1
|
Aloy NM, Coughlan C, Graner MW, Witt SN. Possible regulation of the immune modulator tetraspanin CD81 by alpha-synuclein in melanoma. Biochem Biophys Res Commun 2024; 734:150631. [PMID: 39222576 DOI: 10.1016/j.bbrc.2024.150631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
We probed the mechanism by which the Parkinson's disease-associated protein α-synuclein (α-syn)/SNCA promotes the pathogenesis and progression of melanoma. We found that the human melanoma cell line SK-MEL-28 in which SNCA is knocked out (SNCA-KO) has low levels of tetraspanin CD81, which is a cell-surface protein that promotes invasion, migration, and immune suppression. Analyzing data from the Cancer Genome Atlas, we show that SNCA and CD81 mRNA levels are positively correlated in melanoma; melanoma survival is inversely related to the levels of SNCA and CD81; and SNCA/CD81 are inversely related to the expression of key cytokine genes (IL12A, IL12B, IFN, IFNG, PRF1 and GZMB) for immune activation and immune cell-mediated killing of melanoma cells. We propose that high levels of α-syn and CD81 in melanoma and in immune cells drive invasion and migration and in parallel cause an immunosuppressive microenvironment; these contributing factors lead to aggressive melanomas.
Collapse
Affiliation(s)
- Nirjhar M Aloy
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Feist-Weiller Cancer Center, Louisiana State University Health Shreveport, Shreveport, USA
| | | | | | - Stephan N Witt
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Feist-Weiller Cancer Center, Louisiana State University Health Shreveport, Shreveport, USA.
| |
Collapse
|
2
|
Yang Y, Zhang Z. α-Synuclein pathology from the body to the brain: so many seeds so close to the central soil. Neural Regen Res 2024; 19:1463-1472. [PMID: 38051888 PMCID: PMC10883481 DOI: 10.4103/1673-5374.387967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/24/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT α-Synuclein is a protein that mainly exists in the presynaptic terminals. Abnormal folding and accumulation of α-synuclein are found in several neurodegenerative diseases, including Parkinson's disease. Aggregated and highly phosphorylated α-synuclein constitutes the main component of Lewy bodies in the brain, the pathological hallmark of Parkinson's disease. For decades, much attention has been focused on the accumulation of α-synuclein in the brain parenchyma rather than considering Parkinson's disease as a systemic disease. Recent evidence demonstrates that, at least in some patients, the initial α-synuclein pathology originates in the peripheral organs and spreads to the brain. Injection of α-synuclein preformed fibrils into the gastrointestinal tract triggers the gut-to-brain propagation of α-synuclein pathology. However, whether α-synuclein pathology can occur spontaneously in peripheral organs independent of exogenous α-synuclein preformed fibrils or pathological α-synuclein leakage from the central nervous system remains under investigation. In this review, we aimed to summarize the role of peripheral α-synuclein pathology in the pathogenesis of Parkinson's disease. We also discuss the pathways by which α-synuclein pathology spreads from the body to the brain.
Collapse
Affiliation(s)
- Yunying Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
3
|
Deliz JR, Tanner CM, Gonzalez-Latapi P. Epidemiology of Parkinson's Disease: An Update. Curr Neurol Neurosci Rep 2024; 24:163-179. [PMID: 38642225 DOI: 10.1007/s11910-024-01339-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
PURPOSE OF REVIEW In recent decades, epidemiological understanding of Parkinson disease (PD) has evolved significantly. Major discoveries in genetics and large epidemiological investigations have provided a better understanding of the genetic, behavioral, and environmental factors that play a role in the pathogenesis and progression of PD. In this review, we provide an epidemiological update of PD with a particular focus on advances in the last five years of published literature. RECENT FINDINGS We include an overview of PD pathophysiology, followed by a detailed discussion of the known distribution of disease and varied determinants of disease. We describe investigations of risk factors for PD, and provide a critical summary of current knowledge, knowledge gaps, and both clinical and research implications. We emphasize the need to characterize the epidemiology of the disease in diverse populations. Despite increasing understanding of PD epidemiology, recent paradigm shifts in the conceptualization of PD as a biological entity will also impact epidemiological research moving forward and guide further work in this field.
Collapse
Affiliation(s)
- Juan R Deliz
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Caroline M Tanner
- Weill Institute for Neurosciences, Department of Neurology, University of California -San Francisco, San Francisco, CA, USA
| | - Paulina Gonzalez-Latapi
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
4
|
Ren F, Yang C, Feng K, Shang Q, Liu J, Kang X, Wang X, Wang X. An exploration of causal relationships between nine neurological diseases and the risk of breast cancer: a Mendelian randomization study. Aging (Albany NY) 2024; 16:7101-7118. [PMID: 38663930 PMCID: PMC11087125 DOI: 10.18632/aging.205745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/18/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Some preceding researches have observed that certain neurological disorders, such as Alzheimer's disease and multiple sclerosis, may affect breast cancer risk. However, whether there are causal relationships between these neurological conditions and breast cancer is inconclusive. This study was designed to explore whether neurological disorders affected the risks of breast cancer overall and of the two subtypes (ER+ and ER-). METHODS In the course of this study, genome-wide association study (GWAS) data for nine neurological diseases (Alzheimer's disease, multiple sclerosis, Parkinson's disease, myasthenia gravis, generalized epilepsy, intracerebral haemorrhage, cerebral atherosclerosis, brain glioblastoma, and benign meningeal tumour) were collected from the Complex Trait Genetics lab and the MRC Integrative Epidemiology Unit, and single-nucleotide polymorphisms (SNPs) extensively associated with these neurological ailments had been recognized as instrumental variables (IVs). GWAS data on breast cancer were collected from the Breast Cancer Association Consortium (BCAC). Two-sample Mendelian randomization (MR) analyses as well as multivariable MR analyses were performed to determine whether these SNPs contributed to breast cancer risk. Additionally, the accuracy of the results was evaluated using the false discovery rate (FDR) multiple correction method. Both heterogeneity and pleiotropy were evaluated by analyzing sensitivities. RESULTS According to the results of two-sample MR analyses, Alzheimer's disease significantly reduced the risks of overall (OR 0.925, 95% CI [0.871-0.982], P = 0.011) and ER+ (OR 0.912, 95% CI [0.853-0.975], P = 0.007) breast cancer, but there was a negative result in ER- breast cancer. However, after multiple FDR corrections, the effect of Alzheimer's disease on overall breast cancer was not statistically significant. In contrast, multiple sclerosis significantly increased ER+ breast cancer risk (OR 1.007, 95% CI [1.003-1.011], P = 0.001). In addition, the multivariable MR analyses showed that Alzheimer's disease significantly reduced the risk of ER+ breast cancer (IVW: OR 0.929, 95% CI [0.864-0.999], P=0.047; MR-Egger: OR 0.916, 95% CI [0.846-0.992], P=0.031); however, multiple sclerosis significantly increased the risk of ER+ breast cancer (IVW: OR 1.008, 95% CI [1.003-1.012], P=4.35×10-4; MR-Egger: OR 1.008, 95% CI [1.003-1.012], P=5.96×10-4). There were no significant associations between the remainder of the neurological diseases and breast cancer. CONCLUSIONS This study found the trends towards a decreased risk of ER+ breast cancer in patients with Alzheimer's disease and an increased risk in patients with multiple sclerosis. However, due to the limitations of Mendelian randomization, we cannot determine whether there are definite causal relationships between neurological diseases and breast cancer risk. For conclusive evidences, more prospective randomized controlled trials will be needed in the future.
Collapse
Affiliation(s)
- Fei Ren
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chenxuan Yang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Kexin Feng
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qingyao Shang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiaxiang Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiyu Kang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xin Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiang Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
5
|
Gokuladhas S, Fadason T, Farrow S, Cooper A, O'Sullivan JM. Discovering genetic mechanisms underlying the co-occurrence of Parkinson's disease and non-motor traits. NPJ Parkinsons Dis 2024; 10:27. [PMID: 38263313 PMCID: PMC10805842 DOI: 10.1038/s41531-024-00638-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
Understanding the biological mechanisms that underlie the non-motor symptoms of Parkinson's disease (PD) requires comprehensive frameworks that unravel the complex interplay of genetic risk factors. Here, we used a disease-agnostic brain cortex gene regulatory network integrated with Mendelian Randomization analyses that identified 19 genes whose changes in expression were causally linked to PD. We further used the network to identify genes that are regulated by PD-associated genome-wide association study (GWAS) SNPs. Extended protein interaction networks derived from PD-risk genes and PD-associated SNPs identified convergent impacts on biological pathways and phenotypes, connecting PD with established co-occurring traits, including non-motor symptoms. These findings hold promise for therapeutic development. In conclusion, while distinct sets of genes likely influence PD risk and outcomes, the existence of genes in common and intersecting pathways associated with other traits suggests that they may contribute to both increased PD risk and symptom heterogeneity observed in people with Parkinson's.
Collapse
Affiliation(s)
- Sreemol Gokuladhas
- The Liggins Institute, University of Auckland, Auckland, 1023, New Zealand
| | - Tayaza Fadason
- The Liggins Institute, University of Auckland, Auckland, 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, 1010, New Zealand
| | - Sophie Farrow
- The Liggins Institute, University of Auckland, Auckland, 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, 1010, New Zealand
| | - Antony Cooper
- St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia
- Australian Parkinson's Mission, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Justin M O'Sullivan
- The Liggins Institute, University of Auckland, Auckland, 1023, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, 1010, New Zealand.
- Australian Parkinson's Mission, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK.
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
6
|
Chocarro J, Rico AJ, Ariznabarreta G, Roda E, Honrubia A, Collantes M, Peñuelas I, Vázquez A, Rodríguez-Pérez AI, Labandeira-García JL, Vila M, Lanciego JL. Neuromelanin accumulation drives endogenous synucleinopathy in non-human primates. Brain 2023; 146:5000-5014. [PMID: 37769648 PMCID: PMC10689915 DOI: 10.1093/brain/awad331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/04/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023] Open
Abstract
Although neuromelanin is a dark pigment characteristic of dopaminergic neurons in the human substantia nigra pars compacta, its potential role in the pathogenesis of Parkinson's disease (PD) has often been neglected since most commonly used laboratory animals lack neuromelanin. Here we took advantage of adeno-associated viral vectors encoding the human tyrosinase gene for triggering a time-dependent neuromelanin accumulation within substantia nigra pars compacta dopaminergic neurons in macaques up to similar levels of pigmentation as observed in elderly humans. Furthermore, neuromelanin accumulation induced an endogenous synucleinopathy mimicking intracellular inclusions typically observed in PD together with a progressive degeneration of neuromelanin-expressing dopaminergic neurons. Moreover, Lewy body-like intracellular inclusions were observed in cortical areas of the frontal lobe receiving dopaminergic innervation, supporting a circuit-specific anterograde spread of endogenous synucleinopathy by permissive trans-synaptic templating. In summary, the conducted strategy resulted in the development and characterization of a new macaque model of PD matching the known neuropathology of this disorder with unprecedented accuracy. Most importantly, evidence is provided showing that intracellular aggregation of endogenous α-synuclein is triggered by neuromelanin accumulation, therefore any therapeutic approach intended to decrease neuromelanin levels may provide appealing choices for the successful implementation of novel PD therapeutics.
Collapse
Affiliation(s)
- Julia Chocarro
- CNS Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Alberto J Rico
- CNS Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Goiaz Ariznabarreta
- CNS Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Elvira Roda
- CNS Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Adriana Honrubia
- CNS Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - María Collantes
- Translational Molecular Imaging Unit, Department of Nuclear Medicine, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Iván Peñuelas
- Translational Molecular Imaging Unit, Department of Nuclear Medicine, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Alfonso Vázquez
- Department of Neurosurgery, Hospital Universitario de Navarra, Servicio Navarro de Salud, 31008 Pamplona, Spain
| | - Ana I Rodríguez-Pérez
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José L Labandeira-García
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Miquel Vila
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Vall d’Hebron Research Institute, Neurodegenerative Diseses Research Group, 08035 Barcelona, Spain
- Autonomous University of Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - José L Lanciego
- CNS Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
7
|
Zong B, Yu F, Zhang X, Pang Y, Zhao W, Sun P, Li L. Mechanosensitive Piezo1 channel in physiology and pathophysiology of the central nervous system. Ageing Res Rev 2023; 90:102026. [PMID: 37532007 DOI: 10.1016/j.arr.2023.102026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
Since the discovery of the mechanosensitive Piezo1 channel in 2010, there has been a significant amount of research conducted to explore its regulatory role in the physiology and pathology of various organ systems. Recently, a growing body of compelling evidence has emerged linking the activity of the mechanosensitive Piezo1 channel to health and disease of the central nervous system. However, the exact mechanisms underlying these associations remain inadequately comprehended. This review systematically summarizes the current research on the mechanosensitive Piezo1 channel and its implications for central nervous system mechanobiology, retrospects the results demonstrating the regulatory role of the mechanosensitive Piezo1 channel on various cell types within the central nervous system, including neural stem cells, neurons, oligodendrocytes, microglia, astrocytes, and brain endothelial cells. Furthermore, the review discusses the current understanding of the involvement of the Piezo1 channel in central nervous system disorders, such as Alzheimer's disease, multiple sclerosis, glaucoma, stroke, and glioma.
Collapse
Affiliation(s)
- Boyi Zong
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Fengzhi Yu
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaoyou Zhang
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Yige Pang
- Department of Neurosurgery, Zibo Central Hospital, Zibo 255000, Shandong, China
| | - Wenrui Zhao
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Peng Sun
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Lin Li
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
8
|
Sugier P, Lucotte EA, Domenighetti C, Law MH, Iles MM, Brown K, Amos C, McKay JD, Hung RJ, Karimi M, Bacq‐Daian D, Boland‐Augé A, Olaso R, Deleuze J, Lesueur F, Ostroumova E, Kesminiene A, de Vathaire F, Guénel P, Sreelatha AAK, Schulte C, Grover S, May P, Bobbili DR, Radivojkov‐Blagojevic M, Lichtner P, Singleton AB, Hernandez DG, Edsall C, Mellick GD, Zimprich A, Pirker W, Rogaeva E, Lang AE, Koks S, Taba P, Lesage S, Brice A, Corvol J, Chartier‐Harlin M, Mutez E, Brockmann K, Deutschländer AB, Hadjigeorgiou GM, Dardiotis E, Stefanis L, Simitsi AM, Valente EM, Petrucci S, Straniero L, Zecchinelli A, Pezzoli G, Brighina L, Ferrarese C, Annesi G, Quattrone A, Gagliardi M, Matsuo H, Nakayama A, Hattori N, Nishioka K, Chung SJ, Kim YJ, Kolber P, van de Warrenburg BP, Bloem BR, Aasly J, Toft M, Pihlstrøm L, Guedes LC, Ferreira JJ, Bardien S, Carr J, Tolosa E, Ezquerra M, Pastor P, Diez‐Fairen M, Wirdefeldt K, Pedersen N, Ran C, Belin AC, Puschmann A, Rödström EY, Clarke CE, Morrison KE, Tan M, Krainc D, Burbulla LF, Farrer MJ, Kruger R, Gasser T, Sharma M, Truong T, Elbaz A. Investigation of Shared Genetic Risk Factors Between Parkinson's Disease and Cancers. Mov Disord 2023; 38:604-615. [PMID: 36788297 PMCID: PMC10334300 DOI: 10.1002/mds.29337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/07/2022] [Accepted: 12/28/2022] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Epidemiological studies that examined the association between Parkinson's disease (PD) and cancers led to inconsistent results, but they face a number of methodological difficulties. OBJECTIVE We used results from genome-wide association studies (GWASs) to study the genetic correlation between PD and different cancers to identify common genetic risk factors. METHODS We used individual data for participants of European ancestry from the Courage-PD (Comprehensive Unbiased Risk Factor Assessment for Genetics and Environment in Parkinson's Disease; PD, N = 16,519) and EPITHYR (differentiated thyroid cancer, N = 3527) consortia and summary statistics of GWASs from iPDGC (International Parkinson Disease Genomics Consortium; PD, N = 482,730), Melanoma Meta-Analysis Consortium (MMAC), Breast Cancer Association Consortium (breast cancer), the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (prostate cancer), International Lung Cancer Consortium (lung cancer), and Ovarian Cancer Association Consortium (ovarian cancer) (N comprised between 36,017 and 228,951 for cancer GWASs). We estimated the genetic correlation between PD and cancers using linkage disequilibrium score regression. We studied the association between PD and polymorphisms associated with cancers, and vice versa, using cross-phenotypes polygenic risk score (PRS) analyses. RESULTS We confirmed a previously reported positive genetic correlation of PD with melanoma (Gcorr = 0.16 [0.04; 0.28]) and reported an additional significant positive correlation of PD with prostate cancer (Gcorr = 0.11 [0.03; 0.19]). There was a significant inverse association between the PRS for ovarian cancer and PD (odds ratio [OR] = 0.89 [0.84; 0.94]). Conversely, the PRS of PD was positively associated with breast cancer (OR = 1.08 [1.06; 1.10]) and inversely associated with ovarian cancer (OR = 0.95 [0.91; 0.99]). The association between PD and ovarian cancer was mostly driven by rs183211 located in an intron of the NSF gene (17q21.31). CONCLUSIONS We show evidence in favor of a contribution of pleiotropic genes to the association between PD and specific cancers. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Pierre‐Emmanuel Sugier
- Université Paris‐Saclay, UVSQ, Inserm, Gustave Roussy, Team “Exposome, Heredity, Cancer and Health”, CESPVillejuifFrance
- Laboratoire de Mathématiques et de leurs Applications de PauE2S UPPA, CNRSPauFrance
| | - Elise A. Lucotte
- Université Paris‐Saclay, UVSQ, Inserm, Gustave Roussy, Team “Exposome, Heredity, Cancer and Health”, CESPVillejuifFrance
| | - Cloé Domenighetti
- Université Paris‐Saclay, UVSQ, Inserm, Gustave Roussy, Team “Exposome, Heredity, Cancer and Health”, CESPVillejuifFrance
| | - Matthew H. Law
- Statistical Genetics, QIMR Berghofer Medical Research InstituteBrisbaneAustralia
- Faculty of Health, Queensland University of TechnologyBrisbaneAustralia
| | - Mark M. Iles
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and PathologyUniversity of LeedsLeedsUnited Kingdom
| | - Kevin Brown
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Christopher Amos
- Institute for Clinical and Translational ResearchBaylor Medical College of MedecineHoustonTexasUSA
| | | | - Rayjean J. Hung
- Lunenfeld‐Tanenbuaum Research Institute, Sinai Health SystemTorontoOntarioCanada
- Dalla Lana School of Public Health, University of TorontoTorontoOntarioCanada
| | - Mojgan Karimi
- Université Paris‐Saclay, UVSQ, Inserm, Gustave Roussy, Team “Exposome, Heredity, Cancer and Health”, CESPVillejuifFrance
| | - Delphine Bacq‐Daian
- Université Paris‐Saclay, CEA, Centre National de Recherche en Génomique Humaine, Institut de Biologie François JacobEvryFrance
| | - Anne Boland‐Augé
- Université Paris‐Saclay, CEA, Centre National de Recherche en Génomique Humaine, Institut de Biologie François JacobEvryFrance
| | - Robert Olaso
- Université Paris‐Saclay, CEA, Centre National de Recherche en Génomique Humaine, Institut de Biologie François JacobEvryFrance
| | - Jean‐françois Deleuze
- Université Paris‐Saclay, CEA, Centre National de Recherche en Génomique Humaine, Institut de Biologie François JacobEvryFrance
| | - Fabienne Lesueur
- Inserm, U900, Institut Curie, PSL University, Mines ParisTechParisFrance
| | | | | | - Florent de Vathaire
- Université Paris‐Saclay, UVSQ, Gustave Roussy, Inserm, Team “Epidemiology of radiations,” CESPVillejuifFrance
| | - Pascal Guénel
- Université Paris‐Saclay, UVSQ, Inserm, Gustave Roussy, Team “Exposome, Heredity, Cancer and Health”, CESPVillejuifFrance
| | | | - Ashwin Ashok Kumar Sreelatha
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied BiometryUniversity of TubingenTübingenGermany
| | - Claudia Schulte
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain ResearchUniversity of TubingenTübingenGermany
- German Center for Neurodegenerative DiseasesTübingenGermany
| | - Sandeep Grover
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied BiometryUniversity of TubingenTübingenGermany
| | - Patrick May
- Translational Neuroscience, Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐BelvalLuxembourg
| | - Dheeraj R. Bobbili
- Translational Neuroscience, Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐BelvalLuxembourg
| | | | - Peter Lichtner
- Institute of Human GeneticsHelmholtz Zentrum MünchenNeuherbergGermany
| | - Andrew B. Singleton
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of HealthBethesdaMarylandUSA
- Center For Alzheimer's and Related Dementias, National Institute on Aging, National Institutes of HealthBethesdaMarylandUSA
| | - Dena G. Hernandez
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of HealthBethesdaMarylandUSA
| | - Connor Edsall
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of HealthBethesdaMarylandUSA
| | - George D. Mellick
- Griffith Institute for Drug DiscoveryGriffith UniversityNathanAustralia
| | | | - Walter Pirker
- Department of NeurologyKlinik OttakringViennaAustria
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative DiseasesUniversity of TorontoTorontoOntarioCanada
| | - Anthony E. Lang
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders ClinicToronto Western Hospital, UHNTorontoOntarioCanada
- Division of NeurologyUniversity of TorontoTorontoOntarioCanada
- Krembil Brain InstituteTorontoOntarioCanada
| | - Sulev Koks
- Centre for Molecular Medicine and Innovative TherapeuticsMurdoch UniversityMurdochAustralia
- Perron Institute for Neurological and Translational ScienceNedlandsAustralia
| | - Pille Taba
- Department of Neurology and NeurosurgeryUniversity of TartuTartuEstonia
- Neurology Clinic, Tartu University HospitalTartuEstonia
| | - Suzanne Lesage
- Department of NeurologySorbonne Université, Institut du Cerveau–Paris Brain Institute–ICM, INSERM, CNRS, Assistance Publique Hôpitaux de ParisParisFrance
| | - Alexis Brice
- Department of NeurologySorbonne Université, Institut du Cerveau–Paris Brain Institute–ICM, INSERM, CNRS, Assistance Publique Hôpitaux de ParisParisFrance
| | - Jean‐Christophe Corvol
- Department of NeurologySorbonne Université, Institut du Cerveau–Paris Brain Institute–ICM, INSERM, CNRS, Assistance Publique Hôpitaux de ParisParisFrance
- Assistance Publique Hôpitaux de Paris, Department of NeurologyCIC NeurosciencesParisFrance
| | | | - Eugénie Mutez
- Université de Lille, Inserm, CHU Lille, UMR‐S 1172, LilNCog, Centre de Recherche Lille Neurosciences & CognitionLilleFrance
| | - Kathrin Brockmann
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain ResearchUniversity of TubingenTübingenGermany
- German Center for Neurodegenerative DiseasesTübingenGermany
| | - Angela B. Deutschländer
- Department of NeurologyLudwig Maximilians University of MunichMunichGermany
- Department of NeurologyMax Planck Institute of PsychiatryMunichGermany
| | - Georges M. Hadjigeorgiou
- Department of Neurology and Department of Clinical GenomicsMayo Clinic FloridaJacksonvilleFloridaUSA
- Department of Neurology, Laboratory of NeurogeneticsUniversity of Thessaly, University Hospital of LarissaLarissaGreece
- Department of NeurologyMedical School, University of CyprusNicosiaCyprus
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of NeurogeneticsUniversity of Thessaly, University Hospital of LarissaLarissaGreece
| | - Leonidas Stefanis
- 1st Department of Neurology, Eginition Hospital, Medical SchoolNational and Kapodistrian University of AthensAthensGreece
- Center of Clinical Research, Experimental Surgery and Translational ResearchBiomedical Research Foundation of the Academy of AthensAthensGreece
| | - Athina Maria Simitsi
- 1st Department of Neurology, Eginition Hospital, Medical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Enza Maria Valente
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Mondino FoundationPaviaItaly
| | - Simona Petrucci
- UOC Medical Genetics and Advanced Cell DiagnosticsS. Andrea University HospitalRomeItaly
- Department of Clinical and Molecular MedicineSapienza University of RomeRomeItaly
| | | | - Anna Zecchinelli
- Parkinson Institute, Azienda Socio Sanitaria Territoriale (ASST) Gaetano Pini/CTOMilanItaly
| | - Gianni Pezzoli
- Parkinson Institute, Fontazione Grigioni–Via ZurettiMilanItaly
| | - Laura Brighina
- Department of NeurologySan Gerardo HospitalMonzaItaly
- Department of Medicine and Surgery and Milan Center for NeuroscienceUniversity of Milano BicoccaMilanItaly
| | - Carlo Ferrarese
- Department of NeurologySan Gerardo HospitalMonzaItaly
- Department of Medicine and Surgery and Milan Center for NeuroscienceUniversity of Milano BicoccaMilanItaly
| | - Grazia Annesi
- Institute for Biomedical Research and InnovationNational Research CouncilCosenzaItaly
| | - Andrea Quattrone
- Institute of Neurology, Department of Medical and Surgical SciencesMagna Graecia University of CatanzaroCatanzaroItaly
- Department of Medical and Surgical Sciences, Neuroscience Research CenterMagna Graecia UniversityCatanzaroItaly
| | - Monica Gagliardi
- Department of Medical and Surgical Sciences, Neuroscience Research CenterMagna Graecia UniversityCatanzaroItaly
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio‐Nano MedicineNational Defense Medical CollegeSaitamaJapan
| | - Akiyoshi Nakayama
- Department of Integrative Physiology and Bio‐Nano MedicineNational Defense Medical CollegeSaitamaJapan
| | - Nobutaka Hattori
- Department of NeurologyJuntendo University School of MedicineTokyoJapan
| | - Kenya Nishioka
- Department of NeurologyJuntendo University School of MedicineTokyoJapan
| | - Sun Ju Chung
- Department of Neurology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Yun Joong Kim
- Department of NeurologyYonsei University College of MedicineSeoulSouth Korea
| | - Pierre Kolber
- Neurology, Centre Hospitalier de LuxembourgLuxembourgLuxembourg
| | - Bart P.C. van de Warrenburg
- Department of Neurology, Radboud University Medical CentreDonders Institute for Brain, Cognition and BehaviourNijmegenthe Netherlands
| | - Bastiaan R. Bloem
- Department of Neurology, Radboud University Medical CentreDonders Institute for Brain, Cognition and BehaviourNijmegenthe Netherlands
| | - Jan Aasly
- Department of NeurologySt. Olav's Hospital and Norwegian University of Science and TechnologyTrondheimNorway
| | - Mathias Toft
- Department of NeurologyOslo University HospitalOsloNorway
| | | | - Leonor Correia Guedes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de MedicinaUniversidade de LisboaLisbonPortugal
- Department of Neurosciences and Mental Health, Neurology, Hospital de Santa MariaCentro Hospitalar Universitario Lisboa Norte (CHULN)LisbonPortugal
| | - Joaquim J. Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de MedicinaUniversidade de LisboaLisbonPortugal
- Department of Neurosciences and Mental Health, Neurology, Hospital de Santa MariaCentro Hospitalar Universitario Lisboa Norte (CHULN)LisbonPortugal
- Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical SciencesFaculty of Medicine and Health Sciences, Stellenbosch UniversityStellenboschSouth Africa
| | - Jonathan Carr
- Division of Neurology, Department of MedicineFaculty of Medicine and Health Sciences, Stellenbosch UniversityStellenboschSouth Africa
| | - Eduardo Tolosa
- Parkinson's Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018‐ISCIII)BarcelonaSpain
| | - Mario Ezquerra
- Lab of Parkinson's disease and Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de NeurociènciesUniversitat de BarcelonaBarcelonaSpain
| | - Pau Pastor
- Unit of Neurodegenerative Diseases, Department of NeurologyUniversity Hospital Germans Trias i PujolBarcelonaSpain
| | - Monica Diez‐Fairen
- Fundació per la Recerca Biomèdica i Social Mútua TerrassaBarcelonaSpain
- Movement Disorders Unit, Department of NeurologyHospital Universitari Mutua de TerrassaBarcelonaSpain
| | - Karin Wirdefeldt
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Nancy Pedersen
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Caroline Ran
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | - Andrea C. Belin
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | - Andreas Puschmann
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, NeurologyLundSweden
| | - Emil Ygland Rödström
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, NeurologyLundSweden
| | - Carl E. Clarke
- University of Birmingham and Sandwell and West Birmingham Hospitals NHS TrustBirminghamUnited Kingdom
| | - Karen E. Morrison
- Faculty of Medicine, Health and Life SciencesQueens UniversityBelfastUnited Kingdom
| | - Manuela Tan
- Department of NeurologyOslo University HospitalOsloNorway
| | - Dimitri Krainc
- Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Lena F. Burbulla
- German Center for Neurodegenerative DiseasesTübingenGermany
- Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Metabolic Biochemistry, Biomedical Center, Faculty of MedicineLudwig‐Maximilians‐Universität MünchenMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Matt J. Farrer
- Department of NeurologyMcKnight Brain Institute, University of FloridaGainesvilleFloridaUSA
| | - Rejko Kruger
- Translational Neuroscience, Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐BelvalLuxembourg
- NeurologyCentre Hospitalier de LuxembourgLuxembourgLuxembourg
- Parkinson's Research ClinicCentre Hospitalier de LuxembourgLuxembourgLuxembourg
- Transversal Translational MedicineLuxembourg Institute of HealthStrassenLuxembourg
| | - Thomas Gasser
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain ResearchUniversity of TubingenTübingenGermany
- German Center for Neurodegenerative DiseasesTübingenGermany
| | - Manu Sharma
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied BiometryUniversity of TubingenTübingenGermany
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain ResearchUniversity of TubingenTübingenGermany
| | | | - Thérèse Truong
- Université Paris‐Saclay, UVSQ, Inserm, Gustave Roussy, Team “Exposome, Heredity, Cancer and Health”, CESPVillejuifFrance
| | - Alexis Elbaz
- Université Paris‐Saclay, UVSQ, Inserm, Gustave Roussy, Team “Exposome, Heredity, Cancer and Health”, CESPVillejuifFrance
| |
Collapse
|
9
|
Krainc T, Monje MHG, Kinsinger M, Bustos BI, Lubbe SJ. Melanin and Neuromelanin: Linking Skin Pigmentation and Parkinson's Disease. Mov Disord 2023; 38:185-195. [PMID: 36350228 DOI: 10.1002/mds.29260] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/11/2022] Open
Abstract
Neuromelanin-containing dopaminergic neurons in the substantia nigra pars compacta (SNpc) are the most vulnerable neurons in Parkinson's disease (PD). Recent work suggests that the accumulation of oxidized dopamine and neuromelanin mediate the convergence of mitochondrial and lysosomal dysfunction in patient-derived neurons. In addition, the expression of human tyrosinase in mouse SNpc led to the formation of neuromelanin resulting in the degeneration of nigral dopaminergic neurons, further highlighting the importance of neuromelanin in PD. The potential role of neuromelanin in PD pathogenesis has been supported by epidemiological observations, whereby individuals with lighter pigmentation or cutaneous malignant melanoma exhibit higher incidence of PD. Because neuromelanin and melanin share many functional characteristics and overlapping biosynthetic pathways, it has been postulated that genes involved in skin pigmentation and melanin formation may play a role in the susceptibility of vulnerable midbrain dopaminergic neurons to neurodegeneration. Here, we highlight potential mechanisms that may explain the link between skin pigmentation and PD, focusing on the role of skin pigmentation genes in the pathogenesis of PD. We also discuss the importance of genetic ancestry in assessing the contribution of pigmentation-related genes to risk of PD. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Talia Krainc
- Department of Anthropology, Princeton University, Princeton, New Jersey, USA.,Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mariana H G Monje
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Morgan Kinsinger
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bernabe I Bustos
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.,Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Steven J Lubbe
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.,Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
10
|
YAP Activation in Promoting Negative Durotaxis and Acral Melanoma Progression. Cells 2022; 11:cells11223543. [PMID: 36428972 PMCID: PMC9688430 DOI: 10.3390/cells11223543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Directed cell migration towards a softer environment is called negative durotaxis. The mechanism and pathological relevance of negative durotaxis in tumor progression still requires in-depth investigation. Here, we report that YAP promotes the negative durotaxis of melanoma. We uncovered that the RhoA-myosin II pathway may underlie the YAP enhanced negative durotaxis of melanoma cells. Acral melanoma is the most common subtype of melanoma in non-Caucasians and tends to develop in a stress-bearing area. We report that acral melanoma patients exhibit YAP amplification and increased YAP activity. We detected a decreasing stiffness gradient from the tumor to the surrounding area in the acral melanoma microenvironment. We further identified that this stiffness gradient could facilitate the negative durotaxis of melanoma cells. Our study advanced the understanding of mechanical force and YAP in acral melanoma and we proposed negative durotaxis as a new mechanism for melanoma dissemination.
Collapse
|
11
|
Laskowska AK, Kleczkowska P. Anticancer efficacy of endo- and exogenous potent ligands acting at dopaminergic receptor-expressing cancer cells. Eur J Pharmacol 2022; 932:175230. [PMID: 36027983 DOI: 10.1016/j.ejphar.2022.175230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/27/2022]
Abstract
Cancer is one of the most common and dreaded diseases affecting the vastness of society. Unfortunately, still some people die especially when cancer is not diagnosed and thus caught early enough. On the other hand, using available chemo- or radiotherapy may result in serious side effects. Therefore, cancer-specific medications seem to be the most desired and safe therapy. Knowing that some cancers are characterized by overexpression of specific receptors on the cell surface, target-mediated drugs could serve as a unique and effective form of therapy. In line with this, recently dopaminergic receptors were presented important in cancer therapy as several dopaminergic ligands revealed their efficacy in tumor growth reduction as well as in apoptosis mediation. Unfortunately, the indication of whether DA receptor agonists or antagonists are the best choices in cancer treatment is quite difficult, since both of them may exert either pro- or anticancer effects. In this review, we analyze the therapeutic efficacy of compounds, both of exogenous and endogenous origin, targeting dopaminergic receptor-expressing cancers.
Collapse
Affiliation(s)
- Anna K Laskowska
- Centre for Preclinical Research and Technology (CePT), Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland
| | - Patrycja Kleczkowska
- Maria Sklodowska-Curie Medical Academy in Warsaw, Solidarnosci 12 Str., 03-411, Warsaw, Poland; Military Institute of Hygiene and Epidemiology, Kozielska 4 Str., 01-163, Warsaw, Poland.
| |
Collapse
|
12
|
Zhang X, Guarin D, Mohammadzadehhonarvar N, Chen X, Gao X. Parkinson's disease and cancer: a systematic review and meta-analysis of over 17 million participants. BMJ Open 2021; 11:e046329. [PMID: 34215604 PMCID: PMC8256737 DOI: 10.1136/bmjopen-2020-046329] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE To systematically review and qualitatively evaluate epidemiological evidence on associations between Parkinson's disease (PD) and cancer via meta-analysis. DATA SOURCES MEDLINE via PubMed, Web of Science and EMBASE, until March 2021. STUDY SELECTION Included were publications that (1) were original epidemiological studies on PD and cancer; (2) reported risk estimates; (3) were in English. Exclusion criteria included: (1) review/comments; (2) biological studies; (3) case report/autopsy studies; (4) irrelevant exposure/outcome; (5) treated cases; (6) no measure of risk estimates; (7) no confidence intervals/exact p values and (8) duplicates. DATA EXTRACTION AND SYNTHESIS PRISMA and MOOSE guidelines were followed in data extraction. Two-step screening was performed by two authors blinded to each other. A random-effects model was used to calculate pooled relative risk (RR). MAIN OUTCOMES AND MEASURES We included publications that assessed the risk of PD in individuals with vs without cancer and the risk of cancer in individuals with vs without PD. RESULTS A total of 63 studies and 17 994 584 participants were included. Meta-analysis generated a pooled RR of 0.82 (n=33; 95% CI 0.76 to 0.88; p<0.001) for association between PD and total cancer, 0.76 (n=21; 95% CI 0.67 to 0.85; p<0.001) for PD and smoking-related cancer and 0.92 (n=19; 95% CI 0.84 to 0.99; p=0.03) for non-smoking-related cancer. PD was associated with an increased risk of melanoma (n=29; pooled RR=1.75; 95% CI 1.43 to 2.14; p<0.001) but not for other skin cancers (n=17; pooled RR=0.90; 95% CI 0.60 to 1.34; p=0.60). CONCLUSIONS PD and total cancer were inversely associated. This inverse association persisted for both smoking-related and non-smoking-related cancers. PD was positively associated with melanoma. These results provide evidence for further investigations for possible mechanistic associations between PD and cancer. PROSPERO REGISTRATION NUMBER CRD42020162103.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Nutritional Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - David Guarin
- Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Xiqun Chen
- Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Xiang Gao
- Nutritional Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
13
|
Dean DN, Lee JC. Linking Parkinson's Disease and Melanoma: Interplay Between α-Synuclein and Pmel17 Amyloid Formation. Mov Disord 2021; 36:1489-1498. [PMID: 34021920 DOI: 10.1002/mds.28655] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/22/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder associated with the death of dopaminergic neurons within the substantia nigra of the brain. Melanoma is a cancer of melanocytes, pigmented cells that give rise to skin tone, hair, and eye color. Although these two diseases fundamentally differ, with PD leading to cell degeneration and melanoma leading to cell proliferation, epidemiological evidence has revealed a reciprocal relationship where patients with PD are more susceptible to melanoma and patients with melanoma are more susceptible to PD. The hallmark pathology observed in PD brains is intracellular inclusions, of which the primary component is proteinaceous α-synuclein (α-syn) amyloid fibrils. α-Syn also has been detected in cultured melanoma cells and tissues derived from patients with melanoma, where an inverse correlation exists between α-syn expression and pigmentation. Although this has led to the prevailing hypothesis that α-syn inhibits enzymes involved in melanin biosynthesis, we recently reported an alternative hypothesis in which α-syn interacts with and modulates the aggregation of Pmel17, a functional amyloid that serves as a scaffold for melanin biosynthesis. In this perspective, we review the literature describing the epidemiological and molecular connections between PD and melanoma, presenting both the prevailing hypothesis and our amyloid-centric hypothesis. We offer our views of the essential questions that remain unanswered to motivate future investigations. Understanding the behavior of α-syn in melanoma could not only provide novel approaches for treating melanoma but also could reveal insights into the role of α-syn in PD. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Dexter N Dean
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jennifer C Lee
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Gui Y, Zhou Y. High-quality nursing intervention can improve negative emotions, quality of life and activity of daily living of elderly patients with Parkinson's disease. Am J Transl Res 2021; 13:4749-4759. [PMID: 34150055 PMCID: PMC8205788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE This study was designed to determine the effect of high-quality nursing intervention on negative emotions, quality of life and activities of daily living (ADL) of elderly patients with Parkinson's disease (PD). METHODS Totally 115 elderly PD patients treated in our hospital from March 2018 to September 2019 were selected as the research participants. According to different nursing intervention methods, they were divided into two groups. The research group (RG) (65 cases) received high-quality nursing intervention, while the control group (CG) (50 cases) received routine nursing intervention. The adverse reactions, negative emotions, quality of life, ADL, PSQI, MDRSPD scores and nursing satisfaction were compared between the two groups. RESULTS After nursing intervention, the incidence of adverse reactions in the RG was dramatically lower than that in the CG. Before nursing intervention, there was no marked difference in the scores of quality of life, ADL and MDRSPD between the two groups. But after nursing, those scores in the RG were markedly higher than those in the CG. Before nursing intervention, there was no remarkable difference in SAS, SDS and PSQI scores between both groups, but after that, the scores of the RG were obviously lower than those of the CG. After nursing intervention, the nursing satisfaction of patients in the RG was dramatically higher than that in the CG. CONCLUSION High-quality nursing intervention for elderly PD patients can dramatically improve their negative emotions, quality of life and ADL, and promote recovery of motor function.
Collapse
Affiliation(s)
- Yihui Gui
- Department of Neurology, Taizhou Second People's Hospital Taizhou 317200, Zhejiang Province, China
| | - Youya Zhou
- Department of Neurology, Taizhou Second People's Hospital Taizhou 317200, Zhejiang Province, China
| |
Collapse
|
15
|
Scheau C, Draghici C, Ilie MA, Lupu M, Solomon I, Tampa M, Georgescu SR, Caruntu A, Constantin C, Neagu M, Caruntu C. Neuroendocrine Factors in Melanoma Pathogenesis. Cancers (Basel) 2021; 13:cancers13092277. [PMID: 34068618 PMCID: PMC8126040 DOI: 10.3390/cancers13092277] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Melanoma is a very aggressive and fatal malignant tumor. While curable if diagnosed in its early stages, advanced melanoma, despite the complex therapeutic approaches, is associated with one of the highest mortality rates. Hence, more and more studies have focused on mechanisms that may contribute to melanoma development and progression. Various studies suggest a role played by neuroendocrine factors which can act directly on tumor cells, modulating their proliferation and metastasis capability, or indirectly through immune or inflammatory processes that impact disease progression. However, there are still multiple areas to explore and numerous unknown features to uncover. A detailed exploration of the mechanisms by which neuroendocrine factors can influence the clinical course of the disease could open up new areas of biomedical research and may lead to the development of new therapeutic approaches in melanoma. Abstract Melanoma is one of the most aggressive skin cancers with a sharp rise in incidence in the last decades, especially in young people. Recognized as a significant public health issue, melanoma is studied with increasing interest as new discoveries in molecular signaling and receptor modulation unlock innovative treatment options. Stress exposure is recognized as an important component in the immune-inflammatory interplay that can alter the progression of melanoma by regulating the release of neuroendocrine factors. Various neurotransmitters, such as catecholamines, glutamate, serotonin, or cannabinoids have also been assessed in experimental studies for their involvement in the biology of melanoma. Alpha-MSH and other neurohormones, as well as neuropeptides including substance P, CGRP, enkephalin, beta-endorphin, and even cellular and molecular agents (mast cells and nitric oxide, respectively), have all been implicated as potential factors in the development, growth, invasion, and dissemination of melanoma in a variety of in vitro and in vivo studies. In this review, we provide an overview of current evidence regarding the intricate effects of neuroendocrine factors in melanoma, including data reported in recent clinical trials, exploring the mechanisms involved, signaling pathways, and the recorded range of effects.
Collapse
Affiliation(s)
- Cristian Scheau
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (C.C.)
| | - Carmen Draghici
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (M.A.I.); (M.L.); (I.S.)
| | - Mihaela Adriana Ilie
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (M.A.I.); (M.L.); (I.S.)
| | - Mihai Lupu
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (M.A.I.); (M.L.); (I.S.)
| | - Iulia Solomon
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (M.A.I.); (M.L.); (I.S.)
| | - Mircea Tampa
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.T.); (S.R.G.)
| | - Simona Roxana Georgescu
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.T.); (S.R.G.)
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
- Correspondence:
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 076201 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (C.C.)
- Department of Dermatology, “Prof. N. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| |
Collapse
|
16
|
Senkevich K, Bandres-Ciga S, Yu E, Liyanage UE, Noyce AJ, Gan-Or Z. No Evidence for a Causal Relationship Between Cancers and Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2021; 11:801-809. [PMID: 33646179 DOI: 10.3233/jpd-202474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Epidemiological data suggest that cancer patients have a reduced risk of subsequent Parkinson's disease (PD) development, but the prevalence of PD in melanoma patients is often reported to be increased. Causal relationships between cancers and PD have not been fully explored. OBJECTIVE To study causal relationship between different cancers and PD. METHODS We used GWAS summary statistics of 15 different types of cancers and two-sample Mendelian randomization to study the causal relationship with PD. RESULTS There was no evidence to support a causal relationship between the studied cancers and PD. We also performed reverse analyses between PD and cancers with available full summary statistics (melanoma, breast, prostate, endometrial and keratinocyte cancers) and did not find evidence of causal relationship. CONCLUSION We found no evidence to support a causal relationship between cancers and PD and the previously reported associations could be a result of genetic pleiotropy, shared biology or biases.
Collapse
Affiliation(s)
- Konstantin Senkevich
- The Neuro (Montreal Neurological Institute-Hospital), Montréal, QC, Canada.,Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
| | - Sara Bandres-Ciga
- Molecular Genetics Section, Laboratory of Neurogenetics, NIA, NIH, Bethesda, MD, USA
| | - Eric Yu
- The Neuro (Montreal Neurological Institute-Hospital), Montréal, QC, Canada.,Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Upekha E Liyanage
- Cancer and Population Studies group, Population Health Department, QIMR Berghofer Medical Research Institute, Locked Bag 2000, Royal Brisbane Hospital, Queensland, Australia
| | | | - Alastair J Noyce
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK.,Department of Clinical and Movement Neurosciences, University College London Institute of Neurology, London, UK
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), Montréal, QC, Canada.,Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada.,Department of Human Genetics, McGill University, Montréal, QC, Canada
| |
Collapse
|
17
|
Quoi de neuf en oncodermatologie ? Ann Dermatol Venereol 2020; 147:12S33-12S42. [DOI: 10.1016/s0151-9638(20)31106-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Niemann N, Billnitzer A, Jankovic J. Parkinson's disease and skin. Parkinsonism Relat Disord 2020; 82:61-76. [PMID: 33248395 DOI: 10.1016/j.parkreldis.2020.11.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/18/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
Parkinson's disease is associated with a variety of dermatologic disorders and the study of skin may provide insights into pathophysiological mechanisms underlying this common neurodegenerative disorder. Skin disorders in patients with Parkinson's disease can be divided into two major groups: 1) non-iatrogenic disorders, including melanoma, seborrheic dermatitis, sweating disorders, bullous pemphigoid, and rosacea, and 2) iatrogenic disorders related either to systemic side effects of antiparkinsonian medications or to the delivery system of antiparkinsonian therapy, including primarily carbidopa/levodopa, rotigotine and other dopamine agonists, amantadine, catechol-O-methyl transferase inhibitors, subcutaneous apomorphine, levodopa/carbidopa intestinal gel, and deep brain stimulation. Recent advances in our understanding of the role of α-synuclein in peripheral tissues, including the skin, and research based on induced pluripotent stem cells derived from skin fibroblasts have made skin an important target for the study of Parkinson's disease pathogenesis, drug discovery, novel stem cell therapies, and diagnostics.
Collapse
Affiliation(s)
- Nicki Niemann
- Muhammad Ali Parkinson Center, Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA.
| | - Andrew Billnitzer
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
19
|
Ejma M, Madetko N, Brzecka A, Guranski K, Alster P, Misiuk-Hojło M, Somasundaram SG, Kirkland CE, Aliev G. The Links between Parkinson's Disease and Cancer. Biomedicines 2020; 8:biomedicines8100416. [PMID: 33066407 PMCID: PMC7602272 DOI: 10.3390/biomedicines8100416] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Epidemiologic studies indicate a decreased incidence of most cancer types in Parkinson’s disease (PD) patients. However, some neoplasms are associated with a higher risk of occurrence in PD patients. Both pathologies share some common biological pathways. Although the etiologies of PD and cancer are multifactorial, some factors associated with PD, such as α-synuclein aggregation; mutations of PINK1, PARKIN, and DJ-1; mitochondrial dysfunction; and oxidative stress can also be involved in cancer proliferation or cancer suppression. The main protein associated with PD, i.e., α-synuclein, can be involved in some types of neoplastic formations. On the other hand, however, its downregulation has been found in the other cancers. PINK1 can act as oncogenic or a tumor suppressor. PARKIN dysfunction may lead to some cancers’ growth, and its expression may be associated with some tumors’ suppression. DJ-1 mutation is involved in PD pathogenesis, but its increased expression was found in some neoplasms, such as melanoma or breast, lung, colorectal, uterine, hepatocellular, and nasopharyngeal cancers. Both mitochondrial dysfunction and oxidative stress are involved in PD and cancer development. The aim of this review is to summarize the possible associations between PD and carcinogenesis.
Collapse
Affiliation(s)
- Maria Ejma
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland; (M.E.); (N.M.); (K.G.)
| | - Natalia Madetko
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland; (M.E.); (N.M.); (K.G.)
| | - Anna Brzecka
- Department of Pulmonology and Lung Oncology, Wroclaw Medical University, Grabiszyńska 105, 53-439 Wroclaw, Poland;
| | - Konstanty Guranski
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland; (M.E.); (N.M.); (K.G.)
| | - Piotr Alster
- Department of Neurology, Medical University of Warsaw, Kondratowicza 8, 03-242 Warszawa, Poland;
| | - Marta Misiuk-Hojło
- Department of Ophthalmology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Siva G. Somasundaram
- Department of Biological Sciences, Salem University, Salem, WV 26426, USA; (S.G.S.); (C.E.K.)
| | - Cecil E. Kirkland
- Department of Biological Sciences, Salem University, Salem, WV 26426, USA; (S.G.S.); (C.E.K.)
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, 119991 Moscow, Russia
- Research Institute of Human Morphology, Russian Academy of Medical Science, Street Tsyurupa 3, 117418 Moscow, Russia
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432 Moscow Region, Russia
- GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX 78229, USA
- Correspondence: or ; Tel.: +1-210-442-8625 or +1-440-263-7461
| |
Collapse
|
20
|
Ásgrímsdóttir ES, Arenas E. Midbrain Dopaminergic Neuron Development at the Single Cell Level: In vivo and in Stem Cells. Front Cell Dev Biol 2020; 8:463. [PMID: 32733875 PMCID: PMC7357704 DOI: 10.3389/fcell.2020.00463] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that predominantly affects dopaminergic (DA) neurons of the substantia nigra. Current treatment options for PD are symptomatic and typically involve the replacement of DA neurotransmission by DA drugs, which relieve the patients of some of their motor symptoms. However, by the time of diagnosis, patients have already lost about 70% of their substantia nigra DA neurons and these drugs offer only temporary relief. Therefore, cell replacement therapy has garnered much interest as a potential treatment option for PD. Early studies using human fetal tissue for transplantation in PD patients provided proof of principle for cell replacement therapy, but they also highlighted the ethical and practical difficulties associated with using human fetal tissue as a cell source. In recent years, advancements in stem cell research have made human pluripotent stem cells (hPSCs) an attractive source of material for cell replacement therapy. Studies on how DA neurons are specified and differentiated in the developing mouse midbrain have allowed us to recapitulate many of the positional and temporal cues needed to generate DA neurons in vitro. However, little is known about the developmental programs that govern human DA neuron development. With the advent of single-cell RNA sequencing (scRNA-seq) and bioinformatics, it has become possible to analyze precious human samples with unprecedented detail and extract valuable high-quality information from large data sets. This technology has allowed the systematic classification of cell types present in the human developing midbrain along with their gene expression patterns. By studying human development in such an unbiased manner, we can begin to elucidate human DA neuron development and determine how much it differs from our knowledge of the rodent brain. Importantly, this molecular description of the function of human cells has become and will increasingly be a reference to define, evaluate, and engineer cell types for PD cell replacement therapy and disease modeling.
Collapse
Affiliation(s)
| | - Ernest Arenas
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Bellou E, Stevenson-Hoare J, Escott-Price V. Polygenic risk and pleiotropy in neurodegenerative diseases. Neurobiol Dis 2020; 142:104953. [PMID: 32445791 PMCID: PMC7378564 DOI: 10.1016/j.nbd.2020.104953] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
In this paper we explore the phenomenon of pleiotropy in neurodegenerative diseases, focusing on Alzheimer's disease (AD). We summarize the various techniques developed to investigate pleiotropy among traits, elaborating in the polygenic risk scores (PRS) analysis. PRS was designed to assess a cumulative effect of a large number of SNPs for association with a disease and, later for disease risk prediction. Since genetic predictions rely on heritability, we discuss SNP-based heritability from genome-wide association studies and its contribution to the prediction accuracy of PRS. We review work examining pleiotropy in neurodegenerative diseases and related phenotypes and biomarkers. We conclude that the exploitation of pleiotropy may aid in the identification of novel genes and provide further insights in the disease mechanisms, and along with PRS analysis, may be advantageous for precision medicine.
Collapse
|