1
|
Hölter SM, Cacheiro P, Smedley D, Kent Lloyd KC. IMPC impact on preclinical mouse models. Mamm Genome 2025:10.1007/s00335-025-10104-4. [PMID: 39820486 DOI: 10.1007/s00335-025-10104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/09/2025] [Indexed: 01/19/2025]
Affiliation(s)
- Sabine M Hölter
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany.
- Technical University Munich, Munich, Germany.
- German Center for Mental Health (DZPG), Partner Site Munich, Munich, Germany.
| | - Pilar Cacheiro
- Faculty of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Damian Smedley
- Faculty of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - K C Kent Lloyd
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, USA
- Mouse Biology Program, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
2
|
Lin J, Zhang J, Ma L, Fang H, Ma R, Groneck C, Filippova GN, Deng X, Kinoshita C, Young JE, Ma W, Disteche CM, Berletch JB. KDM6A facilitates Xist upregulation at the onset of X inactivation. Biol Sex Differ 2025; 16:1. [PMID: 39754175 PMCID: PMC11699772 DOI: 10.1186/s13293-024-00683-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 12/09/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND X chromosome inactivation (XCI) is a female-specific process in which one X chromosome is silenced to balance X-linked gene expression between the sexes. XCI is initiated in early development by upregulation of the lncRNA Xist on the future inactive X (Xi). A subset of X-linked genes escape silencing and thus have higher expression in females, suggesting female-specific functions. One of these genes is the highly conserved gene Kdm6a, which encodes a histone demethylase that removes methyl groups at H3K27 to facilitate gene expression. KDM6A mutations have been implicated in congenital disorders such as Kabuki Syndrome, as well as in sex differences in development and cancer. METHODS Kdm6a was knocked out (KO) using CRISPR/Cas9 gene editing in hybrid female mouse embryonic stem (ES) cells derived either from a 129 × Mus castaneus (cast) cross or a BL6 x cast cross. In one of the lines a transcriptional stop signal inserted in Tsix results in completely skewed X silencing upon differentiation. The effects of both homozygous and heterozygous Kdm6a KO on Xist expression during the onset of XCI were measured by RT-PCR and RNA-FISH. Changes in gene expression and in H3K27me3 enrichment were investigated using allele-specific RNA-seq and Cut&Run, respectively. KDM6A binding to the Xist gene was characterized by Cut&Run. RESULTS We observed impaired upregulation of Xist and reduced coating of the Xi during early stages of differentiation in Kdm6a KO cells, both homozygous and heterozygous, suggesting a threshold effect of KDM6A. This was associated with aberrant overexpression of genes from the Xi after differentiation, indicating loss of X inactivation potency. Consistent with KDM6A having a direct role in Xist regulation, we found that the histone demethylase binds to the Xist promoter and KO cells show an increase in H3K27me3 at Xist, consistent with reduced expression. CONCLUSIONS These results reveal a novel female-specific role for the X-linked histone demethylase, KDM6A in the initiation of XCI through histone demethylase-dependent activation of Xist during early differentiation. X chromosome inactivation is a female-specific mechanism that evolved to balance sex-linked gene dosage between females (XX) and males (XY) by silencing one X chromosome in females. X inactivation begins with the upregulation of the long noncoding RNA Xist on the future inactive X chromosome. While most genes become silenced on the inactive X chromosome some genes escape inactivation and thus have higher expression in females compared to males, suggesting that escape genes may have female-specific functions. One such gene encodes the histone demethylase KDM6A which function is to turn on gene expression by removing repressive histone modifications. In this study, we investigated the role of KDM6A in the regulation of Xist expression during the onset of X inactivation. We found that KDM6A binds to the Xist gene to remove repressive histone marks and facilitate its expression in early development. Indeed, depletion of KDM6A prevents upregulation of Xist due to abnormal persistence of repressive histone modifications. In turn, this results in aberrant overexpression of genes from the inactive X chromosome. Our findings point to a novel mechanism of Xist regulation during the initiation of X inactivation, which may lead to new avenues of treatment to alleviate congenital disorders such as Kabuki syndrome and sex-biased immune disorders where X-linked gene dosage is perturbed.
Collapse
Affiliation(s)
- Josephine Lin
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Jinli Zhang
- Department of Statistics, University of California Riverside, Riverside, CA, 92521, USA
| | - Li Ma
- Department of Microbiology, Immunology & Cell Biology, University of West Virginia, Morgantown, WV, 26506, USA
| | - He Fang
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Rui Ma
- Department of Statistics, University of California Riverside, Riverside, CA, 92521, USA
| | - Camille Groneck
- Department of Biochemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Galina N Filippova
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Xinxian Deng
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Chizuru Kinoshita
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Jessica E Young
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Wenxiu Ma
- Department of Statistics, University of California Riverside, Riverside, CA, 92521, USA.
| | - Christine M Disteche
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA.
- Department of Medicine, School of Medicine, University of Washington, Seattle, WA, 98195, USA.
| | - Joel B Berletch
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
3
|
Ballasy N, Apantaku I, Dean W, Hemberger M. Off to a good start: The importance of the placental exchange surface - Lessons from the mouse. Dev Biol 2025; 517:248-264. [PMID: 39491740 DOI: 10.1016/j.ydbio.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/04/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
The role of the chorio-allantoic placenta as the critical nutrient- and oxygen-supplying organ to nourish the demands of the fetus has been well recognized. This function relies on the successful establishment of the placental feto-maternal exchange unit, or interhaemal barrier, across which all nutrients as well as waste products must pass to cross from the maternal to the fetal blood circulation, or vice versa, respectively. As a consequence, defects in the establishment of this elaborate interface lead to fetal growth retardation or even embryonic lethality, depending on the severity of the defect. Beyond this essential role, however, it has also emerged that the functionality of the feto-maternal interface dictates the proper development of specific embryonic organs, with tightest links observed to the formation of the heart. In this article, we build on the foundational strength of the mouse as experimental model in which the placental causality of embryonic defects can be genetically proven. We discuss in detail the formation of the interhaemal barrier that makes up the labyrinth layer of the murine placenta, including insights into drivers of its formation and the interdependence of the cell types that make up this essential interface, from in vivo and in vitro data using mouse trophoblast stem cells. We highlight mouse genetic tools that enable the elucidation of cause-effect relationships between defects driven by either the trophoblast cells of the placenta or by embryonic cell types. We specifically emphasize gene knockouts for which a placental causality of embryonic heart defects has been demonstrated. This in-depth perspective provides much-needed insights while highlighting remaining gaps in knowledge that are essential for gaining a better understanding of the multi-facetted roles of the placenta in setting us up for a healthy start in life well beyond nutritional support alone.
Collapse
Affiliation(s)
- Noura Ballasy
- Dept. of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Ifeoluwa Apantaku
- Dept. of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Wendy Dean
- Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada; Dept. of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Myriam Hemberger
- Dept. of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
4
|
Battivelli D, Fan Z, Hu H, Gross CT. How can ethology inform the neuroscience of fear, aggression and dominance? Nat Rev Neurosci 2024; 25:809-819. [PMID: 39402310 DOI: 10.1038/s41583-024-00858-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 11/20/2024]
Abstract
The study of behaviour is dominated by two approaches. On the one hand, ethologists aim to understand how behaviour promotes adaptation to natural contexts. On the other, neuroscientists aim to understand the molecular, cellular, circuit and psychological origins of behaviour. These two complementary approaches must be combined to arrive at a full understanding of behaviour in its natural setting. However, methodological limitations have restricted most neuroscientific research to the study of how discrete sensory stimuli elicit simple behavioural responses under controlled laboratory conditions that are only distantly related to those encountered in real life. Fortunately, the recent advent of neural monitoring and manipulation tools adapted for use in freely behaving animals has enabled neuroscientists to incorporate naturalistic behaviours into their studies and to begin to consider ethological questions. Here, we examine the promises and pitfalls of this trend by describing how investigations of rodent fear, aggression and dominance behaviours are changing to take advantage of an ethological appreciation of behaviour. We lay out current impediments to this approach and propose a framework for the evolution of the field that will allow us to take maximal advantage of an ethological approach to neuroscience and to increase its relevance for understanding human behaviour.
Collapse
Affiliation(s)
- Dorian Battivelli
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Monterotondo, Italy
| | - Zhengxiao Fan
- School of Brain Science and Brain Medicine, New Cornerstone Science Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Hailan Hu
- School of Brain Science and Brain Medicine, New Cornerstone Science Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
| | - Cornelius T Gross
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Monterotondo, Italy.
| |
Collapse
|
5
|
Beauchamp MC, Jerome-Majewska LA. A protective role for EFTUD2 in the brain. Neuron 2024; 112:3378-3380. [PMID: 39447540 DOI: 10.1016/j.neuron.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024]
Abstract
In this issue of Neuron, Yang et al.1 report MFDM-like phenotypes in mice with deletion of Eftud2 in their Purkinje cells (PCs), namely cerebellar atrophy alongside motor and social deficits, similar to phenotypes observed in MFDM patients. The absence of Eftud2 caused mis-splicing of Atf4, reduced Scd1 and Gch1, and promoted ferroptosis-regulated PC death.
Collapse
Affiliation(s)
- Marie-Claude Beauchamp
- Research Institute of the McGill University Health Centre at Glen Site, Montreal, QC H4A 3J1, Canada
| | - Loydie A Jerome-Majewska
- Research Institute of the McGill University Health Centre at Glen Site, Montreal, QC H4A 3J1, Canada; Department of Human Genetics, McGill University, Montreal, QC H3A 0G1, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B2, Canada; Department of Pediatrics, McGill University, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
6
|
Martinez-Mayer J, Brinkmeier ML, O'Connell SP, Ukagwu A, Marti MA, Miras M, Forclaz MV, Benzrihen MG, Cheung LYM, Camper SA, Ellsworth BS, Raetzman LT, Pérez-Millán MI, Davis SW. Knockout mice with pituitary malformations help identify human cases of hypopituitarism. Genome Med 2024; 16:75. [PMID: 38822427 PMCID: PMC11140907 DOI: 10.1186/s13073-024-01347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Congenital hypopituitarism (CH) and its associated syndromes, septo-optic dysplasia (SOD) and holoprosencephaly (HPE), are midline defects that cause significant morbidity for affected people. Variants in 67 genes are associated with CH, but a vast majority of CH cases lack a genetic diagnosis. Whole exome and whole genome sequencing of CH patients identifies sequence variants in genes known to cause CH, and in new candidate genes, but many of these are variants of uncertain significance (VUS). METHODS The International Mouse Phenotyping Consortium (IMPC) is an effort to establish gene function by knocking-out all genes in the mouse genome and generating corresponding phenotype data. We used mouse embryonic imaging data generated by the Deciphering Mechanisms of Developmental Disorders (DMDD) project to screen 209 embryonic lethal and sub-viable knockout mouse lines for pituitary malformations. RESULTS Of the 209 knockout mouse lines, we identified 51 that have embryonic pituitary malformations. These genes not only represent new candidates for CH, but also reveal new molecular pathways not previously associated with pituitary organogenesis. We used this list of candidate genes to mine whole exome sequencing data of a cohort of patients with CH, and we identified variants in two unrelated cases for two genes, MORC2 and SETD5, with CH and other syndromic features. CONCLUSIONS The screening and analysis of IMPC phenotyping data provide proof-of-principle that recessive lethal mouse mutants generated by the knockout mouse project are an excellent source of candidate genes for congenital hypopituitarism in children.
Collapse
Affiliation(s)
- Julian Martinez-Mayer
- Institute of Biosciences, Biotechnology and Translational Biology (iB3), University of Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| | - Michelle L Brinkmeier
- Department of Human Genetics, University of Michigan, 1241 Catherine St., Ann Arbor, MI, 48109-5618, USA
| | - Sean P O'Connell
- Department of Biological Sciences, University of South Carolina, 715 Sumter St., Columbia, SC, 29208, USA
| | - Arnold Ukagwu
- Department of Physiology, Southern Illinois University, 1135 Lincoln Dr, Carbondale, IL, 62901, USA
| | - Marcelo A Marti
- Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mirta Miras
- Hospital De Niños de La Santísima Trinidad, Córdoba, Argentina
| | - Maria V Forclaz
- Servicio de Endocrinología, Hospital Posadas, Buenos Aires, Argentina
| | - Maria G Benzrihen
- Servicio de Endocrinología, Hospital Posadas, Buenos Aires, Argentina
| | - Leonard Y M Cheung
- Department of Human Genetics, University of Michigan, 1241 Catherine St., Ann Arbor, MI, 48109-5618, USA
- Department of Physiology and Biophyscis, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Sally A Camper
- Department of Human Genetics, University of Michigan, 1241 Catherine St., Ann Arbor, MI, 48109-5618, USA
| | - Buffy S Ellsworth
- Department of Physiology, Southern Illinois University, 1135 Lincoln Dr, Carbondale, IL, 62901, USA
| | - Lori T Raetzman
- Department of Molecular and Integrative Physiology, University of Illinois, Champaign-Urbana, Urbana, IL, 61801, USA
| | - Maria I Pérez-Millán
- Institute of Biosciences, Biotechnology and Translational Biology (iB3), University of Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina.
| | - Shannon W Davis
- Department of Biological Sciences, University of South Carolina, 715 Sumter St., Columbia, SC, 29208, USA.
| |
Collapse
|
7
|
Grunert M, Dorn C, Dopazo A, Sánchez-Cabo F, Vázquez J, Rickert-Sperling S, Lara-Pezzi E. Technologies to Study Genetics and Molecular Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:435-458. [PMID: 38884724 DOI: 10.1007/978-3-031-44087-8_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Over the last few decades, the study of congenital heart disease (CHD) has benefited from various model systems and the development of molecular biological techniques enabling the analysis of single gene as well as global effects. In this chapter, we first describe different models including CHD patients and their families, animal models ranging from invertebrates to mammals, and various cell culture systems. Moreover, techniques to experimentally manipulate these models are discussed. Second, we introduce cardiac phenotyping technologies comprising the analysis of mouse and cell culture models, live imaging of cardiogenesis, and histological methods for fixed hearts. Finally, the most important and latest molecular biotechniques are described. These include genotyping technologies, different applications of next-generation sequencing, and the analysis of transcriptome, epigenome, proteome, and metabolome. In summary, the models and technologies presented in this chapter are essential to study the function and development of the heart and to understand the molecular pathways underlying CHD.
Collapse
Affiliation(s)
- Marcel Grunert
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- DiNAQOR AG, Schlieren, Switzerland
| | - Cornelia Dorn
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ana Dopazo
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Jésus Vázquez
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Enrique Lara-Pezzi
- Myocardial Homeostasis and Cardiac Injury Programme, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.
| |
Collapse
|
8
|
Lin J, Zhang J, Ma L, Fang H, Ma R, Groneck C, Filippova GN, Deng X, Ma W, Disteche CM, Berletch JB. KDM6A facilitates Xist upregulation at the onset of X inactivation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553617. [PMID: 37645756 PMCID: PMC10462084 DOI: 10.1101/2023.08.16.553617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
X chromosome inactivation (XCI) is a female-specific process in which one X chromosome is silenced to balance X-linked gene expression between the sexes. XCI is initiated in early development by upregulation of the lncRNA Xist on the future inactive X (Xi). A subset of X-linked genes escape silencing and thus have higher expression in females, suggesting female-specific functions. One of these genes is the highly conserved gene Kdm6a , which encodes a histone demethylase that removes methyl groups at H3K27 to facilitate gene expression. Here, we investigate the role of KDM6A in the regulation of Xist . We observed impaired upregulation of Xist during early stages of differentiation in hybrid mouse ES cells following CRISPR/Cas9 knockout of Kdm6a . This is associated with reduced Xist RNA coating of the Xi, suggesting diminished XCI potency. Indeed, Kdm6a knockout results in aberrant overexpression of genes from the Xi after differentiation. KDM6A binds to the Xist promoter and knockout cells show an increase in H3K27me3 at Xist . These results indicate that KDM6A plays a role in the initiation of XCI through histone demethylase-dependent activation of Xist during early differentiation.
Collapse
|
9
|
Jaljuli I, Kafkafi N, Giladi E, Golani I, Gozes I, Chesler EJ, Bogue MA, Benjamini Y. A multi-lab experimental assessment reveals that replicability can be improved by using empirical estimates of genotype-by-lab interaction. PLoS Biol 2023; 21:e3002082. [PMID: 37126512 PMCID: PMC10174519 DOI: 10.1371/journal.pbio.3002082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/11/2023] [Accepted: 03/15/2023] [Indexed: 05/02/2023] Open
Abstract
The utility of mouse and rat studies critically depends on their replicability in other laboratories. A widely advocated approach to improving replicability is through the rigorous control of predefined animal or experimental conditions, known as standardization. However, this approach limits the generalizability of the findings to only to the standardized conditions and is a potential cause rather than solution to what has been called a replicability crisis. Alternative strategies include estimating the heterogeneity of effects across laboratories, either through designs that vary testing conditions, or by direct statistical analysis of laboratory variation. We previously evaluated our statistical approach for estimating the interlaboratory replicability of a single laboratory discovery. Those results, however, were from a well-coordinated, multi-lab phenotyping study and did not extend to the more realistic setting in which laboratories are operating independently of each other. Here, we sought to test our statistical approach as a realistic prospective experiment, in mice, using 152 results from 5 independent published studies deposited in the Mouse Phenome Database (MPD). In independent replication experiments at 3 laboratories, we found that 53 of the results were replicable, so the other 99 were considered non-replicable. Of the 99 non-replicable results, 59 were statistically significant (at 0.05) in their original single-lab analysis, putting the probability that a single-lab statistical discovery was made even though it is non-replicable, at 59.6%. We then introduced the dimensionless "Genotype-by-Laboratory" (GxL) factor-the ratio between the standard deviations of the GxL interaction and the standard deviation within groups. Using the GxL factor reduced the number of single-lab statistical discoveries and alongside reduced the probability of a non-replicable result to be discovered in the single lab to 12.1%. Such reduction naturally leads to reduced power to make replicable discoveries, but this reduction was small (from 87% to 66%), indicating the small price paid for the large improvement in replicability. Tools and data needed for the above GxL adjustment are publicly available at the MPD and will become increasingly useful as the range of assays and testing conditions in this resource increases.
Collapse
Affiliation(s)
- Iman Jaljuli
- Department of Statistics and Operations Research, Tel-Aviv University, Tel-Aviv, Israel
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Neri Kafkafi
- Department of Statistics and Operations Research, Tel-Aviv University, Tel-Aviv, Israel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Eliezer Giladi
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
| | - Ilan Golani
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Illana Gozes
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Elissa J Chesler
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Molly A Bogue
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Yoav Benjamini
- Department of Statistics and Operations Research, Tel-Aviv University, Tel-Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
10
|
Radford BN, Zhao X, Glazer T, Eaton M, Blackwell D, Mohammad S, Lo Vercio LD, Devine J, Shalom-Barak T, Hallgrimsson B, Cross JC, Sucov HM, Barak Y, Dean W, Hemberger M. Defects in placental syncytiotrophoblast cells are a common cause of developmental heart disease. Nat Commun 2023; 14:1174. [PMID: 36859534 PMCID: PMC9978031 DOI: 10.1038/s41467-023-36740-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 02/15/2023] [Indexed: 03/03/2023] Open
Abstract
Placental abnormalities have been sporadically implicated as a source of developmental heart defects. Yet it remains unknown how often the placenta is at the root of congenital heart defects (CHDs), and what the cellular mechanisms are that underpin this connection. Here, we selected three mouse mutant lines, Atp11a, Smg9 and Ssr2, that presented with placental and heart defects in a recent phenotyping screen, resulting in embryonic lethality. To dissect phenotype causality, we generated embryo- and trophoblast-specific conditional knockouts for each of these lines. This was facilitated by the establishment of a new transgenic mouse, Sox2-Flp, that enables the efficient generation of trophoblast-specific conditional knockouts. We demonstrate a strictly trophoblast-driven cause of the CHD and embryonic lethality in one of the three lines (Atp11a) and a significant contribution of the placenta to the embryonic phenotypes in another line (Smg9). Importantly, our data reveal defects in the maternal blood-facing syncytiotrophoblast layer as a shared pathology in placentally induced CHD models. This study highlights the placenta as a significant source of developmental heart disorders, insights that will transform our understanding of the vast number of unexplained congenital heart defects.
Collapse
Affiliation(s)
- Bethany N Radford
- Dept. of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Xiang Zhao
- Dept. of Cell Biology and Anatomy, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Tali Glazer
- Dept. of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Malcolm Eaton
- Dept. of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Danielle Blackwell
- Dept. of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Shuhiba Mohammad
- Dept. of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Lucas Daniel Lo Vercio
- Dept. of Cell Biology and Anatomy, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Jay Devine
- Dept. of Cell Biology and Anatomy, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Tali Shalom-Barak
- Magee-Women's Research Institute, Dept. of Obstetrics/Gynecology and Reproductive Sciences, University of Pittsburgh, 204 Craft Ave., Pittsburgh, PA, 15213, USA
| | - Benedikt Hallgrimsson
- Dept. of Cell Biology and Anatomy, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - James C Cross
- Dept. of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Henry M Sucov
- Dept. of Regenerative Medicine and Cell Biology, Division of Cardiology, Dept. of Medicine, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC, 29403, USA
| | - Yaacov Barak
- Magee-Women's Research Institute, Dept. of Obstetrics/Gynecology and Reproductive Sciences, University of Pittsburgh, 204 Craft Ave., Pittsburgh, PA, 15213, USA
| | - Wendy Dean
- Dept. of Cell Biology and Anatomy, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| | - Myriam Hemberger
- Dept. of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
11
|
Reissig LF, Geyer SH, Winkler V, Preineder E, Prin F, Wilson R, Galli A, Tudor C, White JK, Mohun TJ, Weninger WJ. Detailed characterizations of cranial nerve anatomy in E14.5 mouse embryos/fetuses and their use as reference for diagnosing subtle, but potentially lethal malformations in mutants. Front Cell Dev Biol 2022; 10:1006620. [PMID: 36438572 PMCID: PMC9682249 DOI: 10.3389/fcell.2022.1006620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/28/2022] [Indexed: 01/03/2024] Open
Abstract
Careful phenotype analysis of genetically altered mouse embryos/fetuses is vital for deciphering the function of pre- and perinatally lethal genes. Usually this involves comparing the anatomy of mutants with that of wild types of identical developmental stages. Detailed three dimensional information on regular cranial nerve (CN) anatomy of prenatal mice is very scarce. We therefore set out to provide such information to be used as reference data and selected mutants to demonstrate its potential for diagnosing CN abnormalities. Digital volume data of 152 wild type mice, harvested on embryonic day (E)14.5 and of 18 mutants of the Col4a2, Arid1b, Rpgrip1l and Cc2d2a null lines were examined. The volume data had been created with High Resolution Episcopic Microscopy (HREM) as part of the deciphering the mechanisms of developmental disorders (DMDD) program. Employing volume and surface models, oblique slicing and digital measuring tools, we provide highly detailed anatomic descriptions of the CNs and measurements of the diameter of selected segments. Specifics of the developmental stages of E14.5 mice and anatomic norm variations were acknowledged. Using the provided data as reference enabled us to objectively diagnose CN abnormalities, such as abnormal formation of CN3 (Col4a2), neuroma of the motor portion of CN5 (Arid1b), thinning of CN7 (Rpgrip1l) and abnormal topology of CN12 (Cc2d2a). Although, in a first glimpse perceived as unspectacular, defects of the motor CN5 or CN7, like enlargement or thinning can cause death of newborns, by hindering feeding. Furthermore, abnormal topology of CN12 was recently identified as a highly reliable marker for low penetrating, but potentially lethal defects of the central nervous system.
Collapse
Affiliation(s)
- Lukas F. Reissig
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Stefan H. Geyer
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Viola Winkler
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Ester Preineder
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Fabrice Prin
- The Francis Crick Institute, London, United Kingdom
| | | | | | | | | | | | - Wolfgang J. Weninger
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Huang YS, Hsu C, Chune YC, Liao IC, Wang H, Lin YL, Hwu WL, Lee NC, Lai F. Diagnosis of a Single-Nucleotide Variant in Whole-Exome Sequencing Data for Patients With Inherited Diseases: Machine Learning Study Using Artificial Intelligence Variant Prioritization. JMIR BIOINFORMATICS AND BIOTECHNOLOGY 2022; 3:e37701. [PMID: 38935959 PMCID: PMC11168239 DOI: 10.2196/37701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/29/2022] [Accepted: 08/22/2022] [Indexed: 06/29/2024]
Abstract
BACKGROUND In recent years, thanks to the rapid development of next-generation sequencing (NGS) technology, an entire human genome can be sequenced in a short period. As a result, NGS technology is now being widely introduced into clinical diagnosis practice, especially for diagnosis of hereditary disorders. Although the exome data of single-nucleotide variant (SNV) can be generated using these approaches, processing the DNA sequence data of a patient requires multiple tools and complex bioinformatics pipelines. OBJECTIVE This study aims to assist physicians to automatically interpret the genetic variation information generated by NGS in a short period. To determine the true causal variants of a patient with genetic disease, currently, physicians often need to view numerous features on every variant manually and search for literature in different databases to understand the effect of genetic variation. METHODS We constructed a machine learning model for predicting disease-causing variants in exome data. We collected sequencing data from whole-exome sequencing (WES) and gene panel as training set, and then integrated variant annotations from multiple genetic databases for model training. The model built ranked SNVs and output the most possible disease-causing candidates. For model testing, we collected WES data from 108 patients with rare genetic disorders in National Taiwan University Hospital. We applied sequencing data and phenotypic information automatically extracted by a keyword extraction tool from patient's electronic medical records into our machine learning model. RESULTS We succeeded in locating 92.5% (124/134) of the causative variant in the top 10 ranking list among an average of 741 candidate variants per person after filtering. AI Variant Prioritizer was able to assign the target gene to the top rank for around 61.1% (66/108) of the patients, followed by Variant Prioritizer, which assigned it for 44.4% (48/108) of the patients. The cumulative rank result revealed that our AI Variant Prioritizer has the highest accuracy at ranks 1, 5, 10, and 20. It also shows that AI Variant Prioritizer presents better performance than other tools. After adopting the Human Phenotype Ontology (HPO) terms by looking up the databases, the top 10 ranking list can be increased to 93.5% (101/108). CONCLUSIONS We successfully applied sequencing data from WES and free-text phenotypic information of patient's disease automatically extracted by the keyword extraction tool for model training and testing. By interpreting our model, we identified which features of variants are important. Besides, we achieved a satisfactory result on finding the target variant in our testing data set. After adopting the HPO terms by looking up the databases, the top 10 ranking list can be increased to 93.5% (101/108). The performance of the model is similar to that of manual analysis, and it has been used to help National Taiwan University Hospital with a genetic diagnosis.
Collapse
Affiliation(s)
- Yu-Shan Huang
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei City, Taiwan
| | - Ching Hsu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei City, Taiwan
| | - Yu-Chang Chune
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei City, Taiwan
| | - I-Cheng Liao
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei City, Taiwan
| | - Hsin Wang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei City, Taiwan
| | - Yi-Lin Lin
- Department of Medical Genetics, National Taiwan University Hospital, Taipei City, Taiwan
| | - Wuh-Liang Hwu
- Department of Pediatrics, National Taiwan University Hospital, Taipei City, Taiwan
| | - Ni-Chung Lee
- Department of Medical Genetics, National Taiwan University Hospital, Taipei City, Taiwan
| | - Feipei Lai
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei City, Taiwan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
13
|
Saida K, Chong PF, Yamaguchi A, Saito N, Ikehara H, Koshimizu E, Miyata R, Ishiko A, Nakamura K, Ohnishi H, Fujioka K, Sakakibara T, Asada H, Ogawa K, Kudo K, Ohashi E, Kawai M, Abe Y, Tsuchida N, Uchiyama Y, Hamanaka K, Fujita A, Mizuguchi T, Miyatake S, Miyake N, Kato M, Kira R, Matsumoto N. Monogenic causes of pigmentary mosaicism. Hum Genet 2022; 141:1771-1784. [PMID: 35503477 DOI: 10.1007/s00439-022-02437-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/28/2022] [Indexed: 12/30/2022]
Abstract
Pigmentary mosaicism of the Ito type, also known as hypomelanosis of Ito, is a neurocutaneous syndrome considered to be predominantly caused by somatic chromosomal mosaicism. However, a few monogenic causes of pigmentary mosaicism have been recently reported. Eleven unrelated individuals with pigmentary mosaicism (mostly hypopigmented skin) were recruited for this study. Skin punch biopsies of the probands and trio-based blood samples (from probands and both biological parents) were collected, and genomic DNA was extracted and analyzed by exome sequencing. In all patients, plausible monogenic causes were detected with somatic and germline variants identified in five and six patients, respectively. Among the somatic variants, four patients had MTOR variant (36%) and another had an RHOA variant. De novo germline variants in USP9X, TFE3, and KCNQ5 were detected in two, one, and one patients, respectively. A maternally inherited PHF6 variant was detected in one patient with hyperpigmented skin. Compound heterozygous GTF3C5 variants were highlighted as strong candidates in the remaining patient. Exome sequencing, using patients' blood and skin samples is highly recommended as the first choice for detecting causative genetic variants of pigmentary mosaicism.
Collapse
Affiliation(s)
- Ken Saida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Pin Fee Chong
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Asuka Yamaguchi
- Department of Pediatrics, Tokyo-Kita Medical Center, Tokyo, Japan
| | - Naka Saito
- Department of Pediatrics, Tsuruoka Municipal Shonai Hospital, Yamagata, Japan
| | - Hajime Ikehara
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Rie Miyata
- Department of Pediatrics, Tokyo-Kita Medical Center, Tokyo, Japan
| | - Akira Ishiko
- Department of Dermatology, Toho University School of Medicine, Tokyo, Japan
| | - Kazuyuki Nakamura
- Department of Pediatrics, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kei Fujioka
- Center of General Internal Medicine and Rheumatology, Gifu Municipal Hospital, Gifu, Japan
| | - Takafumi Sakakibara
- Department of Pediatrics, Nara Medical University School of Medicine, Nara, Japan
| | - Hideo Asada
- Department of Dermatology, Nara Medical University School of Medicine, Nara, Japan
| | - Kohei Ogawa
- Department of Dermatology, Nara Medical University School of Medicine, Nara, Japan
| | - Kyoko Kudo
- Department of Dermatology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Eri Ohashi
- Division of Neurology, National Center for Child Health and Development, Tokyo, Japan
| | - Michiko Kawai
- Division of Neurology, National Center for Child Health and Development, Tokyo, Japan
| | - Yuichi Abe
- Division of Neurology, National Center for Child Health and Development, Tokyo, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Ryutaro Kira
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
14
|
Hu Z, Ghosh A, Koncz C. Plant Gene Modification by BAC Recombineering. Methods Mol Biol 2022; 2479:71-84. [PMID: 35583733 DOI: 10.1007/978-1-0716-2233-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recombineering approaches exploiting the bacteriophage λ Red recombination functions are widely used for versatile modification of eukaryotic genes carried by bacterial artificial chromosomes (BACs) in E. coli. Whereas BAC transformation provides a simple means for integration of modified genes into the genomes of animal cells to generate knock-in and knockout lines, successful application of this strategy is hampered by low frequency of homologous recombination in higher plants. However, plant cells can be transformed at a high frequency using the transferred DNA (T-DNA) of Agrobacterium, which is stably and randomly integrated into the plant genome. The function of plant genes that are modified by recombineering and transferred by Agrobacterium T-DNA vectors into plant cells can thus be suitably studied using genetic complementation of knockout mutations induced by either T-DNA insertions or genome editing with T-DNA-based Crisp/Cas9 constructs. Here we describe two recombineering protocols for modification and transfer of plant genes from BACs into Agrobacterium T-DNA plant transformation vectors. The first protocol uses a conditional suicide ccdB gene cassette to assist the genetic complementation assays by generation of point mutations, deletions, and insertions at any gene position. The second "turbo"-recombineering protocol exploits various I-SceI insertion cassettes for fusing of fluorescent protein tags to the plant gene products to facilitate the characterization of their in vivo interacting partners by affinity purification, mass spectrometry, and cellular localization studies.
Collapse
Affiliation(s)
- Zhoubo Hu
- Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ajit Ghosh
- Max-Planck Institute for Plant Breeding Research, Cologne, Germany
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Csaba Koncz
- Max-Planck Institute for Plant Breeding Research, Cologne, Germany.
- Institute of Plant Biology, Biological Research Center of Hungarian Academy of Sciences, Szeged, Hungary.
| |
Collapse
|
15
|
Geyer SH, Maurer‐Gesek B, Reissig LF, Rose J, Prin F, Wilson R, Galli A, Tudor C, White JK, Mohun TJ, Weninger WJ. The venous system of E14.5 mouse embryos-reference data and examples for diagnosing malformations in embryos with gene deletions. J Anat 2022; 240:11-22. [PMID: 34435363 PMCID: PMC8655187 DOI: 10.1111/joa.13536] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 12/29/2022] Open
Abstract
Approximately one-third of randomly produced knockout mouse lines produce homozygous offspring, which fail to survive the perinatal period. The majority of these die around or after embryonic day (E)14.5, presumably from cardiovascular insufficiency. For diagnosing structural abnormalities underlying death and diseases and for researching gene function, the phenotype of these individuals has to be analysed. This makes the creation of reference data, which define normal anatomy and normal variations the highest priority. While such data do exist for the heart and arteries, they are still missing for the venous system. Here we provide high-quality descriptive and metric information on the normal anatomy of the venous system of E14.5 embryos. Using high-resolution digital volume data and 3D models from 206 genetically normal embryos, bred on the C57BL/6N background, we present precise descriptive and metric information of the venous system as it presents itself in each of the six developmental stages of E14.5. The resulting data shed new light on the maturation and remodelling of the venous system at transition of embryo to foetal life and provide a reference that can be used for detecting venous abnormalities in mutants. To explore this capacity, we analysed the venous phenotype of embryos from 7 knockout lines (Atp11a, Morc2a, 1700067K01Rik, B9d2, Oaz1, Celf4 and Coro1c). Careful comparisons enabled the diagnosis of not only simple malformations, such as dual inferior vena cava, but also complex and subtle abnormalities, which would have escaped diagnosis in the absence of detailed, stage-specific referenced data.
Collapse
Affiliation(s)
- Stefan H. Geyer
- Division of AnatomyMICBioImaging Austria/CMIMedical University of ViennaViennaAustria
| | - Barbara Maurer‐Gesek
- Division of AnatomyMICBioImaging Austria/CMIMedical University of ViennaViennaAustria
| | - Lukas F. Reissig
- Division of AnatomyMICBioImaging Austria/CMIMedical University of ViennaViennaAustria
| | - Julia Rose
- Division of AnatomyMICBioImaging Austria/CMIMedical University of ViennaViennaAustria
| | - Fabrice Prin
- Crick Advanced Light Microscopy FacilityThe Francis Crick InstituteLondonUK
| | | | - Antonella Galli
- Wellcome Trust Sanger InstituteWellcome Genome CampusCambridgeUK
| | - Catherine Tudor
- Wellcome Trust Sanger InstituteWellcome Genome CampusCambridgeUK
| | | | | | - Wolfgang J. Weninger
- Division of AnatomyMICBioImaging Austria/CMIMedical University of ViennaViennaAustria
| |
Collapse
|
16
|
Lee JG, Kim G, Park SG, Yon JM, Yeom J, Song HE, Cheong SA, Lim JS, Sung YH, Kim K, Yoo HJ, Hong EJ, Nam KH, Seong JK, Kim CJ, Nam SY, Baek IJ. Lipid signatures reflect the function of the murine primary placentation. Biol Reprod 2021; 106:583-596. [PMID: 34850819 DOI: 10.1093/biolre/ioab219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/02/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
The placenta regulates maternal-fetal communication, and its defect leads to significant pregnancy complications. The maternal and embryonic circulations are primitively connected in early placentation, but the function of the placenta during this developmentally essential period is relatively unknown. We thus performed a comparative proteomic analysis of the placenta before and after primary placentation and found that the metabolism and transport of lipids were characteristically activated in this period. The placental fatty acid (FA) carriers in specific placental compartments were upregulated according to gestational age, and metabolomic analysis also showed that the placental transport of FAs increased in a time-dependent manner. Further analysis of two mutant mice models with embryonic lethality revealed that lipid-related signatures could reflect the functional state of the placenta. Our findings highlight the importance of the nutrient transport function of the primary placenta in the early gestational period and the role of lipids in embryonic development.
Collapse
Affiliation(s)
- Jong Geol Lee
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Korea Mouse Phenotyping Center, Seoul, Republic of Korea
| | - Globinna Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seul Gi Park
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea.,Biomedical Mouse Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongwon-Gun, Republic of Korea
| | - Jung-Min Yon
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeonghun Yeom
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ha Eun Song
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung-A Cheong
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Korea Mouse Phenotyping Center, Seoul, Republic of Korea
| | - Joon Seo Lim
- Clinical Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Young Hoon Sung
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyunggon Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyun Ju Yoo
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Korea Mouse Phenotyping Center, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ki-Hoan Nam
- Korea Mouse Phenotyping Center, Seoul, Republic of Korea.,Biomedical Mouse Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongwon-Gun, Republic of Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, Seoul, Republic of Korea.,College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Chong Jai Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Yoon Nam
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - In-Jeoung Baek
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Korea Mouse Phenotyping Center, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
17
|
Coupled protein synthesis and ribosome-guided piRNA processing on mRNAs. Nat Commun 2021; 12:5970. [PMID: 34645830 PMCID: PMC8514520 DOI: 10.1038/s41467-021-26233-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
PIWI-interacting small RNAs (piRNAs) protect the germline genome and are essential for fertility. piRNAs originate from transposable element (TE) RNAs, long non-coding RNAs, or 3´ untranslated regions (3´UTRs) of protein-coding messenger genes, with the last being the least characterized of the three piRNA classes. Here, we demonstrate that the precursors of 3´UTR piRNAs are full-length mRNAs and that post-termination 80S ribosomes guide piRNA production on 3´UTRs in mice and chickens. At the pachytene stage, when other co-translational RNA surveillance pathways are sequestered, piRNA biogenesis degrades mRNAs right after pioneer rounds of translation and fine-tunes protein production from mRNAs. Although 3´UTR piRNA precursor mRNAs code for distinct proteins in mice and chickens, they all harbor embedded TEs and produce piRNAs that cleave TEs. Altogether, we discover a function of the piRNA pathway in fine-tuning protein production and reveal a conserved piRNA biogenesis mechanism that recognizes translating RNAs in amniotes.
Collapse
|
18
|
Gleeson D, Sethi D, Platte R, Burvill J, Barrett D, Akhtar S, Bruntraeger M, Bottomley J, Mouse Genetics Project S, Bussell J, Ryder E. High-throughput genotyping of high-homology mutant mouse strains by next-generation sequencing. Methods 2021; 191:78-86. [PMID: 33096238 PMCID: PMC8205115 DOI: 10.1016/j.ymeth.2020.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/25/2020] [Accepted: 10/18/2020] [Indexed: 11/05/2022] Open
Abstract
Genotyping of knockout alleles in mice is commonly performed by end-point PCR or gene-specific/universal cassette qPCR. Both have advantages and limitations in terms of assay design and interpretation of results. As an alternative method for high-throughput genotyping, we investigated next generation sequencing (NGS) of PCR amplicons, with a focus on CRISPR-mediated exon deletions where antibiotic selection markers are not present. By multiplexing the wild type and mutant-specific PCR reactions, the genotype can be called by the relative sequence counts of each product. The system is highly scalable and can be applied to a variety of different allele types, including those produced by the International Mouse Phenotyping Consortium and associated projects. One potential challenge with any assay design is locating unique areas of the genome, especially when working with gene families or regions of high homology. These can result in misleading or ambiguous genotypes for either qPCR or end-point assays. Here, we show that genotyping by NGS can negate these issues by simple, automated filtering of undesired sequences. Analysis and genotype calls can also be fully automated, using FASTQ or FASTA input files and an in-house Perl script and SQL database.
Collapse
Affiliation(s)
- Diane Gleeson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Debarati Sethi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Radka Platte
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Jonathan Burvill
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Daniel Barrett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Shaheen Akhtar
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Michaela Bruntraeger
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Joanna Bottomley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | | | - James Bussell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Edward Ryder
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
| |
Collapse
|
19
|
Inhibition of the DNA damage response phosphatase PPM1D reprograms neutrophils to enhance anti-tumor immune responses. Nat Commun 2021; 12:3622. [PMID: 34131120 PMCID: PMC8206133 DOI: 10.1038/s41467-021-23330-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
PPM1D/Wip1 is a negative regulator of the tumor suppressor p53 and is overexpressed in several human solid tumors. Recent reports associate gain-of-function mutations of PPM1D in immune cells with worse outcomes for several human cancers. Here we show that mice with genetic knockout of Ppm1d or with conditional knockout of Ppm1d in the hematopoietic system, in myeloid cells, or in neutrophils all display significantly reduced growth of syngeneic melanoma or lung carcinoma tumors. Ppm1d knockout neutrophils infiltrate tumors extensively. Chemical inhibition of Wip1 in human or mouse neutrophils increases anti-tumor phenotypes, p53-dependent expression of co-stimulatory ligands, and proliferation of co-cultured cytotoxic T cells. These results suggest that inhibition of Wip1 in neutrophils enhances immune anti-tumor responses.
Collapse
|
20
|
Reissig LF, Seyedian Moghaddam A, Prin F, Wilson R, Galli A, Tudor C, White JK, Geyer SH, Mohun TJ, Weninger WJ. Hypoglossal Nerve Abnormalities as Biomarkers for Central Nervous System Defects in Mouse Lines Producing Embryonically Lethal Offspring. Front Neuroanat 2021; 15:625716. [PMID: 33584208 PMCID: PMC7876247 DOI: 10.3389/fnana.2021.625716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
An essential step in researching human central nervous system (CNS) disorders is the search for appropriate mouse models that can be used to investigate both genetic and environmental factors underlying the etiology of such conditions. Identification of murine models relies upon detailed pre- and post-natal phenotyping since profound defects are not only the result of gross malformations but can be the result of small or subtle morphological abnormalities. The difficulties in identifying such defects are compounded by the finding that many mouse lines show quite a variable penetrance of phenotypes. As a result, without analysis of large numbers, such phenotypes are easily missed. Indeed for null mutations, around one-third have proved to be pre- or perinatally lethal, their analysis resting entirely upon phenotyping of accessible embryonic stages.To simplify the identification of potentially useful mouse mutants, we have conducted three-dimensional phenotype analysis of approximately 500 homozygous null mutant embryos, produced from targeting a variety of mouse genes and harvested at embryonic day 14.5 as part of the "Deciphering the Mechanisms of Developmental Disorders" www.dmdd.org.uk program. We have searched for anatomical features that have the potential to serve as biomarkers for CNS defects in such genetically modified lines. Our analysis identified two promising biomarker candidates. Hypoglossal nerve (HGN) abnormalities (absent, thin, and abnormal topology) and abnormal morphology or topology of head arteries are both frequently associated with the full spectrum of morphological CNS defects, ranging from exencephaly to more subtle defects such as abnormal nerve cell migration. Statistical analysis confirmed that HGN abnormalities (especially those scored absent or thin) indeed showed a significant correlation with CNS defect phenotypes. These results demonstrate that null mutant lines showing HGN abnormalities are also highly likely to produce CNS defects whose identification may be difficult as a result of morphological subtlety or low genetic penetrance.
Collapse
Affiliation(s)
- Lukas F. Reissig
- Department of Anatomy, MIC, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Atieh Seyedian Moghaddam
- Department of Anatomy, MIC, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Fabrice Prin
- The Francis Crick Institute, London, United Kingdom
| | | | - Antonella Galli
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Catherine Tudor
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Jaqueline K. White
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Stefan H. Geyer
- Department of Anatomy, MIC, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | | | - Wolfgang J. Weninger
- Department of Anatomy, MIC, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Xie C, Bekpen C, Künzel S, Keshavarz M, Krebs-Wheaton R, Skrabar N, Ullrich KK, Zhang W, Tautz D. Dedicated transcriptomics combined with power analysis lead to functional understanding of genes with weak phenotypic changes in knockout lines. PLoS Comput Biol 2020; 16:e1008354. [PMID: 33180766 PMCID: PMC7685438 DOI: 10.1371/journal.pcbi.1008354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 11/24/2020] [Accepted: 09/20/2020] [Indexed: 12/26/2022] Open
Abstract
Systematic knockout studies in mice have shown that a large fraction of the gene replacements show no lethal or other overt phenotypes. This has led to the development of more refined analysis schemes, including physiological, behavioral, developmental and cytological tests. However, transcriptomic analyses have not yet been systematically evaluated for non-lethal knockouts. We conducted a power analysis to determine the experimental conditions under which even small changes in transcript levels can be reliably traced. We have applied this to two gene disruption lines of genes for which no function was known so far. Dedicated phenotyping tests informed by the tissues and stages of highest expression of the two genes show small effects on the tested phenotypes. For the transcriptome analysis of these stages and tissues, we used a prior power analysis to determine the number of biological replicates and the sequencing depth. We find that under these conditions, the knockouts have a significant impact on the transcriptional networks, with thousands of genes showing small transcriptional changes. GO analysis suggests that A930004D18Rik is involved in developmental processes through contributing to protein complexes, and A830005F24Rik in extracellular matrix functions. Subsampling analysis of the data reveals that the increase in the number of biological replicates was more important that increasing the sequencing depth to arrive at these results. Hence, our proof-of-principle experiment suggests that transcriptomic analysis is indeed an option to study gene functions of genes with weak or no traceable phenotypic effects and it provides the boundary conditions under which this is possible. Knockout mice benefit the understanding of gene functions in mammals. However, it has proven difficult for many genes to identify clear phenotypes, related due to lack of sufficient assays. As Lewis Wolpert put it in a famous quote “But did you take them to the opera?”, thus metaphorically alluding to the need to extend phenotyping efforts. This insight led to the establishment of phenotyping pipelines that are nowadays routinely used to characterize knock-out lines. However, transcriptomic approaches based on RNA-Seq have been much less explored for such deep-level studies. We conducted here both, a theoretical power analysis and practical RNA-Seq experiments on two knockout lines with small phenotypic effects to investigate the parameters including sample size, sequencing depth, fold change, and dispersion. Our dedicated RNA-Seq studies discovered thousands of genes with small transcriptional changes and enriched in specific functions in both knockout lines. We find that it is more important to increase the number of samples than to increase the sequencing depth. Our work shows that a deep RNA-Seq study on knockouts is powerful for understanding gene functions in cases of weak phenotypic effects, and provides a guideline for the experimental design of such studies.
Collapse
Affiliation(s)
- Chen Xie
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- * E-mail:
| | - Cemalettin Bekpen
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Sven Künzel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Maryam Keshavarz
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Rebecca Krebs-Wheaton
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Neva Skrabar
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Kristian K. Ullrich
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Wenyu Zhang
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Diethard Tautz
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
22
|
Takeo T, Nakao S, Nakagawa Y, Sztein JM, Nakagata N. Cryopreservation of mouse resources. Lab Anim Res 2020; 36:33. [PMID: 32963977 PMCID: PMC7495967 DOI: 10.1186/s42826-020-00066-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/10/2020] [Indexed: 01/19/2023] Open
Abstract
The cryopreservation of sperm and embryos is useful to efficiently archive valuable resources of genetically engineered mice. Till date, more than 60,000 strains of genetically engineered mice have been archived in mouse banks worldwide. Researchers can request for the archived mouse strains for their research projects. The research infrastructure of mouse banks improves the availability of mouse resources, the productivity of research projects, and the reproducibility of animal experiments. Our research team manages the mouse bank at the Center for Animal Resources and Development in Kumamoto University and continuously develops new techniques in mouse reproductive technology to efficiently improve the system of mouse banking. In this review, we introduce the activities of mouse banks and the latest techniques used in mouse reproductive technology.
Collapse
Affiliation(s)
- Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Kumamoto, 860-0811 Japan
| | - Satohiro Nakao
- Division of Reproductive Engineering, Center for Animal Resources and Development, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Kumamoto, 860-0811 Japan
| | - Yoshiko Nakagawa
- Division of Reproductive Engineering, Center for Animal Resources and Development, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Kumamoto, 860-0811 Japan
| | - Jorge M Sztein
- Division of Reproductive Engineering, Center for Animal Resources and Development, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Kumamoto, 860-0811 Japan
| | - Naomi Nakagata
- Division of Reproductive Biotechnology and Innovation, Center for Animal Resources and Development, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
23
|
Novel Mutations in CLPP, LARS2, CDH23, and COL4A5 Identified in Familial Cases of Prelingual Hearing Loss. Genes (Basel) 2020; 11:genes11090978. [PMID: 32842620 PMCID: PMC7564084 DOI: 10.3390/genes11090978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 12/30/2022] Open
Abstract
We report the underlying genetic causes of prelingual hearing loss (HL) segregating in eight large consanguineous families, ascertained from the Punjab province of Pakistan. Exome sequencing followed by segregation analysis revealed seven potentially pathogenic variants, including four novel alleles c.257G>A, c.6083A>C, c.89A>G, and c.1249A>G of CLPP, CDH23, COL4A5, and LARS2, respectively. We also identified three previously reported HL-causing variants (c.4528C>T, c.35delG, and c.1219T>C) of MYO15A, GJB2, and TMPRSS3 segregating in four families. All identified variants were either absent or had very low frequencies in the control databases. Our in silico analyses and 3-dimensional (3D) molecular modeling support the deleterious impact of these variants on the encoded proteins. Variants identified in MYO15A, GJB2, TMPRSS3, and CDH23 were classified as “pathogenic” or “likely pathogenic”, while the variants in CLPP and LARS2 fall in the category of “uncertain significance” based on the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) variant pathogenicity guidelines. This paper highlights the genetic diversity of hearing disorders in the Pakistani population and reports the identification of four novel mutations in four HL families.
Collapse
|
24
|
Handelsman DJ, Walters KA, Ly LP. Simplified Method to Measure Mouse Fertility. Endocrinology 2020; 161:5869508. [PMID: 32645712 DOI: 10.1210/endocr/bqaa114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 06/11/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022]
Abstract
Estimating breeding performance from mouse mating trials has focused on lifetime mating trials, which are too slow and costly for characterizing the many novel genetic mouse lines produced in fertility research, an underpinning of reproductive pathophysiology research. This study introduces the fertility index, defined as the slope of the regression of cumulative number of pups produced by a female over elapsed time in a monogamous mating trial. By using a robust resampling technique, the Theil-Sen estimator (widely available in free or niche statistical software), to estimate the fertility index, the present study of 410 mating trials of mice from 7 genotypes lasting a median of 10 litters shows that it is possible to estimate the fertility index reliably over as few as 4 litters.
Collapse
Affiliation(s)
- David J Handelsman
- Andrology Laboratory, ANZAC Research Institute, University of Sydney, Concord Hospital, NSW, Australia
| | - Kirsty A Walters
- Andrology Laboratory, ANZAC Research Institute, University of Sydney, Concord Hospital, NSW, Australia
- School of Women's & Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Lam P Ly
- Andrology Laboratory, ANZAC Research Institute, University of Sydney, Concord Hospital, NSW, Australia
| |
Collapse
|
25
|
Cheong A, Degani R, Tremblay KD, Mager J. A null allele of Dnaaf2 displays embryonic lethality and mimics human ciliary dyskinesia. Hum Mol Genet 2020; 28:2775-2784. [PMID: 31107948 DOI: 10.1093/hmg/ddz106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/12/2019] [Accepted: 05/13/2019] [Indexed: 01/30/2023] Open
Abstract
The dynein axonemal assembly factor (Dnaaf) protein family is involved in preassembly and stability of dynein arms before they are transported into the cilia. In humans, mutations in DNAAF genes lead to several diseases related to cilia defects such as primary ciliary dyskinesia (PCD; OMIM: 612518). Patients with PCD experience malfunctions in cilia motility, which can result in inflammation and infection of the respiratory tract among other defects. Previous studies have identified that a mutation in DNAAF2 results in PCD and that 40% of these patients also experience laterality defects. In an outbred genetic background, Dnaaf2 homozygotes die after birth and have left/right defects among other phenotypes. Here we characterize a novel null allele of Dnaaf2 obtained from the International Mouse Phenotyping Consortium. Our data indicate that on a defined C57bl/6NJ genetic background, homozygous Dnaaf2 mouse embryos fail to progress beyond organogenesis stages with many abnormalities including left-right patterning defects. These findings support studies indicating that hypomorphic mutations of human DNAAF2 can result in ciliary dyskinesia and identify Dnaaf2 as an essential component of cilia function in vivo.
Collapse
Affiliation(s)
- Agnes Cheong
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Rinat Degani
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Kimberly D Tremblay
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
26
|
García-García MJ. A History of Mouse Genetics: From Fancy Mice to Mutations in Every Gene. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:1-38. [PMID: 32304067 DOI: 10.1007/978-981-15-2389-2_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The laboratory mouse has become the model organism of choice in numerous areas of biological and biomedical research, including the study of congenital birth defects. The appeal of mice for these experimental studies stems from the similarities between the physiology, anatomy, and reproduction of these small mammals with our own, but it is also based on a number of practical reasons: mice are easy to maintain in a laboratory environment, are incredibly prolific, and have a relatively short reproductive cycle. Another compelling reason for choosing mice as research subjects is the number of tools and resources that have been developed after more than a century of working with these small rodents in laboratory environments. As will become obvious from the reading of the different chapters in this book, research in mice has already helped uncover many of the genes and processes responsible for congenital birth malformations and human diseases. In this chapter, we will provide an overview of the methods, scientific advances, and serendipitous circumstances that have made these discoveries possible, with a special emphasis on how the use of genetics has propelled scientific progress in mouse research and paved the way for future discoveries.
Collapse
|
27
|
Skuplik I, Cobb J. Animal Models for Understanding Human Skeletal Defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:157-188. [DOI: 10.1007/978-981-15-2389-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Hartley T, Balcı TB, Rojas SK, Eaton A, Canada CR, Dyment DA, Boycott KM. The unsolved rare genetic disease atlas? An analysis of the unexplained phenotypic descriptions in OMIM®. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 178:458-463. [PMID: 30580481 DOI: 10.1002/ajmg.c.31662] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/19/2022]
Abstract
For years, the genetics community has estimated the number of individual rare genetic diseases to be approximately 6,000-8,000. A commonly quoted derivation of this estimate is based on the simple addition of the number of phenotypic entries with and without confirmed molecular etiologies in the Online Mendelian Inheritance in Man (OMIM®). Here, we examine the validity of this estimation by mining the phenotypic entries in OMIM that are of likely or suspected Mendelian inheritance without a molecular cause (MIM number prefix "%" or "null"). Of the 3,204 unsolved phenotypic entries in OMIM, only two-thirds (2,034 entries) represented rare diseases. Of these, 8% were considered "well-established" based on their description in commonly used reference textbooks. We hypothesize based on the large proportion of entries that represent single families reported prior to 2011, that a number of the unsolved entries represent pathogenic variants in known genes. The novel gene discovery potential of these entries is therefore likely lower than originally thought. Given that the majority of the ~300 new disease-gene associations curated each year by OMIM were never associated with a "%" or "null" sign, the true scope of the rare disease atlas is likely much larger than previously anticipated.
Collapse
Affiliation(s)
- Taila Hartley
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Tuğçe B Balcı
- Division of Genetics, Department of Pediatrics, London Health Sciences Centre, London, Ontario, Canada
| | - Samantha K Rojas
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Alison Eaton
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Care Rare Canada
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - David A Dyment
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada.,Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada.,Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| |
Collapse
|
29
|
Elmore SA, Cardiff R, Cesta MF, Gkoutos GV, Hoehndorf R, Keenan CM, McKerlie C, Schofield PN, Sundberg JP, Ward JM. A Review of Current Standards and the Evolution of Histopathology Nomenclature for Laboratory Animals. ILAR J 2019; 59:29-39. [PMID: 30476141 DOI: 10.1093/ilar/ily005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 05/04/2018] [Indexed: 12/14/2022] Open
Abstract
The need for international collaboration in rodent pathology has evolved since the 1970s and was initially driven by the new field of toxicologic pathology. First initiated by the World Health Organization's International Agency for Research on Cancer for rodents, it has evolved to include pathology of the major species (rats, mice, guinea pigs, nonhuman primates, pigs, dogs, fish, rabbits) used in medical research, safety assessment, and mouse pathology. The collaborative effort today is driven by the needs of the regulatory agencies in multiple countries, and by needs of research involving genetically engineered animals, for "basic" research and for more translational preclinical models of human disease. These efforts led to the establishment of an international rodent pathology nomenclature program. Since that time, multiple collaborations for standardization of laboratory animal pathology nomenclature and diagnostic criteria have been developed, and just a few are described herein. Recently, approaches to a nomenclature that is amenable to sophisticated computation have been made available and implemented for large-scale programs in functional genomics and aging. Most terminologies continue to evolve as the science of human and veterinary pathology continues to develop, but standardization and successful implementation remain critical for scientific communication now as ever in the history of veterinary nosology.
Collapse
Affiliation(s)
- Susan A Elmore
- Susan A. Elmore, MS, DVM, DCVP, DABT, FIATP, is NTP Pathologist and Staff Scientist at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Robert D. Cardiff, MD, PhD, is Distinguished Professor of Pathology, Emeritus at the UCD Center for Comparative Medicine, University of California, and the Department of Pathology and Laboratory Medicine, School of Medicine, Davis, in Davis, California. Mark F. Cesta, DVM, PhD, DACVP, is NTP Pathologist and Staff Scientist, leading the effort for establishment of the online NTP Nonneoplastic Lesion Atlas at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Georgios V. Gkoutos, PhD, DIC, is Professor of Clinical Bioinformatics at College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences Centre for Computational Biology, University of Birmingham in Birmingham, United Kingdom. Robert Hoehndorf, PhD, is Assistant Professor in Computer Science at the Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology in Thuwal, Kingdom of Saudi Arabia. Charlotte M. Keenan, VMD, DACVP, is a principle consultant at C.M. ToxPath Consulting in Doylestown, Pennsylvania, USA and leads the international STP effort for the publication of the harmonization of nomenclature and diagnostic criteria (INHAND) in toxicologic pathology. Colin McKerlie, DVM, DVSc, MRCVS, is a senior associate scientist in the Translational Medicine Research Program at The Hospital for Sick Children and a Professor in the Department of Pathobiology & Laboratory Medicine in the Faculty of Medicine at the University of Toronto, Toronto, Ontario, Canada. Paul N. Schofield, MA DPhil, is the University Reader in Biomedical Informatics at the Department of Physiology, Development & Neuroscience, University of Cambridge in Cambridge, United Kingdom and is also an adjunct professor at The Jackson Laboratory in Bar Harbor, Maine. John P. Sundberg, DVM, PhD, DACVP, is a professor at The Jackson Laboratory in Bar Harbor, Maine. Jerrold M. Ward, DVM, PhD, DACVP, FIATP, is a special volunteer at the National Cancer Institute, National Institutes of Health in Bethesda, MD and is also Adjunct Faculty at The Jackson Laboratory in Bar Harbor, Maine
| | - Robert Cardiff
- Susan A. Elmore, MS, DVM, DCVP, DABT, FIATP, is NTP Pathologist and Staff Scientist at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Robert D. Cardiff, MD, PhD, is Distinguished Professor of Pathology, Emeritus at the UCD Center for Comparative Medicine, University of California, and the Department of Pathology and Laboratory Medicine, School of Medicine, Davis, in Davis, California. Mark F. Cesta, DVM, PhD, DACVP, is NTP Pathologist and Staff Scientist, leading the effort for establishment of the online NTP Nonneoplastic Lesion Atlas at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Georgios V. Gkoutos, PhD, DIC, is Professor of Clinical Bioinformatics at College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences Centre for Computational Biology, University of Birmingham in Birmingham, United Kingdom. Robert Hoehndorf, PhD, is Assistant Professor in Computer Science at the Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology in Thuwal, Kingdom of Saudi Arabia. Charlotte M. Keenan, VMD, DACVP, is a principle consultant at C.M. ToxPath Consulting in Doylestown, Pennsylvania, USA and leads the international STP effort for the publication of the harmonization of nomenclature and diagnostic criteria (INHAND) in toxicologic pathology. Colin McKerlie, DVM, DVSc, MRCVS, is a senior associate scientist in the Translational Medicine Research Program at The Hospital for Sick Children and a Professor in the Department of Pathobiology & Laboratory Medicine in the Faculty of Medicine at the University of Toronto, Toronto, Ontario, Canada. Paul N. Schofield, MA DPhil, is the University Reader in Biomedical Informatics at the Department of Physiology, Development & Neuroscience, University of Cambridge in Cambridge, United Kingdom and is also an adjunct professor at The Jackson Laboratory in Bar Harbor, Maine. John P. Sundberg, DVM, PhD, DACVP, is a professor at The Jackson Laboratory in Bar Harbor, Maine. Jerrold M. Ward, DVM, PhD, DACVP, FIATP, is a special volunteer at the National Cancer Institute, National Institutes of Health in Bethesda, MD and is also Adjunct Faculty at The Jackson Laboratory in Bar Harbor, Maine
| | - Mark F Cesta
- Susan A. Elmore, MS, DVM, DCVP, DABT, FIATP, is NTP Pathologist and Staff Scientist at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Robert D. Cardiff, MD, PhD, is Distinguished Professor of Pathology, Emeritus at the UCD Center for Comparative Medicine, University of California, and the Department of Pathology and Laboratory Medicine, School of Medicine, Davis, in Davis, California. Mark F. Cesta, DVM, PhD, DACVP, is NTP Pathologist and Staff Scientist, leading the effort for establishment of the online NTP Nonneoplastic Lesion Atlas at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Georgios V. Gkoutos, PhD, DIC, is Professor of Clinical Bioinformatics at College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences Centre for Computational Biology, University of Birmingham in Birmingham, United Kingdom. Robert Hoehndorf, PhD, is Assistant Professor in Computer Science at the Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology in Thuwal, Kingdom of Saudi Arabia. Charlotte M. Keenan, VMD, DACVP, is a principle consultant at C.M. ToxPath Consulting in Doylestown, Pennsylvania, USA and leads the international STP effort for the publication of the harmonization of nomenclature and diagnostic criteria (INHAND) in toxicologic pathology. Colin McKerlie, DVM, DVSc, MRCVS, is a senior associate scientist in the Translational Medicine Research Program at The Hospital for Sick Children and a Professor in the Department of Pathobiology & Laboratory Medicine in the Faculty of Medicine at the University of Toronto, Toronto, Ontario, Canada. Paul N. Schofield, MA DPhil, is the University Reader in Biomedical Informatics at the Department of Physiology, Development & Neuroscience, University of Cambridge in Cambridge, United Kingdom and is also an adjunct professor at The Jackson Laboratory in Bar Harbor, Maine. John P. Sundberg, DVM, PhD, DACVP, is a professor at The Jackson Laboratory in Bar Harbor, Maine. Jerrold M. Ward, DVM, PhD, DACVP, FIATP, is a special volunteer at the National Cancer Institute, National Institutes of Health in Bethesda, MD and is also Adjunct Faculty at The Jackson Laboratory in Bar Harbor, Maine
| | - Georgios V Gkoutos
- Susan A. Elmore, MS, DVM, DCVP, DABT, FIATP, is NTP Pathologist and Staff Scientist at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Robert D. Cardiff, MD, PhD, is Distinguished Professor of Pathology, Emeritus at the UCD Center for Comparative Medicine, University of California, and the Department of Pathology and Laboratory Medicine, School of Medicine, Davis, in Davis, California. Mark F. Cesta, DVM, PhD, DACVP, is NTP Pathologist and Staff Scientist, leading the effort for establishment of the online NTP Nonneoplastic Lesion Atlas at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Georgios V. Gkoutos, PhD, DIC, is Professor of Clinical Bioinformatics at College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences Centre for Computational Biology, University of Birmingham in Birmingham, United Kingdom. Robert Hoehndorf, PhD, is Assistant Professor in Computer Science at the Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology in Thuwal, Kingdom of Saudi Arabia. Charlotte M. Keenan, VMD, DACVP, is a principle consultant at C.M. ToxPath Consulting in Doylestown, Pennsylvania, USA and leads the international STP effort for the publication of the harmonization of nomenclature and diagnostic criteria (INHAND) in toxicologic pathology. Colin McKerlie, DVM, DVSc, MRCVS, is a senior associate scientist in the Translational Medicine Research Program at The Hospital for Sick Children and a Professor in the Department of Pathobiology & Laboratory Medicine in the Faculty of Medicine at the University of Toronto, Toronto, Ontario, Canada. Paul N. Schofield, MA DPhil, is the University Reader in Biomedical Informatics at the Department of Physiology, Development & Neuroscience, University of Cambridge in Cambridge, United Kingdom and is also an adjunct professor at The Jackson Laboratory in Bar Harbor, Maine. John P. Sundberg, DVM, PhD, DACVP, is a professor at The Jackson Laboratory in Bar Harbor, Maine. Jerrold M. Ward, DVM, PhD, DACVP, FIATP, is a special volunteer at the National Cancer Institute, National Institutes of Health in Bethesda, MD and is also Adjunct Faculty at The Jackson Laboratory in Bar Harbor, Maine
| | - Robert Hoehndorf
- Susan A. Elmore, MS, DVM, DCVP, DABT, FIATP, is NTP Pathologist and Staff Scientist at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Robert D. Cardiff, MD, PhD, is Distinguished Professor of Pathology, Emeritus at the UCD Center for Comparative Medicine, University of California, and the Department of Pathology and Laboratory Medicine, School of Medicine, Davis, in Davis, California. Mark F. Cesta, DVM, PhD, DACVP, is NTP Pathologist and Staff Scientist, leading the effort for establishment of the online NTP Nonneoplastic Lesion Atlas at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Georgios V. Gkoutos, PhD, DIC, is Professor of Clinical Bioinformatics at College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences Centre for Computational Biology, University of Birmingham in Birmingham, United Kingdom. Robert Hoehndorf, PhD, is Assistant Professor in Computer Science at the Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology in Thuwal, Kingdom of Saudi Arabia. Charlotte M. Keenan, VMD, DACVP, is a principle consultant at C.M. ToxPath Consulting in Doylestown, Pennsylvania, USA and leads the international STP effort for the publication of the harmonization of nomenclature and diagnostic criteria (INHAND) in toxicologic pathology. Colin McKerlie, DVM, DVSc, MRCVS, is a senior associate scientist in the Translational Medicine Research Program at The Hospital for Sick Children and a Professor in the Department of Pathobiology & Laboratory Medicine in the Faculty of Medicine at the University of Toronto, Toronto, Ontario, Canada. Paul N. Schofield, MA DPhil, is the University Reader in Biomedical Informatics at the Department of Physiology, Development & Neuroscience, University of Cambridge in Cambridge, United Kingdom and is also an adjunct professor at The Jackson Laboratory in Bar Harbor, Maine. John P. Sundberg, DVM, PhD, DACVP, is a professor at The Jackson Laboratory in Bar Harbor, Maine. Jerrold M. Ward, DVM, PhD, DACVP, FIATP, is a special volunteer at the National Cancer Institute, National Institutes of Health in Bethesda, MD and is also Adjunct Faculty at The Jackson Laboratory in Bar Harbor, Maine
| | - Charlotte M Keenan
- Susan A. Elmore, MS, DVM, DCVP, DABT, FIATP, is NTP Pathologist and Staff Scientist at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Robert D. Cardiff, MD, PhD, is Distinguished Professor of Pathology, Emeritus at the UCD Center for Comparative Medicine, University of California, and the Department of Pathology and Laboratory Medicine, School of Medicine, Davis, in Davis, California. Mark F. Cesta, DVM, PhD, DACVP, is NTP Pathologist and Staff Scientist, leading the effort for establishment of the online NTP Nonneoplastic Lesion Atlas at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Georgios V. Gkoutos, PhD, DIC, is Professor of Clinical Bioinformatics at College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences Centre for Computational Biology, University of Birmingham in Birmingham, United Kingdom. Robert Hoehndorf, PhD, is Assistant Professor in Computer Science at the Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology in Thuwal, Kingdom of Saudi Arabia. Charlotte M. Keenan, VMD, DACVP, is a principle consultant at C.M. ToxPath Consulting in Doylestown, Pennsylvania, USA and leads the international STP effort for the publication of the harmonization of nomenclature and diagnostic criteria (INHAND) in toxicologic pathology. Colin McKerlie, DVM, DVSc, MRCVS, is a senior associate scientist in the Translational Medicine Research Program at The Hospital for Sick Children and a Professor in the Department of Pathobiology & Laboratory Medicine in the Faculty of Medicine at the University of Toronto, Toronto, Ontario, Canada. Paul N. Schofield, MA DPhil, is the University Reader in Biomedical Informatics at the Department of Physiology, Development & Neuroscience, University of Cambridge in Cambridge, United Kingdom and is also an adjunct professor at The Jackson Laboratory in Bar Harbor, Maine. John P. Sundberg, DVM, PhD, DACVP, is a professor at The Jackson Laboratory in Bar Harbor, Maine. Jerrold M. Ward, DVM, PhD, DACVP, FIATP, is a special volunteer at the National Cancer Institute, National Institutes of Health in Bethesda, MD and is also Adjunct Faculty at The Jackson Laboratory in Bar Harbor, Maine
| | - Colin McKerlie
- Susan A. Elmore, MS, DVM, DCVP, DABT, FIATP, is NTP Pathologist and Staff Scientist at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Robert D. Cardiff, MD, PhD, is Distinguished Professor of Pathology, Emeritus at the UCD Center for Comparative Medicine, University of California, and the Department of Pathology and Laboratory Medicine, School of Medicine, Davis, in Davis, California. Mark F. Cesta, DVM, PhD, DACVP, is NTP Pathologist and Staff Scientist, leading the effort for establishment of the online NTP Nonneoplastic Lesion Atlas at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Georgios V. Gkoutos, PhD, DIC, is Professor of Clinical Bioinformatics at College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences Centre for Computational Biology, University of Birmingham in Birmingham, United Kingdom. Robert Hoehndorf, PhD, is Assistant Professor in Computer Science at the Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology in Thuwal, Kingdom of Saudi Arabia. Charlotte M. Keenan, VMD, DACVP, is a principle consultant at C.M. ToxPath Consulting in Doylestown, Pennsylvania, USA and leads the international STP effort for the publication of the harmonization of nomenclature and diagnostic criteria (INHAND) in toxicologic pathology. Colin McKerlie, DVM, DVSc, MRCVS, is a senior associate scientist in the Translational Medicine Research Program at The Hospital for Sick Children and a Professor in the Department of Pathobiology & Laboratory Medicine in the Faculty of Medicine at the University of Toronto, Toronto, Ontario, Canada. Paul N. Schofield, MA DPhil, is the University Reader in Biomedical Informatics at the Department of Physiology, Development & Neuroscience, University of Cambridge in Cambridge, United Kingdom and is also an adjunct professor at The Jackson Laboratory in Bar Harbor, Maine. John P. Sundberg, DVM, PhD, DACVP, is a professor at The Jackson Laboratory in Bar Harbor, Maine. Jerrold M. Ward, DVM, PhD, DACVP, FIATP, is a special volunteer at the National Cancer Institute, National Institutes of Health in Bethesda, MD and is also Adjunct Faculty at The Jackson Laboratory in Bar Harbor, Maine
| | - Paul N Schofield
- Susan A. Elmore, MS, DVM, DCVP, DABT, FIATP, is NTP Pathologist and Staff Scientist at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Robert D. Cardiff, MD, PhD, is Distinguished Professor of Pathology, Emeritus at the UCD Center for Comparative Medicine, University of California, and the Department of Pathology and Laboratory Medicine, School of Medicine, Davis, in Davis, California. Mark F. Cesta, DVM, PhD, DACVP, is NTP Pathologist and Staff Scientist, leading the effort for establishment of the online NTP Nonneoplastic Lesion Atlas at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Georgios V. Gkoutos, PhD, DIC, is Professor of Clinical Bioinformatics at College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences Centre for Computational Biology, University of Birmingham in Birmingham, United Kingdom. Robert Hoehndorf, PhD, is Assistant Professor in Computer Science at the Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology in Thuwal, Kingdom of Saudi Arabia. Charlotte M. Keenan, VMD, DACVP, is a principle consultant at C.M. ToxPath Consulting in Doylestown, Pennsylvania, USA and leads the international STP effort for the publication of the harmonization of nomenclature and diagnostic criteria (INHAND) in toxicologic pathology. Colin McKerlie, DVM, DVSc, MRCVS, is a senior associate scientist in the Translational Medicine Research Program at The Hospital for Sick Children and a Professor in the Department of Pathobiology & Laboratory Medicine in the Faculty of Medicine at the University of Toronto, Toronto, Ontario, Canada. Paul N. Schofield, MA DPhil, is the University Reader in Biomedical Informatics at the Department of Physiology, Development & Neuroscience, University of Cambridge in Cambridge, United Kingdom and is also an adjunct professor at The Jackson Laboratory in Bar Harbor, Maine. John P. Sundberg, DVM, PhD, DACVP, is a professor at The Jackson Laboratory in Bar Harbor, Maine. Jerrold M. Ward, DVM, PhD, DACVP, FIATP, is a special volunteer at the National Cancer Institute, National Institutes of Health in Bethesda, MD and is also Adjunct Faculty at The Jackson Laboratory in Bar Harbor, Maine
| | - John P Sundberg
- Susan A. Elmore, MS, DVM, DCVP, DABT, FIATP, is NTP Pathologist and Staff Scientist at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Robert D. Cardiff, MD, PhD, is Distinguished Professor of Pathology, Emeritus at the UCD Center for Comparative Medicine, University of California, and the Department of Pathology and Laboratory Medicine, School of Medicine, Davis, in Davis, California. Mark F. Cesta, DVM, PhD, DACVP, is NTP Pathologist and Staff Scientist, leading the effort for establishment of the online NTP Nonneoplastic Lesion Atlas at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Georgios V. Gkoutos, PhD, DIC, is Professor of Clinical Bioinformatics at College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences Centre for Computational Biology, University of Birmingham in Birmingham, United Kingdom. Robert Hoehndorf, PhD, is Assistant Professor in Computer Science at the Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology in Thuwal, Kingdom of Saudi Arabia. Charlotte M. Keenan, VMD, DACVP, is a principle consultant at C.M. ToxPath Consulting in Doylestown, Pennsylvania, USA and leads the international STP effort for the publication of the harmonization of nomenclature and diagnostic criteria (INHAND) in toxicologic pathology. Colin McKerlie, DVM, DVSc, MRCVS, is a senior associate scientist in the Translational Medicine Research Program at The Hospital for Sick Children and a Professor in the Department of Pathobiology & Laboratory Medicine in the Faculty of Medicine at the University of Toronto, Toronto, Ontario, Canada. Paul N. Schofield, MA DPhil, is the University Reader in Biomedical Informatics at the Department of Physiology, Development & Neuroscience, University of Cambridge in Cambridge, United Kingdom and is also an adjunct professor at The Jackson Laboratory in Bar Harbor, Maine. John P. Sundberg, DVM, PhD, DACVP, is a professor at The Jackson Laboratory in Bar Harbor, Maine. Jerrold M. Ward, DVM, PhD, DACVP, FIATP, is a special volunteer at the National Cancer Institute, National Institutes of Health in Bethesda, MD and is also Adjunct Faculty at The Jackson Laboratory in Bar Harbor, Maine
| | - Jerrold M Ward
- Susan A. Elmore, MS, DVM, DCVP, DABT, FIATP, is NTP Pathologist and Staff Scientist at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Robert D. Cardiff, MD, PhD, is Distinguished Professor of Pathology, Emeritus at the UCD Center for Comparative Medicine, University of California, and the Department of Pathology and Laboratory Medicine, School of Medicine, Davis, in Davis, California. Mark F. Cesta, DVM, PhD, DACVP, is NTP Pathologist and Staff Scientist, leading the effort for establishment of the online NTP Nonneoplastic Lesion Atlas at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Georgios V. Gkoutos, PhD, DIC, is Professor of Clinical Bioinformatics at College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences Centre for Computational Biology, University of Birmingham in Birmingham, United Kingdom. Robert Hoehndorf, PhD, is Assistant Professor in Computer Science at the Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology in Thuwal, Kingdom of Saudi Arabia. Charlotte M. Keenan, VMD, DACVP, is a principle consultant at C.M. ToxPath Consulting in Doylestown, Pennsylvania, USA and leads the international STP effort for the publication of the harmonization of nomenclature and diagnostic criteria (INHAND) in toxicologic pathology. Colin McKerlie, DVM, DVSc, MRCVS, is a senior associate scientist in the Translational Medicine Research Program at The Hospital for Sick Children and a Professor in the Department of Pathobiology & Laboratory Medicine in the Faculty of Medicine at the University of Toronto, Toronto, Ontario, Canada. Paul N. Schofield, MA DPhil, is the University Reader in Biomedical Informatics at the Department of Physiology, Development & Neuroscience, University of Cambridge in Cambridge, United Kingdom and is also an adjunct professor at The Jackson Laboratory in Bar Harbor, Maine. John P. Sundberg, DVM, PhD, DACVP, is a professor at The Jackson Laboratory in Bar Harbor, Maine. Jerrold M. Ward, DVM, PhD, DACVP, FIATP, is a special volunteer at the National Cancer Institute, National Institutes of Health in Bethesda, MD and is also Adjunct Faculty at The Jackson Laboratory in Bar Harbor, Maine
| |
Collapse
|
30
|
Hemberger M, Hanna CW, Dean W. Mechanisms of early placental development in mouse and humans. Nat Rev Genet 2019; 21:27-43. [PMID: 31534202 DOI: 10.1038/s41576-019-0169-4] [Citation(s) in RCA: 275] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2019] [Indexed: 02/08/2023]
Abstract
The importance of the placenta in supporting mammalian development has long been recognized, but our knowledge of the molecular, genetic and epigenetic requirements that underpin normal placentation has remained remarkably under-appreciated. Both the in vivo mouse model and in vitro-derived murine trophoblast stem cells have been invaluable research tools for gaining insights into these aspects of placental development and function, with recent studies starting to reshape our view of how a unique epigenetic environment contributes to trophoblast differentiation and placenta formation. These advances, together with recent successes in deriving human trophoblast stem cells, open up new and exciting prospects in basic and clinical settings that will help deepen our understanding of placental development and associated disorders of pregnancy.
Collapse
Affiliation(s)
- Myriam Hemberger
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada. .,Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada. .,Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK. .,Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| | - Courtney W Hanna
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK.,Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Wendy Dean
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada. .,Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK. .,Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| |
Collapse
|
31
|
Gurumurthy CB, O'Brien AR, Quadros RM, Adams J, Alcaide P, Ayabe S, Ballard J, Batra SK, Beauchamp MC, Becker KA, Bernas G, Brough D, Carrillo-Salinas F, Chan W, Chen H, Dawson R, DeMambro V, D'Hont J, Dibb KM, Eudy JD, Gan L, Gao J, Gonzales A, Guntur AR, Guo H, Harms DW, Harrington A, Hentges KE, Humphreys N, Imai S, Ishii H, Iwama M, Jonasch E, Karolak M, Keavney B, Khin NC, Konno M, Kotani Y, Kunihiro Y, Lakshmanan I, Larochelle C, Lawrence CB, Li L, Lindner V, Liu XD, Lopez-Castejon G, Loudon A, Lowe J, Jerome-Majewska LA, Matsusaka T, Miura H, Miyasaka Y, Morpurgo B, Motyl K, Nabeshima YI, Nakade K, Nakashiba T, Nakashima K, Obata Y, Ogiwara S, Ouellet M, Oxburgh L, Piltz S, Pinz I, Ponnusamy MP, Ray D, Redder RJ, Rosen CJ, Ross N, Ruhe MT, Ryzhova L, Salvador AM, Alam SS, Sedlacek R, Sharma K, Smith C, Staes K, Starrs L, Sugiyama F, Takahashi S, Tanaka T, Trafford AW, Uno Y, Vanhoutte L, Vanrockeghem F, Willis BJ, Wright CS, Yamauchi Y, Yi X, Yoshimi K, Zhang X, Zhang Y, Ohtsuka M, Das S, Garry DJ, Hochepied T, Thomas P, Parker-Thornburg J, Adamson AD, Yoshiki A, Schmouth JF, Golovko A, Thompson WR, Lloyd KCK, Wood JA, Cowan M, Mashimo T, Mizuno S, Zhu H, Kasparek P, Liaw L, Miano JM, Burgio G. Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation. Genome Biol 2019; 20:171. [PMID: 31446895 PMCID: PMC6709553 DOI: 10.1186/s13059-019-1776-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/27/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND CRISPR-Cas9 gene-editing technology has facilitated the generation of knockout mice, providing an alternative to cumbersome and time-consuming traditional embryonic stem cell-based methods. An earlier study reported up to 16% efficiency in generating conditional knockout (cKO or floxed) alleles by microinjection of 2 single guide RNAs (sgRNA) and 2 single-stranded oligonucleotides as donors (referred herein as "two-donor floxing" method). RESULTS We re-evaluate the two-donor method from a consortium of 20 laboratories across the world. The dataset constitutes 56 genetic loci, 17,887 zygotes, and 1718 live-born mice, of which only 15 (0.87%) mice contain cKO alleles. We subject the dataset to statistical analyses and a machine learning algorithm, which reveals that none of the factors analyzed was predictive for the success of this method. We test some of the newer methods that use one-donor DNA on 18 loci for which the two-donor approach failed to produce cKO alleles. We find that the one-donor methods are 10- to 20-fold more efficient than the two-donor approach. CONCLUSION We propose that the two-donor method lacks efficiency because it relies on two simultaneous recombination events in cis, an outcome that is dwarfed by pervasive accompanying undesired editing events. The methods that use one-donor DNA are fairly efficient as they rely on only one recombination event, and the probability of correct insertion of the donor cassette without unanticipated mutational events is much higher. Therefore, one-donor methods offer higher efficiencies for the routine generation of cKO animal models.
Collapse
Affiliation(s)
- Channabasavaiah B Gurumurthy
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Aidan R O'Brien
- Transformational Bioinformatics, Health and Biosecurity Business Unit, CSIRO, North Ryde, Australia
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, the Australian National University, Canberra, Australia
| | - Rolen M Quadros
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, University of Nebraska Medical Center, Omaha, NE, USA
| | - John Adams
- Texas A&M Institute for Genomic Medicine (TIGM), Texas A&M University, College Station, TX, 77843, USA
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, USA
| | - Shinya Ayabe
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Johnathan Ballard
- Texas A&M Institute for Genomic Medicine (TIGM), Texas A&M University, College Station, TX, 77843, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Marie-Claude Beauchamp
- Departments of Anatomy and Cell Biology, Human Genetics and Pediatrics, Research Institute McGill University Health Center (RI-MUHC), Montreal, Canada
| | - Kathleen A Becker
- Maine Medical Center Research Institute (MMCRI), Scarborough, ME, USA
| | - Guillaume Bernas
- Transgenesis and Animal Modeling Core Facility, Centre de Recherche du Centre Hospitalier Universitaire de Montreal (CRCHUM), Montreal, Canada
| | - David Brough
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | | | - Wesley Chan
- Departments of Anatomy and Cell Biology, Human Genetics and Pediatrics, Research Institute McGill University Health Center (RI-MUHC), Montreal, Canada
| | - Hanying Chen
- School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Ruby Dawson
- South Australian Health & Medical Research Institute and Department of Medicine, University of Adelaide, Adelaide, Australia
| | - Victoria DeMambro
- Maine Medical Center Research Institute (MMCRI), Scarborough, ME, USA
| | - Jinke D'Hont
- Transgenic Mouse Core Facility, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Katharine M Dibb
- Unit of Cardiac Physiology, School of Medical Sciences, Manchester Academic Health Science Center, University of Manchester, Manchester, UK
| | - James D Eudy
- High-Throughput DNA Sequencing and Genotyping Core Facility, Vice Chancellor for Research Office, University of Nebraska Medical Center, Omaha, USA
| | - Lin Gan
- University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jing Gao
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, the Australian National University, Canberra, Australia
| | - Amy Gonzales
- Texas A&M Institute for Genomic Medicine (TIGM), Texas A&M University, College Station, TX, 77843, USA
| | - Anyonya R Guntur
- Maine Medical Center Research Institute (MMCRI), Scarborough, ME, USA
| | - Huiping Guo
- Texas A&M Institute for Genomic Medicine (TIGM), Texas A&M University, College Station, TX, 77843, USA
| | - Donald W Harms
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, University of Nebraska Medical Center, Omaha, NE, USA
| | - Anne Harrington
- Maine Medical Center Research Institute (MMCRI), Scarborough, ME, USA
| | - Kathryn E Hentges
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Neil Humphreys
- Transgenic Unit Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Shiho Imai
- Department of Basic Medicine, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, 143, Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Hideshi Ishii
- Department of Medical Data Science, Osaka University Graduate School of Medicine, Suita, Japan
| | - Mizuho Iwama
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Eric Jonasch
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michelle Karolak
- Maine Medical Center Research Institute (MMCRI), Scarborough, ME, USA
| | - Bernard Keavney
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester and Manchester Heart Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Nay-Chi Khin
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, the Australian National University, Canberra, Australia
| | - Masamitsu Konno
- Department of Frontier Science for Cancer and Chemotherapy, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuko Kotani
- The Institute of Experimental Animal Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yayoi Kunihiro
- The Institute of Experimental Animal Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Catherine Larochelle
- Centre de Recherche du Centre Hospitalier Universitaire de Montreal (CRCHUM), Montreal, Canada
| | - Catherine B Lawrence
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - Lin Li
- Children's Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Volkhard Lindner
- Maine Medical Center Research Institute (MMCRI), Scarborough, ME, USA
| | - Xian-De Liu
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gloria Lopez-Castejon
- Manchester Collaborative Centre for Inflammation Research (MCCIR), School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Andrew Loudon
- Centre for Biological Timing, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jenna Lowe
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, the Australian National University, Canberra, Australia
| | - Loydie A Jerome-Majewska
- Departments of Anatomy and Cell Biology, Human Genetics and Pediatrics, Research Institute McGill University Health Center (RI-MUHC), Montreal, Canada
| | - Taiji Matsusaka
- Department of Basic Medicine, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, 143, Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Hiromi Miura
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Kanagawa, 259-1193, Japan
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, 143, Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Yoshiki Miyasaka
- The Institute of Experimental Animal Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Benjamin Morpurgo
- Texas A&M Institute for Genomic Medicine (TIGM), Texas A&M University, College Station, TX, 77843, USA
| | - Katherine Motyl
- Maine Medical Center Research Institute (MMCRI), Scarborough, ME, USA
| | - Yo-Ichi Nabeshima
- Laboratory of Molecular Life Science, Foundation for Biomedical Research and Innovation, Kobe, Japan
| | - Koji Nakade
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | | | - Kenichi Nakashima
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Yuichi Obata
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Sanae Ogiwara
- Department of Laboratory Animal Science, Support Center for Medical Research and Education, Tokai University, 143, Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Mariette Ouellet
- Transgenesis and Animal Modeling Core Facility, Centre de Recherche du Centre Hospitalier Universitaire de Montreal (CRCHUM), Montreal, Canada
| | - Leif Oxburgh
- Maine Medical Center Research Institute (MMCRI), Scarborough, ME, USA
- Basic and Clinical Research, The Rogosin Institute, New York, USA
| | - Sandra Piltz
- South Australian Health & Medical Research Institute and Department of Medicine, University of Adelaide, Adelaide, Australia
| | - Ilka Pinz
- Maine Medical Center Research Institute (MMCRI), Scarborough, ME, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - David Ray
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX37LE, UK
| | - Ronald J Redder
- High-Throughput DNA Sequencing and Genotyping Core Facility, Vice Chancellor for Research Office, University of Nebraska Medical Center, Omaha, USA
| | - Clifford J Rosen
- Maine Medical Center Research Institute (MMCRI), Scarborough, ME, USA
| | - Nikki Ross
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, the Australian National University, Canberra, Australia
| | - Mark T Ruhe
- Mouse Biology Program, University of California, Davis, USA
| | - Larisa Ryzhova
- Maine Medical Center Research Institute (MMCRI), Scarborough, ME, USA
| | - Ane M Salvador
- Department of Immunology, Tufts University School of Medicine, Boston, USA
| | - Sabrina Shameen Alam
- Departments of Anatomy and Cell Biology, Human Genetics and Pediatrics, Research Institute McGill University Health Center (RI-MUHC), Montreal, Canada
| | - Radislav Sedlacek
- Laboratory of Transgenic Models of Diseases and Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Karan Sharma
- College of Osteopathic Medicine, Marian University, Indianapolis, IN, 46222, USA
| | - Chad Smith
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katrien Staes
- Transgenic Mouse Core Facility, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Lora Starrs
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, the Australian National University, Canberra, Australia
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Japan
| | - Tomohiro Tanaka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Andrew W Trafford
- Unit of Cardiac Physiology, School of Medical Sciences, Manchester Academic Health Science Center, University of Manchester, Manchester, UK
| | - Yoshihiro Uno
- The Institute of Experimental Animal Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Leen Vanhoutte
- Transgenic Mouse Core Facility, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Frederique Vanrockeghem
- Transgenic Mouse Core Facility, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | | - Christian S Wright
- School of Health and Human Sciences, Department of Physical Therapy, Indiana University, Indianapolis, IN, 46202, USA
| | - Yuko Yamauchi
- The Institute of Experimental Animal Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Xin Yi
- School of Health and Human Sciences, Department of Physical Therapy, Indiana University, Indianapolis, IN, 46202, USA
| | - Kazuto Yoshimi
- The Institute of Experimental Animal Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Xuesong Zhang
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yu Zhang
- Children's Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Masato Ohtsuka
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Kanagawa, 259-1193, Japan
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, 143, Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Satyabrata Das
- Lillehei Heart Institute Regenerative Medicine and Sciences Program, University of Minnesota, Minneapolis, MN, USA
| | - Daniel J Garry
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, USA
- Department of Surgery, School of Medicine, University of California, Davis, Davis, USA
| | - Tino Hochepied
- Transgenic Mouse Core Facility, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Paul Thomas
- South Australian Health & Medical Research Institute and Department of Medicine, University of Adelaide, Adelaide, Australia
| | | | - Antony D Adamson
- Transgenic Unit Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Atsushi Yoshiki
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Jean-Francois Schmouth
- Transgenesis and Animal Modeling Core Facility, Centre de Recherche du Centre Hospitalier Universitaire de Montreal (CRCHUM), Montreal, Canada
| | - Andrei Golovko
- Texas A&M Institute for Genomic Medicine (TIGM), Texas A&M University, College Station, TX, 77843, USA
| | - William R Thompson
- School of Health and Human Sciences, Department of Physical Therapy, Indiana University, Indianapolis, IN, 46202, USA
| | - K C Kent Lloyd
- Mouse Biology Program, University of California, Davis, USA
- Department of Surgery, School of Medicine, University of California, Davis, Davis, USA
| | - Joshua A Wood
- Mouse Biology Program, University of California, Davis, USA
| | - Mitra Cowan
- McGill Integrated Core for Animal Modeling (MICAM), Montreal, Canada
| | - Tomoji Mashimo
- The Institute of Experimental Animal Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Japan
| | - Hao Zhu
- Children's Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Petr Kasparek
- Laboratory of Transgenic Models of Diseases and Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lucy Liaw
- Maine Medical Center Research Institute (MMCRI), Scarborough, ME, USA
| | - Joseph M Miano
- University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Gaetan Burgio
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, the Australian National University, Canberra, Australia.
| |
Collapse
|
32
|
Syndromic immune disorder caused by a viable hypomorphic allele of spliceosome component Snrnp40. Nat Immunol 2019; 20:1322-1334. [PMID: 31427773 DOI: 10.1038/s41590-019-0464-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 07/08/2019] [Indexed: 02/06/2023]
Abstract
We report a new immunodeficiency disorder in mice caused by a viable hypomorphic mutation of Snrnp40, an essential gene encoding a subunit of the U5 small nuclear ribonucleoprotein (snRNP) complex of the spliceosome. Snrnp40 is ubiquitous but strongly expressed in lymphoid tissue. Homozygous mutant mice showed hypersusceptibility to infection by murine cytomegalovirus and multiple defects of lymphoid development, stability and function. Cell-intrinsic defects of hematopoietic stem cell differentiation also affected homozygous mutants. SNRNP40 deficiency in primary hematopoietic stem cells or T cells or the EL4 cell line increased the frequency of splicing errors, mostly intron retention, in several hundred messenger RNAs. Altered expression of proteins associated with immune cell function was also observed in Snrnp40-mutant cells. The immunological consequences of SNRNP40 deficiency presumably result from cumulative, moderate effects on processing of many different mRNA molecules and secondary reductions in the expression of critical immune proteins, yielding a syndromic immune disorder.
Collapse
|
33
|
De Clercq K, Persoons E, Napso T, Luyten C, Parac-Vogt TN, Sferruzzi-Perri AN, Kerckhofs G, Vriens J. High-resolution contrast-enhanced microCT reveals the true three-dimensional morphology of the murine placenta. Proc Natl Acad Sci U S A 2019; 116:13927-13936. [PMID: 31249139 PMCID: PMC6683600 DOI: 10.1073/pnas.1902688116] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic engineering of the mouse genome identified many genes that are essential for embryogenesis. Remarkably, the prevalence of concomitant placental defects in embryonic lethal mutants is highly underestimated and indicates the importance of detailed placental analysis when phenotyping new individual gene knockouts. Here we introduce high-resolution contrast-enhanced microfocus computed tomography (CE-CT) as a nondestructive, high-throughput technique to evaluate the 3D placental morphology. Using a contrast agent, zirconium-substituted Keggin polyoxometalate (Zr-POM), the soft tissue of the placenta (i.e., different layers and cell types and its vasculature) was imaged with a resolution of 3.5 µm voxel size. This approach allowed us to visualize and study early and late stages of placental development. Moreover, CE-CT provides a method to precisely quantify placental parameters (i.e., volumes, volume fraction, ratio of different placental layers, and volumes of specific cell populations) that are crucial for statistical comparison studies. The CE-CT assessment of the 3D morphology of the placentas was validated (i) by comparison with standard histological studies; (ii) by evaluating placentas from 2 different mouse strains, 129S6 and C57BL/6J mice; and (iii) by confirming the placental phenotype of mice lacking phosphoinositol 3-kinase (PI3K)-p110α. Finally, the Zr-POM-based CE-CT allowed for inspection of the vasculature structure in the entire placenta, as well as detecting placental defects in pathologies characterized by embryonic resorption and placental fusion. Taken together, Zr-POM-based CE-CT offers a quantitative 3D methodology to investigate placental development or pathologies.
Collapse
Affiliation(s)
- Katrien De Clercq
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, Gynecology-Pediatrics and Urology Research Group (G-PURE), Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
- Vlaams Instituut voor Biotechnologie (VIB) Centre for Brain & Disease Research, 3000 Leuven, Belgium
| | - Eleonora Persoons
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, Gynecology-Pediatrics and Urology Research Group (G-PURE), Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
- Vlaams Instituut voor Biotechnologie (VIB) Centre for Brain & Disease Research, 3000 Leuven, Belgium
| | - Tina Napso
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | - Catherine Luyten
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, Gynecology-Pediatrics and Urology Research Group (G-PURE), Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Tatjana N Parac-Vogt
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, 3000 Leuven, Belgium
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | - Greet Kerckhofs
- Biomechanics Laboratory, Institute of Mechanics, Materials, and Civil Engineering, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
- Department of Materials Science and Engineering, KU Leuven, 3000 Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, Gynecology-Pediatrics and Urology Research Group (G-PURE), Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
34
|
Campenhout CV, Cabochette P, Veillard AC, Laczik M, Zelisko-Schmidt A, Sabatel C, Dhainaut M, Vanhollebeke B, Gueydan C, Kruys V. Guidelines for optimized gene knockout using CRISPR/Cas9. Biotechniques 2019; 66:295-302. [PMID: 31039627 DOI: 10.2144/btn-2018-0187] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
CRISPR/Cas9 technology has evolved as the most powerful approach to generate genetic models both for fundamental and preclinical research. Despite its apparent simplicity, the outcome of a genome-editing experiment can be substantially impacted by technical parameters and biological considerations. Here, we present guidelines and tools to optimize CRISPR/Cas9 genome-targeting efficiency and specificity. The nature of the target locus, the design of the single guide RNA and the choice of the delivery method should all be carefully considered prior to a genome-editing experiment. Different methods can also be used to detect off-target cleavages and decrease the risk of unwanted mutations. Together, these optimized tools and proper controls are essential to the assessment of CRISPR/Cas9 genome-editing experiments.
Collapse
Affiliation(s)
| | - Pauline Cabochette
- Laboratoire de Signalisation Neurovasculaire, Faculté des Sciences, Université libre de Bruxelles (ULB), 12 rue des Profs. Jeener et Brachet, 6041 Gosselies, Belgium
| | | | - Miklos Laczik
- Diagenode, SA, Liège Science Park, 4102 Seraing, Belgium
| | | | - Céline Sabatel
- Diagenode, SA, Liège Science Park, 4102 Seraing, Belgium
| | - Maxime Dhainaut
- Precision Immunology Institute, Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benoit Vanhollebeke
- Laboratoire de Signalisation Neurovasculaire, Faculté des Sciences, Université libre de Bruxelles (ULB), 12 rue des Profs. Jeener et Brachet, 6041 Gosselies, Belgium
- Walloon Excellence in Life Sciences & Biotechnology (WELBIO), Belgium
| | - Cyril Gueydan
- Laboratoire de Biologie Moléculaire du Gène, Faculté des Sciences, Université libre de Bruxelles (ULB), 12 rue des Profs. Jeener et Brachet, 6041 Gosselies, Belgium
| | - Véronique Kruys
- Laboratoire de Biologie Moléculaire du Gène, Faculté des Sciences, Université libre de Bruxelles (ULB), 12 rue des Profs. Jeener et Brachet, 6041 Gosselies, Belgium
| |
Collapse
|
35
|
Brommage R, Powell DR, Vogel P. Predicting human disease mutations and identifying drug targets from mouse gene knockout phenotyping campaigns. Dis Model Mech 2019; 12:dmm038224. [PMID: 31064765 PMCID: PMC6550044 DOI: 10.1242/dmm.038224] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Two large-scale mouse gene knockout phenotyping campaigns have provided extensive data on the functions of thousands of mammalian genes. The ongoing International Mouse Phenotyping Consortium (IMPC), with the goal of examining all ∼20,000 mouse genes, has examined 5115 genes since 2011, and phenotypic data from several analyses are available on the IMPC website (www.mousephenotype.org). Mutant mice having at least one human genetic disease-associated phenotype are available for 185 IMPC genes. Lexicon Pharmaceuticals' Genome5000™ campaign performed similar analyses between 2000 and the end of 2008 focusing on the druggable genome, including enzymes, receptors, transporters, channels and secreted proteins. Mutants (4654 genes, with 3762 viable adult homozygous lines) with therapeutically interesting phenotypes were studied extensively. Importantly, phenotypes for 29 Lexicon mouse gene knockouts were published prior to observations of similar phenotypes resulting from homologous mutations in human genetic disorders. Knockout mouse phenotypes for an additional 30 genes mimicked previously published human genetic disorders. Several of these models have helped develop effective treatments for human diseases. For example, studying Tph1 knockout mice (lacking peripheral serotonin) aided the development of telotristat ethyl, an approved treatment for carcinoid syndrome. Sglt1 (also known as Slc5a1) and Sglt2 (also known as Slc5a2) knockout mice were employed to develop sotagliflozin, a dual SGLT1/SGLT2 inhibitor having success in clinical trials for diabetes. Clinical trials evaluating inhibitors of AAK1 (neuropathic pain) and SGLT1 (diabetes) are underway. The research community can take advantage of these unbiased analyses of gene function in mice, including the minimally studied 'ignorome' genes.
Collapse
Affiliation(s)
- Robert Brommage
- Department of Metabolism Research, Lexicon Pharmaceuticals, 8800 Technology Forest Place, The Woodlands, TX 77381, USA
| | - David R Powell
- Department of Metabolism Research, Lexicon Pharmaceuticals, 8800 Technology Forest Place, The Woodlands, TX 77381, USA
| | - Peter Vogel
- St. Jude Children's Research Hospital, Pathology, MS 250, Room C5036A, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
36
|
Åhlgren J, Voikar V. Experiments done in Black-6 mice: what does it mean? Lab Anim (NY) 2019; 48:171-180. [DOI: 10.1038/s41684-019-0288-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
|
37
|
Huckins LM, Dobbyn A, Ruderfer DM, Hoffman G, Wang W, Pardiñas AF, Rajagopal VM, Als TD, T Nguyen H, Girdhar K, Boocock J, Roussos P, Fromer M, Kramer R, Domenici E, Gamazon ER, Purcell S, Demontis D, Børglum AD, Walters JTR, O'Donovan MC, Sullivan P, Owen MJ, Devlin B, Sieberts SK, Cox NJ, Im HK, Sklar P, Stahl EA. Gene expression imputation across multiple brain regions provides insights into schizophrenia risk. Nat Genet 2019; 51:659-674. [PMID: 30911161 PMCID: PMC7034316 DOI: 10.1038/s41588-019-0364-4] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 01/30/2019] [Indexed: 01/23/2023]
Abstract
Transcriptomic imputation approaches combine eQTL reference panels with large-scale genotype data in order to test associations between disease and gene expression. These genic associations could elucidate signals in complex genome-wide association study (GWAS) loci and may disentangle the role of different tissues in disease development. We used the largest eQTL reference panel for the dorso-lateral prefrontal cortex (DLPFC) to create a set of gene expression predictors and demonstrate their utility. We applied DLPFC and 12 GTEx-brain predictors to 40,299 schizophrenia cases and 65,264 matched controls for a large transcriptomic imputation study of schizophrenia. We identified 413 genic associations across 13 brain regions. Stepwise conditioning identified 67 non-MHC genes, of which 14 did not fall within previous GWAS loci. We identified 36 significantly enriched pathways, including hexosaminidase-A deficiency, and multiple porphyric disorder pathways. We investigated developmental expression patterns among the 67 non-MHC genes and identified specific groups of pre- and postnatal expression.
Collapse
Affiliation(s)
- Laura M Huckins
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Amanda Dobbyn
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Gabriel Hoffman
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Weiqing Wang
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Veera M Rajagopal
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark
- Center for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| | - Thomas D Als
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark
- Center for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| | - Hoang T Nguyen
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kiran Girdhar
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James Boocock
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Panos Roussos
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Menachem Fromer
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robin Kramer
- Human Brain Collection Core, National Institute of Mental Health, Bethesda, MD, USA
| | - Enrico Domenici
- Laboratory of Neurogenomic Biomarkers, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Eric R Gamazon
- Vanderbilt University Medical Center, Nashville, TN, USA
- Clare Hall, University of Cambridge, Cambridge, UK
| | - Shaun Purcell
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ditte Demontis
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark
- Center for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| | - Anders D Børglum
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark
- Center for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Michael C O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Patrick Sullivan
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Karolinska Institutet, Stockholm, Sweden
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Nancy J Cox
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hae Kyung Im
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Pamela Sklar
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eli A Stahl
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
38
|
Smith SE, Busse DC, Binter S, Weston S, Diaz Soria C, Laksono BM, Clare S, Van Nieuwkoop S, Van den Hoogen BG, Clement M, Marsden M, Humphreys IR, Marsh M, de Swart RL, Wash RS, Tregoning JS, Kellam P. Interferon-Induced Transmembrane Protein 1 Restricts Replication of Viruses That Enter Cells via the Plasma Membrane. J Virol 2019; 93:e02003-18. [PMID: 30567988 PMCID: PMC6401438 DOI: 10.1128/jvi.02003-18] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/13/2018] [Indexed: 01/01/2023] Open
Abstract
The acute antiviral response is mediated by a family of interferon-stimulated genes (ISGs), providing cell-intrinsic immunity. Mutations in genes encoding these proteins are often associated with increased susceptibility to viral infections. One family of ISGs with antiviral function is the interferon-inducible transmembrane proteins (IFITMs), of which IFITM3 has been studied extensively. In contrast, IFITM1 has not been studied in detail. Since IFITM1 can localize to the plasma membrane, we investigated its function with a range of enveloped viruses thought to infect cells by fusion with the plasma membrane. Overexpression of IFITM1 prevented infection by a number of Paramyxoviridae and Pneumoviridae, including respiratory syncytial virus (RSV), mumps virus, and human metapneumovirus (HMPV). IFITM1 also restricted infection with an enveloped DNA virus that can enter via the plasma membrane, herpes simplex virus 1 (HSV-1). To test the importance of plasma membrane localization for IFITM1 function, we identified blocks of amino acids in the conserved intracellular loop (CIL) domain that altered the subcellular localization of the protein and reduced antiviral activity. By screening reported data sets, 12 rare nonsynonymous single nucleotide polymorphisms (SNPs) were identified in human IFITM1, some of which are in the CIL domain. Using an Ifitm1-/- mouse, we show that RSV infection was more severe, thereby extending the range of viruses restricted in vivo by IFITM proteins and suggesting overall that IFITM1 is broadly antiviral and that this antiviral function is associated with cell surface localization.IMPORTANCE Host susceptibility to viral infection is multifactorial, but early control of viruses not previously encountered is predominantly mediated by the interferon-stimulated gene (ISG) family. There are upwards of 300 of these genes, the majority of which do not have a clearly defined function or mechanism of action. The cellular location of these proteins may have an important effect on their function. One ISG located at the plasma membrane is interferon-inducible transmembrane protein 1 (IFITM1). Here we demonstrate that IFITM1 can inhibit infection with a range of viruses that enter via the plasma membrane. Mutant IFITM1 proteins that were unable to localize to the plasma membrane did not restrict viral infection. We also observed for the first time that IFITM1 plays a role in vivo, and Ifitm1-/- mice were more susceptible to viral lung infection. These data contribute to our understanding of how ISGs prevent viral infections.
Collapse
Affiliation(s)
- S E Smith
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
- Kymab Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - D C Busse
- Mucosal Infection and Immunity Group, Section of Virology, Imperial College London, St. Mary's Campus, London, United Kingdom
| | - S Binter
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
- Kymab Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - S Weston
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - C Diaz Soria
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - B M Laksono
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - S Clare
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - S Van Nieuwkoop
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - M Clement
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, United Kingdom
| | - M Marsden
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, United Kingdom
| | - I R Humphreys
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, United Kingdom
| | - M Marsh
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - R L de Swart
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - R S Wash
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
- Kymab Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - J S Tregoning
- Mucosal Infection and Immunity Group, Section of Virology, Imperial College London, St. Mary's Campus, London, United Kingdom
| | - P Kellam
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
- Mucosal Infection and Immunity Group, Section of Virology, Imperial College London, St. Mary's Campus, London, United Kingdom
- Kymab Ltd., Babraham Research Campus, Cambridge, United Kingdom
| |
Collapse
|
39
|
Tian D, Wenlock S, Kabir M, Tzotzos G, Doig AJ, Hentges KE. Identifying mouse developmental essential genes using machine learning. Dis Model Mech 2018; 11:11/12/dmm034546. [PMID: 30563825 PMCID: PMC6307915 DOI: 10.1242/dmm.034546] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 10/19/2018] [Indexed: 12/20/2022] Open
Abstract
The genes that are required for organismal survival are annotated as ‘essential genes’. Identifying all the essential genes of an animal species can reveal critical functions that are needed during the development of the organism. To inform studies on mouse development, we developed a supervised machine learning classifier based on phenotype data from mouse knockout experiments. We used this classifier to predict the essentiality of mouse genes lacking experimental data. Validation of our predictions against a blind test set of recent mouse knockout experimental data indicated a high level of accuracy (>80%). We also validated our predictions for other mouse mutagenesis methodologies, demonstrating that the predictions are accurate for lethal phenotypes isolated in random chemical mutagenesis screens and embryonic stem cell screens. The biological functions that are enriched in essential and non-essential genes have been identified, showing that essential genes tend to encode intracellular proteins that interact with nucleic acids. The genome distribution of predicted essential and non-essential genes was analysed, demonstrating that the density of essential genes varies throughout the genome. A comparison with human essential and non-essential genes was performed, revealing conservation between human and mouse gene essentiality status. Our genome-wide predictions of mouse essential genes will be of value for the planning of mouse knockout experiments and phenotyping assays, for understanding the functional processes required during mouse development, and for the prioritisation of disease candidate genes identified in human genome and exome sequence datasets. Summary: Here, we used computer-based machine learning methodology to predict which genes in the mouse genome are essential for development, and present a database of mouse essential and non-essential genes.
Collapse
Affiliation(s)
- David Tian
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Stephanie Wenlock
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Mitra Kabir
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - George Tzotzos
- Department of Agriculture, Food and Environmental Sciences, Marche Polytechnic University, Ancona 60121, Italy
| | - Andrew J Doig
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK .,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Kathryn E Hentges
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
40
|
Intersectional gene inactivation: there is more to conditional mutagenesis than Cre. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1115-1117. [PMID: 29785571 DOI: 10.1007/s11427-018-9291-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 03/15/2018] [Indexed: 10/16/2022]
|
41
|
Abstract
Large-scale phenotyping efforts have demonstrated that approximately 25-30% of mouse gene knockouts cause intra-uterine lethality. Analysis of these mutants has largely focussed on the embryo but not the placenta, despite the critical role of this extra-embryonic organ for developmental progression. Here, we screened 103 embryonic lethal and subviable mouse knockout lines from the Deciphering the Mechanisms of Developmental Disorders programme (https://dmdd.org.uk) for placental phenotypes. 68% of lines that are lethal at or after mid-gestation exhibited placental dys-morphologies. Early lethality (E9.5-E14.5) is almost always associated with severe placental malformations. Placental defects strongly correlate with abnormal brain, heart and vascular development. Analysis of mutant trophoblast stem cells and conditional knockouts suggests primary gene function in trophoblast for a significant number of factors that cause embryonic lethality when ablated. Our data highlight the hugely under-appreciated importance of placental defects in contributing to abnormal embryo development and suggest key molecular nodes governing placentation.
Collapse
|
42
|
Wang T, Bu CH, Hildebrand S, Jia G, Siggs OM, Lyon S, Pratt D, Scott L, Russell J, Ludwig S, Murray AR, Moresco EMY, Beutler B. Probability of phenotypically detectable protein damage by ENU-induced mutations in the Mutagenetix database. Nat Commun 2018; 9:441. [PMID: 29382827 PMCID: PMC5789985 DOI: 10.1038/s41467-017-02806-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 12/27/2017] [Indexed: 12/23/2022] Open
Abstract
Computational inference of mutation effects is necessary for genetic studies in which many mutations must be considered as etiologic candidates. Programs such as PolyPhen-2 predict the relative severity of damage caused by missense mutations, but not the actual probability that a mutation will reduce/eliminate protein function. Based on genotype and phenotype data for 116,330 ENU-induced mutations in the Mutagenetix database, we calculate that putative null mutations, and PolyPhen-2-classified “probably damaging”, “possibly damaging”, or “probably benign” mutations have, respectively, 61%, 17%, 9.8%, and 4.5% probabilities of causing phenotypically detectable damage in the homozygous state. We use these probabilities in the estimation of genome saturation and the probability that individual proteins have been adequately tested for function in specific genetic screens. We estimate the proportion of essential autosomal genes in Mus musculus (C57BL/6J) and show that viable mutations in essential genes are more likely to induce phenotype than mutations in non-essential genes. Programs such as PolyPhen-2 predict the relative severity of damage by missense mutations. Here, Wang et al estimate probabilities that putative null or missense alleles would reduce protein function to cause detectable phenotype by analyzing data from ENU-induced mouse mutations.
Collapse
Affiliation(s)
- Tao Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA. .,Quantitative Biomedical Research Center, Department of Clinical Science, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA. .,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Chun Hui Bu
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sara Hildebrand
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Gaoxiang Jia
- Quantitative Biomedical Research Center, Department of Clinical Science, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.,Department of Statistical Science, Southern Methodist University, Dallas, TX, 75205, USA
| | - Owen M Siggs
- Immunology Division, Garvan Institute for Medical Research, Sydney, NSW, 2010, Australia
| | - Stephen Lyon
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - David Pratt
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lindsay Scott
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jamie Russell
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sara Ludwig
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Anne R Murray
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Eva Marie Y Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
43
|
Sen S, Dumont S, Sage-Ciocca D, Reibel S, de Goede P, Kalsbeek A, Challet E. Expression of the clock gene Rev-erbα in the brain controls the circadian organisation of food intake and locomotor activity, but not daily variations of energy metabolism. J Neuroendocrinol 2018; 30. [PMID: 29150901 DOI: 10.1111/jne.12557] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/19/2017] [Accepted: 11/12/2017] [Indexed: 12/19/2022]
Abstract
The nuclear receptor REV-ERBα is part of the molecular clock mechanism and is considered to be involved in a variety of biological processes within metabolically active peripheral tissues as well. To investigate whether Rev-erbα (also known as Nr1d1) in the brain plays a role in the daily variations of energy metabolism, feeding behaviour and the sleep-wake cycle, we studied mice with global (GKO) or brain (BKO) deletion of Rev-erbα. Mice were studied both in a light/dark cycle and in constant darkness, and then 24-hour variations of Respiratory quotient (RQ) and energy expenditure, as well as the temporal patterns of rest-activity and feeding behaviour, were recorded. The RQ increase of GKO mice was not detected in BKO animals, indicating a peripheral origin for this metabolic alteration. Arrhythmic patterns of locomotor activity were only found in BKO mice. By contrast, the circadian rhythm of food intake was lost both in GKO and BKO mice, mostly by increasing the number of daytime meals. These changes in the circadian pattern of feeding behaviour were, to some extent, correlated with a loss of rhythmicity of hypothalamic Hcrt (also named Orx) mRNA levels. Taken together, these findings highlight that Rev-erbα in the brain is involved in the temporal partitioning of feeding and sleep, whereas its effects on energy metabolism are mainly exerted through its peripheral expression.
Collapse
Affiliation(s)
- S Sen
- Regulation of Circadian Clocks Team, Institute of Cellular and Integrative Neurosciences, UPR3212, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Strasbourg, France
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience (NIN), Amsterdam, The Netherlands
| | - S Dumont
- Regulation of Circadian Clocks Team, Institute of Cellular and Integrative Neurosciences, UPR3212, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Strasbourg, France
| | - D Sage-Ciocca
- Chronobiotron, UMS3415, CNRS, University of Strasbourg, Strasbourg, France
| | - S Reibel
- Chronobiotron, UMS3415, CNRS, University of Strasbourg, Strasbourg, France
| | - P de Goede
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - A Kalsbeek
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience (NIN), Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - E Challet
- Regulation of Circadian Clocks Team, Institute of Cellular and Integrative Neurosciences, UPR3212, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Strasbourg, France
| |
Collapse
|
44
|
Fisher CL, Marks H, Cho LTY, Andrews R, Wormald S, Carroll T, Iyer V, Tate P, Rosen B, Stunnenberg HG, Fisher AG, Skarnes WC. An efficient method for generation of bi-allelic null mutant mouse embryonic stem cells and its application for investigating epigenetic modifiers. Nucleic Acids Res 2017; 45:e174. [PMID: 28981838 PMCID: PMC5716182 DOI: 10.1093/nar/gkx811] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 08/25/2017] [Accepted: 09/04/2017] [Indexed: 11/18/2022] Open
Abstract
Mouse embryonic stem (ES) cells are a popular model system to study biological processes, though uncovering recessive phenotypes requires inactivating both alleles. Building upon resources from the International Knockout Mouse Consortium (IKMC), we developed a targeting vector for second allele inactivation in conditional-ready IKMC 'knockout-first' ES cell lines. We applied our technology to several epigenetic regulators, recovering bi-allelic targeted clones with a high efficiency of 60% and used Flp recombinase to restore expression in two null cell lines to demonstrate how our system confirms causality through mutant phenotype reversion. We designed our strategy to select against re-targeting the 'knockout-first' allele and identify essential genes in ES cells, including the histone methyltransferase Setdb1. For confirmation, we exploited the flexibility of our system, enabling tamoxifen inducible conditional gene ablation while controlling for genetic background and tamoxifen effects. Setdb1 ablated ES cells exhibit severe growth inhibition, which is not rescued by exogenous Nanog expression or culturing in naive pluripotency '2i' media, suggesting that the self-renewal defect is mediated through pluripotency network independent pathways. Our strategy to generate null mutant mouse ES cells is applicable to thousands of genes and repurposes existing IKMC Intermediate Vectors.
Collapse
Affiliation(s)
- Cynthia L. Fisher
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- MRC London Institute of Medical Sciences and Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Hendrik Marks
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6525 GA, Nijmegen, The Netherlands
| | - Lily Ting-yin Cho
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Robert Andrews
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Sam Wormald
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Thomas Carroll
- MRC London Institute of Medical Sciences and Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Vivek Iyer
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Peri Tate
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Barry Rosen
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Hendrik G. Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6525 GA, Nijmegen, The Netherlands
| | - Amanda G. Fisher
- MRC London Institute of Medical Sciences and Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - William C. Skarnes
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
45
|
Derks MFL, Megens HJ, Bosse M, Lopes MS, Harlizius B, Groenen MAM. A systematic survey to identify lethal recessive variation in highly managed pig populations. BMC Genomics 2017; 18:858. [PMID: 29121877 PMCID: PMC5680825 DOI: 10.1186/s12864-017-4278-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/03/2017] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Lethal recessive variation can cause prenatal death of homozygous offspring. Although usually present at low-frequency in populations, the impact on individual fitness can be substantial. Until recently, the presence of recessive embryonic lethal variation could only be measured indirectly through reduced fertility. In this study, we estimate the presence of genetic loci associated with both early and late termination of development during gestation in pigs from the wealth of genome data routinely generated by a commercial breeding company. RESULTS We examined three commercial pig (Sus scrofa) populations for potentially deleterious genetic variation based on 80 K SNP-chip genotypes, and estimate the effects on reproductive traits. 24,000 pigs from three populations were analyzed for missing or depletion of homozygous haplotypes. We identified 145 haplotypes (ranging from 0.5-4 Mb in size) in the genome with complete absence or depletion of homozygous animals. Thirty-five haplotypes show a negative effect on at least one of the analysed reproductive traits (total number born, number of stillborn, and number of mummified piglets). One variant in particular appeared to result in relative late termination of development of fetuses, responsible for a significant fraction of observed stillborn piglets ('mummies'), as they die mid-gestation. Moreover, we identified the BMPER gene as a likely candidate underlying this phenomenon. CONCLUSIONS Our study shows that although lethal recessive variation is present, the frequency of these alleles is invariably low in these highly managed populations. Nevertheless, due to cumulative effects of deleterious variants, large numbers of affected offspring are produced. Furthermore, our study demonstrates the use of a large-scale commercial genetic experiment to systematically screen for 'natural knockouts' that can increase understanding of gene function.
Collapse
Affiliation(s)
- Martijn F L Derks
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, The Netherlands.
| | - Hendrik-Jan Megens
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, The Netherlands
| | - Mirte Bosse
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, The Netherlands
| | - Marcos S Lopes
- Topigs Norsvin Research Center, Beuningen, the Netherlands.,Topigs Norsvin, Curitiba, Brazil
| | | | - Martien A M Groenen
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, The Netherlands
| |
Collapse
|
46
|
|
47
|
Bowl MR, Simon MM, Ingham NJ, Greenaway S, Santos L, Cater H, Taylor S, Mason J, Kurbatova N, Pearson S, Bower LR, Clary DA, Meziane H, Reilly P, Minowa O, Kelsey L, Tocchini-Valentini GP, Gao X, Bradley A, Skarnes WC, Moore M, Beaudet AL, Justice MJ, Seavitt J, Dickinson ME, Wurst W, de Angelis MH, Herault Y, Wakana S, Nutter LMJ, Flenniken AM, McKerlie C, Murray SA, Svenson KL, Braun RE, West DB, Lloyd KCK, Adams DJ, White J, Karp N, Flicek P, Smedley D, Meehan TF, Parkinson HE, Teboul LM, Wells S, Steel KP, Mallon AM, Brown SDM. A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction. Nat Commun 2017; 8:886. [PMID: 29026089 PMCID: PMC5638796 DOI: 10.1038/s41467-017-00595-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 07/12/2017] [Indexed: 01/27/2023] Open
Abstract
The developmental and physiological complexity of the auditory system is likely reflected in the underlying set of genes involved in auditory function. In humans, over 150 non-syndromic loci have been identified, and there are more than 400 human genetic syndromes with a hearing loss component. Over 100 non-syndromic hearing loss genes have been identified in mouse and human, but we remain ignorant of the full extent of the genetic landscape involved in auditory dysfunction. As part of the International Mouse Phenotyping Consortium, we undertook a hearing loss screen in a cohort of 3006 mouse knockout strains. In total, we identify 67 candidate hearing loss genes. We detect known hearing loss genes, but the vast majority, 52, of the candidate genes were novel. Our analysis reveals a large and unexplored genetic landscape involved with auditory function.The full extent of the genetic basis for hearing impairment is unknown. Here, as part of the International Mouse Phenotyping Consortium, the authors perform a hearing loss screen in 3006 mouse knockout strains and identify 52 new candidate genes for genetic hearing loss.
Collapse
Affiliation(s)
- Michael R Bowl
- Medical Research Council Harwell Institute (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, OX11 0RD, UK
| | - Michelle M Simon
- Medical Research Council Harwell Institute (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, OX11 0RD, UK
| | - Neil J Ingham
- King's College London, London, SE1 1UL, UK
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Simon Greenaway
- Medical Research Council Harwell Institute (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, OX11 0RD, UK
| | - Luis Santos
- Medical Research Council Harwell Institute (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, OX11 0RD, UK
| | - Heather Cater
- Medical Research Council Harwell Institute (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, OX11 0RD, UK
| | - Sarah Taylor
- Medical Research Council Harwell Institute (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, OX11 0RD, UK
| | - Jeremy Mason
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1 SD, UK
| | - Natalja Kurbatova
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1 SD, UK
| | - Selina Pearson
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Lynette R Bower
- Mouse Biology Program, University of California, Davis, California, 95618, USA
| | - Dave A Clary
- Mouse Biology Program, University of California, Davis, California, 95618, USA
| | - Hamid Meziane
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), 1 rue Laurent Fries, Illkirch-Graffenstaden, F-67404, France
| | - Patrick Reilly
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), 1 rue Laurent Fries, Illkirch-Graffenstaden, F-67404, France
| | - Osamu Minowa
- RIKEN BioResource Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Lois Kelsey
- The Centre for Phenogenomics, Toronto, Ontario, Canada, M5T 3H7
- The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8
- Canada and Mount Sinai Hospital, Toronto, Ontario, Canada, M5G 1X5
| | - Glauco P Tocchini-Valentini
- Monterotondo Mouse Clinic, Italian National Research Council (CNR), Institute of Cell Biology and Neurobiology, I-00015, Monterotondo Scalo, Italy
| | - Xiang Gao
- SKL of Pharmaceutical Biotechnology and Model Animal Research Center, Collaborative Innovation Center for Genetics and Development, Nanjing Biomedical Research Institute, Nanjing University, 210061, Nanjing, China
| | - Allan Bradley
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - William C Skarnes
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Mark Moore
- IMPC, San Anselmo, California, 94960, USA
| | - Arthur L Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Monica J Justice
- The Centre for Phenogenomics, Toronto, Ontario, Canada, M5T 3H7
- The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8
- Canada and Mount Sinai Hospital, Toronto, Ontario, Canada, M5G 1X5
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - John Seavitt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Mary E Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
| | - Yann Herault
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), 1 rue Laurent Fries, Illkirch-Graffenstaden, F-67404, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 67404, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, 67404, Illkirch, France
| | | | - Lauryl M J Nutter
- The Centre for Phenogenomics, Toronto, Ontario, Canada, M5T 3H7
- The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8
- Canada and Mount Sinai Hospital, Toronto, Ontario, Canada, M5G 1X5
| | - Ann M Flenniken
- The Centre for Phenogenomics, Toronto, Ontario, Canada, M5T 3H7
- The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8
- Canada and Mount Sinai Hospital, Toronto, Ontario, Canada, M5G 1X5
| | - Colin McKerlie
- The Centre for Phenogenomics, Toronto, Ontario, Canada, M5T 3H7
- The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8
- Canada and Mount Sinai Hospital, Toronto, Ontario, Canada, M5G 1X5
| | | | | | | | - David B West
- Childrens' Hospital Oakland Research Institute, Oakland, California, 94609, USA
| | - K C Kent Lloyd
- Mouse Biology Program, University of California, Davis, California, 95618, USA
| | - David J Adams
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Jacqui White
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Natasha Karp
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1 SD, UK
| | | | - Terrence F Meehan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1 SD, UK
| | - Helen E Parkinson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1 SD, UK
| | - Lydia M Teboul
- Medical Research Council Harwell Institute (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, OX11 0RD, UK
| | - Sara Wells
- Medical Research Council Harwell Institute (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, OX11 0RD, UK
| | - Karen P Steel
- King's College London, London, SE1 1UL, UK
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Ann-Marie Mallon
- Medical Research Council Harwell Institute (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, OX11 0RD, UK
| | - Steve D M Brown
- Medical Research Council Harwell Institute (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, OX11 0RD, UK.
| |
Collapse
|
48
|
An siRNA-based screen in C2C12 myoblasts identifies novel genes involved in myogenic differentiation. Exp Cell Res 2017; 359:145-153. [DOI: 10.1016/j.yexcr.2017.07.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/16/2017] [Accepted: 07/31/2017] [Indexed: 11/19/2022]
|
49
|
Fuchs H, Aguilar-Pimentel JA, Amarie OV, Becker L, Calzada-Wack J, Cho YL, Garrett L, Hölter SM, Irmler M, Kistler M, Kraiger M, Mayer-Kuckuk P, Moreth K, Rathkolb B, Rozman J, da Silva Buttkus P, Treise I, Zimprich A, Gampe K, Hutterer C, Stöger C, Leuchtenberger S, Maier H, Miller M, Scheideler A, Wu M, Beckers J, Bekeredjian R, Brielmeier M, Busch DH, Klingenspor M, Klopstock T, Ollert M, Schmidt-Weber C, Stöger T, Wolf E, Wurst W, Yildirim AÖ, Zimmer A, Gailus-Durner V, Hrabě de Angelis M. Understanding gene functions and disease mechanisms: Phenotyping pipelines in the German Mouse Clinic. Behav Brain Res 2017; 352:187-196. [PMID: 28966146 DOI: 10.1016/j.bbr.2017.09.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/18/2017] [Accepted: 09/25/2017] [Indexed: 02/07/2023]
Abstract
Since decades, model organisms have provided an important approach for understanding the mechanistic basis of human diseases. The German Mouse Clinic (GMC) was the first phenotyping facility that established a collaboration-based platform for phenotype characterization of mouse lines. In order to address individual projects by a tailor-made phenotyping strategy, the GMC advanced in developing a series of pipelines with tests for the analysis of specific disease areas. For a general broad analysis, there is a screening pipeline that covers the key parameters for the most relevant disease areas. For hypothesis-driven phenotypic analyses, there are thirteen additional pipelines with focus on neurological and behavioral disorders, metabolic dysfunction, respiratory system malfunctions, immune-system disorders and imaging techniques. In this article, we give an overview of the pipelines and describe the scientific rationale behind the different test combinations.
Collapse
Affiliation(s)
- Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Juan Antonio Aguilar-Pimentel
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Oana V Amarie
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Lore Becker
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Julia Calzada-Wack
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Yi-Li Cho
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Lillian Garrett
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Sabine M Hölter
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Martin Irmler
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Martin Kistler
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Markus Kraiger
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Philipp Mayer-Kuckuk
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Kristin Moreth
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany; Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University München, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Jan Rozman
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Patricia da Silva Buttkus
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Irina Treise
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Annemarie Zimprich
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Kristine Gampe
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Christine Hutterer
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Claudia Stöger
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Stefanie Leuchtenberger
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Holger Maier
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Manuel Miller
- Research Unit Comparative Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Angelika Scheideler
- Research Unit Comparative Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Moya Wu
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Johannes Beckers
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany; Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Alte Akademie 8, 85354 Freising, Germany
| | - Raffi Bekeredjian
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Markus Brielmeier
- Research Unit Comparative Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Trogerstr. 30, 81675 Munich, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, Technical University Munich, EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Gregor-Mendel-Str. 2, 85350 Freising-Weihenstephan, Germany; ZIEL - Institute for Food and Health, Technical University Munich, Gregor-Mendel-Str. 2, 85350 Freising-Weihenstephan, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, Klinikum der Ludwig-Maximilians-Universität München, Ziemssenstr. 1a, 80336 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 80336 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Schillerstr. 44, 80336 Munich, Germany; German Center for Vertigo and Balance Disorders, 81377 Munich, Germany
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, 29, Rue Henri Koch, 4354 Esch-sur-Alzette, Luxembourg; Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, 5000 Odense C, Denmark
| | - Carsten Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technische Universität München, and Helmholtz Zentrum München, Ingolstädter-Landstr., 85764 Neuherberg, Germany
| | - Tobias Stöger
- Institute of Lung Biology and Disease, Member of the German Center for Lung Research (DZL), Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, D-85764 Neuherberg, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University München, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany; German Center for Neurodegenerative Diseases (DZNE), 80336 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Schillerstr. 44, 80336 Munich, Germany; Chair of Developmental Genetics, Technische Universität München Freising-Weihenstephan, c/o Helmholtz Zentrum München Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Ali Önder Yildirim
- Institute of Lung Biology and Disease, Member of the German Center for Lung Research (DZL), Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, D-85764 Neuherberg, Germany
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Sigmund Freud Str. 25, 53127 Bonn, Germany
| | - Valérie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), Ingolstädter-Landstr. 1, 85764 Neuherberg, Germany; Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Alte Akademie 8, 85354 Freising, Germany.
| |
Collapse
|
50
|
Sundberg JP, Dadras SS, Silva KA, Kennedy VE, Garland G, Murray SA, Sundberg BA, Schofield PN, Pratt CH. Systematic screening for skin, hair, and nail abnormalities in a large-scale knockout mouse program. PLoS One 2017; 12:e0180682. [PMID: 28700664 PMCID: PMC5503261 DOI: 10.1371/journal.pone.0180682] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022] Open
Abstract
The International Knockout Mouse Consortium was formed in 2007 to inactivate (“knockout”) all protein-coding genes in the mouse genome in embryonic stem cells. Production and characterization of these mice, now underway, has generated and phenotyped 3,100 strains with knockout alleles. Skin and adnexa diseases are best defined at the gross clinical level and by histopathology. Representative retired breeders had skin collected from the back, abdomen, eyelids, muzzle, ears, tail, and lower limbs including the nails. To date, 169 novel mutant lines were reviewed and of these, only one was found to have a relatively minor sebaceous gland abnormality associated with follicular dystrophy. The B6N(Cg)-Far2tm2b(KOMP)Wtsi/2J strain, had lesions affecting sebaceous glands with what appeared to be a secondary follicular dystrophy. A second line, B6N(Cg)-Ppp1r9btm1.1(KOMP)Vlcg/J, had follicular dystrophy limited to many but not all mystacial vibrissae in heterozygous but not homozygous mutant mice, suggesting that this was a nonspecific background lesion. We discuss potential reasons for the low frequency of skin and adnexal phenotypes in mice from this project in comparison to those seen in human Mendelian diseases, and suggest alternative approaches to identification of human disease-relevant models.
Collapse
Affiliation(s)
- John P. Sundberg
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * E-mail:
| | - Soheil S. Dadras
- Departments of Dermatology and Pathology, University of Connecticut, Farmington, Connecticut, United States of America
| | | | | | - Gaven Garland
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Beth A. Sundberg
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Paul N. Schofield
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - C. Herbert Pratt
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| |
Collapse
|