1
|
Xiang Z, Zhang L, Long Y, Zhang M, Yao Y, Deng H, Quan C, Lu M, Cui B, Wang D. An ABA biosynthesis enzyme gene OsNCED4 regulates NaCl and cold stress tolerance in rice. Sci Rep 2024; 14:26711. [PMID: 39496751 PMCID: PMC11535211 DOI: 10.1038/s41598-024-78121-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/29/2024] [Indexed: 11/06/2024] Open
Abstract
Rice (Oryza sativa L.) is susceptible to various abiotic stresses, such as salt, cold, and drought. Therefore, there is an urgent need to explore the relevant genes that enhance tolerance to these stresses. In this study, we identified a gene, OsNCED4 (9-cis-epoxycarotenoid dioxygenase 4), which regulates tolerance to multiple abiotic stresses. OsNCED4 encodes a chloroplast-localized abscisic acid (ABA) biosynthetic enzyme. The expression of OsNCED4 gene was significantly induced by 150 mM NaCl and cold stress. Disruption of OsNCED4 by CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9-mediated mutagenesis resulted in significant sensitivity to NaCl and cold stress. The salt and cold sensitivity of osnced4 mutant was due to the reduction of ABA content and the excessive accumulation of reactive oxygen species (ROS) under stress. Moreover, OsNCED4 also regulates drought stress tolerance of rice seedlings. Taken together, these results indicate that OsNCED4 is a new regulator for multiple abiotic stress tolerance in rice, and provided a potential target gene for enhancing multiple stress tolerance in the future.
Collapse
Affiliation(s)
- Zhipan Xiang
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, 558000, China.
| | - Lin Zhang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yingxia Long
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, 558000, China
| | - Mingze Zhang
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, 558000, China
| | - Yuxian Yao
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, 558000, China
| | - Huali Deng
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, 558000, China
| | - Changbin Quan
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, 558000, China
| | - Minfeng Lu
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, 558000, China
| | - Baolu Cui
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, 558000, China
| | - Dengyan Wang
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, 558000, China
| |
Collapse
|
2
|
Zi N, Ren W, Guo H, Yuan F, Liu Y, Fry E. DNA Methylation Participates in Drought Stress Memory and Response to Drought in Medicago ruthenica. Genes (Basel) 2024; 15:1286. [PMID: 39457410 PMCID: PMC11507442 DOI: 10.3390/genes15101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Drought is currently a global environmental problem, which inhibits plant growth and development and seriously restricts crop yields. Many plants exposed to drought stress can generate stress memory, which provides some advantages for resisting recurrent drought. DNA methylation is a mechanism involved in stress memory formation, and many plants can alter methylation levels to form stress memories; however, it remains unclear whether Medicago ruthenica exhibits drought stress memory, as the epigenetic molecular mechanisms underlying this process have not been described in this species. Methods: We conducted methylome and transcriptome sequencing to identify gene methylation and expression changes in plants with a history of two drought stress exposures. Results: Methylation analysis showed that drought stress resulted in an approximately 4.41% decrease in M. ruthenica genome methylation levels. The highest methylation levels were in CG dinucleotide contexts, followed by CHG contexts, with CHH contexts having the lowest levels. Analysis of associations between methylation and transcript levels showed that most DNA methylation was negatively correlated with gene expression except methylation within CHH motifs in gene promoter regions. Genes were divided into four categories according to the relationship between methylation and gene expression; the up-regulation of hypo-methylated gene expression accounted for the vast majority (692 genes) and included genes encoding factors key for abscisic acid (ABA) and proline synthesis. The hypo-methylation of the promoter and body regions of these two gene groups induced increased gene transcription levels. Conclusions: In conclusion, DNA methylation may contribute to drought stress memory formation and maintenance in M. ruthenica by increasing the transcription levels of genes key for ABA and proline biosynthesis.
Collapse
Affiliation(s)
- Na Zi
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China;
| | - Weibo Ren
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China;
| | - Huiqin Guo
- School of Life Science, Inner Mongolia Agriculture University, Hohhot 010010, China;
| | - Feng Yuan
- Key Laboratory of Forage Breeding and Seed Production of Inner Mongolia, National Center of Pratacultural Technology Innovation, Hohhot 010010, China; (F.Y.); (Y.L.)
| | - Yaling Liu
- Key Laboratory of Forage Breeding and Seed Production of Inner Mongolia, National Center of Pratacultural Technology Innovation, Hohhot 010010, China; (F.Y.); (Y.L.)
| | - Ellen Fry
- Department of Biology, Edge Hill University, Ormskirk L39 4QP, UK;
| |
Collapse
|
3
|
Agarwal P, Chittora A, Baraiya BM, Fatnani D, Patel K, Akhyani DD, Parida AK, Agarwal PK. Rab7 GTPase-Mediated stress signaling enhances salinity tolerance in AlRabring7 tobacco transgenics by modulating physio-biochemical parameters. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108928. [PMID: 39033652 DOI: 10.1016/j.plaphy.2024.108928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/19/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
The RING-type E3 ligases play a significant role in stress signaling, primarily through post-translational regulation. Ubiquitination is a crucial post-translational modification that regulates the turnover and activity of proteins. The overexpression of AlRabring7, RING-HC E3 Ub ligase in tobacco provides insights into the regulation of salinity and ABA signaling in transgenic tobacco. The seed germination potential of AlRabring7 transgenics was higher than WT, with NaCl and ABA treatments. The transgenics showed improved morpho-physio-biochemical parameters in response to salinity and ABA treatments. The photosynthetic pigments, soluble sugars, reducing sugars and proline increased in transgenics in response to NaCl and ABA treatments. The decreased ROS accumulation in transgenics on NaCl and ABA treatments can be co-related to improved activity of enzymatic and non-enzymatic antioxidants. The potential of transgenics to maintain ABA levels with ABA treatment, highlights the active participation of ABA feedback loop mechanism. Interestingly, the ability of AlRabring7 transgenics to upregulate Rab7 protein, suggests its role in facilitating vacuolar transport. Furthermore, the improved potassium accumulation and reduced sodium content indicate an efficient ion regulation mechanism in transgenic plants facilitating higher stomatal opening. The expression of downstream ion transporter (NbNHX1 and NbVHA1), ABA signaling (NbABI2 and NbABI5) and vesicle trafficking (NbMON1) responsive genes were upregulated with stress. The present study, reports that AlRabring7 participates in maintaining vacuolar transport, ion balance, ROS homeostasis, stomatal regulation through activation of Rab7 protein and regulation of downstream stress-responsive during stress. This emphasizes the potential of AlRabring7 gene for improved performance and resilience in challenging environments.
Collapse
Affiliation(s)
- Parinita Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India.
| | - Anjali Chittora
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhagirath M Baraiya
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India
| | - Dhara Fatnani
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Khantika Patel
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India
| | - Dhanvi D Akhyani
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India
| | - Asish K Parida
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pradeep K Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Zheng Z, Gao J, Wang C, Peng H, Zeng J, Chen F. Genome-wide identification and expression pattern analysis of the MATE gene family in carmine radish (Raphanus sativus L.). Gene 2023; 887:147734. [PMID: 37625557 DOI: 10.1016/j.gene.2023.147734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/09/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Carmine radish (Raphanus sativus L.) is famousforcontaininganaturalredpigment(redradishpigment) that grown in Fuling, Chongqing City, China. MATE (multidrug and toxic compound extrusion), as an integral member of the multidrug efflux transporter family, has various functions in plants. However, noinformationhasbeenavailableaboutcharacteristicsoftheMATEgenefamily in carmine radish. In this study, total of 85 candidate MATE gene family members classifiedinto 4 groups were identified and foundtobewidelyandrandomlydistributedindifferent genome. Synteny analysis revealed that twenty-one segmental and ten tandem duplications acted as important regulators for the expansion of RsMATE genes. The Ka/Ks ratios of RsMATE indicated that RsMATE may have undergone intense purification in the radish genome. Cis-acting element analysis of RsMATE in the promoter region indicated that RsMATE were mainly related to the abiotic stress response and phytohormone. Quantitative real-time polymerase chain reaction (qRT-PCR) showed that RsMATE40-b, RsMATE16-b and RsMATE13-a genes were significantly expressed under ABA (abscisic acid) and NaCl stress treatments respectively. In addition, the expression patterns of fifteen key RsMATE genes were investigated in 'XCB' (Xichangbai) and 'HX' (Hongxin) roots under Cadmium (Cd) stress for different treatment times using qRT-PCR, of those, RsMATE49-b, RsMATE33 and RsMATE26 transcripts were strongly altered at different time points in XCB responsive to Cd stress,compared to HX. This study will provide valuable insights for studying the functional characterization of the MATE gene in carmine radish and other plants.
Collapse
Affiliation(s)
- Zhangfei Zheng
- School of Biological and Food Engineering, Chongqing Three Gorges University, WanZhou, 404100 Chongqing, China; School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Fuling, 408100 Chongqing, China
| | - Jian Gao
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Fuling, 408100 Chongqing, China.
| | - Chuanyi Wang
- School of Biological and Food Engineering, Chongqing Three Gorges University, WanZhou, 404100 Chongqing, China; School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Fuling, 408100 Chongqing, China
| | - Hua Peng
- Research Centre for Tourism Agriculture Development, Sichuan Tourism College, Chengdu 610100, Sichuan, China
| | - Jing Zeng
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Fuling, 408100 Chongqing, China
| | - Fabo Chen
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Fuling, 408100 Chongqing, China
| |
Collapse
|
5
|
Matkowski H, Daszkowska-Golec A. Update on stomata development and action under abiotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1270180. [PMID: 37849845 PMCID: PMC10577295 DOI: 10.3389/fpls.2023.1270180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/14/2023] [Indexed: 10/19/2023]
Abstract
Stomata, key gatekeepers of plant hydration, have long been known to play a pivotal role in mitigating the impacts of abiotic stressors. However, the complex molecular mechanisms underscoring this role remain unresolved fully and continue to be the subject of research. In the context of water-use efficiency (WUE), a key indicator of a plant's ability to conserve water, this aspect links intrinsically with stomatal behavior. Given the pivotal role of stomata in modulating water loss, it can be argued that the complex mechanisms governing stomatal development and function will significantly influence a plant's WUE under different abiotic stress conditions. Addressing these calls for a concerted effort to strengthen plant adaptability through advanced, targeted research. In this vein, recent studies have illuminated how specific stressors trigger alterations in gene expression, orchestrating changes in stomatal pattern, structure, and opening. This reveals a complex interplay between stress stimuli and regulatory sequences of essential genes implicated in stomatal development, such as MUTE, SPCH, and FAMA. This review synthesizes current discoveries on the molecular foundations of stomatal development and behavior in various stress conditions and their implications for WUE. It highlights the imperative for continued exploration, as understanding and leveraging these mechanisms guarantee enhanced plant resilience amid an ever-changing climatic landscape.
Collapse
Affiliation(s)
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
6
|
Feng YR, Li TT, Wang SJ, Lu YT, Yuan TT. Triphosphate Tunnel Metalloenzyme 2 Acts as a Downstream Factor of ABI4 in ABA-Mediated Seed Germination. Int J Mol Sci 2023; 24:ijms24108994. [PMID: 37240339 DOI: 10.3390/ijms24108994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Seed germination is a complex process that is regulated by various exogenous and endogenous factors, in which abscisic acid (ABA) plays a crucial role. The triphosphate tunnel metalloenzyme (TTM) superfamily exists in all living organisms, but research on its biological role is limited. Here, we reveal that TTM2 functions in ABA-mediated seed germination. Our study indicates that TTM2 expression is enhanced but repressed by ABA during seed germination. Promoted TTM2 expression in 35S::TTM2-FLAG rescues ABA-mediated inhibition of seed germination and early seedling development and ttm2 mutants exhibit lower seed germination rate and reduced cotyledon greening compared with the wild type, revealing that the repression of TTM2 expression is required for ABA-mediated inhibition of seed germination and early seedling development. Further, ABA inhibits TTM2 expression by ABA insensitive 4 (ABI4) binding of TTM2 promoter and the ABA-insensitive phenotype of abi4-1 with higher TTM2 expression can be rescued by mutation of TTM2 in abi4-1 ttm2-1 mutant, indicating that TTM2 acts downstream of ABI4. In addition, TTM1, a homolog of TTM2, is not involved in ABA-mediated regulation of seed germination. In summary, our findings reveal that TTM2 acts as a downstream factor of ABI4 in ABA-mediated seed germination and early seedling growth.
Collapse
Affiliation(s)
- Yu-Rui Feng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ting-Ting Li
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shi-Jia Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ting-Ting Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
7
|
Silva GS, Gavassi MA, de Oliveira Carvalho BM, Habermann G. High abscisic acid and low root hydraulic conductivity may explain low leaf hydration in 'Mandarin' lime exposed to aluminum. TREE PHYSIOLOGY 2023; 43:404-417. [PMID: 36349691 DOI: 10.1093/treephys/tpac130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 05/03/2023]
Abstract
The first symptom of aluminum (Al) toxicity is the inhibition of root growth, which has been associated with low leaf hydration, with negative consequences for leaf gas exchange including stomatal conductance (gs) observed in many plant species. Here we asked whether low leaf hydration occurs before or after the inhibition of root growth of Citrus × limonia Osbeck ('Mandarin' lime) cultivated for 60 days in nutrient solution with 0 and 1480 μM Al. The length, diameter, surface area and biomass of roots of plants exposed to Al were lower than control plants only at 30 days after treatments (DAT). Until the end of the study, estimated gs (measured by sap flow techniques) was lower than in control plants from 3 DAT, total plant transpiration (Eplant) and root hydraulic conductivity (Lpr) at 7 DAT, and midday leaf water potential (Ψmd) and relative leaf water content at 15 DAT. Abscisic acid (ABA) in leaves was twofold higher in Al-exposed plants 1 DAT, and in roots a twofold higher peak was observed at 15 DAT. As ABA in leaves approached values of control plants after 15 DAT, we propose that low gs of plants exposed to Al is primarily caused by ABA, and the maintenance of low gs could be ascribed to the low Lpr from 7 DAT until the end of the study. Therefore, the low leaf hydration in 'Mandarin' lime exposed to Al does not seem to be caused by root growth inhibition or by a simple consequence of low water uptake due to a stunted root system.
Collapse
Affiliation(s)
- Giselle Schwab Silva
- Programa de Pós-Graduação em Biologia Vegetal, Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Av. 24-A, 1515, 13506-900 Rio Claro, SP, Brazil
| | - Marina Alves Gavassi
- Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Av. 24-A, 1515, 13506-900 Rio Claro, SP, Brazil
| | - Brenda Mistral de Oliveira Carvalho
- Programa de Pós-Graduação em Biologia Vegetal, Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Av. 24-A, 1515, 13506-900 Rio Claro, SP, Brazil
| | - Gustavo Habermann
- Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Av. 24-A, 1515, 13506-900 Rio Claro, SP, Brazil
| |
Collapse
|
8
|
Huang Y, Jiao Y, Yang S, Mao D, Wang F, Chen L, Liang M. SiNCED1, a 9-cis-epoxycarotenoid dioxygenase gene in Setaria italica, is involved in drought tolerance and seed germination in transgenic Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1121809. [PMID: 36968367 PMCID: PMC10034083 DOI: 10.3389/fpls.2023.1121809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Foxtail millet (Setaria italica L.) is a vital cereal food crop with promising development and utilization potential because of its outstanding ability to resist drought stress. However, the molecular mechanisms underlying its drought stress resistance remain unclear. In this study, we aimed to elucidate the molecular function of a 9-cis-epoxycarotenoid dioxygenase gene, SiNCED1, in the drought stress response of foxtail millet. Expression pattern analysis showed that SiNCED1 expression was significantly induced by abscisic acid (ABA), osmotic stress, and salt stress. Furthermore, ectopic overexpression of SiNCED1 could enhance drought stress resistance by elevating endogenous ABA levels and promoting stomatal closure. Transcript analysis indicated that SiNCED1 modulated ABA-related stress responsive gene expression. In addition, we found that ectopic expression of SiNCED1 delayed seed germination under normal and abiotic stress conditions. Taken together, our results show that SiNCED1 plays a positive role in the drought tolerance and seed dormancy of foxtail millet by modulating ABA biosynthesis. In conclusion, this study revealed that SiNCED1 is an important candidate gene for the improvement of drought stress tolerance in foxtail millet and could be beneficial in the breeding and investigation of drought tolerance in other agronomic crops.
Collapse
Affiliation(s)
- Yuan Huang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- College of Life Science, Hunan Normal University, Changsha, China
| | - Yang Jiao
- College of Life Science, Hunan Normal University, Changsha, China
| | - Sha Yang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dandan Mao
- College of Life Science, Hunan Normal University, Changsha, China
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, China
| | - Feng Wang
- College of Life Science, Hunan Normal University, Changsha, China
| | - Liangbi Chen
- College of Life Science, Hunan Normal University, Changsha, China
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, China
| | - Manzhong Liang
- College of Life Science, Hunan Normal University, Changsha, China
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, China
| |
Collapse
|
9
|
Tian R, Sun X, Liu C, Chu J, Zhao M, Zhang WH. A Medicago truncatula lncRNA MtCIR1 negatively regulates response to salt stress. PLANTA 2023; 257:32. [PMID: 36602592 DOI: 10.1007/s00425-022-04064-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
A lncRNA MtCIR1 negatively regulates the response to salt stress in Medicago truncatula seed germination by modulating seedling growth and ABA metabolism and signaling by enhancing Na+ accumulation. Increasing evidence suggests that long non-coding RNAs (lncRNAs) are involved in the regulation of plant tolerance to varying abiotic stresses. A large number of lncRNAs that are responsive to abiotic stress have been identified in plants; however, the mechanisms underlying the regulation of plant responses to abiotic stress by lncRNAs are largely unclear. Here, we functionally characterized a salt stress-responsive lncRNA derived from the leguminous model plant M. truncatula, referred to as MtCIR1, by expressing MtCIR1 in Arabidopsis thaliana in which no such homologous sequence was observed. Expression of MtCIR1 rendered seed germination more sensitive to salt stress by enhanced accumulation of abscisic acid (ABA) due to suppressing the expression of the ABA catabolic enzyme CYP707A2. Expression of MtCIR1 also suppressed the expression of genes associated with ABA receptors and signaling. The ABA-responsive gene AtPGIP2 that was involved in degradation of cell wall during seed germination was up-regulated by expressing MtCIR1. On the other hand, expression of MtCIR1 in Arabidopsis thaliana enhanced foliar Na+ accumulation by down-regulating genes encoding Na+ transporters, thus rendering the transgenic plants more sensitive to salt stress. These results demonstrate that the M. truncatula lncRNA MtCIR1 negatively regulates salt stress response by targeting ABA metabolism and signaling during seed germination and foliar Na+ accumulation by affecting Na+ transport under salt stress during seedling growth. These novel findings would advance our knowledge on the regulatory roles of lncRNAs in response of plants to salt stress.
Collapse
Affiliation(s)
- Rui Tian
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiaohan Sun
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Cuimei Liu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Mingui Zhao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
| | - Wen-Hao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
10
|
Breygina M, Voronkov A, Galin I, Akhiyarova G, Polevova S, Klimenko E, Ivanov I, Kudoyarova G. Dynamics of endogenous levels and subcellular localization of ABA and cytokinins during pollen germination in spruce and tobacco. PROTOPLASMA 2023; 260:237-248. [PMID: 35579760 DOI: 10.1007/s00709-022-01766-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
We used the enzyme-linked immunosorbent assay (ELISA) to assess the level of endogenous hormones in spruce pollen, and immunolocalization and confocal microscopy to study hormone localization in spruce and tobacco pollen. During pollen activation, the levels of ABA, zeatin, and its riboside significantly decreased. After the initiation of polar growth, the levels of all cytokinins increased sharply; ABA level also increased. In dormant spruce pollen grains, zeatin and ABA were localized uniformly throughout the cytoplasm. Zeatin was not detected in the nuclei, and the antheridial cell showed higher levels than the vegetative cell; ABA signal was detected in the cytoplasm and the nuclei. In germinating pollen, both hormones were detected mainly in plastids. The similar pattern was found in growing pollen tubes; signal from ABA also had a noticeable level in the cytosol of the tube cell, and was weaker in the antheridial cell. Zeatin fluorescence, on the other hand, was more pronounced in the antheridial cell. In non-germinated grains of tobacco, zeatin was localized mainly in organelles. ABA in dormant pollen grains demonstrated uniform localization, including the nuclei and cytoplasm of both cells. After germination, zeatin was accumulated in the plasmalemma or cell wall. ABA signal in the cytoplasm decreased; in the nuclei, it remained high. In growing tubes, the strongest zeatin and ABA signals were observed at the plasma membrane. The differences in ABA and cytokinin localization between species and dynamic changes in their level in spruce pollen highlight the key spatial and temporal parameters of hormonal regulation of gymnosperm pollen germination.
Collapse
Affiliation(s)
- Maria Breygina
- Biological Faculty, Lomonosov Moscow State University, Leninskiye gory 1-12, Moscow, 119991, Russia.
| | - Alexander Voronkov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St. 35, Moscow, 127276, Russia
| | - Ilshat Galin
- Institute of Biology, Ufa Research Centre, Russian Academy of Sciences, pr. Oktyabrya 69, 450054, Ufa, Russia
| | - Guzel Akhiyarova
- Institute of Biology, Ufa Research Centre, Russian Academy of Sciences, pr. Oktyabrya 69, 450054, Ufa, Russia
| | - Svetlana Polevova
- Biological Faculty, Lomonosov Moscow State University, Leninskiye gory 1-12, Moscow, 119991, Russia
| | - Ekaterina Klimenko
- Biological Faculty, Lomonosov Moscow State University, Leninskiye gory 1-12, Moscow, 119991, Russia
| | - Igor Ivanov
- Institute of Biology, Ufa Research Centre, Russian Academy of Sciences, pr. Oktyabrya 69, 450054, Ufa, Russia
| | - Guzel Kudoyarova
- Institute of Biology, Ufa Research Centre, Russian Academy of Sciences, pr. Oktyabrya 69, 450054, Ufa, Russia
| |
Collapse
|
11
|
Nykiel M, Gietler M, Fidler J, Graska J, Rybarczyk-Płońska A, Prabucka B, Muszyńska E, Bocianowski J, Labudda M. Differential Water Deficit in Leaves Is a Principal Factor Modifying Barley Response to Drought Stress. Int J Mol Sci 2022; 23:ijms232315240. [PMID: 36499563 PMCID: PMC9739961 DOI: 10.3390/ijms232315240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022] Open
Abstract
In response to environmental stress, plants activate complex signalling, including being dependent on reactive oxygen-nitrogen-sulphur species. One of the key abiotic stresses is drought. As a result of drought, changes in the level of hydration of the plant occur, which obviously entails various metabolic alternations. The primary aim of this study was to determine the relationship between the response of barley to drought and the intensity of stress, therefore investigations were performed under various levels of water saturation deficit (WSD) in leaves at 15%, 30%, and 50%. In barley subjected to drought, most significant changes occurred under a slight dehydration level at 15%. It was observed that the gene expression of 9-cis-epoxycarotenoid dioxygenases, enzymes involved in ABA biosynthesis, increased significantly, and led to a higher concentration of ABA. This was most likely the result of an increase in the gene expression and enzyme activity of L-cysteine desulfhydrase, which is responsible for H2S synthesis. Our results suggest that the differential water deficit in leaves underlies the activation of an appropriate defence, with ABA metabolism at the centre of these processes. Furthermore, at 15% WSD, a dominant contribution of H2O2-dependent signalling was noted, but at 30% and 50% WSD, significant NO-dependent signalling occurred.
Collapse
Affiliation(s)
- Małgorzata Nykiel
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-59-32575
| | - Marta Gietler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Justyna Fidler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Jakub Graska
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Anna Rybarczyk-Płońska
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Beata Prabucka
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Ewa Muszyńska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland
| | - Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
12
|
Wen D, Bao L, Huang X, Qian X, Chen E, Shen B. OsABT Is Involved in Abscisic Acid Signaling Pathway and Salt Tolerance of Roots at the Rice Seedling Stage. Int J Mol Sci 2022; 23:10656. [PMID: 36142568 PMCID: PMC9504391 DOI: 10.3390/ijms231810656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 12/03/2022] Open
Abstract
Rice is a staple cereal crop worldwide, and increasing its yields is vital to ensuring global food security. Salinity is a major factor that affects rice yield. Therefore, it is necessary to investigate salt tolerance mechanisms in rice. Proteins containing WD40 repeats play important roles in eukaryotic development and environmental adaptation. Here, we showed that overexpression of OsABT, a gene encoding a WD40-repeat protein, enhanced salt tolerance in rice seedlings by regulating root activity, relative conductivity, malondialdehyde and H2O2 content, and O2•- production rate. Root ion concentrations indicated that OsABT overexpression lines could maintain lower Na+ and higher K+/Na+ ratios and upregulated expression of salt-related genes OsSOS1 and OsHAK5 compared with the wild-type (WT) Nipponbare plants. Furthermore, Overexpression of OsABT decreased the abscisic acid (ABA) content, while downregulating the ABA synthesis genes OsNCED3 and OsNCED4 and upregulating the ABA catabolic gene OsABA8ox2. The yeast two-hybrid and bimolecular fluorescence complementation analyses showed that OsABT interacted with the ABA receptor proteins OsPYL4, OsPYL10, and PP2C phosphatase OsABIL2. A transcriptome analysis revealed that the differentially expressed genes between OsABT overexpression lines and WT plants were enriched in plant hormone signal transduction, including ABA signaling pathway under salt stress. Thus, OsABT can improve the salt tolerance in rice seedling roots by inhibiting reactive oxygen species accumulation, thereby regulating the intracellular Na+/K+ balance, ABA content, and ABA signaling pathway.
Collapse
Affiliation(s)
- Danni Wen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Lingran Bao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xuanzhu Huang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xueduo Qian
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Eryong Chen
- Life School of Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Bo Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
13
|
Son S, Im JH, Song G, Nam S, Park SR. OsWRKY114 Inhibits ABA-Induced Susceptibility to Xanthomonas oryzae pv. oryzae in Rice. Int J Mol Sci 2022; 23:ijms23158825. [PMID: 35955958 PMCID: PMC9369203 DOI: 10.3390/ijms23158825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
The phytohormone abscisic acid (ABA) regulates various aspects of plant growth, development, and stress responses. ABA suppresses innate immunity to Xanthomonas oryzae pv. oryzae (Xoo) in rice (Oryza sativa), but the identity of the underlying regulator is unknown. In this study, we revealed that OsWRKY114 is involved in the ABA response during Xoo infection. ABA-induced susceptibility to Xoo was reduced in OsWRKY114-overexpressing rice plants. OsWRKY114 attenuated the negative effect of ABA on salicylic acid-dependent immunity. Furthermore, OsWRKY114 decreased the transcript levels of ABA-associated genes involved in ABA response and biosynthesis. Moreover, the endogenous ABA level was lower in OsWRKY114-overexpressing plants than in the wild-type plants after Xoo inoculation. Taken together, our results suggest that OsWRKY114 is a negative regulator of ABA that confers susceptibility to Xoo in rice.
Collapse
Affiliation(s)
- Seungmin Son
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| | - Jong Hee Im
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Giha Song
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| | - Suhyeon Nam
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
- Department of Crop Science & Biotechnology, Jeonbuk National University, Jeonju 54896, Korea
| | - Sang Ryeol Park
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| |
Collapse
|
14
|
Wang Y, Zhou Y, Liang J. Characterization of Organellar-Specific ABA Responses during Environmental Stresses in Tobacco Cells and Arabidopsis Plants. Cells 2022; 11:2039. [PMID: 35805123 PMCID: PMC9265483 DOI: 10.3390/cells11132039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Abscisic acid (ABA) is a critical phytohormone involved in multifaceted processes in plant metabolism and growth under both stressed and nonstressed conditions. Its accumulation in various tissues and cells has long been established as a biomarker for plant stress responses. To date, a comprehensive understanding of ABA distribution and dynamics at subcellular resolution in response to environmental cues is still lacking. Here, we modified the previously developed ABA sensor ABAleon2.1_Tao3 (Tao3) and targeted it to different organelles including the endoplasmic reticulum (ER), chloroplast/plastid, and nucleus through the addition of corresponding signal peptides. Together with the cytosolic Tao3, we show distinct ABA distribution patterns in different tobacco cells with the chloroplast showing a lower level of ABA in both cell types. In a tobacco mesophyll cell, organellar ABA displayed specific alterations depending on osmotic stimulus, with ABA levels being generally enhanced under a lower and higher concentration of salt and mannitol treatment, respectively. In Arabidopsis roots, cells from both the meristem and elongation zone accumulated ABA considerably in the cytoplasm upon mannitol treatment, while the plastid and nuclear ABA was generally reduced dependent upon specific cell types. In Arabidopsis leaf tissue, subcellular ABA seemed to be less responsive when stressed, with notable increases of ER ABA in epidermal cells and a reduction of nuclear ABA in guard cells. Together, our results present a detailed characterization of stimulus-dependent cell type-specific organellar ABA responses in tobacco and Arabidopsis plants, supporting a highly coordinated regulatory network for mediating subcellular ABA homeostasis during plant adaptation processes.
Collapse
Affiliation(s)
- Yuzhu Wang
- Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China;
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yeling Zhou
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiansheng Liang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
15
|
Nerva L, Guaschino M, Pagliarani C, De Rosso M, Lovisolo C, Chitarra W. Spray-induced gene silencing targeting a glutathione S-transferase gene improves resilience to drought in grapevine. PLANT, CELL & ENVIRONMENT 2022; 45:347-361. [PMID: 34799858 DOI: 10.1111/pce.14228] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Along with the ongoing climate change, drought events are predicted to become more severe. In this context, the spray-induced gene silencing (SIGS) technique could represent a useful strategy to improve crop stress resilience. A previous study demonstrated that the Arabidopsis mutants for a glutathione S-transferase (GST) gene had increased abscisic acid (ABA) levels and a more activated antioxidant system, both features that improved drought resilience. Here, we used SIGS to target a putative grape GST gene (VvGST40). Then, ecophysiological, biochemical and molecular responses of 'Chardonnay' cuttings were analysed during a drought and recovery time-course. Gas exchange, ABA and t-resveratrol concentration as well as expression of stress-related genes were monitored in not treated controls, dsRNA-VvGST40- and dsRNA-GFP- (negative control of the technique) treated plants, either submitted or not to drought. VvGST40-treated plants revealed increased resilience to severe drought as attested by the ecophysiological data. Analysis of target metabolites and antioxidant- and ABA-related transcripts confirmed that VvGST40-treated plants were in a priming status compared with controls. SIGS targeting an endogenous gene was successfully applied in grapevine, confirming the ability of this technique to be exploited not only for plant protection issues but also for functional genomic studies.
Collapse
Affiliation(s)
- Luca Nerva
- Council for Agricultural Research and Economics-Research Centre for Viticulture and Enology (CREA-VE), Conegliano, TV, Italy
- National Research Council of Italy-Institute for Sustainable Plant Protection (IPSP-CNR), Torino, TO, Italy
| | - Micol Guaschino
- Council for Agricultural Research and Economics-Research Centre for Viticulture and Enology (CREA-VE), Conegliano, TV, Italy
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Grugliasco, TO, Italy
| | - Chiara Pagliarani
- National Research Council of Italy-Institute for Sustainable Plant Protection (IPSP-CNR), Torino, TO, Italy
| | - Mirko De Rosso
- Council for Agricultural Research and Economics-Research Centre for Viticulture and Enology (CREA-VE), Conegliano, TV, Italy
| | - Claudio Lovisolo
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Grugliasco, TO, Italy
| | - Walter Chitarra
- Council for Agricultural Research and Economics-Research Centre for Viticulture and Enology (CREA-VE), Conegliano, TV, Italy
- National Research Council of Italy-Institute for Sustainable Plant Protection (IPSP-CNR), Torino, TO, Italy
| |
Collapse
|
16
|
WRKY Transcription Factors in Cassava Contribute to Regulation of Tolerance and Susceptibility to Cassava Mosaic Disease through Stress Responses. Viruses 2021; 13:v13091820. [PMID: 34578401 PMCID: PMC8473359 DOI: 10.3390/v13091820] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
Among the numerous biological constraints that hinder cassava (Manihot esculenta Crantz) production, foremost is cassava mosaic disease (CMD) caused by virus members of the family Geminiviridae, genus Begomovirus. The mechanisms of CMD tolerance and susceptibility are not fully understood; however, CMD susceptible T200 and tolerant TME3 cassava landraces have been shown to exhibit different large-scale transcriptional reprogramming in response to South African cassava mosaic virus (SACMV). Recent identification of 85 MeWRKY transcription factors in cassava demonstrated high orthology with those in Arabidopsis, however, little is known about their roles in virus responses in this non-model crop. Significant differences in MeWRKY expression and regulatory networks between the T200 and TME3 landraces were demonstrated. Overall, WRKY expression and associated hormone and enriched biological processes in both landraces reflect oxidative and other biotic stress responses to SACMV. Notably, MeWRKY11 and MeWRKY81 were uniquely up and downregulated at 12 and 67 days post infection (dpi) respectively in TME3, implicating a role in tolerance and symptom recovery. AtWRKY28 and AtWRKY40 homologs of MeWRKY81 and MeWRKY11, respectively, have been shown to be involved in regulation of jasmonic and salicylic acid signaling in Arabidopsis. AtWRKY28 is an interactor in the RPW8-NBS resistance (R) protein network and downregulation of its homolog MeWRKY81 at 67 dpi in TME3 suggests a negative role for this WRKY in SACMV tolerance. In contrast, in T200, nine MeWRKYs were differentially expressed from early (12 dpi), middle (32 dpi) to late (67 dpi) infection. MeWRKY27 (homolog AtWRKY33) and MeWRKY55 (homolog AtWRKY53) were uniquely up-regulated at 12, 32 and 67 dpi in T200. AtWRKY33 and AtWRKY53 are positive regulators of leaf senescence and oxidative stress in Arabidopsis, suggesting MeWRKY55 and 27 contribute to susceptibility in T200.
Collapse
|
17
|
Zhou Y, Wang Y, Li J, Liang J. In vivo FRET-FLIM reveals ER-specific increases in the ABA level upon environmental stresses. PLANT PHYSIOLOGY 2021; 186:1545-1561. [PMID: 33848331 PMCID: PMC8260131 DOI: 10.1093/plphys/kiab165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/28/2021] [Indexed: 05/02/2023]
Abstract
Plant hormone abscisic acid (ABA) is essential for regulating plant growth and various stress responses. ABA-mediated signaling depends on local ABA levels rather than the overall cellular ABA concentration. While cellular concentration of ABA can be detected using Förster resonance energy transfer (FRET)-based ABA probes, direct imaging of subcellular ABA levels remains unsolved. Here, we modified the previously reported ABAleon2.1 and generated a new ABA sensor, named ABAleon2.1_Tao3. Via transient expression in tobacco (Nicotiana tabacum) protoplasts, we targeted ABAleon2.1_Tao3s to the endoplasmic reticulum (ER) membrane with the ABA sensing unit facing the cytosol and the ER, respectively, through a nanobody-epitope-mediated protein interaction. Combining FRET with fluorescence lifetime imaging microscopy, ABA-triggered-specific increases in the fluorescence lifetime of the donor mTurquoise in the ABAleon2.1_Tao3 were detected in both transient assays and stably transformed Arabidopsis plants. In tobacco protoplasts, ER membrane-targeted ABAleon2.1_Tao3s showed a generally higher basal level of ABA in the ER than that in the cytosol and ER-specific alterations in the level of ABA upon environmental cues. In ABAleon2.1_Tao3-transformed Arabidopsis roots, mannitol triggered increases in cytosolic ABA in the division zone and increases in ER ABA in the elongation and maturation zone within 1 h after treatment, both of which were abolished in the bg1-2 mutant, suggesting the requirement for BG1 in osmotic stress-triggered early ABA induction in Arabidopsis roots. These data demonstrate that ABAleon2.1_Tao3s can be used to monitor ABA levels in the cytosol and the ER, providing key information on stress-induced changes in the level of ABA in different subcellular compartments.
Collapse
Affiliation(s)
- Yeling Zhou
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuzhu Wang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Science, Southern University of Science and Technology, Shenzhen 518055, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Jingwen Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiansheng Liang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Science, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
18
|
Auler PA, Nogueira do Amaral M, Rossatto T, Lopez Crizel R, Milech C, Clasen Chaves F, Maia Souza G, Bolacel Braga EJ. Metabolism of abscisic acid in two contrasting rice genotypes submitted to recurrent water deficit. PHYSIOLOGIA PLANTARUM 2021; 172:304-316. [PMID: 32421869 DOI: 10.1111/ppl.13126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
Drought is the main constrain for crops worldwide, however, the effects of recurrent water deficit remain still hidden. We analysed two rice genotypes, 'BRS-Querência' (lowlands) and 'AN-Cambará' (uplands), after 7 days of recurrent drought followed by 24 h of rehydration, hypothesising that genotypes grown in regions with different water availabilities respond differently to water deficits, and that a previous exposure to stress could alter abscisic acid (ABA) metabolism. The results showed that both genotypes reduced stomatal conductance and increased ABA concentration. After rehydration, the ABA levels decreased, mainly in the plants of BRS-Querência subjected to recurrent stress. However, the levels of ABA were higher in plants in recurrent water deficit compared to non-recurrent stress plants in both genotypes. Remarkably in the lowland genotype, the ABA glucosyl-ester (ABA-GE) concentration increased after recovery in the plants under recurrent stress. Regarding of gene expression, the genes associated in ABA biosynthesis with the highest expression levels were NCED2, NCED3, NCED4 and AAO2. However, 'AN-Cambará' showed less transcriptional activation. Taking into account the genes involved in ABA catabolism, ABAH1 appears to play an important role related to the recurrent stress in upland plants. These results indicate that one of the factors that can promote greater tolerance for the upland genotype is the tradeoff between ABA and ABA-GE when plants are subjected to water deficits. In addition, they indicate that abscisic acid metabolism is altered due to the genotype (upland or lowland) and pre-exposure to stress can also modify adaptive responses in rice varieties (recurrent stress).
Collapse
Affiliation(s)
- Priscila Ariane Auler
- Department of Botany, Biology Institute, Plant Physiology, Federal University of Pelotas, Pelotas, Brazil
| | - Marcelo Nogueira do Amaral
- Department of Botany, Biology Institute, Plant Physiology, Federal University of Pelotas, Pelotas, Brazil
| | - Tatiana Rossatto
- Department of Botany, Biology Institute, Plant Physiology, Federal University of Pelotas, Pelotas, Brazil
| | - Rosane Lopez Crizel
- Department of Agroindustrial Science and Technology - Agronomy, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Cristini Milech
- Department of Botany, Biology Institute, Plant Physiology, Federal University of Pelotas, Pelotas, Brazil
| | - Fabio Clasen Chaves
- Department of Agroindustrial Science and Technology - Agronomy, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Gustavo Maia Souza
- Department of Botany, Biology Institute, Plant Physiology, Federal University of Pelotas, Pelotas, Brazil
| | | |
Collapse
|
19
|
Qu L, Sun M, Li X, He R, Zhong M, Luo D, Liu X, Zhao X. The Arabidopsis F-box protein FOF2 regulates ABA-mediated seed germination and drought tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110643. [PMID: 33218620 DOI: 10.1016/j.plantsci.2020.110643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/15/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
The phytohormone abscisic acid (ABA) plays a crucial role at various plant developmental stages, including seed germination and seedling development, and regulates stomatal aperture in response to drought. However, the underlying mechanisms are not well understood. Here, we showed that F-BOX OF FLOWERING 2 (FOF2) is induced by ABA and drought stress. Overexpression of FOF2 led to reduced ABA sensitivity during seed germination and early seedling development, whereas the fof2 mutant exhibited increased sensitivity to ABA. Molecular and genetic analyses revealed that FOF2 negatively affected ABA-mediated seed germination and early seedling development partially by repressing the expression of the ABA-signaling genes ABI3 and ABI5. Additionally, we found that FOF2-overexpressing plants exhibited increased ABA contents, enhanced ABA sensitivity during stomatal closure, and decreased water loss, thereby improving tolerance to drought stress, in contrast to the fof2 mutant. Consistent with a higher ABA content and enhanced drought tolerance, the expression of ABA- and drought-induced genes and the ABA-biosynthesis gene NCED3 was upregulated in the FOF2-overexpressing plants but downregulated in fof2 mutant in response to drought stress. Taken together, our findings revealed that FOF2 plays an important negative role in ABA-mediated seed germination and early seedling development, as well as a positive role in ABA-mediated drought tolerance.
Collapse
Affiliation(s)
- Lina Qu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Mengsi Sun
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Xinmei Li
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Reqing He
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Ming Zhong
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Dan Luo
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Xuanming Liu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China; State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China.
| | - Xiaoying Zhao
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China; Shenzhen Institute, Hunan University, Shenzhen, 518057, China.
| |
Collapse
|
20
|
Visscher AM, Castillo-Lorenzo E, Toorop PE, Junio da Silva L, Yeo M, Pritchard HW. Pseudophoenix ekmanii (Arecaceae) seeds at suboptimal temperature show reduced imbibition rates and enhanced expression of genes related to germination inhibition. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:1041-1051. [PMID: 32609914 DOI: 10.1111/plb.13156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Pseudophoenix ekmanii is a critically endangered palm species that can be found in the southeast of the Dominican Republic. The temperatures to which P. ekmanii seeds are exposed upon dispersal range from 32 to 23 °C (max and min) and can reach a low of approximately 20 °C in January. Our aim was to analyse the effect of suboptimal (20 °C) and optimal (30 °C) germination temperature on seed imbibition, moisture content, embryo growth and gene expression patterns in this tropical palm species. Seed imbibition was tracked using whole seeds, while moisture content was assessed for individual seed sections. Embryo and whole seed size were measured before and after full imbibition. For transcriptome sequencing, mRNA was extracted from embryo tissues only and the resulting reads were mapped against the Elaeis guineensis reference genome. Differentially expressed genes were identified after statistical analysis and subsequently probed for enrichment of Gene Ontology categories 'Biological process' and 'Cellular component'. Our results show that prolonged exposure to 20 °C slows whole seed and embryo imbibition and causes germination to be both delayed and inhibited. Embryonic transcriptome patterns associated with the negative regulation of germination by suboptimal temperature include up-regulation of ABA biosynthesis genes, ABA-responsive genes, as well as other genes previously related to physiological dormancy and inhibition of germination. Thus, our manuscript provides the first insights into the gene expression patterns involved in the response to suboptimal temperature during seed imbibition in a tropical palm species.
Collapse
Affiliation(s)
- A M Visscher
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex, United Kingdom
| | - E Castillo-Lorenzo
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex, United Kingdom
- Department of Natural Capital and Plant Health, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex, United Kingdom
| | - P E Toorop
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex, United Kingdom
| | - L Junio da Silva
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex, United Kingdom
| | - M Yeo
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex, United Kingdom
| | - H W Pritchard
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex, United Kingdom
| |
Collapse
|
21
|
Gietler M, Fidler J, Labudda M, Nykiel M. Abscisic Acid-Enemy or Savior in the Response of Cereals to Abiotic and Biotic Stresses? Int J Mol Sci 2020; 21:E4607. [PMID: 32610484 PMCID: PMC7369871 DOI: 10.3390/ijms21134607] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 01/12/2023] Open
Abstract
Abscisic acid (ABA) is well-known phytohormone involved in the control of plant natural developmental processes, as well as the stress response. Although in wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) its role in mechanism of the tolerance to most common abiotic stresses, such as drought, salinity, or extreme temperatures seems to be fairly well recognized, not many authors considered that changes in ABA content may also influence the sensitivity of cereals to adverse environmental factors, e.g., by accelerating senescence, lowering pollen fertility, and inducing seed dormancy. Moreover, recently, ABA has also been regarded as an element of the biotic stress response; however, its role is still highly unclear. Many studies connect the susceptibility to various diseases with increased concentration of this phytohormone. Therefore, in contrast to the original assumptions, the role of ABA in response to biotic and abiotic stress does not always have to be associated with survival mechanisms; on the contrary, in some cases, abscisic acid can be one of the factors that increases the susceptibility of plants to adverse biotic and abiotic environmental factors.
Collapse
Affiliation(s)
- Marta Gietler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (J.F.); (M.L.); (M.N.)
| | | | | | | |
Collapse
|
22
|
Hou B, Shen Y. A Clathrin-Related Protein, SCD2/RRP1, Participates in Abscisic Acid Signaling in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:892. [PMID: 32625229 PMCID: PMC7314967 DOI: 10.3389/fpls.2020.00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Abscisic acid (ABA) plays important roles in many aspects of plant growth and development, and responses to diverse stresses. Although much progress has been made in understanding the molecular mechanisms of ABA homoeostasis and signaling, the mechanism by which plant cells integrate ABA trafficking and signaling to regulate plant developmental processes is poorly understood. In this study, we used Arabidopsis STOMATAL CYTOKINESIS DEFECTIVE 2/RIPENING-REGULATED PROTEIN 1 (SCD2/RRP1) mutants and overexpression plants, in combination with transcriptome and protein-interaction assays, to investigate SCD2/RRP1 involvement in the integration of ABA trafficking and signaling in seed germination and seedling growth. Manipulation of SCD2/RRP1 expression affected ABA sensitivity in seed germination and seedling growth, as well as transcription of several ABA transporter genes and ABA content. RNA-sequencing analysis of Arabidopsis transgenic mutants suggested that SCD2/RRP1 was associated with ABA signaling via a type 2C protein phosphatase (PP2C) protein. The N- and C-terminal regions of SCD2/RRP1 separately interacted with both PYRABACTIN RESISTANCE 1 (PYR1) and ABA INSENSITIVE 1 (ABI1) on the plasma membrane, and SCD2/RRP1 acted genetically upstream of ABI1. Interestingly, ABA inhibited the interaction of SCD2/RRP1 with ABI1, but did not affect the interaction of SCD2/RRP1 with PYR1. These results suggested that in Arabidopsis SCD2/RRP1participates in early seed development and growth potentially through clathrin-mediated endocytosis- and clathrin-coated vesicle-mediated ABA trafficking and signaling. These findings provide insight into the mechanism by which cells regulate plant developmental processes through ABA.
Collapse
Affiliation(s)
- Bingzhu Hou
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yuanyue Shen
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
23
|
Crizel RL, Perin EC, Siebeneichler TJ, Borowski JM, Messias RS, Rombaldi CV, Galli V. Abscisic acid and stress induced by salt: Effect on the phenylpropanoid, L-ascorbic acid and abscisic acid metabolism of strawberry fruits. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 152:211-220. [PMID: 32428822 DOI: 10.1016/j.plaphy.2020.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 05/11/2023]
Abstract
Strawberry is one of the most popular fruits because of its sensorial and functional properties. However, strawberry crop is sensitive to salt stress conditions. Despite plants have plasticity, high salt concentrations induce molecular, biochemical, and physiological responses in plants. There is evidence that the abscisic acid (ABA) hormone acts as a signaling molecule under stress conditions; however, the molecular mechanisms involved in the synthesis and homeostasis of ABA and in the induction of phytochemical antioxidant compounds under stress conditions remain unclear. In this study, the effect of stress induced by NaCl (salt stress - SS), with or without the simultaneous application of ABA, on the ABA, phenylpropanoids and L-ascorbic acid (AsA) metabolisms were evaluated. The physiological aspects (Na, Cl and proline concentration, photosynthetic variables) were also studied. The results showed that salt stress increases the Na and Cl content in the leaves, affects photosynthetic variables and triggers the production of proline, pelargonidin-3-O-glucoside, total phenolic compounds and AsA content, alongside the upregulation of several genes from the phenylpropanoid and flavonoid pathways. These effects were accompanied by the induction of compounds and transcripts related to ABA biosynthesis, conjugation and catabolism. Otherwise, the exogenous application of ABA in salt stressed plants promotes a shift in gene expression and metabolism to mitigate the stress. Therefore, salt stress affects the metabolism of ABA, phenylpropanoids and AsA in strawberry increasing phytochemical composition which is strongly associated with an ABA-dependent mechanism.
Collapse
Affiliation(s)
- R L Crizel
- Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - E C Perin
- Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | | | - J M Borowski
- Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - R S Messias
- Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - C V Rombaldi
- Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - V Galli
- Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
24
|
Plant Cells under Attack: Unconventional Endomembrane Trafficking during Plant Defense. PLANTS 2020; 9:plants9030389. [PMID: 32245198 PMCID: PMC7154882 DOI: 10.3390/plants9030389] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 12/12/2022]
Abstract
Since plants lack specialized immune cells, each cell has to defend itself independently against a plethora of different pathogens. Therefore, successful plant defense strongly relies on precise and efficient regulation of intracellular processes in every single cell. Smooth trafficking within the plant endomembrane is a prerequisite for a diverse set of immune responses. Pathogen recognition, signaling into the nucleus, cell wall enforcement, secretion of antimicrobial proteins and compounds, as well as generation of reactive oxygen species, all heavily depend on vesicle transport. In contrast, pathogens have developed a variety of different means to manipulate vesicle trafficking to prevent detection or to inhibit specific plant responses. Intriguingly, the plant endomembrane system exhibits remarkable plasticity upon pathogen attack. Unconventional trafficking pathways such as the formation of endoplasmic reticulum (ER) bodies or fusion of the vacuole with the plasma membrane are initiated and enforced as the counteraction. Here, we review the recent findings on unconventional and defense-induced trafficking pathways as the plant´s measures in response to pathogen attack. In addition, we describe the endomembrane system manipulations by different pathogens, with a focus on tethering and fusion events during vesicle trafficking.
Collapse
|
25
|
Ma S, Lv L, Meng C, Zhou C, Fu J, Shen X, Zhang C, Li Y. Genome-Wide Analysis of Abscisic Acid Biosynthesis, Catabolism, and Signaling in Sorghum Bicolor under Saline-Alkali Stress. Biomolecules 2019; 9:biom9120823. [PMID: 31817046 PMCID: PMC6995594 DOI: 10.3390/biom9120823] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 01/28/2023] Open
Abstract
Sorghum (Sorghum bicolor) is the fifth most important cereal crop in the world. It is an annual C4 crop due to its high biomass and wide usage, and has a strong resistance to stress. Obviously, there are many benefits of planting sorghum on marginal soils such as saline-alkali land. Although it is known that abscisic acid (ABA) is involved in plant abiotic stress responses, there are few reports on sorghum. Here, we obtained RNA-seq data, which showed gene expression at the genome-wide level under saline-alkali stress. The genes related to ABA biosynthesis, catabolism, and signaling were identified and analyzed. Meanwhile, their amino acid sequences were intermingled with rice genes to form several distinct orthologous and paralogous groups. ABA-related differentially expressed genes under saline-alkali stress were identified, and family members involved in ABA signaling were hypothesized based on the expression levels and homologous genes in rice. Furthermore, the ABA signaling pathway in Sorghum bicolor was understood better by interaction analysis. These findings present a comprehensive overview of the genes regulating ABA biosynthesis, catabolism, and signaling in Sorghum bicolor under saline-alkali stress, and provide a foundation for future research regarding their biological roles in sorghum stress tolerance.
Collapse
Affiliation(s)
- Siqi Ma
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (S.M.); (L.L.); (C.M.); (X.S.)
| | - Lin Lv
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (S.M.); (L.L.); (C.M.); (X.S.)
| | - Chen Meng
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (S.M.); (L.L.); (C.M.); (X.S.)
| | - Chao Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Jie Fu
- BGI Co., Ltd. No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China;
| | - Xiangling Shen
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (S.M.); (L.L.); (C.M.); (X.S.)
| | - Chengsheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (S.M.); (L.L.); (C.M.); (X.S.)
- Correspondence: (C.Z.); (Y.L.); Tel.: +86-053288702115 (C.Z.); +86-053266715597 (Y.L.)
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (S.M.); (L.L.); (C.M.); (X.S.)
- Correspondence: (C.Z.); (Y.L.); Tel.: +86-053288702115 (C.Z.); +86-053266715597 (Y.L.)
| |
Collapse
|
26
|
Huang Y, Jiao Y, Xie N, Guo Y, Zhang F, Xiang Z, Wang R, Wang F, Gao Q, Tian L, Li D, Chen L, Liang M. OsNCED5, a 9-cis-epoxycarotenoid dioxygenase gene, regulates salt and water stress tolerance and leaf senescence in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110188. [PMID: 31481229 DOI: 10.1016/j.plantsci.2019.110188] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/07/2019] [Accepted: 07/10/2019] [Indexed: 05/08/2023]
Abstract
9-cis-epoxycarotenoid dioxygenase (NCED) is a rate-limiting enzyme for abscisic acid (ABA) biosynthesis. However, the molecular mechanisms of NCED5 that modulate plant development and abiotic stress tolerance are still unclear, particular in rice. Here, we demonstrate that a rice NCED gene, OsNCED5, was expressed in all tissues we tested, and was induced by exposure to salt stress, water stress, and darkness. Mutational analysis showed that nced5 mutants reduced ABA level and decreased tolerance to salt and water stress and delayed leaf senescence. However, OsNCED5 overexpression increased ABA level, enhanced tolerance to the stresses, and accelerated leaf senescence. Transcript analysis showed that OsNCED5 regulated ABA-dependent abiotic stress and senescence-related gene expression. Additionally, ectopic expression of OsNCED5 tested in Arabidopsis thaliana altered plant size and leaf morphology and delayed seed germination and flowering time. Thus, OsNCED5 may regulate plant development and stress resistance through control of ABA biosynthesis. These findings contribute to our understanding of the molecular mechanisms by which NCED regulates plant development and responses to abiotic stress in different crop species.
Collapse
Affiliation(s)
- Yuan Huang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, 410081, PR China
| | - Yang Jiao
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, 410081, PR China
| | - Ningkun Xie
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, 410081, PR China
| | - Yiming Guo
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, 410081, PR China
| | - Feng Zhang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, 410081, PR China
| | - Zhipan Xiang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, 410081, PR China
| | - Rong Wang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, 410081, PR China
| | - Feng Wang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, 410081, PR China
| | - Qinmei Gao
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, 410081, PR China
| | - Lianfu Tian
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, 410081, PR China
| | - Dongping Li
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, 410081, PR China
| | - Liangbi Chen
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, 410081, PR China.
| | - Manzhong Liang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, 410081, PR China.
| |
Collapse
|
27
|
Long H, Zheng Z, Zhang Y, Xing P, Wan X, Zheng Y, Li L. An abscisic acid (ABA) homeostasis regulated by its production, catabolism and transport in peanut leaves in response to drought stress. PLoS One 2019; 14:e0213963. [PMID: 31242187 PMCID: PMC6594590 DOI: 10.1371/journal.pone.0213963] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/11/2019] [Indexed: 01/23/2023] Open
Abstract
ABA is an important messenger that acts as a signaling mediator for regulating the adaptive response of plants to drought stress. Two production pathways, de novo biosynthesis and hydrolysis of glucose-conjugated ABA by β-glucosidase (BG), increase cellular ABA levels in plants. ABA catabolism via hydroxylation by 8’-hydroxylase (CYP707A), or conjugation by uridine diphosphate glucosyltransferase (UGT), decreases cellular ABA levels. The transport of ABA through ATP-binding cassette (ABC)-containing transporter proteins, members of ABC transporter G family (ABCG), across plasma membrane (PM) is another important pathway to regulate cellular ABA levels. In this study, based on our previously constructed transcriptome of peanut leaves in response to drought stress, fourteen candidate genes involved in ABA production (including AhZEP, AhNCED1 and AhNCED3, AhABA2, AhAAO1 and AhAAO2, AhABA3, AhBG11 and AhBG24), catabolism (including AhCYP707A3, AhUGT71K1 and AhUGT73B4) and transport (including AhABCG22-1 and AhABCG22-2), were identified homologously and phylogenetically, and further analyzed at the transcriptional level by real-time RT-PCR, simultaneously determining ABA levels in peanut leaves in response to drought. The high sequence identity and very similar subcellular localization of the proteins deduced from 14 identified genes involved in ABA production, catabolism and transport with the reported corresponding enzymes in databases suggest their similar roles in regulating cellular ABA levels. The expression analysis showed that the transcripts of AhZEP, AhNCED1, AhAAO2 and AhABA3 instead of AhABA2, AhNCED3 and AhAAO1 in peanut leaves increased significantly in response to drought stress; and that the AhBG11 and AhBG24 mRNA levels were rapidly and significantly up-regulated, with a 4.83- and 4.58-fold increase, respectively at 2-h of drought stress. The genes involved in ABA catabolism AhCYP707A3, AhUGT71K1 instead of AhUGT73B4 were significantly induced in response to drought stress. The expression of two closely related peanut ABCG genes, AhABCG22.1 and AhABCG22.2, was significantly up-regulated in response to drought stress. The ABA levels rapidly began to accumulate within 2 h (a 56.6-fold increase) from the start of drought stress, and peaked at 10 h of the stress. The highly and rapidly stress up-regulated expressions of genes involved in ABA production and transport, particularly AhNCED1, AhBG11 and AhBG24, and AhABCG22.1 and AhABCG22.2, might contribute to the rapid ABA accumulation in peanut leaves in response to drought. In response to drought stress, ABA accumulation levels in peanut leaves agree well with the up-regulated expressions of ABA-producing genes (AhZEP, AhNCED1, AhAAO2, AhABA3, AhBG11 and AhBG24) and PM-localized ABA importer genes (AhABCG22-1 and AhABCG22-2), in spite of the simultaneously induced ABA catabolic genes (AhCYP707A3 and AhUGT71K1), although the induction of catabolic genes was much lower than that of biosynthetic gene (AhNCED1). This difference in induction kinetics of gene expression may define the significant accumulation of drought-induced ABA levels. These results suggest that ABA homeostasis in peanut leaves in response to drought maintained through a balance between the production, catabolism and transport, rather than simply by the biosynthesis.
Collapse
Affiliation(s)
- Haitao Long
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Zhao Zheng
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yajun Zhang
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Pengzhan Xing
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xiaorong Wan
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- * E-mail: (XW); (LL)
| | - Yixiong Zheng
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ling Li
- School of Life Sciences, South China Normal University, Guangzhou, China
- * E-mail: (XW); (LL)
| |
Collapse
|
28
|
Ju Y, Feng L, Wu J, Ye Y, Zheng T, Cai M, Cheng T, Wang J, Zhang Q, Pan H. Transcriptome analysis of the genes regulating phytohormone and cellular patterning in Lagerstroemia plant architecture. Sci Rep 2018; 8:15162. [PMID: 30310123 PMCID: PMC6181930 DOI: 10.1038/s41598-018-33506-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 10/01/2018] [Indexed: 11/16/2022] Open
Abstract
Plant architecture is a popular research topic because plants with different growth habits that may generate economic or ornamental value are in great demand by orchards and nurseries. However, the molecular basis of the architecture of woody perennial plants is poorly understood due to the complexity of the phenotypic and regulatory relationships. Here, transcriptional profiling of dwarf and non-dwarf crapemyrtles was performed, and potential target genes were identified based on the phenotype, histology and phytohormone metabolite levels. An integrated analysis demonstrated that the internode length was explained mainly by cell number and secondarily by cell length and revealed important hormones in regulatory pathway of Lagerstroemia architecture. Differentially expressed genes (DEGs) involved in phytohormone pathways and cellular patterning regulation were analysed, and the regulatory relationships between these parameters were evaluated at the transcriptional level. Exogenous indole-3-acetic acid (IAA) and gibberellin A4 (GA4) treatments further indicated the pivotal role of auxin in cell division within the shoot apical meristem (SAM) and suggested an interaction between auxin and GA4 in regulating the internode length of Lagerstroemia. These results provide insights for further functional genomic studies on the regulatory mechanisms underlying Lagerstroemia plant architecture and may improve the efficiency of woody plant molecular breeding.
Collapse
Affiliation(s)
- Yiqian Ju
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Lu Feng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Jiyang Wu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yuanjun Ye
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Tangchun Zheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Ming Cai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
29
|
Kovinich N, Wang Y, Adegboye J, Chanoca AA, Otegui MS, Durkin P, Grotewold E. Arabidopsis MATE45 antagonizes local abscisic acid signaling to mediate development and abiotic stress responses. PLANT DIRECT 2018; 2:e00087. [PMID: 31245687 PMCID: PMC6508792 DOI: 10.1002/pld3.87] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 09/22/2018] [Accepted: 09/26/2018] [Indexed: 05/11/2023]
Abstract
Anthocyanins provide ideal visual markers for the identification of mutations that disrupt molecular responses to abiotic stress. We screened Arabidopsis mutants of ABC (ATP-Binding Cassette) and MATE (Multidrug And Toxic compound Extrusion) transporter genes under nutritional stress and identified four genes (ABCG25,ABCG9,ABCG5, and MATE45) required for normal anthocyanin pigmentation. ABCG25 was previously demonstrated to encode a vascular-localized cellular exporter of abscisic acid (ABA). Our results show that MATE45 encodes an aerial meristem- and a vascular-localized transporter associated with the trans-Golgi, and that it plays an important role in controlling the levels and distribution of ABA in growing aerial meristems and non-meristematic tissues. MATE45 promoter-GUS reporter fusions revealed the activity localized to the leaf and influorescence meristems and the vasculature. Loss-of-function mate45 mutants exhibited accelerated rates of aerial organ initiation suggesting at least partial functional conservation with the maize ortholog bige1. The aba2-1 mutant, which is deficient in ABA biosynthesis, exhibited a number of phenotypes that were rescued in the mate45-1 aba2-1 double mutant. mate45 exhibited enhanced the seed dormancy, and germination was hypersensitive to ABA. Enhanced frequency of leaf primordia growth in mate45 seedlings grown in nutrient imbalance stress was ABA-dependent. The ABA signaling reporter construct pRD29B::GUS revealed elevated levels of ABA signaling in the true leaf primordia of mate45 seedlings grown under nutritional stress, and gradually reduced signaling in surrounding cotyledon and hypocotyl tissues concomitant with reduced expressions of ABCG25. Our results suggest a role of MATE45 in reducing meristematic ABA and in maintaining ABA distribution in adjacent non-meristematic tissues.
Collapse
Affiliation(s)
- Nik Kovinich
- Center for Applied Plant Sciences and Department of Molecular GeneticsThe Ohio State UniversityColumbusOhio
- Davis College of Agriculture, Natural Resources and DesignWest Virginia UniversityMorgantownWest Virginia
- Present address:
Davis College of Agriculture, Natural Resources and DesignWest Virginia UniversityMorgantownWest Virginia
| | - Yiqun Wang
- Center for Applied Plant Sciences and Department of Molecular GeneticsThe Ohio State UniversityColumbusOhio
- Present address:
Department of Molecular and Cellular BiologyHarvard UniversityCambridgeMassachusetts
| | - Janet Adegboye
- Center for Applied Plant Sciences and Department of Molecular GeneticsThe Ohio State UniversityColumbusOhio
- Present address:
Cleveland Clinic Lerner College of MedicineClevelandOhio
| | - Alexandra A. Chanoca
- Davis College of Agriculture, Natural Resources and DesignWest Virginia UniversityMorgantownWest Virginia
- Department of Botany and Department of GeneticsUniversity of Wisconsin‐MadisonMadisonWisconsin
- Present address:
VIB‐UGENT Center for Plant Systems BiologyZwijnaardeBelgium
| | - Marisa S. Otegui
- Department of Botany and Department of GeneticsUniversity of Wisconsin‐MadisonMadisonWisconsin
- Laboratory of Molecular and Cellular BiologyUniversity of Wisconsin‐MadisonMadisonWisconsin
| | - Paige Durkin
- Davis College of Agriculture, Natural Resources and DesignWest Virginia UniversityMorgantownWest Virginia
- Present address:
West Virginia University School of DentistryMorgantownWest Virginia
| | - Erich Grotewold
- Center for Applied Plant Sciences and Department of Molecular GeneticsThe Ohio State UniversityColumbusOhio
- Present address:
Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichigan
| |
Collapse
|
30
|
|
31
|
Genome-Wide Analysis of Multidrug and Toxic Compound Extrusion ( MATE) Family in Gossypium raimondii and Gossypium arboreum and Its Expression Analysis Under Salt, Cadmium, and Drought Stress. G3-GENES GENOMES GENETICS 2018; 8:2483-2500. [PMID: 29794162 PMCID: PMC6027885 DOI: 10.1534/g3.118.200232] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The extrusion of toxins and substances at a cellular level is a vital life process in plants under abiotic stress. The multidrug and toxic compound extrusion (MATE) gene family plays a large role in the exportation of toxins and other substrates. We carried out a genome-wide analysis of MATE gene families in Gossypium raimondii and Gossypium arboreum and assessed their expression levels under salt, cadmium and drought stresses. We identified 70 and 68 MATE genes in G. raimondii and G. arboreum, respectively. The majority of the genes were predicted to be localized within the plasma membrane, with some distributed in other cell parts. Based on phylogenetic analysis, the genes were subdivided into three subfamilies, designated as M1, M2 and M3. Closely related members shared similar gene structures, and thus were highly conserved in nature and have mainly evolved through purifying selection. The genes were distributed in all chromosomes. Twenty-nine gene duplication events were detected, with segmental being the dominant type. GO annotation revealed a link to salt, drought and cadmium stresses. The genes exhibited differential expression, with GrMATE18, GrMATE34, GaMATE41 and GaMATE51 significantly upregulated under drought, salt and cadmium stress, and these could possibly be the candidate genes. Our results provide the first data on the genome-wide and functional characterization of MATE genes in diploid cotton, and are important for breeders of more stress-tolerant cotton genotypes.
Collapse
|
32
|
Cifuentes‐Esquivel N, Celiz‐Balboa J, Henriquez‐Valencia C, Mitina I, Arraño‐Salinas P, Moreno AA, Meneses C, Blanco‐Herrera F, Orellana A. bZIP17 regulates the expression of genes related to seed storage and germination, reducing seed susceptibility to osmotic stress. J Cell Biochem 2018; 119:6857-6868. [DOI: 10.1002/jcb.26882] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/21/2018] [Indexed: 02/02/2023]
Affiliation(s)
| | - Jonathan Celiz‐Balboa
- Centro de Biotecnología VegetalFacultad de Ciencias BiológicasUniversidad Andres BelloSantiagoChile
| | | | - Irina Mitina
- Centro de Biotecnología VegetalFacultad de Ciencias BiológicasUniversidad Andres BelloSantiagoChile
| | - Paulina Arraño‐Salinas
- Centro de Biotecnología VegetalFacultad de Ciencias BiológicasUniversidad Andres BelloSantiagoChile
| | - Adrián A. Moreno
- Centro de Biotecnología VegetalFacultad de Ciencias BiológicasUniversidad Andres BelloSantiagoChile
- FONDAP Center for Genome RegulationCentro de Biotecnología VegetalUniversidad Andres BelloSantiagoChile
| | - Claudio Meneses
- Centro de Biotecnología VegetalFacultad de Ciencias BiológicasUniversidad Andres BelloSantiagoChile
- FONDAP Center for Genome RegulationCentro de Biotecnología VegetalUniversidad Andres BelloSantiagoChile
| | - Francisca Blanco‐Herrera
- Centro de Biotecnología VegetalFacultad de Ciencias BiológicasUniversidad Andres BelloSantiagoChile
- Millennium Institute for Integrative Systems and Synthetic Biology (MIISSB)SantiagoChile
| | - Ariel Orellana
- Centro de Biotecnología VegetalFacultad de Ciencias BiológicasUniversidad Andres BelloSantiagoChile
- FONDAP Center for Genome RegulationCentro de Biotecnología VegetalUniversidad Andres BelloSantiagoChile
| |
Collapse
|
33
|
Takahashi F, Kuromori T, Sato H, Shinozaki K. Regulatory Gene Networks in Drought Stress Responses and Resistance in Plants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1081:189-214. [PMID: 30288711 DOI: 10.1007/978-981-13-1244-1_11] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plant responses to drought stress have been analyzed extensively to reveal complex regulatory gene networks, including the detection of water deficit signals, as well as the physiological, cellular, and molecular responses. Plants recognize water deficit conditions at their roots and transmit this signal to their shoots to synthesize abscisic acid (ABA) in their leaves. ABA is a key phytohormone that regulates physiological and molecular responses to drought stress, such as stomatal closure, gene expression, and the accumulation of osmoprotectants and stress proteins. ABA transporters function as the first step for propagating synthesized ABA. To prevent water loss, ABA influx in guard cells is detected by several protein kinases, such as SnRK2s and MAPKs that regulate stomatal closure. ABA mediates a wide variety of gene expression machineries with stress-responsive transcription factors, including DREBs and AREBs, to acquire drought stress resistance in whole tissues. In this chapter, we summarize recent advances in drought stress signaling, focusing on gene networks in cellular and intercellular stress responses and drought resistance.
Collapse
Affiliation(s)
- Fuminori Takahashi
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan.
| | - Takashi Kuromori
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| | - Hikaru Sato
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan.
| |
Collapse
|
34
|
Huang Y, Guo Y, Liu Y, Zhang F, Wang Z, Wang H, Wang F, Li D, Mao D, Luan S, Liang M, Chen L. 9- cis-Epoxycarotenoid Dioxygenase 3 Regulates Plant Growth and Enhances Multi-Abiotic Stress Tolerance in Rice. FRONTIERS IN PLANT SCIENCE 2018; 9:162. [PMID: 29559982 PMCID: PMC5845534 DOI: 10.3389/fpls.2018.00162] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/29/2018] [Indexed: 05/20/2023]
Abstract
Although abscisic acid (ABA) is an important hormone that regulates seed dormancy, stomatal closure, plant development, as well as responses to environmental stimuli, the physiological mechanisms of ABA response to multiple stress in rice remain poorly understood. In the ABA biosynthetic pathway, 9-cis-epoxycarotenoid dioxygenase (NCED) is the key rate-limiting enzyme. Here, we report important functions of OsNCED3 in multi-abiotic stress tolerance in rice. The OsNCED3 is constitutively expressed in various tissues under normal condition, Its expression is highly induced by NaCl, PEG, and H2O2 stress, suggesting the roles for OsNCED3 in response to the multi-abiotic stress tolerance in rice. Compared with wild-type plants, nced3 mutants had earlier seed germination, longer post-germination seedling growth, increased sensitivity to water stress and H2O2 stress and increased stomata aperture under water stress and delayed leaf senescence. Further analysis found that nced3 mutants contained lower ABA content compared with wild-type plants, overexpression of OsNCED3 in transgenic plants could enhance water stress tolerance, promote leaf senescence and increase ABA content. We conclude that OsNCED3 mediates seed dormancy, plant growth, abiotic stress tolerance, and leaf senescence by regulating ABA biosynthesis in rice; and may provide a new strategy for improving the quality of crop.
Collapse
|
35
|
Kim JA, Bhatnagar N, Kwon SJ, Min MK, Moon SJ, Yoon IS, Kwon TR, Kim ST, Kim BG. Transcriptome Analysis of ABA/JA-Dual Responsive Genes in Rice Shoot and Root. Curr Genomics 2017; 19:4-11. [PMID: 29491728 PMCID: PMC5817876 DOI: 10.2174/1389202918666170228134205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/04/2016] [Accepted: 09/20/2016] [Indexed: 01/08/2023] Open
Abstract
Abstract: The phytohormone abscisic acid (ABA) enables plants to adapt to adverse environmental conditions through the modulation of metabolic pathways and of growth and developmental programs. We used comparative microarray analysis to identify genes exhibiting ABA-dependent expression and other hormone-dependent expression among them in Oryza sativa shoot and root. We identified 854 genes as significantly up- or down-regulated in root or shoot under ABA treatment condition. Most of these genes had similar expression profiles in root and shoot under ABA treatment condition, whereas 86 genes displayed opposite expression responses in root and shoot. To examine the crosstalk between ABA and other hormones, we compared the expression profiles of the ABA-dependently regulated genes under several different hormone treatment conditions. Interestingly, around half of the ABA-dependently expressed genes were also regulated by jasmonic acid based on microarray data analysis. We searched the promoter regions of these genes for cis-elements that could be responsible for their responsiveness to both hormones, and found that ABRE and MYC2 elements, among others, were common to the promoters of genes that were regulated by both ABA and JA. These results show that ABA and JA might have common gene expression regulation system and might explain why the JA could function for both abiotic and biotic stress tolerance.
Collapse
Affiliation(s)
- Jin-Ae Kim
- Gene Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Republic of Korea
| | - Nikita Bhatnagar
- Gene Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Republic of Korea.,Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 466-701, Republic of Korea
| | - Soon Jae Kwon
- Gene Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Republic of Korea
| | - Myung Ki Min
- Gene Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Republic of Korea
| | - Seok-Jun Moon
- Gene Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Republic of Korea
| | - In Sun Yoon
- Gene Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Republic of Korea
| | - Taek-Ryoun Kwon
- Gene Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Republic of Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-706, Republic of Korea
| | - Beom-Gi Kim
- Gene Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Republic of Korea
| |
Collapse
|
36
|
Ma L, Hu L, Fan J, Amombo E, Khaldun ABM, Zheng Y, Chen L. Cotton GhERF38 gene is involved in plant response to salt/drought and ABA. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:841-854. [PMID: 28536792 DOI: 10.1007/s10646-017-1815-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/05/2017] [Indexed: 05/06/2023]
Abstract
ERF (ethylene-responsive factor) transcription factors play important roles in plant stress signaling transduction pathways. However, their specific roles during diverse abiotic stresses tolerance in Gossypium hirsutum are largely unknown. Here, a novel ERF transcription factor, designated GhERF38, homologous to AtERF38 in Arabidopsis, was isolated from cotton (Gossypium hirsutum L). GhERF38 expression was up-regulated by salt, drought and ABA treatments. Subcellular localization results indicated that GhERF38 was localized in the cell nucleus. Over-expression of GhERF38 in Arabidopsis reduced plant tolerance to salt and drought stress as indicated by a decline of seed germination, plant greenness frequency, primary roots length and the survival rate in transgenic plants compared to those of wild type plants under salt or drought treatment. Besides, stress tolerance related physiological parameters such as proline content, relative water content, soluble sugar and chlorophyll content were all significantly lower in transgenic plants than those of wild type plants under salt or drought treatment. Furthermore, over-expression of GhERF38 in Arabidopsis resulted in ABA sensitivity in transgenic plants during both seed germination and seedling growth. Interestingly, the stomatal aperture of guard cells in the transgenic plants was larger than that in transgenic plant after ABA treatment, suggesting that GhERF38-overexpressing plants were insensitive to ABA in terms of stomatal closure. Furthermore, expressions of the stress-related genes were altered in the GhERF38 transgenic plants under high salinity, drought or ABA treatment. Together, our results revealed that GhERF38 functions as a novel regulator that is involved in response to salt/drought stress and ABA signaling during plant development.
Collapse
Affiliation(s)
- Liufeng Ma
- College of Biology and Geography Sciences, Kashgal University, Xinjiang, 844000, China
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Longxing Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- Department of Turfgrass Sciences, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Jibiao Fan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Erick Amombo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - A B M Khaldun
- Oilseed Research Centre, Bangladesh Agricultural Research Institute (BARI), Gazipur, 1701, Bangladesh
| | - Yong Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| | - Liang Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China.
| |
Collapse
|
37
|
Le Hir R, Castelain M, Chakraborti D, Moritz T, Dinant S, Bellini C. AtbHLH68 transcription factor contributes to the regulation of ABA homeostasis and drought stress tolerance in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2017; 160:312-327. [PMID: 28369972 DOI: 10.1111/ppl.12549] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/18/2017] [Accepted: 01/20/2017] [Indexed: 05/22/2023]
Abstract
Basic helix-loop-helix (bHLH) transcription factors are involved in a wide range of developmental processes and in response to biotic and abiotic stresses. They represent one of the biggest families of transcription factors but only few of them have been functionally characterized. Here we report the characterization of AtbHLH68 and show that, although the knock out mutant did not have an obvious development phenotype, it was slightly more sensitive to drought stress than the Col-0, and AtbHLH68 overexpressing lines displayed defects in lateral root (LR) formation and a significant increased tolerance to drought stress, likely related to an enhanced sensitivity to abscisic acid (ABA) and/or increased ABA content. AtbHLH68 was expressed in the vascular system of Arabidopsis and its expression was modulated by exogenously applied ABA in an organ-specific manner. We showed that the expression of genes involved in ABA metabolism [AtAAO3 (AtALDEHYDE OXIDASE 3) and AtCYP707A3 (AtABSCISIC ACID 8'HYDROXYLASE 3)], in ABA-related response to drought-stress (AtMYC2, AtbHLH122 and AtRD29A) or during LRs development (AtMYC2 and AtABI3) was de-regulated in the overexpressing lines. We propose that AtbHLH68 has a function in the regulation of LR elongation, and in the response to drought stress, likely through an ABA-dependent pathway by regulating directly or indirectly components of ABA signaling and/or metabolism.
Collapse
Affiliation(s)
- Rozenn Le Hir
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, 78000, France
| | - Mathieu Castelain
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90187, Sweden
| | - Dipankar Chakraborti
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90187, Sweden
| | - Thomas Moritz
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90187, Sweden
| | - Sylvie Dinant
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, 78000, France
| | - Catherine Bellini
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, 78000, France
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, 90183, Sweden
| |
Collapse
|
38
|
Luo DL, Ba LJ, Shan W, Kuang JF, Lu WJ, Chen JY. Involvement of WRKY Transcription Factors in Abscisic-Acid-Induced Cold Tolerance of Banana Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3627-3635. [PMID: 28445050 DOI: 10.1021/acs.jafc.7b00915] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Phytohormone abscisic acid (ABA) and plant-specific WRKY transcription factors (TFs) have been implicated to play important roles in various stress responses. The involvement of WRKY TFs in ABA-mediated cold tolerance of economical fruits, such as banana fruit, however remains largely unknown. Here, we reported that ABA application could induce expressions of ABA biosynthesis-related genes MaNCED1 and MaNCED2, increase endogenous ABA contents, and thereby enhance cold tolerance in banana fruit. Four banana fruit WRKY TFs, designated as MaWRKY31, MaWRKY33, MaWRKY60, and MaWRKY71, were identified and characterized. All four of these MaWRKYs were nuclear-localized and displayed transactivation activities. Their expressions were induced by ABA treatment during cold storage. More importantly, the gel mobility shift assay and transient expression analysis revealed that MaWRKY31, MaWRKY33, MaWRKY60, and MaWRKY71 directly bound to the W-box elements in MaNCED1 and MaNCED2 promoters and activated their expressions. Taken together, our findings demonstrate that banana fruit WRKY TFs are involved in ABA-induced cold tolerance by, at least in part, increasing ABA levels via directly activating NECD expressions.
Collapse
Affiliation(s)
- Dong-Lan Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University , Guangzhou, 510642, People's Republic of China
- School of Food and Pharmaceutical Engineering/Guizhou Engineering Research Center for Fruit Processing, Guiyang College , Guiyang, 550003, People's Republic of China
| | - Liang-Jie Ba
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University , Guangzhou, 510642, People's Republic of China
- School of Food and Pharmaceutical Engineering/Guizhou Engineering Research Center for Fruit Processing, Guiyang College , Guiyang, 550003, People's Republic of China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University , Guangzhou, 510642, People's Republic of China
| | - Jian-Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University , Guangzhou, 510642, People's Republic of China
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University , Guangzhou, 510642, People's Republic of China
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University , Guangzhou, 510642, People's Republic of China
| |
Collapse
|
39
|
Salinity Response in Chloroplasts: Insights from Gene Characterization. Int J Mol Sci 2017; 18:ijms18051011. [PMID: 28481319 PMCID: PMC5454924 DOI: 10.3390/ijms18051011] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/30/2017] [Accepted: 05/04/2017] [Indexed: 11/17/2022] Open
Abstract
Salinity is a severe abiotic stress limiting agricultural yield and productivity. Plants have evolved various strategies to cope with salt stress. Chloroplasts are important photosynthesis organelles, which are sensitive to salinity. An understanding of molecular mechanisms in chloroplast tolerance to salinity is of great importance for genetic modification and plant breeding. Previous studies have characterized more than 53 salt-responsive genes encoding important chloroplast-localized proteins, which imply multiple vital pathways in chloroplasts in response to salt stress, such as thylakoid membrane organization, the modulation of photosystem II (PS II) activity, carbon dioxide (CO2) assimilation, photorespiration, reactive oxygen species (ROS) scavenging, osmotic and ion homeostasis, abscisic acid (ABA) biosynthesis and signaling, and gene expression regulation, as well as protein synthesis and turnover. This review presents an overview of salt response in chloroplasts revealed by gene characterization efforts.
Collapse
|
40
|
Atamian HS, Harmer SL. Circadian regulation of hormone signaling and plant physiology. PLANT MOLECULAR BIOLOGY 2016; 91:691-702. [PMID: 27061301 DOI: 10.1007/s11103-016-0477-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 03/31/2016] [Indexed: 05/20/2023]
Abstract
The survival and reproduction of plants depend on their ability to cope with a wide range of daily and seasonal environmental fluctuations during their life cycle. Phytohormones are plant growth regulators that are involved in almost every aspect of growth and development as well as plant adaptation to myriad abiotic and biotic conditions. The circadian clock, an endogenous and cell-autonomous biological timekeeper that produces rhythmic outputs with close to 24-h rhythms, provides an adaptive advantage by synchronizing plant physiological and metabolic processes to the external environment. The circadian clock regulates phytohormone biosynthesis and signaling pathways to generate daily rhythms in hormone activity that fine-tune a range of plant processes, enhancing adaptation to local conditions. This review explores our current understanding of the interplay between the circadian clock and hormone signaling pathways.
Collapse
Affiliation(s)
- Hagop S Atamian
- Department of Plant Biology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Stacey L Harmer
- Department of Plant Biology, University of California, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
41
|
Yamashita Y, Ota M, Inoue Y, Hasebe Y, Okamoto M, Inukai T, Masuta C, Sakihama Y, Hashidoko Y, Kojima M, Sakakibara H, Inage Y, Takahashi K, Yoshihara T, Matsuura H. Chemical Promotion of Endogenous Amounts of ABA in Arabidopsis thaliana by a Natural Product, Theobroxide. PLANT & CELL PHYSIOLOGY 2016; 57:986-99. [PMID: 26917631 DOI: 10.1093/pcp/pcw037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/14/2016] [Indexed: 05/21/2023]
Abstract
Plant hormones are a group of structurally diverse small compounds that orchestrate the cellular processes governing proper plant growth and environmental adaptation. To understand the details of hormonal activity, we must study not only their inherent activities but also the cross-talk among plant hormones. In addition to their use in agriculture, plant chemical activators, such as probenazole and uniconazole, have made great contributions to understand hormonal cross-talk. However, the use of plant chemical activators is limited due to the lack of activators for certain hormones. For example, to the best of our knowledge, there are only a few chemical activators previously known to stimulate the accumulation of ABA in plants, such as absinazoles and proanthocyanidins. In many cases, antagonistic effects have been examined in experiments using exogenously applied ABA, although these studies did not account for biologically relevant concentrations. In this report, it was found that a natural product, theobroxide, had potential as a plant chemical activator for stimulating the accumulation of ABA. Using theobroxide, the antagonistic effect of ABA against GAs was proved without exogenously applying ABA or using mutant plants. Our results suggest that ABA levels could be chemically controlled to elicit ABA-dependent biological phenomena.
Collapse
Affiliation(s)
- Yudai Yamashita
- Laboratory of Natural Product Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Maremichi Ota
- Laboratory of Natural Product Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Yutaka Inoue
- Laboratory of Natural Product Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Youko Hasebe
- Laboratory of Cell Biology and Manipulation, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Masanori Okamoto
- Arid Land Research Center, Tottori University, Tottori, Japan PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Tsuyoshi Inukai
- Laboratory of Cell Biology and Manipulation, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Chikra Masuta
- Laboratory of Cell Biology and Manipulation, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Yasuko Sakihama
- Laboratory of Ecological Biochemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Yasuyuki Hashidoko
- Laboratory of Ecological Biochemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| | - Yasuyuki Inage
- Japan Agricultural Cooperatives Minami Sorachi, Kuriyama, Yubari-gun, Hokkaido, 069-1511 Japan
| | - Kosaku Takahashi
- Laboratory of Natural Product Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Teruhiko Yoshihara
- Laboratory of Natural Product Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Hideyuki Matsuura
- Laboratory of Natural Product Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| |
Collapse
|
42
|
de Wit M, Galvão VC, Fankhauser C. Light-Mediated Hormonal Regulation of Plant Growth and Development. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:513-37. [PMID: 26905653 DOI: 10.1146/annurev-arplant-043015-112252] [Citation(s) in RCA: 240] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Light is crucial for plant life, and perception of the light environment dictates plant growth, morphology, and developmental changes. Such adjustments in growth and development in response to light conditions are often established through changes in hormone levels and signaling. This review discusses examples of light-regulated processes throughout a plant's life cycle for which it is known how light signals lead to hormonal regulation. Light acts as an important developmental switch in germination, photomorphogenesis, and transition to flowering, and light cues are essential to ensure light capture through architectural changes during phototropism and the shade avoidance response. In describing well-established links between light perception and hormonal changes, we aim to give insight into the mechanisms that enable plants to thrive in variable light environments.
Collapse
Affiliation(s)
- Mieke de Wit
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland; , ,
| | - Vinicius Costa Galvão
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland; , ,
| | - Christian Fankhauser
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland; , ,
| |
Collapse
|
43
|
Fan W, Zhao M, Li S, Bai X, Li J, Meng H, Mu Z. Contrasting transcriptional responses of PYR1/PYL/RCAR ABA receptors to ABA or dehydration stress between maize seedling leaves and roots. BMC PLANT BIOLOGY 2016; 16:99. [PMID: 27101806 PMCID: PMC4839062 DOI: 10.1186/s12870-016-0764-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 03/21/2016] [Indexed: 05/21/2023]
Abstract
BACKGROUND The different actions of abscisic acid (ABA) in the aboveground and belowground parts of plants suggest the existence of a distinct perception mechanism between these organs. Although characterization of the soluble ABA receptors PYR1/PYL/RCAR as well as core signaling components has greatly advanced our understanding of ABA perception, signal transduction, and responses, the environment-dependent organ-specific sensitivity of plants to ABA is less well understood. RESULTS By performing real-time quantitative PCR assays, we comprehensively compared transcriptional differences of core ABA signaling components in response to ABA or osmotic/dehydration stress between maize (Zea mays L.) roots and leaves. Our results demonstrated up-regulation of the transcript levels of ZmPYLs homologous to dimeric-type Arabidopsis ABA receptors by ABA in maize primary roots, whereas those of ZmPYLs homologous to monomeric-type Arabidopsis ABA receptors were down-regulated. However, this trend was reversed in the leaves of plants treated with ABA via the root medium. Although the mRNA levels of ZmPYL1-3 increased significantly in roots subjected to polyethylene glycol (PEG)-induced osmotic stress, ZmPYL4-11 transcripts were either maintained at a stable level or increased only slightly. In detached leaves subjected to dehydration, the transcripts of ZmPYL1-3 together with ZmPYL5, ZmPYL6, ZmPYL10 and ZmPYL11 were decreased, whereas those of ZmPYL4, ZmPYL7 and ZmPYL8 were significantly increased. Our results also showed that all of the evaluated transcripts of PP2Cs and SnRK2 were quickly up-regulated in roots by ABA or osmotic stress; conversely they were either up-regulated or maintained at a constant level in leaves, depending on the isoforms within each family. CONCLUSIONS There is a distinct profile of PYR/PYL/RCAR ABA receptor gene expression between maize roots and leaves, suggesting that monomeric-type ABA receptors are mainly involved in the transmission of ABA signals in roots but that dimeric-type ABA receptors primarily carry out this function in leaves. Given that ZmPYL1 and ZmPYL4 exhibit similar transcript abundance under normal conditions, our findings may represent a novel mechanism for species-specific regulation of PYR/PYL/RCAR ABA receptor gene expression. A difference in the preference for core signaling components in the presence of exogenous ABA versus stress-induced endogenous ABA was observed in both leaves and roots. It appears that core ABA signaling components perform their osmotic/dehydration stress response functions in a stress intensity-, duration-, species-, organ-, and isoform-specific manner, leading to plasticity in response to adverse conditions and, thus, acclimation to life on land. These results deepen our understanding of the diverse biological effects of ABA between plant leaves and roots in response to abiotic stress at the stimulus-perception level.
Collapse
Affiliation(s)
- Wenqiang Fan
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Mengyao Zhao
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Suxin Li
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xue Bai
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Jia Li
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Haowei Meng
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Zixin Mu
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
44
|
Henriquez-Valencia C, Moreno AA, Sandoval-Ibañez O, Mitina I, Blanco-Herrera F, Cifuentes-Esquivel N, Orellana A. bZIP17 and bZIP60 Regulate the Expression of BiP3 and Other Salt Stress Responsive Genes in an UPR-Independent Manner in Arabidopsis thaliana. J Cell Biochem 2016; 116:1638-45. [PMID: 25704669 DOI: 10.1002/jcb.25121] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 01/29/2015] [Indexed: 01/15/2023]
Abstract
Plants can be severely affected by salt stress. Since these are sessile organisms, they have developed different cellular responses to cope with this problem. Recently, it has been described that bZIP17 and bZIP60, two ER-located transcription factors, are involved in the cellular response to salt stress. On the other hand, bZIP60 is also involved in the unfolded protein response (UPR), a signaling pathway that up-regulates the expression of ER-chaperones. Coincidentally, salt stress produces the up-regulation of BiP, one of the main chaperones located in this organelle. Then, it has been proposed that UPR is associated to salt stress. Here, by using insertional mutant plants on bZIP17 and bZIP60, we show that bZIP17 regulate the accumulation of the transcript for the chaperone BiP3 under salt stress conditions, but does not lead to the accumulation of UPR-responding genes such as the chaperones Calnexin, Calreticulin, and PDIL under salt treatments. In contrast, DTT, a known inducer of UPR, leads to the up-regulation of all these chaperones. On the other hand, we found that bZIP60 regulates the expression of some bZIP17 target genes under conditions were splicing of bZIP60 does not occur, suggesting that the spliced and unspliced forms of bZIP60 play different roles in the physiological response of the plant. Our results indicate that the ER-located transcription factors bZIP17 and bZIP60 play a role in salt stress but this response goes through a signaling pathway that is different to that triggered by the unfolded protein response.
Collapse
Affiliation(s)
- Carlos Henriquez-Valencia
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Adrian A Moreno
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Omar Sandoval-Ibañez
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Irina Mitina
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Francisca Blanco-Herrera
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Nicolas Cifuentes-Esquivel
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Ariel Orellana
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
45
|
Staroske N, Conrad U, Kumlehn J, Hensel G, Radchuk R, Erban A, Kopka J, Weschke W, Weber H. Increasing abscisic acid levels by immunomodulation in barley grains induces precocious maturation without changing grain composition. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2675-87. [PMID: 26951372 PMCID: PMC4861016 DOI: 10.1093/jxb/erw102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Abscisic acid (ABA) accumulates in seeds during the transition to the seed filling phase. ABA triggers seed maturation, storage activity, and stress signalling and tolerance. Immunomodulation was used to alter the ABA status in barley grains, with the resulting transgenic caryopses responding to the anti-ABA antibody gene expression with increased accumulation of ABA. Calculation of free versus antibody-bound ABA reveals large excess of free ABA, increasing signficantly in caryopses from 10 days after fertilization. Metabolite and transcript profiling in anti-ABA grains expose triggered and enhanced ABA-functions such as transcriptional up-regulation of sucrose-to-starch metabolism, storage protein synthesis and ABA-related signal transduction. Thus, enhanced ABA during transition phases induces precocious maturation but negatively interferes with growth and development. Anti-ABA grains display broad constitutive gene induction related to biotic and abiotic stresses. Most of these genes are ABA- and/or stress-inducible, including alcohol and aldehyde dehydrogenases, peroxidases, chaperones, glutathione-S-transferase, drought- and salt-inducible proteins. Conclusively, ABA immunomodulation results in precocious ABA accumulation that generates an integrated response of stress and maturation. Repression of ABA signalling, occurring in anti-ABA grains, potentially antagonizes effects caused by overshooting production. Finally, mature grain weight and composition are unchanged in anti-ABA plants, although germination is somewhat delayed. This indicates that anti-ABA caryopses induce specific mechanisms to desensitize ABA signalling efficiently, which finally yields mature grains with nearly unchanged dry weight and composition. Such compensation implicates the enormous physiological and metabolic flexibilities of barley grains to adjust effects of unnaturally high ABA amounts in order to ensure and maintain proper grain development.
Collapse
Affiliation(s)
- Nicole Staroske
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | - Udo Conrad
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | - Jochen Kumlehn
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | - Götz Hensel
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | - Ruslana Radchuk
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | - Alexander Erban
- Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Winfriede Weschke
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | - Hans Weber
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| |
Collapse
|
46
|
Ma F, Ni L, Liu L, Li X, Zhang H, Zhang A, Tan M, Jiang M. ZmABA2, an interacting protein of ZmMPK5, is involved in abscisic acid biosynthesis and functions. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:771-82. [PMID: 26096642 PMCID: PMC11389057 DOI: 10.1111/pbi.12427] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 05/08/2023]
Abstract
In maize (Zea mays), the mitogen-activated protein kinase ZmMPK5 has been shown to be involved in abscisic acid (ABA)-induced antioxidant defence and to enhance the tolerance of plants to drought, salt stress and oxidative stress. However, the underlying molecular mechanisms are poorly understood. Here, using ZmMPK5 as bait in yeast two-hybrid screening, a protein interacting with ZmMPK5 named ZmABA2, which belongs to a member of the short-chain dehydrogenase/reductase family, was identified. Pull-down assay and bimolecular fluorescence complementation analysis and co-immunoprecipitation test confirmed that ZmMPK5 interacts with ZmABA2 in vitro and in vivo. Phosphorylation of Ser173 in ZmABA2 by ZmMPK5 was shown to increase the activity of ZmABA2 and the protein stability. Various abiotic stimuli induced the expression of ZmABA2 in leaves of maize plants. Pharmacological, biochemical and molecular biology and genetic analyses showed that both ZmMPK5 and ZmABA2 coordinately regulate the content of ABA. Overexpression of ZmABA2 in tobacco plants was found to elevate the content of ABA, regulate seed germination and root growth under drought and salt stress and enhance the tolerance of tobacco plants to drought and salt stress. These results suggest that ZmABA2 is a direct target of ZmMPK5 and is involved in ABA biosynthesis and functions.
Collapse
Affiliation(s)
- Fangfang Ma
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Lan Ni
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Libo Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xi Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Huan Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Aying Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mingpu Tan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mingyi Jiang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
47
|
Castillo MC, Lozano-Juste J, González-Guzmán M, Rodriguez L, Rodriguez PL, León J. Inactivation of PYR/PYL/RCAR ABA receptors by tyrosine nitration may enable rapid inhibition of ABA signaling by nitric oxide in plants. Sci Signal 2015; 8:ra89. [PMID: 26329583 DOI: 10.1126/scisignal.aaa7981] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abscisic acid (ABA) is a phytohormone that inhibits growth and enhances adaptation to stress in plants. ABA perception and signaling rely on its binding to receptors of the pyrabactin resistance1/PYR1-like/regulatory components of ABA receptors (PYR/PYL/RCAR) family, the subsequent inhibition of clade A type 2C protein phosphatases (PP2Cs), and the phosphorylation of ion channels and transcription factors by protein kinases of the SnRK2 family. Nitric oxide (NO) may inhibit ABA signaling because NO-deficient plants are hypersensitive to ABA. Regulation by NO often involves posttranslational modification of proteins. Mass spectrometry analysis of ABA receptors expressed in plants and recombinant receptors modified in vitro revealed that the receptors were nitrated at tyrosine residues and S-nitrosylated at cysteine residues. In an in vitro ABA-induced, PP2C inhibition assay, tyrosine nitration reduced receptor activity, whereas S-nitrosylated receptors were fully capable of ABA-induced inhibition of the phosphatase. PYR/PYL/RCAR proteins with nitrated tyrosine, which is an irreversible covalent modification, were polyubiquitylated and underwent proteasome-mediated degradation. We propose that tyrosine nitration, which requires NO and superoxide anions, is a rapid mechanism by which NO limits ABA signaling under conditions in which NO and reactive oxygen species are both produced.
Collapse
Affiliation(s)
- Mari-Cruz Castillo
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), CPI Edificio 8E, Avda. Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Jorge Lozano-Juste
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), CPI Edificio 8E, Avda. Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Miguel González-Guzmán
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), CPI Edificio 8E, Avda. Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Lesia Rodriguez
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), CPI Edificio 8E, Avda. Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), CPI Edificio 8E, Avda. Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - José León
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), CPI Edificio 8E, Avda. Ingeniero Fausto Elio s/n, 46022 Valencia, Spain.
| |
Collapse
|
48
|
Yamburenko MV, Zubo YO, Börner T. Abscisic acid affects transcription of chloroplast genes via protein phosphatase 2C-dependent activation of nuclear genes: repression by guanosine-3'-5'-bisdiphosphate and activation by sigma factor 5. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:1030-1041. [PMID: 25976841 DOI: 10.1111/tpj.12876] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/24/2015] [Accepted: 05/01/2015] [Indexed: 05/07/2023]
Abstract
Abscisic acid (ABA) represses the transcriptional activity of chloroplast genes (determined by run-on assays), with the exception of psbD and a few other genes in wild-type Arabidopsis seedlings and mature rosette leaves. Abscisic acid does not influence chloroplast transcription in the mutant lines abi1-1 and abi2-1 with constitutive protein phosphatase 2C (PP2C) activity, suggesting that ABA affects chloroplast gene activity by binding to the pyrabactin resistance (PYR)/PYR1-like or regulatory component of ABA receptor protein family (PYR/PYL/RCAR) and signaling via PP2Cs and sucrose non-fermenting protein-related kinases 2 (SnRK2s). Further we show by quantitative PCR that ABA enhances the transcript levels of RSH2, RSH3, PTF1 and SIG5. RelA/SpoT homolog 2 (RSH2) and RSH3 are known to synthesize guanosine-3'-5'-bisdiphosphate (ppGpp), an inhibitor of the plastid-gene-encoded chloroplast RNA polymerase. We propose, therefore, that ABA leads to an inhibition of chloroplast gene expression via stimulation of ppGpp synthesis. On the other hand, sigma factor 5 (SIG5) and plastid transcription factor 1 (PTF1) are known to be necessary for the transcription of psbD from a specific light- and stress-induced promoter (the blue light responsive promoter, BLRP). We demonstrate that ABA activates the psbD gene by stimulation of transcription initiation at BLRP. Taken together, our data suggest that ABA affects the transcription of chloroplast genes by a PP2C-dependent activation of nuclear genes encoding proteins involved in chloroplast transcription.
Collapse
Affiliation(s)
- Maria V Yamburenko
- Institute of Biology-Genetics, Faculty of Life Sciences, Humboldt University, Chausseestrasse 117, 10115, Berlin, Germany
| | - Yan O Zubo
- Institute of Biology-Genetics, Faculty of Life Sciences, Humboldt University, Chausseestrasse 117, 10115, Berlin, Germany
| | - Thomas Börner
- Institute of Biology-Genetics, Faculty of Life Sciences, Humboldt University, Chausseestrasse 117, 10115, Berlin, Germany
| |
Collapse
|
49
|
Yin CC, Ma B, Collinge DP, Pogson BJ, He SJ, Xiong Q, Duan KX, Chen H, Yang C, Lu X, Wang YQ, Zhang WK, Chu CC, Sun XH, Fang S, Chu JF, Lu TG, Chen SY, Zhang JS. Ethylene responses in rice roots and coleoptiles are differentially regulated by a carotenoid isomerase-mediated abscisic acid pathway. THE PLANT CELL 2015; 27:1061-81. [PMID: 25841037 PMCID: PMC4558702 DOI: 10.1105/tpc.15.00080] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/17/2015] [Indexed: 05/05/2023]
Abstract
Ethylene and abscisic acid (ABA) act synergistically or antagonistically to regulate plant growth and development. ABA is derived from the carotenoid biosynthesis pathway. Here, we analyzed the interplay among ethylene, carotenoid biogenesis, and ABA in rice (Oryza sativa) using the rice ethylene response mutant mhz5, which displays a reduced ethylene response in roots but an enhanced ethylene response in coleoptiles. We found that MHZ5 encodes a carotenoid isomerase and that the mutation in mhz5 blocks carotenoid biosynthesis, reduces ABA accumulation, and promotes ethylene production in etiolated seedlings. ABA can largely rescue the ethylene response of the mhz5 mutant. Ethylene induces MHZ5 expression, the production of neoxanthin, an ABA biosynthesis precursor, and ABA accumulation in roots. MHZ5 overexpression results in enhanced ethylene sensitivity in roots and reduced ethylene sensitivity in coleoptiles. Mutation or overexpression of MHZ5 also alters the expression of ethylene-responsive genes. Genetic studies revealed that the MHZ5-mediated ABA pathway acts downstream of ethylene signaling to inhibit root growth. The MHZ5-mediated ABA pathway likely acts upstream but negatively regulates ethylene signaling to control coleoptile growth. Our study reveals novel interactions among ethylene, carotenogenesis, and ABA and provides insight into improvements in agronomic traits and adaptive growth through the manipulation of these pathways in rice.
Collapse
Affiliation(s)
- Cui-Cui Yin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Derek Phillip Collinge
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Barry James Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Si-Jie He
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qing Xiong
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai-Xuan Duan
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Yang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Lu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Qin Wang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cheng-Cai Chu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao-Hong Sun
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang Fang
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Fang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tie-Gang Lu
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
50
|
Virlouvet L, Fromm M. Physiological and transcriptional memory in guard cells during repetitive dehydration stress. THE NEW PHYTOLOGIST 2015; 205:596-607. [PMID: 25345749 DOI: 10.1111/nph.13080] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/20/2014] [Indexed: 05/19/2023]
Abstract
Arabidopsis plants subjected to a daily dehydration stress and watered recovery cycle display physiological and transcriptional stress memory. Previously stressed plants have stomatal apertures that remain partially closed during a watered recovery period, facilitating reduced transpiration during a subsequent dehydration stress. Guard cells (GCs) display transcriptional memory that is similar to that in leaf tissues for some genes, but display GC-specific transcriptional memory for other genes. The rate-limiting abscisic acid (ABA) biosynthetic genes NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3) and ALDEHYDE OXIDASE 3 (AAO3) are expressed at much higher levels in GCs, particularly during the watered recovery interval, relative to their low levels in leaves. A genetic analysis using mutants in the ABA signaling pathway indicated that GC stomatal memory is ABA-dependent, and that ABA-dependent SNF1-RELATED PROTEIN KINASE 2.2 (SnRK2.2), SnRK2.3 and SnRK2.6 have distinguishable roles in the process. SnRK2.6 is more important for overall stomatal control, while SnRK2.2 and SnRK2.3 are more important for implementing GC stress memory in the subsequent dehydration response. Collectively, our results support a model of altered ABA production in GCs that maintains a partially closed stomatal aperture during an overnight watered recovery period.
Collapse
Affiliation(s)
- Laetitia Virlouvet
- University of Nebraska Center for Plant Science Innovation, 1901 Vine Street, Lincoln, NE, 68588, USA
| | | |
Collapse
|