1
|
Bortoluzzi C, Segura-Wang M, Aureli R, Leduc A, Iuspa MA, Cowieson AJ. Supplementation of precision biotic leads to improved growth performance by modulating the microbiome of broiler chickens fed corn or wheat-based diets. Poult Sci 2024; 103:104451. [PMID: 39504818 PMCID: PMC11577187 DOI: 10.1016/j.psj.2024.104451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
The objective of the present study was to evaluate the effect of a precision biotic (PB; Symphiome®, dsm-firmenich) on the growth performance, nutrient digestibility, litter quality, blood uric acid (UA) concentration, cecal short-chain fatty acids (SCFA) concentration, and ileal and cecal microbiome of broiler chickens fed corn or wheat-based diets. One-day-old broiler chicks were placed in a completely randomized design (2 × 2 factorial scheme) in 4 treatments, 8 replicates/treatment, and 16 birds/replicate. The treatments were a corn or wheat and soybean meal-based diet without or with supplementation of 0.9 kg/MT of PB. All the birds were vaccinated against coccidiosis at the time of placement (Paracox 5). Growth performance was evaluated weekly and at the end of the experiment. At d 35, blood was collected to determine UA concentration and cecal content for SCFA concentration analysis. Ileal digesta was also collected for nutrient digestibility analysis, and ileal digesta and cecal content were collected for microbiome analysis. The data were submitted to two-way ANOVA (P ≤ 0.05), and LSM was used to separate the means in case of interaction. During the starter and grower phases of the study, a better body weight gain (P = 0.0008 and P = 0.04, respectively) was observed in birds fed wheat compared to corn-based diets. From 28 to 36 d of age, the supplementation of PB increased feed intake (P = 0.05), and tended (P = 0.06) to improve the feed conversion ratio by 4.3 points vs non-supplementated birds. Birds fed wheat-based diets had higher (P = 0.02) blood UA than corn based-diets fed birds, and the supplementation of PB led to a reduction (P = 0.02) of blood UA compared to non-supplemented birds. The supplementation of PB changed the abundance of core metabolic pathways of the microbiome, mostly related to protein metabolism, which led to a reduction in blood UA concentration and increase of cecal SCFA concentrations. In conclusion, by beneficially modulating the microbiome, the supplementation of PB was translated into improved growth performance of broiler chickens fed corn or wheat-based diets.
Collapse
Affiliation(s)
| | - M Segura-Wang
- dsm-firmenich, Animal Nutrition and Health R&D Center, Tulln, Austria
| | - R Aureli
- dsm-firmenich, Animal Nutrition and Health R&D Center, Village-Neuf, France
| | - A Leduc
- dsm-firmenich, Animal Nutrition and Health R&D Center, Village-Neuf, France
| | | | | |
Collapse
|
2
|
Petit A, Tesseraud S, Collin A, Couroussé N, Berri C, Bihan-Duval EL, Métayer-Coustard S. Ontogeny of hepatic metabolism in two broiler lines divergently selected for the ultimate pH of the Pectoralis major muscle. BMC Genomics 2024; 25:438. [PMID: 38698322 PMCID: PMC11067279 DOI: 10.1186/s12864-024-10323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Nutrient availability during early stages of development (embryogenesis and the first week post-hatch) can have long-term effects on physiological functions and bird metabolism. The embryo develops in a closed structure and depends entirely on the nutrients and energy available in the egg. The aim of this study was to describe the ontogeny of pathways governing hepatic metabolism that mediates many physiological functions in the pHu + and pHu- chicken lines, which are divergently selected for the ultimate pH of meat, a proxy for muscle glycogen stores, and which differ in the nutrient content and composition of eggs. RESULTS We identified eight clusters of genes showing a common pattern of expression between embryonic day 12 (E12) and day 8 (D8) post-hatch. These clusters were not representative of a specific metabolic pathway or function. On E12 and E14, the majority of genes differentially expressed between the pHu + and pHu- lines were overexpressed in the pHu + line. Conversely, the majority of genes differentially expressed from E18 were overexpressed in the pHu- line. During the metabolic shift at E18, there was a decrease in the expression of genes linked to several metabolic functions (e.g. protein synthesis, autophagy and mitochondrial activity). At hatching (D0), there were two distinct groups of pHu + chicks based on hierarchical clustering; these groups also differed in liver weight and serum parameters (e.g. triglyceride content and creatine kinase activity). At D0 and D8, there was a sex effect for several metabolic pathways. Metabolism appeared to be more active and oriented towards protein synthesis (RPS6) and fatty acid β-oxidation (ACAA2, ACOX1) in males than in females. In comparison, the genes overexpressed in females were related to carbohydrate metabolism (SLC2A1, SLC2A12, FoxO1, PHKA2, PHKB, PRKAB2 and GYS2). CONCLUSIONS Our study provides the first detailed description of the evolution of different hepatic metabolic pathways during the early development of embryos and post-hatching chicks. We found a metabolic orientation for the pHu + line towards proteolysis, glycogen degradation, ATP synthesis and autophagy, likely in response to a higher energy requirement compared with pHu- embryos. The metabolic orientations specific to the pHu + and pHu- lines are established very early, probably in relation with their different genetic background and available nutrients.
Collapse
Affiliation(s)
| | | | - Anne Collin
- INRAE, Université de Tours, BOA, Nouzilly, 37380, France
| | | | - Cécile Berri
- INRAE, Université de Tours, BOA, Nouzilly, 37380, France
| | | | | |
Collapse
|
3
|
McGraw KJ, de Souza Penha VA. Using point-of-care devices to examine covariation among blood nutritional-physiological parameters and their relationships with poxvirus infection, habitat urbanization, and male plumage coloration in house finches (Haemorhous mexicanus). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:440-449. [PMID: 38385786 DOI: 10.1002/jez.2796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
The development of inexpensive and portable point-of-care devices for measuring nutritional physiological parameters from blood (e.g., glucose, ketones) has accelerated our understanding and assessment of real-time variation in human health, but these have infrequently been tested or implemented in wild animals, especially in relation to other key biological or fitness-related traits. Here we used point-of-care devices to measure blood levels of glucose, ketones, uric acid, and triglycerides in free-ranging house finches (Haemorhous mexicanus)-a common songbird in North America that has been well-studied in the context of urbanization, nutrition, health, and sexual selection-during winter and examined (1) repeatability of these methods for evaluating blood levels in these wild passerines, (2) intercorrelations among these measurements within individuals, (3) how blood nutritional-physiology metrics related to a bird's body condition, habitat of origin (urban vs. suburban), poxvirus infection, and sex; and (4) if the expression of male sexually selected plumage coloration was linked to any of the nutritional-physiological metrics. All blood-nutritional parameters were repeatable. Also, there was significant positive covariation between concentrations of circulating triglycerides and glucose and triglycerides and uric acid. Urban finches had higher blood glucose concentrations than suburban finches, and pox-infected individuals had lower blood triglyceride concentrations than uninfected ones. Last, redder males had higher blood glucose, but lower uric acid levels. These results demonstrate that point-of-care devices can be useful, inexpensive ways of measuring real-time variation in the nutritional physiology of wild birds.
Collapse
Affiliation(s)
- Kevin J McGraw
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Victor Aguiar de Souza Penha
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Organismal and Evolutionary Research Programme, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Coughlan K, Sadowska ET, Bauchinger U. Repeat Sampling of Female Passerines During Reproduction Reveals Surprising Higher Plasma Oxidative Damage During Resting Compared to Active State. Integr Comp Biol 2023; 63:1197-1208. [PMID: 37698890 PMCID: PMC10755187 DOI: 10.1093/icb/icad120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023] Open
Abstract
Traditional models of oxidative stress predict accumulation of damage caused by reactive oxygen species (ROS) production as highly correlated with aerobic metabolism, a prediction under increasing scrutiny. Here, we repeat sampled female great tits (Parus major) at two opposite levels of energy use during the period of maximum food provisioning to nestlings, once at rest and once during activity. Our results were in contrast to the above prediction, namely significantly higher levels of oxidative damage during rest opposed to active phase. This discrepancy could not be explained neither using levels of "first line" antioxidant enzymes activity measured from erythrocytes, nor from total nonenzymatic antioxidant capacity measured from plasma, as no differences were found between states. Significantly higher levels of uric acid, a potent antioxidant, were seen in the plasma during the active phase than in rest phase, which may explain the lower levels of oxidative damage despite high levels of physical activity. Our results challenge the hypothesis that oxidative stress is elevated during times with high energy use and call for more profound understanding of potential drivers of the modulation of oxidative stress such as metabolic state of the animal, and thus also the time of sampling in general.
Collapse
Affiliation(s)
- Kyle Coughlan
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Edyta T Sadowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Ulf Bauchinger
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura St., 02-093 Warsaw, Poland
| |
Collapse
|
5
|
Fowler MA, Wong JB, Harrison AL. Oxidative physiology of two small and highly migratory Arctic seabirds: Arctic terns ( Sterna paradisaea) and long-tailed jaegers ( Stercorarius longicaudus). CONSERVATION PHYSIOLOGY 2023; 11:coad060. [PMID: 37916041 PMCID: PMC10616233 DOI: 10.1093/conphys/coad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 04/21/2023] [Accepted: 08/14/2023] [Indexed: 11/03/2023]
Abstract
Arctic ecosystems are changing rapidly. The tundra supports nesting migratory seabirds that spend most of their year over the ocean. Migrations are demanding, but it is unclear how physiological capability may equip organisms to respond to their changing environments. For two migratory seabird species nesting in Alaska, USA, the Arctic tern (n = 10) and the long-tailed jaeger (n = 8), we compared oxidative physiology and aerobic capacity measured during incubation and we recorded individual movement paths using electronic tracking tags. Within species, we hypothesized that individuals with longer-distance migrations would show higher oxidative stress and display better aerobic capacity than shorter-distance migrants. We examined blood parameters relative to subsequent fall migration in jaegers and relative to previous spring migration in terns. We present the first measurements of oxidative stress in these species and the first migratory movements of long-tailed jaegers in the Pacific Ocean. Arctic terns displayed positive correlation of oxidative variables, or better integration than jaegers. Relative to physiological sampling, pre-breeding northward migration data were available for terns and post-breeding southward data were available for jaegers. Terns reached a farther maximum distance from the colony than jaegers (16 199 ± 275 km versus 10 947 ± 950 km) and rate of travel northward (447 ± 41.8 km/day) was positively correlated with hematocrit, but we found no other relationships. In jaegers, there were no relationships between individuals' physiology and southward rate of travel (193 ± 52.3 km/day) or migratory distance. While it is not clear whether the much longer migrations of the terns is related to their better integration, or to another factor, our results spark hypotheses that could be evaluated through a controlled phylogenetic study. Species with better integration may be less susceptible to environmental factors that increase oxidative stress, including thermal challenges or changes in prey distribution as the Arctic climate changes rapidly.
Collapse
Affiliation(s)
- Melinda A. Fowler
- Department of Biology/Chemistry. Springfield College, 263 Alden Street, Springfield, MA 01109 USA
| | - Joanna B. Wong
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Bird Migration, Swiss Ornithological Institute, 6204 Sempach, Switzerland
| | - Autumn-Lynn Harrison
- Smithsonian‘s National Zoo and Conservation Biology Institute, Migratory Bird Center, 3001 Connecticut Avenue, NW, Washington, DC. 20008 USA
| |
Collapse
|
6
|
Rodríguez-Jorquera IA, Lenzi J, Maturana M, Biscarra G, Ruiz J, Navedo JG. Exploring the recovery of a large wetland using black-necked swan blood parameters and body condition 16 years after a pollution-induced disturbance. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:663-675. [PMID: 36793140 DOI: 10.1002/ieam.4748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Resilience theory has taken center stage in tackling the challenge of wetland recovery on a fast-changing planet. Because of waterbirds' enormous dependence on wetlands, their numbers have long been used as surrogates for wetland recovery over time. However, immigration of individuals can mask actual recoveries at a given wetland. One alternative to expanding the knowledge of wetland recovery is the use of physiological parameters from aquatic organism populations. We explored the variations in the physiological parameters of black-necked swan (BNS) before, during, and after a 16-year period of a pollution-induced disturbance that originated in a pulp-mill wastewater discharge. This disturbance triggered the precipitation of iron (Fe) in the water column of the Río Cruces Wetland in southern Chile, one of the main sites for the global population of BNS Cygnus melancoryphus. We compared our recent (2019) original data (body mass index [BMI], hematocrit, hemoglobin, mean corpuscular volume, blood enzymes, and metabolites) with available datasets from the site obtained before the pollution-induced disturbance (2003) and immediately after the disturbance (2004). Results indicate that, 16 years after the pollution-induced disturbance, some important parameters of animal physiology did not return to their pre-disturbance state. For instance, BMI, triglycerides, and glucose were significantly higher in 2019 than in 2004, right after the disturbance. By contrast, the hemoglobin concentration was significantly lower in 2019 than in 2003 and 2004, and uric acid was 42% higher in 2019 than in 2004. Our results demonstrate that, despite higher BNS numbers with larger body weights present in 2019, the Río Cruces wetland has only partially recovered. We suggest that the impact of megadrought and wetland disappearance far from the site results in high rate of swan immigration, casting uncertainty about using the number of swans alone as honest indicators of wetland recovery after a pollution disturbance. Integr Environ Assess Manag 2023;19:663-675. © 2023 SETAC.
Collapse
Affiliation(s)
| | - Javier Lenzi
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, USA
| | | | - Gabriela Biscarra
- Bird Ecology Lab, Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Los Ríos, Chile
| | - Jorge Ruiz
- Bird Ecology Lab, Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Los Ríos, Chile
| | - Juan G Navedo
- Centro de Humedales Río Cruces, Universidad Austral de Chile, Valdivia, Los Ríos, Chile
- Bird Ecology Lab, Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Los Ríos, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| |
Collapse
|
7
|
García GO, Zumpano F, Mariano y Jelicich R, Favero M. Effect of urbanization on individual condition of a threatened seabird: the Olrog’s Gull Larus atlanticus. Urban Ecosyst 2023. [DOI: 10.1007/s11252-023-01347-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
8
|
Ng ML, Ang X, Yap KY, Ng JJ, Goh ECH, Khoo BBJ, Richards AM, Drum CL. Novel Oxidative Stress Biomarkers with Risk Prognosis Values in Heart Failure. Biomedicines 2023; 11:biomedicines11030917. [PMID: 36979896 PMCID: PMC10046491 DOI: 10.3390/biomedicines11030917] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/26/2023] [Indexed: 03/18/2023] Open
Abstract
Oxidative stress (OS) is mediated by reactive oxygen species (ROS), which in cardiovascular and other disease states, damage DNA, lipids, proteins, other cellular and extra-cellular components. OS is both initiated by, and triggers inflammation, cardiomyocyte apoptosis, matrix remodeling, myocardial fibrosis, and neurohumoral activation. These have been linked to the development of heart failure (HF). Circulating biomarkers generated by OS offer potential utility in patient management and therapeutic targeting. Novel OS-related biomarkers such as NADPH oxidases (sNox2-dp, Nrf2), advanced glycation end-products (AGE), and myeloperoxidase (MPO), are signaling molecules reflecting pathobiological changes in HF. This review aims to evaluate current OS-related biomarkers and their associations with clinical outcomes and to highlight those with greatest promise in diagnosis, risk stratification and therapeutic targeting in HF.
Collapse
Affiliation(s)
- Mei Li Ng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Xu Ang
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Kwan Yi Yap
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Jun Jie Ng
- Vascular Surgery, Department of Cardiac, Thoracic and Vascular Surgery, National University Heart Centre, Singapore 119074, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Eugene Chen Howe Goh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Benjamin Bing Jie Khoo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Arthur Mark Richards
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 9, NUHCS, Singapore 119228, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Chester Lee Drum
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 9, NUHCS, Singapore 119228, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Correspondence:
| |
Collapse
|
9
|
Kong J, Qiu T, Yan X, Wang L, Chen Z, Xiao G, Feng X, Zhang H. Effect of replacing inorganic minerals with small peptide chelated minerals on production performance, some biochemical parameters and antioxidant status in broiler chickens. Front Physiol 2022; 13:1027834. [PMID: 36330210 PMCID: PMC9623153 DOI: 10.3389/fphys.2022.1027834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/04/2022] [Indexed: 10/15/2023] Open
Abstract
Due to the low bio-availability of inorganic trace minerals, its application in poultry production has been causing many problems such as environment pollution and waste of resources. The current study was designed to evaluate if replacing inorganic trace minerals (ITM) with small peptide chelate trace minerals (SPM) affects production performance, some biochemical parameters and antioxidant status, tibia mineral deposition, and fecal mineral content in 817 white-feathered broilers. A total of 432 broilers (21-day-old) were randomly divided into four groups with six replicates of 18 chicks each. The four groups included inorganic trace minerals group (addition of 1,000 mg/kg ITM; common practice by commercial poultry farms), three organic trace minerals groups with supplementation of 150, 300, and 500 mg/kg SPM, respectively. The experiment lasted for 30 days. The results showed that there was no significant difference in growth performance and slaughter performance among the four groups (p > 0.05). Total cholesterol in the SPM group was significantly lower than those in the ITM groups (p < 0.01). Compared with the ITM group, the serum urea nitrogen in 150 and 300 mg/kg SPM groups decreased significantly (p < 0.01). Among all SPM treatments, 300 mg/kg SPM groups had the highest serum glutathione peroxidase (GSH-Px) activity (p < 0.01). The activity of copper and zinc superoxide dismutase (Cu/Zn SOD) of liver in ITM group was the lowest among the four groups (p < 0.01). The catalase (CAT) activity of liver in the 150 mg/kg SPM group was significantly higher than the ITM group and 300 mg/kg SPM group (p < 0.05). Compared to the ITM group, the iron content of the tibia was significantly increased in 300 mg/kg SPM group (p < 0.05) and 500 mg/kg SPM group (p < 0.01). Compared to the ITM group, dietary supplementation with SPM significantly reduced fecal content of zinc and manganese (p < 0.01). The 150 mg/kg SPM and 300 mg/kg SPM group had significantly reduced content of iron (p < 0.05). This study demonstrated that replacing inorganic minerals with low doses of SPM (300 and 500 mg/kg) did not negatively affect growth and slaughter performance, as well as the antioxidant status of broiler chickens. In addition, SPM can also promote mineral content in the tibia and reduce mineral content in the feces.
Collapse
Affiliation(s)
- Jing Kong
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Ting Qiu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xia Yan
- Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lili Wang
- Guangdong Xingtengke Biotechnology Co., Ltd., Zhaoqing, China
| | - Zhiyong Chen
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Gengsheng Xiao
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xin Feng
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Huihua Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
10
|
Zagkle E, Martinez-Vidal PA, Bauchinger U, Sadowska ET. Manipulation of Heat Dissipation Capacity Affects Avian Reproductive Performance and Output. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.866182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Animal life requires hard work but the ability to endure such workload appears to be limited. Heat dissipation limit (HDL) hypothesis proposes that the capacity to dissipate the excess of body heat during hard work may limit sustained energy use. Experimental facilitations of heat loss rate via feather-clipping in free-living birds seem to support HDL hypothesis but testing of HDL through laboratory experiments under controlled conditions is not reported. We employed a two-factorial experimental design to test HDL hypothesis by manipulating the capacity to dissipate heat through exposure of captive zebra finches (Taeniopygia guttata) to a cold and warm ambient temperature (14°C and 25°C), and through manipulation of the insulating layer of feathers around the brood patch in females (clipped and unclipped). To simulate foraging costs encountered in the wild we induced foraging effort by employing a feeding system that necessitated hovering to access food, which increased energetic costs of reproduction despite ad libitum conditions in captivity. We quantified the outcome of reproductive performance at the level of both parents, females, and offspring. Thermal limitations due to warm temperature appeared at the beginning of reproduction for both parents with lower egg-laying success, smaller clutch size and lower egg mass, compared to the cold. After hatching, females with an enhanced ability to dissipate heat through feather-clipping revealed higher body mass compared to unclipped females, and these clipped females also raised heavier and bigger nestlings. Higher levels for oxidative stress in plasma of females were detected prior to reproduction in warm conditions than in the cold. However, oxidative stress biomarkers of mothers were neither affected by temperature nor by feather-clipping during the reproductive activities. We document upregulation of antioxidant capacity during reproduction that seems to prevent increased levels of oxidative stress possibly due to the cost of female body condition and offspring growth. Our study on reproduction under laboratory-controlled conditions corroborates evidence in line with the HDL hypothesis. The link between temperature-constrained sustained performance and reproductive output in terms of quality and quantity is of particular interest in light of the current climate change, and illustrates the emerging risks to avian populations.
Collapse
|
11
|
Cooper-Mullin C, McWilliams SR. Fat Stores and Antioxidant Capacity Affect Stopover Decisions in Three of Four Species of Migratory Passerines With Different Migration Strategies: An Experimental Approach. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.762146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During migratory stopovers, birds must make decisions about when and where to travel and these decisions are likely contingent on their fuel stores, food availability, and antioxidant capacity as well as seasonal changes in key environmental factors. We conducted a field experiment on an offshore stopover site (Block Island, Rhode Island, United States: 41°130N, 71°330W) during autumn migration to test the hypothesis that birds with greater fuel stores and non-enzymatic antioxidant capacity have shorter stopovers than lean birds with low antioxidant capacity, and to determine the extent to which this depends on migration strategy. We used a 2 × 2 factorial field experiment (two levels each of available food and dietary polyphenols) with four species of songbirds kept in captivity for 3–5 days to produce experimental groups with different fuel stores and antioxidant capacity. We attached digital VHF transmitters to assess stopover duration and departure direction using automated telemetry. Non-enzymatic antioxidant capacity increased during refueling for Red-eyed Vireos (Vireo olivaceus) and Blackpoll Warblers (Setophaga striata) fed ad lib diets, and for ad lib fed Hermit Thrushes (Catharus guttatus) supplemented with polyphenols, but not for Yellow-rumped Warblers (Setophaga coronata coronata). Glutathione peroxidase (GPx) decreased during captivity and was influenced by dietary treatment only in Red-eyed Vireos. Oxidative damage decreased during captivity for all species except Yellow-rumped Warblers. Stopover duration was shorter for Vireos and Blackpolls fed ad lib as compared to those fed maintenance. Ad lib fed Hermit Thrushes supplemented with polyphenols had shorter stopovers than those fed ad lib, as did thrushes fed at maintenance and supplemented with polyphenols compared with those fed at maintenance alone. There was no influence of condition on stopover duration for Yellow-rumped Warblers. Departure direction was not strongly related to condition, and birds primarily reoriented north when departing Block Island. Thus, fat stores and oxidative status interacted to influence the time passerines spent on stopover, and condition-dependent departure decisions were related to a bird’s migration strategy. Therefore, seasonal variation in macro- and micro-nutrient resources available for refueling at stopover sites can affect body condition and antioxidant capacity and in turn influence the timing and success of migration.
Collapse
|
12
|
Frawley AE, DeMoranville KJ, Carbeck KM, Trost L, Bryła A, Działo M, Sadowska ET, Bauchinger U, Pierce BJ, McWilliams SR. Flight training and dietary antioxidants have mixed effects on the oxidative status of multiple tissues in a female migratory songbird. J Exp Biol 2021; 224:272431. [PMID: 34632505 DOI: 10.1242/jeb.243158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/06/2021] [Indexed: 02/05/2023]
Abstract
Birds, like other vertebrates, rely on a robust antioxidant system to protect themselves against oxidative imbalance caused by energy-intensive activities such as flying. Such oxidative challenges may be especially acute for females during spring migration, as they must pay the oxidative costs of flight while preparing for reproduction; however, little previous work has examined how the antioxidant system of female spring migrants responds to dietary antioxidants and the oxidative challenges of regular flying. We fed two diets to female European starlings, one supplemented with a dietary antioxidant and one without, and then flew them daily in a windtunnel for 2 weeks during the autumn and spring migration periods. We measured the activity of enzymatic antioxidants (glutathione peroxidase, superoxide dismutase and catalase), non-enzymatic antioxidant capacity (ORAC) and markers of oxidative damage (protein carbonyls and lipid hydroperoxides) in four tissues: pectoralis, leg muscle, liver and heart. Dietary antioxidants affected enzymatic antioxidant activity and lipid damage in the heart, non-enzymatic antioxidant capacity in the pectoralis, and protein damage in leg muscle. In general, birds not fed the antioxidant supplement appeared to incur increased oxidative damage while upregulating non-enzymatic and enzymatic antioxidant activity, though these effects were strongly tissue specific. We also found trends for diet×training interactions for enzymatic antioxidant activity in the heart and leg muscle. Flight training may condition the antioxidant system of females to dynamically respond to oxidative challenges, and females during spring migration may shift antioxidant allocation to reduce oxidative damage.
Collapse
Affiliation(s)
- Abigail E Frawley
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI 02881, USA
| | - Kristen J DeMoranville
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI 02881, USA
| | - Katherine M Carbeck
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada, V6T1Z4
| | - Lisa Trost
- Department for Behavioural Neurobiology, Max Planck Institute for Ornithology, D-82319 Seewiesen, Germany
| | - Amadeusz Bryła
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Kraków, Poland
| | - Maciej Działo
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Kraków, Poland
| | - Edyta T Sadowska
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Kraków, Poland
| | - Ulf Bauchinger
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Kraków, Poland.,Nencki Institute of Experimental Biology PAS, 02-093 Warszawa, Poland
| | - Barbara J Pierce
- Department of Biology, Sacred Heart University, Fairfield, CT 06825, USA
| | - Scott R McWilliams
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
13
|
McWilliams S, Carter W, Cooper-Mullin C, DeMoranville K, Frawley A, Pierce B, Skrip M. How Birds During Migration Maintain (Oxidative) Balance. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.742642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Animals dynamically adjust their physiology and behavior to survive in changing environments, and seasonal migration is one life stage that demonstrates these dynamic adjustments. As birds migrate between breeding and wintering areas, they incur physiological demands that challenge their antioxidant system. Migrating birds presumably respond to these oxidative challenges by up-regulating protective endogenous systems or accumulating dietary antioxidants at stopover sites, although our understanding of the pre-migration preparations and mid-migration responses of birds to such oxidative challenges is as yet incomplete. Here we review evidence from field and captive-bird studies that address the following questions: (1) Do migratory birds build antioxidant capacity as they build fat stores in preparation for long flights? (2) Is oxidative damage an inevitable consequence of oxidative challenges such as flight, and, if so, how is the extent of damage affected by factors such as the response of the antioxidant system, the level of energetic challenge, and the availability of dietary antioxidants? (3) Do migratory birds ‘recover’ from the oxidative damage accrued during long-duration flights, and, if so, does the pace of this rebalancing of oxidative status depend on the quality of the stopover site? The answer to all these questions is a qualified ‘yes’ although ecological factors (e.g., diet and habitat quality, geographic barriers to migration, and weather) affect how the antioxidant system responds. Furthermore, the pace of this dynamic physiological response remains an open question, despite its potential importance for shaping outcomes on timescales ranging from single flights to migratory journeys. In sum, the antioxidant system of birds during migration is impressively dynamic and responsive to environmental conditions, and thus provides ample opportunities to study how the physiology of migratory birds responds to a changing and challenging world.
Collapse
|
14
|
Protein and Amino Acid Metabolism in Poultry during and after Heat Stress: A Review. Animals (Basel) 2021; 11:ani11041167. [PMID: 33921616 PMCID: PMC8074156 DOI: 10.3390/ani11041167] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
This review examined the influence of environmental heat stress, a concern facing modern broiler producers, on protein metabolism and broiler performance, as well as the physiological mechanisms that activate and control or minimize the detrimental impacts of stress. In addition, available scientific papers that focused on amino acids (AA) digestibility under stress conditions were analyzed. Furthermore, AA supplementation, a good strategy to enhance broiler thermotolerance, amelioration, or stress control, by keeping stress at optimal levels rather than its elimination, plays an important role in the success of poultry breeding. Poultry maintain homeothermy, and their response to heat stress is mainly due to elevated ambient temperature and the failure of effective heat loss, which causes a considerable negative economic impact on the poultry industry worldwide. Reduced feed intake, typically observed during heat stress, was the primary driver for meat production loss. However, accumulating evidence indicates that heat stress influences poultry metabolism and endocrine profiles independently of reduced feed intake. In conclusion, high ambient temperatures significantly reduced dietary AA intake, which in turn reduced protein deposition and growth in broilers. Further studies are required to determine the quantity of the AA needed in warm and hot climates and to introduce genetic tools for animal breeding associated with the heat stress in chickens.
Collapse
|
15
|
Fragoso JS, Moreno JCA, Infiesta PC, Benevides WS, Lucio ET, Pizarro M. Principal Lesions and Patterns of Mortality Observed in a Broiler Breeder Flock During the Laying Period. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2021. [DOI: 10.1590/1806-9061-2020-1320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
da Silva PR, Borges-Martins M, Oliveira GT. Melanophryniscus admirabilis tadpoles' responses to sulfentrazone and glyphosate-based herbicides: an approach on metabolism and antioxidant defenses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4156-4172. [PMID: 32935212 DOI: 10.1007/s11356-020-10654-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Melanophryniscus admirabilis is a frog endemic to the southern Atlantic Forest (Brazil), with restricted distribution and considered as critically endangered. The aim of this study was to evaluate possible alterations in biomarkers of metabolism (glycogen, proteins, and uric acid) and oxidative balance (superoxide dismutase, catalase, glutathione S-transferase, and lipoperoxidation) of tadpoles of Melanophryniscus admirabilis exposed to commercial herbicide formulations containing sulfentrazone (Boral® 500 SC: 130 and 980 μg a.i./L) and glyphosate (Roundup® Original: 234 and 2340 μg a.i./L). Mortality was not observed in any of the groups studied. Our results show that a 96-h exposure to the herbicides decreased glycogen levels, indicating increased energy demand for xenobiotic metabolism. Protein levels increased in the Boral group but decreased in the higher concentration of Roundup, and uric acid levels did not change significantly between the experimental groups. Lipoperoxidation decreased in the Boral group and in the higher concentration of Roundup. Decreased levels of superoxide dismutase in both treatments and of catalase in the lowest concentration of the herbicides were observed. Glutathione S-transferase activity increased in the Roundup group; this enzyme seems to be crucial in the metabolization of the herbicides and in the survival of the tadpoles. Our results suggest that M. admirabilis has a high antioxidant capacity, which guaranteed the survival of tadpoles. Nevertheless, exposure to pesticides could impose a serious risk to this species, especially considering its restricted distribution, habitat specificity, and high physiological demand to metabolize xenobiotics.
Collapse
Affiliation(s)
- Patrícia Rodrigues da Silva
- Laboratório de Fisiologia da Conservação, Departamento de Ciências Morfológicas, Programa de Pós-Graduação em Ecologia e Evolução da Biodiversidade, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Márcio Borges-Martins
- Laboratório de Herpetologia, Departamento de Zoologia, Programa de Pós-Graduação em Biologia Animal, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Guendalina Turcato Oliveira
- Laboratório de Fisiologia da Conservação, Departamento de Ciências Morfológicas, Programa de Pós-Graduação em Ecologia e Evolução da Biodiversidade, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
| |
Collapse
|
17
|
Zagkle E, Grosiak M, Bauchinger U, Sadowska ET. Rest-Phase Hypothermia Reveals a Link Between Aging and Oxidative Stress: A Novel Hypothesis. Front Physiol 2020; 11:575060. [PMID: 33362574 PMCID: PMC7756103 DOI: 10.3389/fphys.2020.575060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/17/2020] [Indexed: 01/26/2023] Open
Abstract
In endotherms, growth, reproduction, and survival are highly depended on energy metabolism. Maintenance of constant body temperature can be challenging for endotherms under continuously changing environmental conditions, such as low or high ambient temperatures or limited food. Thus, many birds may drop body temperature below normothermic values during the night, known as rest-phase hypothermia, presumably to decrease energy metabolism. Under the assumption of the positive link between aerobic metabolism and reactive oxygen species, it is reasonable to suggest that low body temperature, a proxy of energy metabolism, will affect oxidative stress of the birds. Aging may considerably affect behavior, performance and physiology in birds and still requires further investigation to understand age-specific changes along the lifespan of the organism. Until today, age-specific rest-phase hypothermic responses and their effect on oxidant-antioxidant status have never been investigated. We exposed 25 zebra finches (Taeniopygia guttata) of three age classes, 12 young birds (1.1–1.3 years old), 8 middle-aged (2.4–2.8 years old), and 5 old birds (4.2–7.5 years old) to day-long food deprivation or provided them normal access to food under thermoneutral conditions. We compared night-time body temperature, measured through implanted data loggers, and quantified plasma oxidative status (uric acid, antioxidant capacity, and d-ROM assay) the following morning. We found age-related differences in night-time body temperature following a day-long food deprivation while all three age groups remained normothermic in the night following a day with access to food. The lowest minimum body temperature (LSM ± SE: 36.6 ± 0.2°C) was observed in old individuals during rest-phase hypothermia. Surprisingly, these old birds also revealed the highest levels of plasma oxidative damage, while young and middle-aged birds maintained higher night-time body temperature and showed lower values of oxidative damage. These results lead us to propose a novel hypothesis on how aging may lead to an accumulation of oxidative damage; the impaired physiological capacity to thermoregulate with advancing age does increase the risk of oxidative stress under challenging conditions. When energy is limited, the risk to encounter oxidative stress is increasing via a compensation to defend normothermic body temperatures.
Collapse
Affiliation(s)
- Elisavet Zagkle
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Marta Grosiak
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Ulf Bauchinger
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland.,Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Edyta T Sadowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
18
|
Gadau A, Crawford MS, Mayek R, Giraudeau M, McGraw KJ, Whisner CM, Kondrat-Smith C, Sweazea KL. A comparison of the nutritional physiology and gut microbiome of urban and rural house sparrows (Passer domesticus). Comp Biochem Physiol B Biochem Mol Biol 2019; 237:110332. [DOI: 10.1016/j.cbpb.2019.110332] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/19/2019] [Accepted: 08/23/2019] [Indexed: 01/07/2023]
|
19
|
Cooper-Mullin C, Carter WA, McWilliams SR. Acute effects of intense exercise on the antioxidant system in birds: does exercise training help? ACTA ACUST UNITED AC 2019; 222:jeb.210443. [PMID: 31511346 DOI: 10.1242/jeb.210443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/10/2019] [Indexed: 12/20/2022]
Abstract
The acute effects of an energy-intensive activity such as exercise may alter an animal's redox homeostasis, although these short-term effects may be ameliorated by chronic exposure to that activity, or training, over time. Although well documented in mammals, how energy-intensive training affects the antioxidant system and damage by reactive species has not been investigated fully in flight-trained birds. We examined changes to redox homeostasis in zebra finches exposed to energy-intensive activity (60 min of perch-to-perch flights twice a day), and how exercise training over many weeks affected this response. We measured multiple components of the antioxidant system: an enzymatic antioxidant (glutathione peroxidase, GPx) and non-enzymatic antioxidants (measured by the OXY-adsorbent test) as well as a measure of oxidative damage (d-ROMs). At no point during the experiment did oxidative damage change. We discovered that exposure to energy-intensive exercise training did not alter baseline levels of GPx, but induced exercise-trained birds to maintain a higher non-enzymatic antioxidant status as compared with untrained birds. GPx activity was elevated above baseline in trained birds immediately after completion of the second 1 h flight on each of the three sampling days, and non-enzymatic antioxidants were acutely depleted during flight after 13 and 44 days of training. The primary effect of exercise training on the acute response of the antioxidant system to 2 h flights was increased coordination between the enzymatic (GPx) and non-enzymatic components of the antioxidant system of birds that reduced oxidative damage associated with exercise.
Collapse
Affiliation(s)
- Clara Cooper-Mullin
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI 02881, USA
| | - Wales A Carter
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI 02881, USA
| | - Scott R McWilliams
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
20
|
Wilkens ALL, Valgas AAN, Oliveira GT. Effects of ecologically relevant concentrations of Boral® 500 SC, Glifosato® Biocarb, and a blend of both herbicides on markers of metabolism, stress, and nutritional condition factors in bullfrog tadpoles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:23242-23256. [PMID: 31190300 DOI: 10.1007/s11356-019-05533-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to verify the effects of the isolated forms of Boral® SC 500, Glifosato® Biocarb herbicides, and a blend of both herbicides on metabolism and oxidative balance markers of Rana catesbeiana tadpoles and on their nutritional condition. Groups of tadpoles were divided into different treatments: control (no herbicides), Boral® 500 SC (sulfentrazone: 130 μg/L), Glifosato® Biocarb (glyphosate: 234 μg/L), and a blend of both herbicides. After 7 days, the liver, caudal muscle, and blood samples were taken to subsequently perform the biomarkers determination by spectrophotometry. The intestinal condition factor increased in animals exposed to glyphosate and herbicide blends, suggesting a hyperphagic effect. This hypothesis was confirmed by the rise of triglycerides and circulating very low-density lipoprotein (VLDL). There was a significant increase in the levels of uric acid in tadpoles exposed to the herbicide blend. Corticosterone levels reduced significantly in animals exposed to glyphosate and the herbicide blend. Oxidative stress markers had a tissue-dependent response. In the liver, glutathione S-transferase increased, and superoxide dismutase and catalase decreased in animals exposed to sulfentrazone and glyphosate. Lipoperoxidation was reduced in the glyphosate treatment. In the caudal muscle, superoxide dismutase and catalase activities were maintained, and there was a decline in the levels of glutathione S-transferase and TBARS only in the blend group.
Collapse
Affiliation(s)
- Anike L L Wilkens
- School of Sciences, Conservation Physiology Laboratory, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- PPG-Ecology and Evolution of Biodiversity, Porto Alegre, Brazil
| | - Artur A N Valgas
- School of Sciences, Conservation Physiology Laboratory, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Guendalina T Oliveira
- School of Sciences, Conservation Physiology Laboratory, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.
- PPG-Ecology and Evolution of Biodiversity, Porto Alegre, Brazil.
| |
Collapse
|
21
|
Kumar Chaudhary M, Rizvi SI. Invertebrate and vertebrate models in aging research. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2019; 163:114-121. [PMID: 30837761 DOI: 10.5507/bp.2019.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 02/06/2019] [Indexed: 12/27/2022] Open
Abstract
Therapeutic interventions that can delay age associated diseases and ensure a longer health-span is a major goal of aging research. Consequent to understanding that aging is a modifiable trait, a large number of studies are currently being undertaken to elucidate the mechanism(s) of the aging process. Research on human aging and longevity is difficult, due to longer time frame, ethical concerns and environmental variables. Most of the present day understanding about the aging process comes through studies conducted on model organisms. These provide suitable platforms for understanding underlying mechanism(s) which control aging and have led to major discoveries that emphasize the evolutionarily conserved molecular pathways as key players that respond to extra and intracellular signals. This is a review of various invertebrate and vertebrate models including yeast, Drosophila, C. elegans, rodents, naked mole rat, and birds, currently used in aging research with emphasis on how well they can mimic aging in higher animals and humans.
Collapse
Affiliation(s)
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad-211002, India
| |
Collapse
|
22
|
Dick MF, Guglielmo CG. Flight muscle protein damage during endurance flight is related to energy expenditure but not dietary polyunsaturated fatty acids in a migratory bird. ACTA ACUST UNITED AC 2019; 222:222/5/jeb187708. [PMID: 30824569 DOI: 10.1242/jeb.187708] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
Abstract
Migration poses many physiological challenges for birds, including sustaining high intensity aerobic exercise for hours or days. A consequence of endurance flight is the production of reactive oxygen species (ROS). ROS production may be influenced by dietary polyunsaturated fatty acids (PUFA), which, although prone to oxidative damage, may limit mitochondrial ROS production and increase antioxidant capacity. We examined how flight muscles manage oxidative stress during flight, and whether dietary long-chain PUFA influence ROS management or damage. Yellow-rumped warblers were fed diets low in PUFA, or high in long-chain n-3 or n-6 PUFA. Flight muscle was sampled from birds in each diet treatment at rest or immediately after flying for up to a maximum of 360 min in a wind tunnel. Flight increased flight muscle superoxide dismutase activity but had no effect on catalase activity. The ratio of glutathione to glutathione disulphide decreased during flight. Oxidative protein damage, indicated by protein carbonyls, increased with flight duration (Pearson r=0.4). Further examination of just individuals that flew for 360 min (N=15) indicates that oxidative damage was related more to total energy expenditure (Pearson r=0.86) than to flight duration itself. This suggests that high quality individuals with higher flight efficiency have not only lower energy costs but also potentially less oxidative damage to repair after arrival at the destination. No significant effects of dietary long-chain PUFA were observed on antioxidants or damage. Overall, flight results in oxidative stress and the degree of damage is likely driven more by energy costs than fatty acid nutrition.
Collapse
Affiliation(s)
- Morag F Dick
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada, N6A 5B7
| | - Christopher G Guglielmo
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada, N6A 5B7
| |
Collapse
|
23
|
Yusuf MS, El Nabtiti AA, Hassan MA, Mandour MA. Supplementary outcomes of betaine on economic and productive performance, some biochemical parameters, and lipoprotein lipase gene expression in finishing male broilers. Int J Vet Sci Med 2018; 6:213-218. [PMID: 30564598 PMCID: PMC6286624 DOI: 10.1016/j.ijvsm.2018.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/06/2018] [Accepted: 11/11/2018] [Indexed: 01/23/2023] Open
Abstract
Egypt's population is growing with the biggest hurdle facing the Government is to secure animal protein. Broilers provide quality protein of reasonable price. This study was conducted to investigate the outcomes of dietary organic betaine (betafin S4) on productive, epigenetic make up of lipoprotein lipase gene (LPL) promoter, some blood biochemical, and economic parameters in male broilers at finishing period. Eighty one commercial Arbor Acre Plus males, 21 days old, were randomly allocated to three groups, with three replicates each in battery cages under thermo-neutral environment till 42 days. The examined groups received yellow corn-soy basal diet, supplemented with 0 (G1), 1.5 (G2) and 3.0 g (G3) betaine/kg diet, respectively. The mRNA expression levels of LPL gene were analyzed by real-time quantitative PCR. Methylation pattern on LPL gene promoter was determined by bisulfite sequencing. Doses of betaine statistically (P ≤ .05) improved tested performance parameters; while carcass yield % and abdominal fat deposition did not achieve significant changes. The expression of LPL mRNA showed an inverse relationship with betaine dose, which illustrated as a trend toward increase in G2 and decrease in G3. Regarding serum biochemistry, both treated groups when compared to control group revealed a significant improvement (P ≤ .01) in albumin level, simultaneously, a significant increase (P ≤ .05) was recorded in uric acid and triglyceride levels, additionally, strong positive (P ≤ .01) correlation between betaine dose and previously mentioned parameters was reported. Betaine is recommended in finishing male broilers as production costs were reduced by 3.97%-4.37% per kg, respectively. In conclusion, incorporation of 0.15-0.30% organic betaine to male broilers diets during finishing period improves the growth performances.
Collapse
Affiliation(s)
- Mohamed S. Yusuf
- Department of Nutrition and Clinical Nutrition, Suez Canal University, Egypt
| | - Adel A. El Nabtiti
- Department of Animal Wealth Development (Animal Production Division), Suez Canal University, Egypt
| | - Marwa A. Hassan
- Department of Animal Hygiene, Zoonoses and Behavior, Suez Canal University, Egypt
| | - Mostafa A. Mandour
- Department of Animal Wealth Development (Veterinary Economics Division), Suez Canal University, Egypt
| |
Collapse
|
24
|
Sedgh-Gooya S, Torki M. Influence of dietary supplemental chromium and magnesium on performance and metabolic parameters of laying hens subjected to heat stress. JOURNAL OF APPLIED ANIMAL RESEARCH 2018. [DOI: 10.1080/09712119.2018.1535436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Guil-Guerrero J, Ramos L, Zúñiga Paredes J, Carlosama-Yépez M, Moreno C, Ruales P. Effects of turmeric rhizome powder and curcumin in poultry production. A review. JOURNAL OF ANIMAL AND FEED SCIENCES 2017. [DOI: 10.22358/jafs/78511/2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Fowler MA, Williams TD. A Physiological Signature of the Cost of Reproduction Associated with Parental Care. Am Nat 2017; 190:762-773. [PMID: 29166164 DOI: 10.1086/694123] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Costs of reproduction are an integral and long-standing component of life-history theory, but we still know relatively little about the specific physiological mechanisms underlying these trade-offs. We experimentally manipulated workload during parental care in female European starlings (Sturnus vulgaris) using attachment of radios and/or wing clipping and assessed measures of workload, current breeding productivity, future fecundity, and survival (local return rate) in relation to treatment. Females with wing clipping and radio attachment paid a clear cost of reproduction compared with all other treatment groups: they had lower future fecundity and lower return rates despite having lower current breeding productivity. We then measured 13 physiological traits, including measures of aerobic/metabolic capacity, oxidative stress and muscle damage, intermediary metabolism and energy supply, and immune function. Our results show that the cost of reproduction in females with wing clipping and radio attachment was associated with lower oxygen-carrying capacity (lower hematocrit and hemoglobin levels), lower energy reserves (plasma nonesterified fatty acid and triglyceride levels), decreased immune function (lower haptoglobin levels), and elevated levels of oxidative stress (higher levels of dROMs [reactive oxygen metabolites] and lower levels of the endogenous antioxidant uric acid). Our study provides evidence that costs of reproduction involve a widespread decline in physiological function across multiple physiological systems consistent with long-standing ideas of cumulative "wear and tear" and allostatic load.
Collapse
|
27
|
Cooper-Mullin C, McWilliams SR. The role of the antioxidant system during intense endurance exercise: lessons from migrating birds. ACTA ACUST UNITED AC 2017; 219:3684-3695. [PMID: 27903627 DOI: 10.1242/jeb.123992] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
During migration, birds substantially increase their metabolic rate and burn fats as fuel and yet somehow avoid succumbing to overwhelming oxidative damage. The physiological means by which vertebrates such as migrating birds can counteract an increased production of reactive species (RS) are rather limited: they can upregulate their endogenous antioxidant system and/or consume dietary antioxidants (prophylactically or therapeutically). Thus, birds can alter different components of their antioxidant system to respond to the demands of long-duration flights, but much remains to be discovered about the complexities of RS production and antioxidant protection throughout migration. Here, we use bird migration as an example to discuss how RS are produced during endurance exercise and how the complex antioxidant system can protect against cellular damage caused by RS. Understanding how a bird's antioxidant system responds during migration can lend insights into how antioxidants protect birds during other life-history stages when metabolic rate may be high, and how antioxidants protect other vertebrates from oxidative damage during endurance exercise.
Collapse
Affiliation(s)
- Clara Cooper-Mullin
- The Department of Natural Resources Science, The University of Rhode Island, 105 Coastal Institute, 1 Greenhouse Road, Kingston, RI 02881, USA
| | - Scott R McWilliams
- The Department of Natural Resources Science, The University of Rhode Island, 105 Coastal Institute, 1 Greenhouse Road, Kingston, RI 02881, USA
| |
Collapse
|
28
|
Inazawa K, Yamaguchi S, Hosoyamada M, Fukuuchi T, Tomioka NH, Yamaoka N, Kaneko K. Urinary excretion of uric acid, allantoin, and 8-OH-Deoxyguanosine in uricase-knockout mice. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2017; 35:559-565. [PMID: 27906613 DOI: 10.1080/15257770.2016.1163376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although uricase-knockout (Uox KO) mice are reported to develop uric acid (UA) nephropathy, those that mature without severe nephropathy could be useful for research into purine metabolism in humans. In this study, we measured the urinary excretion of creatinine, UA, allantoin, and 8-hydroxy-2'-deoxyguanosine (8-OHdG) collected from Uox KO mice housed in metabolic cages. UA and allantoin were determined using liquid chromatography-mass spectrometry and creatinine and 8-OHdG were measured with a commercial kit. Uox KO mice excreted significantly higher levels of UA than wild-type mice (C57BL/6), while the excretion of allantoin was significantly lower. Urinary allantoin was detected in Uox KO mice despite a lack of uricase, which is the same as in humans. In contrast to the elevated levels of UA, the daily excretion of 8-OHdG, an oxidative stress marker, was lower in Uox KO mice. UA is thought to act as an anti-oxidizing agent in humans; thus, these results show that Uox KO mice are potential animal models for research into human purine metabolism.
Collapse
Affiliation(s)
- K Inazawa
- a Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University , Tokyo , Japan
| | - S Yamaguchi
- a Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University , Tokyo , Japan
| | - M Hosoyamada
- b Laboratory of Human Physiology & Pathology, Faculty of Pharma-Science, Teikyo University , Tokyo , Japan
| | - T Fukuuchi
- a Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University , Tokyo , Japan
| | - N H Tomioka
- b Laboratory of Human Physiology & Pathology, Faculty of Pharma-Science, Teikyo University , Tokyo , Japan
| | - N Yamaoka
- a Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University , Tokyo , Japan
| | - K Kaneko
- a Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University , Tokyo , Japan
| |
Collapse
|
29
|
Urvik J, Meitern R, Rattiste K, Saks L, Hõrak P, Sepp T. Variation in the Markers of Nutritional and Oxidative State in a Long-Lived Seabird: Associations with Age and Longevity. Physiol Biochem Zool 2016; 89:417-40. [PMID: 27617362 DOI: 10.1086/688180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Age-related declines in life-history traits have been widely observed in free-living animals. Several theories link senescence to oxidative stress. The aim of this study was to measure several widely used markers of oxidative and nutritional state in a long-lived seabird, the common gull (Larus canus), in order to assess the suitability of these markers for describing deterioration in physiological condition associated with chronological age and survival. Associations with longevity and individual consistency of these parameters over the years (repeatability) were also assessed. Senescence in fitness parameters was observed during the study period: in females, laying date and clutch mass were related to bird age in a curvilinear manner, with middle-aged birds breeding earlier and laying heavier eggs. The only parameter associated with aging processes was glutathione concentration in erythrocytes, which was lower in female birds with longer life spans. Of indexes of nutritional state, plasma triglyceride concentration showed a between-individual increase with age, suggesting selective mortality of birds with low levels. Additionally, total plasma protein levels of individual males increased with age. The mostly negative results of this study hint that the commonly used parameters of physiological condition and oxidative state used in this study do not adequately reflect an individual's long-term health condition. Alternatively, it is possible that in common gulls, senescence occurs in reproductive mechanisms but not in mechanisms responsible for maintaining an organism's redox balance, consistent with the idea that different aspects of an organism's physiological condition age at different rates. Significant interannual repeatability was detected in three plasma constituents-carotenoids, uric acid, and total protein-all of which can possibly be linked to variation in dietary habits.
Collapse
|
30
|
Migratory refueling affects non-enzymatic antioxidant capacity, but does not increase lipid peroxidation. Physiol Behav 2016; 158:26-32. [DOI: 10.1016/j.physbeh.2016.02.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/18/2016] [Accepted: 02/22/2016] [Indexed: 01/11/2023]
|
31
|
Echeverry H, Yitbarek A, Munyaka P, Alizadeh M, Cleaver A, Camelo-Jaimes G, Wang P, O K, Rodriguez-Lecompte JC. Organic trace mineral supplementation enhances local and systemic innate immune responses and modulates oxidative stress in broiler chickens. Poult Sci 2016; 95:518-27. [PMID: 26740133 DOI: 10.3382/ps/pev374] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/08/2015] [Indexed: 02/04/2023] Open
Abstract
The effect of organic trace mineral supplementation on performance, intestinal morphology, immune organ weights (bursa of Fabricius and spleen), expression of innate immune response related genes, blood heterophils/lymphocytes ratio, chemical metabolic panel, natural antibodies (IgG), and oxidative stress of broiler chickens was studied. A total of 1,080 day-old male broilers were assigned to 1 of 3 dietary treatments, which included basal diet with Monensin (control), control diet supplemented with bacitracin methylene disalicylate (BMD), and BMD diet supplemented with organic trace minerals (OTM). No difference in feed conversion ratio was observed among treatments; ileum histomorphological analysis showed a lower crypt depth, higher villi height/crypt depth ratio, and lower villi width in the OTM treatment compared to control. Furthermore, OTM treatment resulted in higher uric acid and lower plasma malondehaldehyde (MDA), indicating lower oxidative stress. Gene expression analysis showed that OTM treatment resulted in up-regulations of TLR2 bin the ileum, and TLR2b, TLR4, and IL-12p35 in the bursa of Fabricius, and down-regulation of TLR2b and TLR4 in the cecal tonsils. In the spleen, OTM treatment resulted in up-regulation of IL-10. In conclusion, OTM supplementation to broiler diets may have beneficial effects on intestinal development, immune system status, and survival by improving ileum histomorphological parameters, modulation of Toll-like receptors and anti-inflammatory cytokines, and decreasing level of MDA, which in conjunction could enhance health status.
Collapse
Affiliation(s)
- H Echeverry
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2 Canada
| | - A Yitbarek
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1 Canada
| | - P Munyaka
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2 Canada
| | - M Alizadeh
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2 Canada
| | - A Cleaver
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2 Canada
| | | | - P Wang
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2 Canada
| | - K O
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2 Canada Department of Physiology, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2, Canada
| | - J C Rodriguez-Lecompte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada, C1A 4P3
| |
Collapse
|
32
|
Wilcoxen TE, Horn DJ, Hogan BM, Hubble CN, Huber SJ, Flamm J, Knott M, Lundstrom L, Salik F, Wassenhove SJ, Wrobel ER. Effects of bird-feeding activities on the health of wild birds. CONSERVATION PHYSIOLOGY 2015; 3:cov058. [PMID: 27293740 PMCID: PMC4778448 DOI: 10.1093/conphys/cov058] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/30/2015] [Accepted: 11/12/2015] [Indexed: 06/06/2023]
Abstract
Among the most popular reasons that people feed wild birds is that they want to help birds. The extent to which supplemental food helps birds, however, is not well established. From spring 2011 to spring 2014, we examined how feeding of wild birds influences the health of individual birds at forested sites in central Illinois, USA. Specifically, we compared three forested sites where we provided supplemental food with three forested sites for which no supplemental food was available and monitored changes in the individual health of birds. In addition, we determined whether any changes in bird health had occurred after feeders had been removed from sites 10 months before. Generally, the individual health of birds improved with supplemental feeding, including increased antioxidant levels, reduced stress (heterophil-to-lymphocyte ratio) and more rapid feather growth. In some species, we also found improved body condition index scores and innate immune defense. The difference among sites was not present 10 months after feeders were removed, suggesting that the impact on health was indeed related to supplemental feeding. Potential negative effects of supplemental feeding were also found, including an increase in infectious disease prevalence among individual birds at forested sites where supplemental food was offered. Birds with clear signs of pathology showed deficits in most of the physiological metrics in which birds at feeder sites typically showed improved health condition. At the peak of prevalence of infectious disease, 8.3% of all birds at feeders exhibited symptoms of conjunctivitis, pox, dermal disease or cloacal disease. We found both positive and negative impacts of wild bird feeding, and that, in general, birds that had access to supplemental food were in better physiological condition. Moreover, the negative effects we found may be mitigated by hobbyists engaging in safer bird-feeding practices.
Collapse
Affiliation(s)
- Travis E Wilcoxen
- Biology Department, Millikin University, 1184 West Main Street, Decatur, IL 62522, USA
| | - David J Horn
- Biology Department, Millikin University, 1184 West Main Street, Decatur, IL 62522, USA
| | - Brianna M Hogan
- Biology Department, Millikin University, 1184 West Main Street, Decatur, IL 62522, USA
| | - Cody N Hubble
- Biology Department, Millikin University, 1184 West Main Street, Decatur, IL 62522, USA
| | - Sarah J Huber
- Biology Department, Millikin University, 1184 West Main Street, Decatur, IL 62522, USA
| | - Joseph Flamm
- Biology Department, Millikin University, 1184 West Main Street, Decatur, IL 62522, USA
| | - Madeline Knott
- Biology Department, Millikin University, 1184 West Main Street, Decatur, IL 62522, USA
| | - Lisa Lundstrom
- Biology Department, Millikin University, 1184 West Main Street, Decatur, IL 62522, USA
| | - Faaria Salik
- Biology Department, Millikin University, 1184 West Main Street, Decatur, IL 62522, USA
| | - Samantha J Wassenhove
- Biology Department, Millikin University, 1184 West Main Street, Decatur, IL 62522, USA
- Natural Resources Conservation Service, United States Department of Agriculture, 2623 Sunrise Drive, Springfield, IL 62703, USA
| | - Elizabeth R Wrobel
- Biology Department, Millikin University, 1184 West Main Street, Decatur, IL 62522, USA
- Department of Poultry Science, University of Georgia, 215 Poultry Science Building, Athens, GA 30602, USA
| |
Collapse
|
33
|
Cram DL, Blount JD, York JE, Young AJ. Immune response in a wild bird is predicted by oxidative status, but does not cause oxidative stress. PLoS One 2015; 10:e0122421. [PMID: 25815888 PMCID: PMC4376632 DOI: 10.1371/journal.pone.0122421] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/20/2015] [Indexed: 12/26/2022] Open
Abstract
The immune system provides vital protection against pathogens, but extensive evidence suggests that mounting immune responses can entail survival and fecundity costs. The physiological mechanisms that underpin these costs remain poorly understood, despite their potentially important role in shaping life-histories. Recent studies involving laboratory models highlight the possibility that oxidative stress could mediate these costs, as immune-activation can increase the production of reactive oxygen species leading to oxidative stress. However, this hypothesis has rarely been tested in free-ranging wild populations, where natural oxidative statuses and compensatory strategies may moderate immune responses and their impacts on oxidative status. Furthermore, the possibility that individuals scale their immune responses according to their oxidative status, conceivably to mitigate such costs, remains virtually unexplored. Here, we experimentally investigate the effects of a phytohaemagglutinin (PHA) immune-challenge on oxidative status in wild male and female white-browed sparrow weavers, Plocepasser mahali. We also establish whether baseline oxidative status prior to challenge predicts the scale of the immune responses. Contrary to previous work on captive animals, our findings suggest that PHA-induced immune-activation does not elicit oxidative stress. Compared with controls (n = 25 birds), PHA-injected birds (n = 27 birds) showed no evidence of a differential change in markers of oxidative damage or enzymatic and non-enzymatic antioxidant protection 24 hours after challenge. We did, however, find that the activity of a key antioxidant enzyme (superoxide dismutase, SOD) prior to immune-activation predicted the scale of the resulting swelling: birds with stronger initial SOD activity subsequently produced smaller swellings. Our findings (i) suggest that wild birds can mount immune responses without suffering from systemic oxidative stress, and (ii) lend support to biomedical evidence that baseline oxidative status can impact the scale of immune responses; a possibility not yet recognised in ecological studies of immunity.
Collapse
Affiliation(s)
- Dominic L. Cram
- Centre for Ecology & Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn Campus, Cornwall, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan D. Blount
- Centre for Ecology & Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn Campus, Cornwall, United Kingdom
| | - Jennifer E. York
- Centre for Ecology & Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn Campus, Cornwall, United Kingdom
- Department of Zoology and Entomology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Andrew J. Young
- Centre for Ecology & Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn Campus, Cornwall, United Kingdom
| |
Collapse
|
34
|
Photoelectrocatalytic oxidation of uric acid on a novel ruthenium(II) polypyridyl complex modified ZnO electrode for photo-stimulated fuel cells. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.05.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Deviche P, Beouche-Helias B, Davies S, Gao S, Lane S, Valle S. Regulation of plasma testosterone, corticosterone, and metabolites in response to stress, reproductive stage, and social challenges in a desert male songbird. Gen Comp Endocrinol 2014; 203:120-31. [PMID: 24518569 DOI: 10.1016/j.ygcen.2014.01.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/16/2014] [Accepted: 01/24/2014] [Indexed: 10/25/2022]
Abstract
In many male vertebrates, the secretion of reproductive (gonadal androgens) and adrenocortical (glucocorticoids) hormones varies seasonally and in response to environmental stimuli, and these hormones exert numerous behavioral and metabolic effects. We performed two field studies on adult male Rufous-winged Sparrows, Peucaea carpalis, a Sonoran Desert rain-dependent sedentary species, to (a) determine seasonal changes in initial (baseline) and acute stress-induced plasma testosterone (T), corticosterone (CORT), and two metabolites (uric acid and glucose) and (b) compare the effects of two types of social challenge (song playback or simulated territorial intrusion consisting of song playback plus exposure to a live decoy bird) on plasma T, CORT, these metabolites, and territorial behavior. Initial plasma T was higher during the summer breeding period than during post-breeding molt. Acute stress resulting from capture and restraint for 30 min decreased plasma T in breeding condition birds but not in the fall, revealing that this decrease is seasonally regulated. Initial plasma CORT did not change seasonally, but plasma CORT increased in response to acute stress. This increase was likewise seasonally regulated, being relatively smaller during autumnal molt than in the summer. We found no evidence that acute stress levels of CORT are functionally related to stress-depressed plasma T and, therefore, that plasma T decreases during stress as a result of elevated plasma CORT. Thirty minutes of exposure to simulated territorial intrusion resulted in different behavior than 30 min of exposure to song playback, with increased time spent near the decoy and decreased number of overhead flights. Neither type of social challenge influenced plasma T, thus offering no support for the hypothesis that plasma T either responds to or mediates the behavioral effects of social challenge. Exposure to both social challenges elevated plasma CORT, but simulated territorial intrusion was more effective in this respect than song playback. Plasma uric acid and glucose decreased during acute stress, but only plasma uric acid decreased during social challenge. Thus, an elevation in plasma CORT was consistently associated with a decrease in plasma uric acid, but not with a change in glycemia. These results enhance our understanding of the short-term relationships between T, CORT, and avian territorial behavior. They provide novel information on the endocrine effects of acute stress, in particular on plasma T, in free-ranging birds, and are among the first in these birds to link these effects to metabolic changes.
Collapse
Affiliation(s)
- Pierre Deviche
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA.
| | - Benjamin Beouche-Helias
- Universite de Poitiers, Faculte des Sciences Fondamentales et Appliquees, Poitiers F-86022, France
| | - Scott Davies
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Sisi Gao
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Samuel Lane
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Shelley Valle
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| |
Collapse
|
36
|
Alan RR, McWilliams SR. Oxidative stress, circulating antioxidants, and dietary preferences in songbirds. Comp Biochem Physiol B Biochem Mol Biol 2013; 164:185-93. [DOI: 10.1016/j.cbpb.2012.12.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 11/30/2022]
|
37
|
Costantini D, Monaghan P, Metcalfe N. Loss of integration is associated with reduced resistance to oxidative stress. J Exp Biol 2013; 216:2213-20. [DOI: 10.1242/jeb.083154] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Summary
One cellular mechanism thought to be particularly important as a constraint on lifespan and life-history strategies is oxidative stress. Susceptibility to oxidative stress is influenced by a number of antioxidant defences, whose effectiveness depends on the synergistic and competitive interactions among them (biochemical integration). It is generally assumed that exposure to oxidative stress is detrimental, but it is also possible that low level oxidative stress has a positive effect on integration, and therefore carries some benefits. Using three experimental groups of zebra finches (control, mild and high flight activity), we tested whether exercise-induced oxidative stress altered the integration of the pro-oxidant/antioxidant system by manipulating levels of flight activity, known to generate oxidative stress in birds. We show for the first time that a short-term high level of physical activity leads to a reduction in integration among components of the blood antioxidant defences, associated with a reduced resistance to oxidative stress. We found no evidence of improved integration in the antioxidant defences at low levels of oxidative stress exposure, suggesting that improved integration is not the route whereby any benefits of low level stress exposure occur. These findings point to a reduction in biochemical integration as a potential mechanism explaining a reduced resistance to oxidative stress induced by short-term stressors.
Collapse
|
38
|
Manna I, Khanna GL, Chandra Dhara P. Effect of training on physiological and biochemical variables of soccer players of different age groups. Asian J Sports Med 2012; 1:5-22. [PMID: 22375187 PMCID: PMC3289165 DOI: 10.5812/asjsm.34875] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 12/11/2009] [Accepted: 12/29/2009] [Indexed: 11/16/2022] Open
Abstract
Purpose To find out the effect of training on selected physiological and biochemical variables of Indian soccer players of different age groups. Methods A total of 120 soccer players volunteered for the study, were divided (n = 30) into 4 groups: (i) under 16 years (U16), (ii) under 19 years (U19), (iii) under 23 years (U23), (iv) senior (SR). The training sessions were divided into 2 phases (a) Preparatory Phase (PP, 8 weeks) and (b) Competitive Phase (CP, 4 weeks). The training program consisted of aerobic, anaerobic and skill development, and were completed 4 hrs/day; 5 days/week. Selected physiological and biochemical variables were measured at zero level (baseline data, BD) and at the end of PP and CP. Results A significant increase (P < 0.05) in lean body mass (LBM), VO2max, anaerobic power, grip and back strength, urea, uric acid and high density lipoprotein cholesterol (HDL-C); and a significant decrease (P < 0.05) in body fat, hemoglobin (Hb), total cholesterol (TC), triglyceride (TG) and low density lipoprotein cholesterol (LDL-C) were detected in some groups in PP and CP phases of the training when compare to BD. However, no significant change was found in body mass and maximal heart rate of the players after the training program. Conclusion This study would provide useful information for training and selection of soccer players of different age groups.
Collapse
Affiliation(s)
- Indranil Manna
- Human Performance Lab, Sports Authority of India, J. N. Stadium, New Delhi, India
- Corresponding Author: Address: Department of Physiology, Janaki Medical College, Janakpur, Nepal. E-mail:
| | - Gulshan Lal Khanna
- Department of Health Sciences, Manav Rachana International University, Faridabad, India
| | | |
Collapse
|
39
|
Sylvie G, Marion K, Yvon LM, Jean-Patrice R, Criscuolo F. Of the Importance of Metabolic Phases in the Understanding of Oxidative Stress in Prolonged Fasting and Refeeding. Physiol Biochem Zool 2012; 85:415-20. [DOI: 10.1086/666364] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
|
41
|
allB, allantoin utilisation and Salmonella enterica serovar Enteritidis and Typhimurium colonisation of poultry and mice. Folia Microbiol (Praha) 2011; 56:264-9. [PMID: 21611691 DOI: 10.1007/s12223-011-0034-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 04/28/2011] [Indexed: 01/23/2023]
Abstract
Natural variation in the presence or the absence of STM0517-0529 genes allowing allantoin utilisation has been described in field isolates of the multidrug resistant Salmonella enterica serovar Typhimurium belonging to the phage type DT104. Interestingly, S. enterica subspecies enterica serovar Typhimurium DT104 is quite frequent in pigs and cattle, but rarely present in egg-laying hens. Taking into account the different mode of allantoin metabolism in birds and mammals, we were interested in whether the absence of STM0517-0529 genes may disable this clone in poultry colonisation. We have therefore constructed the allB (also designated as STM0523) mutants in S. enterica subspecies enterica serovar Typhimurium and S. enterica subspecies enterica serovar Enteritidis, and with these, we infected mice, newly hatched chickens and adult egg-laying hens to show that the defect in allantoin utilisation does not influence S. enterica virulence for mice or adult hens, but slightly decreases virulence of S. enterica for chickens. The decrease in virulence of the allB mutant was relatively minor as it could be observed only after a mixed infection model, consistent with a lower prevalence, but not a total absence of such clones in poultry flocks.
Collapse
|
42
|
Heiss RS, Cohen AA, Bowman R, Boughton RK, Bridge E, McGraw KJ, Schoech SJ. Circulating carotenoid concentrations are positively correlated with later clutch initiation in Florida Scrub-Jays (Aphelocoma coerulescens). ACTA ACUST UNITED AC 2011; 315A:101-10. [PMID: 21328560 DOI: 10.1002/jez.654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 09/30/2010] [Accepted: 10/21/2010] [Indexed: 02/04/2023]
Abstract
Antioxidants play key roles in preventing free radical damage to various molecules, cells, and tissues, but it is not well understood how variation in antioxidant levels may relate to the reproductive success or health of wild animals. We explored the relationship between circulating antioxidant concentrations and both body condition and timing of reproduction in male and female Florida Scrub-Jays (Aphelocoma coerulescens), a cooperatively breeding passerine bird. We examined whether levels of uric acid, vitamin E, and carotenoids (all potentially important antioxidants) were linked to body condition and timing of reproduction, two measures that are directly related to reproductive success. Antioxidant concentrations were not correlated with body condition, but they were related to timing of first clutch initiation, though not always in the predicted direction. Elevated circulating levels of carotenoids were associated with delayed clutch initiation in female breeders. Relatively higher vitamin E levels in control birds were associated with earlier clutch initiation, whereas male breeders that received long-term food supplementation had elevated levels of vitamin E and delayed reproduction. Several potential explanations for the link between elevated levels of antioxidants and delayed clutch initiation are discussed. Separate explanations for each sex include, but are not limited to, oxidative stress as a result of territory defense efforts in males, different dietary regimes due to supplementation, and mobilized plasma antioxidants in females that were coping with a stressor.
Collapse
Affiliation(s)
- Rebecca S Heiss
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee 38152, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Cleveland BM, Leonard SS, Klandorf H, Blemings KP. Urate oxidase knockdown decreases oxidative stress in a murine hepatic cell line. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2:93-8. [PMID: 20357931 PMCID: PMC2763251 DOI: 10.4161/oxim.2.2.8372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 03/10/2009] [Accepted: 03/10/2009] [Indexed: 02/04/2023]
Abstract
Humans, birds, and some primates do not express the uric acid degrading enzyme urate oxidase (UOX) and, as a result, have plasma uric acid concentrations higher than UOX expressing animals. Although high uric acid concentrations are suggested to increase the antioxidant defense system and provide a health advantage to animals without UOX, knockout mice lacking UOX develop pathological complications including gout and kidney failure. As an alternative to the knockout model, RNA interference was used to decrease UOX expression using stable transfection in a mouse hepatic cell line (ATCC, FL83B). Urate oxidase mRNA was reduced 66% (p < 0.05) compared to wild type, as measured by real time RT-PCR. To determine if UOX knockdown resulted in enhanced protection against oxidative stress, cells were challenged with hexavalent chromium (Cr(VI)) or 3-morpholinosydnonimine hydrochloride (SIN-1). Compared to wild type, cells with UOX knockdown exhibited a 37.2 ± 3.5% reduction (p < 0.05) in the electron spin resonance (ESR) signal after being exposed to Cr(VI) and displayed less DNA fragmentation (p < 0.05) following SIN-1 treatment. Cell viability decreased in wild type cells (p < 0.05), but not cells with UOX knockdown, after treatment with SIN-1. These results are consistent with an increased intracellular uric acid concentration and an increased defense against oxidative stress.
Collapse
Affiliation(s)
- Beth M Cleveland
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| | | | | | | |
Collapse
|
44
|
Gerson AR, Guglielmo CG. House sparrows (Passer domesticus) increase protein catabolism in response to water restriction. Am J Physiol Regul Integr Comp Physiol 2011; 300:R925-30. [PMID: 21248307 DOI: 10.1152/ajpregu.00701.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Birds primarily rely on fat for energy during fasting and to fuel energetically demanding activities. Proteins are catabolized supplemental to fat, the function of which in birds remains poorly understood. It has been proposed that birds may increase the catabolism of body protein under dehydrating conditions as a means to maintain water balance, because catabolism of wet protein yields more total metabolic and bound water (0.155·H(2)O(-1)·kJ(-1)) than wet lipids (0.029 g·H(2)O(-1)·kJ(-1)). On the other hand, protein sparing should be important to maintain function of muscles and organs. We used quantitative magnetic resonance body composition analysis and hygrometry to investigate the effect of water restriction on fat and lean mass catabolism during short-term fasting at rest and in response to a metabolic challenge (4-h shivering) in house sparrows (Passer domesticus). Water loss at rest and during shivering was compared with water gains from the catabolism of tissue. At rest, water-restricted birds had significantly greater lean mass loss, higher plasma uric acid concentration, and plasma osmolality than control birds. Endogenous water gains from lean mass catabolism offset losses over the resting period. Water restriction had no effect on lean mass catabolism during shivering, as water gains from fat oxidation appeared sufficient to maintain water balance. These data provide direct evidence supporting the hypothesis that water stress can increase protein catabolism at rest, possibly as a metabolic strategy to offset high rates of evaporative water loss.
Collapse
Affiliation(s)
- Alexander R Gerson
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada.
| | | |
Collapse
|
45
|
Effect of Training on Morphological, Physiological and Biochemical Variables of U-19 Soccer Players. BALTIC JOURNAL OF HEALTH AND PHYSICAL ACTIVITY 2011. [DOI: 10.2478/v10131-011-0023-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
46
|
McGraw KJ. Avian Antioxidants and Oxidative Stress: Highlights from Studies of Food, Physiology, and Feathers. OXIDATIVE STRESS IN APPLIED BASIC RESEARCH AND CLINICAL PRACTICE 2011. [DOI: 10.1007/978-1-61779-071-3_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
47
|
van de Crommenacker J, Komdeur J, Burke T, Richardson DS. Spatio-temporal variation in territory quality and oxidative status: a natural experiment in the Seychelles warbler (Acrocephalus sechellensis). J Anim Ecol 2010; 80:668-80. [PMID: 21198588 PMCID: PMC3107423 DOI: 10.1111/j.1365-2656.2010.01792.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
1. Fluctuations in the quality of the habitat in which an animal lives can have major consequences for its behaviour and physiological state. In poor-quality habitat with low food availability, metabolically intensive foraging activity is likely to result in increased generation of reactive oxygen species, while scarcity of food can lead to a weakening of exogenously derived antioxidant defences. The consequent oxidant/antioxidant imbalance may lead to elevated oxidative stress. 2. Although the link between food availability and oxidative stress has been studied in the laboratory, very little is known about this relationship in the wild. Here, we investigate the association between territory quality (measured through food availability) and oxidative stress in the Seychelles warbler (Acrocephalus sechellensis). 3. Seychelles warblers are insectivorous birds that inhabit a fixed feeding territory year round. Individuals experience profound and rapid local fluctuations in territory quality within these territories, owing to changing patterns of vegetation defoliation resulting from seasonal changes in prevailing wind direction and wind-borne salt spray. 4. As expected, oxidant generation (measured as reactive oxygen metabolites; ROMs) was higher when territory quality was low, but there was no correlation between territory quality and antioxidant capacity (OXY). The negative correlation between territory quality and ROMs was significant between individuals and approached significance within individuals, indicating that the pattern resulted from individual responses to environmental variation. 5. ROMs and OXY levels within individuals were positively correlated, but the relationship between territory quality and ROMs persisted after including OXY as a covariate, implying that oxidative stress occurs in low territory quality conditions. 6. Our results indicate that the oxidative stress balance of an individual is sensitive to relatively short-term changes in territory quality, which may have consequences for the birds' fitness.
Collapse
Affiliation(s)
- Janske van de Crommenacker
- Animal Ecology Group/Behavioural Ecology and Self-Organisation Group, Centre for Ecological and Evolutionary Studies, University of Groningen, PO Box 11103, 9700 CC, Groningen, The Netherlands.
| | | | | | | |
Collapse
|
48
|
Fernandes JL, Souza Gome ADL. Oxidative Stress at Different Stages of the Molting Cycle of Captive Coturnix coturnix. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/rjbsci.2010.610.614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
49
|
Kilgas P, Tilgar V, Külavee R, Saks L, Hõrak P, Mänd R. Antioxidant protection, immune function and growth of nestling great tits Parus major in relation to within-brood hierarchy. Comp Biochem Physiol B Biochem Mol Biol 2010; 157:288-93. [PMID: 20647049 DOI: 10.1016/j.cbpb.2010.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Revised: 07/09/2010] [Accepted: 07/11/2010] [Indexed: 10/19/2022]
Abstract
Differences in competitive abilities of siblings in birds can be caused by a combination of hatching asynchrony and intra-clutch variation in egg quality. However, very little is known how within-brood hierarchies affect the allocation of resources between different functions of the body. We examined the effects of within-brood hierarchy on growth of morphological parameters, blood plasma antioxidant protection and immune function of free-living great tit Parus major nestlings. To assure that competitive hierarchies occur, we experimentally delayed the start of incubation of the last two eggs in the clutch. At pre-fledging stage (day 13 post-hatch), late-hatched nestlings were smaller in body mass and wing length when compared to early-hatched nestlings, but no differences between siblings were found in tarsus length, plasma antioxidant potential, uric acid concentration, residual antioxidant potential (from regression with uric acid), hematocrit and response to phytohaemagglutinin injection. In early-hatched nestlings, the antioxidant potential and residual antioxidant potential measured in the middle of nestling period (day 6 post-hatch) were negatively related to body mass growth at early nestling stage, indicating that fast initial growth could reduce antioxidant properties of blood plasma.
Collapse
Affiliation(s)
- Priit Kilgas
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, Tartu 51014, Estonia.
| | | | | | | | | | | |
Collapse
|
50
|
Arnold KE, Larcombe SD, Ducaroir L, Alexander L. Antioxidant status, flight performance and sexual signalling in wild-type parrots. Behav Ecol Sociobiol 2010. [DOI: 10.1007/s00265-010-0997-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|