1
|
Wang X, Wang Y, Jiang Y, Wang H, Zhou L, Li F, Wang L, Jiang J, Chen F, Chen S. Transcription factor CmHSFA4-CmMYBS3 complex enhances salt tolerance in chrysanthemum by repressing CmMYB121 expression. PLANT PHYSIOLOGY 2024; 195:3119-3135. [PMID: 38668629 DOI: 10.1093/plphys/kiae238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/06/2024] [Indexed: 08/02/2024]
Abstract
Excessive soil salinity not only hampers plant growth and development but can also lead to plant death. Previously, we found that heat-shock factor A4 (CmHSFA4) enhances the tolerance of chrysanthemum (Chrysanthemum morifolium) to salt. However, the underlying molecular mechanism remains unclear. In this study, we identified a candidate MYB transcription factor, CmMYB121, which responded to salt stress. We observed that the CmMYB121 transcription is suppressed by CmHSFA4. Moreover, overexpression of CmMYB121 exacerbated chrysanthemum sensitivity to salt stress. CmHSFA4 directly bound to the promoter of CmMYB121 at the heat-shock element. Protein-protein interaction assays identified an interaction between CmHSFA4 and CmMYBS3, a transcriptional repressor, and recruited the corepressor TOPLESS (CmTPL) to inhibit CmMYB121 transcription by impairing the H3 and H4 histone acetylation levels of CmMYB121. Our study demonstrated that a CmHSFA4-CmMYBS3-CmTPL complex modulates CmMYB121 expression, consequently regulating the tolerance of chrysanthemum to salt. The findings shed light on the responses of plants to salt stress.
Collapse
Affiliation(s)
- Xinhui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Yue Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Yuhan Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Han Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Lijie Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Fei Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Likai Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| |
Collapse
|
2
|
Pham HA, Cho K, Tran AD, Chandra D, So J, Nguyen HTT, Sang H, Lee JY, Han O. Compensatory Modulation of Seed Storage Protein Synthesis and Alteration of Starch Accumulation by Selective Editing of 13 kDa Prolamin Genes by CRISPR-Cas9 in Rice. Int J Mol Sci 2024; 25:6579. [PMID: 38928285 PMCID: PMC11204006 DOI: 10.3390/ijms25126579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Rice prolamins are categorized into three groups by molecular size (10, 13, or 16 kDa), while the 13 kDa prolamins are assigned to four subgroups (Pro13a-I, Pro13a-II, Pro13b-I, and Pro13b-II) based on cysteine residue content. Since lowering prolamin content in rice is essential to minimize indigestion and allergy risks, we generated four knockout lines using CRISPR-Cas9, which selectively reduced the expression of a specific subgroup of the 13 kDa prolamins. These four mutant rice lines also showed the compensatory expression of glutelins and non-targeted prolamins and were accompanied by low grain weight, altered starch content, and atypically-shaped starch granules and protein bodies. Transcriptome analysis identified 746 differentially expressed genes associated with 13 kDa prolamins during development. Correlation analysis revealed negative associations between genes in Pro13a-I and those in Pro13a-II and Pro13b-I/II subgroups. Furthermore, alterations in the transcription levels of 9 ER stress and 17 transcription factor genes were also observed in mutant rice lines with suppressed expression of 13 kDa prolamin. Our results provide profound insight into the functional role of 13 kDa rice prolamins in the regulatory mechanisms underlying rice seed development, suggesting their promising potential application to improve nutritional and immunological value.
Collapse
Affiliation(s)
- Hue Anh Pham
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| | - Kyoungwon Cho
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| | - Anh Duc Tran
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| | - Deepanwita Chandra
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| | - Jinpyo So
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| | - Hanh Thi Thuy Nguyen
- Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi 12406, Vietnam;
| | - Hyunkyu Sang
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| | - Jong-Yeol Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, RDA, Jeonju 54874, Republic of Korea
| | - Oksoo Han
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| |
Collapse
|
3
|
Hao X, He S. Genome-wide identification, classification and expression analysis of the heat shock transcription factor family in Garlic (Allium sativum L.). BMC PLANT BIOLOGY 2024; 24:421. [PMID: 38760734 PMCID: PMC11102281 DOI: 10.1186/s12870-024-05018-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND The heat shock transcription factor (HSF) plays a crucial role in the regulatory network by coordinating responses to heat stress as well as other stress signaling pathways. Despite extensive studies on HSF functions in various plant species, our understanding of this gene family in garlic, an important crop with nutritional and medicinal value, remains limited. In this study, we conducted a comprehensive investigation of the entire garlic genome to elucidate the characteristics of the AsHSF gene family. RESULTS In this study, we identified a total of 17 AsHSF transcription factors. Phylogenetic analysis classified these transcription factors into three subfamilies: Class A (9 members), Class B (6 members), and Class C (2 members). Each subfamily was characterized by shared gene structures and conserved motifs. The evolutionary features of the AsHSF genes were investigated through a comprehensive analysis of chromosome location, conserved protein motifs, and gene duplication events. These findings suggested that the evolution of AsHSF genes is likely driven by both tandem and segmental duplication events. Moreover, the nucleotide diversity of the AsHSF genes decreased by only 0.0002% from wild garlic to local garlic, indicating a slight genetic bottleneck experienced by this gene family during domestication. Furthermore, the analysis of cis-acting elements in the promoters of AsHSF genes indicated their crucial roles in plant growth, development, and stress responses. qRT-PCR analysis, co-expression analysis, and protein interaction prediction collectively highlighted the significance of Asa6G04911. Subsequent experimental investigations using yeast two-hybridization and yeast induction experiments confirmed its interaction with HSP70/90, reinforcing its significance in heat stress. CONCLUSIONS This study is the first to unravel and analyze the AsHSF genes in garlic, thereby opening up new avenues for understanding their functions. The insights gained from this research provide a valuable resource for future investigations, particularly in the functional analysis of AsHSF genes.
Collapse
Affiliation(s)
- Xiaomeng Hao
- Institute of Neurobiology, Jining Medical University, Jining, China
| | - Shutao He
- Institute of Biotechnology and Health, Beijing Academy of Science and Technology, Beijing, China.
| |
Collapse
|
4
|
Zhang L, Li T, Wang L, Cao K, Gao W, Yan S, Cao J, Lu J, Ma C, Chang C, Zhang H. A wheat heat shock transcription factor gene, TaHsf-7A, regulates seed dormancy and germination. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108541. [PMID: 38552264 DOI: 10.1016/j.plaphy.2024.108541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/14/2024] [Accepted: 03/16/2024] [Indexed: 05/12/2024]
Abstract
Heat shock transcription factors (Hsfs) play multifaceted roles in plant growth, development, and responses to environmental factors. However, their involvement in seed dormancy and germination processes has remained elusive. In this study, we identified a wheat class B Hsf gene, TaHsf-7A, with higher expression in strong-dormancy varieties compared to weak-dormancy varieties during seed imbibition. Specifically, TaHsf-7A expression increased during seed dormancy establishment and subsequently declined during dormancy release. Through the identification of a 1-bp insertion (ins)/deletion (del) variation in the coding region of TaHsf-7A among wheat varieties with different dormancy levels, we developed a CAPS marker, Hsf-7A-1319, resulting in two allelic variations: Hsf-7A-1319-ins and Hsf-7A-1319-del. Notably, the allele Hsf-7A-1319-ins correlated with a reduced seed germination rate and elevated dormancy levels, while Hsf-7A-1319-del exhibited the opposite trend across 175 wheat varieties. The association of TaHsf-7A allelic status with seed dormancy and germination levels was confirmed in various genetically modified species, including Arabidopsis, rice, and wheat. Results from the dual luciferase assay demonstrated notable variations in transcriptional activity among transformants harboring distinct TaHsf-7A alleles. Furthermore, the levels of abscisic acid (ABA) and gibberellin (GA), along with the expression levels of ABA and GA biosynthesis genes, showed significant differences between transgenic rice lines carrying different alleles of TaHsf-7A. These findings represent a significant step towards a comprehensive understanding of TaHsf-7A's involvement in the dormancy and germination processes of wheat seeds.
Collapse
Affiliation(s)
- Litian Zhang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Ting Li
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Ling Wang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Kun Cao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Wei Gao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Shengnan Yan
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Jiajia Cao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Jie Lu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Chuanxi Ma
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Cheng Chang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China.
| | - Haiping Zhang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China.
| |
Collapse
|
5
|
Wang N, Shu X, Zhang F, Song G, Wang Z. Characterization of the Heat Shock Transcription Factor Family in Lycoris radiata and Its Potential Roles in Response to Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:271. [PMID: 38256823 PMCID: PMC10819275 DOI: 10.3390/plants13020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/26/2023] [Accepted: 01/14/2024] [Indexed: 01/24/2024]
Abstract
Heat shock transcription factors (HSFs) are an essential plant-specific transcription factor family that regulates the developmental and growth stages of plants, their signal transduction, and their response to different abiotic and biotic stresses. The HSF gene family has been characterized and systematically observed in various species; however, research on its association with Lycoris radiata is limited. This study identified 22 HSF genes (LrHSFs) in the transcriptome-sequencing data of L. radiata and categorized them into three classes including HSFA, HSFB, and HSFC, comprising 10, 8, and 4 genes, respectively. This research comprises basic bioinformatics analyses, such as protein sequence length, molecular weight, and the identification of its conserved motifs. According to the subcellular localization assessment, most LrHSFs were present in the nucleus. Furthermore, the LrHSF gene expression in various tissues, flower developmental stages, two hormones stress, and under four different abiotic stresses were characterized. The data indicated that LrHSF genes, especially LrHSF5, were essentially involved in L. radiata development and its response to different abiotic and hormone stresses. The gene-gene interaction network analysis revealed the presence of synergistic effects between various LrHSF genes' responses against abiotic stresses. In conclusion, these results provided crucial data for further functional analyses of LrHSF genes, which could help successful molecular breeding in L. radiata.
Collapse
Affiliation(s)
- Ning Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (N.W.); (X.S.); (F.Z.); (G.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Xiaochun Shu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (N.W.); (X.S.); (F.Z.); (G.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Fengjiao Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (N.W.); (X.S.); (F.Z.); (G.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Guowei Song
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (N.W.); (X.S.); (F.Z.); (G.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Zhong Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (N.W.); (X.S.); (F.Z.); (G.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| |
Collapse
|
6
|
Ma Z, Zhao B, Zhang H, Duan S, Liu Z, Guo X, Meng X, Li G. Upregulation of Wheat Heat Shock Transcription Factor TaHsfC3-4 by ABA Contributes to Drought Tolerance. Int J Mol Sci 2024; 25:977. [PMID: 38256051 PMCID: PMC10816066 DOI: 10.3390/ijms25020977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Drought stress can seriously affect the yield and quality of wheat (Triticum aestivum). So far, although few wheat heat shock transcription factors (Hsfs) have been found to be involved in the stress response, the biological functions of them, especially the members of the HsfC (heat shock transcription factor C) subclass, remain largely unknown. Here, we identified a class C encoding gene, TaHsfC3-4, based on our previous omics data and analyzed its biological function in transgenic plants. TaHsfC3-4 encodes a protein containing 274 amino acids and shows the basic characteristics of the HsfC class. Gene expression profiles revealed that TaHsfC3-4 was constitutively expressed in many tissues of wheat and was induced during seed maturation. TaHsfC3-4 could be upregulated by PEG and abscisic acid (ABA), suggesting that this Hsf may be involved in the regulation pathway depending on ABA in drought resistance. Further results represented that TaHsfC3-4 was localized in the nucleus but had no transcriptional activation activity. Notably, overexpression of TaHsfC3-4 in Arabidopsis thaliana pyr1pyl1pyl2pyl4 (pyr1pyl124) quadruple mutant plants complemented the ABA-hyposensitive phenotypes of the quadruple mutant including cotyledon greening, root elongation, seedling growth, and increased tolerance to drought, indicating positive roles of TaHsfC3-4 in the ABA signaling pathway and drought tolerance. Furthermore, we identified TaHsfA2-11 as a TaHsfC3-4-interacting protein by yeast two-hybrid (Y2H) screening. The experimental data show that TaHsfC3-4 can indeed interact with TaHsfA2-11 in vitro and in vivo. Moreover, transgenic Arabidopsis TaHsfA2-11 overexpression lines exhibited enhanced drought tolerance, too. In summary, our study confirmed the role of TaHsfC3-4 in response to drought stress and provided a target locus for marker-assisted selection breeding to improve drought tolerance in wheat.
Collapse
Affiliation(s)
- Zhenyu Ma
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (Z.M.); (B.Z.); (H.Z.); (S.D.); (Z.L.); (X.G.)
| | - Baihui Zhao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (Z.M.); (B.Z.); (H.Z.); (S.D.); (Z.L.); (X.G.)
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Huaning Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (Z.M.); (B.Z.); (H.Z.); (S.D.); (Z.L.); (X.G.)
| | - Shuonan Duan
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (Z.M.); (B.Z.); (H.Z.); (S.D.); (Z.L.); (X.G.)
| | - Zihui Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (Z.M.); (B.Z.); (H.Z.); (S.D.); (Z.L.); (X.G.)
| | - Xiulin Guo
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (Z.M.); (B.Z.); (H.Z.); (S.D.); (Z.L.); (X.G.)
| | - Xiangzhao Meng
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (Z.M.); (B.Z.); (H.Z.); (S.D.); (Z.L.); (X.G.)
| | - Guoliang Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (Z.M.); (B.Z.); (H.Z.); (S.D.); (Z.L.); (X.G.)
| |
Collapse
|
7
|
Cong W, Li N, Miao Y, Huang Y, Zhao W, Kang Y, Zhang B, Wang J, Zhang J, Lv Y, Li J, Zhang J, Gong L, Liu B, Ou X. DNA hypomethylation-associated transcriptional rewiring enables resistance to heavy metal mercury (Hg) stress in rice. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132649. [PMID: 37783144 DOI: 10.1016/j.jhazmat.2023.132649] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/17/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023]
Abstract
Mercury (Hg) is an important hazardous pollutant that can cause phytotoxicity and harm human health through the food chain. Recently, rice (Oryza sativa L.) has been confirmed as a potential Hg bioaccumulator. Although the genetic and molecular mechanisms involved in heavy metal absorption and translocation in rice have been investigated for several heavy metals, Hg is largely neglected. Here, we analyzed one Hg-resistant line in rice (RHg) derived from a DNA methyltransferase-coding gene, OsMET1-2 heterozygous mutant. Compared with its isogenic wild-type (WT), RHg exhibited a significantly higher survival rate after Hg treatment, ameliorated oxidative damage, and lower Hg uptake and translocation. RNAseq-based comparative transcriptomic analysis identified 34 potential Hg resistance-related genes involved in phytohormone signaling, abiotic stress response, and zinc (Zn) transport. Importantly, the elevated expression of Hg resistance-related genes in RHg was highly correlated with DNA hypomethylation in their putative promoter regions. An ionomic analysis unraveled a negative correlation between Zn and Hg in roots. Moreover, Hg concentration was effectively decreased by exogenous application of Zn in Hg-stressed rice plants. Our findings indicate an epigenetic basis of Hg resistance and reveal an antagonistic relationship between Hg and Zn, providing new hints towards Hg detoxification in plants. ENVIRONMENTAL IMPLICATION: Mercury (Hg) as an important hazardous pollutant adversely impacts the environment and jeopardizes human health, due to its chronicity, transferability, persistence, bioaccumulation and toxicity. In this paper, we identified 34 potential genes that may significantly contribute to Hg resistance in rice. We find the expression of Hg resistance-related genes was highly correlated with DNA hypomethylation in their putative promoter regions. Our results also revealed an antagonistic relationship between Hg and Zinc (Zn), providing new hints towards Hg detoxification in plants. Together, findings of this study extend our current understanding of Hg tolerance in rice and are informative to breed seed non-accumulating rice cultivars.
Collapse
Affiliation(s)
- Weixuan Cong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Yiling Miao
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China
| | - Yuxi Huang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Wenhao Zhao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Ying Kang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Bingqi Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Jinbin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Jiayu Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Yinhe Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Jiamo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Jian Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China.
| | - Xiufang Ou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
8
|
Guo R, Zhang X, Li M, Zhang H, Wu J, Zhang L, Xiao X, Han M, An N, Xing L, Zhang C. MdNup62 involved in salt and osmotic stress tolerance in apple. Sci Rep 2023; 13:20198. [PMID: 37980385 PMCID: PMC10657396 DOI: 10.1038/s41598-023-47024-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023] Open
Abstract
Abiotic stress of plants has serious consequences on the development of the apple industry. Nuclear pore complexes (NPCs) control nucleoplasmic transport and play an important role in the regulation of plant abiotic stress response. However, the effects of NPCs on apple salt and osmotic stress responses have not been reported yet. In this study, we analyzed the expression and function of NUCLEOPORIN 62 (MdNup62), a component of apple NPC. MdNup62 expression was significantly increased by salt and mannitol (simulated osmotic stress) treatment. The MdNup62-overexpressing (OE) Arabidopsis and tomato lines exhibited significantly reduced salt stress tolerance, and MdNup62-OE Arabidopsis lines exhibited reduced osmotic stress tolerance. We further studied the function of HEAT SHOCK FACTOR A1d (MdHSFA1d), the interacting protein of MdNup62, in salt and osmotic stress tolerance. In contrast to MdNup62, MdHSFA1d-OE Arabidopsis lines showed significantly enhanced tolerance to salt and osmotic stress. Our findings suggest a possible interaction of MdNup62 with MdHSFA1d in the mediation of nuclear and cytoplasmic transport and the regulation of apple salt and osmotic stress tolerance. These results contribute to the understanding of the salt and osmotic stress response mechanism in apple.
Collapse
Affiliation(s)
- Ruxuan Guo
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Higher Institute Application Technology Research and Development Center of Horticultural Plant Biological Breeding, College of Horticulture Technology, Hebei Normal University of Science and Technology, Changli, 066600, Hebei, People's Republic of China
| | - Xiaoshuang Zhang
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Higher Institute Application Technology Research and Development Center of Horticultural Plant Biological Breeding, College of Horticulture Technology, Hebei Normal University of Science and Technology, Changli, 066600, Hebei, People's Republic of China
| | - Mingyuan Li
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Higher Institute Application Technology Research and Development Center of Horticultural Plant Biological Breeding, College of Horticulture Technology, Hebei Normal University of Science and Technology, Changli, 066600, Hebei, People's Republic of China
| | - Huiwen Zhang
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Higher Institute Application Technology Research and Development Center of Horticultural Plant Biological Breeding, College of Horticulture Technology, Hebei Normal University of Science and Technology, Changli, 066600, Hebei, People's Republic of China
| | - Junkai Wu
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Higher Institute Application Technology Research and Development Center of Horticultural Plant Biological Breeding, College of Horticulture Technology, Hebei Normal University of Science and Technology, Changli, 066600, Hebei, People's Republic of China
| | - Libin Zhang
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Higher Institute Application Technology Research and Development Center of Horticultural Plant Biological Breeding, College of Horticulture Technology, Hebei Normal University of Science and Technology, Changli, 066600, Hebei, People's Republic of China
| | - Xiao Xiao
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Higher Institute Application Technology Research and Development Center of Horticultural Plant Biological Breeding, College of Horticulture Technology, Hebei Normal University of Science and Technology, Changli, 066600, Hebei, People's Republic of China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Na An
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Libo Xing
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Chenguang Zhang
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Higher Institute Application Technology Research and Development Center of Horticultural Plant Biological Breeding, College of Horticulture Technology, Hebei Normal University of Science and Technology, Changli, 066600, Hebei, People's Republic of China.
| |
Collapse
|
9
|
Mu W, Li K, Yang Y, Breiman A, Lou S, Yang J, Wu Y, Wu S, Liu J, Nevo E, Catalan P. Scattered differentiation of unlinked loci across the genome underlines ecological divergence of the selfing grass Brachypodium stacei. Proc Natl Acad Sci U S A 2023; 120:e2304848120. [PMID: 37903254 PMCID: PMC10636366 DOI: 10.1073/pnas.2304848120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/27/2023] [Indexed: 11/01/2023] Open
Abstract
Ecological divergence without geographic isolation, as an early speciation process that may lead finally to reproductive isolation through natural selection, remains a captivating topic in evolutionary biology. However, the pattern of genetic divergence underlying this process across the genome may vary between species and mating systems. Here, we present evidence that Brachypodium stacei, an annual and highly selfing grass model species, has undergone sympatric ecological divergence without geographic isolation. Genomic, transcriptomic, and metabolomic analyses together with lab experiments mimicking the two opposite environmental conditions suggest that diploid B. stacei populations have diverged sympatrically in two slopes characterized by distinct biomes at Evolution Canyon I (ECI), Mount Carmel, Israel. Despite ongoing gene flow, primarily facilitated by seed dispersal, the level of gene flow has progressively decreased over time. This local adaptation involves the scattered divergence of many unlinked loci across the total genome that include both coding genes and noncoding regions. Additionally, we have identified significant differential expressions of genes related to the ABA signaling pathway and contrasting metabolome composition between the arid- vs. forest-adapted B. stacei populations in ECI. These results suggest that multiple small loci involved in environmental responses act additively to account for ecological adaptations by this selfing species in contrasting environments.
Collapse
Affiliation(s)
- Wenjie Mu
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou730000, China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou730000, China
- Departamento de Agricultura y Medio Ambiente, Escuela Politecnica Superior de Huesca, Universidad de Zaragoza, Huesca22071, Spain
| | - Kexin Li
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Adina Breiman
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, University of Tel-Aviv, Tel-Aviv6997801, Israel
| | - Shangling Lou
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Jiao Yang
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Ying Wu
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Shuang Wu
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Jianquan Liu
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Eviatar Nevo
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Mount Carmel, Haifa3498838, Israel
| | - Pilar Catalan
- Departamento de Agricultura y Medio Ambiente, Escuela Politecnica Superior de Huesca, Universidad de Zaragoza, Huesca22071, Spain
| |
Collapse
|
10
|
Ling C, Liu Y, Yang Z, Xu J, Ouyang Z, Yang J, Wang S. Genome-Wide Identification of HSF Gene Family in Kiwifruit and the Function of AeHSFA2b in Salt Tolerance. Int J Mol Sci 2023; 24:15638. [PMID: 37958622 PMCID: PMC10649126 DOI: 10.3390/ijms242115638] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Heat shock transcription factors (HSFs) play a crucial role in regulating plant growth and response to various abiotic stresses. In this study, we conducted a comprehensive analysis of the AeHSF gene family at genome-wide level in kiwifruit (Actinidia eriantha), focusing on their functions in the response to abiotic stresses. A total of 41 AeHSF genes were identified and categorized into three primary groups, namely, HSFA, HSFB, and HSFC. Further transcriptome analysis revealed that the expression of AeHSFA2b/2c and AeHSFB1c/1d/2c/3b was strongly induced by salt, which was confirmed by qRT-PCR assays. The overexpression of AeHSFA2b in Arabidopsis significantly improved the tolerance to salt stress by increasing AtRS5, AtGolS1 and AtGolS2 expression. Furthermore, yeast one-hybrid, dual-luciferase, and electrophoretic mobility shift assays demonstrated that AeHSFA2b could bind to the AeRFS4 promoter directly. Therefore, we speculated that AeHSFA2b may activate AeRFS4 expression by directly binding its promoter to enhance the kiwifruit's tolerance to salt stress. These results will provide a new insight into the evolutionary and functional mechanisms of AeHSF genes in kiwifruit.
Collapse
Affiliation(s)
| | | | | | | | | | - Jun Yang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agriculture University, Hefei 230036, China
| | - Songhu Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agriculture University, Hefei 230036, China
| |
Collapse
|
11
|
He Y, Guan H, Li B, Zhang S, Xu Y, Yao Y, Yang X, Zha Z, Guo Y, Jiao C, Cai H. Transcriptome Analysis Reveals the Dynamic and Rapid Transcriptional Reprogramming Involved in Heat Stress and Identification of Heat Response Genes in Rice. Int J Mol Sci 2023; 24:14802. [PMID: 37834249 PMCID: PMC10572967 DOI: 10.3390/ijms241914802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
High temperature is one of the most important environmental factors influencing rice growth, development, and yield. Therefore, it is important to understand how rice plants cope with high temperatures. Herein, the heat tolerances of T2 (Jinxibai) and T21 (Taizhongxianxuan2hao) were evaluated at 45 °C, and T21 was found to be sensitive to heat stress at the seedling stage. Analysis of the H2O2 and proline content revealed that the accumulation rate of H2O2 was higher in T21, whereas the accumulation rate of proline was higher in T2 after heat treatment. Meanwhile, transcriptome analysis revealed that several pathways participated in the heat response, including "protein processing in endoplasmic reticulum", "plant hormone signal transduction", and "carbon metabolism". Additionally, our study also revealed that different pathways participate in heat stress responses upon prolonged stress. The pathway of "protein processing in endoplasmic reticulum" plays an important role in stress responses. We found that most genes involved in this pathway were upregulated and peaked at 0.5 or 1 h after heat treatment. Moreover, sixty transcription factors, including the members of the AP2/ERF, NAC, HSF, WRKY, and C2H2 families, were found to participate in the heat stress response. Many of them have also been reported to be involved in biotic or abiotic stresses. In addition, through PPI (protein-protein interactions) analysis, 22 genes were identified as key genes in the response to heat stress. This study improves our understanding of thermotolerance mechanisms in rice, and also lays a foundation for breeding thermotolerant cultivars via molecular breeding.
Collapse
Affiliation(s)
- Yonggang He
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Huimin Guan
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Bo Li
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Shuo Zhang
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Yanhao Xu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Yan Yao
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Xiaolong Yang
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Zhongping Zha
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Ying Guo
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Chunhai Jiao
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Haiya Cai
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| |
Collapse
|
12
|
Li L, Ju Y, Zhang C, Tong B, Lu Y, Xie X, Li W. Genome-wide analysis of the heat shock transcription factor family reveals saline-alkali stress responses in Xanthoceras sorbifolium. PeerJ 2023; 11:e15929. [PMID: 37753174 PMCID: PMC10519200 DOI: 10.7717/peerj.15929] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/30/2023] [Indexed: 09/28/2023] Open
Abstract
The heat shock transcription factor (HSF) family is involved in regulating growth, development, and abiotic stress. The characteristics and biological functions of HSF family member in X. sorbifolium, an important oil and ornamental plant, have never been reported. In this study, 21 XsHSF genes were identified from the genome of X. sorbifolium and named XsHSF1-XsHSF21 based on their chromosomal positions. Those genes were divided into three groups, A, B, and C, containing 12, one, and eight genes, respectively. Among them, 20 XsHSF genes are located on 11 chromosomes. Protein structure analysis suggested that XsHSF proteins were conserved, displaying typical DNA binding domains (DBD) and oligomerization domains (OD). Moreover, HSF proteins within the same group contain specific motifs, such as motif 5 in the HSFC group. All XsHSF genes have one intron in the CDS region, except XsHSF1 which has two introns. Promoter analysis revealed that in addition to defense and stress responsiveness elements, some promoters also contained a MYB binding site and elements involved in multiple hormones responsiveness and anaerobic induction. Duplication analysis revealed that XsHSF1 and XsHSF4 genes were segmentally duplicated while XsHSF2, XsHSF9, and XsHSF13 genes might have arisen from transposition. Expression pattern analysis of leaves and roots following salt-alkali treatment using qRT-PCR indicated that five XsHSF genes were upregulated and one XsHSF gene was downregulated in leaves upon NaCl treatment suggesting these genes may play important roles in salt response. Additionally, the expression levels of most XsHSFs were decreased in leaves and roots following alkali-induced stress, indicating that those XsHSFs may function as negative regulators in alkali tolerance. MicroRNA target site prediction indicated that 16 of the XsHSF genes may be regulated by multiple microRNAs, for example XsHSF2 might be regulated by miR156, miR394, miR395, miR408, miR7129, and miR854. And miR164 may effect the mRNA levels of XsHSF3 and XsHSF17, XsHSF9 gene may be regulated by miR172. The expression trends of miR172 and miR164 in leaves and roots on salt treatments were opposite to the expression trend of XsHSF9 and XsHSF3 genes, respectively. Promoter analysis showed that XsHSFs might be involved in light and hormone responses, plant development, as well as abiotic stress responses. Our results thus provide an overview of the HSF family in X. sorbifolium and lay a foundation for future functional studies to reveal its roles in saline-alkali response.
Collapse
Affiliation(s)
- Lulu Li
- Qingdao Agricultural University, Qingdao, China
| | - Yiqian Ju
- Qingdao Agricultural University, Qingdao, China
| | | | - Boqiang Tong
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Yizeng Lu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Xiaoman Xie
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Wei Li
- Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
13
|
Navea IP, Maung PP, Yang S, Han JH, Jing W, Shin NH, Zhang W, Chin JH. A meta-QTL analysis highlights genomic hotspots associated with phosphorus use efficiency in rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1226297. [PMID: 37662146 PMCID: PMC10471825 DOI: 10.3389/fpls.2023.1226297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023]
Abstract
Phosphorus use efficiency (PUE) is a complex trait, governed by many minor quantitative trait loci (QTLs) with small effects. Advances in molecular marker technology have led to the identification of QTLs underlying PUE. However, their practical use in breeding programs remains challenging due to the unstable effects in different genetic backgrounds and environments, interaction with soil status, and linkage drag. Here, we compiled PUE QTL information from 16 independent studies. A total of 192 QTLs were subjected to meta-QTL (MQTL) analysis and were projected into a high-density SNP consensus map. A total of 60 MQTLs, with significantly reduced number of initial QTLs and confidence intervals (CI), were identified across the rice genome. Candidate gene (CG) mining was carried out for the 38 MQTLs supported by multiple QTLs from at least two independent studies. Genes related to amino and organic acid transport and auxin response were found to be abundant in the MQTLs linked to PUE. CGs were cross validated using a root transcriptome database (RiceXPro) and haplotype analysis. This led to the identification of the eight CGs (OsARF8, OsSPX-MFS3, OsRING141, OsMIOX, HsfC2b, OsFER2, OsWRKY64, and OsYUCCA11) modulating PUE. Potential donors for superior PUE CG haplotypes were identified through haplotype analysis. The distribution of superior haplotypes varied among subspecies being mostly found in indica but were largely scarce in japonica. Our study offers an insight on the complex genetic networks that modulate PUE in rice. The MQTLs, CGs, and superior CG haplotypes identified in our study are useful in the combination of beneficial alleles for PUE in rice.
Collapse
Affiliation(s)
- Ian Paul Navea
- Food Crops Molecular Breeding Laboratory, Department of Integrative Biological Sciences and Industry, Sejong University, Seoul, Republic of Korea
- Convergence Research Center for Natural Products, Sejong University, Seoul, Republic of Korea
| | - Phyu Phyu Maung
- Food Crops Molecular Breeding Laboratory, Department of Integrative Biological Sciences and Industry, Sejong University, Seoul, Republic of Korea
- Convergence Research Center for Natural Products, Sejong University, Seoul, Republic of Korea
| | - Shiyi Yang
- College of Life Sciences, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Jae-Hyuk Han
- Food Crops Molecular Breeding Laboratory, Department of Integrative Biological Sciences and Industry, Sejong University, Seoul, Republic of Korea
- The International Rice Research Institute-Korea Office, National Institute of Crop Science, Rural Development Administration, Iseo-myeon, Republic of Korea
| | - Wen Jing
- College of Life Sciences, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Na-Hyun Shin
- Food Crops Molecular Breeding Laboratory, Department of Integrative Biological Sciences and Industry, Sejong University, Seoul, Republic of Korea
- Convergence Research Center for Natural Products, Sejong University, Seoul, Republic of Korea
| | - Wenhua Zhang
- College of Life Sciences, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Joong Hyoun Chin
- Food Crops Molecular Breeding Laboratory, Department of Integrative Biological Sciences and Industry, Sejong University, Seoul, Republic of Korea
- Convergence Research Center for Natural Products, Sejong University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Liu H, Li X, Zi Y, Zhao G, Zhu L, Hong L, Li M, Wang S, Long R, Kang J, Yang Q, Chen L. Characterization of the Heat Shock Transcription Factor Family in Medicago sativa L. and Its Potential Roles in Response to Abiotic Stresses. Int J Mol Sci 2023; 24:12683. [PMID: 37628861 PMCID: PMC10454044 DOI: 10.3390/ijms241612683] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Heat shock transcription factors (HSFs) are important regulatory factors in plant stress responses to various biotic and abiotic stresses and play important roles in growth and development. The HSF gene family has been systematically identified and analyzed in many plants but it is not in the tetraploid alfalfa genome. We detected 104 HSF genes (MsHSFs) in the tetraploid alfalfa genome ("Xinjiangdaye" reference genome) and classified them into three subgroups: 68 in HSFA, 35 in HSFB and 1 in HSFC subgroups. Basic bioinformatics analysis, including genome location, protein sequence length, protein molecular weight and conserved motif identification, was conducted. Gene expression analysis revealed tissue-specific expression for 13 MsHSFs and tissue-wide expression for 28 MsHSFs. Based on transcriptomic data analysis, 21, 11 and 27 MsHSFs responded to drought stress, cold stress and salt stress, respectively, with seven responding to all three. According to RT-PCR, MsHSF27/33 expression gradually increased with cold, salt and drought stress condition duration; MsHSF6 expression increased over time under salt and drought stress conditions but decreased under cold stress. Our results provide key information for further functional analysis of MsHSFs and for genetic improvement of stress resistance in alfalfa.
Collapse
Affiliation(s)
- Hao Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.L.); (X.L.); (M.L.); (R.L.); (J.K.); (Q.Y.)
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Xianyang Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.L.); (X.L.); (M.L.); (R.L.); (J.K.); (Q.Y.)
| | - Yunfei Zi
- Institute of Forage Crop Science, Ordos Academy of Agricultural and Animal Husbandry Sciences, Ordos 017000, China; (Y.Z.); (G.Z.); (L.Z.); (L.H.); (S.W.)
| | - Guoqing Zhao
- Institute of Forage Crop Science, Ordos Academy of Agricultural and Animal Husbandry Sciences, Ordos 017000, China; (Y.Z.); (G.Z.); (L.Z.); (L.H.); (S.W.)
| | - Lihua Zhu
- Institute of Forage Crop Science, Ordos Academy of Agricultural and Animal Husbandry Sciences, Ordos 017000, China; (Y.Z.); (G.Z.); (L.Z.); (L.H.); (S.W.)
| | - Ling Hong
- Institute of Forage Crop Science, Ordos Academy of Agricultural and Animal Husbandry Sciences, Ordos 017000, China; (Y.Z.); (G.Z.); (L.Z.); (L.H.); (S.W.)
| | - Mingna Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.L.); (X.L.); (M.L.); (R.L.); (J.K.); (Q.Y.)
| | - Shiqing Wang
- Institute of Forage Crop Science, Ordos Academy of Agricultural and Animal Husbandry Sciences, Ordos 017000, China; (Y.Z.); (G.Z.); (L.Z.); (L.H.); (S.W.)
| | - Ruicai Long
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.L.); (X.L.); (M.L.); (R.L.); (J.K.); (Q.Y.)
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.L.); (X.L.); (M.L.); (R.L.); (J.K.); (Q.Y.)
| | - Qingchuan Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.L.); (X.L.); (M.L.); (R.L.); (J.K.); (Q.Y.)
| | - Lin Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.L.); (X.L.); (M.L.); (R.L.); (J.K.); (Q.Y.)
| |
Collapse
|
15
|
Wei L, Wang D, Gupta R, Kim ST, Wang Y. A Proteomics Insight into Advancements in the Rice-Microbe Interaction. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12051079. [PMID: 36903938 PMCID: PMC10005616 DOI: 10.3390/plants12051079] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 05/23/2023]
Abstract
Rice is one of the most-consumed foods worldwide. However, the productivity and quality of rice grains are severely constrained by pathogenic microbes. Over the last few decades, proteomics tools have been applied to investigate the protein level changes during rice-microbe interactions, leading to the identification of several proteins involved in disease resistance. Plants have developed a multi-layered immune system to suppress the invasion and infection of pathogens. Therefore, targeting the proteins and pathways associated with the host's innate immune response is an efficient strategy for developing stress-resistant crops. In this review, we discuss the progress made thus far with respect to rice-microbe interactions from side views of the proteome. Genetic evidence associated with pathogen-resistance-related proteins is also presented, and challenges and future perspectives are highlighted in order to understand the complexity of rice-microbe interactions and to develop disease-resistant crops in the future.
Collapse
Affiliation(s)
- Lirong Wei
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dacheng Wang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul 02707, Republic of Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang 50463, Republic of Korea
| | - Yiming Wang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
16
|
Heat Shock Transcription Factor GhHSFB2a Is Crucial for Cotton Resistance to Verticillium dahliae. Int J Mol Sci 2023; 24:ijms24031845. [PMID: 36768168 PMCID: PMC9916287 DOI: 10.3390/ijms24031845] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Heat shock transcription factors (HSFs) play a critical regulatory role in many plant disease resistance pathways. However, the molecular mechanisms of cotton HSFs involved in resistance to the soil-borne fungus Verticillium dahliae are limited. In our previous study, we identified numerous differentially expressed genes (DEGs) in the transcriptome and metabolome of V. dahliae-inoculated Arabidopsis thaliana. In this study, we identified and functionally characterized GhHSFB2a, which is a DEG belonging to HSFs and related to cotton immunity to V. dahliae. Subsequently, the phylogenetic tree of the type two of the HSFB subfamily in different species was divided into two subgroups: A. thaliana and strawberry, which have the closest evolutionary relationship to cotton. We performed promoter cis-element analysis and showed that the defense-reaction-associated cis-acting element-FC-rich motif may be involved in the plant response to V. dahliae in cotton. The expression pattern analysis of GhHSFB2a displayed that it is transcriptional in roots, stems, and leaves and significantly higher at 12 h post-inoculation (hpi). Subcellular localization of GhHSFB2a was observed, and the results showed localization to the nucleus. Virus-induced gene silencing (VIGS) analysis exhibited that GhHSFB2a silencing increased the disease index and fungal biomass and attenuated resistance against V. dahliae. Transcriptome sequencing of wild-type and GhHSFB2a-silenced plants, followed by Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, protein-protein interaction, and validation of marker genes revealed that ABA, ethylene, linoleic acid, and phenylpropanoid pathways are involved in GhHSFB2a-mediated plant disease resistance. Ectopic overexpression of the GhHSFB2a gene in Arabidopsis showed a significant increase in the disease resistance. Cumulatively, our results suggest that GhHSFB2a is required for the cotton immune response against V. dahliae-mediated ABA, ethylene, linoleic acid, and phenylpropanoid pathways, indicating its potential role in the molecular design breeding of plants.
Collapse
|
17
|
Guo Q, Wei R, Xu M, Yao W, Jiang J, Ma X, Qu G, Jiang T. Genome-wide analysis of HSF family and overexpression of PsnHSF21 confers salt tolerance in Populus simonii × P. nigra. FRONTIERS IN PLANT SCIENCE 2023; 14:1160102. [PMID: 37200984 PMCID: PMC10187788 DOI: 10.3389/fpls.2023.1160102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/28/2023] [Indexed: 05/20/2023]
Abstract
Heat shock transcription factor (HSF) is an important TF that performs a dominant role in plant growth, development, and stress response network. In this study, we identified a total of 30 HSF members from poplar, which are unevenly distributed on 17 chromosomes. The poplar HSF family can be divided into three subfamilies, and the members of the same subfamily share relatively conserved domains and motifs. HSF family members are acidic and hydrophilic proteins that are located in the nucleus and mainly carry out gene expansion through segmental replication. In addition, they have rich collinearity across plant species. Based on RNA-Seq analysis, we explored the expression pattern of PtHSFs under salt stress. Subsequently, we cloned the significantly upregulated PtHSF21 gene and transformed it into Populus simonii × P. nigra. Under salt stress, the transgenic poplar overexpressing PtHSF21 had a better growth state and higher reactive oxygen scavenging ability. A yeast one-hybrid experiment indicated PtHSF21 could improve salt tolerance by specifically binding to the anti-stress cis-acting element HSE. This study comprehensively profiled the fundamental information of poplar HSF family members and their responses to salt stress and specifically verified the biological function of PtHSF21, which provides clues for understanding the molecular mechanism of poplar HSF members in response to salt stress.
Collapse
Affiliation(s)
- Qing Guo
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- School of Architecture and Civil Engineer, Heilongjiang University of Science and Technology, Harbin, China
| | - Ran Wei
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Min Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Wenjing Yao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
| | - Jiahui Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xujun Ma
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- *Correspondence: Guanzheng Qu, ; Tingbo Jiang,
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- *Correspondence: Guanzheng Qu, ; Tingbo Jiang,
| |
Collapse
|
18
|
Wang Y, Wang Y, Chen W, Dong Y, Zhang G, Deng H, Liu X, Lu X, Wang F, Chen G, Xiao Y, Tang W. Comparative transcriptome analysis of the mechanism difference in heat stress response between indica rice cultivar "IR64" and japonica cultivar "Koshihikari" at the seedling stage. Front Genet 2023; 14:1135577. [PMID: 37153001 PMCID: PMC10160441 DOI: 10.3389/fgene.2023.1135577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
Heat stress (HS) has become a major abiotic stress in rice, considering the frequency and intensity of extreme hot weather. There is an urgent need to explore the differences in molecular mechanisms of HS tolerance in different cultivars, especially in indica and japonica. In this study, we investigated the transcriptome information of IR64 (indica, IR) and Koshihikari (japonica, Kos) in response to HS at the seedling stage. From the differentially expressed genes (DEGs) consistently expressed at six time points, 599 DEGs were identified that were co-expressed in both cultivars, as well as 945 and 1,180 DEGs that were specifically expressed in IR and Kos, respectively. The results of GO and KEGG analysis showed two different HS response pathways for IR and Kos. IR specifically expressed DEGs were mainly enriched in chloroplast-related pathways, whereas Kos specifically expressed DEGs were mainly enriched in endoplasmic reticulum and mitochondria-related pathways. Meanwhile, we highlighted the importance of NO biosynthesis genes, especially nitrate reductase genes, in the HS response of IR based on protein-protein interaction networks. In addition, we found that heat shock proteins and heat shock factors play very important roles in both cultivars. This study not only provides new insights into the differences in HS responses between different subspecies of rice, but also lays the foundation for future research on molecular mechanisms and breeding of heat-tolerant cultivars.
Collapse
Affiliation(s)
- Yingfeng Wang
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Yubo Wang
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Wenjuan Chen
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Yating Dong
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Guilian Zhang
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Huabing Deng
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Xiong Liu
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Xuedan Lu
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Feng Wang
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Guihua Chen
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Yunhua Xiao
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
- *Correspondence: Yunhua Xiao, ; Wenbang Tang,
| | - Wenbang Tang
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
- *Correspondence: Yunhua Xiao, ; Wenbang Tang,
| |
Collapse
|
19
|
Iqbal MZ, Jia T, Tang T, Anwar M, Ali A, Hassan MJ, Zhang Y, Tang Q, Peng Y. A Heat Shock Transcription Factor TrHSFB2a of White Clover Negatively Regulates Drought, Heat and Salt Stress Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2022; 23:12769. [PMID: 36361560 PMCID: PMC9654841 DOI: 10.3390/ijms232112769] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/19/2022] [Accepted: 10/10/2022] [Indexed: 11/15/2023] Open
Abstract
Heat shock transcription factors (HSF) are divided into classes A, B and C. Class A transcription factors are generally recognized as transcriptional activators, while functional characterization of class B and C heat shock transcription factors have not been fully developed in most plant species. We isolated and characterized a novel HSF transcription factor gene, TrHSFB2a (a class B HSF) gene, from the drought stress-sensitive forage crop species, white clover (Trifolium repens). TrHSFB2a was highly homologous to MtHSFB2b, CarHSFB2a, AtHSFB2b and AtHSFB2a. The expression of TrHSFB2a was strongly induced by drought (PEG6000 15% w/v), high temperature (35 °C) and salt stresses (200 mM L-1 NaCl) in white clover, while subcellular localization analysis showed that it is a nuclear protein. Overexpression of the white clover gene TrHSFB2a in Arabidopsis significantly reduced fresh and dry weight, relative water contents (RWC), maximum photosynthesis efficiency (Fv/Fm) and performance index on the absorption basis (PIABS), while it promoted leaf senescence, relative electrical conductivity (REC) and the contents of malondialdehyde (MDA) compared to a wild type under drought, heat and salt stress conditions of Arabidopsis plants. The silencing of its native homolog (AtHSFB2a) by RNA interference in Arabidopsis thaliana showed opposite trends by significantly increasing fresh and dry weights, RWC, maximum photosynthesis efficiency (Fv/Fm) and performance index on the absorption basis (PIABS) and reducing REC and MDA contents under drought, heat and salt stress conditions compared to wild type Arabidopsis plants. These phenotypic and physiological indicators suggested that the TrHSFB2a of white clover functions as a negative regulator of heat, salt and drought tolerance. The bioinformatics analysis showed that TrHSFB2a contained the core B3 repression domain (BRD) that has been reported as a repressor activator domain in other plant species that might repress the activation of the heat shock-inducible genes required in the stress tolerance process in plants. The present study explores one of the potential causes of drought and heat sensitivity in white clover that can be overcome to some extent by silencing the TrHSFB2a gene in white clover.
Collapse
Affiliation(s)
- Muhammad Zafar Iqbal
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tong Jia
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tao Tang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Muhammad Anwar
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| | - Asif Ali
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Muhammad Jawad Hassan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Youzhi Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qilin Tang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
20
|
Berchembrock YV, Pathak B, Maurya C, Botelho FBS, Srivastava V. Phenotypic and transcriptomic analysis reveals early stress responses in transgenic rice expressing Arabidopsis DREB1a. PLANT DIRECT 2022; 6:e456. [PMID: 36267847 PMCID: PMC9579989 DOI: 10.1002/pld3.456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 08/13/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Overexpression of Arabidopsis dehydration response element binding 1a (DREB1a) is a well-known approach for developing salinity, cold and/or drought stress tolerance. However, understanding of the genetic mechanisms associated with DREB1a expression in rice is generally limited. In this study, DREB1a-associated early responses were investigated in a transgenic rice line harboring cold-inducible DREB1a at a gene stacked locus. Although the function of other genes in the stacked locus was not relevant to stress tolerance, this study demonstrates DREB1a can be co-localized with other genes for multigenic trait enhancement. As expected, the transgenic lines displayed improved tolerance to salinity stress and water withholding as compared with non-transgenic controls. RNA sequencing and transcriptome analysis showed upregulation of complex transcriptional networks and metabolic reprogramming as DREB1a expression led to the upregulation of multiple transcription factor gene families, suppression of photosynthesis, and induction of secondary metabolism. In addition to the detection of previously described mechanisms such as production of protective molecules, potentially novel pathways were also revealed. These include jasmonate, auxin, and ethylene signaling, induction of JAZ and WRKY regulons, trehalose synthesis, and polyamine catabolism. These genes regulate various stress responses and ensure timely attenuation of the stress signal. Furthermore, genes associated with heat stress response were downregulated in DREB1a expressing lines, suggesting antagonism between heat and dehydration stress response pathways. In summary, through a complex transcriptional network, multiple stress signaling pathways are induced by DREB1a that presumably lead to early perception and prompt response toward stress tolerance as well as attenuation of the stress signal to prevent deleterious effects of the runoff response.
Collapse
Affiliation(s)
- Yasmin Vasques Berchembrock
- Department of Crop, Soil, and Environmental SciencesUniversity of Arkansas System Division of AgricultureFayettevilleArkansasUSA
| | - Bhuvan Pathak
- Department of Crop, Soil, and Environmental SciencesUniversity of Arkansas System Division of AgricultureFayettevilleArkansasUSA
- Present address:
Biological and Life Sciences Division, School of Arts and SciencesAhmedabad University Central CampusNavrangpuraAhmedabadIndia
| | - Chandan Maurya
- Department of Crop, Soil, and Environmental SciencesUniversity of Arkansas System Division of AgricultureFayettevilleArkansasUSA
| | | | - Vibha Srivastava
- Department of Crop, Soil, and Environmental SciencesUniversity of Arkansas System Division of AgricultureFayettevilleArkansasUSA
| |
Collapse
|
21
|
Barua D, Mishra A, Kirti PB, Barah P. Identifying Signal-Crosstalk Mechanism in Maize Plants during Combined Salinity and Boron Stress Using Integrative Systems Biology Approaches. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1027288. [PMID: 35505877 PMCID: PMC9057046 DOI: 10.1155/2022/1027288] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/19/2022] [Indexed: 01/04/2023]
Abstract
Combined stress has been seen as a major threat to world agriculture production. Maize is one of the leading cereal crops of the world due to its wide spectrum of growth conditions and is moderately sensitive to salt stress. A saline soil environment is a major factor that hinders its growth and overall yield and causes an increase in the concentration of micronutrients like boron, leading to excess over the requirement of the plant. Boron toxicity combined with salinity has been reported to be a serious threat to the yield and quality of maize. The response signatures of the maize plants to the combined effect of salinity and boron stress have not been studied well. We carried out an integrative systems-level analysis of the publicly available transcriptomic data generated on tolerant maize (Lluteño maize from the Atacama Desert, Chile) landrace under combined salt and boron stress. We identified significant biological processes that are differentially regulated in combined salt and boron stress in the leaves and roots of maize, respectively. Protein-protein interaction network analysis identified important roles of aldehyde dehydrogenase (ALDH), galactinol synthase 2 (GOLS2) proteins of leaf and proteolipid membrane potential regulator (pmpm4), metallothionein lea protein group 3 (mlg3), and cold regulated 410 (COR410) proteins of root in salt tolerance and regulating boron toxicity in maize. Identification of transcription factors coupled with regulatory network analysis using machine learning approach identified a few heat shock factors (HSFs) and NAC (NAM (no apical meristem, Petunia), ATAF1-2 (Arabidopsis thaliana activating factor), and CUC2 (cup-shaped cotyledon, Arabidopsis)) family transcription factors (TFs) to play crucial roles in salt tolerance, maintaining reactive oxygen species (ROS) levels and minimizing oxidative damage to the cells. These findings will provide new ways to design targeted functional validation experiments for developing multistress-resistant maize crops.
Collapse
Affiliation(s)
- Drishtee Barua
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India
| | - Asutosh Mishra
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India
| | - P. B. Kirti
- Agri Biotech Foundation, Agricultural University Campus, Rajendranagar, Hyderabad, 500030, India
| | - Pankaj Barah
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India
| |
Collapse
|
22
|
Nykiel M, Gietler M, Fidler J, Prabucka B, Rybarczyk-Płońska A, Graska J, Boguszewska-Mańkowska D, Muszyńska E, Morkunas I, Labudda M. Signal Transduction in Cereal Plants Struggling with Environmental Stresses: From Perception to Response. PLANTS (BASEL, SWITZERLAND) 2022; 11:1009. [PMID: 35448737 PMCID: PMC9026486 DOI: 10.3390/plants11081009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 05/13/2023]
Abstract
Cereal plants under abiotic or biotic stressors to survive unfavourable conditions and continue growth and development, rapidly and precisely identify external stimuli and activate complex molecular, biochemical, and physiological responses. To elicit a response to the stress factors, interactions between reactive oxygen and nitrogen species, calcium ions, mitogen-activated protein kinases, calcium-dependent protein kinases, calcineurin B-like interacting protein kinase, phytohormones and transcription factors occur. The integration of all these elements enables the change of gene expression, and the release of the antioxidant defence and protein repair systems. There are still numerous gaps in knowledge on these subjects in the literature caused by the multitude of signalling cascade components, simultaneous activation of multiple pathways and the intersection of their individual elements in response to both single and multiple stresses. Here, signal transduction pathways in cereal plants under drought, salinity, heavy metal stress, pathogen, and pest attack, as well as the crosstalk between the reactions during double stress responses are discussed. This article is a summary of the latest discoveries on signal transduction pathways and it integrates the available information to better outline the whole research problem for future research challenges as well as for the creative breeding of stress-tolerant cultivars of cereals.
Collapse
Affiliation(s)
- Małgorzata Nykiel
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| | - Marta Gietler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| | - Justyna Fidler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| | - Beata Prabucka
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| | - Anna Rybarczyk-Płońska
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| | - Jakub Graska
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| | | | - Ewa Muszyńska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland;
| | - Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland;
| | - Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| |
Collapse
|
23
|
Lee C, Chung CT, Hong WJ, Lee YS, Lee JH, Koh HJ, Jung KH. Transcriptional Changes in the Developing Rice Seeds Under Salt Stress Suggest Targets for Manipulating Seed Quality. FRONTIERS IN PLANT SCIENCE 2021; 12:748273. [PMID: 34819939 PMCID: PMC8606889 DOI: 10.3389/fpls.2021.748273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Global sea-level rise, the effect of climate change, poses a serious threat to rice production owing to saltwater intrusion and the accompanying increase in salt concentration. The reclaimed lands, comprising 22.1% of rice production in Korea, now face the crisis of global sea-level rise and a continuous increase in salt concentration. Here, we investigated the relationship between the decrease in seed quality and the transcriptional changes that occur in the developing rice seeds under salt stress. Compared to cultivation on normal land, the japonica rice cultivar, Samgwang, grown on reclaimed land showed a greatly increased accumulation of minerals, including sodium, magnesium, potassium, and sulfur, in seeds and a reduced yield, delayed heading, decreased thousand grain weight, and decreased palatability and amylose content. Samgwang showed phenotypical sensitivity to salt stress in the developing seeds. Using RNA-seq technology, we therefore carried out a comparative transcriptome analysis of the developing seeds grown on reclaimed and normal lands. In the biological process category, gene ontology enrichment analysis revealed that the upregulated genes were closely associated with the metabolism of biomolecules, including amino acids, carboxylic acid, lignin, trehalose, polysaccharide, and chitin, and to stress responses. MapMan analysis revealed the involvement of upregulated genes in the biosynthetic pathways of abscisic acid and melatonin and the relationship of trehalose, raffinose, and maltose with osmotic stress. Interestingly, many seed storage protein genes encoding glutelins and prolamins were upregulated in the developing seeds under salt stress, indicating the negative effect of the increase of storage proteins on palatability. Transcription factors upregulated in the developing seeds under salt stress included, in particular, bHLH, MYB, zinc finger, and heat shock factor, which could act as potential targets for the manipulation of seed quality under salt stress. Our study aims to develop a useful reference for elucidating the relationship between seed response mechanisms and decreased seed quality under salt stress, providing potential strategies for the improvement of seed quality under salt stress.
Collapse
Affiliation(s)
- Choonseok Lee
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Chong-Tae Chung
- Crop Research Division, Chungcheongnam-do Agricultural Research and Extension Services, Yesan, South Korea
| | - Woo-Jong Hong
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Yang-Seok Lee
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Jong-Hee Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, Miryang, South Korea
| | - Hee-Jong Koh
- Department of Agriculture, Forestry and Bioresources, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
24
|
Wang J, Chen L, Long Y, Si W, Cheng B, Jiang H. A Novel Heat Shock Transcription Factor ( ZmHsf08) Negatively Regulates Salt and Drought Stress Responses in Maize. Int J Mol Sci 2021; 22:ijms222111922. [PMID: 34769354 PMCID: PMC8584904 DOI: 10.3390/ijms222111922] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 12/04/2022] Open
Abstract
Heat shock transcription factors (HSFs) play important roles in plant growth, development, and stress responses. However, the function of these transcription factors in abiotic stress responses in maize (Zea mays) remains largely unknown. In this study, we characterized a novel HSF transcription factor gene, ZmHsf08, from maize. ZmHsf08 was highly homologous to SbHsfB1, BdHsfB1, and OsHsfB1, and has no transcriptional activation activity. The expression profiles demonstrated that ZmHsf08 was differentially expressed in various organs of maize and was induced by salt, drought, and abscisic acid (ABA) treatment. Moreover, the overexpression of ZmHsf08 in maize resulted in enhanced sensitivity to salt and drought stresses, displaying lower survival rates, higher reactive oxygen species (ROS) levels, and increased malondialdehyde (MDA) contents compared with wild-type (WT) plants. Furthermore, RT-qPCR analyses revealed that ZmHsf08 negatively regulates a number of stress/ABA-responsive genes under salt and drought stress conditions. Collectively, these results indicate that ZmHsf08 plays a negative role in response to salt and drought stresses in maize.
Collapse
|
25
|
Genome-wide identification and analysis of the heat shock transcription factor family in moso bamboo (Phyllostachys edulis). Sci Rep 2021; 11:16492. [PMID: 34389742 PMCID: PMC8363633 DOI: 10.1038/s41598-021-95899-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Heat shock transcription factors (HSFs) are central elements in the regulatory network that controls plant heat stress response. They are involved in multiple transcriptional regulatory pathways and play important roles in heat stress signaling and responses to a variety of other stresses. We identified 41 members of the HSF gene family in moso bamboo, which were distributed non-uniformly across its 19 chromosomes. Phylogenetic analysis showed that the moso bamboo HSF genes could be divided into three major subfamilies; HSFs from the same subfamily shared relatively conserved gene structures and sequences and encoded similar amino acids. All HSF genes contained HSF signature domains. Subcellular localization prediction indicated that about 80% of the HSF proteins were located in the nucleus, consistent with the results of GO enrichment analysis. A large number of stress response-associated cis-regulatory elements were identified in the HSF upstream promoter sequences. Synteny analysis indicated that the HSFs in the moso bamboo genome had greater collinearity with those of rice and maize than with those of Arabidopsis and pepper. Numerous segmental duplicates were found in the moso bamboo HSF gene family. Transcriptome data indicated that the expression of a number of PeHsfs differed in response to exogenous gibberellin (GA) and naphthalene acetic acid (NAA). A number of HSF genes were highly expressed in the panicles and in young shoots, suggesting that they may have functions in reproductive growth and the early development of rapidly-growing shoots. This study provides fundamental information on members of the bamboo HSF gene family and lays a foundation for further study of their biological functions in the regulation of plant responses to adversity.
Collapse
|
26
|
Genome-wide identification and molecular evolution analysis of the heat shock transcription factor (HSF) gene family in four diploid and two allopolyploid Gossypium species. Genomics 2021; 113:3112-3127. [PMID: 34246694 DOI: 10.1016/j.ygeno.2021.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 06/21/2021] [Accepted: 07/06/2021] [Indexed: 11/23/2022]
Abstract
Heat shock transcription factors (HSFs) can regulate plant development and stress response. The comprehensive evolutionary history of the HSF family remains elusive in cotton. In this study, each cotton species had 78 members in Gossypium barbadense and Gossypium hirsutum. The diploid species had 39 GaHSFs in Gossypium arboreum, 31 GrHSFs in Gossypium raimondii, 34 GtHSFs in Gossypium turneri, and 34 GlHSFs in Gossypium longicalyx. The HSF family in cotton can be classified into three subfamilies, with seven groups in subfamily A and five groups in subfamily B. Different groups exhibited distinct gene proportions, conserved motifs, gene structures, expansion rates, gene loss rates, and cis-regulatory elements. The paleohexaploidization event led to the expansion of the HSF family in cotton, and the gene duplication events in six Gossypium species were inherited from their common ancestor. The HSF family in diploid species had a divergent evolutionary history, whereas two cultivated tetraploids presented a highly conserved evolution of the HSF family. The HSF members in At and Dt subgenomes of the cultivated tetraploids showed a different evolution from their corresponding diploid donors. Some HSF members were regarded as key candidates for regulating cotton development and stress response. This study provided the comprehensive information on the evolutionary history of the HSF family in cotton.
Collapse
|
27
|
Pabuayon ICM, Kitazumi A, Cushman KR, Singh RK, Gregorio GB, Dhatt B, Zabet-Moghaddam M, Walia H, de los Reyes BG. Novel and Transgressive Salinity Tolerance in Recombinant Inbred Lines of Rice Created by Physiological Coupling-Uncoupling and Network Rewiring Effects. FRONTIERS IN PLANT SCIENCE 2021; 12:615277. [PMID: 33708229 PMCID: PMC7940525 DOI: 10.3389/fpls.2021.615277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/03/2021] [Indexed: 06/01/2023]
Abstract
The phenomenon of transgressive segregation, where a small minority of recombinants are outliers relative to the range of parental phenotypes, is commonly observed in plant breeding populations. While this phenomenon has been attributed to complementation and epistatic effects, the physiological and developmental synergism involved have not been fully illuminated by the QTL mapping approach alone, especially for stress-adaptive traits involving highly complex interactions. By systems-level profiling of the IR29 × Pokkali recombinant inbred population of rice, we addressed the hypothesis that novel salinity tolerance phenotypes are created by reconfigured physiological networks due to positive or negative coupling-uncoupling of developmental and physiological attributes of each parent. Real-time growth and hyperspectral profiling distinguished the transgressive individuals in terms of stress penalty to growth. Non-parental network signatures that led to either optimal or non-optimal integration of developmental with stress-related mechanisms were evident at the macro-physiological, biochemical, metabolic, and transcriptomic levels. Large positive net gain in super-tolerant progeny was due to ideal complementation of beneficial traits while shedding antagonistic traits. Super-sensitivity was explained by the stacking of multiple antagonistic traits and loss of major beneficial traits. The synergism uncovered by the phenomics approach in this study supports the modern views of the Omnigenic Theory, emphasizing the synergy or lack thereof between core and peripheral components. This study also supports a breeding paradigm rooted on genomic modeling from multi-dimensional genetic, physiological, and phenotypic profiles to create novel adaptive traits for new crop varieties of the 21st century.
Collapse
Affiliation(s)
- Isaiah C. M. Pabuayon
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Ai Kitazumi
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Kevin R. Cushman
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | | | | | - Balpreet Dhatt
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Masoud Zabet-Moghaddam
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, United States
| | - Harkamal Walia
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | | |
Collapse
|
28
|
Yang L, Lei L, Liu H, Wang J, Zheng H, Zou D. Whole-genome mining of abiotic stress gene loci in rice. PLANTA 2020; 252:85. [PMID: 33052473 DOI: 10.1007/s00425-020-03488-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
We projected meta-QTL (MQTL) for drought, salinity, cold state, and high metal ion tolerance in rice using a meta-analysis based on high-density consensus maps. In addition, a genome-wide association analysis was used to validate the results of the meta-analysis, and four new chromosome intervals for mining abiotic stress candidate genes were obtained. Drought, severe cold, high salinity, and high metallic ion concentrations severely restrict rice production. Consequently, the breeding of abiotic stress-tolerant variety is being paid increasingly more attention. This study aimed to identify meta-quantitative trait loci (MQTL) for abiotic stress tolerance in rice, as well as the molecular markers and potential candidate genes of the MQTL regions. We summarized 2785 rice QTL and conducted a meta-analysis of 159 studies. We found 82 drought tolerance (DT), 70 cold tolerance (CT), 70 salt tolerance (ST), and 51 heavy metal ion tolerance (IT) meta-QTL, as well as 20 DT, 11 CT, 22 ST, and 5 IT candidate genes in the MQTL interval. Thirty-one multiple-tolerance related MQTL regions, which were highly enriched, were also detected, and 13 candidate genes related to multiple-tolerance were obtained. In addition, the correlation between DT, CT, and ST was significant in the rice genome. Four candidate genes and four MM-QTL regions were detected simultaneously by GWAS and meta-analysis. The four candidate genes showed distinct genetic differentiation and substantial genetic distance between indica and japonica rice, and the four MM-QTL are potential intervals for mining abiotic stress-related candidate genes. The candidate genes identified in this study will not only be useful for marker-assisted selection and pyramiding but will also accelerate the fine mapping and cloning of the candidate genes associated with abiotic stress-tolerance mechanisms in rice.
Collapse
Affiliation(s)
- Luomiao Yang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Lei Lei
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - HuaLong Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Jingguo Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Hongliang Zheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Detang Zou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
29
|
Zhang X, Xu W, Ni D, Wang M, Guo G. Genome-wide characterization of tea plant (Camellia sinensis) Hsf transcription factor family and role of CsHsfA2 in heat tolerance. BMC PLANT BIOLOGY 2020; 20:244. [PMID: 32471355 PMCID: PMC7260767 DOI: 10.1186/s12870-020-02462-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 05/24/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Heat stress factors (Hsfs) play vital roles in signal transduction pathways operating in responses to environmental stresses. However, Hsf gene family has not been thoroughly explored in tea plant (Camellia sinensis L.). RESULTS In this study, we identified 25 CsHsf genes in C. sinensis that were separated by phylogenetic analysis into three sub-families (i.e., A, B, and C). Gene structures, conserved domains and motifs analyses indicated that the CsHsf members in each class were relatively conserved. Various cis-acting elements involved in plant growth regulation, hormone responses, stress responses, and light responses were located in the promoter regions of CsHsfs. Furthermore, degradome sequencing analysis revealed that 7 CsHsfs could be targeted by 9 miRNAs. The expression pattern of each CsHsf gene was significantly different in eight tissues. Many CsHsfs were differentially regulated by drought, salt, and heat stresses, as well as exogenous abscisic acid (ABA) and Ca2+. In addition, CsHsfA2 was located in the nucleus. Heterologous expression of CsHsfA2 improved thermotolerance in transgenic yeast, suggesting its potential role in the regulation of heat stress response. CONCLUSIONS A comprehensive genome-wide analysis of Hsf in C. sinensis present the global identification and functional prediction of CsHsfs. Most of them were implicated in a complex gene regulatory network controlling various abiotic stress responses and signal transduction pathways in tea plants. Additionally, heterologous expression of CsHsfA2 increased thermotolerance of transgenic yeast. These findings provide new insights into the functional divergence of CsHsfs and a basis for further research on CsHsfs functions.
Collapse
Affiliation(s)
- Xuyang Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan No. 1, Wuhan, 430070 Hubei Province P. R. China
| | - Wenluan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan No. 1, Wuhan, 430070 Hubei Province P. R. China
| | - Dejiang Ni
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan No. 1, Wuhan, 430070 Hubei Province P. R. China
| | - Mingle Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan No. 1, Wuhan, 430070 Hubei Province P. R. China
| | - Guiyi Guo
- Henan Key Laboratory of Tea Plant Comprehensive Utilization in South Henan, Xinyang Agriculture and Forestry University, Xinyang, 464000 China
| |
Collapse
|
30
|
Zhang H, Li G, Fu C, Duan S, Hu D, Guo X. Genome-wide identification, transcriptome analysis and alternative splicing events of Hsf family genes in maize. Sci Rep 2020; 10:8073. [PMID: 32415117 PMCID: PMC7229205 DOI: 10.1038/s41598-020-65068-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/26/2020] [Indexed: 12/13/2022] Open
Abstract
Heat shock transcription factor (Hsf) plays a transcriptional regulatory role in plants during heat stress and other abiotic stresses. 31 non-redundant ZmHsf genes from maize were identified and clustered in the reference genome sequenced by Single Molecule Real Time (SMRT). The amino acid length, chromosome location, and presence of functional domains and motifs of all ZmHsfs sequences were analyzed and determined. Phylogenetics and collinearity analyses reveal gene duplication events in Hsf family and collinearity blocks shared by maize, rice and sorghum. The results of RNA-Seq analysis of anthesis and post-anthesis periods in maize show different expression patterns of ZmHsf family members. Specially, ZmHsf26 of A2 subclass and ZmHsf23 of A6 subclass were distinctly up-regulated after heat shock (HS) at post-anthesis stage. Nanopore transcriptome sequencing of maize seedlings showed that alternative splicing (AS) events occur in ZmHsf04 and ZmHsf17 which belong to subclass A2 after heat shock. Through sequence alignment, semi-quantitative and quantitative RT-PCR, we found that intron retention events occur in response to heat shock, and newly splice isoforms, ZmHsf04-II and ZmHsf17-II, were transcribed. Both new isoforms contain several premature termination codons in their introns which may lead to early termination of translation. The ZmHsf04 expression was highly increased than that of ZmHsf17, and the up-regulation of ZmHsf04-I transcription level were significantly higher than that of ZmHsf04-II after HS.
Collapse
Affiliation(s)
- Huaning Zhang
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, P.R. China
| | - Guoliang Li
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, P.R. China
| | - Cai Fu
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, P.R. China
| | - Shuonan Duan
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, P.R. China
| | - Dong Hu
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, P.R. China.
| | - Xiulin Guo
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, P.R. China.
| |
Collapse
|
31
|
Bian XH, Li W, Niu CF, Wei W, Hu Y, Han JQ, Lu X, Tao JJ, Jin M, Qin H, Zhou B, Zhang WK, Ma B, Wang GD, Yu DY, Lai YC, Chen SY, Zhang JS. A class B heat shock factor selected for during soybean domestication contributes to salt tolerance by promoting flavonoid biosynthesis. THE NEW PHYTOLOGIST 2020; 225:268-283. [PMID: 31400247 DOI: 10.1111/nph.16104] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/01/2019] [Indexed: 05/24/2023]
Abstract
Soybean (Glycine max) production is severely affected in unfavorable environments. Identification of the regulatory factors conferring stress tolerance would facilitate soybean breeding. In this study, through coexpression network analysis of salt-tolerant wild soybeans, together with molecular and genetic approaches, we revealed a previously unidentified function of a class B heat shock factor, HSFB2b, in soybean salt stress response. We showed that HSFB2b improves salt tolerance through the promotion of flavonoid accumulation by activating one subset of flavonoid biosynthesis-related genes and by inhibiting the repressor gene GmNAC2 to release another subset of genes in the flavonoid biosynthesis pathway. Moreover, four promoter haplotypes of HSFB2b were identified from wild and cultivated soybeans. Promoter haplotype II from salt-tolerant wild soybean Y20, with high promoter activity under salt stress, is probably selected for during domestication. Another promoter haplotype, III, from salt-tolerant wild soybean Y55, had the highest promoter activity under salt stress, had a low distribution frequency and may be subjected to the next wave of selection. Together, our results revealed the mechanism of HSFB2b in soybean salt stress tolerance. Its promoter variations were identified, and the haplotype with high activity may be adopted for breeding better soybean cultivars that are adapted to stress conditions.
Collapse
Affiliation(s)
- Xiao-Hua Bian
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Li
- National Center for Soybean Improvement, National Key Lab of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Can-Fang Niu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yang Hu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Qi Han
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang Lu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Jun Tao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Meng Jin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Qin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bin Zhou
- Institute of Crop Science, Anhui Provincial Academy of Agricultural Sciences, Hefei, 230031, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- Biology and Agriculture Research Center, School of Chemistry and Biological Engineering, University of Science and Technology, Beijing, 100024, China
| | - Guo-Dong Wang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - De-Yue Yu
- National Center for Soybean Improvement, National Key Lab of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yong-Cai Lai
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
32
|
Duan S, Liu B, Zhang Y, Li G, Guo X. Genome-wide identification and abiotic stress-responsive pattern of heat shock transcription factor family in Triticum aestivum L. BMC Genomics 2019; 20:257. [PMID: 30935363 PMCID: PMC6444544 DOI: 10.1186/s12864-019-5617-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/18/2019] [Indexed: 01/01/2023] Open
Abstract
Background Enhancement of crop productivity under various abiotic stresses is a major objective of agronomic research. Wheat (Triticum aestivum L.) as one of the world’s staple crops is highly sensitive to heat stress, which can adversely affect both yield and quality. Plant heat shock factors (Hsfs) play a crucial role in abiotic and biotic stress response and conferring stress tolerance. Thus, multifunctional Hsfs may be potentially targets in generating novel strains that have the ability to survive environments that feature a combination of stresses. Result In this study, using the released genome sequence of wheat and the novel Hsf protein HMM (Hidden Markov Model) model constructed with the Hsf protein sequence of model monocot (Oryza sativa) and dicot (Arabidopsis thaliana) plants, genome-wide TaHsfs identification was performed. Eighty-two non-redundant and full-length TaHsfs were randomly located on 21 chromosomes. The structural characteristics and phylogenetic analysis with Arabidopsis thaliana, Oryza sativa and Zea mays were used to classify these genes into three major classes and further into 13 subclasses. A novel subclass, TaHsfC3 was found which had not been documented in wheat or other plants, and did not show any orthologous genes in A. thaliana, O. sativa, or Z. mays Hsf families. The observation of a high proportion of homeologous TaHsf gene groups suggests that the allopolyploid process, which occurred after the fusion of genomes, contributed to the expansion of the TaHsf family. Furthermore, TaHsfs expression profiling by RNA-seq revealed that the TaHsfs could be responsive not only to abiotic stresses but also to phytohormones. Additionally, the TaHsf family genes exhibited class-, subclass- and organ-specific expression patterns in response to various treatments. Conclusions A comprehensive analysis of Hsf genes was performed in wheat, which is useful for better understanding one of the most complex Hsf gene families. Variations in the expression patterns under different abiotic stress and phytohormone treatments provide clues for further analysis of the TaHsfs functions and corresponding signal transduction pathways in wheat. Electronic supplementary material The online version of this article (10.1186/s12864-019-5617-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuonan Duan
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, 050051, China
| | - Binhui Liu
- Institute of Dryland Farming, Hebei Academy of Agriculture and Forestry Sciences, Hengshui, 053000, China
| | - Yuanyuan Zhang
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Guoliang Li
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, 050051, China.
| | - Xiulin Guo
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, 050051, China.
| |
Collapse
|
33
|
Meta-Analysis of Salt Stress Transcriptome Responses in Different Rice Genotypes at the Seedling Stage. PLANTS 2019; 8:plants8030064. [PMID: 30871082 PMCID: PMC6473595 DOI: 10.3390/plants8030064] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/28/2019] [Accepted: 03/08/2019] [Indexed: 11/16/2022]
Abstract
Rice (Oryza sativa L.) is one of the most important staple food crops worldwide, while its growth and productivity are threatened by various abiotic stresses, especially salt stress. Unraveling how rice adapts to salt stress at the transcription level is vital. It can provide valuable information on enhancing the salt stress tolerance performance of rice via genetic engineering technologies. Here, we conducted a meta-analysis of different rice genotypes at the seedling stage based on 96 public microarray datasets, aiming to identify the key salt-responsive genes and understand the molecular response mechanism of rice under salt stress. In total, 5559 genes were identified to be differentially expressed genes (DEGs) under salt stress, and 3210 DEGs were identified during the recovery process. The Gene Ontology (GO) enrichment results revealed that the salt-response mechanisms of shoots and roots were different. A close-knit signaling network, consisting of the Ca2+ signal transduction pathway, the mitogen-activated protein kinase (MAPK) cascade, multiple hormone signals, transcription factors (TFs), transcriptional regulators (TRs), protein kinases (PKs), and other crucial functional proteins, plays an essential role in rice salt stress response. In this study, many unreported salt-responsive genes were found. Besides this, MapMan results suggested that TNG67 can shift to the fermentation pathway to produce energy under salt stress and may enhance the Calvin cycle to repair a damaged photosystem during the recovery stage. Taken together, these findings provide novel insights into the salt stress molecular response and introduce numerous candidate genes for rice salt stress tolerance breeding.
Collapse
|
34
|
|
35
|
Xiang J, Chen X, Hu W, Xiang Y, Yan M, Wang J. Overexpressing heat-shock protein OsHSP50.2 improves drought tolerance in rice. PLANT CELL REPORTS 2018; 37:1585-1595. [PMID: 30099612 DOI: 10.1007/s00299-018-2331-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/06/2018] [Indexed: 05/24/2023]
Abstract
OsHSP50.2, an HSP90 family gene up-regulated by heat and osmotic stress treatments, positively regulates drought stress tolerance probably by modulating ROS homeostasis and osmotic adjustment in rice. Heat-shock proteins (HSPs) serve as molecular chaperones for a variety of client proteins in abiotic stress response and play pivotal roles in protecting plants against stress, but the molecular mechanism remains largely unknown. Here, we report an HSP90 family gene, OsHSP50.2, which acts as a positive regulator in drought stress tolerance in rice (Oryza sativa). OsHSP50.2 was ubiquitously expressed and its transcript level was up-regulated by heat and osmotic stress treatments. Overexpression of OsHSP50.2 in rice reduced water loss and enhanced the transgenic plant tolerance to drought and osmotic stresses. The OsHSP50.2-overexpressing plants exhibited significantly lower levels of electrolyte leakage and malondialdehyde (MDA) and less decrease of chlorophyll than wild-type plants under drought stress. Moreover, the OsHSP50.2-overexpressing plants had significantly higher SOD activity under drought stress compared with the wild type. These results imply that OsHSP50.2 positively regulates drought stress tolerance in rice, probably through the modulation of reactive oxygen species (ROS) homeostasis. Additionally, the OsHSP50.2-overexpressing plants accumulated significantly higher content of proline than the wild type under drought stress, which contributes to the improved protection ability from drought stress damage via osmotic adjustment. Our findings reveal that OsHSP50.2 plays a crucial role in drought stress response, and it may possess high potential usefulness in drought tolerance improvement of rice.
Collapse
Affiliation(s)
- Jianhua Xiang
- Institute of Ecological Landscape Restoration, Hunan University of Science and Technology, Taoyuan Rd., Xiangtan, 411201, Hunan, China.
| | - Xinbo Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Hu
- Institute of Ecological Landscape Restoration, Hunan University of Science and Technology, Taoyuan Rd., Xiangtan, 411201, Hunan, China
| | - Yanci Xiang
- Institute of Ecological Landscape Restoration, Hunan University of Science and Technology, Taoyuan Rd., Xiangtan, 411201, Hunan, China
| | - Mingli Yan
- School of Life Science, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Jieming Wang
- Institute of Ecological Landscape Restoration, Hunan University of Science and Technology, Taoyuan Rd., Xiangtan, 411201, Hunan, China
| |
Collapse
|
36
|
Singh G, Sarkar NK, Grover A. Mapping of domains of heat stress transcription factor OsHsfA6a responsible for its transactivation activity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:80-90. [PMID: 30080644 DOI: 10.1016/j.plantsci.2018.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/10/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
Elevated temperatures affect the growth and reproduction of crop plants and thus have become concern worldwide. Hsp101/ClpB protein is a major molecular chaperone, performing dis-aggregation of protein aggregates formed during heat stress. In rice, OsHsfA6a binds to the promoter of OsHsp101/ClpB-C and regulates its expression. In this study, analysis of C-terminal domains of ClassA OsHsfs revealed the presence of aromatic, hydrophobic, acidic (AHA) and nuclear export signal (NES) motifs in all the members. Using deletion constructs, we show that the activation potential of OsHsfA6a is confined in the C-terminal activation domain comprising of AHA and NES sequences. The results obtained in yeast were complemented with transient expression of reporter in protoplast (TERP) based assay. Detailed analysis of OsHsfA6a splice variants shows the presence of one full version and a DBD truncated smaller version whose existence needs experimental evidences. Phylogeny analysis revealed that OsHsfA6a has diverged from A6a/A6b forms of Arabidopsis and tomato and has no expressologs. OsHsfA6a in-silico network was enriched in MAP kinases along with Hsp70 and Hsp90 proteins. Thus, it appears that regulation of OsClpB-C by HsfA6a is unique in rice and activation potential of OsHsfA6a resides in the single AHA motif located in the C-terminal domain.
Collapse
Affiliation(s)
- Garima Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Neelam K Sarkar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
37
|
Xiang J, Zhou X, Zhang X, Liu A, Xiang Y, Yan M, Peng Y, Chen X. The Arabidopsis AtUNC-93 Acts as a Positive Regulator of Abiotic Stress Tolerance and Plant Growth via Modulation of ABA Signaling and K + Homeostasis. FRONTIERS IN PLANT SCIENCE 2018; 9:718. [PMID: 29899751 PMCID: PMC5989354 DOI: 10.3389/fpls.2018.00718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/11/2018] [Indexed: 05/29/2023]
Abstract
Potassium (K+) is one of the essential macronutrients required for plant growth and development, and the maintenance of cellular K+ homeostasis is important for plants to adapt to abiotic stresses and growth. However, the mechanism involved has not been understood clearly. In this study, we demonstrated that AtUNC-93 plays a crucial role in this process under the control of abscisic acid (ABA). AtUNC-93 was localized to the plasma membrane and mainly expressed in the vascular tissues in Arabidopsis thaliana. The atunc-93 mutants showed typical K+-deficient symptoms under low-K+ conditions. The K+ contents of atunc-93 mutants were significantly reduced in shoots but not in roots under either low-K+ or normal conditions compared with wild type plants, whereas the AtUNC-93-overexpressing lines still maintained relatively higher K+ contents in shoots under low-K+ conditions, suggesting that AtUNC-93 positively regulates K+ translocation from roots to shoots. The atunc-93 plants exhibited dwarf phenotypes due to reduced cell expansion, while AtUNC-93-overexpressing plants had larger bodies because of increased cell expansion. After abiotic stress and ABA treatments, the atunc-93 mutants was more sensitive to salt, drought, osmotic, heat stress and ABA than wild type plants, while the AtUNC-93-overexpressing lines showed enhanced tolerance to these stresses and insensitive phenotype to ABA. Furthermore, alterations in the AtUNC-93 expression changed expression of many ABA-responsive and stress-related genes. Our findings reveal that AtUNC-93 functions as a positive regulator of abiotic stress tolerance and plant growth by maintaining K+ homeostasis through ABA signaling pathway in Arabidopsis.
Collapse
Affiliation(s)
- Jianhua Xiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- Institute of Ecological Landscape Restoration, Hunan University of Science and Technology, Xiangtan, China
| | - Xiaoyun Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Xianwen Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Ailing Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yanci Xiang
- Institute of Ecological Landscape Restoration, Hunan University of Science and Technology, Xiangtan, China
| | - Mingli Yan
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan, China
| | - Yan Peng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Xinbo Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
38
|
Catolos M, Sandhu N, Dixit S, Shamsudin NAA, Naredo MEB, McNally KL, Henry A, Diaz MG, Kumar A. Genetic Loci Governing Grain Yield and Root Development under Variable Rice Cultivation Conditions. FRONTIERS IN PLANT SCIENCE 2017; 8:1763. [PMID: 29085383 PMCID: PMC5650699 DOI: 10.3389/fpls.2017.01763] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/26/2017] [Indexed: 05/21/2023]
Abstract
Drought is the major abiotic stress to rice grain yield under unpredictable changing climatic scenarios. The widely grown, high yielding but drought susceptible rice varieties need to be improved by unraveling the genomic regions controlling traits enhancing drought tolerance. The present study was conducted with the aim to identify quantitative trait loci (QTLs) for grain yield and root development traits under irrigated non-stress and reproductive-stage drought stress in both lowland and upland situations. A mapping population consisting of 480 lines derived from a cross between Dular (drought-tolerant) and IR64-21 (drought susceptible) was used. QTL analysis revealed three major consistent-effect QTLs for grain yield (qDTY1.1, qDTY1.3 , and qDTY8.1 ) under non-stress and reproductive-stage drought stress conditions, and 2 QTLs for root traits (qRT9.1 for root-growth angle and qRT5.1 for multiple root traits, i.e., seedling-stage root length, root dry weight and crown root number). The genetic locus qDTY1.1 was identified as hotspot for grain yield and yield-related agronomic and root traits. The study identified significant positive correlations among numbers of crown roots and mesocotyl length at the seedling stage and root length and root dry weight at depth at later stages with grain yield and yield-related traits. Under reproductive stage drought stress, the grain yield advantage of the lines with QTLs ranged from 24.1 to 108.9% under upland and 3.0-22.7% under lowland conditions over the lines without QTLs. The lines with QTL combinations qDTY1.3 +qDTY8.1 showed the highest mean grain yield advantage followed by lines having qDTY1.1 +qDTY8.1 and qDTY1.1 +qDTY8.1 +qDTY1.3 , across upland/lowland reproductive-stage drought stress. The identified QTLs for root traits, mesocotyl length, grain yield and yield-related traits can be immediately deployed in marker-assisted breeding to develop drought tolerant high yielding rice varieties.
Collapse
Affiliation(s)
- Margaret Catolos
- Rice Breeding Platform, International Rice Research Institute, Manila, Philippines
- Genetics and Molecular Biology Division, Institute of Biological Sciences, University of the Philippines Los Baños, Los Baños, Philippines
| | - Nitika Sandhu
- Rice Breeding Platform, International Rice Research Institute, Manila, Philippines
| | - Shalabh Dixit
- Rice Breeding Platform, International Rice Research Institute, Manila, Philippines
| | - Noraziya A. A. Shamsudin
- Rice Breeding Platform, International Rice Research Institute, Manila, Philippines
- School of Environmental and Natural Resource Sciences, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Ma E. B. Naredo
- Rice Breeding Platform, International Rice Research Institute, Manila, Philippines
| | - Kenneth L. McNally
- Rice Breeding Platform, International Rice Research Institute, Manila, Philippines
| | - Amelia Henry
- Rice Breeding Platform, International Rice Research Institute, Manila, Philippines
| | - Ma G. Diaz
- Genetics and Molecular Biology Division, Institute of Biological Sciences, University of the Philippines Los Baños, Los Baños, Philippines
| | - Arvind Kumar
- Rice Breeding Platform, International Rice Research Institute, Manila, Philippines
| |
Collapse
|
39
|
Deng M, Dong Y, Zhao Z, Li Y, Fan G. Dissecting the proteome dynamics of the salt stress induced changes in the leaf of diploid and autotetraploid Paulownia fortunei. PLoS One 2017; 12:e0181937. [PMID: 28750031 PMCID: PMC5531653 DOI: 10.1371/journal.pone.0181937] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 07/10/2017] [Indexed: 01/03/2023] Open
Abstract
Exposure to high salinity can trigger acclimation in many plants. Such an adaptative response is greatly advantageous for plants and involves extensive reprogramming at the molecular level. Acclimation allows plants to survive in environments that are prone to increasing salinity. In this study, diploid and autotetraploid Paulownia fortunei seedlings were used to detect alterations in leaf proteins in plants under salt stress. Up to 152 differentially abundant proteins were identified by Multiplex run iTRAQ-based quantitative proteomic and LC-MS/MS methods. Bioinformatics analysis suggested that P. fortunei leaves reacted to salt stress through a combination of common responses, such as induced metabolism, signal transduction, and regulation of transcription. This study offers a better understanding of the mechanisms of salt tolerance in P. fortunei and provides a list of potential target genes that could be engineered for salt acclimation in plants, especially trees.
Collapse
Affiliation(s)
- Minjie Deng
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan, P.R. China
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan, P.R. China
| | - Yanpeng Dong
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan, P.R. China
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan, P.R. China
| | - Zhenli Zhao
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan, P.R. China
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan, P.R. China
| | - Yongsheng Li
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan, P.R. China
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan, P.R. China
| | - Guoqiang Fan
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan, P.R. China
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan, P.R. China
- * E-mail:
| |
Collapse
|
40
|
Liu J, Qiao Q, Cheng X, Du G, Deng G, Zhao M, Liu F. Transcriptome differences between fiber-type and seed-type Cannabis sativa variety exposed to salinity. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2016; 22:429-443. [PMID: 27924117 PMCID: PMC5120038 DOI: 10.1007/s12298-016-0381-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/24/2016] [Accepted: 09/26/2016] [Indexed: 05/08/2023]
Abstract
The industrial hemp varieties 'Yunma 5' and 'Bamahuoma,' which demonstrate growth vigor and environmental adaptability, have been primarily cultivated in Yunnan and Guangxi, China, respectively, for fiber and seeds. The results of physiological measurements showed the phenotypic differences between the two varieties in response to salt stress. RNA-Seq analysis was first performed on leaves of both varieties sampled at four time intervals (0, 2, 4, 6 days) after treatment with salt (500 mM NaCl) We identified 220 co-up-regulated differentially expressed genes (DEGs) in the two varieties, while 26 up-regulated DEGs and 24 down-regulated DEGs were identified exclusively in the single varieties after 2 days of salt stress. Among the 220 DEGs, we identified 22 transcription factors, including key transcription factors involved in salt stress, such as MYB, NAC, GATA, and HSF. We applied gene expression profile analysis and found that 'Yunma 5' and 'Bamahuoma' have variety-specific pathways for resisting salt stress. The DEGs of 'Yunma 5' were enriched in spliceosome and amino acid metabolism genes, while the DEGs of 'Bamahuoma' were enriched in fatty acid metabolism, amino acid metabolism, and endoplasmic reticulum protein processing pathway. Although there were common DEGs, such as genes encoding cysteine protease and alpha/beta-hydrolase superfamily, the two varieties' responses to salt stress impacted different metabolic pathways. The DEGs that were co-expressed in both varieties under stress may provide useful insights into the tolerance of cultivated hemp and other bast fiber crops to saline soil conditions. These transcriptomes also represent reference sequences for industrial hemp.
Collapse
Affiliation(s)
- Jiajia Liu
- Plant Improvement and Utilization Lab, Yunnan University, Kunming, 650091 Yunnan China
| | - Qin Qiao
- Plant Improvement and Utilization Lab, Yunnan University, Kunming, 650091 Yunnan China
| | - Xia Cheng
- Plant Improvement and Utilization Lab, Yunnan University, Kunming, 650091 Yunnan China
| | - Guanghui Du
- Plant Improvement and Utilization Lab, Yunnan University, Kunming, 650091 Yunnan China
| | - Gang Deng
- Plant Improvement and Utilization Lab, Yunnan University, Kunming, 650091 Yunnan China
| | - Mingzhi Zhao
- Kunming Medical University Haiyuan College, Kunming, 650106 Yunnan China
| | - Feihu Liu
- Plant Improvement and Utilization Lab, Yunnan University, Kunming, 650091 Yunnan China
| |
Collapse
|
41
|
Liu ZW, Wu ZJ, Li XH, Huang Y, Li H, Wang YX, Zhuang J. Identification, classification, and expression profiles of heat shock transcription factors in tea plant (Camellia sinensis) under temperature stress. Gene 2015; 576:52-9. [PMID: 26431998 DOI: 10.1016/j.gene.2015.09.076] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 09/21/2015] [Accepted: 09/24/2015] [Indexed: 02/03/2023]
Abstract
In vascular plants, heat shock transcription factors (Hsfs) regulate heat stress response by regulating the expression of heat shock proteins. This study systematically and comprehensively analyzed the Hsf family in tea plant [Camellia sinensis (L.) O. Kuntze]. A total of 16 CsHsfs were identified from the transcriptome database of tea plant and analyzed for their phylogenetic relationships, motifs, and physicochemical characteristics. On the basis of the phylogenetic comparison of tea plant with Arabidopsis thaliana, Populus trichocarpa, Theobroma cacao, and Oryza sativa, the CsHsfs were classified into three classes, namely, A (56.25%), B (37.50%), and C (6.25%). Heat mapping showed that the expression profiles of CsHsf genes under non-stress conditions varied among four tea plant cultivars, namely, 'Yunnanshilixiang', 'Chawansanhao', 'Ruchengmaoyecha', and 'Anjibaicha'. Six CsHsf genes (CsHsfA1a, CsHsfA1b, CsHsfA6, CsHsfB1, CsHsfB2b, and CsHsfC1) were selected from classes A, B, and C to analyze the expression profiles of CsHsf genes through quantitative real-time PCR in 'Yingshuang', 'Anjibaicha', and 'Yunnanshilixiang' under high (38 °C) or low (4 °C) temperature stress. Temperature stress positively or negatively regulated all of the selected CsHsf genes, and the expression levels evidently varied even among CsHsf genes belonging to the same class. This study provided a relatively detailed summary of Hsfs in tea plant and may serve as a reference for further studies on the mechanism of temperature stress regulation by CsHsfs.
Collapse
Affiliation(s)
- Zhi-Wei Liu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi-Jun Wu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xing-Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Huang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yong-Xin Wang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
42
|
Fragkostefanakis S, Röth S, Schleiff E, Scharf KD. Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks. PLANT, CELL & ENVIRONMENT 2015; 38:1881-95. [PMID: 24995670 DOI: 10.1111/pce.12396] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/17/2014] [Accepted: 06/23/2014] [Indexed: 05/21/2023]
Abstract
Cell survival under high temperature conditions involves the activation of heat stress response (HSR), which in principle is highly conserved among different organisms, but shows remarkable complexity and unique features in plant systems. The transcriptional reprogramming at higher temperatures is controlled by the activity of the heat stress transcription factors (Hsfs). Hsfs allow the transcriptional activation of HSR genes, among which heat shock proteins (Hsps) are best characterized. Hsps belong to multigene families encoding for molecular chaperones involved in various processes including maintenance of protein homeostasis as a requisite for optimal development and survival under stress conditions. Hsfs form complex networks to activate downstream responses, but are concomitantly subjected to cell-type-dependent feedback regulation through factor-specific physical and functional interactions with chaperones belonging to Hsp90, Hsp70 and small Hsp families. There is increasing evidence that the originally assumed specialized function of Hsf/chaperone networks in the HSR turns out to be a complex central stress response system that is involved in the regulation of a broad variety of other stress responses and may also have substantial impact on various developmental processes. Understanding in detail the function of such regulatory networks is prerequisite for sustained improvement of thermotolerance in important agricultural crops.
Collapse
Affiliation(s)
- Sotirios Fragkostefanakis
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, Frankfurt/Main, 60438, Germany
- Cluster of Excellence Frankfurt, Goethe University, Max-von-Laue-Str. 9, Frankfurt/Main, 60438, Germany
| | - Sascha Röth
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, Frankfurt/Main, 60438, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, Frankfurt/Main, 60438, Germany
- Cluster of Excellence Frankfurt, Goethe University, Max-von-Laue-Str. 9, Frankfurt/Main, 60438, Germany
- Center of Membrane Proteomics, Goethe University, Max-von-Laue-Str. 9, Frankfurt/Main, 60438, Germany
| | - Klaus-Dieter Scharf
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, Frankfurt/Main, 60438, Germany
| |
Collapse
|
43
|
Sun J, Hu W, Zhou R, Wang L, Wang X, Wang Q, Feng Z, Li Y, Qiu D, He G, Yang G. The Brachypodium distachyon BdWRKY36 gene confers tolerance to drought stress in transgenic tobacco plants. PLANT CELL REPORTS 2015; 34:23-35. [PMID: 25224555 DOI: 10.1007/s00299-014-1684-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/03/2014] [Accepted: 09/05/2014] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE The expression of BdWRKY36 was upregulated by drought treatment. BdWRKY36 -overexpressing transgenic tobacco increased drought tolerance by controlling ROS homeostasis and regulating transcription of stress related genes. WRKY transcription factor plays important roles in plant growth, development and stress response. However, the function of group IIe WRKYs is less known. In this study, we cloned and characterized a gene of group IIe WRKY, designated as BdWRKY36, from Brachypodium distachyon. Transient expression of BdWRKY36 in onion epidermal cell suggested its localization in the nucleus. Transactivation assay revealed that the C-terminal region, instead of full length BdWRKY36, had transcriptional activity. BdWRKY36 expression was upregulated by drought. Overexpression of BdWRKY36 in transgenic tobacco plants resulted in enhanced tolerance to drought stress. Physiological-biochemical indices analyses showed that BdWRKY36-overexpressing tobacco lines had lesser ion leakage (IL) and reactive oxygen species (ROS) accumulation, but higher contents of chlorophyll, relative water content (RWC) and activities of antioxidant enzyme than that in control plants under drought condition. Meanwhile expression levels of some ROS-scavenging and stress-responsive genes were upregulated in BdWRKY36-overexpressing tobacco lines under drought stress. These results demonstrate that BdWRKY36 functions as a positive regulator of drought stress response by controlling ROS homeostasis and regulating transcription of stress related genes.
Collapse
Affiliation(s)
- Jiutong Sun
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, 430074, China,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
HsfB2b-mediated repression of PRR7 directs abiotic stress responses of the circadian clock. Proc Natl Acad Sci U S A 2014; 111:16172-7. [PMID: 25352668 DOI: 10.1073/pnas.1418483111] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The circadian clock perceives environmental signals to reset to local time, but the underlying molecular mechanisms are not well understood. Here we present data revealing that a member of the heat shock factor (Hsf) family is involved in the input pathway to the plant circadian clock. Using the yeast one-hybrid approach, we isolated several Hsfs, including Heat Shock Factor B2b (HsfB2b), a transcriptional repressor that binds the promoter of Pseudo Response Regulator 7 (PRR7) at a conserved binding site. The constitutive expression of HsfB2b leads to severely reduced levels of the PRR7 transcript and late flowering and elongated hypocotyls. HsfB2b function is important during heat and salt stress because HsfB2b overexpression sustains circadian rhythms, and the hsfB2b mutant has a short circadian period under these conditions. HsfB2b is also involved in the regulation of hypocotyl growth under warm, short days. Our findings highlight the role of the circadian clock as an integrator of ambient abiotic stress signals important for the growth and fitness of plants.
Collapse
|