1
|
Xi Z, Shu L, Xiao L, Fang X, Dai M, Wang J, Wu Y, Zhang J, Bao M. Macrophage NLRP3 inflammasome mediates the effects of sympathetic nerve on cardiac remodeling in obese rats. Mol Cell Endocrinol 2025; 596:112417. [PMID: 39557185 DOI: 10.1016/j.mce.2024.112417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/02/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024]
Abstract
Obesity-associated cardiac remodeling is characterized by cardiac sympathetic nerve over-activation and pro-inflammatory macrophage infiltration. We identified norepinephrine (NE), a sympathetic neurotransmitter, as a pro-inflammatory effector to activate macrophage NLRP3 inflammasome, which contributed to cardiac inflammation. In vivo, Sprague-Dawley (SD) rats were fed a high-fat diet (HFD) for 12 weeks to establish obese rat models. Obese rats exhibited marked cardiac hypertrophy compared to normal rats. The expression of NLRP3 and interleukin (IL)-1β was upregulated, accompanied by CD68+NLRP3+ macrophage infiltration in the hearts of the obese rats. The obese rats also showed increased sympathetic nerve activity. β-adrenergic receptor (AR) inhibition mitigated these changes. In vitro, sympathetic neurotransmitter NE significantly exacerbated palmitic acid (PA)-induced macrophage polarization toward pro-inflammatory type and NLRP3 inflammasome activation in THP-1 macrophages. It was further found that the pro-inflammatory role of NE is dependent on the activation of protein kinase A (PKA) and subsequently inhibition of β-arrestin2, which is an important regulator of the nuclear factor-kappa B (NF-κB) pathway. This study identifies the neuro-immune axis as an important mediator in obesity-associated cardiac remodeling. Targeting the neuro-immune system may open therapeutic opportunities for the treatment of cardiac remodeling in obesity.
Collapse
Affiliation(s)
- Zhaoqing Xi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Ling Shu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Lingling Xiao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Xuesheng Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Mingyan Dai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jing Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China; State Key Laboratory of Cardiovascular Disease, Heart Failure Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100000, China
| | - Yuan Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Junxia Zhang
- Department of Endocrinology, Taikang Tongji (Wuhan) Hospital, Wuhan, Hubei, 430050, China.
| | - Mingwei Bao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| |
Collapse
|
2
|
Zeng F, Shao Y, Wu J, Luo J, Yue Y, Shen Y, Wang Y, Shi Y, Wu D, Cata JP, Yang S, Zhang H, Miao C. Tumor metastasis and recurrence: The role of perioperative NETosis. Cancer Lett 2024; 611:217413. [PMID: 39725150 DOI: 10.1016/j.canlet.2024.217413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/11/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Although surgical resection of tumor mass remains the mainstay of curative therapeutic management for solid tumors, accumulating studies suggest that these procedures promote tumor recurrence and metastasis. Regarded as the first immune cells to fight against infectious or inflammatory insults from surgery, neutrophils along with their ability of neutrophil extracellular traps (NETs) production has attracted much attention. A growing body of evidence suggests that NETs promote cancer metastasis by stimulating various stages, including local invasion, colonization, and growth. Therefore, we discussed the mechanism of NETosis induced by surgical stress and tumor cells, and the contribution of NETs on tumor metastasis: aid in the tumor cell migration and proliferation, evasion of immune surveillance, circulating tumor cell adhesion and establishment of a metastatic niche. Lastly, we summarized existing NET-targeting interventions, offering recent insights into potential targets for clinical intervention.
Collapse
Affiliation(s)
- Fu Zeng
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yuwen Shao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Jingyi Wu
- Department of Anesthesiology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Jingwen Luo
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ying Yue
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yang Shen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yanghanzhao Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yuxin Shi
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Dan Wu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Juan P Cata
- Department of Anesthesiology and Perioperative Medicine, The University of Texas-MD Anderson Cancer Center, Houston, TX, USA; Anesthesiology and Surgical Oncology Research Group, Houston, TX, USA
| | - Shuofei Yang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Pujian Road 160, Shanghai, 200127, China.
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| |
Collapse
|
3
|
Dong ZK, Wang YF, Li WP, Jin WL. Neurobiology of cancer: Adrenergic signaling and drug repurposing. Pharmacol Ther 2024; 264:108750. [PMID: 39527999 DOI: 10.1016/j.pharmthera.2024.108750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Cancer neuroscience, as an emerging converging discipline, provides us with new perspectives on the interactions between the nervous system and cancer progression. As the sympathetic nervous system, in particular adrenergic signaling, plays an important role in the regulation of tumor activity at every hierarchical level of life, from the tumor cell to the tumor microenvironment, and to the tumor macroenvironment, it is highly desirable to dissect its effects. Considering the far-reaching implications of drug repurposing for antitumor drug development, such a large number of adrenergic receptor antagonists on the market has great potential as one of the means of antitumor therapy, either as primary or adjuvant therapy. Therefore, this review aims to summarize the impact of adrenergic signaling on cancer development and to assess the status and prospects of intervening in adrenergic signaling as a therapeutic tool against tumors.
Collapse
Affiliation(s)
- Zi-Kai Dong
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China
| | - Yong-Fei Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China
| | - Wei-Ping Li
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Department of Urology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Wei-Lin Jin
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
4
|
Zhou Y, Lin X, Jiao Y, Yang D, Li Z, Zhu L, Li Y, Yin S, Li Q, Xu S, Tang D, Zhang S, Yu W, Gao P, Yang L. A brain-to-liver signal mediates the inhibition of liver regeneration under chronic stress in mice. Nat Commun 2024; 15:10361. [PMID: 39609433 PMCID: PMC11605118 DOI: 10.1038/s41467-024-54827-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
As the ability of liver regeneration is pivotal for liver disease patients, it will be of high significance and importance to identify the missing piece of the jigsaw influencing the liver regeneration. Here, we report that chronic stress impairs the liver regeneration capacity after partial hepatectomy with increased mortality in male mice. Anatomical tracing and functional mapping identified a neural circuit from noradrenergic neurons in the locus coeruleus (LC) to serotonergic neurons in the rostral medullary raphe region (rMR), which critically contributes to the inhibition of liver regeneration under chronic stress. In addition, hepatic sympathetic nerves were shown to be critical for the inhibitory effects on liver regeneration by releasing norepinephrine (NE), which acts on adrenergic receptor β2 (ADRB2) to block the proinflammatory macrophage activation. Collectively, we reveal a "brain-to-liver" neural connection that mediates chronic stress-evoked deficits in liver regeneration, thus shedding important insights into hepatic disease therapy.
Collapse
Affiliation(s)
- Yanyu Zhou
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Xiaoqi Lin
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yingfu Jiao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Dan Yang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Zhengyu Li
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Ling Zhu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yixuan Li
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Suqing Yin
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Quanfu Li
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Saihong Xu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Dan Tang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Song Zhang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| | - Po Gao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| | - Liqun Yang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| |
Collapse
|
5
|
Walther LM, Gideon A, Sauter C, Leist M, Wirtz PH. Peripheral Blood Leukocyte Subpopulation Changes in Reaction to an Acute Psychosocial Stressor as Compared to an Active Placebo-Stressor in Healthy Young Males: Mediating Effects of Major Stress-Reactive Endocrine Parameters. Cells 2024; 13:1941. [PMID: 39682690 DOI: 10.3390/cells13231941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Psychosocial stress has been proposed to induce a redistribution of immune cells, but a comparison with an active placebo-psychosocial stress control condition is lacking so far. We investigated immune cell redistribution due to psychosocial stress compared to that resulting from an active placebo-psychosocial stress but otherwise identical control condition. Moreover, we tested for mediating effects of endocrine parameters and blood volume changes. The final study sample comprised 64 healthy young men who underwent either a psychosocial stress condition (Trier Social Stress Test; TSST; n = 38) or an active placebo-psychosocial stress control condition (PlacTSST; n = 26). Immune cell counts and hemoglobin, epinephrine, norepinephrine, ACTH, renin, and aldosterone levels, as well as those of saliva cortisol, were determined before and up to 30 min after the TSST/PlacTSST. The TSST induced greater increases in total leukocyte, monocyte, and lymphocyte levels as compared to the PlacTSST (p's ≤ 0.001), but in not granulocyte counts. Neutrophil granulocyte counts increased in reaction to both the TSST and PlacTSST (p's ≤ 0.001), while eosinophil and basophil granulocyte counts did not. The psychosocial stress-induced increases in immune cell counts from baseline to peak (i.e., +1 min after TSST cessation) were independently mediated by parallel increases in epinephrine (ab's ≤ -0.43; 95% CIs [LLs ≤ -0.66; ULs ≤ -0.09]). Subsequent decreases in immune cell counts from +1 min to +10 min after psychosocial stress cessation were mediated by parallel epinephrine, renin, and blood volume decreases (ab's ≥ 0.17; 95% CIs [LLs ≥ 0.02; ULs ≥ 0.35]). Our findings indicate that psychosocial stress specifically induces immune cell count increases in most leukocyte subpopulations that are not secondary to the physical or cognitive demands of the stress task. Increases in the number of circulating neutrophil granulocytes, however, are not psychosocial stress-specific and even occur in situations with a low probability of threat or harm. Our findings point to a major role of epinephrine in mediating stress-induced immune cell count increases and of epinephrine, renin, and blood volume changes in mediating subsequent immune cell count decreases from +1 min to +10 min after psychosocial stress cessation.
Collapse
Affiliation(s)
- Lisa-Marie Walther
- Biological Work and Health Psychology, University of Konstanz, 78457 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78457 Konstanz, Germany
| | - Angelina Gideon
- Biological Work and Health Psychology, University of Konstanz, 78457 Konstanz, Germany
| | - Christine Sauter
- Biological Work and Health Psychology, University of Konstanz, 78457 Konstanz, Germany
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Petra H Wirtz
- Biological Work and Health Psychology, University of Konstanz, 78457 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
6
|
Urakami H, Yoshikawa S, Nagao K, Miyake K, Fujita Y, Komura A, Nakashima M, Umene R, Sano S, Hu Z, Nishii E, Fujimura A, Hiyama TY, Naruse K, Karasuyama H, Inoue T, Tominaga M, Takamori K, Morizane S, Miyake S. Stress-experienced monocytes/macrophages lose anti-inflammatory function via β 2-adrenergic receptor in skin allergic inflammation. J Allergy Clin Immunol 2024:S0091-6749(24)01231-4. [PMID: 39566608 DOI: 10.1016/j.jaci.2024.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/29/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Psychological stress can exacerbate the development of allergies; however, the underlying mechanisms remain poorly understood. IgE-mediated cutaneous allergic inflammation (IgE-CAI) is a basophil-dependent skin allergy with eosinophil infiltration at inflammatory sites. Its resolution involves anti-inflammatory programmed death ligand 2 (PD-L2)-positive macrophages. OBJECTIVE This study sought to elucidate the cellular and molecular mechanisms by which psychological stress exacerbates IgE-CAI. METHODS Neural tissue involved in stress-induced IgE-CAI exacerbation was identified by performing denervation and brain destruction experiments in mice. Immune cell transplantation, RNA sequencing, flow cytometry, and ELISA were used to identify and characterize immune cells with stress-altered functioning, followed by identification of key factors involved in IgE-CAI exacerbation. RESULTS Stress-induced exacerbation of IgE-CAI was found to be sympathetic and β2-adrenergic receptor (Adrb2)-dependent. Adoptive transfer experiments revealed that stress diminished the anti-inflammatory functions of PD-L2-positive macrophages through Adrb2, exacerbating the inflammation. RNA sequencing analysis indicated that PD-L2-positive macrophages in stressed mice exhibit reduced expression of efferocytosis-related genes, including Gas6 and MerTK. Consequently, the efferocytic capacity of these macrophages decreased, resulting in increased numbers of dead cells in the lesions. The exacerbation and upregulation of Ccl24 expression in IgE-CAI skin lesions were countered by a Caspase-1 inhibitor. CONCLUSIONS Psychological stress diminishes the efferocytotic capacity of PD-L2-positive macrophages, causing an accumulation of dead cells. This, in turn, heightens eosinophil infiltration through Caspase-1-dependent production of CCL24, exacerbating IgE-CAI.
Collapse
Affiliation(s)
- Hitoshi Urakami
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan; Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Soichiro Yoshikawa
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan; Department of Immunology, School of Medicine, Juntendo University, Tokyo, Japan; Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate school of Medicine, Chiba, Japan.
| | - Kei Nagao
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan; Department of Immunology, School of Medicine, Juntendo University, Tokyo, Japan; Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate school of Medicine, Chiba, Japan
| | - Kensuke Miyake
- Inflammation, Infection & Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuki Fujita
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan; Department of Immunology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Ayaka Komura
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Miho Nakashima
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ryusuke Umene
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shuhei Sano
- Department of Immunology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Zheyu Hu
- Department of Immunology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Emi Nishii
- Department of Immunology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Atsushi Fujimura
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Takeshi Y Hiyama
- Department of Integrative Physiology, Tottori University Graduate School and Faculty of Medicine, Yonago, Japan; International Platform for Dryland Research and Education, Tottori University, Tottori, Japan
| | - Keiji Naruse
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan; Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hajime Karasuyama
- Inflammation, Infection & Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tsuyoshi Inoue
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Mitsutoshi Tominaga
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate school of Medicine, Chiba, Japan
| | - Kenji Takamori
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate school of Medicine, Chiba, Japan
| | - Shin Morizane
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.
| | - Sachiko Miyake
- Department of Immunology, School of Medicine, Juntendo University, Tokyo, Japan.
| |
Collapse
|
7
|
Costa LHA, Trajano IP, Passaglia P, Branco LGS. Thermoregulation and survival during sepsis: insights from the cecal ligation and puncture experimental model. Intensive Care Med Exp 2024; 12:100. [PMID: 39522078 PMCID: PMC11551088 DOI: 10.1186/s40635-024-00687-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Sepsis remains a major global health concern due to its high prevalence and mortality. Changes in body temperature (Tb), such as hypothermia or fever, are diagnostic indicators and play a crucial role in the pathophysiology of sepsis. This study aims to characterize the thermoregulatory mechanisms during sepsis using the cecal ligation and puncture (CLP) model and explore how sepsis severity and ambient temperature (Ta) influence Tb regulation and mortality. Rats were subjected to mild or severe sepsis by CLP while housed at thermoneutral (28 °C) or subthermoneutral (22 °C) Ta, and their Tb was monitored for 12 h. Blood and hypothalamus were collected for cytokines and prostaglandin E2 (PGE2) analysis. RESULTS At 28 °C, febrile response magnitude correlated with sepsis severity and inflammatory response, with tail vasoconstriction as the primary heat retention mechanism. At 22 °C, Tb was maintained during mild sepsis but dropped during severe sepsis, linked to reduced UCP1 expression in brown adipose tissue and less effective vasoconstriction. Despite differences in thermoregulatory responses, both Ta conditions induced a persistent inflammatory response and increased hypothalamic PGE2 production. Notably, mortality in severe sepsis was significantly higher at 28 °C (80%) compared to 22 °C (0%). CONCLUSIONS Our findings reveal that ambient temperature and the inflammatory burden critically influence thermoregulation and survival during early sepsis. These results emphasize the importance of considering environmental factors in preclinical sepsis studies. Although rodents in experimental settings are often adapted to cold environments, these conditions may not fully translate to human sepsis, where cold adaptation is rare. Thus, researchers should carefully consider these variables when designing experiments and interpreting translational implications.
Collapse
Affiliation(s)
- Luis H A Costa
- Department of Oral and Basic Biology, School of Dentistry of Ribeirão Preto - University of São Paulo, Avenida Bandeirantes, Ribeirão Preto, SP, 14040-902, Brazil.
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA.
| | - Isis P Trajano
- Department of Oral and Basic Biology, School of Dentistry of Ribeirão Preto - University of São Paulo, Avenida Bandeirantes, Ribeirão Preto, SP, 14040-902, Brazil
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Patricia Passaglia
- Department of Oral and Basic Biology, School of Dentistry of Ribeirão Preto - University of São Paulo, Avenida Bandeirantes, Ribeirão Preto, SP, 14040-902, Brazil
| | - Luiz G S Branco
- Department of Oral and Basic Biology, School of Dentistry of Ribeirão Preto - University of São Paulo, Avenida Bandeirantes, Ribeirão Preto, SP, 14040-902, Brazil.
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
8
|
Fan NW, Yu M, Wang S, Blanco T, Luznik Z, Chauhan SK, Viswanath V, Gil D, Held K, Chen Y, Dana R. Activation of α2B/2C adrenergic receptor ameliorates ocular surface inflammation through enhancing regulatory T cell function. Mucosal Immunol 2024:S1933-0219(24)00110-7. [PMID: 39522611 DOI: 10.1016/j.mucimm.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
There is an unmet need for effectively treating dry eye disease (DED), a T cell-mediated chronic, inflammatory ocular surface disorder. Given the potential of nonneuronal adrenergic system in modulating T cell response, we herein investigated the therapeutic efficacy and the underlying mechanisms of a specific alpha 2 adrenergic receptor agonist (AGN-762, selective for α2B/2C receptor subtypes) in a mouse model of DED. Experimental DED was treated with the AGN-762 by oral gavage, either at disease induction or after disease establishment, and showed sustained amelioration, along with reduced expression of DED-pathogenic cytokines in ocular surface tissues, decreased corneal MHC-II+CD11b+ cells and lymphoid Th17 cells, and higher function of regulatory T cells (Treg). In vitro culture of DED-derived effector T helper cells (Teff) with AGN-762 failed to suppress Th17 response, while culture of DED-Treg with AGN-762 led to enhanced suppressive function of Treg and their IL-10 production. Adoptive transfer of AGN-762-pretreated DED-Treg in syngeneic B6.Rag1-/- mice effectively suppressed DED Teff-mediated disease and Th17 response, and the effect was abolished by the neutralization of IL-10. In conclusion, our findings demonstrate that α2B/2C adrenergic receptor agonism effectively ameliorates persistent corneal epitheliopathy in DED by enhancing IL-10 production from Treg and thus restoring their immunoregulatory function.
Collapse
Affiliation(s)
- Nai-Wen Fan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; Department of Ophthalmology, Taipei Veterans General Hospital, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Man Yu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Shudan Wang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Tomas Blanco
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Zala Luznik
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Sunil K Chauhan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Veena Viswanath
- (Former) Development Sciences, AbbVie Inc., Irvine, CA 92612, USA
| | - Daniel Gil
- (Former) Biological Research, Allergan plc, Irvine, CA 92612, USA
| | - Katherine Held
- Ophthalmology Discovery Research, AbbVie Inc., Irvine, CA 92612, USA
| | - Yihe Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Reza Dana
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
9
|
Mueller BR, Mehta M, Campbell M, Neupane N, Cedillo G, Lee G, Coyle K, Qi J, Chen Z, George MC, Robinson-Papp J. Autonomic and Immune Stress Response Networks in Patients Living With HIV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618447. [PMID: 39464041 PMCID: PMC11507734 DOI: 10.1101/2024.10.15.618447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Background and Objectives Stress response systems are frequently dysregulated in patients with chronic inflammatory disorders. Pre-clinical studies have demonstrated direct influences of the sympathetic and vagal/parasympathetic branches of the autonomic nervous system (ANS) on the immune system. However, these connections have not been examined in humans. We hypothesized that the subtype and severity of autonomic neuropathy (AN) would predict immune phenotypes with distinct clinical and demographic characteristics in people living with HIV. Methods This is a cross-sectional study of 79 adult people with a history of well-controlled HIV on stable combination antiretroviral treatment (CART) recruited from a primary care clinic network within the Mount Sinai Health System in New York City. All participants underwent a standardized battery of autonomic function tests summarized as the Composite Autonomic Severity Score (CASS) and vagal and adrenergic baroreflex sensitivity (BRS-V and BRS-A). Immune profiling included: 1) measurement of interleukin-6 (IL-6) as part of the Olink assay Target 96 Inflammation Panel, 2) non-negative matrix factorization (NMF) clustering analyses on Olink immune biomarkers, and 3) mass cytometry (CyTOF) on a subset of participants with and without autonomic neuropathy (N = 10). Results Reduced activity of caudal vagal circuitry involved in the cholinergic anti-inflammatory pathway (CAP) predicted higher levels of IL-6 (Spearman's rho = -0.352, p=0.002). The comprehensive assessment of the ANS-immune network showed four immunotypes defined by NMF analyses. A pro-inflammatory immunotype defined by elevations in type 1 cytokines (IL-6, IL-17) and increased numbers of CD8+ T-cells was associated with autonomic neuropathy (AN). This association was driven by deficits in the cardiovascular sympathetic nervous system and remained strongly significant after controlling for the older age and greater burden of co-morbid illness among participants with this immunotype (aOR=4.7, p=0.017). Discussion Our results provide novel support for the clinical relevance of the CAP in patients with chronic inflammatory AN. These data also provide insight regarding the role of the sympathetic nervous system and aging in the progression and development of co-morbidities in patients with chronic HIV and support future research aimed at developing therapies focused on modulation of the sympathetic and parasympathetic/vagal nervous system.
Collapse
Affiliation(s)
- Bridget R Mueller
- Icahn School of Medicine at Mount Sinai, Department of Neurology; New York City, NY, USA
| | - Mitali Mehta
- Icahn School of Medicine at Mount Sinai, Department of Neurology; New York City, NY, USA
| | - Maya Campbell
- Icahn School of Medicine at Mount Sinai, Department of Neurology; New York City, NY, USA
| | - Niyati Neupane
- Icahn School of Medicine at Mount Sinai, Department of Neurology; New York City, NY, USA
| | - Gabriela Cedillo
- Icahn School of Medicine at Mount Sinai, Department of Neurology; New York City, NY, USA
| | - Gina Lee
- Icahn School of Medicine at Mount Sinai, Department of Neurology; New York City, NY, USA
| | - Kaitlyn Coyle
- Icahn School of Medicine at Mount Sinai, Department of Neurology; New York City, NY, USA
| | - Jinging Qi
- Icahn School of Medicine at Mount Sinai, Human Immune Monitoring Center (HIMC); New York City, NY, USA
| | - Zhihong Chen
- Icahn School of Medicine at Mount Sinai, Human Immune Monitoring Center (HIMC); New York City, NY, USA
| | - Mary Catherine George
- Icahn School of Medicine at Mount Sinai, Department of Neurology; New York City, NY, USA
| | - Jessica Robinson-Papp
- Icahn School of Medicine at Mount Sinai, Department of Neurology; New York City, NY, USA
| |
Collapse
|
10
|
Huang H, Deng X, Wang Y, Shen S, Wang S, Hu M, Liu S, Su X, Li C, Li T, Lu Z, Cai W. Chronic Stress Exacerbates Cerebral Amyloid Angiopathy Through Promoting Neutrophil Extracellular Traps Formation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404096. [PMID: 39324658 DOI: 10.1002/advs.202404096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/29/2024] [Indexed: 09/27/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is the leading cause of vascular dementia among the elderly. Neuropsychiatric symptoms are commonly manifested in cerebral amyloid angiopathy patients but are usually considered as consequences of cerebral amyloid angiopathy pathology. Here, it is reported that chronic stress promotes cerebral amyloid angiopathy progression, which enhances deposition of amyloid protein beta (Aβ) in brain blood vessels and exacerbates subsequent brain injury. Mechanistically, neutrophil is implicated in cerebral amyloid angiopathy development. Aβ that accumulates in brain vasculature induces neutrophil extracellular traps (NETs) by activating STAT6 signaling, which inhibits neutrophil apoptosis and switches the programmed cell death toward NETosis. During chronic stress, circulatory Norepinephrine (NE) strengthens STAT6 activation in neutrophil and promotes NET formation, thus exacerbates the NET-dependent angiopathy. It is demonstrated that inhibiting neutrophil chemotaxis towards brain or suppressing NET formation both ameliorate cerebral amyloid angiopathy severity in the context of chronic stress. Therefore, it is proposed that stress-associated psychological disorders and NETs are promising therapeutic targets in cerebral amyloid angiopathy.
Collapse
Affiliation(s)
- Huipeng Huang
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiaohui Deng
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yuge Wang
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Shishi Shen
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Shisi Wang
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Mengyan Hu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Sanxin Liu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiaotao Su
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Chunyi Li
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Tiemei Li
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Zhengqi Lu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Wei Cai
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, 510630, China
| |
Collapse
|
11
|
Parichatikanond W, Duangrat R, Kurose H, Mangmool S. Regulation of β-Adrenergic Receptors in the Heart: A Review on Emerging Therapeutic Strategies for Heart Failure. Cells 2024; 13:1674. [PMID: 39451192 PMCID: PMC11506672 DOI: 10.3390/cells13201674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
The prolonged overstimulation of β-adrenergic receptors (β-ARs), a member of the G protein-coupled receptor (GPCR) family, causes abnormalities in the density and functionality of the receptor and contributes to cardiac dysfunctions, leading to the development and progression of heart diseases, especially heart failure (HF). Despite recent advancements in HF therapy, mortality and morbidity rates continue to be high. Treatment with β-AR antagonists (β-blockers) has improved clinical outcomes and reduced overall hospitalization and mortality rates. However, several barriers in the management of HF remain, providing opportunities to develop new strategies that focus on the functions and signal transduction of β-ARs involved in the pathogenesis of HF. As β-AR can signal through multiple pathways influenced by different receptor subtypes, expression levels, and signaling components such as G proteins, G protein-coupled receptor kinases (GRKs), β-arrestins, and downstream effectors, it presents a complex mechanism that could be targeted in HF management. In this narrative review, we focus on the regulation of β-ARs at the receptor, G protein, and effector loci, as well as their signal transductions in the physiology and pathophysiology of the heart. The discovery of potential ligands for β-AR that activate cardioprotective pathways while limiting off-target signaling is promising for the treatment of HF. However, applying findings from preclinical animal models to human patients faces several challenges, including species differences, the genetic variability of β-ARs, and the complexity and heterogeneity of humans. In this review, we also summarize recent updates and future research on the regulation of β-ARs in the molecular basis of HF and highlight potential therapeutic strategies for HF.
Collapse
Affiliation(s)
| | - Ratchanee Duangrat
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Hitoshi Kurose
- Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan;
- Pharmacology for Life Sciences, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Supachoke Mangmool
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
12
|
Avagimyan A, Kajaia N, Gabunia L, Trofimenko A, Sulashvili N, Sanikidze T, Gorgaslidze N, Challa A, Sheibani M. The place of beta-adrenergic receptor blockers in the treatment of arterial hypertension: From bench-to-bedside. Curr Probl Cardiol 2024; 49:102734. [PMID: 38944226 DOI: 10.1016/j.cpcardiol.2024.102734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Arterial hypertension is a multifaceted condition influenced by numerous pathophysiological factors. The key contributors to its pathogenesis encompass an unhealthy lifestyle, dysregulation of the sympathetic nervous system, alterations in the activity of adrenergic receptors, disruptions in sodium metabolism, structural and functional abnormalities in the vascular bed, as well as endothelial dysfunction, low-grade inflammation, oxidative stress etc. Despite extensive research into the mechanisms of arterial hypertension development over the centuries, its pathogenesis remains incompletely understood, and the selection of an effective treatment strategy continues to pose a significant challenge. Arterial hypertension is characterized by a diminished sensitivity of the β-adrenergic system, leading to the utilization of β-adrenergic blockers and other antihypertensive drugs in its treatment. This review delves into the mechanisms of action of beta-adrenergic receptor blockers in the treatment of hypertension and their respective effects.
Collapse
Affiliation(s)
- Ashot Avagimyan
- Yerevan State Medical University after M. Heratsi, Yerevan, Armenia.
| | - Nana Kajaia
- Tbilisi State Medical University, Tbilisi, Georgia
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Lahijani S, Rueda-Lara M, McAndrew N, Nelson AM, Guo M, Knight JM, Wiener L, Miran DM, Gray TF, Keane EP, Yek MH, Sannes TS, Applebaum AJ, Fank P, Babu P, Pozo-Kaderman C, Amonoo HL. A Biobehavioral Perspective on Caring for Allogeneic Hematopoietic Stem Cell Transplant Survivors with Graft-Versus-Host Disease. Transplant Cell Ther 2024; 30:S493-S512. [PMID: 39370233 DOI: 10.1016/j.jtct.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/25/2024] [Indexed: 10/08/2024]
Abstract
Among the potential complications of allogeneic hematopoietic stem cell transplantation (HSCT), graft-versus-host disease (GVHD) is common and associated with significant physical and psychosocial symptom burden. Despite substantial advances in GVHD treatment, the global immune suppression that frequently accompanies GVHD treatment also contributes to high rates of physical and emotional suffering and mortality. The complex manifestations of GVHD and its treatment warrant a multidisciplinary team-based approach to managing patients' multi-organ system comorbidities. A biobehavioral framework can enhance our understanding of the complex association between medications, physical symptoms, and psychosocial distress in patients with GVHD. Hence, for this perspective, we highlight the importance of addressing both the physical and psychosocial needs experienced by patients with GVHD and provide guidance on how to approach and manage those symptoms and concerns as part of comprehensive cancer care.
Collapse
Affiliation(s)
- Sheila Lahijani
- Department of Psychiatry, Stanford University School of Medicine and Stanford Cancer Center Psychosocial Oncology Program, Stanford, California
| | - Maria Rueda-Lara
- Department of Psychiatry, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Natalie McAndrew
- School of Nursing, College of Health Professions and Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin; Department of Patient Care Research, Froedtert & The Medical College of Wisconsin, Froedtert Hospital, Milwaukee, Wisconsin
| | - Ashley M Nelson
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Michelle Guo
- Harvard Medical School, Boston, Massachusetts; Department of Psychiatry, Brigham and Women's Hospital, Boston, Massachusetts
| | - Jennifer M Knight
- Departments of Psychiatry, Medicine, and Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Lori Wiener
- Pediatric Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | - Damien M Miran
- Harvard Medical School, Boston, Massachusetts; Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Tamryn F Gray
- Harvard Medical School, Boston, Massachusetts; Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Boston, Massachusetts; Phyllis F. Cantor Center for Research in Nursing and Patient Care Services, Dana-Farber Cancer Institute, Boston, Massachusetts; Division of Stem Cell Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Boston, Massachusetts; Division of Palliative Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Emma P Keane
- Department of Psychiatry, Brigham and Women's Hospital, Boston, Massachusetts
| | - Ming Hwei Yek
- Department of Psychiatry, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Timothy S Sannes
- Department of Psychiatry, UMass Chan Medical School, Worcester, Massachusetts; UMass Memorial Cancer Center, Worcester, Massachusetts
| | - Allison J Applebaum
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Patricia Fank
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, Illinois
| | - Pallavi Babu
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, Illinois
| | - Cristina Pozo-Kaderman
- Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Hermioni L Amonoo
- Harvard Medical School, Boston, Massachusetts; Department of Psychiatry, Brigham and Women's Hospital, Boston, Massachusetts; Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Boston, Massachusetts.
| |
Collapse
|
14
|
Yang L, Zhou Y, Huang Z, Li W, Lin J, Huang W, Sang Y, Wang F, Sun X, Song J, Wu H, Kong X. Electroacupuncture Promotes Liver Regeneration by Activating DMV Acetylcholinergic Neurons-Vagus-Macrophage Axis in 70% Partial Hepatectomy of Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402856. [PMID: 38923873 PMCID: PMC11348175 DOI: 10.1002/advs.202402856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Lack of liver regenerative capacity is the primary cause of hepatic failure and even mortality in patients undergoing hepatectomy, with no effective intervention strategies currently available. Therefore, identifying efficacious interventions to enhance liver regeneration is pivotal for optimizing clinical outcomes. Recent studies have demonstrated that vagotomy exerts an inhibitory effect on liver regeneration following partial hepatectomy, thereby substantiating the pivotal role played by the vagus nerve in the process of liver regeneration. In recent years, electroacupuncture (EA) has emerged as a non-invasive technique for stimulating the vagus nerve. However, EA on hepatic regeneration remains uncertain. In this study, a 70% partial hepatectomy (PH) mouse model is utilized to investigate the effects of EA on acute liver regeneration and elucidate its underlying molecular mechanisms. It is observed that EA at ST36 acutely activated cholinergic neurons in the dorsal motor nucleus of the vagus nerve (DMV), resulting in increased release of acetylcholine from hepatic vagal nerve endings and subsequent activation of IL-6 signaling in liver macrophages. Ultimately, these events promoted hepatocyte proliferation and facilitated liver regeneration. These findings provide insights into the fundamental brain-liver axis mechanism through which EA promotes liver regeneration, offering a novel therapeutic approach for post-hepatectomy liver regeneration disorders.
Collapse
Affiliation(s)
- Liu Yang
- Central LaboratoryShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai201203China
| | - Yanyu Zhou
- Central LaboratoryShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai201203China
| | - Zhaoshuai Huang
- Abdominal Transplantation CenterGeneral SurgeryRuijin HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai201203China
| | - Wenxuan Li
- Central LaboratoryShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai201203China
| | - Jiacheng Lin
- Central LaboratoryShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai201203China
| | - Weifan Huang
- Central LaboratoryShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai201203China
| | - Yali Sang
- Central LaboratoryShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai201203China
| | - Fang Wang
- Central LaboratoryShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai201203China
| | - Xuehua Sun
- Central LaboratoryShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai201203China
| | - Jiangang Song
- Department of anaesthesiologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai201203China
| | - Hailong Wu
- Shanghai Key Laboratory of Molecular ImagingCollaborative Innovation Center for BiomedicinesShanghai University of Medicine and Health SciencesShanghai201203China
| | - Xiaoni Kong
- Central LaboratoryShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai201203China
| |
Collapse
|
15
|
Zawadka-Kunikowska M, Cieślicka M, Klawe JJ, Tafil-Klawe M, Kaźmierczak W, Rzepiński Ł. Frequency and severity of autonomic dysfunction assessed by objective hemodynamic responses and patient-reported symptoms in individuals with myasthenia gravis. Front Neurosci 2024; 18:1415615. [PMID: 39099636 PMCID: PMC11295281 DOI: 10.3389/fnins.2024.1415615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/10/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction Myasthenia gravis (MG), a rare autoimmune disorder, poses diagnostic and management challenges, with increasing incidence in Europe and significant impact on patient quality of life. Despite prevalent autonomic symptoms, comprehensive assessments integrating subjective and objective measures are lacking. We aimed to investigate the prevalence and severity of autonomic dysfunction in patients with MG and healthy controls (HCs). Materials and methods We used beat-to-beat hemodynamic responses during standardized autonomic function tests (AFTs) and the Composite Autonomic Symptom Score 31 (COMPASS-31) questionnaire. Study participants including, 53 patients with MG and 30 age- and sex matched HCs underwent standardized cardiovascular AFTs and completed the COMPASS-31 questionnaire. Patients were categorized into Non-CAN and CAN groups based on their Cardiovascular Autonomic Neuropathy (CAN) status, as evaluated using the Composite Autonomic Scoring Scale (CASS). During the AFTs, cardiovascular parameters including heart rate, systolic blood pressure (BP), diastolic BP, mean BP, stroke volume (SV), cardiac output (CO), and total peripheral resistance (TPR) were measured. Results Twenty patients with MG (38%) exhibited mild CAN (CASS ≥2) with a median total CASS score of 1.00 and CASS 0.00 in HCs. Adrenergic impairment was observed in 27 patients (52%), with 13 patients (24.5%) exhibiting longer pressure recovery time after Valsalva maneuver (VM). Cardiovagal impairment was evident in 71% of patients, with abnormal results observed in 39.6% for the deep breathing test and 56.6% for the VM. CAN MG showed worse scores than HCs for the total COMPASS-31 (p < 0.001), orthostatic (OI) (p < 0.001), secretomotor (p = 0.004), and pupillomotor domains (p = 0.004). Total COMPASS-31 and OI scores were correlated with worse disease outcomes (disease duration, severity), hemodynamic parameter changes (SV, CO, TPR) during phase II late of VM, and with changes (Δtilt-supine) in Δsystolic BP, Δdiastolic BP, Δmean BP, ΔTPR during head-up-tilt test, but not with CASS score. Conclusion Our findings demonstrate mild cardiovascular autonomic impairment in adrenergic and cardiovagal domains in patients with MG. Additionally, patient-reported autonomic symptoms correlated with hemodynamic changes during AFTs and worse disease outcomes and not with the grade of autonomic abnormalities. Incorporating beat-to-beat hemodynamics during AFTs may offer further insights for characterizing orthostatic intolerance symptoms in MG group.
Collapse
Affiliation(s)
- Monika Zawadka-Kunikowska
- Department of Human Physiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Mirosława Cieślicka
- Department of Human Physiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Jacek J. Klawe
- Department of Hygiene, Epidemiology, Ergonomy and Postgraduate Education, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Małgorzata Tafil-Klawe
- Faculty of Medical Sciences, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Wojciech Kaźmierczak
- Department of Human Physiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland
- Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Łukasz Rzepiński
- Sanitas - Neurology Outpatient Clinic, Bydgoszcz, Poland
- Department of Neurology, 10th Military Research Hospital and Polyclinic, Bydgoszcz, Poland
| |
Collapse
|
16
|
Uher O, Hadrava Vanova K, Taïeb D, Calsina B, Robledo M, Clifton-Bligh R, Pacak K. The Immune Landscape of Pheochromocytoma and Paraganglioma: Current Advances and Perspectives. Endocr Rev 2024; 45:521-552. [PMID: 38377172 PMCID: PMC11244254 DOI: 10.1210/endrev/bnae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors derived from neural crest cells from adrenal medullary chromaffin tissues and extra-adrenal paraganglia, respectively. Although the current treatment for PPGLs is surgery, optimal treatment options for advanced and metastatic cases have been limited. Hence, understanding the role of the immune system in PPGL tumorigenesis can provide essential knowledge for the development of better therapeutic and tumor management strategies, especially for those with advanced and metastatic PPGLs. The first part of this review outlines the fundamental principles of the immune system and tumor microenvironment, and their role in cancer immunoediting, particularly emphasizing PPGLs. We focus on how the unique pathophysiology of PPGLs, such as their high molecular, biochemical, and imaging heterogeneity and production of several oncometabolites, creates a tumor-specific microenvironment and immunologically "cold" tumors. Thereafter, we discuss recently published studies related to the reclustering of PPGLs based on their immune signature. The second part of this review discusses future perspectives in PPGL management, including immunodiagnostic and promising immunotherapeutic approaches for converting "cold" tumors into immunologically active or "hot" tumors known for their better immunotherapy response and patient outcomes. Special emphasis is placed on potent immune-related imaging strategies and immune signatures that could be used for the reclassification, prognostication, and management of these tumors to improve patient care and prognosis. Furthermore, we introduce currently available immunotherapies and their possible combinations with other available therapies as an emerging treatment for PPGLs that targets hostile tumor environments.
Collapse
Affiliation(s)
- Ondrej Uher
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| | - Katerina Hadrava Vanova
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| | - David Taïeb
- Department of Nuclear Medicine, CHU de La Timone, Marseille 13005, France
| | - Bruna Calsina
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Familiar Cancer Clinical Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institute of Health Carlos III (ISCIII), Madrid 28029, Spain
| | - Roderick Clifton-Bligh
- Department of Endocrinology, Royal North Shore Hospital, Sydney 2065, NSW, Australia
- Cancer Genetics Laboratory, Kolling Institute, University of Sydney, Sydney 2065, NSW, Australia
| | - Karel Pacak
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| |
Collapse
|
17
|
Levi J, Guglielmetti C, Henrich TJ, Yoon JC, Gokhale PC, Reardon DA, Packiasamy J, Huynh L, Cabrera H, Ruzevich M, Blecha J, Peluso MJ, Huynh TL, An SM, Dornan M, Belanger AP, Nguyen QD, Seo Y, Song H, Chaumeil MM, VanBrocklin HF, Chae HD. [ 18F]F-AraG imaging reveals association between neuroinflammation and brown- and bone marrow adipose tissue. Commun Biol 2024; 7:793. [PMID: 38951146 PMCID: PMC11217368 DOI: 10.1038/s42003-024-06494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/22/2024] [Indexed: 07/03/2024] Open
Abstract
Brown and brown-like adipose tissues have attracted significant attention for their role in metabolism and therapeutic potential in diabetes and obesity. Despite compelling evidence of an interplay between adipocytes and lymphocytes, the involvement of these tissues in immune responses remains largely unexplored. This study explicates a newfound connection between neuroinflammation and brown- and bone marrow adipose tissue. Leveraging the use of [18F]F-AraG, a mitochondrial metabolic tracer capable of tracking activated lymphocytes and adipocytes simultaneously, we demonstrate, in models of glioblastoma and multiple sclerosis, the correlation between intracerebral immune infiltration and changes in brown- and bone marrow adipose tissue. Significantly, we show initial evidence that a neuroinflammation-adipose tissue link may also exist in humans. This study proposes the concept of an intricate immuno-neuro-adipose circuit, and highlights brown- and bone marrow adipose tissue as an intermediary in the communication between the immune and nervous systems. Understanding the interconnectedness within this circuitry may lead to advancements in the treatment and management of various conditions, including cancer, neurodegenerative diseases and metabolic disorders.
Collapse
Affiliation(s)
- Jelena Levi
- CellSight Technologies Incorporated, San Francisco, CA, USA.
| | - Caroline Guglielmetti
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - John C Yoon
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA, USA
| | | | | | | | - Lyna Huynh
- CellSight Technologies Incorporated, San Francisco, CA, USA
| | - Hilda Cabrera
- CellSight Technologies Incorporated, San Francisco, CA, USA
| | | | - Joseph Blecha
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Michael J Peluso
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Tony L Huynh
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Sung-Min An
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA, USA
| | - Mark Dornan
- Molecular Cancer Imaging Facility, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Anthony P Belanger
- Molecular Cancer Imaging Facility, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Quang-Dé Nguyen
- Lurie Family Imaging Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Hong Song
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Myriam M Chaumeil
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Hee-Don Chae
- CellSight Technologies Incorporated, San Francisco, CA, USA
| |
Collapse
|
18
|
Kopp W. Aging and "Age-Related" Diseases - What Is the Relation? Aging Dis 2024:AD.2024.0570. [PMID: 39012663 DOI: 10.14336/ad.2024.0570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024] Open
Abstract
The study explores the intricate relationship between aging and the development of noncommunicable diseases [NCDs], focusing on whether these diseases are inevitable consequences of aging or primarily driven by lifestyle factors. By examining epidemiological data, particularly from hunter-gatherer societies, the study highlights that many NCDs prevalent in modern populations are rare in these societies, suggesting a significant influence of lifestyle choices. It delves into the mechanisms through which poor diet, smoking, and other lifestyle factors contribute to systemic physiological imbalances, characterized by oxidative stress, insulin resistance and hyperinsulinemia, and dysregulation of the sympathetic nervous system, the renin-angiotensin-aldosterone system, and the immune system. The interplay between this pattern and individual factors such as genetic susceptibility, biological variability, epigenetic changes and the microbiome is proposed to play a crucial role in the development of a range of age-related NCDs. Modified biomolecules such as oxysterols and advanced glycation end products also contribute to their development. Specific diseases such as benign prostatic hyperplasia, Parkinson's disease, glaucoma and osteoarthritis are analyzed to illustrate these mechanisms. The study concludes that while aging contributes to the risk of NCDs, lifestyle factors play a crucial role, offering potential avenues for prevention and intervention through healthier living practices. One possible approach could be to try to restore the physiological balance, e.g. through dietary measures [e.g. Mediterranean diet, Okinawan diet or Paleolithic diet] in conjunction with [a combination of] pharmacological interventions and other lifestyle changes.
Collapse
|
19
|
Xue Y, Xu P, Hu Y, Liu S, Yan R, Liu S, Li Y, Liu J, Fu T, Li Z. Stress systems exacerbate the inflammatory response after corneal abrasion in sleep-deprived mice via the IL-17 signaling pathway. Mucosal Immunol 2024; 17:323-345. [PMID: 38428739 DOI: 10.1016/j.mucimm.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
Sleep deprivation (SD) has a wide range of adverse health effects. However, the mechanisms by which SD influences corneal pathophysiology and its post-wound healing remain unclear. This study aimed to examine the basic physiological characteristics of the cornea in mice subjected to SD and determine the pathophysiological response to injury after corneal abrasion. Using a multi-platform water environment method as an SD model, we found that SD leads to disturbances of corneal proliferative, sensory, and immune homeostasis as well as excessive inflammatory response and delayed repair after corneal abrasion by inducing hyperactivation of the sympathetic nervous system and hypothalamic-pituitary-adrenal axis. Pathophysiological changes in the cornea mainly occurred through the activation of the IL-17 signaling pathway. Blocking both adrenergic and glucocorticoid synthesis and locally neutralizing IL-17A significantly improved corneal homeostasis and the excessive inflammatory response and delay in wound repair following corneal injury in SD-treated mice. These results indicate that optimal sleep quality is essential for the physiological homeostasis of the cornea and its well-established repair process after injury. Additionally, these observations provide potential therapeutic targets to ameliorate SD-induced delays in corneal wound repair by inhibiting or blocking the activation of the stress system and its associated IL-17 signaling pathway.
Collapse
Affiliation(s)
- Yunxia Xue
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Pengyang Xu
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Pathology, Nanyang Second General Hospital, Nanyang City, Henan, China
| | - Yu Hu
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China
| | - Sijing Liu
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ruyu Yan
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shutong Liu
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China
| | - Yan Li
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jun Liu
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ting Fu
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhijie Li
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
20
|
Yu Y, Chen W, Li B, Li Z, Wang Y, Mao Y, Fan W, Bai Y, Hu H, Zhen Q, Sun L. Cutaneous Calcium/Calmodulin-Dependent Protein Kinase II-γ-Positive Sympathetic Nerves Secreting Norepinephrine Dictate Psoriasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306772. [PMID: 38544478 PMCID: PMC11187923 DOI: 10.1002/advs.202306772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/06/2024] [Indexed: 06/20/2024]
Abstract
Cutaneous sympathetic nerve is a crucial part of neuropsychiatric factors contributing to skin immune response, but its role in the psoriasis pathogenesis remains unclear. It is found that cutaneous calcium/calmodulin-dependent protein kinase II-γ (CAMK2γ), expressed mainly in sympathetic nerves, is activated by stress and imiquimod in mouse skin. Camk2g-deficient mice exhibits attenuated imiquimod-induced psoriasis-like manifestations and skin inflammation. CaMK2γ regulates dermal γδT-cell interleukin-17 production in imiquimod-treated mice, dependent on norepinephrine production following cutaneous sympathetic nerve activation. Adrenoceptor β1, the primary skin norepinephrine receptor, colocalises with γδT cells. CaMK2γ aggravates psoriasiform inflammation via sympathetic nerve-norepinephrine-γδT cell-adrenoceptor β1-nuclear factor-κB and -p38 axis activation. Application of alcaftadine, a small-molecule CaMK2γ inhibitor, relieves imiquimod-induced psoriasis-like manifestations in mice. This study reveals the mechanisms of sympathetic-nervous-system regulation of γδT-cell interleukin-17 secretion, and provides insight into neuropsychiatric factors dictating psoriasis pathogenesis and new potential targets for clinical psoriasis treatment.
Collapse
Affiliation(s)
- Yafen Yu
- Department of Dermatologythe First Affiliated Hospital of Anhui Medical UniversityHefei230032China
- Key Laboratory of DermatologyAnhui Medical UniversityMinistry of EducationHefei230032China
- The Center for Scientific Researchthe First Affiliated Hospital of Anhui Medical UniversityHefei230032China
| | - Weiwei Chen
- Department of Dermatologythe First Affiliated Hospital of Anhui Medical UniversityHefei230032China
- Key Laboratory of DermatologyAnhui Medical UniversityMinistry of EducationHefei230032China
| | - Bao Li
- The Comprehensive LabCollege of BasicAnhui Medical UniversityHefei230032China
| | - Zhuo Li
- Department of Dermatologythe First Affiliated Hospital of Anhui Medical UniversityHefei230032China
- Key Laboratory of DermatologyAnhui Medical UniversityMinistry of EducationHefei230032China
| | - Yirui Wang
- Department of Dermatologythe First Affiliated Hospital of Anhui Medical UniversityHefei230032China
- Key Laboratory of DermatologyAnhui Medical UniversityMinistry of EducationHefei230032China
| | - Yiwen Mao
- Department of Dermatologythe First Affiliated Hospital of Anhui Medical UniversityHefei230032China
- Key Laboratory of DermatologyAnhui Medical UniversityMinistry of EducationHefei230032China
| | - Wencheng Fan
- Department of Dermatologythe First Affiliated Hospital of Anhui Medical UniversityHefei230032China
- Key Laboratory of DermatologyAnhui Medical UniversityMinistry of EducationHefei230032China
| | - Yuanming Bai
- Department of Dermatologythe First Affiliated Hospital of Anhui Medical UniversityHefei230032China
- Key Laboratory of DermatologyAnhui Medical UniversityMinistry of EducationHefei230032China
| | - Hongbo Hu
- Center for Immunology and HematologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610065China
| | - Qi Zhen
- North China University of Science and Technology Affiliated HospitalTangshan063210China
- Health Science CenterNorth China University of Science and TechnologyTangshan063210China
- School of Public HealthNorth China University of Science and TechnologyTangshan063210China
| | - Liangdan Sun
- Department of Dermatologythe First Affiliated Hospital of Anhui Medical UniversityHefei230032China
- North China University of Science and Technology Affiliated HospitalTangshan063210China
- Health Science CenterNorth China University of Science and TechnologyTangshan063210China
- School of Public HealthNorth China University of Science and TechnologyTangshan063210China
- Inflammation and Immune Diseases Laboratory of North China University of Science and TechnologyTangshan063210China
- Key Laboratory of DermatologyAnhui Medical UniversityMinistry of EducationHefei230032China
| |
Collapse
|
21
|
Cieślik M, Strobel SD, Bryniarski P, Twardowska H, Chmielowski A, Rudek M, Felkle D, Zięba K, Kaleta K, Jarczyński M, Nowak B, Bryniarski K, Nazimek K. Hypotensive drugs mitigate the high-sodium diet-induced pro-inflammatory activation of mouse macrophages in vivo. Biomed Pharmacother 2024; 175:116648. [PMID: 38677242 DOI: 10.1016/j.biopha.2024.116648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024] Open
Abstract
Nowadays, there is an increasing emphasis on the need to alleviate the chronic inflammatory response to effectively treat hypertension. However, there are still gaps in our understanding on how to achieve this. Therefore, research on interaction of antihypertensive drugs with the immune system is extremely interesting, since their therapeutic effect could partly result from amelioration of hypertension-related inflammation, in which macrophages seem to play a pivotal role. Thus, current comprehensive studies have investigated the impact of repeatedly administered hypotensive drugs (captopril, olmesartan, propranolol, carvedilol, amlodipine, verapamil) on macrophage functions in the innate and adaptive immunity, as well as if drug-induced effects are affected by a high-sodium diet (HSD), one of the key environmental risk factors of hypertension. Although the assayed medications increased the generation of reactive oxygen and nitrogen intermediates by macrophages from standard fed donors, they reversed HSD-induced enhancing effects on macrophage oxidative burst and secretion of pro-inflammatory cytokines. On the other hand, some drugs increased macrophage phagocytic activity and the expression of surface markers involved in antigen presentation, which translated into enhanced macrophage ability to activate B cells for antibody production. Moreover, the assayed medications augmented macrophage function and the effector phase of contact hypersensitivity reaction, but suppressed the sensitization phase of cell-mediated hypersensitivity under HSD conditions. Our current findings contribute to the recognition of mechanisms, by which excessive sodium intake affects macrophage immune activity in hypertensive individuals, and provide evidence that the assayed medications mitigate most of the HSD-induced adverse effects, suggesting their additional protective therapeutic activity.
Collapse
Affiliation(s)
- Martyna Cieślik
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Spencer D Strobel
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Paweł Bryniarski
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Hanna Twardowska
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Adam Chmielowski
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Michał Rudek
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Dominik Felkle
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Katarzyna Zięba
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Konrad Kaleta
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Mateusz Jarczyński
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Bernadeta Nowak
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Krzysztof Bryniarski
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Katarzyna Nazimek
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland.
| |
Collapse
|
22
|
Zhang H, Yang Y, Cao Y, Guan J. Effects of chronic stress on cancer development and the therapeutic prospects of adrenergic signaling regulation. Biomed Pharmacother 2024; 175:116609. [PMID: 38678960 DOI: 10.1016/j.biopha.2024.116609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
Long-term chronic stress is an important factor in the poor prognosis of cancer patients. Chronic stress reduces the tissue infiltration of immune cells in the tumor microenvironment (TME) by continuously activating the adrenergic signaling, inhibits antitumor immune response and tumor cell apoptosis while also inducing epithelial-mesenchymal transition (EMT) and tumor angiogenesis, promoting tumor invasion and metastasis. This review first summarizes how adrenergic signaling activates intracellular signaling by binding different adrenergic receptor (AR) heterodimers. Then, we focused on reviewing adrenergic signaling to regulate multiple functions of immune cells, including cell differentiation, migration, and cytokine secretion. In addition, the article discusses the mechanisms by which adrenergic signaling exerts pro-tumorigenic effects by acting directly on the tumor itself. It also highlights the use of adrenergic receptor modulators in cancer therapy, with particular emphasis on their potential role in immunotherapy. Finally, the article reviews the beneficial effects of stress intervention measures on cancer treatment. We think that enhancing the body's antitumor response by adjusting adrenergic signaling can enhance the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Oncology, The Eighth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100091, China; Department of Oncology, The Fifth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100071, China.
| | - Yuwei Yang
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing Key Laboratory of OTIR, Beijing, 100091, China.
| | - Yan Cao
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing Key Laboratory of OTIR, Beijing, 100091, China.
| | - Jingzhi Guan
- Department of Oncology, The Fifth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100071, China.
| |
Collapse
|
23
|
Novac MB, Boldeanu L, Dijmărescu AL, Boldeanu MV, Neamțu SD, Radu L, Manolea MM, Șerbănescu MS, Stoica M, Rotaru LT, Văduva CC. Immune Responses of Healthy Pregnant Women following an Elective Cesarean Section: Effects of Anesthetic Procedures. Diagnostics (Basel) 2024; 14:880. [PMID: 38732295 PMCID: PMC11083323 DOI: 10.3390/diagnostics14090880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
A weakened immune system and more inflammatory cytokines being released are possible effects of the surgical stress that a cesarean section induces. This kind of reaction, in addition to the altered reaction to catecholamines, has the potential to significantly affect the immune system of the mother and the patients' general postoperative course. This prospective study compared the plasma levels of catecholamines and cytokines in healthy pregnant patients having cesarean sections under spinal anesthesia versus general anesthesia. A total of 30 pregnant women undergoing elective cesarean sections were divided into two groups: 15 who received general anesthesia (GA) and 15 who received spinal anesthesia (SA). Blood samples were collected from all subjects before anesthesia induction (pre-OP), 6 h postoperatively (6 h post-OP), and 12 h (12 h post-OP), to measure levels of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), IL-8, IL-4, IL-10, norepinephrine (NE), and epinephrine (EPI). When we compared the two groups, we discovered that only IL-6 and IL-4 had significantly higher levels pre-OP, whereas all studied cytokines exhibited an increase in the GA versus SA group at 6 and 12 h post-OP. In the case of catecholamines, we discovered that serum levels are positively related with pro-inflammatory or anti-inflammatory cytokines, depending on the time of day and type of anesthetic drugs. Compared to SA, GA has a more consistent effect on the inflammatory response and catecholamine levels. The findings of this study confirm that the type of anesthesia can alter postoperative immunomodulation to various degrees via changes in cytokine and catecholamine production. SA could be a preferable choice for cesarean section because it is an anesthetic method that reduces perioperative stress and allows for less opioid administration, impacting cytokine production with proper immunomodulation.
Collapse
Affiliation(s)
- Marius Bogdan Novac
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (M.B.N.); (M.S.)
| | - Lidia Boldeanu
- Department of Microbiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Anda Lorena Dijmărescu
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.L.D.); (M.M.M.); (C.-C.V.)
| | - Mihail Virgil Boldeanu
- Department of Immunology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Simona Daniela Neamțu
- Department of Hematology and Immunology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Lucreţiu Radu
- Department of Hygiene, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Maria Magdalena Manolea
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.L.D.); (M.M.M.); (C.-C.V.)
| | - Mircea-Sebastian Șerbănescu
- Department of Medical Informatics and Biostatistics, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Maria Stoica
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (M.B.N.); (M.S.)
| | - Luciana Teodora Rotaru
- Department of Emergency Medicine and First Aid, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Constantin-Cristian Văduva
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.L.D.); (M.M.M.); (C.-C.V.)
| |
Collapse
|
24
|
Ma H, Liu X, Cai H, Yan Y, Li W, Zhao J. Electroacupuncture reduced airway inflammation by activating somatosensory-sympathetic pathways in allergic asthmatic rats. Chin Med J (Engl) 2024:00029330-990000000-01036. [PMID: 38602180 DOI: 10.1097/cm9.0000000000003074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Electroacupuncture (EA) treatment is efficacious in patients with respiratory disorders, although the mechanisms of its action in lung-function protection are poorly understood. This study aimed to explore the neuroanatomical mechanisms of EA stimulation at the BL13 acupoint (Feishu, EA-BL13) improvement in asthma. METHODS Allergic asthma was induced by intranasal 2.0% ovalbumin (OVA) instillation combined with intraperitoneal injection of the 10.0% OVA. The levels of interleukin (IL)-4 and IL-5 were detected by enzyme-linked immunosorbent assay. Hematoxylin and eosin and periodic acid-schiff stain were used to evaluate inflammatory cell infiltration and mucus secretion. Cellular oncogene fos induction in neurons after EA stimulation was detected by immunofluorescent staining. The mRNA expression levels of adrenergic receptors were quantified with real-time polymerase chain reaction. RESULTS EA improved airway inflammation and mucus secretion mainly by activating somatosensory-sympathetic pathways (P <0.001). Briefly, the intermediolateral (IML) nuclei of the spinal cord received signals from somatic EA stimulation and then delivered the information via the sympathetic trunk to the lung. Excited sympathetic nerve endings in lung tissue released large amounts of catecholamines that specifically activated the β2 adrenergic receptor (β2AR) on T cells (P <0.01) and further decreased the levels of IL-4 and IL-5 (P <0.001) through the cyclic adenosine monophosphate/protein kinase A signaling pathway. CONCLUSION This study provided a new explanation and clinical basis for the use of EA-BL13 as a treatment for allergic asthma in both the attack and remission stages and other respiratory disorders related to airway inflammation.
Collapse
Affiliation(s)
- Hongli Ma
- Department of Anesthesia, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Although there is little direct evidence supporting that stress affects cancer incidence, it does influence the evolution, dissemination and therapeutic outcomes of neoplasia, as shown in human epidemiological analyses and mouse models. The experience of and response to physiological and psychological stressors can trigger neurological and endocrine alterations, which subsequently influence malignant (stem) cells, stromal cells and immune cells in the tumour microenvironment, as well as systemic factors in the tumour macroenvironment. Importantly, stress-induced neuroendocrine changes that can regulate immune responses have been gradually uncovered. Numerous stress-associated immunomodulatory molecules (SAIMs) can reshape natural or therapy-induced antitumour responses by engaging their corresponding receptors on immune cells. Moreover, stress can cause systemic or local metabolic reprogramming and change the composition of the gastrointestinal microbiota which can indirectly modulate antitumour immunity. Here, we explore the complex circuitries that link stress to perturbations in the cancer-immune dialogue and their implications for therapeutic approaches to cancer.
Collapse
Affiliation(s)
- Yuting Ma
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.
| | - Guido Kroemer
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
26
|
Miller M, Melis MJ, Miller JRC, Kleyman A, Shankar-Hari M, Singer M. Antibiotics, Sedatives, and Catecholamines Further Compromise Sepsis-Induced Immune Suppression in Peripheral Blood Mononuclear Cells. Crit Care Med 2024; 52:596-606. [PMID: 38483219 DOI: 10.1097/ccm.0000000000006119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
OBJECTIVES We hypothesized that the immunosuppressive effects associated with antibiotics, sedatives, and catecholamines amplify sepsis-associated immune suppression through mitochondrial dysfunction, and there is a cumulative effect when used in combination. We thus sought to determine the impact of the exemplar drugs ciprofloxacin, propofol, and norepinephrine, used alone and in combination, at clinically relevant concentrations, on the ex vivo functionality of peripheral blood mononuclear cells (PBMCs) drawn from healthy, infected, and septic individuals. DESIGN In vitro/ex vivo investigation. SETTING University laboratory. SUBJECTS Healthy volunteers, infected (nonseptic) patients in the emergency department, and septic ICU patients. INTERVENTIONS PBMCs were isolated from these subjects and treated with ciprofloxacin (100 µg/mL), propofol (50 µg/mL), norepinephrine (10 µg/mL), or all three drugs combined, with and without lipopolysaccharide (100 ng/mL) for 6 or 24 hours. Comparison was made between study groups and against untreated cells. Measurements were made of cell viability, cytokine production, phagocytosis, human leukocyte antigen-DR (HLA-DR) status, mitochondrial membrane potential, mitochondrial reactive oxygen species production, and oxygen consumption. Gene expression in immune and metabolic pathways was investigated in PBMCs sampled from healthy volunteers coincubated with septic serum. MEASUREMENTS AND RESULTS Coincubation with each of the drugs reduced cytokine production and phagocytosis in PBMCs isolated from septic patients, and healthy volunteers coincubated with septic serum. No effect was seen on HLA-DR surface expression. No cumulative effects were seen with the drug combination. Sepsis-induced changes in gene expression and mitochondrial functionality were not further affected by addition of any of the drugs. CONCLUSION Drugs commonly used in critical care lead to significant immune dysfunction ex vivo and enhance sepsis-associated immunosuppression. Further studies are required to identify underlying mechanisms and potential impact on patient outcomes.
Collapse
Affiliation(s)
- Muska Miller
- Bloomsbury Institute of Intensive Care Medicine, University College London, London, United Kingdom
| | - Miranda J Melis
- Bloomsbury Institute of Intensive Care Medicine, University College London, London, United Kingdom
| | - James R C Miller
- Bloomsbury Institute of Intensive Care Medicine, University College London, London, United Kingdom
| | - Anna Kleyman
- Bloomsbury Institute of Intensive Care Medicine, University College London, London, United Kingdom
| | - Manu Shankar-Hari
- Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh, United Kingdom
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, University College London, London, United Kingdom
| |
Collapse
|
27
|
Alvarez MR, Alkaissi H, Rieger AM, Esber GR, Acosta ME, Stephenson SI, Maurice AV, Valencia LMR, Roman CA, Alarcon JM. The immunomodulatory effect of oral NaHCO 3 is mediated by the splenic nerve: multivariate impact revealed by artificial neural networks. J Neuroinflammation 2024; 21:79. [PMID: 38549144 PMCID: PMC10976719 DOI: 10.1186/s12974-024-03067-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Stimulation of the inflammatory reflex (IR) is a promising strategy for treating systemic inflammatory disorders. Recent studies suggest oral sodium bicarbonate (NaHCO3) as a potential activator of the IR, offering a safe and cost-effective treatment approach. However, the mechanisms underlying NaHCO3-induced anti-inflammatory effects remain unclear. We investigated whether oral NaHCO3's immunomodulatory effects are mediated by the splenic nerve. Female rats received NaHCO3 or water (H2O) for four days, and splenic immune markers were assessed using flow cytometry. NaHCO3 led to a significant increase (p < 0.05, and/or partial eta squared > 0.06) in anti-inflammatory markers, including CD11bc + CD206 + (M2-like) macrophages, CD3 + CD4 + FoxP3 + cells (Tregs), and Tregs/M1-like ratio. Conversely, proinflammatory markers, such as CD11bc + CD38 + TNFα + (M1-like) macrophages, M1-like/M2-like ratio, and SSChigh/SSClow ratio of FSChighCD11bc + cells, decreased in the spleen following NaHCO3 administration. These effects were abolished in spleen-denervated rats, suggesting the necessity of the splenic nerve in mediating NaHCO3-induced immunomodulation. Artificial neural networks accurately classified NaHCO3 and H2O treatment in sham rats but failed in spleen-denervated rats, highlighting the splenic nerve's critical role. Additionally, spleen denervation independently influenced Tregs, M2-like macrophages, Tregs/M1-like ratio, and CD11bc + CD38 + cells, indicating distinct effects from both surgery and treatment. Principal component analysis (PCA) further supported the separate effects. Our findings suggest that the splenic nerve transmits oral NaHCO3-induced immunomodulatory changes to the spleen, emphasizing NaHCO3's potential as an IR activator with therapeutic implications for a wide spectrum of systemic inflammatory conditions.
Collapse
Affiliation(s)
- Milena Rodriguez Alvarez
- School of Graduate Studies & Department of Internal Medicine, Division of Rheumatology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA.
- Department of Rheumatology, SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY, 11203, USA.
| | - Hussam Alkaissi
- Division of Diabetes, Endocrinology, and Metabolic Diseases, NIH/NIDDK, Bethesda, MD, USA
| | - Aja M Rieger
- Department of Medical Microbiology and Immunology, University of Alberta, Alberta, Canada
| | - Guillem R Esber
- Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Canada
| | - Manuel E Acosta
- Mathematics and Computer Sciences Department, Barry University, Miami, FL, USA
| | - Stacy I Stephenson
- Division of Comparative Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Allison V Maurice
- Division of Comparative Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | | | - Christopher A Roman
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Juan Marcos Alarcon
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| |
Collapse
|
28
|
Sharma D, Kohlbach KA, Maples R, Farrar JD. The β2-adrenergic receptor (ADRB2) entrains circadian gene oscillation and diurnal responses to virus infection in CD8 + T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584692. [PMID: 38559276 PMCID: PMC10980027 DOI: 10.1101/2024.03.12.584692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Adaptive immune cells are regulated by circadian rhythms (CR) under both steady state conditions and during responses to infection. Cytolytic CD8 + T cells display variable responses to infection depending upon the time of day of exposure. However, the neuronal signals that entrain these cyclic behaviors remain unknown. Immune cells express a variety of neurotransmitter receptors including nicotinic, glucocorticoid, and adrenergic receptors. Here, we demonstrate that the β2-adrenergic receptor (ADRB2) regulates the periodic oscillation of select core clock genes, such as Per2 and Bmal1 , and selective loss of the Adrb2 gene dramatically perturbs the normal diurnal oscillation of clock gene expression in CD8 + T cells. Consequently, their circadian-regulated anti-viral response is dysregulated, and the diurnal development of CD8 + T cells into variegated populations of cytolytic T cell (CTL) effectors is dramatically altered in the absence of ADRB2 signaling. Thus, the Adrb2 directly entrains core clock gene oscillation and regulates CR-dependent T cell responses to virus infection as a function of time-of-day of pathogen exposure. One Sentence Summary The β2-adrenergic receptor regulates circadian gene oscillation and downstream daily timing of cytolytic T cell responses to virus infection.
Collapse
|
29
|
Zhang M, Liu T, Yang J. Skin neuropathy and immunomodulation in diseases. FUNDAMENTAL RESEARCH 2024; 4:218-225. [PMID: 38933512 PMCID: PMC11197692 DOI: 10.1016/j.fmre.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/14/2022] [Accepted: 08/30/2022] [Indexed: 12/01/2022] Open
Abstract
Skin is a vital barrier tissue of the body. Immune responses in the skin must be precisely controlled, which would otherwise cause severe disease conditions such as psoriasis, atopic dermatitis, or pathogenic infection. Research evidence has increasingly demonstrated the essential roles of neural innervations, i.e., sensory and sympathetic signals, in modulating skin immunity. Notably, neuropathic changes of such neural structures have been observed in skin disease conditions, implicating their direct involvement in various pathological processes. An in-depth understanding of the mechanism underlying skin neuropathy and its immunomodulatory effects could help reveal novel entry points for therapeutic interventions. Here, we summarize the neuroimmune interactions between neuropathic events and skin immunity, highlighting the current knowledge and future perspectives of this emerging research frontier.
Collapse
Affiliation(s)
- Manze Zhang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Tingting Liu
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jing Yang
- IDG/McGovern Institute for Brain Research, Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
- Peking University Third Hospital Cancer Center, Beijing 100191, China
| |
Collapse
|
30
|
Wei H, Deng M, Ding R, Wei L, Yuan H. Macrophage β2-AR activation amplifies inflammation in wound healing by upregulating Trem1 via the cAMP/PKA/CREB pathway. Int Immunopharmacol 2024; 128:111463. [PMID: 38190789 DOI: 10.1016/j.intimp.2023.111463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Inflammation is an important part of the wound healing process. The stress hormone epinephrine has been demonstrated to modulate the inflammatory response via its interaction with β2-adrenergic receptor (β2-AR). However, the precise molecular mechanism through which β2-AR exerts its influence on inflammation during the wound healing process remains an unresolved question. METHODS Transcriptome datasets of wound and macrophages from the GEO database were reanalyzed using bioinformatics. The role of β2-AR in wound healing was explored by a mouse hind paw plantar wound model, and histological analyses were performed to assess wound healing. In vivo and in vitro assays were performed to elucidate the role of β2-AR on the inflammatory response. Triggering receptor expressed on myeloid cells 1 (Trem1) was knocked down with siRNA on RAW cells and western blot and qPCR assays were performed. RESULTS Trem1 was upregulated within 24 h of wounding, and macrophage β2-AR activation also upregulated Trem1. In vivo experiments demonstrated that β2-AR agonists impaired wound healing, accompanied by upregulation of Trem1 and activation of cAMP/PKA/CREB pathway, as well as by a high level of pro-inflammatory cytokine production. In vitro experiments showed that macrophage β2-AR activation amplified LPS-induced inflammation, and knockdown of Trem1 reversed this effect. Using activator and inhibitor of cAMP, macrophage β2-AR activation was confirmed to upregulate Trem1 via the cAMP/PKA/CREB pathway. CONCLUSION Our study found that β2-AR agonists increase Trem1 expression in wounds, accompanied by amplification of the inflammatory response, impairing wound healing. β2-AR activation in RAW cells induces Trem1 upregulation via the cAMP/PKA/CREB pathway and amplifies LPS-induced inflammatory responses.
Collapse
Affiliation(s)
- Huawei Wei
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Mengqiu Deng
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Ruifeng Ding
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Liangtian Wei
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| |
Collapse
|
31
|
Markousis-Mavrogenis G, Baumhove L, Al-Mubarak AA, Aboumsallem JP, Bomer N, Voors AA, van der Meer P. Immunomodulation and immunopharmacology in heart failure. Nat Rev Cardiol 2024; 21:119-149. [PMID: 37709934 DOI: 10.1038/s41569-023-00919-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/16/2023]
Abstract
The immune system is intimately involved in the pathophysiology of heart failure. However, it is currently underused as a therapeutic target in the clinical setting. Moreover, the development of novel immunomodulatory therapies and their investigation for the treatment of patients with heart failure are hampered by the fact that currently used, evidence-based treatments for heart failure exert multiple immunomodulatory effects. In this Review, we discuss current knowledge on how evidence-based treatments for heart failure affect the immune system in addition to their primary mechanism of action, both to inform practising physicians about these pleiotropic actions and to create a framework for the development and application of future immunomodulatory therapies. We also delineate which subpopulations of patients with heart failure might benefit from immunomodulatory treatments. Furthermore, we summarize completed and ongoing clinical trials that assess immunomodulatory treatments in heart failure and present several therapeutic targets that could be investigated in the future. Lastly, we provide future directions to leverage the immunomodulatory potential of existing treatments and to foster the investigation of novel immunomodulatory therapeutics.
Collapse
Affiliation(s)
- George Markousis-Mavrogenis
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lukas Baumhove
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ali A Al-Mubarak
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Joseph Pierre Aboumsallem
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Cardiology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Nils Bomer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Adriaan A Voors
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| |
Collapse
|
32
|
Baker JG, Summers RJ. Adrenoceptors: Receptors, Ligands and Their Clinical Uses, Molecular Pharmacology and Assays. Handb Exp Pharmacol 2024; 285:55-145. [PMID: 38926158 DOI: 10.1007/164_2024_713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The nine G protein-coupled adrenoceptor subtypes are where the endogenous catecholamines adrenaline and noradrenaline interact with cells. Since they are important therapeutic targets, over a century of effort has been put into developing drugs that modify their activity. This chapter provides an outline of how we have arrived at current knowledge of the receptors, their physiological roles and the methods used to develop ligands. Initial studies in vivo and in vitro with isolated organs and tissues progressed to cell-based techniques and the use of cloned adrenoceptor subtypes together with high-throughput assays that allow close examination of receptors and their signalling pathways. The crystal structures of many of the adrenoceptor subtypes have now been determined opening up new possibilities for drug development.
Collapse
Affiliation(s)
- Jillian G Baker
- Cell Signalling, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK.
- Department of Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK.
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
33
|
Lee SH, Lee H, Park R. Systemic Immune Modulation Induced by Ephedrine in Obese-Diabetes ( db/ db) Mice. Curr Issues Mol Biol 2023; 45:10097-10108. [PMID: 38132476 PMCID: PMC10742494 DOI: 10.3390/cimb45120630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Immune-modulatory effects in obese-diabetes (db/db) mice were observed to understand the possible mechanism(s) of ephedrine-induced unfavorable responses. The ephedrine doses were selected based on the FDA report (NTP Tech Rep Ser NO 307; CAS# 134-72-5), which showed the non-toxic dose for B6C3F1 mice. In db/db mice, higher doses (6 and 12 mg/mouse) of ephedrine significantly harmed the liver and lung morphology, including fatty liver with multiple blood vessel engorgement, alveolar wall thickening, and inflammatory response in the lung. The immune micro-environment of db/db mice was an inflammatory state with suppressed adaptive cellular immunity. After the administration of ephedrine, significant deterioration of NK activity was observed with lowered gene transcription of klrk1 encoding NKG2D, and of ccl8, a NK cell targeting chemokine. Suppressed cellular immunity in db/db mice was lowered ever further by single ephedrine treatment, as was evidenced by mitogen-induced T or B cell proliferations. These observations demonstrate that at the non-toxic doses in normal B6C3F1 mice, ephedrine clearly suppressed systemic immunity of db/db mice. The data suggest that the immune micro-environment of obese individuals is fragile and susceptible to ephedrine-related pathologic response, and this may be a prelude to the induction of obesity-related secondary immunological disorders.
Collapse
Affiliation(s)
- Seung-hoon Lee
- Department of Life Science, Yongin University, 470 Samga Dong, Cheo-In Gu, Yong-In Si 17092, Republic of Korea;
| | - Hyunah Lee
- Immunecell Therapy Research Center, Seoul Song Do Colorectal Hospital, 78 Dasan-ro, Jung-gu, Seoul 04597, Republic of Korea
| | - Rackhyun Park
- Department of Life Science, Yongin University, 470 Samga Dong, Cheo-In Gu, Yong-In Si 17092, Republic of Korea;
| |
Collapse
|
34
|
Zhang Z, Cui X, Liu K, Gao X, Zhou Q, Xi H, Zhao Y, Zhang D, Zhu B. Adrenal sympathetic nerve mediated the anti-inflammatory effect of electroacupuncture at ST25 acupoint in a rat model of sepsis. Anat Rec (Hoboken) 2023; 306:3178-3188. [PMID: 36300612 DOI: 10.1002/ar.25102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/11/2022] [Accepted: 09/19/2022] [Indexed: 11/07/2022]
Abstract
Acupuncture plays a vital anti-inflammatory action in sepsis by activating autonomic nerve anti-inflammatory pathways, such as sympathoadrenal medullary pathway, but the mechanism remains unclear. This study aims to explore the optimum parameter of electroacupuncture (EA) stimulation in regulating the sympathoadrenal medullary pathway and evaluate EA's anti-inflammatory effect on sepsis. To determine the optimum parameter of EA at homotopic acupoint on adrenal sympathetic activity, the left adrenal sympathetic nerve firing rate evoked by different intensities of single shock electrical stimulation (ES) at ST25 in healthy male Sprague-Dawley rats were evaluated by in vivo electrophysiological recording, and the levels of norepinephrine (NE) and its metabolites normetanephrine (NMN) were also examined using mass spectrometry. To verify the role of EA at ST25 in sepsis, the rats were given an intraperitoneal injection of lipopolysaccharide (LPS) to induce sepsis model, and survival rate, clinical score, and the level of interleukin (IL)-6, IL-1β, and IL-10 were evaluated after EA application. We observed that 3 mA is the optimal intensity for activating adrenal sympathetic nerve, which significantly elevated the level of NE in the peripheral blood. For LPS-treated rats, EA at the ST25 apparently increased the survival rate and improved the clinical score compared to the control group. Furthermore, 3 mA EA at ST25 significantly decreased pro-inflammatory cytokines IL-6 and IL-1β and upregulated anti-inflammatory cytokine IL-10 compared to the LPS-treated group. Overall, our data suggested that 3 mA is the optimal EA intensity at ST25 to activate the sympathoadrenal medullary pathway and exert an anti-inflammatory effect in sepsis.
Collapse
Affiliation(s)
- Ziyi Zhang
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
- College of Acupuncture and Tuina, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiang Cui
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kun Liu
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyan Gao
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingchen Zhou
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
- Acupuncture-moxibustion and Tuina Department, Qilu Hospital of Shandong University, Jinan, China
| | - Hanqing Xi
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingkun Zhao
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Dingdan Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bing Zhu
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
35
|
Lawrence S, Mueller BR, Benn EKT, Kim-Schulze S, Kwon P, Robinson-Papp J. Autonomic Neuropathy is Associated with More Densely Interconnected Cytokine Networks in People with HIV. J Neuroimmune Pharmacol 2023; 18:563-572. [PMID: 37923971 PMCID: PMC10997189 DOI: 10.1007/s11481-023-10088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023]
Abstract
The autonomic nervous system (ANS) plays a complex role in the regulation of the immune system, with generally inhibitory effects via activation of β-adrenergic receptors on immune cells. We hypothesized that HIV-associated autonomic neuropathy (HIV-AN) would result in immune hyperresponsiveness which could be depicted using network analyses. Forty-two adults with well-controlled HIV underwent autonomic testing to yield the Composite Autonomic Severity Score (CASS). The observed range of CASS was 2-5, consistent with normal to moderate HIV-AN. To construct the networks, participants were divided into 4 groups based on the CASS (i.e., 2, 3, 4 or 5). Forty-four blood-based immune markers were included as nodes in all networks and the connections (i.e., edges) between pairs of nodes were determined by their bivariate Spearman's Rank Correlation Coefficient. Four centrality measures (strength, closeness, betweenness and expected influence) were calculated for each node in each network. The median value of each centrality measure across all nodes in each network was calculated as a quantitative representation of network complexity. Graphical representation of the four networks revealed greater complexity with increasing HIV-AN severity. This was confirmed by significant differences in the median value of all four centrality measures across the networks (p ≤ 0.025 for each). Among people with HIV, HIV-AN is associated with stronger and more numerous positive correlations between blood-based immune markers. Findings from this secondary analysis can be used to generate hypotheses for future studies investigating HIV-AN as a mechanism contributing to the chronic immune activation observed in HIV.
Collapse
Affiliation(s)
- Steven Lawrence
- Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, New York, NY, USA
| | - Bridget R Mueller
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Emma K T Benn
- Center for Scientific Diversity, Center for Biostatistics, and Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Patrick Kwon
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Jessica Robinson-Papp
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
36
|
Loppi SH, Tavera-Garcia MA, Scholpa NE, Maiyo BK, Becktel DA, Morrison HW, Schnellmann RG, Doyle KP. Boosting Mitochondrial Biogenesis Diminishes Foam Cell Formation in the Post-Stroke Brain. Int J Mol Sci 2023; 24:16632. [PMID: 38068955 PMCID: PMC10706318 DOI: 10.3390/ijms242316632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Following ischemic stroke, the degradation of myelin and other cellular membranes surpasses the lipid-processing capabilities of resident microglia and infiltrating macrophages. This imbalance leads to foam cell formation in the infarct and areas of secondary neurodegeneration, instigating sustained inflammation and furthering neurological damage. Given that mitochondria are the primary sites of fatty acid metabolism, augmenting mitochondrial biogenesis (MB) may enhance lipid processing, curtailing foam cell formation and post-stroke chronic inflammation. Previous studies have shown that the pharmacological activation of the β2-adrenergic receptor (β2-AR) stimulates MB. Consequently, our study sought to discern the effects of intensified β2-AR signaling on MB, the processing of brain lipid debris, and neurological outcome using a mouse stroke model. To achieve this goal, aged mice were treated with formoterol, a long-acting β2-AR agonist, daily for two and eight weeks following stroke. Formoterol increased MB in the infarct region, modified fatty acid metabolism, and reduced foam cell formation. However, it did not reduce markers of post-stroke neurodegeneration or improve recovery. Although our findings indicate that enhancing MB in myeloid cells can aid in the processing of brain lipid debris after stroke, it is important to note that boosting MB alone may not be sufficient to significantly impact stroke recovery.
Collapse
Affiliation(s)
- Sanna H. Loppi
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, AZ 85719, USA; (S.H.L.); (M.A.T.-G.); (B.K.M.); (D.A.B.)
| | - Marco A. Tavera-Garcia
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, AZ 85719, USA; (S.H.L.); (M.A.T.-G.); (B.K.M.); (D.A.B.)
| | - Natalie E. Scholpa
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85719, USA; (N.E.S.); (R.G.S.)
| | - Boaz K. Maiyo
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, AZ 85719, USA; (S.H.L.); (M.A.T.-G.); (B.K.M.); (D.A.B.)
| | - Danielle A. Becktel
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, AZ 85719, USA; (S.H.L.); (M.A.T.-G.); (B.K.M.); (D.A.B.)
| | | | - Rick G. Schnellmann
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85719, USA; (N.E.S.); (R.G.S.)
- BIO5 Institute, College of Medicine, University of Arizona, Tucson, AZ 85719, USA
- R. Ken Coit Center for Longevity and Neurotherapeutics, College of Pharmacy, University of Arizona, Tucson, AZ 85719, USA
| | - Kristian P. Doyle
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, AZ 85719, USA; (S.H.L.); (M.A.T.-G.); (B.K.M.); (D.A.B.)
- BIO5 Institute, College of Medicine, University of Arizona, Tucson, AZ 85719, USA
- Department of Neurology, College of Medicine, University of Arizona, Tucson, AZ 85719, USA
- Arizona Center on Aging, College of Medicine, University of Arizona, Tucson, AZ 85719, USA
- Department of Psychology, College of Medicine, University of Arizona, Tucson, AZ 85719, USA
- Department of Neurosurgery, College of Medicine, University of Arizona, Tucson, AZ 85719, USA
| |
Collapse
|
37
|
Brooke AK, Murrow DP, Caldwell KCN, Witt CE, Ross AE. Measuring neuron-regulated immune cell physiology via the alpha-2 adrenergic receptor in an ex vivo murine spleen model. Cell Mol Life Sci 2023; 80:354. [PMID: 37945921 PMCID: PMC11071927 DOI: 10.1007/s00018-023-05012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/27/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
The communication between the nervous and immune systems plays a crucial role in regulating immune cell function and inflammatory responses. Sympathetic neurons, which innervate the spleen, have been implicated in modulating immune cell activity. The neurotransmitter norepinephrine (NE), released by sympathetic neurons, influences immune cell responses by binding to adrenergic receptors on their surface. The alpha-2 adrenergic receptor (α2AR), expressed predominantly on sympathetic neurons, has received attention due to its autoreceptor function and ability to modulate NE release. In this study, we used fast-scan cyclic voltammetry (FSCV) to provide the first subsecond measurements of NE released in the white pulp region of the spleen and validated it with yohimbine, a known antagonist of α2AR. For further application of FSCV in neuroimmunology, we investigated the extent to which subsecond NE from sympathetic neurons is important for immune cell physiology and cytokine production, focusing on tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), and interleukin-6 (IL-6). Our findings provide insights into the regulatory mechanisms underlying sympathetic-immune interactions and show the significance of using FSCV, a traditional neurochemistry technique, to study these neuroimmune mechanisms.
Collapse
Affiliation(s)
- Alexandra K Brooke
- Department of Chemistry, University of Cincinnati, 312 College Dr. 404 Crosley Tower, Cincinnati, OH, 45221-0172, USA
| | - Daniel P Murrow
- Department of Chemistry, University of Cincinnati, 312 College Dr. 404 Crosley Tower, Cincinnati, OH, 45221-0172, USA
| | - Kaejaren C N Caldwell
- Department of Chemistry, University of Cincinnati, 312 College Dr. 404 Crosley Tower, Cincinnati, OH, 45221-0172, USA
| | - Colby E Witt
- Department of Chemistry, University of Cincinnati, 312 College Dr. 404 Crosley Tower, Cincinnati, OH, 45221-0172, USA
| | - Ashley E Ross
- Department of Chemistry, University of Cincinnati, 312 College Dr. 404 Crosley Tower, Cincinnati, OH, 45221-0172, USA.
| |
Collapse
|
38
|
Wojtala D, Kozieł S, Witwicki M, Niorettini A, Guz-Regner K, Bugla-Płoskońska G, Caramori S, Komarnicka UK. Antibactericidal Ir(III) and Ru(II) Complexes with Phosphine-Alkaloid Conjugate and Their Interactions with Biomolecules: A Case of N-Methylphenethylamine. Chemistry 2023; 29:e202301603. [PMID: 37584222 DOI: 10.1002/chem.202301603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/06/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
The phosphine ligand (Ph2 PCH2 N(CH3 )(CH2 )2 Ph, PNMPEA) obtained by the reaction of the (hydroxymethyl)diphenylphosphine with naturally occurring alkaloid N-methylphenethylamine, was used to synthesize the half-sandwich iridium(III) (Ir(η5 -Cp*)Cl2 Ph2 PCH2 N(CH3 )(CH2 )2 Ph, IrPNMPEA) and ruthenium(II) (Ru(η6 -p-cymene)Cl2 Ph2 PCH2 N(CH3 )(CH2 )2 Ph, RuPNMPEA) complexes. They were characterized using a vast array of methods, including 1D and 2D NMR, ESI(+)MS spectrometry, elemental analysis, cyclic voltammetry (CV), electron spectroscopy in the UV-Vis range (absorption, fluorescence) and density functional theory (DFT). The initial antimicrobial activity in vitro toward Gram-positive and Gram-negative bacterial strains was examined, indicating that both complexes are selective towards Gram-positive bacteria, e. g., Staphylococcus aureus, where the IrPNMPEA has been more bactericidal compared to RuPNMPEA. Additionally, the interactions of these compounds with various biomolecules, such as DNA (ctDNA, plasmid DNA, 9-ethylguanine (9-EtG), and 9-methyladenine (9-MeA)), nicotinamide adenine dinucleotide (NADH), glutathione (GSH), and ascorbic acid (Asc) were described. The results showed that both Ir(III) and Ru(II) complexes accelerate the oxidation process of NADH, GSH and Asc that appeared to occur by an electron transfer mechanism. Interestingly, only IrPNMPEA leads to the formation of various biomolecule adducts, which can explain its higher activity. Furthermore, RuPNMPEA and IrPNMPEA have been interacting with the DNA through weak noncovalent interactions.
Collapse
Affiliation(s)
- Daria Wojtala
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383, Wroclaw, Poland
| | - Sandra Kozieł
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383, Wroclaw, Poland
| | - Maciej Witwicki
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383, Wroclaw, Poland
| | - Alessandro Niorettini
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Katarzyna Guz-Regner
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, Przybyszewskiego 63-77, 51-148, Wroclaw, Poland
| | - Gabriela Bugla-Płoskońska
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, Przybyszewskiego 63-77, 51-148, Wroclaw, Poland
| | - Stefano Caramori
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Urszula K Komarnicka
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383, Wroclaw, Poland
| |
Collapse
|
39
|
Thoppil J, Mehta P, Bartels B, Sharma D, Farrar JD. Impact of norepinephrine on immunity and oxidative metabolism in sepsis. Front Immunol 2023; 14:1271098. [PMID: 38022663 PMCID: PMC10662053 DOI: 10.3389/fimmu.2023.1271098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Sepsis is a major health problem in the United States (US), constituting a leading contributor to mortality among critically ill patients. Despite advances in treatment the underlying pathophysiology of sepsis remains elusive. Reactive oxygen species (ROS) have a significant role in antimicrobial host defense and inflammation and its dysregulation leads to maladaptive responses because of excessive inflammation. There is growing evidence for crosstalk between the central nervous system and the immune system in response to infection. The hypothalamic-pituitary and adrenal axis and the sympathetic nervous system are the two major pathways that mediate this interaction. Epinephrine (Epi) and norepinephrine (NE), respectively are the effectors of these interactions. Upon stimulation, NE is released from sympathetic nerve terminals locally within lymphoid organs and activate adrenoreceptors expressed on immune cells. Similarly, epinephrine secreted from the adrenal gland which is released systemically also exerts influence on immune cells. However, understanding the specific impact of neuroimmunity is still in its infancy. In this review, we focus on the sympathetic nervous system, specifically the role the neurotransmitter norepinephrine has on immune cells. Norepinephrine has been shown to modulate immune cell responses leading to increased anti-inflammatory and blunting of pro-inflammatory effects. Furthermore, there is evidence to suggest that norepinephrine is involved in regulating oxidative metabolism in immune cells. This review attempts to summarize the known effects of norepinephrine on immune cell response and oxidative metabolism in response to infection.
Collapse
Affiliation(s)
- Joby Thoppil
- Department of Emergency Medicine, University of Texas, Southwestern Medical Center, Dallas, TX, United States
| | - Prayag Mehta
- Department of Emergency Medicine, University of Texas, Southwestern Medical Center, Dallas, TX, United States
| | - Brett Bartels
- Department of Emergency Medicine, University of Texas, Southwestern Medical Center, Dallas, TX, United States
| | - Drashya Sharma
- Department of Immunology, University of Texas (UT) Southwestern Medical Center, Dallas, TX, United States
| | - J. David Farrar
- Department of Immunology, University of Texas (UT) Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
40
|
Shaker MS, Bernstein JA. Neuroimmunology as the next frontier. Ann Allergy Asthma Immunol 2023; 131:535-536. [PMID: 37923543 DOI: 10.1016/j.anai.2023.08.596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 11/07/2023]
Affiliation(s)
- Marcus S Shaker
- Section of Allergy and Immunology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire; Departments of Medicine and Pediatrics, Dartmouth Geisel School of Medicine, Hanover, New Hampshire.
| | - Jonathan A Bernstein
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
41
|
Jin M, Wei Z, Ramalingam N, Xiao M, Xu A, Yu X, Song Q, Liu W, Zhao J, Zhang D, Selkoe DJ, Li S. Activation of β 2-adrenergic receptors prevents AD-type synaptotoxicity via epigenetic mechanisms. Mol Psychiatry 2023; 28:4877-4888. [PMID: 37365243 DOI: 10.1038/s41380-023-02145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
We previously reported that prolonged exposure to an enriched environment (EE) enhances hippocampal synaptic plasticity, with one of the significant mechanistic pathways being activation of β2-adrenergic receptor (β2-AR) signaling, thereby mitigating the synaptotoxic effects of soluble oligomers of amyloid β-protein (oAβ). However, the detailed mechanism remained elusive. In this work, we recorded field excitatory postsynaptic potentials (fEPSP) in the CA1 region of mouse hippocampal slices treated with or without toxic Aβ-species. We found that pharmacological activation of β2-AR, but not β1-AR, selectively mimicked the effects of EE in enhancing LTP and preventing oAβ-induced synaptic dysfunction. Mechanistic analyses showed that certain histone deacetylase (HDAC) inhibitors mimicked the benefits of EE, but this was not seen in β2-AR knockout mice, suggesting that activating β2-AR prevents oAβ-mediated synaptic dysfunction via changes in histone acetylation. EE or activation of β-ARs each decreased HDAC2, whereas Aβ oligomers increased HDAC2 levels in the hippocampus. Further, oAβ-induced inflammatory effects and neurite degeneration were prevented by either β2-AR agonists or certain specific HDAC inhibitors. These preclinical results suggest that activation of β2-AR is a novel potential therapeutic strategy to mitigate oAβ-mediated features of AD.
Collapse
Affiliation(s)
- Ming Jin
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Zhiyun Wei
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Meng Xiao
- Department of Neurology, Xinxiang Medical University, Xinxiang, 453100, China
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, 518172, China
| | - Anqi Xu
- Department of Neurology, Xinxiang Medical University, Xinxiang, 453100, China
| | - Xiaohan Yu
- Department of Neurology, Xinxiang Medical University, Xinxiang, 453100, China
| | - Qingyang Song
- Department of Neurology, Xinxiang Medical University, Xinxiang, 453100, China
| | - Wen Liu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Jianhua Zhao
- Department of Neurology, Xinxiang Medical University, Xinxiang, 453100, China
- Henan Key Laboratory of Neurorestoratology, Xinxiang, Henan, 453100, China
| | - Dainan Zhang
- Department of Neurology, Xinxiang Medical University, Xinxiang, 453100, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Shaomin Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
42
|
Zawadka-Kunikowska M, Rzepiński Ł, Cieślicka M, Klawe JJ, Tafil-Klawe M. Alterations in short-term blood pressure variability related to disease severity and autonomic symptoms in myasthenia gravis patients. Neurol Sci 2023; 44:4065-4075. [PMID: 37378800 PMCID: PMC10570234 DOI: 10.1007/s10072-023-06927-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023]
Abstract
OBJECTIVES We aimed to evaluate beat-to-beat blood pressure variability (BPV) during head-up tilt test (HUTT) in patients with mild and moderate myasthenia gravis (MG) compared to healthy controls (HCs), and its association with the severity of autonomic symptoms. METHODS A total of 50 MG patients and 30 HCs were evaluated. Patients were stratified into 2 groups regarding Myasthenia Gravis Foundation of America (MGFA) classification: mild (I,II MGFA), moderate form (III MGFA). Autonomic symptoms were assessed by COMPASS-31 questionnaire. Cardiovascular parameters, indices of very short-term systolic (SBPV), and diastolic blood pressure (BP) variability (DBPV) were assessed at rest, and during HUTT. RESULTS Moderate MG patients were characterized by an overall shift of sympathovagal balance toward sympathetic predominance, either at rest and during HUTT, as well as lower values of high frequency (HFnu) of DBPV during HUTT, compared to HCs and mild MG. Similarly, moderate MG showed higher resting low frequency (LFnu) of DBPV (p=0.035), higher COMPASS-31 score (p=0.031), and orthostatic intolerance sub-score (p=0.019) than mild MG patients. Compared to HCs, mild MG patients showed lower Δmean BP (p=0.029), Δdiastolic BP (p=0.016). Autonomic symptoms were associated with lower BP values, at rest and during HUTT, and lower LF BPV parameters during HUTT. CONCLUSION MG patients present significant alterations in BPV, both at rest and in response to orthostatic stress, which are related to autonomic symptoms and disease severity. This study confirms the importance of monitoring BPV when evaluating cardiovascular autonomic function and its evolution over the course of MG disease.
Collapse
Affiliation(s)
- Monika Zawadka-Kunikowska
- Department of Human Physiology, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Karłowicza 24, 85-092, Bydgoszcz, Poland.
| | - Łukasz Rzepiński
- Sanitas-Neurology Outpatient Clinic, Dworcowa 110, 85-010, Bydgoszcz, Poland
- Department of Neurology, 10th Military Research Hospital and Polyclinic, 85-681, Bydgoszcz, Poland
| | - Mirosława Cieślicka
- Department of Human Physiology, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Karłowicza 24, 85-092, Bydgoszcz, Poland
| | - Jacek J Klawe
- Department of Hygiene, Epidemiology, Ergonomy and Postgraduate Education, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum in Bydgoszcz, M. Sklodowskiej-Curie 9, 85-094, Bydgoszcz, Poland
| | - Małgorzata Tafil-Klawe
- Department of Human Physiology, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Karłowicza 24, 85-092, Bydgoszcz, Poland
| |
Collapse
|
43
|
Reel JM, Abbadi J, Bueno AJ, Cizio K, Pippin R, Doyle DA, Mortan L, Bose JL, Cox MA. The Sympathetic Nervous System Is Necessary for Development of CD4+ T-Cell Memory Following Staphylococcus aureus Infection. J Infect Dis 2023; 228:966-974. [PMID: 37163747 PMCID: PMC10547460 DOI: 10.1093/infdis/jiad154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/12/2023] Open
Abstract
Lymph nodes and spleens are innervated by sympathetic nerve fibers that enter alongside arteries. Despite discovery of these nerve fibers nearly 40 years ago, the role of these nerves during response to infection remains poorly defined. We have found that chemical depletion of sympathetic nerve fibers compromises the ability of mice to develop protective immune memory to a Staphylococcus aureus infection. Innate control of the primary infection was not impacted by sympathectomy. Germinal center formation is also compromised in nerve-depleted animals; however, protective antibody responses are still generated. Interestingly, protective CD4+ T-cell memory fails to form in the absence of sympathetic nerves after S aureus infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Laura Mortan
- Stephenson Cancer Center
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Jeffrey L Bose
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City
| | - Maureen A Cox
- Department of Microbiology and Immunology
- Stephenson Cancer Center
| |
Collapse
|
44
|
Govindula A, Ranadive N, Nampoothiri M, Rao CM, Arora D, Mudgal J. Emphasizing the Crosstalk Between Inflammatory and Neural Signaling in Post-traumatic Stress Disorder (PTSD). J Neuroimmune Pharmacol 2023; 18:248-266. [PMID: 37097603 PMCID: PMC10577110 DOI: 10.1007/s11481-023-10064-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/16/2023] [Indexed: 04/26/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a chronic incapacitating condition with recurrent experience of trauma-related memories, negative mood, altered cognition, and hypervigilance. Agglomeration of preclinical and clinical evidence in recent years specified that alterations in neural networks favor certain characteristics of PTSD. Besides the disruption of hypothalamus-pituitary-axis (HPA) axis, intensified immune status with elevated pro-inflammatory cytokines and arachidonic metabolites of COX-2 such as PGE2 creates a putative scenario in worsening the neurobehavioral facet of PTSD. This review aims to link the Diagnostic and Statistical Manual of mental disorders (DSM-V) symptomology to major neural mechanisms that are supposed to underpin the transition from acute stress reactions to the development of PTSD. Also, to demonstrate how these intertwined processes can be applied to probable early intervention strategies followed by a description of the evidence supporting the proposed mechanisms. Hence in this review, several neural network mechanisms were postulated concerning the HPA axis, COX-2, PGE2, NLRP3, and sirtuins to unravel possible complex neuroinflammatory mechanisms that are obscured in PTSD condition.
Collapse
Affiliation(s)
- Anusha Govindula
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Niraja Ranadive
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - C Mallikarjuna Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Devinder Arora
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast campus, Gold Coast, Queensland, 4222, Australia.
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
45
|
Shi JT, Cao WY, Zhang XN, Wan HY, Su YS, Qu ZY, Wang R, He W, Jing XH, Wang XY. Local analgesia of electroacupuncture is mediated by the recruitment of neutrophils and released β-endorphins. Pain 2023; 164:1965-1975. [PMID: 37027145 PMCID: PMC10436362 DOI: 10.1097/j.pain.0000000000002892] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/08/2023] [Accepted: 01/27/2023] [Indexed: 04/08/2023]
Abstract
ABSTRACT The efficacy of acupuncture in treating pain diseases has been recognized in clinical practice, and its mechanism of action has been a hot topic in academic acupuncture research. Previous basic research on acupuncture analgesia has focused mostly on the nervous system, with few studies addressing the immune system as a potential pathway of acupuncture analgesia. In this study, we investigated the effect of electroacupuncture (EA) on the β-endorphins (β-END) content, END-containing leukocyte type and number, sympathetic neurotransmitter norepinephrine (NE), and chemokine gene expression in inflamed tissues. To induce inflammatory pain, about 200 µL of complete Frester adjuvant (CFA) was injected into the unilateral medial femoral muscle of adult Wistar rats. Electroacupuncture treatment was performed for 3 days beginning on day 4 after CFA injection, with parameters of 2/100 Hz, 2 mA, and 30 minutes per treatment. The weight-bearing experiment and enzyme-linked immunosorbent assay showed that EA treatment significantly relieved spontaneous pain-like behaviors and increased the level of β-END in inflamed tissue. Injection of anti-END antibody in inflamed tissue blocked this analgesic effect. Flow cytometry and immunofluorescence staining revealed that the EA-induced increase in β-END was derived from opioid-containing ICAM-1 + /CD11b + immune cells in inflamed tissue. In addition, EA treatment increased the NE content and expression of β2 adrenergic receptor (ADR-β2) in inflammatory tissues and upregulated Cxcl1 and Cxcl6 gene expression levels. These findings provide new evidence for the peripheral analgesic effect of acupuncture treatment by recruiting β-END-containing ICAM-1 + /CD11b + immune cells and increasing the β-END content at the site of inflammation.
Collapse
Affiliation(s)
- Jing-tao Shi
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
- Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang 332005, Jiangxi Province, China
| | - Wan-ying Cao
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao-Ning Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hong-Ye Wan
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang-Shuai Su
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zheng-Yang Qu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rui Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Wei He
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiang-Hong Jing
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao-Yu Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
46
|
Torrillas-de la Cal A, Torres-Sanchez S, Bravo L, Llorca-Torralba M, Garcia-Partida JA, Arroba AI, Berrocoso E. Chemogenetic activation of locus coeruleus neurons ameliorates the severity of multiple sclerosis. J Neuroinflammation 2023; 20:198. [PMID: 37658434 PMCID: PMC10474779 DOI: 10.1186/s12974-023-02865-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/30/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Most current disease-modifying therapies approved for multiple sclerosis (MS) are immunomodulatory drugs that counteract the aberrant activity of the immune system. Hence, new pharmacological interventions that drive anti-inflammatory activity and neuroprotection would represent interesting alternative therapeutic approaches or complementary strategies to treat progressive forms of MS. There is evidence of reduced noradrenaline levels and alterations to locus coeruleus (LC) noradrenergic neurons in MS patients, as well as in animal models of this disease, potentially factors contributing to the pathophysiology. Drugs that enhance noradrenaline appear to have some beneficial effects in MS, suggesting their potential to dampen the underlying pathology and disease progression. METHODS Therefore, we explored the consequences of chronic LC noradrenergic neurons activation by chemogenetics in experimental autoimmune encephalomyelitis (EAE) mice, the most widely used experimental model of MS. LC activation from the onset or the peak of motor symptoms was explored as two different therapeutic approaches, assessing the motor and non-motor behavioral changes as EAE progresses, and studying demyelination, inflammation and glial activation in the spinal cord and cerebral cortex during the chronic phase of EAE. RESULTS LC activation from the onset of motor symptoms markedly alleviated the motor deficits in EAE mice, as well as their anxiety-like behavior and sickness, in conjunction with reduced demyelination and perivascular infiltration in the spinal cord and glial activation in the spinal cord and prefrontal cortex (PFC). When animals exhibited severe paralysis, LC activation produced a modest alleviation of EAE motor symptoms and it enhanced animal well-being, in association with an improvement of the EAE pathology at the spinal cord and PFC level. Interestingly, the reduced dopamine beta-hydroxylase expression associated with EAE in the spinal cord and PFC was reversed through chemogenetic LC activation. CONCLUSION Therefore, clear anti-inflammatory and neuroprotective effects were produced by the selective activation of LC noradrenergic neurons in EAE mice, having greater benefits when LC activation commenced earlier. Overall, these data suggest noradrenergic LC neurons may be targets to potentially alleviate some of the motor and non-motor symptoms in MS.
Collapse
Grants
- #FPU20-03072 "Agencia Estatal de Investigación-Ministerio de Ciencia, Innovación y Universidades"; FPU fellowship
- PID2022-1427850B-I00 "Fondo Europeo de Desarrollo Regional" (FEDER)-UE "A way to build Europe" from the "Ministerio de Economía y Competitividad
- PDC2022-133987-I00 "Fondo Europeo de Desarrollo Regional" (FEDER)-UE "A way to build Europe" from the "Ministerio de Economía y Competitividad
- PY20_00958 "Consejería de Transformación Económica, Industria, Conocimiento y Universidad, Junta de Andalucía"
- CTS-510 "Consejería de Transformación Económica, Industria, Conocimiento y Universidad, Junta de Andalucía"
- CEIJ-003 CEIMAR
- “CIBERSAM”: CIBER-Consorcio Centro de Investigación Biomédica en Red (CB07/09/0033), Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación
- “Agencia Estatal de Investigación-Ministerio de Ciencia, Innovación y Universidades”; FPU fellowship
- “Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz-INiBICA” (IN-CO9)
- "Fondo Europeo de Desarrollo Regional” (FEDER)-UE “A way to build Europe” from the “Ministerio de Economía y Competitividad
- Universidad de Cadiz
Collapse
Affiliation(s)
- Alejandro Torrillas-de la Cal
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain
- Ciber de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain
| | - Sonia Torres-Sanchez
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain
- Ciber de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain
| | - Lidia Bravo
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain
- Ciber de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain
| | - Meritxell Llorca-Torralba
- Ciber de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain
- Neuropsychopharmacology and Psychobiology Research Group, Department of Cell Biology and Histology, University of Cádiz, 11003, Cádiz, Spain
| | - Jose Antonio Garcia-Partida
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain
- Ciber de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain
| | - Ana I Arroba
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain
- Department of Biomedicine, Biotechnology and Public Health (Immunology Area), University of Cádiz, 11003, Cádiz, Spain
| | - Esther Berrocoso
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain.
- Ciber de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain.
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain.
| |
Collapse
|
47
|
Zhong X, Su T, Yang Y, Ye L, Jiang L, Qi Y, Xie J, Jiang Y, Zhou W, Zhang C, Wu L, Zhu H, Ning G, Wang W. Platelet-Lymphocyte and Neutrophil-Lymphocyte Ratios Are Prognostic Markers for Pheochromocytomas and Paragangliomas. J Clin Endocrinol Metab 2023; 108:2230-2239. [PMID: 36917004 DOI: 10.1210/clinem/dgad149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023]
Abstract
CONTEXT Preoperative inflammatory markers, such as the neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), and lymphocyte-monocyte ratio (LMR), have recently been proposed as prognostic markers in different tumors. However, their predictive values in patients with pheochromocytomas and paragangliomas (PPGLs) are uncertain. OBJECTIVE This study aimed to investigate the prognostic significance of inflammatory biomarkers in PPGL patients. METHODS Data from 1247 consecutive PPGL patients between 2002 and 2020 were evaluated. The preoperative inflammatory markers were evaluated. The prognostic roles were identified by X-tile software, Kaplan-Meier curves, and Cox regression models. RESULTS A total of 728 patients were included in the analysis, with a median follow-up of 63 months (IQR, 31-111 months); 31 individuals died, 28 patients developed metastases, and 12 patients developed recurrence. Our study showed that deaths were observed significantly more frequently in patients with high NLR(≥3.5) and high PLR (≥217.4) than those with low NLR (<3.5) (P = .003) and low PLR (<217.4) (P = .005). Elevated NLR (≥3.5) and elevated PLR (≥217.4) was significantly associated with decreased overall survival (OS) (P = .005), and elevated PLR (≥238.3) was significantly associated with decreased metastasis-free survival (MFS) (P = .021). Cox models illustrated that NLR and PLR were independent prognostic factors for OS, and PLR was an independent prognostic factor for MFS. CONCLUSION Both elevated NLR and PLR are associated with poor prognosis in PPGLs. They are convenient predictive markers that could be used in daily clinical practice.
Collapse
Affiliation(s)
- Xu Zhong
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - TingWei Su
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yifan Yang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lei Ye
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lei Jiang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yan Qi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Xie
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yiran Jiang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weiwei Zhou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Cui Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Luming Wu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hongyuan Zhu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
48
|
Jachs M, Hartl L, Simbrunner B, Bauer D, Paternostro R, Balcar L, Hofer B, Pfisterer N, Schwarz M, Scheiner B, Stättermayer AF, Pinter M, Trauner M, Mandorfer M, Reiberger T. Carvedilol Achieves Higher Hemodynamic Response and Lower Rebleeding Rates Than Propranolol in Secondary Prophylaxis. Clin Gastroenterol Hepatol 2023; 21:2318-2326.e7. [PMID: 35842118 DOI: 10.1016/j.cgh.2022.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/11/2022] [Accepted: 06/05/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Carvedilol induces stronger decreases in hepatic venous pressure gradient (HVPG) than conventional nonselective β-blockers (ie, propranolol). Limited data exist on the efficacy of carvedilol in secondary prophylaxis of variceal bleeding. METHODS Patients undergoing paired HVPG measurements for guiding secondary prophylaxis with either carvedilol or propranolol were included in this retrospective analysis. All patients also underwent band ligation. Changes in HVPG and systemic hemodynamics were compared between the 2 groups. Long-term follow-up data on rebleeding, acute kidney injury, nonbleeding decompensation, and liver-related death were analyzed applying competing risk regression. RESULTS Eighty-seven patients (carvedilol/propranolol, n = 45/42) were included in our study. The median baseline HVPG was 21 mm Hg (interquartile range, 18-24 mm Hg), and 39.1%/48.3%/12.6% had Child-Turcotte-Pugh A/B/C cirrhosis, respectively. Upon nonselective β-blocker initiation, HVPG decreased more strongly in carvedilol users (median relative decrease, -20% [interquartile range: -29% to -10%] vs -11% [-22% to -5%] for propranolol; P = .027), who also achieved chronic HVPG response more often (53.3% vs 28.6%; P = .034). Cumulative incidences for rebleeding (Gray test, P = .027) and liver-related death (P = .036) were significantly lower in patients taking carvedilol compared with propranolol. Notably, ascites development/worsening also was observed less commonly in carvedilol patients (P = .012). Meanwhile, acute kidney injury rates did not differ between the 2 groups (P = .255). Stratifying patients by HVPG response status yielded similar results. The prognostic value of carvedilol intake was confirmed in competing risk regression models. CONCLUSIONS Carvedilol induces more marked reductions in HVPG than propranolol in secondary prophylaxis of variceal bleeding, and thus is associated with lower rates of rebleeding, liver-related death, and further nonbleeding decompensation.
Collapse
Affiliation(s)
- Mathias Jachs
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Laboratory, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Lukas Hartl
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Laboratory, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Benedikt Simbrunner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Laboratory, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - David Bauer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Laboratory, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Rafael Paternostro
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Laboratory, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Lorenz Balcar
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Laboratory, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Benedikt Hofer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Laboratory, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Nikolaus Pfisterer
- Vienna Hepatic Hemodynamic Laboratory, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Department of Internal Medicine IV, Klinik Landstraße, Vienna, Austria
| | - Michael Schwarz
- Vienna Hepatic Hemodynamic Laboratory, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Department of Internal Medicine IV, Klinik Ottakring, Vienna, Austria
| | - Bernhard Scheiner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Laboratory, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Albert F Stättermayer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Matthias Pinter
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Mattias Mandorfer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Laboratory, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Laboratory, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
49
|
Rahimi Mansour F, Keyvanfar A, Najafiarab H, Rajaei Firouzabadi S, Sefidgar S, Hooshmand Chayijan S, Tarom M, Fadaei M, Farzaneh F, Karimzadeh Bardeei L, Tehrani S. Menstrual disturbances following COVID-19 vaccination: A probable puzzle about the role of endocrine and immune pathways. J Reprod Immunol 2023; 158:103952. [PMID: 37201456 PMCID: PMC10174728 DOI: 10.1016/j.jri.2023.103952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/15/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Menstruation is a monthly shedding of the uterine wall, presented by menstrual bleeding in women of reproductive age. Menstruation is regulated by fluctuation of estrogen and progesterone, as well as other endocrine and immune pathways. Many women experienced menstrual disturbances after vaccination against the novel coronavirus in the last two years. Vaccine-induced menstrual disturbances have led to discomfort and concern among reproductive-age women, such that some decided not to receive the subsequent doses of the vaccine. Although many vaccinated women report these menstrual disturbances, the mechanism is still poorly understood. This review article discusses the endocrine and immune changes following COVID-19 vaccination and the possible mechanisms of vaccine-related menstrual disturbances.
Collapse
Affiliation(s)
- Farima Rahimi Mansour
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Amirreza Keyvanfar
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hanieh Najafiarab
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sahar Sefidgar
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammadreza Tarom
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahta Fadaei
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farah Farzaneh
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Shabnam Tehrani
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
MacDonald CR, Choi JE, Hong CC, Repasky EA. Consideration of the importance of measuring thermal discomfort in biomedical research. Trends Mol Med 2023; 29:589-598. [PMID: 37330365 PMCID: PMC10619709 DOI: 10.1016/j.molmed.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/19/2023]
Abstract
Core temperature stability is the result of a dynamically regulated balance of heat loss and gain, which is not reflected by a simple thermometer reading. One way in which these changes manifest is in perceived thermal comfort, 'feeling too cold' or 'feeling too hot', which can activate stress pathways. Unfortunately, there is surprisingly little preclinical research that tracks changes in perceived thermal comfort in response to either disease progression or various treatments. Without measuring this endpoint, there may be missed opportunities to evaluate disease and therapy outcomes in murine models of human disease. Here, we discuss the possibility that changes in thermal comfort in mice could be a useful and physiologically relevant measure of energy trade-offs required under various physiological or pathological conditions.
Collapse
Affiliation(s)
- Cameron R MacDonald
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Jee Eun Choi
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Chi-Chen Hong
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Elizabeth A Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|