1
|
Huang Z, Xiang X, Xu W, Song L, Tang R, Chen D, Li Q, Zhou Y, Jiang CZ. The transcription factor MfbHLH104 from Myrothamnus flabellifolia promotes drought tolerance of Arabidopsis thaliana by enhancing stability of the photosynthesis system. J Biotechnol 2024; 396:89-103. [PMID: 39481548 DOI: 10.1016/j.jbiotec.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/07/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
The resurrection plant Myrothamnus flabellifolia can survive extreme drought and desiccation conditions, and quickly recover after rewatering. However, little is known about the mechanism underlying the drought tolerance of M. flabellifolia. In this study, MfbHLH104 was cloned and introduced into Arabidopsis thaliana due to the lack of a transgenic system for M. flabellifolia. MfbHLH104 is localized in the nucleus. Its N-terminal region has transactivation ability in yeast, and the C-terminal region may inhibit the transactivation ability. Overexpressing MfbHLH104 significantly increased drought and salt tolerance of A. thaliana at both seedling and adult stages. It enhanced leaf water retention capacity by decreasing water loss rate and increasing drought- and abscisic acid (ABA) -induced stomatal closure. Additionally, it boosted osmolyte accumulation and ROS scavenging ability by up-regulating genes associated with osmolyte biosynthesis and antioxidant enzymes, and enhancing antioxidant enzyme activities. The expression of ABA-responsive genes were also promoted by MfbHLH104. Remarkably, RNA-seq analysis indicated that MfbHLH104 significantly up-regulated 32 genes (FDR < 0.05 and fold change ≥1.5) involved in photosynthesis related pathways (KEGG pathway No: ko00195, ko00196) under drought, which account for 18.7 % of the total up-regulated genes and the most enriched KEGG pathways. This result suggested that it may help to maintain the stability of the photosynthesis system under drought conditions.
Collapse
Affiliation(s)
- Zhuo Huang
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China.
| | - Xiangying Xiang
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China.
| | - Wenxin Xu
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China.
| | - Li Song
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China.
| | - Rong Tang
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China.
| | - Duoer Chen
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China.
| | - Qiao Li
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China.
| | - Yujue Zhou
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China.
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA; Crops Pathology and Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA 95616, USA.
| |
Collapse
|
2
|
Wang C, Lu C, Wang J, Liu X, Wei Z, Qin Y, Zhang H, Wang X, Wei B, Lv W, Mu G. Molecular mechanisms regulating glucose metabolism in quinoa (Chenopodium quinoa Willd.) seeds under drought stress. BMC PLANT BIOLOGY 2024; 24:796. [PMID: 39174961 PMCID: PMC11342610 DOI: 10.1186/s12870-024-05510-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Abiotic stress seriously affects the growth and yield of crops. It is necessary to search and utilize novel abiotic stress resistant genes for 2.0 breeding programme in quinoa. In this study, the impact of drought stress on glucose metabolism were investigated through transcriptomic and metabolomic analyses in quinoa seeds. Candidate drought tolerance genes on glucose metabolism pathway were verified by qRT-PCR combined with yeast expression system. RESULTS From 70 quinoa germplasms, drought tolerant material M059 and drought sensitive material M024 were selected by comprehensive evaluation of drought resistance. 7042 differentially expressed genes (DEGs) were indentified through transcriptomic analyses. Gene Ontology (GO) analysis revealed that these DEGs were closely related to carbohydrate metabolic process, phosphorus-containing groups, and intracellular membrane-bounded organelles. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis detected that DEGs were related to pathways involving carbohydrate metabolisms, glycolysis and gluconeogenesis. Twelve key differentially accumulated metabolites (DAMs), (D-galactose, UDP-glucose, succinate, inositol, D-galactose, D-fructose-6-phosphate, D-glucose-6-phosphate, D-glucose-1-phosphate, dihydroxyacetone phosphate, ribulose-5-phosphate, citric acid and L-malate), and ten key candidate DEGs (CqAGAL2, CqINV, CqFrK7, CqCELB, Cqbg1x, CqFBP, CqALDO, CqPGM, CqIDH3, and CqSDH) involved in drought response were identified. CqSDH, CqAGAL2, and Cqβ-GAL13 were candidate genes that have been validated in both transcriptomics and yeast expression screen system. CONCLUSION These findings provide a foundation for elucidating the molecular regulatory mechanisms governing glucose metabolism in quinoa seeds under drought stress, providing insights for future research exploring responses to drought stress in quinoa.
Collapse
Affiliation(s)
- Chunmei Wang
- North China State Key Laboratory of Crop Improvement and Regulation, Hebei Provincial Laboratory of Crop Germplasm Resources/College of Agronomy, Hebei Agricultural University, Baoding, 071000, Hebei Province, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhang Jiakou, 075000, Hebei Province, P. R. China
| | - Chuan Lu
- The S&T Innovation Service Center of Hebei Province, Shijiazhuang, 050000, Hebei Province, P. R. China
| | - Junling Wang
- North China State Key Laboratory of Crop Improvement and Regulation, Hebei Provincial Laboratory of Crop Germplasm Resources/College of Agronomy, Hebei Agricultural University, Baoding, 071000, Hebei Province, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhang Jiakou, 075000, Hebei Province, P. R. China
| | - Xiaoqing Liu
- North China State Key Laboratory of Crop Improvement and Regulation, Hebei Provincial Laboratory of Crop Germplasm Resources/College of Agronomy, Hebei Agricultural University, Baoding, 071000, Hebei Province, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhang Jiakou, 075000, Hebei Province, P. R. China
| | - Zhimin Wei
- Institute of Millet Crops, Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals(Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, The Key Research Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050000, Hebei Province, P. R. China
| | - Yan Qin
- The S&T Innovation Service Center of Hebei Province, Shijiazhuang, 050000, Hebei Province, P. R. China
| | - Huilong Zhang
- Shijiazhuang Fubao Ecological Technology Co., LTD, Shijiazhuang, 050000, Hebei Province, P. R. China
| | - Xiaoxia Wang
- North China State Key Laboratory of Crop Improvement and Regulation, Hebei Provincial Laboratory of Crop Germplasm Resources/College of Agronomy, Hebei Agricultural University, Baoding, 071000, Hebei Province, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhang Jiakou, 075000, Hebei Province, P. R. China
| | - Boxiang Wei
- North China State Key Laboratory of Crop Improvement and Regulation, Hebei Provincial Laboratory of Crop Germplasm Resources/College of Agronomy, Hebei Agricultural University, Baoding, 071000, Hebei Province, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhang Jiakou, 075000, Hebei Province, P. R. China
| | - Wei Lv
- The S&T Innovation Service Center of Hebei Province, Shijiazhuang, 050000, Hebei Province, P. R. China.
| | - Guojun Mu
- North China State Key Laboratory of Crop Improvement and Regulation, Hebei Provincial Laboratory of Crop Germplasm Resources/College of Agronomy, Hebei Agricultural University, Baoding, 071000, Hebei Province, P. R. China.
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhang Jiakou, 075000, Hebei Province, P. R. China.
| |
Collapse
|
3
|
Zhang Z, Zhang A, Zhang Y, Zhao J, Wang Y, Zhang L, Zhang S. Ectopic expression of HaPEPC1 from the desert shrub Haloxylon ammodendron confers drought stress tolerance in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108536. [PMID: 38507839 DOI: 10.1016/j.plaphy.2024.108536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/29/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) plays a crucial role in the initial carbon fixation process in C4 plants. However, its nonphotosynthetic functions in Haloxylon ammodendron, a C4 perennial xerohalophytic shrub, are still poorly understood. Previous studies have reported the involvement of PEPC in plant responses to abiotic stresses such as drought and salt stress. However, the underlying mechanism of PEPC tolerance to drought stress has not been determined. In this study, we cloned the C4-type PEPC gene HaPEPC1 from H. ammodendron and investigated its biological function by generating transgenic Arabidopsis plants with ectopic expression of HaPEPC1. Our results showed that, compared with WT (wild-type) plants, ectopic expression of HaPEPC1 plants exhibited significantly greater germination rates and chlorophyll contents. Furthermore, under drought stress, the transgenic plants presented increased root length, fresh weight, photosynthetic capacity, and antioxidant enzyme activities, particularly ascorbate peroxidase and peroxidase. Additionally, the transgenic plants exhibited reduced levels of malondialdehyde, H2O2 (hydrogen peroxide), and O2- (superoxide radical). Transcriptome analysis indicated that ectopic expression of HaPEPC1 primarily regulated the expression of genes associated with the stress defence response, glutathione metabolism, and abscisic acid (ABA) synthesis and signalling pathways in response to drought stress. Taken together, these findings suggest that the ectopic expression of HaPEPC1 enhances the reduction of H2O2 and O2- in transgenic plants, thereby improving reactive oxygen species (ROS) scavenging capacity and enhancing drought tolerance. Therefore, the HaPEPC1 gene holds promise as a candidate gene for crop selection aimed at enhancing drought tolerance.
Collapse
Affiliation(s)
- Zhilong Zhang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Anna Zhang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yaru Zhang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Juan Zhao
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuanyuan Wang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lingling Zhang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Sheng Zhang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
4
|
Li ZY, Ma N, Zhang FJ, Li LZ, Li HJ, Wang XF, Zhang Z, You CX. Functions of Phytochrome Interacting Factors (PIFs) in Adapting Plants to Biotic and Abiotic Stresses. Int J Mol Sci 2024; 25:2198. [PMID: 38396875 PMCID: PMC10888771 DOI: 10.3390/ijms25042198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Plants possess the remarkable ability to sense detrimental environmental stimuli and launch sophisticated signal cascades that culminate in tailored responses to facilitate their survival, and transcription factors (TFs) are closely involved in these processes. Phytochrome interacting factors (PIFs) are among these TFs and belong to the basic helix-loop-helix family. PIFs are initially identified and have now been well established as core regulators of phytochrome-associated pathways in response to the light signal in plants. However, a growing body of evidence has unraveled that PIFs also play a crucial role in adapting plants to various biological and environmental pressures. In this review, we summarize and highlight that PIFs function as a signal hub that integrates multiple environmental cues, including abiotic (i.e., drought, temperature, and salinity) and biotic stresses to optimize plant growth and development. PIFs not only function as transcription factors to reprogram the expression of related genes, but also interact with various factors to adapt plants to harsh environments. This review will contribute to understanding the multifaceted functions of PIFs in response to different stress conditions, which will shed light on efforts to further dissect the novel functions of PIFs, especially in adaption to detrimental environments for a better survival of plants.
Collapse
Affiliation(s)
- Zhao-Yang Li
- College of Horticulture Science and Engineering, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271000, China; (Z.-Y.L.); (N.M.); (F.-J.Z.); (L.-Z.L.); (H.-J.L.); (X.-F.W.)
| | - Ning Ma
- College of Horticulture Science and Engineering, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271000, China; (Z.-Y.L.); (N.M.); (F.-J.Z.); (L.-Z.L.); (H.-J.L.); (X.-F.W.)
| | - Fu-Jun Zhang
- College of Horticulture Science and Engineering, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271000, China; (Z.-Y.L.); (N.M.); (F.-J.Z.); (L.-Z.L.); (H.-J.L.); (X.-F.W.)
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Lian-Zhen Li
- College of Horticulture Science and Engineering, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271000, China; (Z.-Y.L.); (N.M.); (F.-J.Z.); (L.-Z.L.); (H.-J.L.); (X.-F.W.)
| | - Hao-Jian Li
- College of Horticulture Science and Engineering, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271000, China; (Z.-Y.L.); (N.M.); (F.-J.Z.); (L.-Z.L.); (H.-J.L.); (X.-F.W.)
| | - Xiao-Fei Wang
- College of Horticulture Science and Engineering, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271000, China; (Z.-Y.L.); (N.M.); (F.-J.Z.); (L.-Z.L.); (H.-J.L.); (X.-F.W.)
| | - Zhenlu Zhang
- College of Horticulture Science and Engineering, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271000, China; (Z.-Y.L.); (N.M.); (F.-J.Z.); (L.-Z.L.); (H.-J.L.); (X.-F.W.)
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271000, China; (Z.-Y.L.); (N.M.); (F.-J.Z.); (L.-Z.L.); (H.-J.L.); (X.-F.W.)
| |
Collapse
|
5
|
López CM, Alseekh S, Torralbo F, Martínez Rivas FJ, Fernie AR, Amil-Ruiz F, Alamillo JM. Transcriptomic and metabolomic analysis reveals that symbiotic nitrogen fixation enhances drought resistance in common bean. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3203-3219. [PMID: 36883579 DOI: 10.1093/jxb/erad083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/28/2023] [Indexed: 05/21/2023]
Abstract
Common bean (Phaseolus vulgaris L.), one of the most important legume crops, uses atmospheric nitrogen through symbiosis with soil rhizobia, reducing the need for nitrogen fertilization. However, this legume is particularly sensitive to drought conditions, prevalent in arid regions where this crop is cultured. Therefore, studying the response to drought is important to sustain crop productivity. We have used integrated transcriptomic and metabolomic analysis to understand the molecular responses to water deficit in a marker-class common bean accession cultivated under N2 fixation or fertilized with nitrate (NO3-). RNA-seq revealed more transcriptional changes in the plants fertilized with NO3- than in the N2-fixing plants. However, changes in N2-fixing plants were more associated with drought tolerance than in those fertilized with NO3-. N2-fixing plants accumulated more ureides in response to drought, and GC/MS and LC/MS analysis of primary and secondary metabolite profiles revealed that N2-fixing plants also had higher levels of abscisic acid, proline, raffinose, amino acids, sphingolipids, and triacylglycerols than those fertilized with NO3-. Moreover, plants grown under nitrogen fixation recovered from drought better than plants fertilized with NO3-. Altogether we show that common bean plants grown under symbiotic nitrogen fixation were more protected against drought than the plants fertilized with nitrate.
Collapse
Affiliation(s)
- Cristina Mª López
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus de Excelencia Internacional Agroalimentario, CEIA3, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Fernando Torralbo
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus de Excelencia Internacional Agroalimentario, CEIA3, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain
| | | | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Francisco Amil-Ruiz
- Servicio Central de Apoyo a la Investigación (SCAI), Unidad de Bioinformática, Campus de Rabanales, Córdoba, Spain
| | - Josefa M Alamillo
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus de Excelencia Internacional Agroalimentario, CEIA3, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain
| |
Collapse
|
6
|
Xiao F, Zhao Y, Wang X, Yang Y. Targeted Metabolic and Transcriptomic Analysis of Pinus yunnanensis var. pygmaea with Loss of Apical Dominance. Curr Issues Mol Biol 2022; 44:5485-5497. [PMID: 36354683 PMCID: PMC9688957 DOI: 10.3390/cimb44110371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 08/26/2023] Open
Abstract
Pinus yunnanensis var. pygmaea demonstrates obvious loss of apical dominance, inconspicuous main trunk, which can be used as an ideal material for dwarfing rootstocks. In order to find out the reasons for the lack of apical dominance of P. pygmaea, endogenous phytohormone content determination by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and comparative transcriptomes were performed on the shoot apical meristem and root apical meristem of three pine species (P. massoniana, P. pygmaea, and P. elliottii). The results showed that the lack of CK and the massive accumulation of ABA and GA-related hormones may be the reasons for the loss of shoot apical dominance and the formation of multi-branching, the abnormal synthesis of diterpenoid biosynthesis may lead to the influence of GA-related synthesis, and the high expression of GA 2-oxidase (GA2ox) gene may be the cause of dwarfing. Weighted correlation network analysis (WGCNA) screened some modules that were highly expressed in the shoot apical meristem of P. pygmaea. These findings provided valuable information for identifying the network regulation of shoot apical dominance loss in P. pygmaea and enhanced the understanding of the molecular mechanism of shoot apical dominance growth differences among Pinus species.
Collapse
Affiliation(s)
- Feng Xiao
- Institute for Forest Resources and Environment of Guizhou/Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province/College of Forestry, Guizhou University, Guiyang 550025, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Yang Zhao
- Institute for Forest Resources and Environment of Guizhou/Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province/College of Forestry, Guizhou University, Guiyang 550025, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Xiurong Wang
- Institute for Forest Resources and Environment of Guizhou/Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province/College of Forestry, Guizhou University, Guiyang 550025, China
| | - Yao Yang
- Institute for Forest Resources and Environment of Guizhou/Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province/College of Forestry, Guizhou University, Guiyang 550025, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| |
Collapse
|
7
|
Cesium tolerance is enhanced by a chemical which binds to BETA-GLUCOSIDASE 23 in Arabidopsis thaliana. Sci Rep 2021; 11:21109. [PMID: 34702872 PMCID: PMC8548588 DOI: 10.1038/s41598-021-00564-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/13/2021] [Indexed: 11/09/2022] Open
Abstract
Cesium (Cs) is found at low levels in nature but does not confer any known benefit to plants. Cs and K compete in cells due to the chemical similarity of Cs to potassium (K), and can induce K deficiency in cells. In previous studies, we identified chemicals that increase Cs tolerance in plants. Among them, a small chemical compound (C17H19F3N2O2), named CsToAcE1, was confirmed to enhance Cs tolerance while increasing Cs accumulation in plants. Treatment of plants with CsToAcE1 resulted in greater Cs and K accumulation and also alleviated Cs-induced growth retardation in Arabidopsis. In the present study, potential target proteins of CsToAcE1 were isolated from Arabidopsis to determine the mechanism by which CsToAcE1 alleviates Cs stress, while enhancing Cs accumulation. Our analysis identified one of the interacting target proteins of CsToAcE1 to be BETA-GLUCOSIDASE 23 (AtβGLU23). Interestingly, Arabidopsis atβglu23 mutants exhibited enhanced tolerance to Cs stress but did not respond to the application of CsToAcE1. Notably, application of CsToAcE1 resulted in a reduction of Cs-induced AtβGLU23 expression in wild-type plants, while this was not observed in a high affinity transporter mutant, athak5. Our data indicate that AtβGLU23 regulates plant response to Cs stress and that CsToAcE1 enhances Cs tolerance by repressing AtβGLU23. In addition, AtHAK5 also appears to be involved in this response.
Collapse
|
8
|
Si J, Froussart E, Viaene T, Vázquez-Castellanos JF, Hamonts K, Tang L, Beirinckx S, De Keyser A, Deckers T, Amery F, Vandenabeele S, Raes J, Goormachtig S. Interactions between soil compositions and the wheat root microbiome under drought stress: From an in silico to in planta perspective. Comput Struct Biotechnol J 2021; 19:4235-4247. [PMID: 34429844 PMCID: PMC8353387 DOI: 10.1016/j.csbj.2021.07.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/29/2022] Open
Abstract
As wheat (Triticum aestivum) is an important staple food across the world, preservation of stable yields and increased productivity are major objectives in breeding programs. Drought is a global concern because its adverse impact is expected to be amplified in the future due to the current climate change. Here, we analyzed the effects of edaphic, environmental, and host factors on the wheat root microbiomes collected in soils from six regions in Belgium. Amplicon sequencing analysis of unplanted soil and wheat root endosphere samples indicated that the microbial community variations can be significantly explained by soil pH, microbial biomass, wheat genotype, and soil sodium and iron levels. Under drought stress, the biodiversity in the soil decreased significantly, but increased in the root endosphere community, where specific soil parameters seemingly determine the enrichment of bacterial groups. Indeed, we identified a cluster of drought-enriched bacteria that significantly correlated with soil compositions. Interestingly, integration of a functional analysis further revealed a strong correlation between the same cluster of bacteria and β-glucosidase and osmoprotectant proteins, two functions known to be involved in coping with drought stress. By means of this in silico analysis, we identified amplicon sequence variants (ASVs) that could potentially protect the plant from drought stress and validated them in planta. Yet, ASVs based on 16S rRNA sequencing data did not completely distinguish individual isolates because of their intrinsic short sequences. Our findings support the efforts to maintain stable crop yields under drought conditions through implementation of root microbiome analyses.
Collapse
Affiliation(s)
- Jiyeon Si
- Laboratory of Molecular Bacteriology. Department of Microbiology and Immunology, Rega Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- Center for Microbiology, VIB, 3000 Leuven, Belgium
- Medical Science Research Institute, School of Medicine, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Emilie Froussart
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 90e2 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | | | - Jorge F. Vázquez-Castellanos
- Laboratory of Molecular Bacteriology. Department of Microbiology and Immunology, Rega Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- Center for Microbiology, VIB, 3000 Leuven, Belgium
| | | | - Lin Tang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 90e2 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Stien Beirinckx
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 90e2 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Annick De Keyser
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 90e2 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | | | - Fien Amery
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium
| | | | - Jeroen Raes
- Laboratory of Molecular Bacteriology. Department of Microbiology and Immunology, Rega Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- Center for Microbiology, VIB, 3000 Leuven, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 90e2 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
- Corresponding author at: VIB-UGhent Center for Plant Systems Biology, 9052 Ghent, Belgium.
| |
Collapse
|
9
|
Kongdin M, Mahong B, Lee SK, Shim SH, Jeon JS, Ketudat Cairns JR. Action of Multiple Rice β-Glucosidases on Abscisic Acid Glucose Ester. Int J Mol Sci 2021; 22:7593. [PMID: 34299210 PMCID: PMC8303963 DOI: 10.3390/ijms22147593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022] Open
Abstract
Conjugation of phytohormones with glucose is a means of modulating their activities, which can be rapidly reversed by the action of β-glucosidases. Evaluation of previously characterized recombinant rice β-glucosidases found that nearly all could hydrolyze abscisic acid glucose ester (ABA-GE). Os4BGlu12 and Os4BGlu13, which are known to act on other phytohormones, had the highest activity. We expressed Os4BGlu12, Os4BGlu13 and other members of a highly similar rice chromosome 4 gene cluster (Os4BGlu9, Os4BGlu10 and Os4BGlu11) in transgenic Arabidopsis. Extracts of transgenic lines expressing each of the five genes had higher β-glucosidase activities on ABA-GE and gibberellin A4 glucose ester (GA4-GE). The β-glucosidase expression lines exhibited longer root and shoot lengths than control plants in response to salt and drought stress. Fusions of each of these proteins with green fluorescent protein localized near the plasma membrane and in the apoplast in tobacco leaf epithelial cells. The action of these extracellular β-glucosidases on multiple phytohormones suggests they may modulate the interactions between these phytohormones.
Collapse
Affiliation(s)
- Manatchanok Kongdin
- School of Chemistry, Institute of Science, Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| | - Bancha Mahong
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea; (B.M.); (S.-K.L.); (S.-H.S.)
| | - Sang-Kyu Lee
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea; (B.M.); (S.-K.L.); (S.-H.S.)
| | - Su-Hyeon Shim
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea; (B.M.); (S.-K.L.); (S.-H.S.)
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea; (B.M.); (S.-K.L.); (S.-H.S.)
| | - James R. Ketudat Cairns
- School of Chemistry, Institute of Science, Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| |
Collapse
|
10
|
Huang CH, Huang TL, Liu YC, Chen TC, Lin SM, Shaw SY, Chang CC. Overexpression of a multifunctional β-glucosidase gene from thermophilic archaeon Sulfolobus solfataricus in transgenic tobacco could facilitate glucose release and its use as a reporter. Transgenic Res 2020; 29:511-527. [PMID: 32776308 DOI: 10.1007/s11248-020-00212-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 07/25/2020] [Indexed: 11/25/2022]
Abstract
The β-glucosidase, which hydrolyzes the β(1-4) glucosidic linkage of disaccharides, oligosaccharides and glucose-substituted molecules, has been used in many biotechnological applications. The current commercial source of β-glucosidase is mainly microbial fermentation. Plants have been developed as bioreactors to produce various kinds of proteins including β-glucosidase because of the potential low cost. Sulfolobus solfataricus is a thermoacidophilic archaeon that can grow optimally at high temperature, around 80 °C, and pH 2-4. We overexpressed the β-glucosidase gene from S. solfataricus in transgenic tobacco via Agrobacteria-mediated transformation. Three transgenic tobacco lines with β-glucosidase gene expression driven by the rbcS promoter were obtained, and the recombinant proteins were accumulated in chloroplasts, endoplasmic reticulum and vacuoles up to 1%, 0.6% and 0.3% of total soluble protein, respectively. By stacking the transgenes via crossing distinct transgenic events, the level of β-glucosidase in plants could further increase. The plant-expressed β-glucosidase had optimal activity at 80 °C and pH 5-6. In addition, the plant-expressed β-glucosidase showed high thermostability; on heat pre-treatment at 80 °C for 2 h, approximately 70% residual activity remained. Furthermore, wind-dried leaf tissues of transgenic plants showed good stability in short-term storage at room temperature, with β-glucosidase activity of about 80% still remaining after 1 week of storage as compared with fresh leaf. Furthermore, we demonstrated the possibility of using the archaebacterial β-glucosidase gene as a reporter in plants based on alternative β-galactosidase activity.
Collapse
Affiliation(s)
- Chih-Hao Huang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Tzu-Ling Huang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yu-Chang Liu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ting-Chieh Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Shih-Ming Lin
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Shyh-Yu Shaw
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Ching-Chun Chang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
11
|
Lin T, Zhou R, Bi B, Song L, Chai M, Wang Q, Song G. Analysis of a radiation-induced dwarf mutant of a warm-season turf grass reveals potential mechanisms involved in the dwarfing mutant. Sci Rep 2020; 10:18913. [PMID: 33144613 PMCID: PMC7609746 DOI: 10.1038/s41598-020-75421-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/14/2020] [Indexed: 11/09/2022] Open
Abstract
Zoysia matrella [L.] Merr. is a widely cultivated warm-season turf grass in subtropical and tropical areas. Dwarf varieties of Z. matrella are attractive to growers because they often reduce lawn mowing frequencies. In this study, we describe a dwarf mutant of Z. matrella induced from the 60Co-γ-irradiated calluses. We conducted morphological test and physiological, biochemical and transcriptional analyses to reveal the dwarfing mechanism in the mutant. Phenotypically, the dwarf mutant showed shorter stems, wider leaves, lower canopy height, and a darker green color than the wild type (WT) control under the greenhouse conditions. Physiologically, we found that the phenotypic changes of the dwarf mutant were associated with the physiological responses in catalase, guaiacol peroxidase, superoxide dismutase, soluble protein, lignin, chlorophyll, and electric conductivity. Of the four endogenous hormones measured in leaves, both indole-3-acetic acid and abscisic acid contents were decreased in the mutant, whereas the contents of gibberellin and brassinosteroid showed no difference between the mutant and the WT control. A transcriptomic comparison between the dwarf mutant and the WT leaves revealed 360 differentially-expressed genes (DEGs), including 62 up-regulated and 298 down-regulated unigenes. The major DEGs related to auxin transportation (e.g., PIN-FORMED1) and cell wall development (i.e., CELLULOSE SYNTHASE1) and expansin homologous genes were all down-regulated, indicating their potential contribution to the phenotypic changes observed in the dwarf mutant. Overall, the results provide information to facilitate a better understanding of the dwarfing mechanism in grasses at physiological and transcript levels. In addition, the results suggest that manipulation of auxin biosynthetic pathway genes can be an effective approach for dwarfing breeding of turf grasses.
Collapse
Affiliation(s)
- Tianyi Lin
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ren Zhou
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Bo Bi
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Liangyuan Song
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Mingliang Chai
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Qiaomei Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Guoqing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
12
|
Acanda Y, Martínez Ó, Prado MJ, González MV, Rey M. Changes in abscisic acid metabolism in relation to the maturation of grapevine (Vitis vinifera L., cv. Mencía) somatic embryos. BMC PLANT BIOLOGY 2020; 20:487. [PMID: 33097003 PMCID: PMC7585196 DOI: 10.1186/s12870-020-02701-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/14/2020] [Indexed: 06/07/2023]
Abstract
BACKGROUND Somatic embryogenesis in grapevines is a complex process that depends on many physiological and genetic factors. One of its main limitations is the process of precocious germination of the somatic embryos in differentiation medium. This process lowers plant conversion rates from the somatic embryos, and it is probably caused by a low endogenous abscisic acid (ABA) content. RESULTS Precocious germination of the somatic embryos was successfully avoided by culturing grapevine cv. Mencía embryogenic aggregates over a semipermeable membrane extended on top of the differentiation medium. The weekly analysis of the endogenous ABA and ABA-glucosyl ester (ABA-GE) contents in the aggregates showed their rapid accumulation. The expression profiles of 9-cis-epoxycarotenoid dioxygenase (VvNCED1), 8'-hydroxylase (VvHyd2), UDP-glucosyltransferase (VvUGT) and β-glucosidase (VvBG2) genes in grapevine revealed that the occurrence of a first accumulation peak of endogenous ABA in the second week of culture over the semipermeable membrane was mainly dependent on the expression of the VvNCED1 gene. A second increase in the endogenous ABA content was observed in the fourth week of culture. At this point in the culture, our results suggest that of those genes involved in ABA accumulation, one (VvNCED1) was repressed, while another (VvBG2) was activated. Similarly, of those genes related to a reduction in ABA levels, one (VvUGT) was repressed while another (VvHyd2) was activated. The relative expression level of the VvNCED1 gene in embryogenic aggregates cultured under the same conditions and treated with exogenous ABA revealed the significant downregulation of this gene. CONCLUSIONS Our results demonstrated the involvement of ABA metabolism in the control of the maturation of grapevine somatic embryos cultured over a semipermeable membrane and two important control points for their endogenous ABA levels. Thus, subtle differences in the expression of the antagonistic genes that control ABA synthesis and degradation could be responsible for the final level of ABA during the maturation of grapevine somatic embryos in vitro. In addition, the treatment of somatic embryos with exogenous ABA suggested the feedback-based control of the expression of the VvNCED1 gene by ABA during the maturation of grapevine somatic embryos.
Collapse
Affiliation(s)
- Yosvanis Acanda
- Departamento de Biología Vegetal y Ciencia del Suelo, Universidad de Vigo, Campus Universitario, 36310, Vigo, Spain
- Present Address; Department of Plant Pathology, Citrus Research and Education Center, UF-IFAS, 700 Experiment Station Rd, Lake Alfred, FL, 33850, USA
| | - Óscar Martínez
- Departamento de Biología Vegetal y Ciencia del Suelo, Universidad de Vigo, Campus Universitario, 36310, Vigo, Spain
| | - María Jesús Prado
- Departamento de Biología Vegetal y Ciencia del Suelo, Universidad de Vigo, Campus Universitario, 36310, Vigo, Spain
| | - María Victoria González
- Departamento de Biología Funcional, Universidad de Santiago de Compostela, Campus Sur, 15872, Santiago de Compostela, Spain
| | - Manuel Rey
- Departamento de Biología Vegetal y Ciencia del Suelo, Universidad de Vigo, Campus Universitario, 36310, Vigo, Spain.
- CITACA, Agri-Food Research and Transfer Cluster, Campus da Auga, Universidad de Vigo, 32004, Ourense, Spain.
| |
Collapse
|
13
|
Tang M, Li Z, Luo L, Cheng B, Zhang Y, Zeng W, Peng Y. Nitric Oxide Signal, Nitrogen Metabolism, and Water Balance Affected by γ-Aminobutyric Acid (GABA) in Relation to Enhanced Tolerance to Water Stress in Creeping Bentgrass. Int J Mol Sci 2020; 21:E7460. [PMID: 33050389 PMCID: PMC7589152 DOI: 10.3390/ijms21207460] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 11/17/2022] Open
Abstract
γ-Aminobutyric acid (GABA) plays an important role in regulating stress tolerance in plants. Purposes of this study was to determine the effect of an exogenous supply of GABA on tolerance to water stress in creeping bentgrass (Agrostis stolonifera), and further reveal the GABA-induced key mechanisms related to water balance, nitrogen (N) metabolism and nitric oxide (NO) production in response to water stress. Plants were pretreated with or without 0.5 mM GABA solution in the roots for 3 days, and then subjected to water stress induced by -0.52 MPa polyethylene glycol 6000 for 12 days. The results showed that water stress caused leaf water deficit, chlorophyll (Chl) loss, oxidative damage (increases in superoxide anion, hydrogen peroxide, malondialdehyde, and protein carbonyl content), N insufficiency, and metabolic disturbance. However, the exogenous addition of GABA significantly increased endogenous GABA content, osmotic adjustment and antioxidant enzyme activities (superoxide dismutase, catalase, dehydroascorbate reductase, glutathione reductase and monodehydroascorbate reductase), followed by effectively alleviating water stress damage, including declines in oxidative damage, photoinhibition, and water and Chl loss. GABA supply not only provided more available N, but also affected N metabolism through activating nitrite reductase and glutamine synthetase activities under water stress. The supply of GABA did not increase glutamate content and glutamate decarboxylase activity, but enhanced glutamate dehydrogenase activity, which might indicate that GABA promoted the conversion and utilization of glutamate for maintaining Chl synthesis and tricarboxylic acid cycle when creeping bentgrass underwent water stress. In addition, GABA-induced NO production, depending on nitrate reductase and NO-associated protein pathways, could be associated with the enhancement of antioxidant defense. Current findings reveal the critical role of GABA in regulating signal transduction and metabolic homeostasis in plants under water-limited condition.
Collapse
Affiliation(s)
- Mingyan Tang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.T.); (L.L.); (B.C.); (Y.Z.); (W.Z.); (Y.P.)
| | - Zhou Li
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.T.); (L.L.); (B.C.); (Y.Z.); (W.Z.); (Y.P.)
- Institute of Turfgrass Science, Beijing Forestry University, Beijing 100083, China
| | - Ling Luo
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.T.); (L.L.); (B.C.); (Y.Z.); (W.Z.); (Y.P.)
| | - Bizhen Cheng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.T.); (L.L.); (B.C.); (Y.Z.); (W.Z.); (Y.P.)
| | - Youzhi Zhang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.T.); (L.L.); (B.C.); (Y.Z.); (W.Z.); (Y.P.)
| | - Weihang Zeng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.T.); (L.L.); (B.C.); (Y.Z.); (W.Z.); (Y.P.)
| | - Yan Peng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.T.); (L.L.); (B.C.); (Y.Z.); (W.Z.); (Y.P.)
| |
Collapse
|
14
|
Kim HM, Park SH, Ma SH, Park SY, Yun CH, Jang G, Joung YH. Promoted ABA Hydroxylation by Capsicum annuum CYP707As Overexpression Suppresses Pollen Maturation in Nicotiana tabacum. FRONTIERS IN PLANT SCIENCE 2020; 11:583767. [PMID: 33363553 PMCID: PMC7752897 DOI: 10.3389/fpls.2020.583767] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/16/2020] [Indexed: 05/14/2023]
Abstract
Abscisic acid (ABA) is a key signaling molecule that mediates plant response to stress. Increasing evidence indicates that ABA also regulates many aspects of plant development, such as seed germination, leaf development, and ripening. ABA metabolism, including ABA biosynthesis and degradation, is an essential aspect of ABA response in plants. In this study, we identified four cytochrome P450 genes (CaCYP707A1, 2, 3, and 4) that mediate ABA hydroxylation, which is required for ABA degradation in Capsicum annuum. We observed that CaCYP707A-mediated ABA hydroxylation promotes ABA degradation, leading to low levels of ABA and a dehydration phenotype in 35S:CaCYP707A plants. Importantly, seed formation was strongly inhibited in 35S:CaCYP707A plants, and a cross-pollination test suggested that the defect in seed formation is caused by improper pollen development. Phenotypic analysis showed that pollen maturation is suppressed in 35S:CaCYP707A1 plants. Consequently, most 35S:CaCYP707A1 pollen grains degenerated, unlike non-transgenic (NT) pollen, which developed into mature pollen grains. Together our results indicate that CaCYP707A mediates ABA hydroxylation and thereby influences pollen development, helping to elucidate the mechanism underlying ABA-regulated pollen development.
Collapse
|
15
|
Heydarian Z, Gruber M, Glick BR, Hegedus DD. Gene Expression Patterns in Roots of Camelina sativa With Enhanced Salinity Tolerance Arising From Inoculation of Soil With Plant Growth Promoting Bacteria Producing 1-Aminocyclopropane-1-Carboxylate Deaminase or Expression the Corresponding acdS Gene. Front Microbiol 2018; 9:1297. [PMID: 30013518 PMCID: PMC6036250 DOI: 10.3389/fmicb.2018.01297] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 05/28/2018] [Indexed: 12/19/2022] Open
Abstract
Camelina sativa treated with plant growth-promoting bacteria (PGPB) producing 1-aminocyclopropane-1-carboxylate deaminase (acdS) or transgenic lines expressing acdS exhibit increased salinity tolerance. AcdS reduces the level of stress ethylene to below the point where it is inhibitory to plant growth. The study determined that several mechanisms appear to be responsible for the increased salinity tolerance and that the effect of acdS on gene expression patterns in C. sativa roots during salt stress is a function of how it is delivered. Growth in soil treated with the PGPB (Pseudomonas migulae 8R6) mostly affected ethylene- and abscisic acid-dependent signaling in a positive way, while expression of acdS in transgenic lines under the control of the broadly active CaMV 35S promoter or the root-specific rolD promoter affected auxin, jasmonic acid and brassinosteroid signaling and/biosynthesis. The expression of genes involved in minor carbohydrate metabolism were also up-regulated, mainly in roots of lines expressing acdS. Expression of acdS also affected the expression of genes involved in modulating the level of reactive oxygen species (ROS) to prevent cellular damage, while permitting ROS-dependent signal transduction. Though the root is not a photosynthetic tissue, acdS had a positive effect on the expression of genes involved in photosynthesis.
Collapse
Affiliation(s)
- Zohreh Heydarian
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada.,Department of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran
| | | | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada.,Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
16
|
Han YJ, Kim YS, Hwang OJ, Roh J, Ganguly K, Kim SK, Hwang I, Kim JI. Overexpression of Arabidopsis thaliana brassinosteroid-related acyltransferase 1 gene induces brassinosteroid-deficient phenotypes in creeping bentgrass. PLoS One 2017; 12:e0187378. [PMID: 29084267 PMCID: PMC5662239 DOI: 10.1371/journal.pone.0187378] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/18/2017] [Indexed: 11/19/2022] Open
Abstract
Brassinosteroids (BRs) are naturally occurring steroidal hormones that play diverse roles in various processes during plant growth and development. Thus, genetic manipulation of endogenous BR levels might offer a way of improving the agronomic traits of crops, including plant architecture and stress tolerance. In this study, we produced transgenic creeping bentgrass (Agrostis stolonifera L.) overexpressing a BR-inactivating enzyme, Arabidopsis thaliana BR-related acyltransferase 1 (AtBAT1), which is known to catalyze the conversion of BR intermediates to inactive acylated conjugates. After putative transgenic plants were selected using herbicide resistance assay, genomic integration of the AtBAT1 gene was confirmed by genomic PCR and Southern blot analysis, and transgene expression was validated by northern blot analysis. The transgenic creeping bentgrass plants exhibited BR-deficient phenotypes, including reduced plant height with shortened internodes (i.e., semi-dwarf), reduced leaf growth rates with short, wide, and thick architecture, high chlorophyll contents, decreased numbers of vascular bundles, and large lamina joint bending angles (i.e., erect leaves). Subsequent analyses showed that the transgenic plants had significantly reduced amounts of endogenous BR intermediates, including typhasterol, 6-deoxocastasterone, and castasterone. Moreover, the AtBAT1 transgenic plants displayed drought tolerance as well as delayed senescence. Therefore, the results of the present study demonstrate that overexpression of an Arabidopsis BR-inactivating enzyme can reduce the endogenous levels of BRs in creeping bentgrass resulting in BR-deficient phenotypes, indicating that the AtBAT1 gene from a dicot plant is also functional in the monocot crop.
Collapse
Affiliation(s)
- Yun-Jeong Han
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, Republic of Korea
| | - Young Soon Kim
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, Republic of Korea
| | - Ok-Jin Hwang
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, Republic of Korea
| | - Jeehee Roh
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Keya Ganguly
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, Republic of Korea
| | - Seong-Ki Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Ildoo Hwang
- Department of Life Sciences and Biotechnology Research Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jeong-Il Kim
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, Republic of Korea
- * E-mail:
| |
Collapse
|
17
|
Zhou Y, Zeng L, Gui J, Liao Y, Li J, Tang J, Meng Q, Dong F, Yang Z. Functional characterizations of β-glucosidases involved in aroma compound formation in tea ( Camellia sinensis ). Food Res Int 2017; 96:206-214. [DOI: 10.1016/j.foodres.2017.03.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/01/2017] [Accepted: 03/30/2017] [Indexed: 01/18/2023]
|
18
|
Singh RK, Prasad M. Advances in Agrobacterium tumefaciens-mediated genetic transformation of graminaceous crops. PROTOPLASMA 2016; 253:691-707. [PMID: 26660352 DOI: 10.1007/s00709-015-0905-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/27/2015] [Indexed: 05/05/2023]
Abstract
Steady increase in global population poses several challenges to plant science research, including demand for increased crop productivity, grain yield, nutritional quality and improved tolerance to different environmental factors. Transgene-based approaches are promising to address these challenges by transferring potential candidate genes to host organisms through different strategies. Agrobacterium-mediated gene transfer is one such strategy which is well known for enabling efficient gene transfer in both monocot and dicots. Due to its versatility, this technique underwent several advancements including development of improved in vitro plant regeneration system, co-cultivation and selection methods, and use of hyper-virulent strains of Agrobacterium tumefaciens harbouring super-binary vectors. The efficiency of this method has also been enhanced by the use of acetosyringone to induce the activity of vir genes, silver nitrate to reduce the Agrobacterium-induced necrosis and cysteine to avoid callus browning during co-cultivation. In the last two decades, extensive efforts have been invested towards achieving efficient Agrobacterium-mediated transformation in cereals. Though high-efficiency transformation systems have been developed for rice and maize, comparatively lesser progress has been reported in other graminaceous crops. In this context, the present review discusses the progress made in Agrobacterium-mediated transformation system in rice, maize, wheat, barley, sorghum, sugarcane, Brachypodium, millets, bioenergy and forage and turf grasses. In addition, it also provides an overview of the genes that have been recently transferred to these graminaceous crops using Agrobacterium, bottlenecks in this technique and future possibilities for crop improvement.
Collapse
Affiliation(s)
- Roshan Kumar Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, JNU Campus, New Delhi, 110 067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, JNU Campus, New Delhi, 110 067, India.
| |
Collapse
|
19
|
Yamashita Y, Ota M, Inoue Y, Hasebe Y, Okamoto M, Inukai T, Masuta C, Sakihama Y, Hashidoko Y, Kojima M, Sakakibara H, Inage Y, Takahashi K, Yoshihara T, Matsuura H. Chemical Promotion of Endogenous Amounts of ABA in Arabidopsis thaliana by a Natural Product, Theobroxide. PLANT & CELL PHYSIOLOGY 2016; 57:986-99. [PMID: 26917631 DOI: 10.1093/pcp/pcw037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/14/2016] [Indexed: 05/21/2023]
Abstract
Plant hormones are a group of structurally diverse small compounds that orchestrate the cellular processes governing proper plant growth and environmental adaptation. To understand the details of hormonal activity, we must study not only their inherent activities but also the cross-talk among plant hormones. In addition to their use in agriculture, plant chemical activators, such as probenazole and uniconazole, have made great contributions to understand hormonal cross-talk. However, the use of plant chemical activators is limited due to the lack of activators for certain hormones. For example, to the best of our knowledge, there are only a few chemical activators previously known to stimulate the accumulation of ABA in plants, such as absinazoles and proanthocyanidins. In many cases, antagonistic effects have been examined in experiments using exogenously applied ABA, although these studies did not account for biologically relevant concentrations. In this report, it was found that a natural product, theobroxide, had potential as a plant chemical activator for stimulating the accumulation of ABA. Using theobroxide, the antagonistic effect of ABA against GAs was proved without exogenously applying ABA or using mutant plants. Our results suggest that ABA levels could be chemically controlled to elicit ABA-dependent biological phenomena.
Collapse
Affiliation(s)
- Yudai Yamashita
- Laboratory of Natural Product Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Maremichi Ota
- Laboratory of Natural Product Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Yutaka Inoue
- Laboratory of Natural Product Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Youko Hasebe
- Laboratory of Cell Biology and Manipulation, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Masanori Okamoto
- Arid Land Research Center, Tottori University, Tottori, Japan PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Tsuyoshi Inukai
- Laboratory of Cell Biology and Manipulation, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Chikra Masuta
- Laboratory of Cell Biology and Manipulation, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Yasuko Sakihama
- Laboratory of Ecological Biochemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Yasuyuki Hashidoko
- Laboratory of Ecological Biochemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| | - Yasuyuki Inage
- Japan Agricultural Cooperatives Minami Sorachi, Kuriyama, Yubari-gun, Hokkaido, 069-1511 Japan
| | - Kosaku Takahashi
- Laboratory of Natural Product Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Teruhiko Yoshihara
- Laboratory of Natural Product Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Hideyuki Matsuura
- Laboratory of Natural Product Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| |
Collapse
|
20
|
Yan B, Wang X, Wang Z, Chen N, Mu C, Mao K, Han L, Zhang W, Liu H. Identification of potential cargo proteins of transportin protein AtTRN1 in Arabidopsis thaliana. PLANT CELL REPORTS 2016; 35:629-640. [PMID: 26650834 DOI: 10.1007/s00299-015-1908-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 10/26/2015] [Accepted: 11/17/2015] [Indexed: 06/05/2023]
Abstract
We identified 23 novel proteins that can interact with At TRN1. These proteins are potential candidates of At TRN1 cargo proteins, which will facilitate our comprehending of At TRN1 functions in Arabidopsis. Tranportin 1 (TRN1) carries out the nucleo-cytoplasmic transport of many proteins, thereby ensuring that each of them is delivered to the right compartment for its proper function. These cargo proteins involved in lots of important processes, such as alternative pre-mRNA splicing, transcriptional regulation, and protein translation. Current understanding of cargo proteins transported by Arabidopsis thaliana transportin 1 (AtTRN1) is limited. Here, first we employed the yeast two-hybrid (Y2H) screening to identify proteins that can interact with AtTRN1 in Arabidopsis, and 12 novel proteins were found. Searching for PY-NLS motif in these 12 proteins suggested that no typical PY-NLS motif was present. We next investigated the specific motifs that will mediate the interactions in these sequences, and found that thirteen truncated fragments interacted with AtTRN1, containing 8 acidic and 5 basic fragments, respectively. We also searched the Arabidopsis proteome for homologs of cargo proteins of yeast Kapl04p and mammalian Kapβ2, and PY-NLS motif-containing proteins. Among these proteins, 11 were identified to interact with AtTRN1. The interactions between all the 23 proteins and AtTRN1 were confirmed by both Y2H and bimolecular fluorescence complementation (BiFC) assays. Our results show that AtTRN1 recognizes a broad spectrum of proteins having diverse functions, which will potentially be the cargoes of AtTRN1. Taken together, these results demonstrate the feasibility and potential power of these methods to identify cargo proteins of AtTRN1, and represent a primary and significant step in interpretation of AtTRN1 functionalities.
Collapse
Affiliation(s)
- Bo Yan
- Ministry Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Xiaoning Wang
- Ministry Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Zhenyu Wang
- Ministry Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Ni Chen
- Ministry Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Changjun Mu
- Ministry Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Kaili Mao
- Ministry Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Lirong Han
- Ministry Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Wei Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Heng Liu
- Ministry Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
21
|
Nguyen QA, Lee DS, Jung J, Bae HJ. Phenotypic Changes in Transgenic Tobacco Plants Overexpressing Vacuole-Targeted Thermotoga maritima BglB Related to Elevated Levels of Liberated Hormones. Front Bioeng Biotechnol 2015; 3:181. [PMID: 26618153 PMCID: PMC4642495 DOI: 10.3389/fbioe.2015.00181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/26/2015] [Indexed: 12/11/2022] Open
Abstract
The hyperthermostable β-glucosidase BglB of Thermotoga maritima was modified by adding a short C-terminal tetrapeptide (AFVY, which transports phaseolin to the vacuole, to its C-terminal sequence). The modified β-glucosidase BglB was transformed into tobacco (Nicotiana tabacum L.) plants. We observed a range of significant phenotypic changes in the transgenic plants compared to the wild-type (WT) plants. The transgenic plants had faster stem growth, earlier flowering, enhanced root systems development, an increased biomass biosynthesis rate, and higher salt stress tolerance in young plants compared to WT. In addition, programed cell death was enhanced in mature plants. Furthermore, the C-terminal AFVY tetrapeptide efficiently sorted T. maritima BglB into the vacuole, which was maintained in an active form and could perform its glycoside hydrolysis function on hormone conjugates, leading to elevated hormone [abscisic acid (ABA), indole 3-acetic acid (IAA), and cytokinin] levels that likely contributed to the phenotypic changes in the transgenic plants. The elevation of cytokinin led to upregulation of the transcription factor WUSCHELL, a homeodomain factor that regulates the development, division, and reproduction of stem cells in the shoot apical meristems. Elevation of IAA led to enhanced root development, and the elevation of ABA contributed to enhanced tolerance to salt stress and programed cell death. These results suggest that overexpressing vacuole-targeted T. maritima BglB may have several advantages for molecular farming technology to improve multiple targets, including enhanced production of the β-glucosidase BglB, increased biomass, and shortened developmental stages, that could play pivotal roles in bioenergy and biofuel production.
Collapse
Affiliation(s)
- Quynh Anh Nguyen
- Department of Bioenergy Science and Technology, Chonnam National University , Gwangju , South Korea
| | - Dae-Seok Lee
- Bio-Energy Research Center, Chonnam National University , Gwangju , South Korea
| | - Jakyun Jung
- Department of Bioenergy Science and Technology, Chonnam National University , Gwangju , South Korea
| | - Hyeun-Jong Bae
- Department of Bioenergy Science and Technology, Chonnam National University , Gwangju , South Korea ; Bio-Energy Research Center, Chonnam National University , Gwangju , South Korea
| |
Collapse
|
22
|
Zhao D, Gong S, Hao Z, Tao J. Identification of miRNAs Responsive to Botrytis cinerea in Herbaceous Peony (Paeonia lactiflora Pall.) by High-Throughput Sequencing. Genes (Basel) 2015; 6:918-34. [PMID: 26393656 PMCID: PMC4584336 DOI: 10.3390/genes6030918] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/24/2015] [Accepted: 08/27/2015] [Indexed: 12/21/2022] Open
Abstract
Herbaceous peony (Paeonia lactiflora Pall.), one of the world’s most important ornamental plants, is highly susceptible to Botrytis cinerea, and improving resistance to this pathogenic fungus is a problem yet to be solved. MicroRNAs (miRNAs) play an essential role in resistance to B. cinerea, but until now, no studies have been reported concerning miRNAs induction in P. lactiflora. Here, we constructed and sequenced two small RNA (sRNA) libraries from two B. cinerea-infected P. lactiflora cultivars (“Zifengyu” and “Dafugui”) with significantly different levels of resistance to B. cinerea, using the Illumina HiSeq 2000 platform. From the raw reads generated, 4,592,881 and 5,809,796 sRNAs were obtained, and 280 and 306 miRNAs were identified from “Zifengyu” and “Dafugui”, respectively. A total of 237 conserved and 7 novel sequences of miRNAs were differentially expressed between the two cultivars, and we predicted and annotated their potential target genes. Subsequently, 7 differentially expressed candidate miRNAs were screened according to their target genes annotated in KEGG pathways, and the expression patterns of miRNAs and corresponding target genes were elucidated. We found that miR5254, miR165a-3p, miR3897-3p and miR6450a might be involved in the P. lactiflora response to B. cinerea infection. These results provide insight into the molecular mechanisms responsible for resistance to B. cinerea in P. lactiflora.
Collapse
Affiliation(s)
- Daqiu Zhao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| | - Saijie Gong
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| | - Zhaojun Hao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| | - Jun Tao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
23
|
Brossa R, Pintó-Marijuan M, Francisco R, López-Carbonell M, Chaves MM, Alegre L. Redox proteomics and physiological responses in Cistus albidus shrubs subjected to long-term summer drought followed by recovery. PLANTA 2015; 241:803-22. [PMID: 25502480 PMCID: PMC4361772 DOI: 10.1007/s00425-014-2221-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 12/02/2014] [Indexed: 05/23/2023]
Abstract
The interaction between enzymatic and non-enzymatic antioxidants, endogenous levels of ABA and ABA-GE, the rapid recuperation of photosynthetic proteins under re-watering as well the high level of antioxidant proteins in previously drought-stressed plants under re-watering conditions, will contribute to drought resistance in plants subjected to a long-term drought stress under Mediterranean field conditions. This work provides an overview of the mechanisms of Cistus albidus acclimation to long-term summer drought followed by re-watering in Mediterranean field conditions. To better understand the molecular mechanisms of drought resistance in these plants, a proteomic study using 2-DE and MALDI-TOF/TOF MS/MS was performed on leaves from these shrubs. The analysis identified 57 differentially expressed proteins in water-stressed plants when contrasted to well watered. Water-stressed plants showed an increase, both qualitatively and quantitatively, in HSPs, and downregulation of photosynthesis and carbon metabolism enzymes. Under drought conditions, there was considerable upregulation of enzymes related to redox homeostasis, DHA reductase, Glyoxalase, SOD and isoflavone reductase. However, upregulation of catalase was not observed until after re-watering was carried out. Drought treatment caused an enhancement in antioxidant defense responses that can be modulated by ABA, and its catabolites, ABA-GE, as well as JA. Furthermore, quantification of protein carbonylation was shown to be a useful marker of the relationship between water and oxidative stress, and showed that there was only moderate oxidative stress in C. albidus plants subjected to water stress. After re-watering plants recovered although the levels of ABA-GE and antioxidant enzymes still remain higher than in well-watered plants. We expect that our results will provide new data on summer acclimation to drought stress in Mediterranean shrubs.
Collapse
Affiliation(s)
- Ricard Brossa
- Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | - Marta Pintó-Marijuan
- Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
- Molecular Ecophysiology Lab. (LEM), Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-901 Oeiras, Portugal
| | - Rita Francisco
- Molecular Ecophysiology Lab. (LEM), Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-901 Oeiras, Portugal
| | - Marta López-Carbonell
- Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | - Maria Manuela Chaves
- Molecular Ecophysiology Lab. (LEM), Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-901 Oeiras, Portugal
| | - Leonor Alegre
- Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| |
Collapse
|
24
|
Han YJ, Kim YM, Hwang OJ, Kim JI. Characterization of a small constitutive promoter from Arabidopsis translationally controlled tumor protein (AtTCTP) gene for plant transformation. PLANT CELL REPORTS 2015; 34:265-75. [PMID: 25410250 DOI: 10.1007/s00299-014-1705-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/25/2014] [Accepted: 11/05/2014] [Indexed: 05/19/2023]
Abstract
A plant-derived 0.3 kb constitutive promoter was obtained from AtTCTP expression analysis, and successfully applied to the expression of a selectable marker gene for production of transgenic creeping bentgrass plants. The isolation and use of an efficient promoter is essential to develop a vector system for efficient genetic transformation of plants, and constitutive promoters are particularly useful for the expression of selectable marker genes. In this study, we characterized a small size of the constitutive promoter from the expression analysis of Arabidopsis thaliana translationally controlled tumor protein (AtTCTP) gene. Histochemical and fluorometric GUS analyses revealed that a 303 bp upstream region from the start codon of the AtTCTP gene showed strong GUS expression throughout all plant tissues, which is approximately 55 % GUS activity compared with the cauliflower mosaic virus 35S promoter (35Spro). To examine the possible application of this promoter for the development of genetically engineered crops, we introduced pCAMBIA3301 vector harboring the 0.3 kb promoter of AtTCTP (0.3kbpro) that was fused to the herbicide resistance BAR gene (0.3kb pro ::BAR) into creeping bentgrass. Our transformation results demonstrate that transgenic creeping bentgrass plants with herbicide resistance were successfully produced using 0.3kb pro ::BAR as a selectable marker. Northern blot analysis revealed that the transgenic plants with 0.3kb pro ::BAR showed reduced but comparable expression levels of BAR to those with 35S pro ::BAR. Moreover, the transcription activity of the 0.3 kb promoter could be increased by the fusion of an enhancer sequence. These results indicate that the 0.3 kb AtTCTP promoter can be used as a plant-derived constitutive promoter for the expression of selectable marker genes, which facilitates its use as an alternative to the 35S promoter for developing genetically engineered crops.
Collapse
Affiliation(s)
- Yun-Jeong Han
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, 500-757, Korea
| | | | | | | |
Collapse
|
25
|
Pandey V, Niranjan A, Atri N, Chandrashekhar K, Mishra MK, Trivedi PK, Misra P. WsSGTL1 gene from Withania somnifera, modulates glycosylation profile, antioxidant system and confers biotic and salt stress tolerance in transgenic tobacco. PLANTA 2014; 239:1217-31. [PMID: 24610300 DOI: 10.1007/s00425-014-2046-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/07/2014] [Indexed: 05/06/2023]
Abstract
Glycosylation of sterols, catalysed by sterol glycosyltransferases (SGTs), improves the sterol solubility, chemical stability and compartmentalization, and helps plants to adapt to environmental changes. The SGTs in medicinal plants are of particular interest for their role in the biosynthesis of pharmacologically active substances. WsSGTL1, a SGT isolated from Withania somnifera, was expressed and functionally characterized in transgenic tobacco plants. Transgenic WsSGTL1-Nt lines showed an adaptive mechanism through demonstrating late germination, stunted growth, yellowish-green leaves and enhanced antioxidant system. The reduced chlorophyll content and chlorophyll fluorescence with decreased photosynthetic parameters were observed in WsSGTL1-Nt plants. These changes could be due to the enhanced glycosylation by WsSGTL1, as no modulation in chlorophyll biogenesis-related genes was observed in transgenic lines as compared to wildtype (WT) plants. Enhanced accumulation of main sterols like, campesterol, stigmasterol and sitosterol in glycosylated form was observed in WsSGTL1-Nt plants. Apart from these, other secondary metabolites related to plant's antioxidant system along with activities of antioxidant enzymes (SOD, CAT; two to fourfold) were enhanced in WsSGTL1-Nt as compared to WT. WsSGTL1-Nt plants showed significant resistance towards Spodoptera litura (biotic stress) with up to 27 % reduced larval weight as well as salt stress (abiotic stress) with improved survival capacity of leaf discs. The present study demonstrates that higher glycosylation of sterols and enhanced antioxidant system caused by expression of WsSGTL1 gene confers specific functions in plants to adapt under different environmental challenges.
Collapse
Affiliation(s)
- Vibha Pandey
- Council of Scientific and Industrial Research - National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | | | | | | | | | | | | |
Collapse
|
26
|
Rong W, Qi L, Wang A, Ye X, Du L, Liang H, Xin Z, Zhang Z. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:468-79. [PMID: 24393105 DOI: 10.1111/pbi.12153] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/01/2013] [Accepted: 11/22/2013] [Indexed: 05/05/2023]
Abstract
Salinity and drought are major limiting factors of wheat (Triticum aestivum) productivity worldwide. Here, we report the function of a wheat ERF transcription factor TaERF3 in salt and drought responses and the underlying mechanism of TaERF3 function. Upon treatment with 250 mM NaCl or 20% polyethylene glycol (PEG), transcript levels of TaERF3 were rapidly induced in wheat. Using wheat cultivar Yangmai 12 as the transformation recipient, four TaERF3-overexpressing transgenic lines were generated and functionally characterized. The seedlings of the TaERF3-overexpressing transgenic lines exhibited significantly enhanced tolerance to both salt and drought stresses as compared to untransformed wheat. In the leaves of TaERF3-overexpressing lines, accumulation levels of both proline and chlorophyll were significantly increased, whereas H₂O₂ content and stomatal conductance were significantly reduced. Conversely, TaERF3-silencing wheat plants that were generated through virus-induced gene silencing method displayed more sensitivity to salt and drought stresses compared with the control plants. Real-time quantitative RT-PCR analyses showed that transcript levels of ten stress-related genes were increased in TaERF3-overexpressing lines, but compromised in TaERF3-silencing wheat plants. Electrophoretic mobility shift assays showed that the TaERF3 protein could interact with the GCC-box cis-element present in the promoters of seven TaERF3-activated stress-related genes. These results indicate that TaERF3 positively regulates wheat adaptation responses to salt and drought stresses through the activation of stress-related genes and that TaERF3 is an attractive engineering target in applied efforts to improve abiotic stress tolerances in wheat and other cereals.
Collapse
Affiliation(s)
- Wei Rong
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Biology and Genetic Improvement of Triticeae Crops of the Agriculture Ministry, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China; Central South University of Forestry and Technology, Changsha, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
A genome-wide perspective of miRNAome in response to high temperature, salinity and drought stresses in Brassica juncea (Czern) L. PLoS One 2014; 9:e92456. [PMID: 24671003 PMCID: PMC3966790 DOI: 10.1371/journal.pone.0092456] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 02/21/2014] [Indexed: 11/23/2022] Open
Abstract
Micro RNAs (miRNAs) are involved in diverse biological processes including adaptive response towards abiotic stresses. To unravel small RNAs and more specifically miRNAs that can potentially regulate determinants of abiotic stress tolerance, next generation sequencing of B. juncea seedlings subjected to high temperature, high salt and drought conditions was carried out. With the help of UEA sRNA workbench software package, 51 conserved miRNAs belonging to 30 miRNA families were identified. As there was limited genomic information available for B. juncea, we generated and assembled its genome sequence at a low coverage. Using the generated sequence and other publically available Brassica genomic/transcriptomic resources as mapping reference, 126 novel (not reported in any plant species) were discovered for the first time in B. juncea. Further analysis also revealed existence of 32 and 37 star sequences for conserved and novel miRNAs, respectively. The expression of selected conserved and novel miRNAs under conditions of different abiotic stresses was revalidated through universal TaqMan based real time PCR. Putative targets of identified conserved and novel miRNAs were predicted in B. rapa to gain insights into functional roles manifested by B. juncea miRNAs. Furthermore, SPL2-like, ARF17-like and a NAC domain containing protein were experimentally validated as targets of miR156, miR160 and miR164 respectively. Investigation of gene ontologies linked with targets of known and novel miRNAs forecasted their involvement in various biological functions.
Collapse
|
28
|
Nakano RT, Yamada K, Bednarek P, Nishimura M, Hara-Nishimura I. ER bodies in plants of the Brassicales order: biogenesis and association with innate immunity. FRONTIERS IN PLANT SCIENCE 2014; 5:73. [PMID: 24653729 PMCID: PMC3947992 DOI: 10.3389/fpls.2014.00073] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/12/2014] [Indexed: 05/20/2023]
Abstract
The endoplasmic reticulum (ER) forms highly organized network structures composed of tubules and cisternae. Many plant species develop additional ER-derived structures, most of which are specific for certain groups of species. In particular, a rod-shaped structure designated as the ER body is produced by plants of the Brassicales order, which includes Arabidopsis thaliana. Genetic analyses and characterization of A. thaliana mutants possessing a disorganized ER morphology or lacking ER bodies have provided insights into the highly organized mechanisms responsible for the formation of these unique ER structures. The accumulation of proteins specific for the ER body within the ER plays an important role in the formation of ER bodies. However, a mutant that exhibits morphological defects of both the ER and ER bodies has not been identified. This suggests that plants in the Brassicales order have evolved novel mechanisms for the development of this unique organelle, which are distinct from those used to maintain generic ER structures. In A. thaliana, ER bodies are ubiquitous in seedlings and roots, but rare in rosette leaves. Wounding of rosette leaves induces de novo formation of ER bodies, suggesting that these structures are associated with resistance against pathogens and/or herbivores. ER bodies accumulate a large amount of β-glucosidases, which can produce substances that potentially protect against invading pests. Biochemical studies have determined that the enzymatic activities of these β-glucosidases are enhanced during cell collapse. These results suggest that ER bodies are involved in plant immunity, although there is no direct evidence of this. In this review, we provide recent perspectives of ER and ER body formation in A. thaliana, and discuss clues for the functions of ER bodies. We highlight defense strategies against biotic stress that are unique for the Brassicales order, and discuss how ER structures could contribute to these strategies.
Collapse
Affiliation(s)
- Ryohei T. Nakano
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Kenji Yamada
- Department of Cell Biology, National Institute for Basic BiologyOkazaki, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (Sokendai)Okazaki, Japan
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznañ, Poland
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic BiologyOkazaki, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (Sokendai)Okazaki, Japan
| | - Ikuko Hara-Nishimura
- Department of Botany, Graduate School of Science, Kyoto UniversityKyoto, Japan
- *Correspondence: Ikuko Hara-Nishimura, Laboratory of Plant Molecular and Cell Biology, Department of Botany, Graduate School of Science, Kyoto University, Kita-Shirakawa Oiwake-cho, Sakyo-ku, 606-8502 Kyoto, Japan e-mail:
| |
Collapse
|