1
|
Jiang C, Chen L, Ye C, Schick SF, Jacob P, Zhuang Y, Inman JL, Chen C, Gundel LA, Chang H, Snijders AM, Zou X, Mao JH, Hang B, Wang P. Thirdhand smoke exposure promotes gastric tumor development in mouse and human. ENVIRONMENT INTERNATIONAL 2024; 191:108986. [PMID: 39255676 DOI: 10.1016/j.envint.2024.108986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/22/2024] [Accepted: 08/24/2024] [Indexed: 09/12/2024]
Abstract
The pollution of indoor environments and the consequent health risks associated with thirdhand smoke (THS) are increasingly recognized in recent years. However, the carcinogenic potential of THS and its underlying mechanisms have yet to be thoroughly explored. In this study, we examined the effects of short-term THS exposure on the development of gastric cancer (GC) in vitro and in vivo. In a mouse model of spontaneous GC, CC036, we observed a significant increase in gastric tumor incidence and a decrease in tumor-free survival upon THS exposure as compared to control. RNA sequencing of primary gastric epithelial cells derived from CC036 mice showed that THS exposure increased expression of genes related to the extracellular matrix and cytoskeletal protein structure. We then identified a THS exposure-induced 91-gene expression signature in CC036 and a homologous 84-gene signature in human GC patients that predicted the prognosis, with secreted phosphoprotein 1 (SPP1) and tribbles pseudokinase 3 (TRIB3) emerging as potential targets through which THS may promote gastric carcinogenesis. We also treated human GC cell lines in vitro with media containing various concentrations of THS, which, in some exposure dose range, significantly increased their proliferation, invasion, and migration. We showed that THS exposure could activate the epithelial-mesenchymal transition (EMT) pathway at the transcript and protein level. We conclude that short-term exposure to THS is associated with an increased risk of GC and that activation of the EMT program could be one potential mechanism. Increased understanding of the cancer risk associated with THS exposure will help identify new preventive and therapeutic strategies for tobacco-related disease as well as provide scientific evidence and rationale for policy decisions related to THS pollution control to protect vulnerable subpopulations such as children.
Collapse
Affiliation(s)
- Chengfei Jiang
- Department of Gastroenterology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lingyan Chen
- Department of Gastroenterology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chunping Ye
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Suzaynn F Schick
- Department of Medicine, Division of Occupational Environmental and Climate Medicine, University of California, San Francisco, CA 94143, USA
| | - Peyton Jacob
- Department of Medicine, Division of Cardiology, Clinical Pharmacology Program, University of California, San Francisco, CA 94143, USA
| | - Yingjia Zhuang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Jamie L Inman
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Changbin Chen
- Shanghai Institute of Immunity and Infection, Chinese Academy of Science, Shanghai, China
| | - Lara A Gundel
- Indoor Environment Group, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Xiaoping Zou
- Department of Gastroenterology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Bo Hang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Pin Wang
- Department of Gastroenterology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China; Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Dubovik T, Lukačišin M, Starosvetsky E, LeRoy B, Normand R, Admon Y, Alpert A, Ofran Y, G'Sell M, Shen-Orr SS. Interactions between immune cell types facilitate the evolution of immune traits. Nature 2024; 632:350-356. [PMID: 38866051 PMCID: PMC11306095 DOI: 10.1038/s41586-024-07661-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
An essential prerequisite for evolution by natural selection is variation among individuals in traits that affect fitness1. The ability of a system to produce selectable variation, known as evolvability2, thus markedly affects the rate of evolution. Although the immune system is among the fastest-evolving components in mammals3, the sources of variation in immune traits remain largely unknown4,5. Here we show that an important determinant of the immune system's evolvability is its organization into interacting modules represented by different immune cell types. By profiling immune cell variation in bone marrow of 54 genetically diverse mouse strains from the Collaborative Cross6, we found that variation in immune cell frequencies is polygenic and that many associated genes are involved in homeostatic balance through cell-intrinsic functions of proliferation, migration and cell death. However, we also found genes associated with the frequency of a particular cell type that are expressed in a different cell type, exerting their effect in what we term cyto-trans. The vertebrate evolutionary record shows that genes associated in cyto-trans have faced weaker negative selection, thus increasing the robustness and hence evolvability2,7,8 of the immune system. This phenomenon is similarly observable in human blood. Our findings suggest that interactions between different components of the immune system provide a phenotypic space in which mutations can produce variation with little detriment, underscoring the role of modularity in the evolution of complex systems9.
Collapse
Affiliation(s)
- Tania Dubovik
- Department of Immunology, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- CytoReason, Tel-Aviv, Israel
| | - Martin Lukačišin
- Department of Immunology, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Elina Starosvetsky
- Department of Immunology, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- CytoReason, Tel-Aviv, Israel
| | - Benjamin LeRoy
- Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA
- Nike, Beaverton, OR, USA
| | - Rachelly Normand
- Department of Immunology, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Massachusetts General Hospital, Boston, MA, USA
| | - Yasmin Admon
- Department of Immunology, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- CytoReason, Tel-Aviv, Israel
| | - Ayelet Alpert
- Department of Immunology, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Department of Oncology, Rambam Health Care Campus, Haifa, Israel
| | - Yishai Ofran
- Department of Immunology, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Department of Haematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel
- Haematology and Bone Marrow Transplantation Department and the Eisenberg R&D Authority, Shaare Zedek Medical Centre, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Max G'Sell
- Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Shai S Shen-Orr
- Department of Immunology, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
3
|
Meade RK, Smith CM. Immunological roads diverged: mapping tuberculosis outcomes in mice. Trends Microbiol 2024:S0966-842X(24)00170-7. [PMID: 39034171 DOI: 10.1016/j.tim.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
The journey from phenotypic observation to causal genetic mechanism is a long and challenging road. For pathogens like Mycobacterium tuberculosis (Mtb), which causes tuberculosis (TB), host-pathogen coevolution has spanned millennia, costing millions of human lives. Mammalian models can systematically recapitulate host genetic variation, producing a spectrum of disease outcomes. Leveraging genome sequences and deep phenotyping data from infected mouse genetic reference populations (GRPs), quantitative trait locus (QTL) mapping approaches have successfully identified host genomic regions associated with TB phenotypes. Here, we review the ongoing optimization of QTL mapping study design alongside advances in mouse GRPs. These next-generation resources and approaches have enabled identification of novel host-pathogen interactions governing one of the most prevalent infectious diseases in the world today.
Collapse
Affiliation(s)
- Rachel K Meade
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA; University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | - Clare M Smith
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA; University Program in Genetics and Genomics, Duke University, Durham, NC, USA.
| |
Collapse
|
4
|
Abe K, Masuya H, Shiroishi T. The 36th International Mammalian Genome Conference: A scientific gathering under the cherry blossoms in Tsukuba. Genes Cells 2024; 29:525-531. [PMID: 38845473 DOI: 10.1111/gtc.13131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 07/06/2024]
Abstract
The 36th International Mammalian Genome Conference (IMGC) was held in a hybrid format at the Tsukuba International Congress Center in Tsukuba, Ibaraki, Japan, for 4 days from March 28 to 31, 2023. This international conference on functional genomics of mouse, human, and other mammalian species attracted 246 participants in total, of which 129 were from outside Japan, including Europe, the United States and Asia, and 117 participants were from Japan. The conference included three technical workshops, keynote lectures by domestic researchers, commemorative lectures for the conference awards, 57 oral presentations, and 97 poster presentations. The event was a great success. Topics included the establishment and analysis of disease models using genetically engineered or spontaneous mutant mice, systems genetic analysis using mouse strains such as wild-derived mice and recombinant inbred mouse strains, infectious diseases, immunology, and epigenetics. In addition, as a joint program, a two-day RIKEN Symposium was held, and active discussions continued over the four-day period. Also, there was a trainee symposium, in which young researchers were encouraged to participate, and excellent papers were selected as oral presentations in the main session.
Collapse
Affiliation(s)
- Kuniya Abe
- RIKEN BioResource Research Center, Ibaraki, Japan
| | | | | |
Collapse
|
5
|
Holt EA, Tyler A, Lakusta-Wong T, Lahue KG, Hankes KC, Teuscher C, Lynch RM, Ferris MT, Mahoney JM, Krementsov DN. Probing the basis of disease heterogeneity in multiple sclerosis using genetically diverse mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597205. [PMID: 38895248 PMCID: PMC11185616 DOI: 10.1101/2024.06.03.597205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Multiple sclerosis (MS) is a complex disease with significant heterogeneity in disease course and progression. Genetic studies have identified numerous loci associated with MS risk, but the genetic basis of disease progression remains elusive. To address this, we leveraged the Collaborative Cross (CC), a genetically diverse mouse strain panel, and experimental autoimmune encephalomyelitis (EAE). The thirty-two CC strains studied captured a wide spectrum of EAE severity, trajectory, and presentation, including severe-progressive, monophasic, relapsing remitting, and axial rotary (AR)-EAE, accompanied by distinct immunopathology. Sex differences in EAE severity were observed in six strains. Quantitative trait locus analysis revealed distinct genetic linkage patterns for different EAE phenotypes, including EAE severity and incidence of AR-EAE. Machine learning-based approaches prioritized candidate genes for loci underlying EAE severity ( Abcc4 and Gpc6 ) and AR-EAE ( Yap1 and Dync2h1 ). This work expands the EAE phenotypic repertoire and identifies novel loci controlling unique EAE phenotypes, supporting the hypothesis that heterogeneity in MS disease course is driven by genetic variation. Summary The genetic basis of disease heterogeneity in multiple sclerosis (MS) remains elusive. We leveraged the Collaborative Cross to expand the phenotypic repertoire of the experimental autoimmune encephalomyelitis (EAE) model of MS and identify loci controlling EAE severity, trajectory, and presentation.
Collapse
|
6
|
Knuth MM, Xue J, Elnagheeb M, Gharaibeh RZ, Schoenrock SA, McRitchie S, Brouwer C, Sumner SJ, Tarantino L, Valdar W, Rector RS, Simon JM, Ideraabdullah F. Early life exposure to vitamin D deficiency impairs molecular mechanisms that regulate liver cholesterol biosynthesis, energy metabolism, inflammation, and detoxification. Front Endocrinol (Lausanne) 2024; 15:1335855. [PMID: 38800476 PMCID: PMC11116800 DOI: 10.3389/fendo.2024.1335855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Emerging data suggests liver disease may be initiated during development when there is high genome plasticity and the molecular pathways supporting liver function are being developed. Methods Here, we leveraged our Collaborative Cross mouse model of developmental vitamin D deficiency (DVD) to investigate the role of DVD in dysregulating the molecular mechanisms underlying liver disease. We defined the effects on the adult liver transcriptome and metabolome and examined the role of epigenetic dysregulation. Given that the parental origin of the genome (POG) influences response to DVD, we used our established POG model [POG1-(CC011xCC001)F1 and POG2-(CC001xCC011)F1] to identify interindividual differences. Results We found that DVD altered the adult liver transcriptome, primarily downregulating genes controlling liver development, response to injury/infection (detoxification & inflammation), cholesterol biosynthesis, and energy production. In concordance with these transcriptional changes, we found that DVD decreased liver cell membrane-associated lipids (including cholesterol) and pentose phosphate pathway metabolites. Each POG also exhibited distinct responses. POG1 exhibited almost 2X more differentially expressed genes (DEGs) with effects indicative of increased energy utilization. This included upregulation of lipid and amino acid metabolism genes and increased intermediate lipid and amino acid metabolites, increased energy cofactors, and decreased energy substrates. POG2 exhibited broader downregulation of cholesterol biosynthesis genes with a metabolomics profile indicative of decreased energy utilization. Although DVD primarily caused loss of liver DNA methylation for both POGs, only one epimutation was shared, and POG2 had 6.5X more differentially methylated genes. Differential methylation was detected at DEGs regulating developmental processes such as amino acid transport (POG1) and cell growth & differentiation (e.g., Wnt & cadherin signaling, POG2). Conclusions These findings implicate a novel role for maternal vitamin D in programming essential offspring liver functions that are dysregulated in liver disease. Importantly, impairment of these processes was not rescued by vitamin D treatment at weaning, suggesting these effects require preventative measures. Substantial differences in POG response to DVD demonstrate that the parental genomic context of exposure determines offspring susceptibility.
Collapse
Affiliation(s)
- Megan M. Knuth
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jing Xue
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| | - Marwa Elnagheeb
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Raad Z. Gharaibeh
- Department of Medicine, Division of Gastroenterology, University of Florida, Gainesville, FL, United States
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| | - Sarah A. Schoenrock
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Susan McRitchie
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| | - Cory Brouwer
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, United States
- University of North Carolina at Charlotte Bioinformatics Service Division, North Carolina Research Campus, Kannapolis, NC, United States
| | - Susan J. Sumner
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- Department of Nutrition, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lisa Tarantino
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - William Valdar
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - R. Scott Rector
- Research Service, Harry S. Truman Memorial Veterans Medical Center, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO, United States
| | - Jeremy M. Simon
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Neuroscience Center Bioinformatics Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Folami Ideraabdullah
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- Department of Nutrition, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
7
|
Fisher SA, Patrick K, Hoang T, Marcq E, Behrouzfar K, Young S, Miller TJ, Robinson BWS, Bueno R, Nowak AK, Lesterhuis WJ, Morahan G, Lake RA. The MexTAg collaborative cross: host genetics affects asbestos related disease latency, but has little influence once tumours develop. FRONTIERS IN TOXICOLOGY 2024; 6:1373003. [PMID: 38694815 PMCID: PMC11061428 DOI: 10.3389/ftox.2024.1373003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
Objectives: This study combines two innovative mouse models in a major gene discovery project to assess the influence of host genetics on asbestos related disease (ARD). Conventional genetics studies provided evidence that some susceptibility to mesothelioma is genetic. However, the identification of host modifier genes, the roles they may play, and whether they contribute to disease susceptibility remain unknown. Here we report a study designed to rapidly identify genes associated with mesothelioma susceptibility by combining the Collaborative Cross (CC) resource with the well-characterised MexTAg mesothelioma mouse model. Methods: The CC is a powerful mouse resource that harnesses over 90% of common genetic variation in the mouse species, allowing rapid identification of genes mediating complex traits. MexTAg mice rapidly, uniformly, and predictably develop mesothelioma, but only after asbestos exposure. To assess the influence of host genetics on ARD, we crossed 72 genetically distinct CC mouse strains with MexTAg mice and exposed the resulting CC-MexTAg (CCMT) progeny to asbestos and monitored them for traits including overall survival, the time to ARD onset (latency), the time between ARD onset and euthanasia (disease progression) and ascites volume. We identified phenotype-specific modifier genes associated with these traits and we validated the role of human orthologues in asbestos-induced carcinogenesis using human mesothelioma datasets. Results: We generated 72 genetically distinct CCMT strains and exposed their progeny (2,562 in total) to asbestos. Reflecting the genetic diversity of the CC, there was considerable variation in overall survival and disease latency. Surprisingly, however, there was no variation in disease progression, demonstrating that host genetic factors do have a significant influence during disease latency but have a limited role once disease is established. Quantitative trait loci (QTL) affecting ARD survival/latency were identified on chromosomes 6, 12 and X. Of the 97-protein coding candidate modifier genes that spanned these QTL, eight genes (CPED1, ORS1, NDUFA1, HS1BP3, IL13RA1, LSM8, TES and TSPAN12) were found to significantly affect outcome in both CCMT and human mesothelioma datasets. Conclusion: Host genetic factors affect susceptibility to development of asbestos associated disease. However, following mesothelioma establishment, genetic variation in molecular or immunological mechanisms did not affect disease progression. Identification of multiple candidate modifier genes and their human homologues with known associations in other advanced stage or metastatic cancers highlights the complexity of ARD and may provide a pathway to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Scott A. Fisher
- National Centre for Asbestos Related Diseases (NCARD), Perth, WA, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Institute for Respiratory Health, University of Western Australia, Perth, WA, Australia
| | - Kimberley Patrick
- National Centre for Asbestos Related Diseases (NCARD), Perth, WA, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Institute for Respiratory Health, University of Western Australia, Perth, WA, Australia
| | - Tracy Hoang
- National Centre for Asbestos Related Diseases (NCARD), Perth, WA, Australia
- Institute for Respiratory Health, University of Western Australia, Perth, WA, Australia
| | - Elly Marcq
- Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
- Lab of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kiarash Behrouzfar
- National Centre for Asbestos Related Diseases (NCARD), Perth, WA, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Institute for Respiratory Health, University of Western Australia, Perth, WA, Australia
| | - Sylvia Young
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Timothy J. Miller
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Bruce W. S. Robinson
- National Centre for Asbestos Related Diseases (NCARD), Perth, WA, Australia
- Institute for Respiratory Health, University of Western Australia, Perth, WA, Australia
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Raphael Bueno
- Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Anna K. Nowak
- National Centre for Asbestos Related Diseases (NCARD), Perth, WA, Australia
- Institute for Respiratory Health, University of Western Australia, Perth, WA, Australia
- Medical School, The University of Western Australia, Perth, WA, Australia
| | | | - Grant Morahan
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Richard A. Lake
- National Centre for Asbestos Related Diseases (NCARD), Perth, WA, Australia
- Institute for Respiratory Health, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
8
|
Shannon T, Cotter C, Fitzgerald J, Houle S, Levine N, Shen Y, Rajjoub N, Dobres S, Iyer S, Xenakis J, Lynch R, de Villena FPM, Kokiko-Cochran O, Gu B. Genetic diversity drives extreme responses to traumatic brain injury and post-traumatic epilepsy. Exp Neurol 2024; 374:114677. [PMID: 38185315 DOI: 10.1016/j.expneurol.2024.114677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/21/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Traumatic brain injury (TBI) is a complex and heterogeneous condition that can cause wide-spectral neurological sequelae such as behavioral deficits, sleep abnormalities, and post-traumatic epilepsy (PTE). However, understanding the interaction of TBI phenome is challenging because few animal models can recapitulate the heterogeneity of TBI outcomes. We leveraged the genetically diverse recombinant inbred Collaborative Cross (CC) mice panel and systematically characterized TBI-related outcomes in males from 12 strains of CC and the reference C57BL/6J mice. We identified unprecedented extreme responses in multiple clinically relevant traits across CC strains, including weight change, mortality, locomotor activity, cognition, and sleep. Notably, we identified CC031 mouse strain as the first rodent model of PTE that exhibit frequent and progressive post-traumatic seizures after moderate TBI induced by lateral fluid percussion. Multivariate analysis pinpointed novel biological interactions and three principal components across TBI-related modalities. Estimate of the proportion of TBI phenotypic variability attributable to strain revealed large range of heritability, including >70% heritability of open arm entry time of elevated plus maze. Our work provides novel resources and models that can facilitate genetic mapping and the understanding of the pathobiology of TBI and PTE.
Collapse
Affiliation(s)
- Tyler Shannon
- Department of Neuroscience, Ohio State University, Columbus, USA
| | - Christopher Cotter
- Department of Neuroscience, Ohio State University, Columbus, USA; Institute for Behavioral Medicine Research, Neurological Institute, Ohio State University, Columbus, USA
| | - Julie Fitzgerald
- Department of Neuroscience, Ohio State University, Columbus, USA; Institute for Behavioral Medicine Research, Neurological Institute, Ohio State University, Columbus, USA
| | - Samuel Houle
- Department of Neuroscience, Ohio State University, Columbus, USA; Institute for Behavioral Medicine Research, Neurological Institute, Ohio State University, Columbus, USA
| | - Noah Levine
- Electrical and Computer Engineering Program, Ohio State University, Columbus, USA
| | - Yuyan Shen
- Department of Neuroscience, Ohio State University, Columbus, USA; College of Veterinary Medicine, Ohio State University, Columbus, USA
| | - Noora Rajjoub
- Department of Neuroscience, Ohio State University, Columbus, USA
| | - Shannon Dobres
- Department of Neuroscience, Ohio State University, Columbus, USA
| | - Sidharth Iyer
- Department of Neuroscience, Ohio State University, Columbus, USA
| | - James Xenakis
- Department of Genetics, University of North Carolina, Chapel Hill, USA
| | - Rachel Lynch
- Department of Genetics, University of North Carolina, Chapel Hill, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
| | - Olga Kokiko-Cochran
- Department of Neuroscience, Ohio State University, Columbus, USA; Institute for Behavioral Medicine Research, Neurological Institute, Ohio State University, Columbus, USA; Chronic Brain Injury Program, Ohio State University, Columbus, USA
| | - Bin Gu
- Department of Neuroscience, Ohio State University, Columbus, USA; Chronic Brain Injury Program, Ohio State University, Columbus, USA.
| |
Collapse
|
9
|
Graham JB, Swarts JL, Leist SR, Schäfer A, Bell TA, Hock P, Farrington J, Shaw GD, Ferris MT, Pardo-Manuel de Villena F, Baric RS, Lund JM. Unique immune profiles in collaborative cross mice linked to survival and viral clearance upon infection. iScience 2024; 27:109103. [PMID: 38361611 PMCID: PMC10867580 DOI: 10.1016/j.isci.2024.109103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/18/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
The response to infection is generally heterogeneous and diverse, with some individuals remaining asymptomatic while others present with severe disease or a diverse range of symptoms. Here, we address the role of host genetics on immune phenotypes and clinical outcomes following viral infection by studying genetically diverse mice from the Collaborative Cross (CC), allowing for use of a small animal model with controlled genetic diversity while maintaining genetic replicates. We demonstrate variation by deeply profiling a broad range of innate and adaptive immune cell phenotypes at steady-state in 63 genetically distinct CC mouse strains and link baseline immune signatures with virologic and clinical disease outcomes following infection of mice with herpes simplex virus 2 (HSV-2) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This work serves as a resource for CC strain selection based on steady-state immune phenotypes or disease presentation upon viral infection, and further, points to possible pre-infection immune correlates of survival and early viral clearance upon infection.
Collapse
Affiliation(s)
- Jessica B. Graham
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jessica L. Swarts
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Sarah R. Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Timothy A. Bell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Pablo Hock
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joe Farrington
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ginger D. Shaw
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Martin T. Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jennifer M. Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| |
Collapse
|
10
|
Brown AJ, Won JJ, Wolfisberg R, Fahnøe U, Catanzaro N, West A, Moreira FR, Nogueira Batista M, Ferris MT, Linnertz CL, Leist SR, Nguyen C, De la Cruz G, Midkiff BR, Xia Y, Evangelista MD, Montgomery SA, Billerbeck E, Bukh J, Scheel TK, Rice CM, Sheahan TP. Host genetic variation guides hepacivirus clearance, chronicity, and liver fibrosis in mice. Hepatology 2024; 79:183-197. [PMID: 37540195 PMCID: PMC10718216 DOI: 10.1097/hep.0000000000000547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/14/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND AIMS Human genetic variation is thought to guide the outcome of HCV infection, but model systems within which to dissect these host genetic mechanisms are limited. Norway rat hepacivirus, closely related to HCV, causes chronic liver infection in rats but causes acute self-limiting hepatitis in typical strains of laboratory mice, which resolves in 2 weeks. The Collaborative Cross (CC) is a robust mouse genetics resource comprised of a panel of recombinant inbred strains, which model the complexity of the human genome and provide a system within which to understand diseases driven by complex allelic variation. APPROACH RESULTS We infected a panel of CC strains with Norway rat hepacivirus and identified several that failed to clear the virus after 4 weeks. Strains displayed an array of virologic phenotypes ranging from delayed clearance (CC046) to chronicity (CC071, CC080) with viremia for at least 10 months. Body weight loss, hepatocyte infection frequency, viral evolution, T-cell recruitment to the liver, liver inflammation, and the capacity to develop liver fibrosis varied among infected CC strains. CONCLUSIONS These models recapitulate many aspects of HCV infection in humans and demonstrate that host genetic variation affects a multitude of viruses and host phenotypes. These models can be used to better understand the molecular mechanisms that drive hepacivirus clearance and chronicity, the virus and host interactions that promote chronic disease manifestations like liver fibrosis, therapeutic and vaccine performance, and how these factors are affected by host genetic variation.
Collapse
Affiliation(s)
- Ariane J. Brown
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - John J. Won
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Raphael Wolfisberg
- Department of Infectious Diseases, Copenhagen Hepatitis C Program (CO-HEP), Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Fahnøe
- Department of Infectious Diseases, Copenhagen Hepatitis C Program (CO-HEP), Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Nicholas Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ande West
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Fernando R. Moreira
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mariana Nogueira Batista
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, USA
| | - Martin T. Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Colton L. Linnertz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sarah R. Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Cameron Nguyen
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Gabriela De la Cruz
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Bentley R. Midkiff
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Yongjuan Xia
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Mia D. Evangelista
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Stephanie A. Montgomery
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Eva Billerbeck
- Department of Medicine and Department of Microbiology and Immunology, Division of Hepatology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jens Bukh
- Department of Infectious Diseases, Copenhagen Hepatitis C Program (CO-HEP), Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Troels K.H. Scheel
- Department of Infectious Diseases, Copenhagen Hepatitis C Program (CO-HEP), Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, USA
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, USA
| | - Timothy P. Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
11
|
He L, Zhong C, Chang H, Inman JL, Celniker SE, Ioakeim-Ioannidou M, Liu KX, Haas-Kogan D, MacDonald SM, Threadgill DW, Kogan SC, Mao JH, Snijders AM. Genetic architecture of the acute and persistent immune cell response after radiation exposure. CELL GENOMICS 2023; 3:100422. [PMID: 38020972 PMCID: PMC10667298 DOI: 10.1016/j.xgen.2023.100422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/19/2023] [Accepted: 09/12/2023] [Indexed: 12/01/2023]
Abstract
Hematologic toxicity is a common side effect of multimodal cancer therapy. Nearly all animal studies investigating the causes of radiotherapy-induced hematologic toxicity use inbred strains with limited genetic diversity and do not reflect the diverse responses observed in humans. We used the population-based Collaborative Cross (CC) mouse resource to investigate the genetic architecture of the acute and persistent immune response after radiation exposure by measuring 22 immune parameters in 1,720 CC mice representing 35 strains. We determined relative acute and persistent radiation resistance scores at the individual strain level considering contributions from all immune parameters. Genome-wide association analysis identified quantitative trait loci associated with baseline and radiation responses. A cross-species radiation resistance score predicted recurrence-free survival in medulloblastoma patients. We present a community resource of immune parameters and genome-wide association analyses before and after radiation exposure for future investigations of the contributions of host genetics on radiosensitivity.
Collapse
Affiliation(s)
- Li He
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430079, China
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Chenhan Zhong
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jamie L. Inman
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Susan E. Celniker
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Comparative Biochemistry Program, University of California Berkeley, Berkeley, CA 94720, USA
| | | | - Kevin X. Liu
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daphne Haas-Kogan
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shannon M. MacDonald
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David W. Threadgill
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX 77843, USA
- Departments of Nutrition and Cell Biology and Genetics, Texas A&M University, College Station, TX 77843, USA
| | - Scott C. Kogan
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Comparative Biochemistry Program, University of California Berkeley, Berkeley, CA 94720, USA
| | - Antoine M. Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Comparative Biochemistry Program, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
12
|
Wulfridge P, Davidovich A, Salvador AC, Manno GC, Tryggvadottir R, Idrizi A, Huda MN, Bennett BJ, Adams LG, Hansen KD, Threadgill DW, Feinberg AP. Precision pharmacological reversal of strain-specific diet-induced metabolic syndrome in mice informed by epigenetic and transcriptional regulation. PLoS Genet 2023; 19:e1010997. [PMID: 37871105 PMCID: PMC10621921 DOI: 10.1371/journal.pgen.1010997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/02/2023] [Accepted: 09/25/2023] [Indexed: 10/25/2023] Open
Abstract
Diet-related metabolic syndrome is the largest contributor to adverse health in the United States. However, the study of gene-environment interactions and their epigenomic and transcriptomic integration is complicated by the lack of environmental and genetic control in humans that is possible in mouse models. Here we exposed three mouse strains, C57BL/6J (BL6), A/J, and NOD/ShiLtJ (NOD), to a high-fat, high-carbohydrate diet, leading to varying degrees of metabolic syndrome. We then performed transcriptomic and genome-wide DNA methylation analyses for each strain and found overlapping but also highly divergent changes in gene expression and methylation upstream of the discordant metabolic phenotypes. Strain-specific pathway analysis of dietary effects revealed a dysregulation of cholesterol biosynthesis common to all three strains but distinct regulatory networks driving this dysregulation. This suggests a strategy for strain-specific targeted pharmacologic intervention of these upstream regulators informed by epigenetic and transcriptional regulation. As a pilot study, we administered the drug GW4064 to target one of these genotype-dependent networks, the farnesoid X receptor pathway, and found that GW4064 exerts strain-specific protection against dietary effects in BL6, as predicted by our transcriptomic analysis. Furthermore, GW4064 treatment induced inflammatory-related gene expression changes in NOD, indicating a strain-specific effect in its associated toxicities as well as its therapeutic efficacy. This pilot study demonstrates the potential efficacy of precision therapeutics for genotype-informed dietary metabolic intervention and a mouse platform for guiding this approach.
Collapse
Affiliation(s)
- Phillip Wulfridge
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Adam Davidovich
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Anna C. Salvador
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, United States of America
- Department of Nutrition, Texas A&M University, College Station, Texas, United States of America
| | - Gabrielle C. Manno
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, United States of America
| | - Rakel Tryggvadottir
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Adrian Idrizi
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - M. Nazmul Huda
- Department of Nutrition, University of California, Davis, California, United States of America
- Obesity and Metabolism Research Unit, USDA, ARS, Western Human Nutrition Research Center, Davis, California, United States of America
| | - Brian J. Bennett
- Department of Nutrition, University of California, Davis, California, United States of America
- Obesity and Metabolism Research Unit, USDA, ARS, Western Human Nutrition Research Center, Davis, California, United States of America
| | - L. Garry Adams
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Kasper D. Hansen
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - David W. Threadgill
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, United States of America
- Department of Nutrition, Texas A&M University, College Station, Texas, United States of America
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Andrew P. Feinberg
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
13
|
Glassbrook JE, Hackett JB, Muñiz MC, Bross M, Dyson G, Movahhedin N, Ullrich A, Gibson HM. Host genetic background regulates the capacity for anti-tumor antibody-dependent phagocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540046. [PMID: 37214876 PMCID: PMC10197614 DOI: 10.1101/2023.05.09.540046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Background Antitumor antibody, or targeted immunotherapy, has revolutionized cancer treatment and markedly improved patient outcomes. A prime example is the monoclonal antibody (mAb) trastuzumab, which targets human epidermal growth factor receptor 2 (HER2). However, like many targeted immunotherapies, only a subset of patients benefit from trastuzumab long-term. In addition to tumor-intrinsic factors, we hypothesize that host genetics may influence subsequent immune activation. Methods To model the human population, we produced F1 crosses of genetically heterogeneous Diversity Outbred (DO) mice with BALB/c mice (DOCF1). Distinct DOCF1 mice were orthotopically implanted with the BALB/c-syngeneic TUBO mammary tumor line, which expresses the HER2 ortholog rat neu. Treatment with anti-neu mAb clone 7.16.4 began once tumors reached ∼200 mm 3 . Genetic linkage and quantitative trait locus (QTL) effects analyses in R/qtl2 identified loci associated with tumor growth rates. Locus validation was performed with BALB/c F1 crosses with recombinant-inbred Collaborative Cross (CC) strains selected for therapy-associated driver genetics (CCxCF1). The respective roles of natural killer (NK) cells and macrophages were investigated by selective depletion in vivo. Ex vivo macrophage antibody-dependent phagocytosis (ADCP) assays were evaluated by confocal microscopy using 7.16.4-opsonized E2Crimson-expressing TUBO tumor cells. Results We observed a divergent response to anti-tumor antibody therapy in DOCF1 mice. Genetic linkage analysis detected a locus on chromosome 10 that correlates to a robust response to therapy, which was validated in CCxCF1 models. Single-cell RNA sequencing of tumors from responder and non-responder models identified key differences in tumor immune infiltrate composition, particularly within macrophage (Mφ) subsets. This is further supported by ex vivo analysis showing Mφ ADCP capacity correlates to in vivo treatment outcomes in both DOCF1 and CCxCF1 models. Conclusions Host genetics play a key regulatory role in targeted immunotherapy outcomes, and putative causal genes are identified in murine chromosome 10 which may govern Mφ function during ADCP.
Collapse
|
14
|
Wulfridge P, Davidovich A, Salvador AC, Manno GC, Tryggvadottir R, Idrizi A, Huda MN, Bennett BJ, Adams LG, Hansen KD, Threadgill DW, Feinberg AP. Precision pharmacological reversal of genotype-specific diet-induced metabolic syndrome in mice informed by transcriptional regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538156. [PMID: 37163127 PMCID: PMC10168252 DOI: 10.1101/2023.04.25.538156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Diet-related metabolic syndrome is the largest contributor to adverse health in the United States. However, the study of gene-environment interactions and their epigenomic and transcriptomic integration is complicated by the lack of environmental and genetic control in humans that is possible in mouse models. Here we exposed three mouse strains, C57BL/6J (BL6), A/J, and NOD/ShiLtJ (NOD), to a high-fat high-carbohydrate diet, leading to varying degrees of metabolic syndrome. We then performed transcriptomic and genomic DNA methylation analyses and found overlapping but also highly divergent changes in gene expression and methylation upstream of the discordant metabolic phenotypes. Strain-specific pathway analysis of dietary effects reveals a dysregulation of cholesterol biosynthesis common to all three strains but distinct regulatory networks driving this dysregulation. This suggests a strategy for strain-specific targeted pharmacologic intervention of these upstream regulators informed by transcriptional regulation. As a pilot study, we administered the drug GW4064 to target one of these genotype-dependent networks, the Farnesoid X receptor pathway, and found that GW4064 exerts genotype-specific protection against dietary effects in BL6, as predicted by our transcriptomic analysis, as well as increased inflammatory-related gene expression changes in NOD. This pilot study demonstrates the potential efficacy of precision therapeutics for genotype-informed dietary metabolic intervention, and a mouse platform for guiding this approach.
Collapse
|
15
|
Tabbaa M, Knoll A, Levitt P. Mouse population genetics phenocopies heterogeneity of human Chd8 haploinsufficiency. Neuron 2023; 111:539-556.e5. [PMID: 36738737 PMCID: PMC9960295 DOI: 10.1016/j.neuron.2023.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/13/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023]
Abstract
Preclinical models of neurodevelopmental disorders typically use single inbred mouse strains, which fail to capture the genetic diversity and symptom heterogeneity that is common clinically. We tested whether modeling genetic background diversity in mouse genetic reference panels would recapitulate population and individual differences in responses to a syndromic mutation in the high-confidence autism risk gene, CHD8. We measured clinically relevant phenotypes in >1,000 mice from 33 strains, including brain and body weights and cognition, activity, anxiety, and social behaviors, using 5 behavioral assays: cued fear conditioning, open field tests in dark and bright light, direct social interaction, and social dominance. Trait disruptions mimicked those seen clinically, with robust strain and sex differences. Some strains exhibited large effect-size trait disruptions, sometimes in opposite directions, and-remarkably-others expressed resilience. Therefore, systematically introducing genetic diversity into models of neurodevelopmental disorders provides a better framework for discovering individual differences in symptom etiologies.
Collapse
Affiliation(s)
- Manal Tabbaa
- Children's Hospital Los Angeles, The Saban Research Institute, Los Angeles, CA 90027, USA; Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Allison Knoll
- Children's Hospital Los Angeles, The Saban Research Institute, Los Angeles, CA 90027, USA; Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Pat Levitt
- Children's Hospital Los Angeles, The Saban Research Institute, Los Angeles, CA 90027, USA; Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
16
|
Benegiamo G, von Alvensleben GV, Rodríguez-López S, Goeminne LJ, Bachmann AM, Morel JD, Broeckx E, Ma JY, Carreira V, Youssef SA, Azhar N, Reilly DF, D’Aquino K, Mullican S, Bou-Sleiman M, Auwerx J. The genetic background shapes the susceptibility to mitochondrial dysfunction and NASH progression. J Exp Med 2023; 220:213867. [PMID: 36787127 PMCID: PMC9960245 DOI: 10.1084/jem.20221738] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/21/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a global health concern without treatment. The challenge in finding effective therapies is due to the lack of good mouse models and the complexity of the disease, characterized by gene-environment interactions. We tested the susceptibility of seven mouse strains to develop NASH. The severity of the clinical phenotypes observed varied widely across strains. PWK/PhJ mice were the most prone to develop hepatic inflammation and the only strain to progress to NASH with extensive fibrosis, while CAST/EiJ mice were completely resistant. Levels of mitochondrial transcripts and proteins as well as mitochondrial function were robustly reduced specifically in the liver of PWK/PhJ mice, suggesting a central role of mitochondrial dysfunction in NASH progression. Importantly, the NASH gene expression profile of PWK/PhJ mice had the highest overlap with the human NASH signature. Our study exposes the limitations of using a single mouse genetic background in metabolic studies and describes a novel NASH mouse model with features of the human NASH.
Collapse
Affiliation(s)
- Giorgia Benegiamo
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland,Giorgia Benegiamo:
| | | | - Sandra Rodríguez-López
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Ludger J.E. Goeminne
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Alexis M. Bachmann
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Jean-David Morel
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Ellen Broeckx
- Janssen Research and Development, LLC, Raritan, NJ, USA
| | - Jing Ying Ma
- Janssen Research and Development, LLC, Raritan, NJ, USA
| | | | | | - Nabil Azhar
- Janssen Research and Development, LLC, Raritan, NJ, USA
| | | | | | | | - Maroun Bou-Sleiman
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland,Correspondence to Johan Auwerx:
| |
Collapse
|
17
|
Distinct gene programs underpinning disease tolerance and resistance in influenza virus infection. Cell Syst 2022; 13:1002-1015.e9. [PMID: 36516834 DOI: 10.1016/j.cels.2022.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/30/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022]
Abstract
When challenged with an invading pathogen, the host-defense response is engaged to eliminate the pathogen (resistance) and to maintain health in the presence of the pathogen (disease tolerance). However, the identification of distinct molecular programs underpinning disease tolerance and resistance remained obscure. We exploited transcriptional and physiological monitoring across 33 mouse strains, during in vivo influenza virus infection, to identify two host-defense gene programs-one is associated with hallmarks of disease tolerance and the other with hallmarks of resistance. Both programs constitute generic responses in multiple mouse and human cell types. Our study describes the organizational principles of these programs and validates Arhgdia as a regulator of disease-tolerance states in epithelial cells. We further reveal that the baseline disease-tolerance state in peritoneal macrophages is associated with the pathophysiological response to injury and infection. Our framework provides a paradigm for the understanding of disease tolerance and resistance at the molecular level.
Collapse
|
18
|
Hampton BK, Plante KS, Whitmore AC, Linnertz CL, Madden EA, Noll KE, Boyson SP, Parotti B, Xenakis JG, Bell TA, Hock P, Shaw GD, de Villena FPM, Ferris MT, Heise MT. Forward genetic screen of homeostatic antibody levels in the Collaborative Cross identifies MBD1 as a novel regulator of B cell homeostasis. PLoS Genet 2022; 18:e1010548. [PMID: 36574452 PMCID: PMC9829176 DOI: 10.1371/journal.pgen.1010548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/09/2023] [Accepted: 11/28/2022] [Indexed: 12/28/2022] Open
Abstract
Variation in immune homeostasis, the state in which the immune system is maintained in the absence of stimulation, is highly variable across populations. This variation is attributed to both genetic and environmental factors. However, the identity and function of specific regulators have been difficult to identify in humans. We evaluated homeostatic antibody levels in the serum of the Collaborative Cross (CC) mouse genetic reference population. We found heritable variation in all antibody isotypes and subtypes measured. We identified 4 quantitative trait loci (QTL) associated with 3 IgG subtypes: IgG1, IgG2b, and IgG2c. While 3 of these QTL map to genome regions of known immunological significance (major histocompatibility and immunoglobulin heavy chain locus), Qih1 (associated with variation in IgG1) mapped to a novel locus on Chromosome 18. We further associated this locus with B cell proportions in the spleen and identify Methyl-CpG binding domain protein 1 under this locus as a novel regulator of homeostatic IgG1 levels in the serum and marginal zone B cells (MZB) in the spleen, consistent with a role in MZB differentiation to antibody secreting cells.
Collapse
Affiliation(s)
- Brea K. Hampton
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kenneth S. Plante
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Alan C. Whitmore
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Colton L. Linnertz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Emily A. Madden
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kelsey E. Noll
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Samuel P. Boyson
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Breantie Parotti
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - James G. Xenakis
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Timothy A. Bell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Pablo Hock
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ginger D. Shaw
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Martin T. Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mark T. Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
19
|
Dunnick JK, Pandiri AR, Shockley KR, Herbert R, Mav D, Phadke D, Shah RR, Merrick BA. Single nucleotide polymorphism patterns associated with a cancer resistant phenotype. Exp Mol Pathol 2022; 128:104812. [PMID: 35872013 PMCID: PMC10463559 DOI: 10.1016/j.yexmp.2022.104812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/14/2022] [Accepted: 07/16/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS In this study ten mouse strains representing ~90% of genetic diversity in laboratory mice (B6C3F1/J, C57BL/6J, C3H/HeJ, A/J, NOD.B1oSnH2/J, NZO/HILtJ, 129S1/SvImJ, WSB/EiJ, PWK/PhJ, CAST/EiJ) were examined to identify the mouse strain with the lowest incidence of cancer. The unique single polymorphisms (SNPs) associated with this low cancer incidence are reported. METHODS Evaluations of cancer incidence in the 10 mouse strains were based on gross and microscopic diagnosis of tumors. Single nucleotide polymorphisms (SNPs) in the coding regions of the genome were derived from the respective mouse strains located in the Sanger mouse sequencing database and the B6C3F1/N genome from the National Toxicology Program (NTP). RESULTS The WSB strain had an overall lower incidence of both benign and malignant tumors compared to the other mouse strains. At 2 years, the incidence of total malignant tumors (Poly-3 incidence rate) ranged from 2% (WSB) to 92% (C3H) in males, and 14% (WSB) to 93% (NZO) in females, and the total incidence of benign and malignant tumor incidence ranged from 13% (WSB) to 99% (C3H) in males and 25% (WSB) to 96% (NOD) in females. Single nucleotide polymorphism (SNP) patterns were examined in the following strains: B6C3F1/N, C57BL/6J, C3H/HeJ, 129S1/SvImJ, A/J, NZO/HILtJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ. We identified 7519 SNPs (involving 5751 Ensembl transcripts of 3453 Ensembl Genes) that resulted in a unique amino acid change in the coding region of the WSB strain. CONCLUSIONS The inherited genetic patterns in the WSB cancer-resistant mouse strain occurred in genes involved in multiple cell functions including mitochondria, metabolic, immune, and membrane-related cell functions. The unique SNP patterns in a cancer resistant mouse strain provides insights for understanding and developing strategies for cancer prevention.
Collapse
Affiliation(s)
- June K Dunnick
- Systemic Toxicology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | - Arun R Pandiri
- Comparative and Molecular Pathogenesis Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Keith R Shockley
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Ronald Herbert
- Comparative and Molecular Pathogenesis Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Deepak Mav
- Sciome, LLC, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Dhiral Phadke
- Sciome, LLC, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Ruchir R Shah
- Sciome, LLC, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - B Alex Merrick
- Mechanistic Toxicology Branch, National Institute of Environmental Health Sciences, Division of the National Toxicology Program, Research Triangle Park, NC 27709, USA
| |
Collapse
|
20
|
Medetgul-Ernar K, Davis MM. Standing on the shoulders of mice. Immunity 2022; 55:1343-1353. [PMID: 35947979 PMCID: PMC10035762 DOI: 10.1016/j.immuni.2022.07.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 01/13/2023]
Abstract
While inbred mice have informed most of what we know about the immune system in the modern era, they have clear limitations with respect to their ability to be informative regarding genetic heterogeneity or microbial influences. They have also not been very predictive as models of human disease or vaccination results. Although there are concerted attempts to compensate for these flaws, the rapid rise of human studies, driven by both technical and conceptual advances, promises to fill in these gaps, as well as provide direct information about human diseases and vaccination responses. Work on human immunity has already provided important additional perspectives on basic immunology such as the importance of clonal deletion to self-tolerance, and while many challenges remain, it seems inevitable that "the human model" will continue to inform us about the immune system and even allow for the discovery of new mechanisms.
Collapse
Affiliation(s)
- Kwat Medetgul-Ernar
- Immunology Program, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Mark M Davis
- Howard Hughes Medical Institute, Institute for Immunity, Transplantation and Infection, Department of Microbiology and Immunology, Stanford University School of Medicine, Palo Alto, CA 94304, USA.
| |
Collapse
|
21
|
Cartwright HN, Barbeau DJ, Doyle JD, Klein E, Heise MT, Ferris MT, McElroy AK. Genetic diversity of collaborative cross mice enables identification of novel rift valley fever virus encephalitis model. PLoS Pathog 2022; 18:e1010649. [PMID: 35834486 PMCID: PMC9282606 DOI: 10.1371/journal.ppat.1010649] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
Rift Valley fever (RVF) is an arboviral disease of humans and livestock responsible for severe economic and human health impacts. In humans, RVF spans a variety of clinical manifestations, ranging from an acute flu-like illness to severe forms of disease, including late-onset encephalitis. The large variations in human RVF disease are inadequately represented by current murine models, which overwhelmingly die of early-onset hepatitis. Existing mouse models of RVF encephalitis are either immunosuppressed, display an inconsistent phenotype, or develop encephalitis only when challenged via intranasal or aerosol exposure. In this study, the genetically defined recombinant inbred mouse resource known as the Collaborative Cross (CC) was used to identify mice with additional RVF disease phenotypes when challenged via a peripheral foot-pad route to mimic mosquito-bite exposure. Wild-type Rift Valley fever virus (RVFV) challenge of 20 CC strains revealed three distinct disease phenotypes: early-onset hepatitis, mixed phenotype, and late-onset encephalitis. Strain CC057/Unc, with the most divergent phenotype, which died of late-onset encephalitis at a median of 11 days post-infection, is the first mouse strain to develop consistent encephalitis following peripheral challenge. CC057/Unc mice were directly compared to C57BL/6 mice, which uniformly succumb to hepatitis within 2–4 days of infection. Encephalitic disease in CC057/Unc mice was characterized by high viral RNA loads in brain tissue, accompanied by clearance of viral RNA from the periphery, low ALT levels, lymphopenia, and neutrophilia. In contrast, C57BL/6 mice succumbed from hepatitis at 3 days post-infection with high viral RNA loads in the liver, viremia, high ALT levels, lymphopenia, and thrombocytopenia. The identification of a strain of CC mice as an RVFV encephalitis model will allow for future investigation into the pathogenesis and treatment of RVF encephalitic disease and indicates that genetic background makes a major contribution to RVF disease variation.
Collapse
Affiliation(s)
- Haley N. Cartwright
- University of Pittsburgh, School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Disease, and Center for Vaccine Research, Pittsburgh, Pennsylvania, United States of America
| | - Dominique J. Barbeau
- University of Pittsburgh, School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Disease, and Center for Vaccine Research, Pittsburgh, Pennsylvania, United States of America
| | - Joshua D. Doyle
- University of Pittsburgh, School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Disease, and Center for Vaccine Research, Pittsburgh, Pennsylvania, United States of America
| | - Ed Klein
- University of Pittsburgh, Division of Laboratory Animal Resources, Pittsburgh, Pennsylvania, United States of America
| | - Mark T. Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Martin T. Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Anita K. McElroy
- University of Pittsburgh, School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Disease, and Center for Vaccine Research, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
22
|
Bachmann AM, Morel JD, El Alam G, Rodríguez-López S, Imamura de Lima T, Goeminne LJE, Benegiamo G, Loric S, Conti M, Sleiman MB, Auwerx J. Genetic background and sex control the outcome of high-fat diet feeding in mice. iScience 2022; 25:104468. [PMID: 35677645 PMCID: PMC9167980 DOI: 10.1016/j.isci.2022.104468] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/04/2022] [Accepted: 05/19/2022] [Indexed: 01/21/2023] Open
Abstract
The sharp increase in obesity prevalence worldwide is mainly attributable to changes in physical activity and eating behavior but the metabolic and clinical impacts of these obesogenic conditions vary between sexes and genetic backgrounds. This warrants personalized treatments of obesity and its complications, which require a thorough understanding of the diversity of metabolic responses to high-fat diet intake. By analyzing nine genetically diverse mouse strains, we show that much like humans, mice exhibit a huge variety of physiological and biochemical responses to high-fat diet. The strains exhibit various degrees of alterations in their phenotypic makeup. At the transcriptome level, we observe dysregulations of immunity, translation machinery, and mitochondrial genes. At the biochemical level, the enzymatic activity of mitochondrial complexes is affected. The diversity across mouse strains, diets, and sexes parallels that found in humans and supports the use of diverse mouse populations in future mechanistic or preclinical studies on metabolic dysfunctions. Strain- and sex-specific profile of metabolic dysfunction in mice Liver mitochondrial complex activity in vivo associates with metabolic traits Open data source for evaluating different mouse strains for metabolic disease Interactive data exploration through an online application
Collapse
Affiliation(s)
- Alexis Maximilien Bachmann
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Jean-David Morel
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Gaby El Alam
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Sandra Rodríguez-López
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Tanes Imamura de Lima
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Ludger J E Goeminne
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Giorgia Benegiamo
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Sylvain Loric
- Inserm U938 CRSA, St Antoine University Hospital, Paris, France
| | - Marc Conti
- Inserm U938 CRSA, St Antoine University Hospital, Paris, France.,Integracell, Longjumeau, France
| | - Maroun Bou Sleiman
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
23
|
Hackett JB, Glassbrook JE, Muñiz MC, Bross M, Fielder A, Dyson G, Movahhedin N, McCasland J, McCarthy-Leo C, Gibson HM. A diversity outbred F1 mouse model identifies host-intrinsic genetic regulators of response to immune checkpoint inhibitors. Oncoimmunology 2022; 11:2064958. [PMID: 35481286 PMCID: PMC9037414 DOI: 10.1080/2162402x.2022.2064958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors (ICI) have improved outcomes for a variety of malignancies; however, many patients fail to benefit. While tumor-intrinsic mechanisms are likely involved in therapy resistance, it is unclear to what extent host genetic background influences response. To investigate this, we utilized the Diversity Outbred (DO) and Collaborative Cross (CC) mouse models. DO mice are an outbred stock generated by crossbreeding eight inbred founder strains, and CC mice are recombinant inbred mice generated from the same eight founders. We generated 207 DOB6F1 mice representing 48 DO dams and demonstrated that these mice reliably accept the C57BL/6-syngeneic B16F0 tumor and that host genetic background influences response to ICI. Genetic linkage analysis from 142 mice identified multiple regions including one within chromosome 13 that associated with therapeutic response. We utilized 6 CC strains bearing the positive (NZO) or negative (C57BL/6) driver genotype in this locus. We found that 2/3 of predicted responder CCB6F1 crosses show reproducible ICI response. The chromosome 13 locus contains the murine prolactin family, which is a known immunomodulating cytokine associated with various autoimmune disorders. To directly test whether prolactin influences ICI response rates, we implanted inbred C57BL/6 mice with subcutaneous slow-release prolactin pellets to induce mild hyperprolactinemia. Prolactin augmented ICI response against B16F0, with increased CD8 infiltration and 5/8 mice exhibiting slowed tumor growth relative to controls. This study highlights the role of host genetics in ICI response and supports the use of F1 crosses in the DO and CC mouse populations as powerful cancer immunotherapy models.
Collapse
Affiliation(s)
- Justin B. Hackett
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - James E. Glassbrook
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
- Department of Biochemistry Microbiology Immunology, Wayne State University, Detroit, MI, USA
| | - Maria C. Muñiz
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Madeline Bross
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Abigail Fielder
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Gregory Dyson
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Nasrin Movahhedin
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Jennifer McCasland
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Claire McCarthy-Leo
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Heather M. Gibson
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| |
Collapse
|
24
|
Genetic background influences survival of infections with Salmonella enterica serovar Typhimurium in the Collaborative Cross. PLoS Genet 2022; 18:e1010075. [PMID: 35417454 PMCID: PMC9067680 DOI: 10.1371/journal.pgen.1010075] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/04/2022] [Accepted: 03/25/2022] [Indexed: 12/18/2022] Open
Abstract
Salmonella infections typically cause self-limiting gastroenteritis, but in some individuals these bacteria can spread systemically and cause disseminated disease. Salmonella Typhimurium (STm), which causes severe systemic disease in most inbred mice, has been used as a model for disseminated disease. To screen for new infection phenotypes across a range of host genetics, we orally infected 32 Collaborative Cross (CC) mouse strains with STm and monitored their disease progression for seven days by telemetry. Our data revealed a broad range of phenotypes across CC strains in many parameters including survival, bacterial colonization, tissue damage, complete blood counts (CBC), and serum cytokines. Eighteen CC strains survived to day 7, while fourteen susceptible strains succumbed to infection before day 7. Several CC strains had sex differences in survival and colonization. Surviving strains had lower pre-infection baseline temperatures and were less active during their daily active period. Core body temperature disruptions were detected earlier after STm infection than activity disruptions, making temperature a better detector of illness. All CC strains had STm in spleen and liver, but susceptible strains were more highly colonized. Tissue damage was weakly negatively correlated to survival. We identified loci associated with survival on Chromosomes (Chr) 1, 2, 4, 7. Polymorphisms in Ncf2 and Slc11a1, known to reduce survival in mice after STm infections, are located in the Chr 1 interval, and the Chr 7 association overlaps with a previously identified QTL peak called Ses2. We identified two new genetic regions on Chr 2 and 4 associated with susceptibility to STm infection. Our data reveal the diversity of responses to STm infection across a range of host genetics and identified new candidate regions for survival of STm infection.
Collapse
|
25
|
Gu B, Levine NG, Xu W, Lynch RM, Pardo-Manuel de Villena F, Philpot BD. Ictal neural oscillatory alterations precede sudden unexpected death in epilepsy. Brain Commun 2022; 4:fcac073. [PMID: 35474855 PMCID: PMC9035525 DOI: 10.1093/braincomms/fcac073] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/19/2022] [Accepted: 03/18/2022] [Indexed: 11/25/2022] Open
Abstract
Sudden unexpected death in epilepsy is the most catastrophic outcome of epilepsy. Each year there are as many as 1.65 cases of such death for every 1000 individuals with epilepsy. Currently, there are no methods to predict or prevent this tragic event, due in part to a poor understanding of the pathologic cascade that leads to death following seizures. We recently identified enhanced seizure-induced mortality in four inbred strains from the genetically diverse Collaborative Cross mouse population. These mouse models of sudden unexpected death in epilepsy provide a unique tool to systematically examine the physiological alterations during fatal seizures, which can be studied in a controlled environment and with consideration of genetic complexity. Here, we monitored the brain oscillations and heart functions before, during, and after non-fatal and fatal seizures using a flurothyl-induced seizure model in freely moving mice. Compared with mice that survived seizures, non-survivors exhibited significant suppression of brainstem neural oscillations that coincided with cortical epileptic activities and tachycardia during the ictal phase of a fatal seizure. Non-survivors also exhibited suppressed delta (0.5-4 Hz)/gamma (30-200 Hz) phase-amplitude coupling in cortex but not in brainstem. A connectivity analysis revealed elevated synchronization of cortex and brainstem oscillations in the delta band during fatal seizures compared with non-fatal seizures. The dynamic ictal oscillatory and connectivity features of fatal seizures provide insights into sudden unexpected death in epilepsy and may suggest biomarkers and eventual therapeutic targets.
Collapse
Affiliation(s)
- Bin Gu
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Noah G. Levine
- Electrical and Computer Engineering Program, Ohio State University, Columbus, OH, USA
| | - Wenjing Xu
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
- Department of Physiology and Cell Biology, Ohio State University, Columbus, OH, USA
| | - Rachel M. Lynch
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Benjamin D. Philpot
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
26
|
Jensen IJ, Martin MD, Tripathy SK, Badovinac VP. Novel Mouse Model of Murine Cytomegalovirus-Induced Adaptive NK Cells. Immunohorizons 2022; 6:8-15. [PMID: 35031582 PMCID: PMC9636593 DOI: 10.4049/immunohorizons.2100113] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 11/19/2022] Open
Abstract
NK cells are important mediators of viral control with the capacity to form adaptive immune features following infection. However, studies of infection-induced adaptive NK cells require adoptive cell transfer to lower the precursor frequency of "Ag-specific" NK cells, potentially limiting the diversity of the NK cell response. In seeking an unmanipulated model to probe the adaptive NK cells, we interrogated a wide range of Collaborative Cross (CC) inbred mice, inbred mouse strains that exhibit broad genetic diversity across strains. Our assessment identified and validated a putative "ideal" CC strain, CC006, which does not require manipulation to generate and maintain adaptive NK cells. Critically, CC006 mice, in contrast to C57BL/6 mice, are capable of developing enhanced NK cell-mediated protective responses to murine CMV infection following m157-mediated vaccination. This work both furthers our understanding of adaptive NK cells and demonstrates the utility of CC mice in the development and interrogation of immunologic models.
Collapse
Affiliation(s)
- Isaac J Jensen
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY;
| | | | - Sandeep K Tripathy
- Department of Medicine, Gastroenterology Division, Washington University School of Medicine, St. Louis, MO
| | - Vladimir P Badovinac
- Department of Pathology, University of Iowa, Iowa City, IA; and
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA
| |
Collapse
|
27
|
Lu L, Cai Y, Luo X, Wang Z, Fung SH, Jia H, Yu CL, Chan WY, Miu KK, Xiao W. A Core Omnigenic Non-coding Trait Governing Dex-Induced Osteoporotic Effects Identified Without DEXA. Front Pharmacol 2021; 12:750959. [PMID: 34899306 PMCID: PMC8651565 DOI: 10.3389/fphar.2021.750959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022] Open
Abstract
Iatrogenic glucocorticoid (GC)-induced osteoporosis (GIO) is an idiosyncratic form of secondary osteoporosis. Genetic predisposition among individuals may give rise to variant degree of phenotypic changes but there has yet been a documented unified pathway to explain the idiosyncrasy. In this study, we argue that the susceptibility to epigenetic changes governing molecular cross talks along the BMP and PI3K/Akt pathway may underline how genetic background dictate GC-induced bone loss. Concordantly, osteoblasts from BALB/c or C57BL/6 neonatal mice were treated with dexamethasone for transcriptome profiling. Furthermore, we also confirmed that GC-pre-conditioned mesenchymal stem cells (MSCs) would give rise to defective osteogenesis by instigating epigenetic changes which affected the accessibility of enhancer marks. In line with these epigenetic changes, we propose that GC modulates a key regulatory network involving the scavenger receptor Cd36 in osteoblasts pre-conditioning pharmacological idiosyncrasy in GIO.
Collapse
Affiliation(s)
- Li Lu
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanzhen Cai
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoling Luo
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhangting Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR China
| | - Sin Hang Fung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR China
| | - Huanhuan Jia
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmacy, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Chi Lam Yu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR China
| | - Wai Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR China
| | - Kai Kei Miu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR China
| | - Wende Xiao
- Department of Orthopedics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
28
|
Jarmas AE, Brunskill EW, Chaturvedi P, Salomonis N, Kopan R. Progenitor translatome changes coordinated by Tsc1 increase perception of Wnt signals to end nephrogenesis. Nat Commun 2021; 12:6332. [PMID: 34732708 PMCID: PMC8566581 DOI: 10.1038/s41467-021-26626-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/17/2021] [Indexed: 11/29/2022] Open
Abstract
Mammalian nephron endowment is determined by the coordinated cessation of nephrogenesis in independent niches. Here we report that translatome analysis in Tsc1+/- nephron progenitor cells from mice with elevated nephron numbers reveals how differential translation of Wnt antagonists over agonists tips the balance between self-renewal and differentiation. Wnt agonists are poorly translated in young niches, resulting in an environment with low R-spondin and high Fgf20 promoting self-renewal. In older niches we find increased translation of Wnt agonists, including R-spondin and the signalosome-promoting Tmem59, and low Fgf20, promoting differentiation. This suggests that the tipping point for nephron progenitor exit from the niche is controlled by the gradual increase in stability and possibly clustering of Wnt/Fzd complexes in individual cells, enhancing the response to ureteric bud-derived Wnt9b inputs and driving synchronized differentiation. As predicted by these findings, removing one Rspo3 allele in nephron progenitors delays cessation and increases nephron numbers in vivo.
Collapse
Affiliation(s)
- Alison E Jarmas
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Eric W Brunskill
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Praneet Chaturvedi
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Raphael Kopan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
29
|
Martin MD, Sompallae R, Winborn CS, Harty JT, Badovinac VP. Diverse CD8 T Cell Responses to Viral Infection Revealed by the Collaborative Cross. Cell Rep 2021; 31:107508. [PMID: 32294433 PMCID: PMC7212788 DOI: 10.1016/j.celrep.2020.03.072] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/31/2020] [Accepted: 03/20/2020] [Indexed: 12/24/2022] Open
Abstract
Enhanced host protection against re-infection requires generation of memory T cells of sufficient quantity and functional quality. Unlike well-studied inbred mice, T cell responses of diverse size and quality are generated following infection of humans and outbred mice. Thus, additional models are needed that accurately reflect variation in immune outcomes in genetically diverse populations and to uncover underlying genetic causes. The Collaborative Cross (CC), a large recombinant inbred panel of mice, is an ideal model in this pursuit for the high degree of genetic variation present, because it allows for assessment of genetic factors underlying unique phenotypes. Here, we advance the utility of the CC as a tool to analyze the immune response to viral infection. We describe variability in resting immune cell composition and adaptive immune responses generated among CC strains following systemic virus infection and reveal quantitative trait loci responsible for generation of CD62L+ memory CD8 T cells. Martin et al. advance the use of the Collaborative Cross (CC) for studying adaptive immune responses. They demonstrate that the CC better models variation in T cell responses seen in outbred mice and humans and that it can uncover genes linked to generation of qualitatively distinct memory cells following infection.
Collapse
Affiliation(s)
- Matthew D Martin
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | | | | | - John T Harty
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA; Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Vladimir P Badovinac
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA; Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
30
|
Graham JB, Swarts JL, Edwards KR, Voss KM, Green R, Jeng S, Miller DR, Mooney MA, McWeeney SK, Ferris MT, Pardo-Manuel de Villena F, Gale M, Lund JM. Correlation of Regulatory T Cell Numbers with Disease Tolerance upon Virus Infection. Immunohorizons 2021; 5:157-169. [PMID: 33893179 PMCID: PMC8281504 DOI: 10.4049/immunohorizons.2100009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 02/19/2021] [Indexed: 11/19/2022] Open
Abstract
The goal of a successful immune response is to clear the pathogen while sparing host tissues from damage associated with pathogen replication and active immunity. Regulatory T cells (Treg) have been implicated in maintaining this balance as they contribute both to the organization of immune responses as well as restriction of inflammation and immune activation to limit immunopathology. To determine if Treg abundance prior to pathogen encounter can be used to predict the success of an antiviral immune response, we used genetically diverse mice from the collaborative cross infected with West Nile virus (WNV). We identified collaborative cross lines with extreme Treg abundance at steady state, either high or low, and used mice with these extreme phenotypes to demonstrate that baseline Treg quantity predicted the magnitude of the CD8 T cell response to WNV infection, although higher numbers of baseline Tregs were associated with reduced CD8 T cell functionality in terms of TNF and granzyme B expression. Finally, we found that abundance of CD44+ Tregs in the spleen at steady state was correlated with an increased early viral load within the spleen without an association with clinical disease. Thus, we propose that Tregs participate in disease tolerance in the context of WNV infection by tuning an appropriately focused and balanced immune response to control the virus while at the same time minimizing immunopathology and clinical disease. We hypothesize that Tregs limit the antiviral CD8 T cell function to curb immunopathology at the expense of early viral control as an overall host survival strategy.
Collapse
Affiliation(s)
- Jessica B Graham
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Jessica L Swarts
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Kristina R Edwards
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Kathleen M Voss
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Richard Green
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Sophia Jeng
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR.,OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Darla R Miller
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Michael A Mooney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR.,OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Shannon K McWeeney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR.,OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR.,Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR
| | - Martin T Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC; and
| | - Michael Gale
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR
| | - Jennifer M Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA; .,Department of Global Health, University of Washington, Seattle, WA
| |
Collapse
|
31
|
Yam P, Albright J, VerHague M, Gertz ER, Pardo-Manuel de Villena F, Bennett BJ. Genetic Background Shapes Phenotypic Response to Diet for Adiposity in the Collaborative Cross. Front Genet 2021; 11:615012. [PMID: 33643372 PMCID: PMC7905354 DOI: 10.3389/fgene.2020.615012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Defined as chronic excessive accumulation of adiposity, obesity results from long-term imbalance between energy intake and expenditure. The mechanisms behind how caloric imbalance occurs are complex and influenced by numerous biological and environmental factors, especially genetics, and diet. Population-based diet recommendations have had limited success partly due to the wide variation in physiological responses across individuals when they consume the same diet. Thus, it is necessary to broaden our understanding of how individual genetics and diet interact relative to the development of obesity for improving weight loss treatment. To determine how consumption of diets with different macronutrient composition alter adiposity and other obesity-related traits in a genetically diverse population, we analyzed body composition, metabolic rate, clinical blood chemistries, and circulating metabolites in 22 strains of mice from the Collaborative Cross (CC), a highly diverse recombinant inbred mouse population, before and after 8 weeks of feeding either a high protein or high fat high sucrose diet. At both baseline and post-diet, adiposity and other obesity-related traits exhibited a broad range of phenotypic variation based on CC strain; diet-induced changes in adiposity and other traits also depended largely on CC strain. In addition to estimating heritability at baseline, we also quantified the effect size of diet for each trait, which varied by trait and experimental diet. Our findings identified CC strains prone to developing obesity, demonstrate the genotypic and phenotypic diversity of the CC for studying complex traits, and highlight the importance of accounting for genetic differences when making dietary recommendations.
Collapse
Affiliation(s)
- Phoebe Yam
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, Davis, CA, United States
- Western Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Davis, CA, United States
| | - Jody Albright
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, United States
| | - Melissa VerHague
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, United States
| | - Erik R. Gertz
- Western Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Davis, CA, United States
| | | | - Brian J. Bennett
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, Davis, CA, United States
- Western Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Davis, CA, United States
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| |
Collapse
|
32
|
Ryan NM, Hess JA, de Villena FPM, Leiby BE, Shimada A, Yu L, Yarmahmoodi A, Petrovsky N, Zhan B, Bottazzi ME, Makepeace BL, Lustigman S, Abraham D. Onchocerca volvulus bivalent subunit vaccine induces protective immunity in genetically diverse collaborative cross recombinant inbred intercross mice. NPJ Vaccines 2021; 6:17. [PMID: 33500417 PMCID: PMC7838260 DOI: 10.1038/s41541-020-00276-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/11/2020] [Indexed: 01/04/2023] Open
Abstract
This study tests the hypothesis that an Onchocerca volvulus vaccine, consisting of two recombinant antigens (Ov-103 and Ov-RAL-2) formulated with the combination-adjuvant Advax-2, can induce protective immunity in genetically diverse Collaborative Cross recombinant inbred intercross mice (CC-RIX). CC-RIX lines were immunized with the O. volvulus vaccine and challenged with third-stage larvae. Equal and significant reductions in parasite survival were observed in 7 of 8 CC-RIX lines. Innate protective immunity was seen in the single CC-RIX line that did not demonstrate protective adaptive immunity. Analysis of a wide array of immune factors showed that each line of mice have a unique set of immune responses to vaccination and challenge suggesting that the vaccine is polyfunctional, inducing different equally-protective sets of immune responses based on the genetic background of the immunized host. Vaccine efficacy in genetically diverse mice suggests that it will also be effective in genetically complex human populations.
Collapse
Affiliation(s)
- Nathan M Ryan
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jessica A Hess
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Benjamin E Leiby
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ayako Shimada
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lei Yu
- Flow Cytometry Core Facility, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Amir Yarmahmoodi
- Flow Cytometry Core Facility, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Bin Zhan
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, 1102 Bates St, Ste. 550, Houston, TX, USA
| | - Maria Elena Bottazzi
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, 1102 Bates St, Ste. 550, Houston, TX, USA
| | - Benjamin L Makepeace
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool, L3 5RF, UK
| | - Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsey F. Kimball Research Institute, New York Blood Center, 310 E 67th St, New York, NY, USA
| | - David Abraham
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
33
|
Jin X, Zhang Y, Celniker SE, Xia Y, Mao JH, Snijders AM, Chang H. Gut microbiome partially mediates and coordinates the effects of genetics on anxiety-like behavior in Collaborative Cross mice. Sci Rep 2021; 11:270. [PMID: 33431988 PMCID: PMC7801399 DOI: 10.1038/s41598-020-79538-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Growing evidence suggests that the gut microbiome (GM) plays a critical role in health and disease. However, the contribution of GM to psychiatric disorders, especially anxiety, remains unclear. We used the Collaborative Cross (CC) mouse population-based model to identify anxiety associated host genetic and GM factors. Anxiety-like behavior of 445 mice across 30 CC strains was measured using the light/dark box assay and documented by video. A custom tracking system was developed to quantify seven anxiety-related phenotypes based on video. Mice were assigned to a low or high anxiety group by consensus clustering using seven anxiety-related phenotypes. Genome-wide association analysis (GWAS) identified 141 genes (264 SNPs) significantly enriched for anxiety and depression related functions. In the same CC cohort, we measured GM composition and identified five families that differ between high and low anxiety mice. Anxiety level was predicted with 79% accuracy and an AUC of 0.81. Mediation analyses revealed that the genetic contribution to anxiety was partially mediated by the GM. Our findings indicate that GM partially mediates and coordinates the effects of genetics on anxiety.
Collapse
Affiliation(s)
- X Jin
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Biological Systems and Engineering Division, Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Y Zhang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - S E Celniker
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Y Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - J-H Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Biological Systems and Engineering Division, Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - A M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Biological Systems and Engineering Division, Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - H Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Biological Systems and Engineering Division, Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
34
|
Graham JB, Swarts JL, Leist SR, Schäfer A, Menachery VD, Gralinski LE, Jeng S, Miller DR, Mooney MA, McWeeney SK, Ferris MT, Pardo-Manuel de Villena F, Heise MT, Baric RS, Lund JM. Baseline T cell immune phenotypes predict virologic and disease control upon SARS-CoV infection in Collaborative Cross mice. PLoS Pathog 2021; 17:e1009287. [PMID: 33513210 PMCID: PMC7875398 DOI: 10.1371/journal.ppat.1009287] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/10/2021] [Accepted: 01/05/2021] [Indexed: 12/25/2022] Open
Abstract
The COVID-19 pandemic has revealed that infection with SARS-CoV-2 can result in a wide range of clinical outcomes in humans. An incomplete understanding of immune correlates of protection represents a major barrier to the design of vaccines and therapeutic approaches to prevent infection or limit disease. This deficit is largely due to the lack of prospectively collected, pre-infection samples from individuals that go on to become infected with SARS-CoV-2. Here, we utilized data from genetically diverse Collaborative Cross (CC) mice infected with SARS-CoV to determine whether baseline T cell signatures are associated with a lack of viral control and severe disease upon infection. SARS-CoV infection of CC mice results in a variety of viral load trajectories and disease outcomes. Overall, a dysregulated, pro-inflammatory signature of circulating T cells at baseline was associated with severe disease upon infection. Our study serves as proof of concept that circulating T cell signatures at baseline can predict clinical and virologic outcomes upon SARS-CoV infection. Identification of basal immune predictors in humans could allow for identification of individuals at highest risk of severe clinical and virologic outcomes upon infection, who may thus most benefit from available clinical interventions to restrict infection and disease.
Collapse
Affiliation(s)
- Jessica B. Graham
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, Unites States of America
| | - Jessica L. Swarts
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, Unites States of America
| | - Sarah R. Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, Unites States of America
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, Unites States of America
| | - Vineet D. Menachery
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, Unites States of America
- Department of Microbiology and Immunology, University of Texas Medical Center, Galveston, Texas, Unites States of America
| | - Lisa E. Gralinski
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, Unites States of America
| | - Sophia Jeng
- OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, Unites States of America
- Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, Oregon, Unites States of America
| | - Darla R. Miller
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, Unites States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, Unites States of America
| | - Michael A. Mooney
- Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, Oregon, Unites States of America
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, Unites States of America
| | - Shannon K. McWeeney
- OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, Unites States of America
- Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, Oregon, Unites States of America
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, Unites States of America
| | - Martin T. Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, Unites States of America
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, Unites States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, Unites States of America
| | - Mark T. Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, Unites States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, Unites States of America
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, Unites States of America
| | - Jennifer M. Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, Unites States of America
- Department of Global Health, University of Washington, Seattle, Wasington, Unites States of America
| |
Collapse
|
35
|
Graham JB, Swarts JL, Leist SR, Schäfer A, Menachery VD, Gralinski LE, Jeng S, Miller DR, Mooney MA, McWeeney SK, Ferris MT, de Villena FPM, Heise MT, Baric RS, Lund JM. Baseline T cell immune phenotypes predict virologic and disease control upon SARS-CoV infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.09.21.306837. [PMID: 32995791 PMCID: PMC7523117 DOI: 10.1101/2020.09.21.306837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The COVID-19 pandemic has revealed that infection with SARS-CoV-2 can result in a wide range of clinical outcomes in humans, from asymptomatic or mild disease to severe disease that can require mechanical ventilation. An incomplete understanding of immune correlates of protection represents a major barrier to the design of vaccines and therapeutic approaches to prevent infection or limit disease. This deficit is largely due to the lack of prospectively collected, pre-infection samples from indiviuals that go on to become infected with SARS-CoV-2. Here, we utilized data from a screen of genetically diverse mice from the Collaborative Cross (CC) infected with SARS-CoV to determine whether circulating baseline T cell signatures are associated with a lack of viral control and severe disease upon infection. SARS-CoV infection of CC mice results in a variety of viral load trajectories and disease outcomes. Further, early control of virus in the lung correlates with an increased abundance of activated CD4 and CD8 T cells and regulatory T cells prior to infections across strains. A basal propensity of T cells to express IFNg and IL17 over TNFa also correlated with early viral control. Overall, a dysregulated, pro-inflammatory signature of circulating T cells at baseline was associated with severe disease upon infection. While future studies of human samples prior to infection with SARS-CoV-2 are required, our studies in mice with SARS-CoV serve as proof of concept that circulating T cell signatures at baseline can predict clinical and virologic outcomes upon SARS-CoV infection. Identification of basal immune predictors in humans could allow for identification of individuals at highest risk of severe clinical and virologic outcomes upon infection, who may thus most benefit from available clinical interventions to restrict infection and disease. SUMMARY We used a screen of genetically diverse mice from the Collaborative Cross infected with mouse-adapted SARS-CoV in combination with comprehensive pre-infection immunophenotyping to identify baseline circulating immune correlates of severe virologic and clinical outcomes upon SARS-CoV infection.
Collapse
Affiliation(s)
- Jessica B. Graham
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Jessica L. Swarts
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Sarah R. Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Vineet D. Menachery
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Microbiology and Immunology, University of Texas Medical Center, Galveston, TX
| | - Lisa E. Gralinski
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Sophia Jeng
- OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR
| | - Darla R. Miller
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Michael A. Mooney
- Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR
| | - Shannon K. McWeeney
- OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR
| | - Martin T. Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Mark T. Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jennifer M. Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Global Health, University of Washington, Seattle, WA
| |
Collapse
|
36
|
Xue J, Hutchins EK, Elnagheeb M, Li Y, Valdar W, McRitchie S, Sumner S, Ideraabdullah FY. Maternal Liver Metabolic Response to Chronic Vitamin D Deficiency Is Determined by Mouse Strain Genetic Background. Curr Dev Nutr 2020; 4:nzaa106. [PMID: 32851199 PMCID: PMC7439094 DOI: 10.1093/cdn/nzaa106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/08/2020] [Accepted: 06/16/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Liver metabolite concentrations have the potential to be key biomarkers of systemic metabolic dysfunction and overall health. However, for most conditions we do not know the extent to which genetic differences regulate susceptibility to metabolic responses. This limits our ability to detect and diagnose effects in heterogeneous populations. OBJECTIVES Here, we investigated the extent to which naturally occurring genetic differences regulate maternal liver metabolic response to vitamin D deficiency (VDD), particularly during perinatal periods when such changes can adversely affect maternal and fetal health. METHODS We used a panel of 8 inbred Collaborative Cross (CC) mouse strains, each with a different genetic background (72 dams, 3-6/treatment group, per strain). We identified robust maternal liver metabolic responses to vitamin D depletion before and during gestation and lactation using a vitamin-D-deficient (VDD; 0 IU vitamin D3/kg) or -sufficient diet (1000 IU vitamin D3/kg). We then identified VDD-induced metabolite changes influenced by strain genetic background. RESULTS We detected a significant VDD effect by orthogonal partial least squares discriminant analysis (Q2 = 0.266, pQ2 = 0.002): primarily, altered concentrations of 78 metabolites involved in lipid, amino acid, and nucleotide metabolism (variable importance to projection score ≥1.5). Metabolites in unsaturated fatty acid and glycerophospholipid metabolism pathways were significantly enriched [False Discovery Rate (FDR) <0.05]. VDD also significantly altered concentrations of putative markers of uremic toxemia, acylglycerols, and dipeptides. The extent of the metabolic response to VDD was strongly dependent on genetic strain, ranging from robustly responsive to nonresponsive. Two strains (CC017/Unc and CC032/GeniUnc) were particularly sensitive to VDD; however, each strain altered different pathways. CONCLUSIONS These novel findings demonstrate that maternal VDD induces different liver metabolic effects in different genetic backgrounds. Strains with differing susceptibility and metabolic response to VDD represent unique tools to identify causal susceptibility factors and further elucidate the role of VDD-induced metabolic changes in maternal and/or fetal health for ultimately translating findings to human populations.
Collapse
Affiliation(s)
- Jing Xue
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - Elizabeth K Hutchins
- Department of Nutrition, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marwa Elnagheeb
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - Yi Li
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William Valdar
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Susan McRitchie
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
- Department of Nutrition, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Susan Sumner
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
- Department of Nutrition, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Folami Y Ideraabdullah
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
- Department of Nutrition, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
37
|
Dissecting the Genetic Architecture of Cystatin C in Diversity Outbred Mice. G3-GENES GENOMES GENETICS 2020; 10:2529-2541. [PMID: 32467129 PMCID: PMC7341122 DOI: 10.1534/g3.120.401275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Plasma concentration of Cystatin C (CysC) level is a biomarker of glomerular filtration rate in the kidney. We use a Systems Genetics approach to investigate the genetic determinants of plasma CysC concentration. To do so we perform Quantitative Trait Loci (QTL) and expression QTL (eQTL) analysis of 120 Diversity Outbred (DO) female mice, 56 weeks of age. We performed network analysis of kidney gene expression to determine if the gene modules with common functions are associated with kidney biomarkers of chronic kidney diseases. Our data demonstrates that plasma concentrations and kidney mRNA levels of CysC are associated with genetic variation and are transcriptionally coregulated by immune genes. Specifically, Type-I interferon signaling genes are coexpressed with Cst3 mRNA levels and associated with CysC concentrations in plasma. Our findings demonstrate the complex control of CysC by genetic polymorphisms and inflammatory pathways.
Collapse
|
38
|
Graham JB, Swarts JL, Menachery VD, Gralinski LE, Schäfer A, Plante KS, Morrison CR, Voss KM, Green R, Choonoo G, Jeng S, Miller DR, Mooney MA, McWeeney SK, Ferris MT, Pardo-Manuel de Villena F, Gale M, Heise MT, Baric RS, Lund JM. Immune Predictors of Mortality After Ribonucleic Acid Virus Infection. J Infect Dis 2020; 221:882-889. [PMID: 31621854 PMCID: PMC7107456 DOI: 10.1093/infdis/jiz531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/11/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Virus infections result in a range of clinical outcomes for the host, from asymptomatic to severe or even lethal disease. Despite global efforts to prevent and treat virus infections to limit morbidity and mortality, the continued emergence and re-emergence of new outbreaks as well as common infections such as influenza persist as a health threat. Challenges to the prevention of severe disease after virus infection include both a paucity of protective vaccines as well as the early identification of individuals with the highest risk that may require supportive treatment. METHODS We completed a screen of mice from the Collaborative Cross (CC) that we infected with influenza, severe acute respiratory syndrome-coronavirus, and West Nile virus. RESULTS The CC mice exhibited a range of disease manifestations upon infections, and we used this natural variation to identify strains with mortality after infection and strains exhibiting no mortality. We then used comprehensive preinfection immunophenotyping to identify global baseline immune correlates of protection from mortality to virus infection. CONCLUSIONS These data suggest that immune phenotypes might be leveraged to identify humans at highest risk of adverse clinical outcomes upon infection, who may most benefit from intensive clinical interventions, in addition to providing insight for rational vaccine design.
Collapse
Affiliation(s)
- Jessica B Graham
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jessica L Swarts
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Vineet D Menachery
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Microbiology and Immunology, University of Texas Medical Center, Galveston, Texas, USA
| | - Lisa E Gralinski
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kenneth S Plante
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Clayton R Morrison
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kathleen M Voss
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Richard Green
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Gabrielle Choonoo
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Sophia Jeng
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Darla R Miller
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael A Mooney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, USA.,OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Shannon K McWeeney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, USA.,OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA.,Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Martin T Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Mark T Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jennifer M Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
39
|
Wall E, Scoles J, Joo A, Klein O, Quinonez C, Bush JO, Martin GR, Laird DJ. The UCSF Mouse Inventory Database Application, an Open Source Web App for Sharing Mutant Mice Within a Research Community. G3 (BETHESDA, MD.) 2020; 10:1503-1510. [PMID: 32152007 PMCID: PMC7202022 DOI: 10.1534/g3.120.401086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/01/2020] [Indexed: 11/25/2022]
Abstract
The UCSF Mouse Inventory Database Application is an open-source Web App that provides information about the mutant alleles, transgenes, and inbred strains maintained by investigators at the university and facilitates sharing of these resources within the university community. The Application is designed to promote collaboration, decrease the costs associated with obtaining genetically-modified mice, and increase access to mouse lines that are difficult to obtain. An inventory of the genetically-modified mice on campus and the investigators who maintain them is compiled from records of purchases from external sources, transfers from researchers within and outside the university, and from data provided by users. These data are verified and augmented with relevant information harvested from public databases, and stored in a succinct, searchable database secured on the university network. Here we describe this resource and provide information about how to implement and maintain such a mouse inventory database application at other institutions.
Collapse
Affiliation(s)
- Estelle Wall
- Department of Obstetrics, Gynecology and Reproductive Science; Center for Reproductive Sciences; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California
| | | | - Adriane Joo
- Program in Craniofacial Biology and Department of Orofacial Sciences, Univeristy of California, San Francisco, CA 94143
| | - Ophir Klein
- Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA 94143
| | | | - Jeffrey O Bush
- Department of Cell and Tissue Biology; Program in Craniofacial Biology; Institute for Human Genetics, University of California, San Francisco, CA 94143
| | - Gail R Martin
- Department of Anatomy, University of California, San Francisco, CA 94143
| | - Diana J Laird
- Department of Obstetrics, Gynecology and Reproductive Science; Center for Reproductive Sciences; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California
| |
Collapse
|
40
|
Soller M, Abu-Toamih Atamni HJ, Binenbaum I, Chatziioannou A, Iraqi FA. Designing a QTL Mapping Study for Implementation in the Realized Collaborative Cross Genetic Reference Population. ACTA ACUST UNITED AC 2020; 9:e66. [PMID: 31756057 DOI: 10.1002/cpmo.66] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Collaborative Cross (CC) mouse resource is a next-generation mouse genetic reference population (GRP) designed for high-resolution mapping of quantitative trait loci (QTL) of large effect affecting complex traits during health and disease. The CC resource consists of a set of 72 recombinant inbred lines (RILs) generated by reciprocal crossing of five classical and three wild-derived mouse founder strains. Complex traits are controlled by variations within multiple genes and environmental factors, and their mutual interactions. These traits are observed at multiple levels of the animals' systems, including metabolism, body weight, immune profile, and susceptibility or resistance to the development and progress of infectious or chronic diseases. Herein, we present general guidelines for design of QTL mapping experiments using the CC resource-along with full step-by-step protocols and methods that were implemented in our lab for the phenotypic and genotypic characterization of the different CC lines-for mapping the genes underlying host response to infectious and chronic diseases. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: CC lines for whole body mass index (BMI) Basic Protocol 2: A detailed assessment of the power to detect effect sizes based on the number of lines used, and the number of replicates per line Basic Protocol 3: Obtaining power for QTL with given target effect by interpolating in Table 1 of Keele et al. (2019).
Collapse
Affiliation(s)
- Morris Soller
- Department of Genetics, Silverman Institute for Life Sciences, Hebrew University, Jerusalem, Israel
| | - Hanifa J Abu-Toamih Atamni
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Ilona Binenbaum
- Department of Biology, University of Patras, Patras, Greece.,Institute of Biology, Medicinal Chemistry & Biotechnology, NHRF, Athens, Greece
| | | | - Fuad A Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| |
Collapse
|
41
|
Genetic Diversity of Collaborative Cross Mice Controls Viral Replication, Clinical Severity, and Brain Pathology Induced by Zika Virus Infection, Independently of Oas1b. J Virol 2020; 94:JVI.01034-19. [PMID: 31694939 DOI: 10.1128/jvi.01034-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/03/2019] [Indexed: 12/11/2022] Open
Abstract
The explosive spread of Zika virus (ZIKV) has been associated with major variations in severe disease and congenital afflictions among infected populations, suggesting an influence of host genes. We investigated how genome-wide variants could impact susceptibility to ZIKV infection in mice. We first describe that the susceptibility of Ifnar1-knockout mice is largely influenced by their genetic background. We then show that Collaborative Cross (CC) mice, which exhibit a broad genetic diversity, in which the type I interferon receptor (IFNAR) was blocked by an anti-IFNAR antibody expressed phenotypes ranging from complete resistance to severe symptoms and death, with large variations in the peak and the rate of decrease in the plasma viral load, in the brain viral load, in brain histopathology, and in the viral replication rate in infected cells. The differences in susceptibility to ZIKV between CC strains correlated with the differences in susceptibility to dengue and West Nile viruses between the strains. We identified highly susceptible and resistant mouse strains as new models to investigate the mechanisms of human ZIKV disease and other flavivirus infections. Genetic analyses revealed that phenotypic variations are driven by multiple genes with small effects, reflecting the complexity of ZIKV disease susceptibility in the human population. Notably, our results rule out the possibility of a role of the Oas1b gene in the susceptibility to ZIKV. Altogether, the findings of this study emphasize the role of host genes in the pathogeny of ZIKV infection and lay the foundation for further genetic and mechanistic studies.IMPORTANCE In recent outbreaks, ZIKV has infected millions of people and induced rare but potentially severe complications, including Guillain-Barré syndrome and encephalitis in adults. While several viral sequence variants were proposed to enhance the pathogenicity of ZIKV, the influence of host genetic variants in mediating the clinical heterogeneity remains mostly unexplored. We addressed this question using a mouse panel which models the genetic diversity of the human population and a ZIKV strain from a recent clinical isolate. Through a combination of in vitro and in vivo approaches, we demonstrate that multiple host genetic variants determine viral replication in infected cells and the clinical severity, the kinetics of blood viral load, and brain pathology in mice. We describe new mouse models expressing high degrees of susceptibility or resistance to ZIKV and to other flaviviruses. These models will facilitate the identification and mechanistic characterization of host genes that influence ZIKV pathogenesis.
Collapse
|
42
|
Graham JB, Swarts JL, Thomas S, Voss KM, Sekine A, Green R, Ireton RC, Gale M, Lund JM. Immune Correlates of Protection From West Nile Virus Neuroinvasion and Disease. J Infect Dis 2020; 219:1162-1171. [PMID: 30371803 DOI: 10.1093/infdis/jiy623] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/24/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND A challenge to the design of improved therapeutic agents and prevention strategies for neuroinvasive infection and associated disease is the lack of known natural immune correlates of protection. A relevant model to study such correlates is offered by the Collaborative Cross (CC), a panel of recombinant inbred mouse strains that exhibit a range of disease manifestations upon infection. METHODS We performed an extensive screen of CC-F1 lines infected with West Nile virus (WNV), including comprehensive immunophenotyping, to identify groups of lines that exhibited viral neuroinvasion or neuroinvasion with disease and lines that remained free of WNV neuroinvasion and disease. RESULTS Our data reveal that protection from neuroinvasion and disease is multifactorial and that several immune outcomes can contribute. Immune correlates identified include decreased suppressive activity of regulatory T cells at steady state, which correlates with peripheral restriction of the virus. Further, a rapid contraction of WNV-specific CD8+ T cells in the brain correlated with protection from disease. CONCLUSIONS These immune correlates of protection illustrate additional networks and pathways of the WNV immune response that cannot be observed in the C57BL/6 mouse model. Additionally, correlates of protection exhibited before infection, at baseline, provide insight into phenotypic differences in the human population that may predict clinical outcomes upon infection.
Collapse
Affiliation(s)
- Jessica B Graham
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center
| | - Jessica L Swarts
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center
| | - Sunil Thomas
- Center for Innate Immunity and Immune Disease, Department of Immunology, School of Medicine
| | - Kathleen M Voss
- Center for Innate Immunity and Immune Disease, Department of Immunology, School of Medicine
| | - Aimee Sekine
- Center for Innate Immunity and Immune Disease, Department of Immunology, School of Medicine
| | - Richard Green
- Center for Innate Immunity and Immune Disease, Department of Immunology, School of Medicine
| | - Renee C Ireton
- Center for Innate Immunity and Immune Disease, Department of Immunology, School of Medicine
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, School of Medicine
| | - Jennifer M Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center.,Department of Global Health, School of Medicine and School of Public Health, University of Washington, Seattle, Washington
| |
Collapse
|
43
|
Abstract
The variable outcome of Mycobacterium tuberculosis infection observed in natural populations is difficult to model in genetically homogeneous small-animal models. The newly developed Collaborative Cross (CC) represents a reproducible panel of genetically diverse mice that display a broad range of phenotypic responses to infection. We explored the genetic basis of this variation, focusing on a CC line that is highly susceptible to M. tuberculosis infection. This study identified multiple quantitative trait loci associated with bacterial control and cytokine production, including one that is caused by a novel loss-of-function mutation in the Itgal gene, which is necessary for T cell recruitment to the infected lung. These studies verify the multigenic control of mycobacterial disease in the CC panel, identify genetic loci controlling diverse aspects of pathogenesis, and highlight the utility of the CC resource. Host genetics plays an important role in determining the outcome of Mycobacterium tuberculosis
infection. We previously found that Collaborative Cross (CC) mouse strains differ in their susceptibility to M. tuberculosis and that the CC042/GeniUnc (CC042) strain suffered from a rapidly progressive disease and failed to produce the protective cytokine gamma interferon (IFN-γ) in the lung. Here, we used parallel genetic and immunological approaches to investigate the basis of CC042 mouse susceptibility. Using a population derived from a CC001/Unc (CC001) × CC042 intercross, we mapped four quantitative trait loci (QTL) underlying tuberculosis immunophenotypes (Tip1 to Tip4). These included QTL that were associated with bacterial burden, IFN-γ production following infection, and an IFN-γ-independent mechanism of bacterial control. Further immunological characterization revealed that CC042 animals recruited relatively few antigen-specific T cells to the lung and that these T cells failed to express the integrin alpha L (αL; i.e., CD11a), which contributes to T cell activation and migration. These defects could be explained by a CC042 private variant in the Itgal gene, which encodes CD11a and is found within the Tip2 interval. This 15-bp deletion leads to aberrant mRNA splicing and is predicted to result in a truncated protein product. The ItgalCC042 genotype was associated with all measured disease traits, indicating that this variant is a major determinant of susceptibility in CC042 mice. The combined effect of functionally distinct Tip variants likely explains the profound susceptibility of CC042 mice and highlights the multigenic nature of tuberculosis control in the Collaborative Cross.
Collapse
|
44
|
Wang P, Wang Y, Langley SA, Zhou YX, Jen KY, Sun Q, Brislawn C, Rojas CM, Wahl KL, Wang T, Fan X, Jansson JK, Celniker SE, Zou X, Threadgill DW, Snijders AM, Mao JH. Diverse tumour susceptibility in Collaborative Cross mice: identification of a new mouse model for human gastric tumourigenesis. Gut 2019; 68:1942-1952. [PMID: 30842212 PMCID: PMC6839736 DOI: 10.1136/gutjnl-2018-316691] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The Collaborative Cross (CC) is a mouse population model with diverse and reproducible genetic backgrounds used to identify novel disease models and genes that contribute to human disease. Since spontaneous tumour susceptibility in CC mice remains unexplored, we assessed tumour incidence and spectrum. DESIGN We monitored 293 mice from 18 CC strains for tumour development. Genetic association analysis and RNA sequencing were used to identify susceptibility loci and candidate genes. We analysed genomes of patients with gastric cancer to evaluate the relevance of genes identified in the CC mouse model and measured the expression levels of ISG15 by immunohistochemical staining using a gastric adenocarcinoma tissue microarray. Association of gene expression with overall survival (OS) was assessed by Kaplan-Meier analysis. RESULTS CC mice displayed a wide range in the incidence and types of spontaneous tumours. More than 40% of CC036 mice developed gastric tumours within 1 year. Genetic association analysis identified Nfκb1 as a candidate susceptibility gene, while RNA sequencing analysis of non-tumour gastric tissues from CC036 mice showed significantly higher expression of inflammatory response genes. In human gastric cancers, the majority of human orthologues of the 166 mouse genes were preferentially altered by amplification or deletion and were significantly associated with OS. Higher expression of the CC036 inflammatory response gene signature is associated with poor OS. Finally, ISG15 protein is elevated in gastric adenocarcinomas and correlated with shortened patient OS. CONCLUSIONS CC strains exhibit tremendous variation in tumour susceptibility, and we present CC036 as a spontaneous laboratory mouse model for studying human gastric tumourigenesis.
Collapse
Affiliation(s)
- Pin Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Yunshan Wang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA,Clinical Laboratory, Second Hospital of Shandong University, Jinan, China
| | - Sasha A Langley
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Yan-Xia Zhou
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA,College of Marine Science, Shandong University, Weihai, China
| | - Kuang-Yu Jen
- Department of Pathology, University of California Davis Medical Center, Sacramento, California, USA
| | - Qi Sun
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Colin Brislawn
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Carolina M Rojas
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA,Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA
| | - Kimberly L Wahl
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA,Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA
| | - Ting Wang
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiangshan Fan
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Janet K Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Susan E Celniker
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - David W Threadgill
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA,Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
45
|
Abu‐Toamih Atamni HJ, Iraqi FA. Efficient protocols and methods for high-throughput utilization of the Collaborative Cross mouse model for dissecting the genetic basis of complex traits. Animal Model Exp Med 2019; 2:137-149. [PMID: 31773089 PMCID: PMC6762040 DOI: 10.1002/ame2.12074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 12/25/2022] Open
Abstract
The Collaborative Cross (CC) mouse model is a next-generation mouse genetic reference population (GRP) designated for a high-resolution quantitative trait loci (QTL) mapping of complex traits during health and disease. The CC lines were generated from reciprocal crosses of eight divergent mouse founder strains composed of five classical and three wild-derived strains. Complex traits are defined to be controlled by variations within multiple genes and the gene/environment interactions. In this article, we introduce and present variety of protocols and results of studying the host response to infectious and chronic diseases, including type 2 diabetes and metabolic diseases, body composition, immune response, colorectal cancer, susceptibility to Aspergillus fumigatus, Klebsiella pneumoniae, Pseudomonas aeruginosa, sepsis, and mixed infections of Porphyromonas gingivalis and Fusobacterium nucleatum, which were conducted at our laboratory using the CC mouse population. These traits are observed at multiple levels of the body systems, including metabolism, body weight, immune profile, susceptibility or resistance to the development and progress of infectious or chronic diseases. Herein, we present full protocols and step-by-step methods, implemented in our laboratory for the phenotypic and genotypic characterization of the different CC lines, mapping the gene underlying the host response to these infections and chronic diseases. The CC mouse model is a unique and powerful GRP for dissecting the host genetic architectures underlying complex traits, including chronic and infectious diseases.
Collapse
Affiliation(s)
- Hanifa J. Abu‐Toamih Atamni
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel Aviv UniversityTel AvivRamat AvivIsrael
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel Aviv UniversityTel AvivRamat AvivIsrael
| |
Collapse
|
46
|
Recla JM, Bubier JA, Gatti DM, Ryan JL, Long KH, Robledo RF, Glidden NC, Hou G, Churchill GA, Maser RS, Zhang ZW, Young EE, Chesler EJ, Bult CJ. Genetic mapping in Diversity Outbred mice identifies a Trpa1 variant influencing late-phase formalin response. Pain 2019; 160:1740-1753. [PMID: 31335644 PMCID: PMC6668363 DOI: 10.1097/j.pain.0000000000001571] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Identification of genetic variants that influence susceptibility to pain is key to identifying molecular mechanisms and targets for effective and safe therapeutic alternatives to opioids. To identify genes and variants associated with persistent pain, we measured late-phase response to formalin injection in 275 male and female Diversity Outbred mice genotyped for over 70,000 single nucleotide polymorphisms. One quantitative trait locus reached genome-wide significance on chromosome 1 with a support interval of 3.1 Mb. This locus, Nociq4 (nociceptive sensitivity quantitative trait locus 4; MGI: 5661503), harbors the well-known pain gene Trpa1 (transient receptor potential cation channel, subfamily A, member 1). Trpa1 is a cation channel known to play an important role in acute and chronic pain in both humans and mice. Analysis of Diversity Outbred founder strain allele effects revealed a significant effect of the CAST/EiJ allele at Trpa1, with CAST/EiJ carrier mice showing an early, but not late, response to formalin relative to carriers of the 7 other inbred founder alleles (A/J, C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ, NZO/HlLtJ, PWK/PhJ, and WSB/EiJ). We characterized possible functional consequences of sequence variants in Trpa1 by assessing channel conductance, TRPA1-TRPV1 interactions, and isoform expression. The phenotypic differences observed in CAST/EiJ relative to C57BL/6J carriers were best explained by Trpa1 isoform expression differences, implicating a splice junction variant as the causal functional variant. This study demonstrates the utility of advanced, high-precision genetic mapping populations in resolving specific molecular mechanisms of variation in pain sensitivity.
Collapse
Affiliation(s)
- Jill M. Recla
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
- IGERT Program in Functional Genomics, Graduate School of Biomedical Sciences and Engineering, The University of Maine, Orono, ME 04469, USA
| | - Jason A. Bubier
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Daniel M. Gatti
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Jennifer L. Ryan
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Katie H. Long
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | - Nicole C. Glidden
- Department of Genetics and Genome Sciences, UCONN Health, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - Guoqiang Hou
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | - Richard S. Maser
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Zhong-wei Zhang
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Erin E. Young
- Department of Genetics and Genome Sciences, UCONN Health, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
- School of Nursing, University of Connecticut, 231 Glenbrook Rd, Unit 4026, Storrs, CT 06269-4026, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269-4026, USA
| | | | - Carol J. Bult
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| |
Collapse
|
47
|
Abstract
The Collaborative Cross (CC) is a mouse genetic reference population whose range of applications includes quantitative trait loci (QTL) mapping. The design of a CC QTL mapping study involves multiple decisions, including which and how many strains to use, and how many replicates per strain to phenotype, all viewed within the context of hypothesized QTL architecture. Until now, these decisions have been informed largely by early power analyses that were based on simulated, hypothetical CC genomes. Now that more than 50 CC strains are available and more than 70 CC genomes have been observed, it is possible to characterize power based on realized CC genomes. We report power analyses from extensive simulations and examine several key considerations: 1) the number of strains and biological replicates, 2) the QTL effect size, 3) the presence of population structure, and 4) the distribution of functionally distinct alleles among the founder strains at the QTL. We also provide general power estimates to aide in the design of future experiments. All analyses were conducted with our R package, SPARCC (Simulated Power Analysis in the Realized Collaborative Cross), developed for performing either large scale power analyses or those tailored to particular CC experiments.
Collapse
|
48
|
Shorter JR, Najarian ML, Bell TA, Blanchard M, Ferris MT, Hock P, Kashfeen A, Kirchoff KE, Linnertz CL, Sigmon JS, Miller DR, McMillan L, Pardo-Manuel de Villena F. Whole Genome Sequencing and Progress Toward Full Inbreeding of the Mouse Collaborative Cross Population. G3 (BETHESDA, MD.) 2019; 9:1303-1311. [PMID: 30858237 PMCID: PMC6505143 DOI: 10.1534/g3.119.400039] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/08/2019] [Indexed: 12/20/2022]
Abstract
Two key features of recombinant inbred panels are well-characterized genomes and reproducibility. Here we report on the sequenced genomes of six additional Collaborative Cross (CC) strains and on inbreeding progress of 72 CC strains. We have previously reported on the sequences of 69 CC strains that were publicly available, bringing the total of CC strains with whole genome sequence up to 75. The sequencing of these six CC strains updates the efforts toward inbreeding undertaken by the UNC Systems Genetics Core. The timing reflects our competing mandates to release to the public as many CC strains as possible while achieving an acceptable level of inbreeding. The new six strains have a higher than average founder contribution from non-domesticus strains than the previously released CC strains. Five of the six strains also have high residual heterozygosity (>14%), which may be related to non-domesticus founder contributions. Finally, we report on updated estimates on residual heterozygosity across the entire CC population using a novel, simple and cost effective genotyping platform on three mice from each strain. We observe a reduction in residual heterozygosity across all previously released CC strains. We discuss the optimal use of different genetic resources available for the CC population.
Collapse
Affiliation(s)
| | | | - Timothy A Bell
- Department of Genetics
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Regulatory T cells limit unconventional memory to preserve the capacity to mount protective CD8 memory responses to pathogens. Proc Natl Acad Sci U S A 2019; 116:9969-9978. [PMID: 31036644 DOI: 10.1073/pnas.1818327116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Immunological memory exists so that following infection an expanded population of pathogen-specific lymphocytes can rapidly and efficiently control infection in the case of reexposure. However, in the case of CD8+ T lymphocytes, a population of unconventional CD44+CD122+ virtual memory T cells (TVM) has been described that possesses many, though not all, features of "true memory" T cells, without the requirement of first encountering cognate antigen. Here, we demonstrate a role for regulatory T cell-mediated restraint of TVM at least in part through limiting IL-15 trans-presentation by CD11b+ dendritic cells. Further, we show that keeping TVM in check ensures development of functional, antigen-specific "true" memory phenotype CD8+ T cells that can assist in pathogen control upon reexposure.
Collapse
|
50
|
Frishberg A, Peshes-Yaloz N, Cohn O, Rosentul D, Steuerman Y, Valadarsky L, Yankovitz G, Mandelboim M, Iraqi FA, Amit I, Mayo L, Bacharach E, Gat-Viks I. Cell composition analysis of bulk genomics using single-cell data. Nat Methods 2019; 16:327-332. [PMID: 30886410 PMCID: PMC6443043 DOI: 10.1038/s41592-019-0355-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 02/12/2019] [Indexed: 12/21/2022]
Abstract
Single-cell expression profiling (scRNA-seq) is a rich resource of cellular heterogeneity. While profiling every sample under study would be advantageous, it is time-consuming and costly. Here we introduce Cell Population Mapping (CPM), a deconvolution algorithm in which the composition of cell types and states is inferred from the bulk transcriptome using reference scRNA-seq profiles ('scBio' CRAN R-package). Analysis of individual variations in lungs of influenza virus-infected mice, using CPM, revealed that the relationship between cell abundance and clinical symptoms is a cell-state-specific property that varies gradually along the continuum of cell-activation states. The gradual change was confirmed in subsequent experiments and was further explained by a mathematical model in which clinical outcomes relate to cell-state dynamics along the activation process. Our results demonstrate the power of CPM in reconstructing the continuous spectrum of cell states within heterogeneous tissues.
Collapse
Affiliation(s)
- Amit Frishberg
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Naama Peshes-Yaloz
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ofir Cohn
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Diana Rosentul
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yael Steuerman
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Liran Valadarsky
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Gal Yankovitz
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Michal Mandelboim
- National Center for Influenza and Respiratory Viruses, Central Virology Laboratory, Sheba Medical Center at Tel HaShomer, Ramat-Gan, Israel.,Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Fuad A Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ido Amit
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Lior Mayo
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Eran Bacharach
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Irit Gat-Viks
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|