Rev Drug Discov 2018; 17:333-352. [PMID: 29651105 PMCID: PMC6707071 DOI: 10.1038/nrd.2018.53] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Screening of small-molecule libraries is a productive method for identifying both chemical probes of disease-related targets and potential starting points for drug discovery. In this article, we focus on strategies such as diversity-oriented synthesis that aim to explore novel areas of chemical space efficiently by populating small-molecule libraries with compounds containing structural features that are typically under-represented in commercially available screening collections. Drawing from more than a decade's worth of examples, we highlight how the design and synthesis of such libraries have been enabled by modern synthetic chemistry, and we illustrate the impact of the resultant chemical probes and drug leads in a wide range of diseases.
Collapse
Affiliation(s)
- Christopher J Gerry
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- The Broad Institute of Harvard & MIT, Cambridge, MA, USA
| | - Stuart L Schreiber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- The Broad Institute of Harvard & MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| |
Collapse
|