1
|
Perna A, Venditti N, Merolla F, Fusco S, Guerra G, Zoroddu S, De Luca A, Bagella L. Nutraceuticals in Pregnancy: A Special Focus on Probiotics. Int J Mol Sci 2024; 25:9688. [PMID: 39273635 PMCID: PMC11395456 DOI: 10.3390/ijms25179688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
The placenta is crucial to fetal development and performs vital functions such as nutrient exchange, waste removal and hormone regulation. Abnormal placental development can lead to conditions such as fetal growth restriction, pre-eclampsia and stillbirth, affecting both immediate and long-term fetal health. Placental development is a highly complex process involving interactions between maternal and fetal components, imprinted genes, signaling pathways, mitochondria, fetal sexomes and environmental factors such as diet, supplementation and exercise. Probiotics have been shown to make a significant contribution to prenatal health, placental health and fetal development, with associations with reduced risk of preterm birth and pre-eclampsia, as well as improvements in maternal health through effects on gut microbiota, lipid metabolism, vaginal infections, gestational diabetes, allergic diseases and inflammation. This review summarizes key studies on the influence of dietary supplementation on placental development, with a focus on the role of probiotics in prenatal health and fetal development.
Collapse
Affiliation(s)
- Angelica Perna
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Via F. De Sanctis, 86100 Campobasso, Italy
| | - Noemi Venditti
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Via F. De Sanctis, 86100 Campobasso, Italy
- UO Laboratory Analysis, Responsible Research Hospital, Largo Agostino Gemelli, 1, 86100 Campobasso, Italy
| | - Francesco Merolla
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Via F. De Sanctis, 86100 Campobasso, Italy
| | - Sabato Fusco
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Via F. De Sanctis, 86100 Campobasso, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Via F. De Sanctis, 86100 Campobasso, Italy
| | - Stefano Zoroddu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Luigi Bagella
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Centre for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
2
|
Gupta MK, Gouda G, Vadde R. Relation Between Obesity and Type 2 Diabetes: Evolutionary Insights, Perspectives and Controversies. Curr Obes Rep 2024; 13:475-495. [PMID: 38850502 DOI: 10.1007/s13679-024-00572-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/10/2024]
Abstract
PURPOSE OF REVIEW Since the mid-twentieth century, obesity and its related comorbidities, notably insulin resistance (IR) and type 2 diabetes (T2D), have surged. Nevertheless, their underlying mechanisms remain elusive. Evolutionary medicine (EM) sheds light on these issues by examining how evolutionary processes shape traits and diseases, offering insights for medical practice. This review summarizes the pathogenesis and genetics of obesity-related IR and T2D. Subsequently, delving into their evolutionary connections. Addressing limitations and proposing future research directions aims to enhance our understanding of these conditions, paving the way for improved treatments and prevention strategies. RECENT FINDINGS Several evolutionary hypotheses have been proposed to unmask the origin of obesity-related IR and T2D, e.g., the "thrifty genotype" hypothesis suggests that certain "thrifty genes" that helped hunter-gatherer populations efficiently store energy as fat during feast-famine cycles are now maladaptive in our modern obesogenic environment. The "drifty genotype" theory suggests that if thrifty genes were advantageous, they would have spread widely, but proposes genetic drift instead. The "behavioral switch" and "carnivore connection" hypotheses propose insulin resistance as an adaptation for a brain-dependent, low-carbohydrate lifestyle. The thrifty phenotype theory suggests various metabolic outcomes shaped by genes and environment during development. However, the majority of these hypotheses lack experimental validation. Understanding why ancestral advantages now predispose us to diseases may aid in drug development and prevention of disease. EM helps us to understand the evolutionary relation between obesity-related IR and T2D. But still gaps and contradictions persist. Further interdisciplinary research is required to elucidate complete mechanisms.
Collapse
Affiliation(s)
- Manoj Kumar Gupta
- Department of Biotechnology & Bioinformatics, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India.
| | - Gayatri Gouda
- ICAR-National Rice Research Institute, Cuttack, 753 006, Odisha, India
| | - Ramakrishna Vadde
- Department of Biotechnology & Bioinformatics, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India
| |
Collapse
|
3
|
Ren Y, Huang P, Zhang L, Tang YF, Luo SL, She Z, Peng H, Chen YQ, Luo JW, Duan WX, Liu LJ, Liu LQ. Dual Regulation Mechanism of Obesity: DNA Methylation and Intestinal Flora. Biomedicines 2024; 12:1633. [PMID: 39200098 PMCID: PMC11351752 DOI: 10.3390/biomedicines12081633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Obesity is a multifactorial chronic inflammatory metabolic disorder, with pathogenesis influenced by genetic and non-genetic factors such as environment and diet. Intestinal microbes and their metabolites play significant roles in the occurrence and development of obesity by regulating energy metabolism, inducing chronic inflammation, and impacting intestinal hormone secretion. Epigenetics, which involves the regulation of host gene expression without changing the nucleotide sequence, provides an exact direction for us to understand how the environment, lifestyle factors, and other risk factors contribute to obesity. DNA methylation, as the most common epigenetic modification, is involved in the pathogenesis of various metabolic diseases. The epigenetic modification of the host is induced or regulated by the intestinal microbiota and their metabolites, linking the dynamic interaction between the microbiota and the host genome. In this review, we examined recent advancements in research, focusing on the involvement of intestinal microbiota and DNA methylation in the etiology and progression of obesity, as well as potential interactions between the two factors, providing novel perspectives and avenues for further elucidating the pathogenesis, prevention, and treatment of obesity.
Collapse
Affiliation(s)
- Yi Ren
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Department of Pediatrics, Haikou Hospital of the Maternal and Child Health, Haikou 570100, China
- Department of Children’s Healthcare, Hainan Modern Women and Children’s Medical, Haikou 570100, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yu-Fen Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Sen-Lin Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Zhou She
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Hong Peng
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yu-Qiong Chen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Jin-Wen Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Wang-Xin Duan
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Ling-Juan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Li-Qun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| |
Collapse
|
4
|
Lin X, Han H, Wang N, Wang C, Qi M, Wang J, Liu G. The Gut Microbial Regulation of Epigenetic Modification from a Metabolic Perspective. Int J Mol Sci 2024; 25:7175. [PMID: 39000282 PMCID: PMC11241073 DOI: 10.3390/ijms25137175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Obesity is a global health challenge that has received increasing attention in contemporary research. The gut microbiota has been implicated in the development of obesity, primarily through its involvement in regulating various host metabolic processes. Recent research suggests that epigenetic modifications may serve as crucial pathways through which the gut microbiota and its metabolites contribute to the pathogenesis of obesity and other metabolic disorders. Hence, understanding the interplay between gut microbiota and epigenetic mechanisms is crucial for elucidating the impact of obesity on the host. This review primarily focuses on the understanding of the relationship between the gut microbiota and its metabolites with epigenetic mechanisms in several obesity-related pathogenic mechanisms, including energy dysregulation, metabolic inflammation, and maternal inheritance. These findings could serve as novel therapeutic targets for probiotics, prebiotics, and fecal microbiota transplantation tools in treating metabolic disruptions. It may also aid in developing therapeutic strategies that modulate the gut microbiota, thereby regulating the metabolic characteristics of obesity.
Collapse
Affiliation(s)
- Xingtong Lin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (H.H.); (N.W.); (C.W.); (M.Q.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Hui Han
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (H.H.); (N.W.); (C.W.); (M.Q.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Nan Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (H.H.); (N.W.); (C.W.); (M.Q.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Chengming Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (H.H.); (N.W.); (C.W.); (M.Q.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Ming Qi
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (H.H.); (N.W.); (C.W.); (M.Q.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Jing Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (H.H.); (N.W.); (C.W.); (M.Q.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Gang Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (H.H.); (N.W.); (C.W.); (M.Q.)
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
5
|
Aitken KJ, Schröder A, Haddad A, Sidler M, Penna F, Fernandez N, Ahmed T, Marino V, Bechbache M, Jiang JX, Tolg C, Bägli DJ. Epigenetic insights to pediatric uropathology: Celebrating the fundamental biology vision of Tony Khoury. J Pediatr Urol 2024; 20 Suppl 1:S43-S57. [PMID: 38944627 DOI: 10.1016/j.jpurol.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 07/01/2024]
Abstract
INTRODUCTION Many pediatric urology conditions affect putatively normal tissues or appear too commonly to be based solely on specific DNA mutations. Understanding epigenetic mechanisms in pediatric urology, therefore, has many implications that can impact cell and tissue responses to settings, such as environmental and hormonal influences on urethral development, uropathogenic infections, obstructive stimuli, all of which originate externally or extracellularly. Indeed, the cell's response to external stimuli is often mediated epigenetically. In this commentary, we highlight work on the critical role that epigenetic machinery, such as DNA methyltransferases (DNMTs), Enhancer of Zeste Polycomb Repressive Complex 2 Subunit (EZH2), and others play in regulating gene expression and cellular functions in three urological contexts. DESIGN Animal and cellular constructs were used to model clinical pediatric uropathology. The hypertrophy, trabeculation, and fibrosis of the chronically obstructed bladder was explored using smooth muscle cell models employing disorganised vs. normal extracellular matrix (ECM), as well as a new animal model of chronic obstructive bladder disease (COBD) which retains its pathologic features even after bladder de-obstruction. Cell models from human and murine hypospadias or genital tubercles (GT) were used to illustrate developmental responses and epigenetic dependency of key developmental genes. Finally, using bladder urothelial and organoid culture systems, we examined activity of epigenetic machinery in response to non uropathogenic vs. uropathogenic E.coli (UPEC). DNMT and EZH2 expression and function were interrogated in these model systems. RESULTS Disordered ECM exerted a principal mitogenic and epigenetic role for on bladder smooth muscle both in vitro and in CODB in vivo. Key genes, e.g., BDNF and KCNB2 were under epigenetic regulation in actively evolving obstruction and COBD, though each condition showed distinct epigenetic responses. In models of hypospadias, estrogen strongly dysregulated WNT and Hox expression, which was normalized by epigenetic inhibition. Finally, DNA methylation machinery in the urothelium showed specific activation when challenged by uropathogenic E.coli. Similarly, UPEC induces hypermethylation and downregulation of the growth suppressor p16INK4A. Moreover, host cells exposed to UPEC produced secreted factors inducing epigenetic responses transmissible from one affected cell to another without ongoing bacterial presence. DISCUSSION Microenvironmental influences altered epigenetic activity in the three described urologic contexts. Considering that many obstructed bladders continue to display abnormal architecture and dysfunction despite relief of obstruction similar to after resection of posterior valves or BPH, the epigenetic mechanisms described highlight novel approaches for understanding the underlying smooth muscle myopathy of this crucial clinical problem. Similarly, there is evidence for an epigenetic basis of xenoestrogen on development of hypospadias, and UTI-induced pan-urothelial alteration of epigenetic marks and propensity for subsequent (recurrent) UTI. The impact of mechanical, hormonal, infectious triggers on genitourinary epigenetic machinery activity invite novel avenues for targeting epigenetic modifications associated with these non-cancer diseases in urology. This includes the use of deactivated CRISPR-based technologies for precise epigenome targeting and editing. Overall, we underscore the importance of understanding epigenetic regulation in pediatric urology for the development of innovative therapeutic and management strategies.
Collapse
Affiliation(s)
- K J Aitken
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; DIYbio Toronto, 1677 St. Clair West, Toronto, Ontario, Canada.
| | - Annette Schröder
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; Division of Urology, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Urology and Pediatric Urology of the University Medical Center Mainz, Mainz, Rheinland-Pfalz, Germany
| | - Ahmed Haddad
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; Division of Urology, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Martin Sidler
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; Division of Urology, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Frank Penna
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; Division of Urology, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nicolas Fernandez
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; Division of Urology, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tabina Ahmed
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; Human Biology Programme, University of Toronto, Toronto, Ontario, Canada
| | - Vincent Marino
- DIYbio Toronto, 1677 St. Clair West, Toronto, Ontario, Canada
| | - Matthew Bechbache
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada
| | - Jia-Xin Jiang
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; Human Biology Programme, University of Toronto, Toronto, Ontario, Canada; Department of Physiology, Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Cornelia Tolg
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada
| | - Darius J Bägli
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, 686 Bay St., Toronto, Ontario, Canada; Division of Urology, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Physiology, Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Division of Urology, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Nel NH, Haddad EN, Kerver JM, Cassidy-Bushrow AE, Comstock SS. Maternal Body Mass Index Associates with Prenatal Characteristics and Fecal Microbial Communities. Nutrients 2024; 16:1881. [PMID: 38931236 PMCID: PMC11206496 DOI: 10.3390/nu16121881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
The maternal microbiome plays a vital role in shaping pregnancy outcomes, but there remains a substantial gap in understanding its precise relationships to maternal health, particularly in relation to potential effects of body mass index (BMI) on gut microbial diversity. The aim of this observational study was to assess maternal characteristics in association with pre-pregnancy BMI and to further assess microbial diversity in association with specific maternal characteristics. Eighty-four pregnant women were recruited during their third trimester of pregnancy from various prenatal clinics across the state of Michigan. The participants completed an enrollment questionnaire including self-reported pre-pregnancy BMI; stool samples were collected to assess the fecal microbial community composition. Pre-pregnancy obesity (BMI 30+) was associated (univariably) with antibiotic use before pregnancy, ever smoked, lower education level, and being unmarried. The gut microbiota alpha diversity was significantly different for pregnant women by pre-pregnancy BMI category (normal, overweight, obese). The beta diversity was unique for the gut microbiotas of pregnant women within each BMI category, by education level, and by marital status. Multivariable models revealed that pre-pregnancy BMI, maternal education, marital status, and maternal age were associated with the microbial diversity of the gut microbiota during pregnancy. These results give new insight into the relationship between a woman's microbiome during pregnancy and their prenatal health, along with an understanding of the relationships between socioeconomic factors and microbial diversity.
Collapse
Affiliation(s)
- Nikita H. Nel
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Eliot N. Haddad
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Jean M. Kerver
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Andrea E. Cassidy-Bushrow
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
- Department of Public Health Sciences, Henry Ford Health, Detroit, MI 48202, USA
| | - Sarah S. Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
7
|
Gupta N, El-Gawaad NSA, Mallasiy LO, Gupta H, Yadav VK, Alghamdi S, Qusty NF. Microbial dysbiosis and the aging process: a review on the potential age-deceleration role of Lactiplantibacillus plantarum. Front Microbiol 2024; 15:1260793. [PMID: 38440135 PMCID: PMC10909992 DOI: 10.3389/fmicb.2024.1260793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/01/2024] [Indexed: 03/06/2024] Open
Abstract
Gut microbiota dysbiosis has been a serious risk factor for several gastric and systemic diseases. Recently, gut microbiota's role in aging was discussed. Available preclinical evidence suggests that the probiotic bacteria Lactiplantibacillus plantarums (LP) may influence the aging process via modulation of the gut microbiota. The present review summarized compelling evidence of LP's potential effect on aging hallmarks such as oxidative stress, inflammation, DNA methylation, and mitochondrial dysfunction. LP gavage modulates gut microbiota and improves overall endurance in aging animal models. LP cell constituents exert considerable antioxidant potential which may reduce ROS levels directly. In addition, restored gut microbiota facilitate a healthy intestinal milieu and accelerate multi-channel communication via signaling factors such as SCFA and GABA. Signaling factors further activate specific transcription factor Nrf2 in order to reduce oxidative damage. Nrf2 regulates cellular defense systems involving anti-inflammatory cytokines, MMPs, and protective enzymes against MAPKs. We concluded that LP supplementation may be an effective approach to managing aging and associated health risks.
Collapse
Affiliation(s)
- Nishant Gupta
- Medical Research and Development, River Engineering, Noida, India
| | - N. S. Abd El-Gawaad
- Department of Physics, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - L. O. Mallasiy
- Department of Home Economics, Faculty of Science and Arts in Tihama, King Khalid University, Muhayil, Saudi Arabia
| | | | | | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Umm Al-Qura University, Makkah, Saudi Arabia
| | - Naeem F. Qusty
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
8
|
Giovannini N, Lattuada D, Danusso R, Ferrazzi E. From pandemic to syndemic: microbiota, pregnancy, and environment at a crossroad. J Matern Fetal Neonatal Med 2023; 36:2183738. [PMID: 36977591 DOI: 10.1080/14767058.2023.2183738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Aim: SARS-CoV2 is the latest pandemic that have plagued the socio-health system as an epiphenomenon resulting from planetary resources abuse, crucial for biodiversity. The Anthropocene best defines the present epoch in which human activity irreversibly manipulates intricate and delicate geological and biological balances established over eons. The devastating ecological and socio-economic implications of COVID-19, underline the importance of updating the present pandemic framework to a syndemic. This paper stems from the need to suggest to scientists, doctors, and patients a mission that integrates responsibility from individual to collective health, from present to trans-generational, from human to the entire biotic network. Today's choices are crucial for the perspective on all levels: political, economic, and health as well as cultural.Methods: Research on PubMed and other specific web-sites journal was performed on the topic "Microbiota", "Covid-19", "Pandemic", "Zoonosis", "SARS-CoV-2", "Environmental Pollutants", "Epigenetics", "Fetal Programming", "Human Extinction". Data collected were analysed for an integrative model of interconnection between environment, pregnancy, SARS-CoV-2 infection, and microbiota. Moreover, systematic literature review allowed to summarise in a table information about the worst pandemics that afflicted the human species recently.Results: This paper offers a broad view of the current pandemic starting with pregnancy, the moment when a new life begins and the health trajectories of the unborn child are defined, which will inevitably have repercussions on his well-being. The fundamental role of the biodiversity-rich microbiota in avoiding the development of severe infectious diseases, is therefore highlighted. It is imperative to adjust the current reductionist paradigm based on mostly immediate symptom management towards a broader understanding of the spatial interconnection of ecological niches with human health and the impacts of today's choices on the future. Health and healthcare are elitist rather than egalitarian, therefore focusing on environmental health forces us to make a concerted and systemic effort that challenges political and economic barriers, which are biologically senseless. A healthy microbiota is essential to well-being, both by preventing chronic degenerative conditions, the infectiousness and pathogenicity of bacterial and viral diseases. SARS-CoV-2 should not be an exception. The human microbiota, forged by the first 1,000 days of life, is fundamental in shaping the health-disease trajectories, and by the everlasting exposome that is dramatically affected by the ecological disaster. Individual health is one world health whereas single and global well-being are interdependent in a space-time perspective.Conclusions: Is it not a convenient reductionism not to consider the COVID-19 emergency as a bio-social epiphenomenon of a far more devastating and multi-faceted crisis whose common denominator is the global biotic network loss of which humans are still part?
Collapse
Affiliation(s)
- Niccolò Giovannini
- Department of women-child-newborn Obstetrics and Gynaecology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Debora Lattuada
- Department of women-child-newborn Obstetrics and Gynaecology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Roberta Danusso
- Department of women-child-newborn Obstetrics and Gynaecology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Enrico Ferrazzi
- Department of women-child-newborn Obstetrics and Gynaecology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| |
Collapse
|
9
|
Li Z, Li Y, Pan B, Wang X, Wu Y, Guo K, Yang M, Ma M, Qiao C, Yang K. The Effects of Oral Probiotic Supplementation in Postmenopausal Women with Overweight and Obesity: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Probiotics Antimicrob Proteins 2023; 15:1567-1582. [PMID: 36576686 DOI: 10.1007/s12602-022-10037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
Gut microbiota has been identified as a unique endocrine organ linked to the development of cardiovascular disease and other illnesses, especially deteriorated in overweight and obese postmenopausal women. The object of this systematic review and meta-analysis aimed to assess the effects of oral supplementation with probiotics for overweight and obese postmenopausal women. We performed a systematic search for randomized controlled trials (RCTs) from inception to April 2022 in MEDLINE, Embase, Cochrane Library, Web of Science, and ClinicalTrials.gov. We also performed a hand search by reviewing reference lists to identify trials. The risk of bias in individual studies was assessed with the Cochrane risk of bias tool for randomized trials (RoB). Two reviewers independently selected studies and collected data. There were 6 studies from 5 RCTs with 281 participants in this systematic review. Compared with the placebo, the probiotics supplementation group had reductions in insulin (MD - 4.20 IU/L (95% CI - 8.11 to - 0.30 IU/L), I2 = 54%), HOMA-IR (MD - 1.25 (95% CI - 2.49 to - 0.01), I2 = 50%), and TNF-α (MD - 0.12 pg/mL (95% CI - 0.22 to - 0.01 pg/mL), I2 = 44%). Improvements were also shown in body adiposity and lipid profile, but these effects were nonsignificant. In addition to body adiposity and cardiovascular risk markers, one trial showed the administration of probiotics also had an effect on iron metabolism. In conclusion, probiotics have a potential benefit on glucose metabolism and inflammatory process in overweight and obese postmenopausal women, but this effect is mild. It demonstrates that oral probiotics supplementation can be a complementary treatment for improving the fitness of postmenopausal women with overweight and obesity.
Collapse
Affiliation(s)
- Zijun Li
- Evidence Based Social Science Research Center/Health Technology Assessment Center, School of Public Health, Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou University, Lanzhou, China
| | - Yanfei Li
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou University, Lanzhou, China
| | - Bei Pan
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou University, Lanzhou, China
| | - Xiaoman Wang
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yu Wu
- Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology of Gansu Province, Lanzhou, Gansu, China
| | - Ke Guo
- Evidence Based Social Science Research Center/Health Technology Assessment Center, School of Public Health, Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou University, Lanzhou, China
| | - Minyan Yang
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou University, Lanzhou, China
| | - Mina Ma
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou University, Lanzhou, China
| | - Chengdong Qiao
- The First Hospital of Lanzhou University, Lanzhou, China.
| | - Kehu Yang
- Evidence Based Social Science Research Center/Health Technology Assessment Center, School of Public Health, Lanzhou University, Lanzhou, China.
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou University, Lanzhou, China.
| |
Collapse
|
10
|
Dunislawska A, Gryzinska M, Siwek M. Changes in the gene expression and methylation in chicken cecal tonsils after in ovo administration of bioactive substances. Sci Rep 2023; 13:19840. [PMID: 37964014 PMCID: PMC10645795 DOI: 10.1038/s41598-023-47080-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/08/2023] [Indexed: 11/16/2023] Open
Abstract
Cecal tonsils are the main organs which generate an immune response and also the part of the GALT, thus they are in the close proximity of the intestinal microbiota and continuously exposed to microbe-associated molecular patterns. GALT developed regulatory and anti-inflammatory mechanisms which eliminate or tolerate microbiota. Bioactive substances in ovo administration ensures an early contact between the GALT and beneficial bacteria, which greatly promotes the development of tolerance. Our previous studies have shown that the administration of bioactive substances in ovo silences gene expression in the cecal tonsils. The research hypothesis assumes that negative silencing of expression is correlated with the level of methylation in the tonsils. Therefore the current study aimed to analyze the global and gene-specific DNA methylation profiles in the cecal tonsils of two distinct chicken genotypes administered in ovo with bioactive substances. Eggs of Ross 308 and Green-legged Partridgelike were stimulated on day 12 of incubation. The injected compounds were: probiotic-Lactococcus lactis subsp. cremoris, prebiotic-galactooligosaccharides, and synbiotic-combination of both. Chickens were sacrificed on d 42 post-hatching. Cecal tonsils was collected, RNA and DNA were isolated and intended to gene expression, gene methylation and global methylation analysis. Cecal tonsils changes were observed in the methylation of 6 genes: SYK, ANGPTL4, TNFRSF14, IKZF1, CYR61, SERPING. Analyzes showed that the suppression of gene expression is related to the level of methylation of individual genes. Based on the results obtained in the cecal tonsils, it can be concluded that the silencing of gene expression is of an epigenetic nature. This is another study aimed at analyzing the relationship between the host, its intestinal microbiota and the possibilities of its programming.
Collapse
Affiliation(s)
- Aleksandra Dunislawska
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, 85-084, Bydgoszcz, Poland.
| | - Magdalena Gryzinska
- Institute of Biological Basis of Animal Production, Sub-Department of General and Molecular Genetics, University of Life Sciences in Lublin, 20-033, Lublin, Poland
| | - Maria Siwek
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, 85-084, Bydgoszcz, Poland
| |
Collapse
|
11
|
Alemu BK, Azeze GG, Wu L, Lau SL, Wang CC, Wang Y. Effects of maternal probiotic supplementation on breast milk microbiome and infant gut microbiome and health: a systematic review and meta-analysis of randomized controlled trials. Am J Obstet Gynecol MFM 2023; 5:101148. [PMID: 37660760 DOI: 10.1016/j.ajogmf.2023.101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
OBJECTIVE The early-life microbiome is formed during the perinatal period and is critical for infants' lifelong health. This is established by maternal-infant microbiome crosstalk, which is mediated by the breast milk microbiome. The milk microbiome is dependent on the maternal gut microbiome, suggesting that it could potentially be restored through oral probiotic supplements. Therefore, we conducted this systematic review and meta-analysis to summarize the effect of maternal probiotic supplements on breast milk and infant gut microbiome composition and on infant health. DATA SOURCES The PubMed, EMBASE, Web of Science, Scopus, CINAHL, and Science Direct databases were searched until December 15, 2022. STUDY ELIGIBILITY CRITERIA Randomized controlled trials following the population, intervention, comparison, and outcome (population: pregnant or lactating women; intervention: probiotics; control: placebo or follow-up; outcome: breast milk and infant gut microbiome composition and infant health) principles were included. METHODS Using a random effect model, the standard mean difference, risk difference, and risk ratio with 95% confidence interval were used to measure each outcome. All analyses were conducted using the intention-to-treat approach. Heterogeneity was evaluated using I2 statistics. RESULTS The final data set included 24 randomized controlled trials with a total of 2761 mothers and 1756 infants. The overall effect of probiotics on the beneficial bacteria detection rate in breast milk had a risk difference of 24% (95% confidence interval, 0.1-0.37; P<.001; I2=91.12%). The pooled mean beneficial and pathogenic bacteria abundance in breast milk had a standard mean difference of 1.22 log10 colony forming units/mL (95% confidence interval, 0.48-1.97; P<.001; I2=95.51%) and -1.05 log10 colony forming unites/mL (95% confidence interval, -1.99 to -0.12; P=.03; I2=96.79%), respectively. The overall abundance of beneficial bacteria in the infant gut had a standard mean difference of 0.89 log10 colony forming units/g (95% confidence interval, 0.22-1.56; P=.01; I2=95.01%). It also controlled infant weight gain (standard mean difference, -0.49 kg/equivalent age; 95% confidence interval, -0.82 to -0.17; P<.001; I2=0.00%) and decreased the occurrence of infantile colic (risk ratio, 0.30; 95% confidence interval, 0.16-0.57; P<.001; I2=0.00%). CONCLUSION Maternal probiotic supplements effectively orchestrate the breast milk and infant gut microbiome with a wide range of clinical benefits and safety. Lactobacillus, Bifidobacterium, Streptococcus thermophilus, and S. boulardii can be used as maternal supplements to promote infant health.
Collapse
Affiliation(s)
- Bekalu Kassie Alemu
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR (Messers Alemu and Azeze and Drs Wu, Lau, C Wang, and Y Wang); Department of Midwifery, College of Medicine and Health Sciences, Debre Markos University, Ethiopia (Mr Alemu)
| | - Getnet Gedefaw Azeze
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR (Messers Alemu and Azeze and Drs Wu, Lau, C Wang, and Y Wang); Department of Midwifery, College Medicine and Health Sciences, Injibara University, Ethiopia (Mr Azeze)
| | - Ling Wu
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR (Messers Alemu and Azeze and Drs Wu, Lau, C Wang, and Y Wang)
| | - So Ling Lau
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR (Messers Alemu and Azeze and Drs Wu, Lau, C Wang, and Y Wang)
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR (Messers Alemu and Azeze and Drs Wu, Lau, C Wang, and Y Wang); Li Ka Shing Institute of Health Sciences, School of Biomedical Sciences, Chinese University of Hong Kong-Sichuan University Joint Laboratory for Reproductive Medicine, Hong Kong SAR (Dr C Wang)
| | - Yao Wang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR (Messers Alemu and Azeze and Drs Wu, Lau, C Wang, and Y Wang).
| |
Collapse
|
12
|
Borka Balas R, Meliț LE, Lupu A, Lupu VV, Mărginean CO. Prebiotics, Probiotics, and Synbiotics-A Research Hotspot for Pediatric Obesity. Microorganisms 2023; 11:2651. [PMID: 38004665 PMCID: PMC10672778 DOI: 10.3390/microorganisms11112651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Childhood obesity is a major public health problem worldwide with an increasing prevalence, associated not only with metabolic syndrome, insulin resistance, hypertension, dyslipidemia, and non-alcoholic fatty liver disease (NAFLD), but also with psychosocial problems. Gut microbiota is a new factor in childhood obesity, which can modulate the blood lipopolysaccharide levels, the satiety, and fat distribution, and can ensure additional calories to the host. The aim of this review was to assess the differences and the impact of the gut microbial composition on several obesity-related complications such as metabolic syndrome, NAFLD, or insulin resistance. Early dysbiosis was proven to be associated with an increased predisposition to obesity. Depending on the predominant species, the gut microbiota might have either a positive or negative impact on the development of obesity. Prebiotics, probiotics, and synbiotics were suggested to have a positive effect on improving the gut microbiota and reducing cardio-metabolic risk factors. The results of clinical trials regarding probiotic, prebiotic, and synbiotic administration in children with metabolic syndrome, NAFLD, and insulin resistance are controversial. Some of them (Lactobacillus rhamnosus bv-77, Lactobacillus salivarius, and Bifidobacterium animalis) were proven to reduce the body mass index in obese children, and also improve the blood lipid content; others (Bifidobacterium bifidum, Bifidobacterium longum, Lactobacillus acidophilus, Lacticaseibacillus rhamnosus, Enterococcus faecium, and fructo-oligosaccharides) failed in proving any effect on lipid parameters and glucose metabolism. Further studies are necessary for understanding the mechanism of the gut microbiota in childhood obesity and for developing low-cost effective strategies for its management.
Collapse
Affiliation(s)
- Reka Borka Balas
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, Gheorghe Marinescu Street, No. 38, 540136 Târgu Mureș, Romania; (R.B.B.); (C.O.M.)
| | - Lorena Elena Meliț
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, Gheorghe Marinescu Street, No. 38, 540136 Târgu Mureș, Romania; (R.B.B.); (C.O.M.)
| | - Ancuța Lupu
- Department of Pediatrics, University of Medicine and Pharmacy Gr. T. Popa Iași, Universității Street No 16, 700115 Iași, Romania; (A.L.); (V.V.L.)
| | - Vasile Valeriu Lupu
- Department of Pediatrics, University of Medicine and Pharmacy Gr. T. Popa Iași, Universității Street No 16, 700115 Iași, Romania; (A.L.); (V.V.L.)
| | - Cristina Oana Mărginean
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, Gheorghe Marinescu Street, No. 38, 540136 Târgu Mureș, Romania; (R.B.B.); (C.O.M.)
| |
Collapse
|
13
|
Ren Y, Zeng Y, Wu Y, Yu J, Zhang Q, Xiao X. The Role of Gut Microbiota in Gestational Diabetes Mellitus Affecting Intergenerational Glucose Metabolism: Possible Mechanisms and Interventions. Nutrients 2023; 15:4551. [PMID: 37960204 PMCID: PMC10648599 DOI: 10.3390/nu15214551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
The incidence of type 2 diabetes is increasing every year and has become a serious public health problem. In addition to genetic factors, environmental factors in early life development are risk factors for diabetes. There is growing evidence that the gut microbiota plays an important role in glucose metabolism, and the gut microbiota of pregnant women with gestational diabetes mellitus (GDM) differs significantly from that of healthy pregnant women. This article reviews the role of maternal gut microbiota in offspring glucose metabolism. To explore the potential mechanisms by which the gut microbiota affects glucose metabolism in offspring, we summarize clinical studies and experimental animal models that support the hypothesis that the gut microbiota affects glucose metabolism in offspring from dams with GDM and discuss interventions that could improve glucose metabolism in offspring. Given that adverse pregnancy outcomes severely impact the quality of survival, reversing the deleterious effects of abnormal glucose metabolism in offspring through early intervention is important for both mothers and their offspring.
Collapse
Affiliation(s)
- Yaolin Ren
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (Y.R.); (Y.Z.); (Y.W.); (J.Y.)
| | - Yuan Zeng
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (Y.R.); (Y.Z.); (Y.W.); (J.Y.)
| | - Yifan Wu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (Y.R.); (Y.Z.); (Y.W.); (J.Y.)
| | - Jie Yu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (Y.R.); (Y.Z.); (Y.W.); (J.Y.)
| | - Qian Zhang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (Y.R.); (Y.Z.); (Y.W.); (J.Y.)
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (Y.R.); (Y.Z.); (Y.W.); (J.Y.)
- State Key Laboratory of Complex Severe and Rare Diseases, The Translational Medicine Center of Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
14
|
Okuka N, Schuh V, Krammer U, Polovina S, Sumarac-Dumanovic M, Milinkovic N, Velickovic K, Djordjevic B, Haslberger A, Ivanovic ND. Epigenetic Aspects of a New Probiotic Concept-A Pilot Study. Life (Basel) 2023; 13:1912. [PMID: 37763315 PMCID: PMC10533075 DOI: 10.3390/life13091912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/02/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Several studies report the important role of an altered gut microbiota in the development of obesity, highlighting the potential use of probiotics in the treatment of obesity. The aim of this study is to investigate the effect of a novel probiotic approach on the expression of specific miRNAs and mRNAs associated with obesity in combination with the hypocholesterolemic octacosanol. Twenty overweight/obese women participated in a randomized, placebo-controlled, double-blind study and were randomly divided into two groups: the intervention group (daily one capsule containing Lactobacillus plantarum 299v (DSM9843), Saccharomyces cerevisiae var. boulardii, and 40 mg octacosanol; N = 12) and the placebo group (N = 8). Changes in lipid parameters and expression of miRNAs and mRNAs were assessed before (T0) and after the 12-week intervention (T1). After the intervention, the expression of miR-155-5p (9.38 ± 0.85 vs. 8.38 ± 1.06, p = 0.05) and miR-24-3p (3.42 ± 0.38 vs. 2.71 ± 0.97, p = 0.031) showed significant decreases in the intervention group when compared to the control group. At T1, the expression of miR-155-5p (8.69 ± 1.31 vs. 9.3 ± 0.85, p = 0.04), miR-125b-5p (5.41 ± 1.18 vs. 5.99 ± 1.36, p = 0.049), and TNF-α (10.24 ± 1.66 vs. 11.36 ± 1.12, p = 0.009) were significantly decreased in the intervention group. No changes in lipids and anthropometric parameters were observed. The novel probiotic approach had a positive effect on regulating the expression of certain miRNAs and mRNAs important for regulating inflammation and adipogenesis, which are essential for obesity onset and control.
Collapse
Affiliation(s)
- Nina Okuka
- Department of Bromatology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina;
| | | | | | - Snezana Polovina
- Clinic for Endocrinology, Diabetes and Diseases of Metabolism, Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Mirjana Sumarac-Dumanovic
- School of Medicine, University of Belgrade, Clinic for Endocrinology, Diabetes and Diseases of Metabolism, 11000 Belgrade, Serbia
| | - Neda Milinkovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Ksenija Velickovic
- Department of Cell and Tissue Biology, Faculty of Biology, University of Belgrade; 11000 Belgrade, Serbia
| | - Brizita Djordjevic
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | | | - Nevena Dj. Ivanovic
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
15
|
Al KF, Allen L, Bedell S, Burton JP, de Vrijer B. Assessing the impact of pregnancy and birth factors on the maternal and infant microbiota. MICROBIOME RESEARCH REPORTS 2023; 2:29. [PMID: 38045923 PMCID: PMC10688794 DOI: 10.20517/mrr.2023.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/28/2023] [Accepted: 07/11/2023] [Indexed: 12/05/2023]
Abstract
Background: The microbiota acquired at birth is known to play an intimate role in later life health and disease and has been shown to be affected by the mode of birth. There has been recent interest in microbiota correction by maternal vaginal seeding in Cesarean section-born infants; however, the safety of this practice has been debated. The aim of this study was to assess how other factors, such as timing of sampling, maternal obesity, vaginal Group B Streptococcus colonization (GBS), and antibiotic exposure, affect the maternal and infant microbiota. Methods: Maternal vaginal and saliva samples were collected at three time periods: 35-37 weeks gestation (prenatal), within 24-36 hours after birth (birth), and at ~6 weeks postpartum. Infant saliva and stool samples were collected at ~6 weeks postpartum. 16S rRNA amplicon sequencing was utilized to assess the taxonomic and inferred functional compositions of the bacterial communities from both mothers and infants. Results: Samples from 36 mothers and 32 infants were obtained. Gestational age, breastfeeding, mode of birth, and gravidity were associated with taxonomic alterations in the infant samples, while obesity, antibiotic use, and GBS status were not. Maternal samples were predominantly affected by time, whereby significant alterations including increased microbial diversity were seen at birth and persisted to 6 weeks postpartum. Conclusion: This study provides information on the relationship between health and delivery factors and changes in vaginal and infant microbiota. These results may better direct clinicians and mothers in optimizing the infant microbiota towards health during infancy and later life.
Collapse
Affiliation(s)
- Kait F Al
- Canadian Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, Ontario N6A4V2, Canada
- Department of Microbiology and Immunology, Western University, London, Ontario N6A3K7, Canada
| | - Laura Allen
- London Health Sciences Centre, London, Ontario N6A5W9, Canada
- Department of Obstetrics and Gynaecology, Division of Maternal Fetal Medicine, Western University, London, Ontario N6H5W9, Canada
| | - Samantha Bedell
- London Health Sciences Centre, London, Ontario N6A5W9, Canada
- Department of Obstetrics and Gynaecology, Division of Maternal Fetal Medicine, Western University, London, Ontario N6H5W9, Canada
| | - Jeremy P Burton
- Canadian Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, Ontario N6A4V2, Canada
- Department of Microbiology and Immunology, Western University, London, Ontario N6A3K7, Canada
- Division of Urology, Department of Surgery, Western University, London, Ontario N6A4V2, Canada
| | - Barbra de Vrijer
- London Health Sciences Centre, London, Ontario N6A5W9, Canada
- Department of Obstetrics and Gynaecology, Division of Maternal Fetal Medicine, Western University, London, Ontario N6H5W9, Canada
- Children’s Health Research Institute, London, Ontario N6C 4V3, Canada
| |
Collapse
|
16
|
Rhodes A, Pimprikar A, Baum A, Smith AD, Llewellyn CH. Using the Person-Based Approach to Develop a Digital Intervention Targeting Diet and Physical Activity in Pregnancy: Development Study. JMIR Form Res 2023; 7:e44082. [PMID: 37234026 PMCID: PMC10257111 DOI: 10.2196/44082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/19/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND In pregnancy, eating well, keeping active, and avoiding excessive weight gain are associated with better maternal and fetal health outcomes. Dietary and physical activity (PA) interventions can be effective in changing behaviors and managing weight gain. The comparatively lower cost and greater accessibility of digital interventions make them an attractive alternative to in-person interventions. Baby Buddy is a free pregnancy and parenting app from the charity Best Beginnings. Designed to support parents, improve health outcomes, and reduce inequalities, the app is actively used within the UK National Health Service. It offers an ideal platform for delivering and evaluating a new prenatal dietary and PA intervention. OBJECTIVE The aim of this study was to create a theory-based intervention within Baby Buddy to empower, encourage, and support expectant parents to develop healthier dietary and PA habits for pregnancy and parenthood. METHODS The intervention's development process was guided by the Behavior Change Wheel, with the person-based approach used to create and test its design. Three stages of qualitative research with pregnant and recently pregnant parents guided the intervention design. Study 1 (n=30), comprising 4 web-based focus groups and 12 telephone interviews, gauged response to the rudimentary concept and generated ideas for its development. Results were analyzed thematically. At this stage, the guiding principles for the intervention development were established, and regular team meetings ensured that the intervention design remained aligned with Best Beginnings' objectives, evidence-based approach, and feasibility criteria. Study 2 (n=29), comprising web-based individual and couple interviews, explored design ideas using wireframes and scripts and generated iterative feedback on the intervention content, branding, and tone. A table of changes analysis tracked design amendments. Study 3 (n=19) tested an app prototype using think-aloud interviews with current Baby Buddy users. A patient and public involvement and engagement activity (n=18) and other expert contributors (n=14) provided ad hoc input into the research process and design development. RESULTS Study 1 confirmed the appeal and relevance of the intervention concept and its novel approach of including partners. The identified themes underpinned the development of the intervention design. Iterative feedback from study 2, in conjunction with patient and public involvement and engagement and expert contributor input, helped refine the intervention design and ensure its relevance and appeal to a diverse target user group. Study 3 highlighted functionality, content, and design issues with the app prototype and identified ways of improving the user experience. CONCLUSIONS This study illustrates the value of combining a theoretical method for intervention development with the person-based approach to create a theory-based intervention that is also user-friendly, appealing, and engaging for its target audience. Further research is needed to evaluate the effectiveness of the intervention in improving diet, PA, and weight management in pregnancy.
Collapse
Affiliation(s)
- Alexandra Rhodes
- Research Department of Behavioural Science and Health, Institute of Epidemiology and Healthcare, University College London, London, United Kingdom
| | - Arya Pimprikar
- Research Department of Behavioural Science and Health, Institute of Epidemiology and Healthcare, University College London, London, United Kingdom
| | | | - Andrea D Smith
- Medical Research Council Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Clare H Llewellyn
- Research Department of Behavioural Science and Health, Institute of Epidemiology and Healthcare, University College London, London, United Kingdom
| |
Collapse
|
17
|
Núñez-Sánchez MÁ, Jiménez-Méndez A, Suárez-Cortés M, Martínez-Sánchez MA, Sánchez-Solís M, Blanco-Carnero JE, Ruiz-Alcaraz AJ, Ramos-Molina B. Inherited Epigenetic Hallmarks of Childhood Obesity Derived from Prenatal Exposure to Obesogens. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20064711. [PMID: 36981620 PMCID: PMC10048338 DOI: 10.3390/ijerph20064711] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 06/01/2023]
Abstract
Childhood obesity has reached epidemic levels in developed countries and is becoming a major cause for concern in the developing world. The causes of childhood obesity are complex and multifactorial, involving the interaction between individual genetics and environmental and developmental factors. Among the environmental factors, there is a growing interest in understanding the possible relationship between the so-called environmental obesogens and the development of obesity in children. Exposure to these obesogens such as phthalates, bisphenol A, or parabens, has been identified as a promoter of obesity through different mechanisms such as the alteration of adipocyte development from mesenchymal progenitors, the interference with hormone receptors, and induced inflammation. However, less attention has been paid to the inheritance of epigenetic modifications due to maternal exposure to these compounds during pregnancy. Thus, the aim of this review is to summarize the current knowledge of epigenetic modifications due to maternal exposure to those obesogens during pregnancy as well as their potential implication on long-term obesity development in the offspring and transgenerational inheritance of epiphenotypes.
Collapse
Affiliation(s)
- María Á Núñez-Sánchez
- Obesity and Metabolism Research Laboratory, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| | - Almudena Jiménez-Méndez
- Department of Obstetrics and Gynecology, 'Virgen de la Arrixaca' University Clinical Hospital, 30120 Murcia, Spain
| | - María Suárez-Cortés
- Department of Nursing, Faculty of Nursing, University of Murcia, El Palmar, 30120 Murcia, Spain
| | - María A Martínez-Sánchez
- Obesity and Metabolism Research Laboratory, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| | - Manuel Sánchez-Solís
- Group of Pediatric Research, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
- Respiratory and Allergy Units, Arrixaca Children's University Hospital, University of Murcia, 30120 Murcia, Spain
| | - José E Blanco-Carnero
- Department of Obstetrics and Gynecology, 'Virgen de la Arrixaca' University Clinical Hospital, 30120 Murcia, Spain
- Gynecology, Reproduction and Maternal-Fetal Medicine Research Group, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| | - Antonio J Ruiz-Alcaraz
- Department of Biochemistry, Molecular Biology B and Immunology, School of Medicine, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", 30100 Murcia, Spain
| | - Bruno Ramos-Molina
- Obesity and Metabolism Research Laboratory, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| |
Collapse
|
18
|
Saros L, Vahlberg T, Koivuniemi E, Houttu N, Niinikoski H, Tertti K, Laitinen K. Fish Oil And/Or Probiotics Intervention in Overweight/Obese Pregnant Women and Overweight Risk in 24-Month-Old Children. J Pediatr Gastroenterol Nutr 2023; 76:218-226. [PMID: 36705702 PMCID: PMC9848211 DOI: 10.1097/mpg.0000000000003659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/18/2022] [Indexed: 01/28/2023]
Abstract
OBJECTIVES To evaluate whether a fish oil and/or probiotics intervention in pregnant women with overweight or obesity would influence the tendency of their 24-month-old children to become overweight and alter their body fat percentage. METHODS Women (n = 439) were double-blindly randomized into 4 intervention groups: fish oil+placebo, probiotics+placebo, probiotics+fish oil, and placebo+placebo (fish oil: 1.9 g docosahexaenoic acid and 0.22 g eicosapentaenoic acid, probiotics: Lacticaseibacillus rhamnosus HN001 and Bifidobacterium animalis ssp. lactis 420, 1010 colony-forming units each). The intervention lasted from early pregnancy until 6 months postpartum. Children's (n = 330) growth data (height, weight, head circumference), a secondary outcome of the trial, were evaluated at birth, 3, 6, 12, and 24 months of age and compared to Finnish growth charts. Body fat percentage was measured with air displacement plethysmography (24 months). Logistic regression and general linear models were used to analyze the data. RESULTS Probiotics+placebo [weight-for-height% adj. Odds ratio (OR) = 0.36, 95% confidence interval (CI) = 0.14-0.95] and probiotics+fish oil [weight-for-age standard deviation score (SD-score) adj. OR = 0.22, 95% CI = 0.07-0.71] associated with lower overweight odds in 24-month-old children compared to placebo+placebo. Results remained essentially the same, when probiotics' main effect (combined probiotics+placebo and probiotics+fish oil) was estimated; that is, lower overweight odds (weight-for-height% adj. OR = 0.48, 95% CI = 0.25-0.95 and weight-for-age SD-score adj. OR = 0.42, 95% CI = 0.20-0.88) compared to non-probiotics. No fish oil main effect (combined fish oil+placebo and probiotics+fish oil) was seen. The intervention did not influence body fat percentage. CONCLUSIONS The administration of probiotics solely and in combination with fish oil during pregnancy to women with overweight or obesity lowered the overweight odds of their 24-month-old children.
Collapse
Affiliation(s)
- Lotta Saros
- From the Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Tero Vahlberg
- the Institute of Clinical Medicine and Biostatistics, University of Turku, Turku, Finland
| | - Ella Koivuniemi
- From the Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Noora Houttu
- From the Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Harri Niinikoski
- From the Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
- the Department of Pediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland
| | - Kristiina Tertti
- the Department of Obstetrics and Gynecology, Turku University Hospital and University of Turku, Turku, Finland
| | - Kirsi Laitinen
- From the Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
- Functional Foods Forum, University of Turku, Turku, Finland
| |
Collapse
|
19
|
Koemel NA, Skilton MR. Epigenetic Aging in Early Life: Role of Maternal and Early Childhood Nutrition. Curr Nutr Rep 2022; 11:318-328. [PMID: 35192186 PMCID: PMC9174131 DOI: 10.1007/s13668-022-00402-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2022] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Early life presents a pivotal period during which nutritional exposures are more likely to cause epigenetic modifications, which may impact an individual's health during adulthood. This article reviews the current evidence regarding maternal and early childhood nutritional exposures and their role in epigenetic aging. RECENT FINDINGS Maternal and early life consumption of diets higher in fiber, antioxidants, polyphenols, B vitamins, vitamin D, and ω-3 fatty acids is associated with slower epigenetic aging. Conversely, diets higher in glycemic load, fat, saturated fat, and ω-6 fatty acids demonstrate a positive association with epigenetic aging. Maternal and early life nutrition directly and indirectly influences epigenetic aging via changes in one-carbon metabolism, cardiometabolic health, and the microbiome. Clinical trials are warranted to determine the specific foods, dietary patterns, and dietary supplements that will normalize or lower epigenetic aging across the life course.
Collapse
Affiliation(s)
- Nicholas A. Koemel
- The Boden Initiative, Charles Perkins Centre, The University of Sydney, Sydney, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Michael R. Skilton
- The Boden Initiative, Charles Perkins Centre, The University of Sydney, Sydney, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Sydney Institute for Women, Children and Their Families, Sydney Local Health District, Sydney, Australia
| |
Collapse
|
20
|
Rastogi S, Rastogi D. The Epidemiology and Mechanisms of Lifetime Cardiopulmonary Morbidities Associated With Pre-Pregnancy Obesity and Excessive Gestational Weight Gain. Front Cardiovasc Med 2022; 9:844905. [PMID: 35391836 PMCID: PMC8980933 DOI: 10.3389/fcvm.2022.844905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/15/2022] [Indexed: 01/08/2023] Open
Abstract
Obesity has reached pandemic proportions in the last few decades. The global increase in obesity has contributed to an increase in the number of pregnant women with pre-pregnancy obesity or with excessive gestational weight gain. Obesity during pregnancy is associated with higher incidence of maternal co-morbidities such as gestational diabetes and hypertension. Both obesity during pregnancy and its associated complications are not only associated with immediate adverse outcomes for the mother and their newborns during the perinatal period but, more importantly, are linked with long-term morbidities in the offsprings. Neonates born to women with obesity are at higher risk for cardiac complications including cardiac malformations, and non-structural cardiac issues such as changes in the microvasculature, e.g., elevated systolic blood pressure, and overt systemic hypertension. Pulmonary diseases associated with maternal obesity include respiratory distress syndrome, asthma during childhood and adolescence, and adulthood diseases, such as chronic obstructive pulmonary disease. Sequelae of short-term complications compound long-term outcomes such as long-term obesity, hypertension later in life, and metabolic complications including insulin resistance and dyslipidemia. Multiple mechanisms have been proposed to explain these adverse outcomes and are related to the emerging knowledge of pathophysiology of obesity in adults. The best investigated ones include the role of obesity-mediated metabolic alterations and systemic inflammation. There is emerging evidence linking metabolic and immune derangements to altered biome, and alteration in epigenetics as one of the intermediary mechanisms underlying the adverse outcomes. These are initiated as part of fetal adaptation to obesity during pregnancy which are compounded by rapid weight gain during infancy and early childhood, a known complication of obesity during pregnancy. This newer evidence points toward the role of specific nutrients and changes in biome that may potentially modify the adverse outcomes observed in the offsprings of women with obesity.
Collapse
Affiliation(s)
- Shantanu Rastogi
- Division of Neonatology, Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Deepa Rastogi
- Division of Pulmonary and Sleep Medicine, Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
21
|
Vitacolonna E, Masulli M, Palmisano L, Stuppia L, Franzago M. Inositols, Probiotics, and Gestational Diabetes: Clinical and Epigenetic Aspects. Nutrients 2022; 14:1543. [PMID: 35458105 PMCID: PMC9028601 DOI: 10.3390/nu14081543] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
There is growing interest in the potential role of different stereoisomers of inositol or their combination as well as probiotics supplementation in healthy glucose metabolism during pregnancy and in promoting offspring health. The aim of this review is to clarify the effects of several inositol and probiotics-based supplements in the prevention and treatment of gestational diabetes (GDM). Moreover, we will discuss the epigenetic aspects and their short- and long-term effects in response to probiotic intervention as well as the possible implications of these findings in guiding appropriate supplementation regimens in pregnancy.
Collapse
Affiliation(s)
- Ester Vitacolonna
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d’Annunzio” University, Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy;
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy;
| | - Maria Masulli
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy; (M.M.); (L.P.)
| | - Luisa Palmisano
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy; (M.M.); (L.P.)
| | - Liborio Stuppia
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy;
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy
| | - Marica Franzago
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d’Annunzio” University, Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy;
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy;
| |
Collapse
|
22
|
Mora-Janiszewska O, Faryniak-Zuzak A, Darmochwał-Kolarz D. Epigenetic Links between Microbiota and Gestational Diabetes. Int J Mol Sci 2022; 23:1831. [PMID: 35163753 PMCID: PMC8837149 DOI: 10.3390/ijms23031831] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 02/01/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is considered a significant and increasing worldwide problem. The growing body of evidence on this topic has allowed us to point out that a hostile intrauterine environment in mothers with GDM via epigenetic mechanisms induces "diabetogenic" and "obesogenic" changes in an offspring's DNA. This sets a vicious intergenerational cycle of metabolic diseases in motion, gradually deteriorating the health of the human population. One of the most important participants of this process seems to be altered microbiota. There is a chance that the identification of specific epigenetic marks may provide a key for future diagnostic, prognostic and therapeutic solutions in the field of personalised medicine. Given the reversibility of most epigenetic changes, there is an opportunity to improve the long-term health of the human population. In this manuscript, we aim to summarise available data on epigenetic changes among women suffering from GDM and their progeny, in association with alterations in the microbiome.
Collapse
|
23
|
Cuinat C, Stinson SE, Ward WE, Comelli EM. Maternal Intake of Probiotics to Program Offspring Health. Curr Nutr Rep 2022; 11:537-562. [PMID: 35986890 PMCID: PMC9750916 DOI: 10.1007/s13668-022-00429-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Probiotics intake may be considered beneficial by prospective and pregnant mothers, but their effects on offspring development are incompletely understood. The purpose of this review was to examine recent pre-clinical and clinical studies to understand how maternal probiotics exposure affects offspring health outcomes. RECENT FINDINGS Effects were investigated in the context of supporting offspring growth, intestinal health, and gut microbiota, preventing allergic diseases, supporting neurodevelopment, and preventing metabolic disorders in pre-clinical and clinical studies. Most human studies focused on infancy outcomes, whereas pre-clinical studies also examined outcomes at adolescence and young adulthood. While still understudied, both pre-clinical and clinical studies propose epigenetic modifications as an underlying mechanism. Optimal timing of intervention remains unclear. Administration of selected probiotics to mothers has programming potential for sustaining life-long health of offspring. Administration protocols, specific windows of susceptibility, and individual-specific responses need to be further studied.
Collapse
Affiliation(s)
- Céline Cuinat
- grid.17063.330000 0001 2157 2938Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | - Sara E. Stinson
- grid.17063.330000 0001 2157 2938Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | - Wendy E. Ward
- grid.17063.330000 0001 2157 2938Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON Canada ,grid.411793.90000 0004 1936 9318Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON Canada
| | - Elena M. Comelli
- grid.17063.330000 0001 2157 2938Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON Canada ,grid.411793.90000 0004 1936 9318Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON Canada ,grid.17063.330000 0001 2157 2938Joannah and Brian Lawson Centre for Child Nutrition, Faculty of Medicine, University of Toronto, Toronto, ON Canada
| |
Collapse
|
24
|
Ali A, Hamzaid NH, Ismail NAS. The Interplay of Nutriepigenomics, Personalized Nutrition and Clinical Practice in Managing Food Allergy. Life (Basel) 2021; 11:1275. [PMID: 34833150 PMCID: PMC8623511 DOI: 10.3390/life11111275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Food allergy in children has been a common issue due to the challenges of prescribing personalized nutrition with a lack of nutriepigenomics data. This has indeed further influenced clinical practice for appropriate management. While allergen avoidance is still the main principle in food allergy management, we require more information to advance the science behind nutrition, genes, and the immune system. Many researchers have highlighted the importance of personalized nutrition but there is a lack of data on how the decision is made. Thus, this review highlights the relationship among these key players in identifying the solution to the clinical management of food allergy with current nutriepigenomics data. The discussion integrates various inputs, including clinical assessments, biomarkers, and epigenetic information pertaining to food allergy, to curate a holistic and personalized approach to food allergy management in particular.
Collapse
Affiliation(s)
- Adli Ali
- Department of Pediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Nur Hana Hamzaid
- Dietetic Program & Centre for Rehabilitation and Special Needs Studies (iCaRehab), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Noor Akmal Shareela Ismail
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
25
|
Weight gain and body composition during pregnancy: a randomised pilot trial with probiotics and/or fish oil. Br J Nutr 2021; 126:541-551. [PMID: 33143755 DOI: 10.1017/s0007114520004407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We evaluated the effects of fish oil and/or probiotic supplementation in a randomised placebo-controlled intervention pilot trial on gestational weight gain (GWG) and body composition. Additionally, the influence of gestational diabetes (GDM) on GWG and body composition was assessed. We randomised 439 overweight women into intervention groups: fish oil + placebo, probiotics + placebo, fish oil + probiotics and placebo + placebo (fish oil: 1·9 g DHA and 0·22 g EPA and probiotics: Lactobacillus rhamnosus HN001 and Bifidobacterium animalis ssp. lactis 420, 1010 colony-forming units each). GDM was diagnosed with oral glucose tolerance test. Body composition was measured with air displacement plethysmography at randomisation (mean 13·9) and in late pregnancy (mean 35·2 gestational weeks). Intervention did not influence mean GWG or change in body fat mass/percentage (P > 0·17). Body composition in early pregnancy did not differ between the women who did or did not develop GDM (adjusted P > 0·23). Compared with the normoglycaemic women (n 278), women diagnosed with GDM (n 119) gained less weight (7·7 (sd 0·4) v. 9·3 (sd 0·4) kg, adjusted mean difference -1·66 (95 % CI -2·52, -0·80) and fat mass (0·4 (sd 0·4) v. 1·8 (sd 0·3) kg, adjusted mean difference -1·43 (95 % CI -2·19, -0·67) during the follow-up. In conclusion, adiposity of pregnant overweight women was not affected by supplementation with fish oil and/or probiotics, nor did it predict the development of GDM. However, adiposity was reduced in women with GDM compared with normoglycaemic women irrespective of the dietary intervention.
Collapse
|
26
|
Combined prenatal Lactobacillus reuteri and ω-3 supplementation synergistically modulates DNA methylation in neonatal T helper cells. Clin Epigenetics 2021; 13:135. [PMID: 34193262 PMCID: PMC8247185 DOI: 10.1186/s13148-021-01115-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023] Open
Abstract
Background Environmental exposures may alter DNA methylation patterns of T helper cells. As T helper cells are instrumental for allergy development, changes in methylation patterns may constitute a mechanism of action for allergy preventive interventions. While epigenetic effects of separate perinatal probiotic or ω-3 fatty acid supplementation have been studied previously, the combined treatment has not been assessed. We aimed to investigate epigenome-wide DNA methylation patterns from a sub-group of children in an on-going randomised double-blind placebo-controlled allergy prevention trial using pre- and postnatal combined Lactobacillus reuteri and ω-3 fatty acid treatment. To this end, > 866000 CpG sites (MethylationEPIC 850K array) in cord blood CD4+ T cells were examined in samples from all four study arms (double-treatment: n = 18, single treatments: probiotics n = 16, ω-3 n = 15, and double placebo: n = 14). Statistical and bioinformatic analyses identified treatment-associated differentially methylated CpGs and genes, which were used to identify putatively treatment-induced network modules. Pathway analyses inferred biological relevance, and comparisons were made to an independent allergy data set. Results Comparing the active treatments to the double placebo group, most differentially methylated CpGs and genes were hypermethylated, possibly suggesting induction of transcriptional inhibition. The double-treated group showed the largest number of differentially methylated CpGs, of which many were unique, suggesting synergy between interventions. Clusters within the double-treated network module consisted of immune-related pathways, including T cell receptor signalling, and antigen processing and presentation, with similar pathways revealed for the single-treatment modules. CpGs derived from differential methylation and network module analyses were enriched in an independent allergy data set, particularly in the double-treatment group, proposing treatment-induced DNA methylation changes as relevant for allergy development. Conclusion Prenatal L. reuteri and/or ω-3 fatty acid treatment results in hypermethylation and affects immune- and allergy-related pathways in neonatal T helper cells, with potentially synergistic effects between the interventions and relevance for allergic disease. Further studies need to address these findings on a transcriptional level, and whether the results associate to allergy development in the children. Understanding the role of DNA methylation in regulating effects of perinatal probiotic and ω-3 interventions may provide essential knowledge in the development of efficacious allergy preventive strategies. Trial registration ClinicalTrials.gov, ClinicalTrials.gov-ID: NCT01542970. Registered 27th of February 2012—Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT01542970. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01115-4.
Collapse
|
27
|
El-Sayed A, Aleya L, Kamel M. The link among microbiota, epigenetics, and disease development. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:28926-28964. [PMID: 33860421 DOI: 10.1007/s11356-021-13862-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
The microbiome is a community of various microorganisms that inhabit or live on the skin of humans/animals, sharing the body space with their hosts. It is a sort of complex ecosystem of trillions of commensals, symbiotic, and pathogenic microorganisms, including trillions of bacteria, archaea, protozoa, fungi, and viruses. The microbiota plays a role in the health and disease status of the host. Their number, species dominance, and viability are dynamic. Their long-term disturbance is usually accompanied by serious diseases such as metabolic disorders, cardiovascular diseases, or even cancer. While epigenetics is a term that refers to different stimuli that induce modifications in gene expression patterns without structural changes in the inherited DNA sequence, these changes can be reversible or even persist for several generations. Epigenetics can be described as cell memory that stores experience against internal and external factors. Results from multiple institutions have contributed to the role and close interaction of both microbiota and epigenetics in disease induction. Understanding the mechanisms of both players enables a better understanding of disease induction and development and also opens the horizon to revolutionary therapeutic approaches. The present review illustrates the roles of diet, microbiome, and epigenetics in the induction of several chronic diseases. In addition, it discusses the application of epigenetic data to develop diagnostic biomarkers and therapeutics and evaluate their safety for patients. Understanding the interaction among all these elements enables the development of innovative preventive/therapeutic approaches for disease control.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
28
|
Liu J, Yu J, Peng X. Poria cocos Polysaccharides Alleviates Chronic Nonbacterial Prostatitis by Preventing Oxidative Stress, Regulating Hormone Production, Modifying Gut Microbiota, and Remodeling the DNA Methylome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12661-12670. [PMID: 33119288 DOI: 10.1021/acs.jafc.0c05943] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chronic nonbacterial prostatitis (CNP) is a common male disease with high incidence and low cure rate. This study aims to investigate the anti-CNP potential of Poria cocos polysaccharides (PPs) in a λ-carrageenan-induced CNP rat model. Results showed that PPs exerted anti-CNP functions by reducing the prostate weight and prostate index as well as the level of C-reactive protein (CRP) and pro-inflammatory cytokines (TNF-α and IL-1β). Further analysis on sex hormones revealed that PPs could favor CNP alleviation by regulating the production of testosterone (T), dihydrotestosterone (DTH), and estradiol (E2). PPs could also alleviate CNP by regulating the level of inducible nitric oxide synthase (iNOS), malonaldehyde (MDA), and superoxide diamutase (SOD) in inflamed prostate, thereby enhancing the anti-oxidative stress activity. As most non-digestive polysaccharides are fermented by gut microbiota rather than being digested directly by the host, we further analyzed PP-induced changes in gut microbiota. Microbiomic analysis revealed that PPs significantly change the profile of gut microbiota. Moreover, the relative abundance of five genera was recovered by PPs with a dose-effect relationship, thereby being suggested to play critical roles in the alleviation of CNP. Epigenomic (methylomic) analysis showed that PPs remodeled the DNA methylome of intestinal epithelia, by which PPs might modify hormone production. In the present study, we reported the anti-CNP activity of PPs as well as the involved mechanisms.
Collapse
Affiliation(s)
- Junsheng Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Juntong Yu
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| |
Collapse
|
29
|
Cuna A, Yu W, Menden H, Feng L, Srinivasan P, Chavez-Bueno S, Ahmed I, Umar S, Sampath V. NEC-like intestinal injury is ameliorated by Lactobacillus rhamnosus GG in parallel with SIGIRR and A20 induction in neonatal mice. Pediatr Res 2020; 88:546-555. [PMID: 32053825 PMCID: PMC8213439 DOI: 10.1038/s41390-020-0797-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/13/2020] [Accepted: 01/24/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Exaggerated Toll-like receptor (TLR) signaling and intestinal dysbiosis are key contributors to necrotizing enterocolitis (NEC). Lactobacillus rhamnosus GG (LGG) decreases NEC in preterm infants, but underlying mechanisms of protection remain poorly understood. We hypothesized that LGG alleviates dysbiosis and upregulates TLR inhibitors to protect against TLR-mediated gut injury. METHODS Effects of LGG (low- and high-dose) on intestinal pro-inflammatory TLR signaling and injury in neonatal mice subjected to formula feeding (FF) and NEC were determined. 16S sequencing of stool and expression of anti-TLR mediators SIGIRR (single immunoglobulin interleukin-1-related receptor) and A20 were analyzed. RESULTS FF induced mild intestinal injury with increased expression of interleukin-1β (IL-1β) and Kupffer cell (KC) (mouse homolog of IL-8) compared to controls. LGG decreased IL-1β and KC in association with attenuated TLR signaling and increased SIGIRR and A20 expression in a dose-dependent manner. Low- and high-dose LGG had varying effects on gut microbiome despite both doses providing gut protection. Subsequent experiments of LGG on NEC revealed that pro-inflammatory TLR signaling and intestinal injury were also decreased, and SIGIRR and A20 expression increased, in a dose-dependent manner with LGG pre-treatment. CONCLUSIONS LGG protects against intestinal TLR-mediated injury by upregulating TLR inhibitors without major changes in gut microbiome composition.
Collapse
Affiliation(s)
- Alain Cuna
- University of Missouri-Kansas City, Kansas City MO,Children’s Mercy Kansas City, Kansas City MO
| | - Wei Yu
- Children’s Mercy Kansas City, Kansas City MO
| | | | - Linda Feng
- Children’s Mercy Kansas City, Kansas City MO
| | | | - Susana Chavez-Bueno
- University of Missouri-Kansas City, Kansas City MO,Children’s Mercy Kansas City, Kansas City MO
| | - Ishfaq Ahmed
- University of Kansas Medical Center, Kansas City KS
| | - Shahid Umar
- University of Kansas Medical Center, Kansas City KS
| | - Venkatesh Sampath
- University of Missouri-Kansas City, Kansas City, MO, USA. .,Children's Mercy Kansas City, Kansas City, MO, USA.
| |
Collapse
|
30
|
|
31
|
Forsberg A, Huoman J, Söderholm S, Bhai Mehta R, Nilsson L, Abrahamsson TR, Ernerudh J, Gustafsson M, Jenmalm MC. Pre- and postnatal Lactobacillus reuteri treatment alters DNA methylation of infant T helper cells. Pediatr Allergy Immunol 2020; 31:544-553. [PMID: 32150651 DOI: 10.1111/pai.13240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/20/2019] [Accepted: 01/27/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Perinatal childhood exposures, including probiotic supplementation, may affect epigenetic modifications and impact on immune maturation and allergy development. The aim of this study was to assess the effects of pre- and postnatal Lactobacillus reuteri supplementation on DNA methylation in relation to immune maturation and allergy development. METHODS DNA methylation patterns were investigated for allergy-related T helper subsets using a locus-specific method and at a genome-wide scale using the Illumina 450K array. From a randomised, double-blind, placebo-controlled allergy prevention trial with pre- and postnatal probiotic supplementation, CD4+ T helper cells were obtained at birth (from cord blood), and 12 and 24 months of age (total (placebo/probiotics); locus-specific method: CB = 32 (17/15), 12 months = 24 (9/15), 24 months = 35 (15/20); Illumina: CB = 19 (10/9), 12 months = 10 (6/4), 24 months = 19(11/8)). RESULTS Comparing probiotics to placebo, the greatest genome-wide differential DNA methylation was observed at birth, where the majority of sites were hypomethylated, indicating transcriptional accessibility in the probiotic group. Bioinformatic analyses, including network analyses, revealed a module containing 91 genes, enriched for immune-related pathways such as chemotaxis, PI3K-Akt, MAPK and TGF-β signalling. A majority of the module genes were associated with atopic manifestations (OR = 1.43, P = 2.4 × 10-6 ), and a classifier built on this model could predict allergy development (AUC = 0.78, P = 3.0 × 10e-3 ). Pathways such as IFN-γ signalling and T-cell activation were more hypermethylated at birth compared with later in life in both intervention groups over time, in line with DNA methylation patterns in the IFNG locus obtained by the locus-specific methodology. CONCLUSION Maternal L. reuteri supplementation during pregnancy alters DNA methylation patterns in CD4+ T cells towards enhanced immune activation at birth, which may affect immune maturation and allergy development.
Collapse
Affiliation(s)
- Anna Forsberg
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johanna Huoman
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Simon Söderholm
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
| | - Ratnesh Bhai Mehta
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Lennart Nilsson
- Allergy Center, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Thomas R Abrahamsson
- Crown Princess Victoria's Child and Youth Hospital, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Jan Ernerudh
- Department of Clinical Immunology and Transfusion Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Mika Gustafsson
- Department of Physics, Chemistry and Biology, Bioinformatics, Linköping University, Linköping, Sweden
| | - Maria C Jenmalm
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
32
|
Potential therapeutic applications of the gut microbiome in obesity: from brain function to body detoxification. Int J Obes (Lond) 2020; 44:1818-1831. [PMID: 32523034 DOI: 10.1038/s41366-020-0618-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/04/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023]
Abstract
The prevalence of obesity is rising every year and associated comorbidities such as cardiovascular diseases are among the leading causes of death worldwide. The gut microbiota has recently emerged as a potential target for therapeutic applications to prevent and treat those comorbidities. In this review, we focus on three conditions related to obesity in which the use of gut microbiota modulators could have benefits; mood disorders, eating behaviors, and body detoxification of persistent organic pollutants (POPs). On one hand, modulation of gut-derived signals to the brain in a context of obesity is involved in the development of neuroinflammation and can subsequently alter behaviors. An altered gut microbiome could change these signals and alleviate their consequences. On the other hand, obesity is associated with an increased accumulation of lipophilic contaminants, such as POPs. Targeting the microbiota could help body detoxication by reducing bioavailability, enhancing degradation by bioremediation or their excretion through the enterohepatic circulation. Thus, a supplementation of prebiotics, probiotics, or synbiotics could represent a complementary strategy to current ones, such as medication and lifestyle modifications, to decrease depression, alter eating behaviors, and lower body burden of pollutants considering the actual obesity epidemic our society is facing.
Collapse
|
33
|
Sharma M, Li Y, Stoll ML, Tollefsbol TO. The Epigenetic Connection Between the Gut Microbiome in Obesity and Diabetes. Front Genet 2020; 10:1329. [PMID: 32010189 PMCID: PMC6974692 DOI: 10.3389/fgene.2019.01329] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022] Open
Abstract
Metabolic diseases are becoming an alarming health issue due to elevated incidences of these diseases over the past few decades. Various environmental factors are associated with a number of metabolic diseases and often play a crucial role in this process. Amongst the factors, diet is the most important factor that can regulate these diseases via modulation of the gut microbiome. The gut microbiome participates in multiple metabolic processes in the human body and is mainly responsible for regulation of host metabolism. The alterations in function and composition of the gut microbiota have been known to be involved in the pathogenesis of metabolic diseases via induction of epigenetic changes such as DNA methylation, histone modifications and regulation by noncoding RNAs. These induced epigenetic modifications can also be regulated by metabolites produced by the gut microbiota including short-chain fatty acids, folates, biotin and trimethylamine-N-oxide. In addition, studies have elucidated the potential role of these microbial-produced metabolites in the pathophysiology of obesity and diabetes. Hence, this review focuses on the interactions between the gut microbiome and epigenetic processes in the regulation and development of obesity and diabetes, which may have potential as a novel preventive or therapeutic approach for several metabolic and other human diseases.
Collapse
Affiliation(s)
- Manvi Sharma
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yuanyuan Li
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, United States.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States.,Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Matthew L Stoll
- Division of Pediatric Rheumatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States.,Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, United States.,Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL, United States.,Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
34
|
Ramírez-Alarcón K, Sánchez-Agurto Á, Lamperti L, Martorell M. Epigenetics, Maternal Diet and Metabolic Programming. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/1874196701907010045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background:
The maternal environment influences embryonic and fetal life. Nutritional deficits or excesses alter the trajectory of fetus/offspring’s development. The concept of “developmental programming” and “developmental origins of health and disease” consists of the idea that maternal diet may remodel the genome and lead to epigenetic changes. These changes are induced during early life, permanently altering the phenotype in the posterior adult stage, favoring the development of metabolic diseases such as obesity, dyslipidemia, hypertension, hyperinsulinemia, and metabolic syndrome. In this review, it is aimed to overview epigenetics, maternal diet and metabolic programming factors and determine which of these might affect future generations.
Scope and Approach:
Nutrients interfere with the epigenome by influencing the supply and use of methyl groups through DNA transmethylation and demethylation mechanisms. They also influence the remodeling of chromatin and arginine or lysine residues at the N-terminal tails of histone, thus altering miRNA expression. Fats, proteins, B vitamins and folates act as important cofactors in methylation processes. The metabolism of carbon in the methyl groups of choline, folic acid and methionine to S-Adenosyl Methionine (SAM), acts as methyl donors to methyl DNA, RNA, and proteins. B-complex vitamins are important since they act as coenzymes during this process.
Key Findings and Conclusion:
Nutrients, during pregnancy, potentially influence susceptibility to diseases in adulthood. Additionally, the deficit or excess of nutrients alter the epigenetic machinery, affecting genes and influencing the genome of the offspring and therefore, predisposing the development of chronic diseases in adults.
Collapse
|
35
|
Barathikannan K, Chelliah R, Rubab M, Daliri EBM, Elahi F, Kim DH, Agastian P, Oh SY, Oh DH. Gut Microbiome Modulation Based on Probiotic Application for Anti-Obesity: A Review on Efficacy and Validation. Microorganisms 2019; 7:microorganisms7100456. [PMID: 31623075 PMCID: PMC6843309 DOI: 10.3390/microorganisms7100456] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/27/2019] [Accepted: 10/12/2019] [Indexed: 12/12/2022] Open
Abstract
The growing prevalence of obesity has become an important problem worldwide as obesity has several health risks. Notably, factors such as excessive food consumption, a sedentary way of life, high sugar consumption, a fat-rich diet, and a certain genetic profile may lead to obesity. The present review brings together recent advances regarding the significance of interventions involving intestinal gut bacteria and host metabolic phenotypes. We assess important biological molecular mechanisms underlying the impact of gut microbiota on hosts including bile salt metabolism, short-chain fatty acids, and metabolic endotoxemia. Some previous studies have shown a link between microbiota and obesity, and associated disease reports have been documented. Thus, this review focuses on obesity and gut microbiota interactions and further develops the mechanism of the gut microbiome approach related to human obesity. Specifically, we highlight several alternative diet treatments including dietary changes and supplementation with probiotics. The future direction or comparative significance of fecal transplantation, synbiotics, and metabolomics as an approach to the modulation of intestinal microbes is also discussed.
Collapse
Affiliation(s)
- Kaliyan Barathikannan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea.
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea.
| | - Momna Rubab
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea.
| | - Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea.
| | - Fazle Elahi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea.
| | - Dong-Hwan Kim
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea.
| | - Paul Agastian
- Department of Plant Biology and Biotechnology, Loyola College, Chennai 600-034, India.
| | - Seong-Yoon Oh
- Three & Four Co., Ltd., 992-15, Jusan-ri, Hojeo-myeon, Wonju-si 26460, Korea.
| | - Deog Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea.
| |
Collapse
|
36
|
Stols-Gonçalves D, Tristão LS, Henneman P, Nieuwdorp M. Epigenetic Markers and Microbiota/Metabolite-Induced Epigenetic Modifications in the Pathogenesis of Obesity, Metabolic Syndrome, Type 2 Diabetes, and Non-alcoholic Fatty Liver Disease. Curr Diab Rep 2019; 19:31. [PMID: 31044315 PMCID: PMC6494784 DOI: 10.1007/s11892-019-1151-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW The metabolic syndrome is a pathological state in which one of the key components is insulin resistance. A wide spectrum of body compartments is involved in its pathophysiology. Genetic and environmental factors such as diet and physical activity are both related to its etiology. Reversible modulation of gene expression without altering the DNA sequence, known as epigenetic modifications, has been shown to drive this complex metabolic cluster of conditions. Here, we aim to examine some of the recent research of specific epigenetically mediated mechanisms and microbiota-induced epigenetic modifications on the development of adipose tissue and obesity, β-cell dysfunction and diabetes, and hepatocytes and non-alcoholic fatty disease. RECENT FINDINGS DNA methylation patterns and histone modifications have been identified in this context; the integrated analysis of genome, epigenome, and transcriptome is likely to expand our knowledge of epigenetics in health and disease. Epigenetic modifications induced by diet-related microbiota or metabolites possibly contribute to the insulin-resistant state. The identification of epigenetic signatures on diabetes and obesity may give us the possibility of developing new interventions, prevention measures, and follow-up strategies.
Collapse
Affiliation(s)
- Daniela Stols-Gonçalves
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, Meibergdreef 9 (Room A01-112), 1105 AZ Amsterdam, The Netherlands
| | - Luca Schiliró Tristão
- Faculdade de Ciências Médicas de Santos (UNILUS), R. Oswaldo Cruz, 179, Boqueirão, Santos, SP 11025-020 Brazil
| | - Peter Henneman
- Department of Clinical Genetics, Amsterdam UMC, Location AMC, Meibergdreef 9 (Room A01-112), 1105 AZ Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, Meibergdreef 9 (Room A01-112), 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
37
|
Li Y. Epigenetic Mechanisms Link Maternal Diets and Gut Microbiome to Obesity in the Offspring. Front Genet 2018; 9:342. [PMID: 30210530 PMCID: PMC6119695 DOI: 10.3389/fgene.2018.00342] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/09/2018] [Indexed: 12/14/2022] Open
Abstract
Nutrition is the most important environmental factor that can influence early developmental processes through regulation of epigenetic mechanisms during pregnancy and neonatal periods. Maternal diets or nutritional compositions contribute to the establishment of the epigenetic profiles in the fetus that have a profound impact on individual susceptibility to certain diseases or disorders in the offspring later in life. Obesity is considered a global epidemic that impairs human life quality and also increases risk of development of many human diseases such as diabetes and cardiovascular diseases. Studies have shown that maternal nutrition status is closely associated with obesity in progenies indicating obesity has a developmental origin. Maternal diets may also impact the early establishment of the fetal and neonatal microbiome leading to specific epigenetic signatures that may potentially predispose to the development of late-life obesity. This article will review the association of different maternal dietary statuses including essential nutritional quantity and specific dietary components with gut microbiome in determining epigenetic impacts on offspring susceptibility to obesity.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, United States
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
38
|
Bakke D, Chatterjee I, Agrawal A, Dai Y, Sun J. Regulation of Microbiota by Vitamin D Receptor: A Nuclear Weapon in Metabolic Diseases. NUCLEAR RECEPTOR RESEARCH 2018; 5:101377. [PMID: 30828578 PMCID: PMC6392192 DOI: 10.11131/2018/101377] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Metabolic syndrome is a multi-faceted disease. The microbiota, as a newly discovered organ, contributes to the pathogenesis and progression of metabolic syndrome. Recent studies have demonstrated that nuclear receptors play critical roles in metabolic diseases. In the current review, we discuss the general role of the microbiome in health and metabolic syndrome. We summarize the functions of the nuclear receptor vitamin D receptor (VDR) in metabolism. The focus of this review is the novel roles of vitamin D/VDR signaling in regulating inflammation and the microbiome, especially in obesity. Furthermore, we extend our discussion of potential gut-liver axis mediated by VDR signaling and microbiota in obesity. Finally, we discuss the potential clinical application of probiotics and fecal microbiota transplantation in prevention and treatment of metabolic syndrome. Insights into nuclear receptors in metabolism and metabolic diseases will allow us to develop new strategies for fighting metabolic diseases.
Collapse
Affiliation(s)
- Danika Bakke
- Division of Gastroenterology and Hepatology, Medicine, University of Illinois at Chicago, USA
| | - Ishita Chatterjee
- Division of Gastroenterology and Hepatology, Medicine, University of Illinois at Chicago, USA
| | - Annika Agrawal
- Division of Gastroenterology and Hepatology, Medicine, University of Illinois at Chicago, USA
- Hinsdale Central High School, 5500 S Grant St, Hinsdale, IL 60521, USA
| | - Yang Dai
- Department of Bioengineering, College of Engineering/College of Medicine, University of Illinois at Chicago, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Medicine, University of Illinois at Chicago, USA
| |
Collapse
|