1
|
Mei T, Chen Y, Gao Y, Zhao H, Lyu X, Lin J, Niu T, Han H, Tong Z. Formaldehyde initiates memory and motor impairments under weightlessness condition. NPJ Microgravity 2024; 10:100. [PMID: 39468074 PMCID: PMC11519943 DOI: 10.1038/s41526-024-00441-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 10/21/2024] [Indexed: 10/30/2024] Open
Abstract
During space flight, prolonged weightlessness stress exerts a range of detrimental impacts on the physiology and psychology of astronauts. These manifestations encompass depressive symptoms, anxiety, and impairments in both short-term memory and motor functions, albeit the precise underlying mechanisms remain elusive. Recent studies have revealed that hindlimb unloading (HU) animal models, which simulate space weightlessness, exhibited a disorder in memory and motor function associated with endogenous formaldehyde (FA) accumulation in the hippocampus and cerebellum, disruption of brain extracellular space (ECS), and blockage of interstitial fluid (ISF) drainage. Notably, the impairment of the blood-brain barrier (BBB) caused by space weightlessness elicits the infiltration of albumin and hemoglobin from the blood vessels into the brain ECS. However, excessive FA has the potential to form cross-links between these two proteins and amyloid-beta (Aβ), thereby obstructing ECS and inducing neuron death. Moreover, FA can inhibit N-methyl-D-aspartate (NMDA) currents by crosslinking NR1 and NR2B subunits, thus impairing memory. Additionally, FA has the ability to modulate the levels of certain microRNAs (miRNAs) such as miRNA-29b, which can affect the expression of aquaporin-4 (AQP4) so as to regulate ECS structure and ISF drainage. Especially, the accumulation of FA may inactivate the ataxia telangiectasia-mutated (ATM) protein kinase by forming cross-linking, a process that is associated with ataxia. Hence, this review presents that weightlessness stress-derived FA may potentially serve as a crucial catalyst in the deterioration of memory and motor abilities in the context of microgravity.
Collapse
Affiliation(s)
- Tianhao Mei
- Beijing Geriatric Hospital, Beijing, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Chen
- Beijing Geriatric Hospital, Beijing, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yajuan Gao
- Department of Radiology, Peking University Third Hospital, Beijing, China. Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China
- NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Hang Zhao
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xingzhou Lyu
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Lin
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tianye Niu
- Shenzhen Bay Laboratory, Shenzhen, China.
- University of Science and Technology of China, Anhui, China.
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing, China. Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
- NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, China.
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.
| | - Zhiqian Tong
- Beijing Geriatric Hospital, Beijing, China.
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
Oommen AM, Stafford P, Joshi L. Profiling muscle transcriptome in mice exposed to microgravity using gene set enrichment analysis. NPJ Microgravity 2024; 10:94. [PMID: 39367013 PMCID: PMC11452717 DOI: 10.1038/s41526-024-00434-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
Space exploration's advancement toward long-duration missions prompts intensified research on physiological effects. Despite adaptive physiological stability in some variables, persistent changes affect genome integrity, immune response, and cognitive function. Our study, utilizing multi-omics data from GeneLab, provides crucial insights investigating muscle atrophy during space mission. Leveraging NASA GeneLab's data resources, we apply systems biology-based analyses, facilitating comprehensive understanding and enabling meta-analysis. Through transcriptomics, we establish a reference profile of biological processes underlying muscle atrophy, crucial for intervention development. We emphasize the often-overlooked role of glycosylation in muscle atrophy. Our research sheds light on fundamental molecular mechanisms, bridging gaps between space research and terrestrial conditions. This study underscores the importance of interdisciplinary collaboration and data-sharing initiatives like GeneLab in advancing space medicine research.
Collapse
Affiliation(s)
- Anup Mammen Oommen
- Advanced Glycoscience Research Cluster (AGRC), University of Galway, Galway, Ireland
| | - Phillip Stafford
- Arizona State University, School of Life Sciences, Biodesign Institute, Arizona, USA
| | - Lokesh Joshi
- Advanced Glycoscience Research Cluster (AGRC), University of Galway, Galway, Ireland.
- Aquila Bioscience, University of Galway, Galway, Ireland.
| |
Collapse
|
3
|
Le Roy B, Jouvencel A, Friedl-Werner A, Renel L, Cherchali Y, Osseiran R, Sanz-Arigita E, Cazalets JR, Guillaud E, Altena E. Is sleep affected after microgravity and hypergravity exposure? A pilot study. J Sleep Res 2024:e14279. [PMID: 38923005 DOI: 10.1111/jsr.14279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/24/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Sleep is known to be affected in space travel and in residents of the international space station. But little is known about the direct effects of gravity changes on sleep, if other factors, such as sleep conditions, are kept constant. Here, as a first exploration, we investigated sleep before and after exposure to short bouts of microgravity and hypergravity during parabolic flights. Sleep was measured through actigraphy and self-report questionnaires in 20 healthy men and women before and after parabolic flight. Higher sleep fragmentation and more awakenings were found in the night after the flight as compared with the night before, which was discrepant from participants' reports showing better and longer sleep after the parabolic flight. Variable levels of experience with parabolic flights did not affect the results, nor did levels of scopolamine, a medication typically taken against motion sickness. Pre-existing sleep problems were related to sleep fragmentation and wake after sleep onset by a quadratic function such that participants with more sleep problems showed lower levels of sleep fragmentation and nighttime awakenings than those with few sleep problems. These novel findings, though preliminary, have important implications for future research, directed at prevention and treatment of sleep problems and their daytime consequences in situations of altered gravity, and possibly in the context of other daytime vestibular challenges as well.
Collapse
Affiliation(s)
- Barbara Le Roy
- Stress Neurophysiology Unit, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge Cedex, CNES, Paris, France
- APEMAC/EPSAM, EA 4360 Metz Cedex, Metz Cedex, France
| | - Aurore Jouvencel
- INCIA, EPHE, Université PSL, Univ. Bordeaux, CNRS, Bordeaux, France
| | - Anika Friedl-Werner
- Charité-Universitätsmedizin Berlin, a Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
- Université de Normandie, INSERM U1075 COMETE, Caen, France
| | - Ludmila Renel
- Université de Bordeaux, CNRS UMR 5287, INCIA, Bordeaux, France
| | | | - Raouf Osseiran
- Université de Bordeaux, CNRS UMR 5287, INCIA, Bordeaux, France
| | | | | | | | | |
Collapse
|
4
|
Di Natale C, Coppola S, Vespini V, Tkachenko V, Russo S, Luciani G, Vitiello G, Ferranti F, Mari S, Ferraro P, Maffettone PL, Grilli S. Highly sensitive detection of the neurodegenerative biomarker Tau by using the concentration effect of the pyro-electrohydrodynamic jetting. Biosens Bioelectron 2024; 254:116234. [PMID: 38522234 DOI: 10.1016/j.bios.2024.116234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
It is largely documented that neurodegenerative diseases can be effectively treated only if early diagnosed. In this context, the structural changes of some biomolecules such as Tau, seem to play a key role in neurodegeneration mechanism becoming eligible targets for an early diagnosis. Post-translational modifications are responsible to drive the Tau protein towards a transition phase from a native disorder conformation into a preaggregation state, which then straight recruits the final fibrillization process. Here, we show for the first time the detection of pre-aggregated Tau in artificial urine at femto-molar level, through the concentration effect of the pyro-electrohydrodynamic jet (p-jet) technique. An excellent linear calibration curve is demonstrated at the femto-molar level with a limit of detection (LOD) of 130 fM. Moreover, for the first time we show here the structure stability of the protein after p-jet application through a deep spectroscopic investigation. Thanks to the small volumes required and the relatively compact and cost-effective characteristics, this technique represents an innovative breakthrough in monitoring the early stage associated to neurodegeneration syndromes in different scenarios of point of care (POC) and such as for example in long-term human space exploration missions.
Collapse
Affiliation(s)
- Concetta Di Natale
- Dipartimento di Ingegneria Chimica, Dei Materiali e Della Produzione Industriale (DICMaPI), Università Degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125, Naples, Italy; Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council of Italy (CNR), Pozzuoli, NA, 80078, Italy.
| | - Sara Coppola
- Dipartimento di Ingegneria Chimica, Dei Materiali e Della Produzione Industriale (DICMaPI), Università Degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125, Naples, Italy; Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council of Italy (CNR), Pozzuoli, NA, 80078, Italy
| | - Veronica Vespini
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council of Italy (CNR), Pozzuoli, NA, 80078, Italy
| | - Volodymyr Tkachenko
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council of Italy (CNR), Pozzuoli, NA, 80078, Italy
| | - Simone Russo
- Dipartimento di Ingegneria Chimica, Dei Materiali e Della Produzione Industriale (DICMaPI), Università Degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125, Naples, Italy
| | - Giuseppina Luciani
- Dipartimento di Ingegneria Chimica, Dei Materiali e Della Produzione Industriale (DICMaPI), Università Degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125, Naples, Italy
| | - Giuseppe Vitiello
- Dipartimento di Ingegneria Chimica, Dei Materiali e Della Produzione Industriale (DICMaPI), Università Degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125, Naples, Italy; Center for Colloid and Surface Science (CSGI), Via Della Lastruccia, Sesto Fiorentino, FI, 80078, Italy
| | | | - Silvia Mari
- Agenzia Spaziale Italiana, Via Del Politecnico snc, 00133, Rome, Italy
| | - Pietro Ferraro
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council of Italy (CNR), Pozzuoli, NA, 80078, Italy
| | - Pier Luca Maffettone
- Dipartimento di Ingegneria Chimica, Dei Materiali e Della Produzione Industriale (DICMaPI), Università Degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125, Naples, Italy; Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council of Italy (CNR), Pozzuoli, NA, 80078, Italy
| | - Simonetta Grilli
- Dipartimento di Ingegneria Chimica, Dei Materiali e Della Produzione Industriale (DICMaPI), Università Degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125, Naples, Italy; Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council of Italy (CNR), Pozzuoli, NA, 80078, Italy.
| |
Collapse
|
5
|
van Oosterhout WPJ, Perenboom MJL, Terwindt GM, Ferrari MD, Vein AA. Frequency and Clinical Features of Space Headache Experienced by Astronauts During Long-Haul Space Flights. Neurology 2024; 102:e209224. [PMID: 38478846 PMCID: PMC11033988 DOI: 10.1212/wnl.0000000000209224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/23/2023] [Indexed: 04/24/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Few anecdotal cases and 1 small retrospective study during short-duration space missions suggest that headache may occur early in flight, as part of the space motion syndrome. Whether headaches may also occur at later stages of space flights is unknown. We aimed to prospectively characterize the incidence, timing, clinical features, and management of space headaches during long-duration flights. METHODS We prospectively evaluated the occurrence, characteristics, and evolution of space headaches and the effects of treatment and countermeasures during long-haul flights with onboard questionnaires and correlated them with prevailing temperature, pressure, and ambient O2 and CO2 levels, measured within the International Space Station. In addition, we analyzed retrospective headache data from a different astronaut cohort. Headache data were reported using descriptive statistics and correlation data with intraindividual logistic regression models. Astronauts were included through (inter)national aerospace organizations. RESULTS In the prospective study, 22/24 (91.7%) astronauts (mean ± SD age: 46.6 ± 6.5 years, 95.8% male) experienced ≥1 episode of headache during a total of 3,596 space days. A total of 378 episodes were reported (median 9; range 1-128) with detailed information on 189. Phenotypically, 170/189 (89.9%) episodes were tension-type headache (TTH) and 19/189 (10.1%) were migraine. Episodes in the first week differed from those in later periods in terms of phenotype (migraine 12/51 [23.5%] vs 7/138 [5.1%]; TTH 39/51 [86.5%] vs 131/138 [94.9%]; overall p = 0.0002) and accompanying symptoms: nausea: 17.6% vs 6.9%, p = 0.05; vomiting: 9.8% vs 0.7%, p = 0.005; nasal congestion: 52.9% vs 29.7%, p = 0.004; facial edema: 41.2% vs 1.4%, p < 0.001; and duration (p = 0.001). Severity and treatments were similar: acute antiheadache medication: 55.6%; other medication: 22.4%; and alternative treatments: 41.1%. Headache occurrence was not associated with temperature or ambient pressure/levels of O2 and CO2 (all p > 0.05). In the retrospective study, 23/42 (54.8%) astronauts (43.5 ± 7.2 years, 90.5% male) reported experiencing ≥1 headache episode during mission. Nasal congestion was the most common (8/33; 24.2%) accompanying symptom. Seventeen of 42 astronauts have been previously described. DISCUSSION Astronauts during space flights frequently experience headaches. These most often have characteristics of TTHs but sometimes have migrainous features, particularly during the first week of flight in astronauts without a history of recurrent headaches before or after the space flight.
Collapse
Affiliation(s)
- Willebrordus P J van Oosterhout
- From the Department of Neurology (W.P.J.v.O., M.J.L.P., G.M.T., M.D.F., A.A.V.), Leiden University Medical Center; and Department of Neurology (W.P.J.v.O.), Zaans Medical Center, Zaandam, the Netherlands
| | - Matthijs J L Perenboom
- From the Department of Neurology (W.P.J.v.O., M.J.L.P., G.M.T., M.D.F., A.A.V.), Leiden University Medical Center; and Department of Neurology (W.P.J.v.O.), Zaans Medical Center, Zaandam, the Netherlands
| | - Gisela M Terwindt
- From the Department of Neurology (W.P.J.v.O., M.J.L.P., G.M.T., M.D.F., A.A.V.), Leiden University Medical Center; and Department of Neurology (W.P.J.v.O.), Zaans Medical Center, Zaandam, the Netherlands
| | - Michel D Ferrari
- From the Department of Neurology (W.P.J.v.O., M.J.L.P., G.M.T., M.D.F., A.A.V.), Leiden University Medical Center; and Department of Neurology (W.P.J.v.O.), Zaans Medical Center, Zaandam, the Netherlands
| | - Alla A Vein
- From the Department of Neurology (W.P.J.v.O., M.J.L.P., G.M.T., M.D.F., A.A.V.), Leiden University Medical Center; and Department of Neurology (W.P.J.v.O.), Zaans Medical Center, Zaandam, the Netherlands
| |
Collapse
|
6
|
Bonmatí-Carrión MÁ, Santhi N, Atzori G, Mendis J, Kaduk S, Dijk DJ, Archer SN. Effect of 60 days of head down tilt bed rest on amplitude and phase of rhythms in physiology and sleep in men. NPJ Microgravity 2024; 10:42. [PMID: 38553471 PMCID: PMC10980770 DOI: 10.1038/s41526-024-00387-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/13/2024] [Indexed: 04/02/2024] Open
Abstract
Twenty-four-hour rhythms in physiology and behaviour are shaped by circadian clocks, environmental rhythms, and feedback of behavioural rhythms onto physiology. In space, 24 h signals such as those associated with the light-dark cycle and changes in posture, are weaker, potentially reducing the robustness of rhythms. Head down tilt (HDT) bed rest is commonly used to simulate effects of microgravity but how HDT affects rhythms in physiology has not been extensively investigated. Here we report effects of -6° HDT during a 90-day protocol on 24 h rhythmicity in 20 men. During HDT, amplitude of light, motor activity, and wrist-temperature rhythms were reduced, evening melatonin was elevated, while cortisol was not affected during HDT, but was higher in the morning during recovery when compared to last session of HDT. During recovery from HDT, time in Slow-Wave Sleep increased. EEG activity in alpha and beta frequencies increased during NREM and REM sleep. These results highlight the profound effects of head-down-tilt-bed-rest on 24 h rhythmicity.
Collapse
Affiliation(s)
- María-Ángeles Bonmatí-Carrión
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
- Chronobiology Laboratory, Department of Physiology, IMIB-Arrixaca, University of Murcia, Murcia, Spain.
- CIBER de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain.
| | - Nayantara Santhi
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
- Department of Psychology, Northumbria University, Newcastle Upon Tyne, UK
| | - Giuseppe Atzori
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Jeewaka Mendis
- Surrey Clinical Trials Unit, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Sylwia Kaduk
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, Guildford, UK
| | - Simon N Archer
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
| |
Collapse
|
7
|
Bonanni R, Cariati I, Rinaldi AM, Marini M, D’Arcangelo G, Tarantino U, Tancredi V. Trolox and recombinant Irisin as a potential strategy to prevent neuronal damage induced by random positioning machine exposure in differentiated HT22 cells. PLoS One 2024; 19:e0300888. [PMID: 38512830 PMCID: PMC10956770 DOI: 10.1371/journal.pone.0300888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
Neuronal death could be responsible for the cognitive impairments found in astronauts exposed to spaceflight, highlighting the need to identify potential countermeasures to ensure neuronal health in microgravity conditions. Therefore, differentiated HT22 cells were exposed to simulated microgravity by random positioning machine (RPM) for 48 h, treating them with a single administration of Trolox, recombinant irisin (r-Irisin) or both. Particularly, we investigated cell viability by MTS assay, Trypan Blue staining and western blotting analysis for Akt and B-cell lymphoma 2 (Bcl-2), the intracellular increase of reactive oxygen species (ROS) by fluorescent probe and NADPH oxidase 4 (NOX4) expression, as well as the expression of brain-derived neurotrophic factor (BDNF), a major neurotrophin responsible for neurogenesis and synaptic plasticity. Although both Trolox and r-Irisin manifested a protective effect on neuronal health, the combined treatment produced the best results, with significant improvement in all parameters examined. In conclusion, further studies are needed to evaluate the potential of such combination treatment in counteracting weightlessness-induced neuronal death, as well as to identify other potential strategies to safeguard the health of astronauts exposed to spaceflight.
Collapse
Affiliation(s)
- Roberto Bonanni
- Department of Biomedicine and Prevention, “Tor Vergata” University of Rome, Rome, Italy
| | - Ida Cariati
- Department of Systems Medicine, “Tor Vergata” University of Rome, Rome, Italy
| | - Anna Maria Rinaldi
- Department of Systems Medicine, “Tor Vergata” University of Rome, Rome, Italy
| | - Mario Marini
- Department of Systems Medicine, “Tor Vergata” University of Rome, Rome, Italy
| | - Giovanna D’Arcangelo
- Department of Systems Medicine, “Tor Vergata” University of Rome, Rome, Italy
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Rome, Italy
| | - Umberto Tarantino
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Rome, Italy
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Rome, Italy
| | - Virginia Tancredi
- Department of Systems Medicine, “Tor Vergata” University of Rome, Rome, Italy
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Rome, Italy
| |
Collapse
|
8
|
Tomsia M, Cieśla J, Śmieszek J, Florek S, Macionga A, Michalczyk K, Stygar D. Long-term space missions' effects on the human organism: what we do know and what requires further research. Front Physiol 2024; 15:1284644. [PMID: 38415007 PMCID: PMC10896920 DOI: 10.3389/fphys.2024.1284644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024] Open
Abstract
Space has always fascinated people. Many years have passed since the first spaceflight, and in addition to the enormous technological progress, the level of understanding of human physiology in space is also increasing. The presented paper aims to summarize the recent research findings on the influence of the space environment (microgravity, pressure differences, cosmic radiation, etc.) on the human body systems during short-term and long-term space missions. The review also presents the biggest challenges and problems that must be solved in order to extend safely the time of human stay in space. In the era of increasing engineering capabilities, plans to colonize other planets, and the growing interest in commercial space flights, the most topical issues of modern medicine seems to be understanding the effects of long-term stay in space, and finding solutions to minimize the harmful effects of the space environment on the human body.
Collapse
Affiliation(s)
- Marcin Tomsia
- Department of Forensic Medicine and Forensic Toxicology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Julia Cieśla
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Joanna Śmieszek
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Szymon Florek
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agata Macionga
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Katarzyna Michalczyk
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Dominika Stygar
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
- SLU University Animal Hospital, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
9
|
Biancotti JC, Espinosa-Jeffrey A. Metabolomic Profiling of the Secretome from Human Neural Stem Cells Flown into Space. Bioengineering (Basel) 2023; 11:11. [PMID: 38247888 PMCID: PMC10813126 DOI: 10.3390/bioengineering11010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
The change in gravitational force has a significant effect on biological tissues and the entire organism. As with any alteration in the environment, microgravity (µG) produces modifications in the system inducing adaptation to the new condition. In this study, we analyzed the effect of µG on neural stem cells (NSCs) following a space flight to the International Space Station (ISS). After 3 days in space, analysis of the metabolome in culture medium revealed increased glycolysis with augmented pyruvate and glycerate levels, and activated catabolism of branched-chain amino acids (BCAA) and glutamine. NSCs flown into space (SPC-NSCs) also showed increased synthesis of NADH and formation of polyamine spermidine when compared to ground controls (GC-NSCs). Overall, the space environment appears to increase energy demands in response to the µG setting.
Collapse
Affiliation(s)
- Juan Carlos Biancotti
- Department of Surgery/Pediatric Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA;
| | - Araceli Espinosa-Jeffrey
- Department of Psychiatry, IDDRC, Semel Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Wang W, Zhong Y, Zhou Y, Yu Y, Li J, Kang S, Ma Z, Fan X, Sun L, Tang L. Low-intensity pulsed ultrasound mitigates cognitive impairment by inhibiting muscle atrophy in hindlimb unloaded mice. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:1427-1438. [PMID: 37672304 DOI: 10.1121/10.0020835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/14/2023] [Indexed: 09/07/2023]
Abstract
Microgravity leads to muscle loss, usually accompanied by cognitive impairment. Muscle reduction was associated with the decline of cognitive ability. Our previous studies showed that low-intensity pulsed ultrasound (LIPUS) promoted muscle hypertrophy and prevented muscle atrophy. This study aims to verify whether LIPUS can improve cognitive impairment by preventing muscle atrophy in hindlimb unloaded mice. In this study, mice were randomly divided into normal control (NC), hindlimb unloading (HU), hindlimb unloading + LIPUS (HU+LIPUS) groups. The mice in the HU+LIPUS group received a 30 mW/cm2 LIPUS irradiation on gastrocnemius for 20 min/d. After 21 days, LIPUS significantly prevented the decrease in muscle mass and strength caused by tail suspension. The HU+LIPUS mice showed an enhanced desire to explore unfamiliar environments and their spatial learning and memory abilities, enabling them to quickly identify differences between different objects, as well as their social discrimination abilities. MSTN is a negative regulator of muscle growth and also plays a role in regulating cognition. LIPUS significantly inhibited MSTN expression in skeletal muscle and serum and its receptor ActRIIB expression in brain, upregulated AKT and BDNF expression in brain. Taken together, LIPUS may improve the cognitive dysfunction in hindlimb unloaded rats by inhibiting muscle atrophy through MSTN/AKT/BDNF pathway.
Collapse
Affiliation(s)
- Wanzhao Wang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Yi Zhong
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Yaling Zhou
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Yanan Yu
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Jiaxiang Li
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Sufang Kang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhanke Ma
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiushan Fan
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Lijun Sun
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Liang Tang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
11
|
Loued-Khenissi L, Pfeiffer C, Saxena R, Adarsh S, Scaramuzza D. Microgravity induces overconfidence in perceptual decision-making. Sci Rep 2023; 13:9727. [PMID: 37322248 PMCID: PMC10272216 DOI: 10.1038/s41598-023-36775-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/09/2023] [Indexed: 06/17/2023] Open
Abstract
Does gravity affect decision-making? This question comes into sharp focus as plans for interplanetary human space missions solidify. In the framework of Bayesian brain theories, gravity encapsulates a strong prior, anchoring agents to a reference frame via the vestibular system, informing their decisions and possibly their integration of uncertainty. What happens when such a strong prior is altered? We address this question using a self-motion estimation task in a space analog environment under conditions of altered gravity. Two participants were cast as remote drone operators orbiting Mars in a virtual reality environment on board a parabolic flight, where both hyper- and microgravity conditions were induced. From a first-person perspective, participants viewed a drone exiting a cave and had to first predict a collision and then provide a confidence estimate of their response. We evoked uncertainty in the task by manipulating the motion's trajectory angle. Post-decision subjective confidence reports were negatively predicted by stimulus uncertainty, as expected. Uncertainty alone did not impact overt behavioral responses (performance, choice) differentially across gravity conditions. However microgravity predicted higher subjective confidence, especially in interaction with stimulus uncertainty. These results suggest that variables relating to uncertainty affect decision-making distinctly in microgravity, highlighting the possible need for automatized, compensatory mechanisms when considering human factors in space research.
Collapse
Affiliation(s)
- Leyla Loued-Khenissi
- Laboratory for Behavioral Neurology and Imaging of Cognition, Neuroscience Department, Medical School, University of Geneva, Geneva, Switzerland.
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.
| | - Christian Pfeiffer
- Robotics and Perception Group, University of Zurich, Zurich, Switzerland
| | - Rupal Saxena
- Robotics and Perception Group, University of Zurich, Zurich, Switzerland
| | - Shivam Adarsh
- Robotics and Perception Group, University of Zurich, Zurich, Switzerland
| | - Davide Scaramuzza
- Robotics and Perception Group, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Pusil S, Zegarra-Valdivia J, Cuesta P, Laohathai C, Cebolla AM, Haueisen J, Fiedler P, Funke M, Maestú F, Cheron G. Effects of spaceflight on the EEG alpha power and functional connectivity. Sci Rep 2023; 13:9489. [PMID: 37303002 DOI: 10.1038/s41598-023-34744-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/06/2023] [Indexed: 06/13/2023] Open
Abstract
Electroencephalography (EEG) can detect changes in cerebral activity during spaceflight. This study evaluates the effect of spaceflight on brain networks through analysis of the Default Mode Network (DMN)'s alpha frequency band power and functional connectivity (FC), and the persistence of these changes. Five astronauts' resting state EEGs under three conditions were analyzed (pre-flight, in-flight, and post-flight). DMN's alpha band power and FC were computed using eLORETA and phase-locking value. Eyes-opened (EO) and eyes-closed (EC) conditions were differentiated. We found a DMN alpha band power reduction during in-flight (EC: p < 0.001; EO: p < 0.05) and post-flight (EC: p < 0.001; EO: p < 0.01) when compared to pre-flight condition. FC strength decreased during in-flight (EC: p < 0.01; EO: p < 0.01) and post-flight (EC: ns; EO: p < 0.01) compared to pre-flight condition. The DMN alpha band power and FC strength reduction persisted until 20 days after landing. Spaceflight caused electrocerebral alterations that persisted after return to earth. Periodic assessment by EEG-derived DMN analysis has the potential to become a neurophysiologic marker of cerebral functional integrity during exploration missions to space.
Collapse
Affiliation(s)
- Sandra Pusil
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
| | - Jonathan Zegarra-Valdivia
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Global Brain Health Institute (GBHI), University of California, San Francisco (UCSF), San Francisco, CA, USA
- Universidad Señor de Sipán, Chiclayo, Peru
| | - Pablo Cuesta
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- Department of Radiology, Rehabilitation, and Physiotherapy, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Ana Maria Cebolla
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium
| | - Jens Haueisen
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
| | - Patrique Fiedler
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
| | - Michael Funke
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fernando Maestú
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Experimental Psychology, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitario, Hospital Clínico San Carlos, Madrid, Spain
| | - Guy Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
13
|
Sanford LD, Adkins AM, Boden AF, Gotthold JD, Harris RD, Shuboni-Mulligan D, Wellman LL, Britten RA. Sleep and Core Body Temperature Alterations Induced by Space Radiation in Rats. Life (Basel) 2023; 13:life13041002. [PMID: 37109531 PMCID: PMC10144689 DOI: 10.3390/life13041002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Sleep problems in astronauts can arise from mission demands and stress and can impact both their health and ability to accomplish mission objectives. In addition to mission-related physical and psychological stressors, the long durations of the proposed Mars missions will expose astronauts to space radiation (SR), which has a significant impact on the brain and may also alter sleep and physiological functions. Therefore, in this study, we assessed sleep, EEG spectra, activity, and core body temperature (CBT) in rats exposed to SR and compared them to age-matched nonirradiated rats. Male outbred Wistar rats (8-9 months old at the time of the study) received SR (15 cGy GCRsim, n = 15) or served as age- and time-matched controls (CTRL, n = 15) without irradiation. At least 90 days after SR and 3 weeks prior to recording, all rats were implanted with telemetry transmitters for recording EEG, activity, and CBT. Sleep, EEG spectra (delta, 0.5-4 Hz; theta, 4-8 Hz; alpha, 8-12 Hz; sigma, 12-16 Hz; beta, 16-24 Hz), activity, and CBT were examined during light and dark periods and during waking and sleeping states. When compared to the CTRLs, SR produced significant reductions in the amounts of dark period total sleep time, total nonrapid eye movement sleep (NREM), and total rapid eye movement sleep (REM), with significant decreases in light and dark period NREM deltas and dark period REM thetas as well as increases in alpha and sigma in NREM and REM during either light or dark periods. The SR animals showed modest increases in some measures of activity. CBT was significantly reduced during waking and sleeping in the light period. These data demonstrate that SR alone can produce alterations to sleep and temperature control that could have consequences for astronauts and their ability to meet mission demands.
Collapse
Affiliation(s)
- Larry D Sanford
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Austin M Adkins
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Alea F Boden
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Justin D Gotthold
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Ryan D Harris
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Dorela Shuboni-Mulligan
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Laurie L Wellman
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Richard A Britten
- Center for Integrative Neuroscience and Inflammatory Diseases, Radiation Oncology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| |
Collapse
|
14
|
Capri M, Conte M, Ciurca E, Pirazzini C, Garagnani P, Santoro A, Longo F, Salvioli S, Lau P, Moeller R, Jordan J, Illig T, Villanueva MM, Gruber M, Bürkle A, Franceschi C, Rittweger J. Long-term human spaceflight and inflammaging: Does it promote aging? Ageing Res Rev 2023; 87:101909. [PMID: 36918115 DOI: 10.1016/j.arr.2023.101909] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Spaceflight and its associated stressors, such as microgravity, radiation exposure, confinement, circadian derailment and disruptive workloads represent an unprecedented type of exposome that is entirely novel from an evolutionary stand point. Within this perspective, we aimed to review the effects of prolonged spaceflight on immune-neuroendocrine systems, brain and brain-gut axis, cardiovascular system and musculoskeletal apparatus, highlighting in particular the similarities with an accelerated aging process. In particular, spaceflight-induced muscle atrophy/sarcopenia and bone loss, vascular and metabolic changes, hyper and hypo reaction of innate and adaptive immune system appear to be modifications shared with the aging process. Most of these modifications are mediated by molecular events that include oxidative and mitochondrial stress, autophagy, DNA damage repair and telomere length alteration, among others, which directly or indirectly converge on the activation of an inflammatory response. According to the inflammaging theory of aging, such an inflammatory response could be a driver of an acceleration of the normal, physiological rate of aging and it is likely that all the systemic modifications in turn lead to an increase of inflammaging in a sort of vicious cycle. The most updated countermeasures to fight these modifications will be also discussed in the light of their possible application not only for astronauts' benefit, but also for older adults on the ground.
Collapse
Affiliation(s)
- Miriam Capri
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| | - Maria Conte
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy.
| | - Erika Ciurca
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Chiara Pirazzini
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Paolo Garagnani
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy; Clinical Chemistry Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden; CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy; Center for Applied Biomedical Research (CRBA), St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Aurelia Santoro
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| | - Federica Longo
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Stefano Salvioli
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Patrick Lau
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Ralf Moeller
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Medical Faculty, University of Cologne, Cologne, Germany
| | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Maria-Moreno Villanueva
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Markus Gruber
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Alexander Bürkle
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Claudio Franceschi
- Department of Applied Mathematics of the Institute of ITMM, National Research Lobachevsky State University of Nizhny Novgorod, the Russian Federation
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
15
|
Striebel J, Kalinski L, Sturm M, Drouvé N, Peters S, Lichterfeld Y, Habibey R, Hauslage J, El Sheikh S, Busskamp V, Liemersdorf C. Human neural network activity reacts to gravity changes in vitro. Front Neurosci 2023; 17:1085282. [PMID: 36968488 PMCID: PMC10030604 DOI: 10.3389/fnins.2023.1085282] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/06/2023] [Indexed: 03/11/2023] Open
Abstract
During spaceflight, humans experience a variety of physiological changes due to deviations from familiar earth conditions. Specifically, the lack of gravity is responsible for many effects observed in returning astronauts. These impairments can include structural as well as functional changes of the brain and a decline in cognitive performance. However, the underlying physiological mechanisms remain elusive. Alterations in neuronal activity play a central role in mental disorders and altered neuronal transmission may also lead to diminished human performance in space. Thus, understanding the influence of altered gravity at the cellular and network level is of high importance. Previous electrophysiological experiments using patch clamp techniques and calcium indicators have shown that neuronal activity is influenced by altered gravity. By using multi-electrode array (MEA) technology, we advanced the electrophysiological investigation covering single-cell to network level responses during exposure to decreased (micro-) or increased (hyper-) gravity conditions. We continuously recorded in real-time the spontaneous activity of human induced pluripotent stem cell (hiPSC)-derived neural networks in vitro. The MEA device was integrated into a custom-built environmental chamber to expose the system with neuronal cultures to up to 6 g of hypergravity on the Short-Arm Human Centrifuge at the DLR Cologne, Germany. The flexibility of the experimental hardware set-up facilitated additional MEA electrophysiology experiments under 4.7 s of high-quality microgravity (10–6 to 10–5 g) in the Bremen drop tower, Germany. Hypergravity led to significant changes in activity. During the microgravity phase, the mean action potential frequency across the neural networks was significantly enhanced, whereas different subgroups of neurons showed distinct behaviors, such as increased or decreased firing activity. Our data clearly demonstrate that gravity as an environmental stimulus triggers changes in neuronal activity. Neuronal networks especially reacted to acute changes in mechanical loading (hypergravity) or de-loading (microgravity). The current study clearly shows the gravity-dependent response of neuronal networks endorsing the importance of further investigations of neuronal activity and its adaptive responses to micro- and hypergravity. Our approach provided the basis for the identification of responsible mechanisms and the development of countermeasures with potential implications on manned space missions.
Collapse
Affiliation(s)
- Johannes Striebel
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Laura Kalinski
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Maximilian Sturm
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Nils Drouvé
- Department of Applied Sciences, Cologne University of Applied Sciences, Leverkusen, Germany
| | - Stefan Peters
- Department of Applied Sciences, Cologne University of Applied Sciences, Leverkusen, Germany
| | - Yannick Lichterfeld
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Rouhollah Habibey
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jens Hauslage
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Sherif El Sheikh
- Department of Applied Sciences, Cologne University of Applied Sciences, Leverkusen, Germany
| | - Volker Busskamp
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Christian Liemersdorf
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- *Correspondence: Christian Liemersdorf,
| |
Collapse
|
16
|
Le Roy B, Martin-Krumm C, Pinol N, Dutheil F, Trousselard M. Human challenges to adaptation to extreme professional environments: A systematic review. Neurosci Biobehav Rev 2023; 146:105054. [PMID: 36682426 DOI: 10.1016/j.neubiorev.2023.105054] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
NASA is planning human exploration of the Moon, while preparations are underway for human missions to Mars, and deeper into the solar system. These missions will expose space travelers to unusual conditions, which they will have to adapt to. Similar conditions are found in several analogous environments on Earth, and studies can provide an initial understanding of the challenges for human adaptation. Such environments can be marked by an extreme climate, danger, limited facilities and supplies, isolation from loved ones, or mandatory interaction with others. They are rarely encountered by most human beings, and mainly concern certain professions in limited missions. This systematic review focuses on professional extreme environments and captures data from papers published since 2005. Our findings provide an insight into their physiological, biological, cognitive, and behavioral impacts for better understand how humans adapt or not to them. This study provides a framework for studying adaptation, which is particularly important in light of upcoming longer space expeditions to more distant destinations.
Collapse
Affiliation(s)
- Barbara Le Roy
- Stress Neurophysiology Unit, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge Cedex, France; CNES, Paris, France; APEMAC/EPSAM, EA 4360 Metz Cedex, France.
| | - Charles Martin-Krumm
- Stress Neurophysiology Unit, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge Cedex, France; APEMAC/EPSAM, EA 4360 Metz Cedex, France; École de Psychologues Praticiens, Catholic Institute of Paris, EA Religion, Culture et société, Paris, France
| | - Nathalie Pinol
- Université Clermont Auvergne, Health Library, Clermont-Ferrand, France
| | - Frédéric Dutheil
- University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Occupational and Environmental Medicine, WittyFit, F 63000 Clermont-Ferrand, France; Université Clermont Auvergne, CNRS, LaPSCo, Physiological and Psychosocial Stress, 34 Avenue Carnot, 63 037 Clermont-Ferrand, France
| | - Marion Trousselard
- Stress Neurophysiology Unit, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge Cedex, France; APEMAC/EPSAM, EA 4360 Metz Cedex, France; French Military Health Service Academy, Paris, France
| |
Collapse
|
17
|
Theotokis P, Manthou ME, Deftereou TE, Miliaras D, Meditskou S. Addressing Spaceflight Biology through the Lens of a Histologist-Embryologist. Life (Basel) 2023; 13:life13020588. [PMID: 36836946 PMCID: PMC9965490 DOI: 10.3390/life13020588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
Embryogenesis and fetal development are highly delicate and error-prone processes in their core physiology, let alone if stress-associated factors and conditions are involved. Space radiation and altered gravity are factors that could radically affect fertility and pregnancy and compromise a physiological organogenesis. Unfortunately, there is a dearth of information examining the effects of cosmic exposures on reproductive and proliferating outcomes with regard to mammalian embryonic development. However, explicit attention has been given to investigations exploring discrete structures and neural networks such as the vestibular system, an entity that is viewed as the sixth sense and organically controls gravity beginning with the prenatal period. The role of the gut microbiome, a newly acknowledged field of research in the space community, is also being challenged to be added in forthcoming experimental protocols. This review discusses the data that have surfaced from simulations or actual space expeditions and addresses developmental adaptations at the histological level induced by an extraterrestrial milieu.
Collapse
Affiliation(s)
- Paschalis Theotokis
- Laboratory of Histology and Embryology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Eleni Manthou
- Laboratory of Histology and Embryology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Dimosthenis Miliaras
- Laboratory of Histology and Embryology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Soultana Meditskou
- Laboratory of Histology and Embryology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence:
| |
Collapse
|
18
|
Saveko A, Bekreneva M, Ponomarev I, Zelenskaya I, Riabova A, Shigueva T, Kitov V, Abu Sheli N, Nosikova I, Rukavishnikov I, Sayenko D, Tomilovskaya E. Impact of different ground-based microgravity models on human sensorimotor system. Front Physiol 2023; 14:1085545. [PMID: 36875039 PMCID: PMC9974674 DOI: 10.3389/fphys.2023.1085545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
This review includes current and updated information about various ground-based microgravity models and their impact on the human sensorimotor system. All known models of microgravity are imperfect in a simulation of the physiological effects of microgravity but have their advantages and disadvantages. This review points out that understanding the role of gravity in motion control requires consideration of data from different environments and in various contexts. The compiled information can be helpful to researchers to effectively plan experiments using ground-based models of the effects of space flight, depending on the problem posed.
Collapse
Affiliation(s)
- Alina Saveko
- Russian Federation State Scientific Center—Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Burles F, Williams R, Berger L, Pike GB, Lebel C, Iaria G. The Unresolved Methodological Challenge of Detecting Neuroplastic Changes in Astronauts. Life (Basel) 2023; 13:500. [PMID: 36836857 PMCID: PMC9966542 DOI: 10.3390/life13020500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
After completing a spaceflight, astronauts display a salient upward shift in the position of the brain within the skull, accompanied by a redistribution of cerebrospinal fluid. Magnetic resonance imaging studies have also reported local changes in brain volume following a spaceflight, which have been cautiously interpreted as a neuroplastic response to spaceflight. Here, we provide evidence that the grey matter volume changes seen in astronauts following spaceflight are contaminated by preprocessing errors exacerbated by the upwards shift of the brain within the skull. While it is expected that an astronaut's brain undergoes some neuroplastic adaptations during spaceflight, our findings suggest that the brain volume changes detected using standard processing pipelines for neuroimaging analyses could be contaminated by errors in identifying different tissue types (i.e., tissue segmentation). These errors may undermine the interpretation of such analyses as direct evidence of neuroplastic adaptation, and novel or alternate preprocessing or experimental paradigms are needed in order to resolve this important issue in space health research.
Collapse
Affiliation(s)
- Ford Burles
- Canadian Space Health Research Network, Department of Psychology, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Rebecca Williams
- Faculty of Health, School of Human Services, Charles Darwin University, Darwin, NT 0810, Australia
| | - Lila Berger
- Canadian Space Health Research Network, Department of Psychology, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - G. Bruce Pike
- Department of Radiology, Department of Clinical Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Catherine Lebel
- Department of Radiology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Giuseppe Iaria
- Canadian Space Health Research Network, Department of Psychology, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
20
|
Chen F, Jiang N, Zhang YW, Xie MZ, Liu XM. Protective effect of Gastrodia elata blume ameliorates simulated weightlessness-induced cognitive impairment in mice. LIFE SCIENCES IN SPACE RESEARCH 2023; 36:1-7. [PMID: 36682818 DOI: 10.1016/j.lssr.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/19/2022] [Accepted: 10/02/2022] [Indexed: 06/17/2023]
Abstract
During the long-term orbital flight, exposure to microgravity negatively affects the astronauts' development of cognition, characterized by learning and memory decline. Gastrodia elata Blume (GEB) has a significant protective effect on cognitive impairment and has been used in Asia for centuries as a functional product. A previous study demonstrated that GEB could improve memory loss in mice caused by circadian rhythm disorders. However, the effects of GEB on cognitive dysfunction caused by weightless environments have not been investigated. In this study, mice received daily treatment with GEB (0.5, 1 g·kg-1d-1, i.g) and Huperzine A(Hup, 0.1 mg·kg-1d-1, i.g) orally until the end of the behavioral test (New object recognition test (NORT). Malondialdehyde (MDA) and nitric oxide (NO) levels were detected by kits, and expression of brain-derived neurotrophic factor (BDNF), protein kinase B (AKT), phosphorylated Akt (P-AKT), synaptophysin (SYN) and postsynaptic density 95(PSD95) in hippocampus were detected by western blotting. The results show that administration of GEB (0.5, 1 g·kg-1d-1, i.g) and Hup (0.1 mg·kg-1d-1, i.g) remarkably reverse HLS-induced learning and behavioral memory disorders, which were associated with significant changes in MDA and NO levels. Additionally, the protein expressions of BDNF, P-AKT/AKT, SYN, and PSD95 were significantly increased in the hippocampus. In summary, our findings will improve the reference for developing GEB as a functional product that improves memory decline.
Collapse
Affiliation(s)
- Fang Chen
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Hunan University of Chinese Medicine, Hunan 410000, China
| | - Ning Jiang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yi Wen Zhang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Meng Zhou Xie
- Hunan University of Chinese Medicine, Hunan 410000, China.
| | - Xin Min Liu
- Institute of New Drug Technology, Ningbo University, Ningbo 315000, China; Hunan University of Chinese Medicine, Hunan 410000, China.
| |
Collapse
|
21
|
Combined space stressors induce independent behavioral deficits predicted by early peripheral blood monocytes. Sci Rep 2023; 13:1749. [PMID: 36720960 PMCID: PMC9889764 DOI: 10.1038/s41598-023-28508-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/19/2023] [Indexed: 02/02/2023] Open
Abstract
Interplanetary space travel poses many hazards to the human body. To protect astronaut health and performance on critical missions, there is first a need to understand the effects of deep space hazards, including ionizing radiation, confinement, and altered gravity. Previous studies of rodents exposed to a single such stressor document significant deficits, but our study is the first to investigate possible cumulative and synergistic impacts of simultaneous ionizing radiation, confinement, and altered gravity on behavior and cognition. Our cohort was divided between 6-month-old female and male mice in group, social isolation, or hindlimb unloading housing, exposed to 0 or 50 cGy of 5 ion simplified simulated galactic cosmic radiation (GCRsim). We report interactions and independent effects of GCRsim exposure and housing conditions on behavioral and cognitive performance. Exposure to GCRsim drove changes in immune cell populations in peripheral blood collected early after irradiation, while housing conditions drove changes in blood collected at a later point. Female mice were largely resilient to deficits observed in male mice. Finally, we used principal component analysis to represent total deficits as principal component scores, which were predicted by general linear models using GCR exposure, housing condition, and early blood biomarkers.
Collapse
|
22
|
Schmutz JB, Bienefeld N, Maynard MT, Rico R. Exceeding the Ordinary: A Framework for Examining Teams Across the Extremeness Continuum and Its Impact on Future Research. GROUP & ORGANIZATION MANAGEMENT 2023; 48:581-628. [PMID: 37082422 PMCID: PMC10108401 DOI: 10.1177/10596011221150756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023]
Abstract
Work teams increasingly face unprecedented challenges in volatile, uncertain, complex, and often ambiguous environments. In response, team researchers have begun to focus more on teams whose work revolves around mitigating risks in these dynamic environments. Some highly insightful contributions to team research and organizational studies have originated from investigating teams that face unconventional or extreme events. Despite this increased attention to extreme teams, however, a comprehensive theoretical framework is missing. We introduce such a framework that envisions team extremeness as a continuous, multidimensional variable consisting of environmental extremeness (i.e., external team context) and task extremeness (i.e., internal team context). The proposed framework allows every team to be placed on the team extremeness continuum, bridging the gap between literature on extreme and more traditional teams. Furthermore, we present six propositions addressing how team extremeness may interact with team processes, emergent states, and outcomes using core variables for team effectiveness and the well-established input–mediator–output–input model to structure our theorizing. Finally, we outline some potential directions for future research by elaborating on temporal considerations (i.e., patterns and trajectories), measurement approaches, and consideration of multilevel relationships involving team extremeness. We hope that our theoretical framework and theorizing can create a path forward, stimulating future research within the organizational team literature to further examine the impact of team extremeness on team dynamics and effectiveness.
Collapse
Affiliation(s)
- Jan B. Schmutz
- Department of Psychology, University of Zurich, Switzerland
| | - Nadine Bienefeld
- Department of Management, Technology and Economics, ETH Zurich, Switzerland
| | - M. Travis Maynard
- College of Business, Colorado State University, Fort Collins, CO, USA
| | - Ramón Rico
- Department of Business Administration, Universidad Carlos III de Madrid, Getafe, Spain
| |
Collapse
|
23
|
Jillings S, Pechenkova E, Tomilovskaya E, Rukavishnikov I, Jeurissen B, Van Ombergen A, Nosikova I, Rumshiskaya A, Litvinova L, Annen J, De Laet C, Schoenmaekers C, Sijbers J, Petrovichev V, Sunaert S, Parizel PM, Sinitsyn V, Eulenburg PZ, Laureys S, Demertzi A, Wuyts FL. Prolonged microgravity induces reversible and persistent changes on human cerebral connectivity. Commun Biol 2023; 6:46. [PMID: 36639420 PMCID: PMC9839680 DOI: 10.1038/s42003-022-04382-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023] Open
Abstract
The prospect of continued manned space missions warrants an in-depth understanding of how prolonged microgravity affects the human brain. Functional magnetic resonance imaging (fMRI) can pinpoint changes reflecting adaptive neuroplasticity across time. We acquired resting-state fMRI data of cosmonauts before, shortly after, and eight months after spaceflight as a follow-up to assess global connectivity changes over time. Our results show persisting connectivity decreases in posterior cingulate cortex and thalamus and persisting increases in the right angular gyrus. Connectivity in the bilateral insular cortex decreased after spaceflight, which reversed at follow-up. No significant connectivity changes across eight months were found in a matched control group. Overall, we show that altered gravitational environments influence functional connectivity longitudinally in multimodal brain hubs, reflecting adaptations to unfamiliar and conflicting sensory input in microgravity. These results provide insights into brain functional modifications occurring during spaceflight, and their further development when back on Earth.
Collapse
Affiliation(s)
- Steven Jillings
- grid.5284.b0000 0001 0790 3681Lab for Equilibrium Investigations and Aerospace, University of Antwerp, Antwerp, Belgium
| | - Ekaterina Pechenkova
- grid.410682.90000 0004 0578 2005Laboratory for Cognitive Research, HSE University, Moscow, Russia
| | - Elena Tomilovskaya
- grid.4886.20000 0001 2192 9124SSC RF—Institute for Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Ilya Rukavishnikov
- grid.4886.20000 0001 2192 9124SSC RF—Institute for Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Ben Jeurissen
- grid.5284.b0000 0001 0790 3681Lab for Equilibrium Investigations and Aerospace, University of Antwerp, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681imec-Vision Lab, University of Antwerp, Antwerp, Belgium
| | - Angelique Van Ombergen
- grid.5284.b0000 0001 0790 3681Lab for Equilibrium Investigations and Aerospace, University of Antwerp, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681Department of Translational Neuroscience—ENT, University of Antwerp, Antwerp, Belgium
| | - Inna Nosikova
- grid.4886.20000 0001 2192 9124SSC RF—Institute for Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Alena Rumshiskaya
- grid.415738.c0000 0000 9216 2496Radiology Department, National Medical Research Treatment and Rehabilitation Center of the Ministry of Health of Russia, Moscow, Russia
| | - Liudmila Litvinova
- grid.415738.c0000 0000 9216 2496Radiology Department, National Medical Research Treatment and Rehabilitation Center of the Ministry of Health of Russia, Moscow, Russia
| | - Jitka Annen
- grid.411374.40000 0000 8607 6858Coma Science Group, GIGA Consciousness, GIGA Institute, University and University Hospital of Liège, Liège, Belgium
| | - Chloë De Laet
- grid.5284.b0000 0001 0790 3681Lab for Equilibrium Investigations and Aerospace, University of Antwerp, Antwerp, Belgium
| | - Catho Schoenmaekers
- grid.5284.b0000 0001 0790 3681Lab for Equilibrium Investigations and Aerospace, University of Antwerp, Antwerp, Belgium
| | - Jan Sijbers
- grid.5284.b0000 0001 0790 3681imec-Vision Lab, University of Antwerp, Antwerp, Belgium
| | - Victor Petrovichev
- grid.415738.c0000 0000 9216 2496Radiology Department, National Medical Research Treatment and Rehabilitation Center of the Ministry of Health of Russia, Moscow, Russia
| | - Stefan Sunaert
- grid.5596.f0000 0001 0668 7884Department of Imaging & Pathology, Translational MRI, KU Leuven—University of Leuven, Leuven, Belgium
| | - Paul M. Parizel
- grid.416195.e0000 0004 0453 3875Department of Radiology, Royal Perth Hospital and University of Western Australia Medical School, Perth, WA Australia
| | - Valentin Sinitsyn
- grid.14476.300000 0001 2342 9668Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Peter zu Eulenburg
- grid.5252.00000 0004 1936 973XInstitute for Neuroradiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Steven Laureys
- grid.411374.40000 0000 8607 6858Coma Science Group, GIGA Consciousness, GIGA Institute, University and University Hospital of Liège, Liège, Belgium ,grid.23856.3a0000 0004 1936 8390Joint International Research Unit on Consciousness, CERVO Brain Research Centre, Laval University, Quebec, QC Canada ,grid.410595.c0000 0001 2230 9154International Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
| | - Athena Demertzi
- grid.4861.b0000 0001 0805 7253Physiology of Cognition, GIGA-CRC In Vivo Imaging, University of Liège, Liège, Belgium ,grid.4861.b0000 0001 0805 7253Department of Psychology, Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium
| | - Floris L. Wuyts
- grid.5284.b0000 0001 0790 3681Lab for Equilibrium Investigations and Aerospace, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
24
|
Yuan L, Zhang R, Li X, Gao C, Hu X, Hussain S, Zhang L, Wang M, Ma X, Pan Q, Lou X, Si S. Long-term simulated microgravity alters gut microbiota and metabolome in mice. Front Microbiol 2023; 14:1100747. [PMID: 37032862 PMCID: PMC10080065 DOI: 10.3389/fmicb.2023.1100747] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Spaceflight and microgravity has a significant impact on the immune, central nervous, bone, and muscle support and cardiovascular systems. However, limited studies are available on the adverse effects of long-term microgravity on the intestinal microbiota, metabolism, and its relationships. In this study, a ground-based simulated microgravity (SMG) mouse model was established to evaluate the impact of long-term microgravity on gut microbiota and metabolome. After 8 weeks of SMG, alterations of the intestinal microbiota and metabolites were detected using 16S rRNA sequencing and untargeted metabolomics. Compared to the control, no significant differences in α-diversity were observed at weeks 2, 4 and 8. Nevertheless, there were clear differences in community structures at different time points. The phylum Verrucomicrobia significantly declined from 2 to 8 weeks of SMG, yet the relative abundance of Actinobacteria and Deferribacteres expanded remarkably at weeks 8. SMG decreased the genus of Allobaculum and increased Bacteroides significantly throughout the period of 8 weeks. Besides, Genus Akkermansia, Gracilibacter, Prevotella, Odoribacter, Rothia, Sporosarcina, Gracilibacter, Clostridium, and Mucispirillum were identified as biomarkers for SMG group. Desulfovibrio_c21_c20, Akkermansia_muciniphila, and Ruminococcus_gnavus dropped at week 2, which tend to recover at week 4, except for Akkermansia_muciniphila. Bacteroides_uniformis and Faecalibacterium_prausnitzii declined significantly, while Ruminococcus_flavefaciens and Mucispirillum_schaedleri elevated at week 8. Furthermore, intestinal metabolome analysis showed that 129 were upregulated and 146 metabolites were downregulated in SMG. Long-term SMG most affected steroid hormone biosynthesis, tryptophan, cysteine, methionine, arginine, proline metabolism, and histidine metabolism. Correlated analysis suggested that the potential beneficial taxa Allobaculum, Akkermansia, and Faecalibacterium were negatively associated with tryptophan, histidine, arginine, and proline metabolism, but positively with steroid hormone biosynthesis. Yet Bacteroides, Lachnospiraceae_Clostridium, Rothia, Bilophila, and Coprococcus were positively correlated with arginine, proline, tryptophan, and histidine metabolism, while negatively associated with steroid hormone biosynthesis. These results suggest that Long-term SMG altered the community of intestinal microbiota, and then further disturbed intestinal metabolites and metabolic pathways, which have great potential to help understand and provide clues for revealing the mechanisms of long-term SMG involved diseases.
Collapse
Affiliation(s)
- Lu Yuan
- Department of Medical Research, PLA Strategic Support Force Medical Center, Beijing, China
| | - Rong Zhang
- Department of Medical Research, PLA Strategic Support Force Medical Center, Beijing, China
| | - Xinlou Li
- Department of Medical Research, PLA Strategic Support Force Medical Center, Beijing, China
| | - Caiyun Gao
- Department of Medical Research, PLA Strategic Support Force Medical Center, Beijing, China
| | - Xiangnan Hu
- Department of Medical Research, PLA Strategic Support Force Medical Center, Beijing, China
| | - Safdar Hussain
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Linlin Zhang
- Department of Medical Research, PLA Strategic Support Force Medical Center, Beijing, China
| | - Moye Wang
- Department of Medical Research, PLA Strategic Support Force Medical Center, Beijing, China
| | - Xiaoyu Ma
- Department of Medical Research, PLA Strategic Support Force Medical Center, Beijing, China
| | - Qiuxia Pan
- Department of Traditional Chinese Medicine, PLA Strategic Support Force Medical Center, Beijing, China
| | - Xiaotong Lou
- Department of Medical Research, PLA Strategic Support Force Medical Center, Beijing, China
- *Correspondence: Xiaotong Lou,
| | - Shaoyan Si
- Department of Medical Research, PLA Strategic Support Force Medical Center, Beijing, China
- Shaoyan Si,
| |
Collapse
|
25
|
Van Puyvelde M, Gijbels D, Van Caelenberg T, Smith N, Bessone L, Buckle-Charlesworth S, Pattyn N. Living on the edge: How to prepare for it? FRONTIERS IN NEUROERGONOMICS 2022; 3:1007774. [PMID: 38235444 PMCID: PMC10790891 DOI: 10.3389/fnrgo.2022.1007774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/15/2022] [Indexed: 01/19/2024]
Abstract
Introduction Isolated, confined, and extreme (ICE) environments such as found at Antarctic, Arctic, and other remote research stations are considered space-analogs to study the long duration isolation aspects of operational space mission conditions. Methods We interviewed 24 sojourners that participated in different short/long duration missions in an Antarctic (Concordia, Halley VI, Rothera, Neumayer II) or non-Antarctic (e.g., MDRS, HI-SEAS) station or in polar treks, offering a unique insight based on first-hand information on the nature of demands by ICE-personnel at multiple levels of functioning. We conducted a qualitative thematic analysis to explore how sojourners were trained, prepared, how they experienced the ICE-impact in function of varieties in environment, provided trainings, station-culture, and type of mission. Results The ICE-environment shapes the impact of organizational, interpersonal, and individual working- and living systems, thus influencing the ICE-sojourners' functioning. Moreover, more specific training for operating in these settings would be beneficial. The identified pillars such as sensory deprivation, sleep, fatigue, group dynamics, displacement of negative emotions, gender-issues along with coping strategies such as positivity, salutogenic effects, job dedication and collectivistic thinking confirm previous literature. However, in this work, we applied a systemic perspective, assembling the multiple levels of functioning in ICE-environments. Discussion A systemic approach could serve as a guide to develop future preparatory ICE-training programs, including all the involved parties of the crew system (e.g., family, on-ground crew) with attention for the impact of organization- and station-related subcultures and the risk of unawareness about the impact of poor sleep, fatigue, and isolation on operational safety that may occur on location.
Collapse
Affiliation(s)
- Martine Van Puyvelde
- Vital Signs and PERformance Monitoring (VIPER) Research Unit, Life Sciences (LIFE) Department, Royal Military Academy, Brussels, Belgium
- Brain, Body and Cognition (BBC), Department of Psychology, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Clinical and Lifespan Psychology, Department of Psychology, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- School of Natural Sciences and Psychology, Faculty of Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Daisy Gijbels
- Vital Signs and PERformance Monitoring (VIPER) Research Unit, Life Sciences (LIFE) Department, Royal Military Academy, Brussels, Belgium
| | - Thomas Van Caelenberg
- Vital Signs and PERformance Monitoring (VIPER) Research Unit, Life Sciences (LIFE) Department, Royal Military Academy, Brussels, Belgium
- Human Behavior and Performance Training, European Astronaut Centre, Cologne, Germany
| | - Nathan Smith
- Protective Security and Resilience Centre, Coventry University, Coventry, United Kingdom
| | - Loredana Bessone
- Human Behavior and Performance Training, European Astronaut Centre, Cologne, Germany
| | - Susan Buckle-Charlesworth
- Human Behavior and Performance Training, European Astronaut Centre, Cologne, Germany
- Oxford Human Performance, Oxfordshire, United Kingdom
| | - Nathalie Pattyn
- Vital Signs and PERformance Monitoring (VIPER) Research Unit, Life Sciences (LIFE) Department, Royal Military Academy, Brussels, Belgium
- Human Physiology and Human Performance Lab (MFYS-BLITS), Human Physiology Department, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
26
|
Chaloulakou S, Poulia KA, Karayiannis D. Physiological Alterations in Relation to Space Flight: The Role of Nutrition. Nutrients 2022; 14:nu14224896. [PMID: 36432580 PMCID: PMC9699067 DOI: 10.3390/nu14224896] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
Astronauts exhibit several pathophysiological changes due to a variety of stressors related to the space environment, including microgravity, space radiation, isolation, and confinement. Space motion sickness, bone and muscle mass loss, cardiovascular deconditioning and neuro-ocular syndrome are some of the spaceflight-induced effects on human health. Optimal nutrition is of the utmost importance, and-in combination with other measures, such as physical activity and pharmacological treatment-has a key role in mitigating many of the above conditions, including bone and muscle mass loss. Since the beginning of human space exploration, space food has not fully covered astronauts' needs. They often suffer from menu fatigue and present unintentional weight loss, which leads to further alterations. The purpose of this review was to explore the role of nutrition in relation to the pathophysiological effects of spaceflight on the human body.
Collapse
Affiliation(s)
- Stavroula Chaloulakou
- Department of Clinical Nutrition, “Evangelismos” General Hospital of Athens, 10676 Athens, Greece
| | - Kalliopi Anna Poulia
- Laboratory of Dietetics and Quality of Life, Department of Food Science & Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Dimitrios Karayiannis
- Department of Clinical Nutrition, “Evangelismos” General Hospital of Athens, 10676 Athens, Greece
- Correspondence: ; Tel.: +30-213-2045035
| |
Collapse
|
27
|
Wang W, Di Nisio E, Licursi V, Cacci E, Lupo G, Kokaia Z, Galanti S, Degan P, D’Angelo S, Castagnola P, Tavella S, Negri R. Simulated Microgravity Modulates Focal Adhesion Gene Expression in Human Neural Stem Progenitor Cells. Life (Basel) 2022; 12:life12111827. [PMID: 36362982 PMCID: PMC9699612 DOI: 10.3390/life12111827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
We analyzed the morphology and the transcriptomic changes of human neural stem progenitor cells (hNSPCs) grown on laminin in adherent culture conditions and subjected to simulated microgravity for different times in a random positioning machine apparatus. Low-cell-density cultures exposed to simulated microgravity for 24 h showed cell aggregate formation and significant modulation of several genes involved in focal adhesion, cytoskeleton regulation, and cell cycle control. These effects were much more limited in hNSPCs cultured at high density in the same conditions. We also found that some of the genes modulated upon exposure to simulated microgravity showed similar changes in hNSPCs grown without laminin in non-adherent culture conditions under normal gravity. These results suggest that reduced gravity counteracts the interactions of cells with the extracellular matrix, inducing morphological and transcriptional changes that can be observed in low-density cultures.
Collapse
Affiliation(s)
- Wei Wang
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Elena Di Nisio
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Valerio Licursi
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy c/o Department of Biology and Biotechnologies “C. Darwin”, Sapienza University, 00185 Rome, Italy
| | - Emanuele Cacci
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Giuseppe Lupo
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Zaal Kokaia
- Lund Stem Cell Center, Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
| | - Sergio Galanti
- Excise, Custom and Monopolies Agency, ADM, 00153 Rome, Italy
| | - Paolo Degan
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Sara D’Angelo
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Sara Tavella
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | - Rodolfo Negri
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy c/o Department of Biology and Biotechnologies “C. Darwin”, Sapienza University, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
28
|
Multi-system responses to altered gravity and spaceflight: Insights from Drosophila melanogaster. Neurosci Biobehav Rev 2022; 142:104880. [PMID: 36126744 DOI: 10.1016/j.neubiorev.2022.104880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/21/2022]
Abstract
NASA is planning to resume human-crewed lunar missions and lay the foundation for human exploration to Mars. However, our knowledge of the overall effects of long-duration spaceflight on human physiology is limited. During spaceflight, astronauts are exposed to multiple risk factors, including gravitational changes, ionizing radiation, physiological stress, and altered circadian lighting. These factors contribute to pathophysiological responses that target different organ systems in the body. This review discusses the advancements in gravitational biology using Drosophila melanogaster, one of the first organisms to be launched into space. As a well-established spaceflight model organism, fruit flies have yielded significant information, including neurobehavioral, aging, immune, cardiovascular, developmental, and multi-omics changes across tissues and developmental stages, as detailed in this review.
Collapse
|
29
|
Lichterfeld Y, Kalinski L, Schunk S, Schmakeit T, Feles S, Frett T, Herrmann H, Hemmersbach R, Liemersdorf C. Hypergravity Attenuates Reactivity in Primary Murine Astrocytes. Biomedicines 2022; 10:biomedicines10081966. [PMID: 36009513 PMCID: PMC9405820 DOI: 10.3390/biomedicines10081966] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/31/2022] [Accepted: 08/11/2022] [Indexed: 12/11/2022] Open
Abstract
Neuronal activity is the key modulator of nearly every aspect of behavior, affecting cognition, learning, and memory as well as motion. Hence, disturbances of the transmission of synaptic signals are the main cause of many neurological disorders. Lesions to nervous tissues are associated with phenotypic changes mediated by astrocytes becoming reactive. Reactive astrocytes form the basis of astrogliosis and glial scar formation. Astrocyte reactivity is often targeted to inhibit axon dystrophy and thus promote neuronal regeneration. Here, we aim to understand the impact of gravitational loading induced by hypergravity to potentially modify key features of astrocyte reactivity. We exposed primary murine astrocytes as a model system closely resembling the in vivo reactivity phenotype on custom-built centrifuges for cultivation as well as for live-cell imaging under hypergravity conditions in a physiological range (2g and 10g). We revealed spreading rates, migration velocities, and stellation to be diminished under 2g hypergravity. In contrast, proliferation and apoptosis rates were not affected. In particular, hypergravity attenuated reactivity induction. We observed cytoskeletal remodeling of actin filaments and microtubules under hypergravity. Hence, the reorganization of these key elements of cell structure demonstrates that fundamental mechanisms on shape and mobility of astrocytes are affected due to altered gravity conditions. In future experiments, potential target molecules for pharmacological interventions that attenuate astrocytic reactivity will be investigated. The ultimate goal is to enhance neuronal regeneration for novel therapeutic approaches.
Collapse
Affiliation(s)
- Yannick Lichterfeld
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center, 51147 Cologne, Germany
| | - Laura Kalinski
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center, 51147 Cologne, Germany
| | - Sarah Schunk
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center, 51147 Cologne, Germany
| | - Theresa Schmakeit
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center, 51147 Cologne, Germany
| | - Sebastian Feles
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center, 51147 Cologne, Germany
| | - Timo Frett
- Department of Muscle and Bone Metabolism, Institute of Aerospace Medicine, German Aerospace Center, 51147 Cologne, Germany
| | - Harald Herrmann
- Institute of Neuropathology, University of Erlangen, 91054 Erlangen, Germany
| | - Ruth Hemmersbach
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center, 51147 Cologne, Germany
| | - Christian Liemersdorf
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center, 51147 Cologne, Germany
- Correspondence: ; Tel.: +49-176-811-09-333
| |
Collapse
|
30
|
Holley JM, Stanbouly S, Pecaut MJ, Willey JS, Delp M, Mao XW. Characterization of gene expression profiles in the mouse brain after 35 days of spaceflight mission. NPJ Microgravity 2022; 8:35. [PMID: 35948598 PMCID: PMC9365836 DOI: 10.1038/s41526-022-00217-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
It has been proposed that neuroinflammatory response plays an important role in the neurovascular remodeling in the brain after stress. The goal of the present study was to characterize changes in the gene expression profiles associated with neuroinflammation, neuronal function, metabolism and stress in mouse brain tissue. Ten-week old male C57BL/6 mice were launched to the International Space Station (ISS) on SpaceX-12 for a 35-day mission. Within 38 ± 4 h of splashdown, mice were returned to Earth alive. Brain tissues were collected for analysis. A novel digital color-coded barcode counting technology (NanoStringTM) was used to evaluate gene expression profiles in the spaceflight mouse brain. A set of 54 differently expressed genes (p < 0.05) significantly segregates the habitat ground control (GC) group from flight (FLT) group. Many pathways associated with cellular stress, inflammation, apoptosis, and metabolism were significantly altered by flight conditions. A decrease in the expression of genes important for oligodendrocyte differentiation and myelin sheath maintenance was observed. Moreover, mRNA expression of many genes related to anti-viral signaling, reactive oxygen species (ROS) generation, and bacterial immune response were significantly downregulated. Here we report that significantly altered immune reactions may be closely associated with spaceflight-induced stress responses and have an impact on the neuronal function.
Collapse
Affiliation(s)
- Jacob M Holley
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Seta Stanbouly
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Michael J Pecaut
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Jeffrey S Willey
- Department of Radiation Oncology, Wake Forest University, School of Medicine, Winston-Salem, NC, 27101, USA
| | - Michael Delp
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Xiao Wen Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| |
Collapse
|
31
|
Brain potential responses involved in decision-making in weightlessness. Sci Rep 2022; 12:12992. [PMID: 35906468 PMCID: PMC9338282 DOI: 10.1038/s41598-022-17234-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/22/2022] [Indexed: 11/08/2022] Open
Abstract
The brain is essential to human adaptation to any environment including space. We examined astronauts’ brain function through their electrical EEG brain potential responses related to their decision of executing a docking task in the same virtual scenario in Weightlessness and on Earth before and after the space stay of 6 months duration. Astronauts exhibited a P300 component in which amplitude decreased during, and recovered after, their microgravity stay. This effect is discussed as a post-value-based decision-making closing mechanism; The P300 amplitude decrease in weightlessness is suggested as an emotional stimuli valence reweighting during which orbitofrontal BA10 would play a major role. Additionally, when differentiating the bad and the good docks on Earth and in Weightlessness and keeping in mind that astronauts were instantaneously informed through a visual cue of their good or bad performance, it was observed that the good dockings resulted in earlier voltage redistribution over the scalp (in the 150–250 ms period after the docking) than the bad dockings (in the 250–400 ms) in Weightlessness. These results suggest that in Weightlessness the knowledge of positive or negative valence events is processed differently than on Earth.
Collapse
|
32
|
Monitoring the Impact of Spaceflight on the Human Brain. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071060. [PMID: 35888147 PMCID: PMC9323314 DOI: 10.3390/life12071060] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
Extended exposure to radiation, microgravity, and isolation during space exploration has significant physiological, structural, and psychosocial effects on astronauts, and particularly their central nervous system. To date, the use of brain monitoring techniques adopted on Earth in pre/post-spaceflight experimental protocols has proven to be valuable for investigating the effects of space travel on the brain. However, future (longer) deep space travel would require some brain function monitoring equipment to be also available for evaluating and monitoring brain health during spaceflight. Here, we describe the impact of spaceflight on the brain, the basic principles behind six brain function analysis technologies, their current use associated with spaceflight, and their potential for utilization during deep space exploration. We suggest that, while the use of magnetic resonance imaging (MRI), positron emission tomography (PET), and computerized tomography (CT) is limited to analog and pre/post-spaceflight studies on Earth, electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS), and ultrasound are good candidates to be adapted for utilization in the context of deep space exploration.
Collapse
|
33
|
Oleynik EA, Naumova АА, Grigorieva YS, Bakhteeva VT, Lavrova EA, Chernigovskaya EV, Glazova MV. Neurogenesis in the Hippocampus of Mice Exposed to Short-Term Hindlimb Unloading. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022040159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Blachowicz A, Romsdahl J, Chiang AJ, Masonjones S, Kalkum M, Stajich JE, Torok T, Wang CCC, Venkateswaran K. The International Space Station Environment Triggers Molecular Responses in Aspergillus niger. Front Microbiol 2022; 13:893071. [PMID: 35847112 PMCID: PMC9280654 DOI: 10.3389/fmicb.2022.893071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022] Open
Abstract
Due to immense phenotypic plasticity and adaptability, Aspergillus niger is a cosmopolitan fungus that thrives in versatile environments, including the International Space Station (ISS). This is the first report of genomic, proteomic, and metabolomic alterations observed in A. niger strain JSC-093350089 grown in a controlled experiment aboard the ISS. Whole-genome sequencing (WGS) revealed that ISS conditions, including microgravity and enhanced irradiation, triggered non-synonymous point mutations in specific regions, chromosomes VIII and XII of the JSC-093350089 genome when compared to the ground-grown control. Proteome analysis showed altered abundance of proteins involved in carbohydrate metabolism, stress response, and cellular amino acid and protein catabolic processes following growth aboard the ISS. Metabolome analysis further confirmed that space conditions altered molecular suite of ISS-grown A. niger JSC-093350089. After regrowing both strains on Earth, production of antioxidant—Pyranonigrin A was significantly induced in the ISS-flown, but not the ground control strain. In summary, the microgravity and enhanced irradiation triggered unique molecular responses in the A. niger JSC-093350089 suggesting adaptive responses.
Collapse
Affiliation(s)
- Adriana Blachowicz
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Jillian Romsdahl
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Abby J. Chiang
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Sawyer Masonjones
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Markus Kalkum
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Tamas Torok
- Ecology Department, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Clay C. C. Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
- Department of Chemistry, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, United States
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
- *Correspondence: Kasthuri Venkateswaran,
| |
Collapse
|
35
|
Joint Cartilage in Long-Duration Spaceflight. Biomedicines 2022; 10:biomedicines10061356. [PMID: 35740378 PMCID: PMC9220015 DOI: 10.3390/biomedicines10061356] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 12/14/2022] Open
Abstract
This review summarizes the current literature available on joint cartilage alterations in long-duration spaceflight. Evidence from spaceflight participants is currently limited to serum biomarker data in only a few astronauts. Findings from analogue model research, such as bed rest studies, as well as data from animal and cell research in real microgravity indicate that unloading and radiation exposure are associated with joint degeneration in terms of cartilage thinning and changes in cartilage composition. It is currently unknown how much the individual cartilage regions in the different joints of the human body will be affected on long-term missions beyond the Low Earth Orbit. Given the fact that, apart from total joint replacement or joint resurfacing, currently no treatment exists for late-stage osteoarthritis, countermeasures might be needed to avoid cartilage damage during long-duration missions. To plan countermeasures, it is important to know if and how joint cartilage and the adjacent structures, such as the subchondral bone, are affected by long-term unloading, reloading, and radiation. The use of countermeasures that put either load and shear, or other stimuli on the joints, shields them from radiation or helps by supporting cartilage physiology, or by removing oxidative stress possibly help to avoid OA in later life following long-duration space missions. There is a high demand for research on the efficacy of such countermeasures to judge their suitability for their implementation in long-duration missions.
Collapse
|
36
|
Running Experimental Research of a Cable-Driven Astronaut on-Orbit Physical Exercise Equipment. MACHINES 2022. [DOI: 10.3390/machines10050377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Manned spaceflight has already become an important approach to space science exploration, while long-term exposure to the microgravity environment will lead to severe health problems for astronauts, including bone loss, muscle atrophy, and cardiovascular function decline. In order to mitigate or eliminate those negative influences, this paper presents a cable-driven exercise equipment that can be applied in a microgravity environment to render multi-functional on-orbit physical exercise modes for astronauts. First, the structure of cable module and the configuration of the equipment were proposed. Second, a two-level controller was provided, including the cable tension distribution algorithm and tension controller of the cable module. A safety protection strategy was proposed to ensure the safety of the astronaut. Furthermore, simulation and running experiment studies of the equipment were conducted, the results demonstrate that the load force of the equipment could achieve a high-level accuracy, and the exercise status of the astronaut could be monitored and protected in the meantime. Therefore, physical exercises could be carried out by the assistance of the equipment to keep astronauts in good shape on-orbit.
Collapse
|
37
|
Bruno V, Sarasso P, Fossataro C, Ronga I, Neppi-Modona M, Garbarini F. The rubber hand illusion in microgravity and water immersion. NPJ Microgravity 2022; 8:15. [PMID: 35523786 PMCID: PMC9076892 DOI: 10.1038/s41526-022-00198-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 03/23/2022] [Indexed: 11/08/2022] Open
Abstract
Our body has evolved in terrestrial gravity and altered gravitational conditions may affect the sense of body ownership (SBO). By means of the rubber hand illusion (RHI), we investigated the SBO during water immersion and parabolic flights, where unconventional gravity is experienced. Our results show that unconventional gravity conditions remodulate the relative weights of visual, proprioceptive, and vestibular inputs favoring vision, thus inducing an increased RHI susceptibility.
Collapse
Affiliation(s)
- V Bruno
- MANIBUS Lab, Psychology Department, University of Turin, Turin, Italy
| | - P Sarasso
- BIP Lab, Department of Psychology, University of Turin, Turin, Italy.
| | - C Fossataro
- MANIBUS Lab, Psychology Department, University of Turin, Turin, Italy
| | - I Ronga
- MANIBUS Lab, Psychology Department, University of Turin, Turin, Italy
- BIP Lab, Department of Psychology, University of Turin, Turin, Italy
| | - M Neppi-Modona
- MANIBUS Lab, Psychology Department, University of Turin, Turin, Italy
- BIP Lab, Department of Psychology, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), Turin, Italy
| | - F Garbarini
- MANIBUS Lab, Psychology Department, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), Turin, Italy
| |
Collapse
|
38
|
The mitochondrial proteomic changes of rat hippocampus induced by 28-day simulated microgravity. PLoS One 2022; 17:e0265108. [PMID: 35271667 PMCID: PMC8912132 DOI: 10.1371/journal.pone.0265108] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/23/2022] [Indexed: 11/19/2022] Open
Abstract
A large number of aerospace practices have confirmed that the aerospace microgravity environment can lead to cognitive function decline. Mitochondria are the most important energy metabolism organelles, and some studies demonstrate that the areospace microgravity environment can cause mitochondrial dysfunction. However, the relationships between cognitive function decline and mitochondrial dysfunction in the microgravity environment have not been elucidated. In this study, we simulated the microgravity environment in the Sprague-Dawley (SD) rats by -30° tail suspension for 28 days. We then investigated the changes of mitochondrial morphology and proteomics in the hippocampus. The electron microscopy results showed that the 28-day tail suspension increased the mitochondria number and size of rat hippocampal neuronal soma. Using TMT-based proteomics analysis, we identified 163 differentially expressed proteins (DEPs) between tail suspension and control samples, and among them, 128 proteins were upregulated and 35 proteins were downregulated. Functional and network analyses of the DEPs indicated that several of mitochondrial metabolic processes including the tricarboxylic acid (TCA) cycle were altered by simulating microgravity (SM). We verified 3 upregulated proteins, aconitate hydratase (ACO2), dihydrolipoamide S-succinyltransferase (DLST), and citrate synthase (CS), in the TCA cycle process by western blotting and confirmed their differential expressions between tail suspension and control samples. Taken together, our results demonstrate that 28-day tail suspension can cause changes in the morphology and metabolic function of hippocampus mitochondria, which might represent a mechanism of cognitive disorder caused by aerospace microgravity.
Collapse
|
39
|
Andreev-Andrievskiy A, Dolgov O, Alberts J, Popova A, Lagereva E, Anokhin K, Vinogradova O. Mice display learning and behavioral deficits after a 30-day spaceflight on Bion-M1 satellite. Behav Brain Res 2022; 419:113682. [PMID: 34843743 DOI: 10.1016/j.bbr.2021.113682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 11/29/2022]
Abstract
Profound effects of spaceflight on the physiology of humans and non-human animals are well-documented but incompletely explored. Current goals to undertake interplanetary missions increase the urgency to learn more about adaptation to prolonged spaceflight and readaptation to Earth-normal conditions, especially with the inclusion of radiation exposures greater than those confronted in traditional, orbital flights. The 30-day-long Bion M-1 biosatellite flight was conducted at a relatively high orbit, exposing the mice to greater doses of radiation in addition to microgravity, a combination of factors relevant to Mars missions. Results of the present studies with mice provide insights into the consequences on brain function of long-duration spaceflight. After landing, mice showed profound deficits in vestibular responses during aerial drop tests. Spaceflown mice displayed reduced grip strength, rotarod performance, and voluntary wheel running, each, which improved gradually but incompletely over the 7-days of post-flight testing. Continuous monitoring in the animals' home cage activity, in combination with open-field and other tests of motor performance, revealed indices of altered affect, expressed as hyperactivity, potentiated thigmotaxis, and avoidance of open areas which, together, presented a syndrome of persistent anxiety-like behavior. A learned, operant response acquired before spaceflight was retained, whereas the acquisition of a new task was impaired after the flight. We integrate these observations with other results from Bion-M1's program, identifying deficits in musculoskeletal and cardiovascular systems, as well as in the brain and spinal cord, including altered gene expression patterns and the accompanying neurochemical changes that could underlie our behavioral findings.
Collapse
Affiliation(s)
- Alexander Andreev-Andrievskiy
- SSC RF Institute of biomedical problems, 76A Khoroshevskoe av, Moscow 123007, Russia; Biology faculty, M.V. Lomonosov Moscow State University, 1-12 Leninskie gory, Moscow 119234, Russia.
| | - Oleg Dolgov
- NBICS center, NRC Kurchatov institute, 1 Academician Kurchatov sq., Moscow 123182, Russia
| | - Jeffrey Alberts
- Indiana University, 107 S. Indiana Avenue Bloomington, IN 47405-7000, USA
| | - Anfisa Popova
- SSC RF Institute of biomedical problems, 76A Khoroshevskoe av, Moscow 123007, Russia
| | - Evgeniia Lagereva
- SSC RF Institute of biomedical problems, 76A Khoroshevskoe av, Moscow 123007, Russia
| | - Konstantin Anokhin
- NBICS center, NRC Kurchatov institute, 1 Academician Kurchatov sq., Moscow 123182, Russia; Anokhin Institute of Normal Physiology, 11/4, Mohovaya str., Moscow 103009, Russia
| | - Olga Vinogradova
- SSC RF Institute of biomedical problems, 76A Khoroshevskoe av, Moscow 123007, Russia
| |
Collapse
|
40
|
EEG as a marker of brain plasticity in clinical applications. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:91-104. [PMID: 35034760 DOI: 10.1016/b978-0-12-819410-2.00029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Neural networks are dynamic, and the brain has the capacity to reorganize itself. This capacity is named neuroplasticity and is fundamental for many processes ranging from learning and adaptation to new environments to the response to brain injuries. Measures of brain plasticity involve several techniques, including neuroimaging and neurophysiology. Electroencephalography, often used together with other techniques, is a common tool for prognostic and diagnostic purposes, and cortical reorganization is reflected by EEG measurements. Changes of power bands in different cortical areas occur with fatigue and in response to training stimuli leading to learning processes. Sleep has a fundamental role in brain plasticity, restoring EEG bands alterations and promoting consolidation of learning. Exercise and physical inactivity have been extensively studied as both strongly impact brain plasticity. Indeed, EEG studies showed the importance of the physical activity to promote learning and the effects of inactivity or microgravity on cortical reorganization to cope with absent or altered sensorimotor stimuli. Finally, this chapter will describe some of the EEG changes as markers of neural plasticity in neurologic conditions, focusing on cerebrovascular and neurodegenerative diseases. In conclusion, neuroplasticity is the fundamental mechanism necessary to ensure adaptation to new stimuli and situations, as part of the dynamicity of life.
Collapse
|
41
|
Guillon L, Kermorgant M, Charvolin T, Bonneville F, Bareille MP, Cassol E, Beck A, Beaurain M, Péran P, Lotterie JA, Traon APL, Payoux P. Reduced Regional Cerebral Blood Flow Measured by 99mTc-Hexamethyl Propylene Amine Oxime Single-Photon Emission Computed Tomography in Microgravity Simulated by 5-Day Dry Immersion. Front Physiol 2021; 12:789298. [PMID: 34880784 PMCID: PMC8645987 DOI: 10.3389/fphys.2021.789298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Microgravity induces a cephalad fluid shift that is responsible for cephalic venous stasis that may increase intracranial pressure (ICP) in astronauts. However, the effects of microgravity on regional cerebral blood flow (rCBF) are not known. We therefore investigated changes in rCBF in a 5-day dry immersion (DI) model. Moreover, we tested thigh cuffs as a countermeasure to prevent potential microgravity-induced modifications in rCBF. Around 18 healthy male participants underwent 5-day DI with or without a thigh cuffs countermeasure. They were randomly allocated to a control (n=9) or cuffs (n=9) group. rCBF was measured 4days before DI and at the end of the fifth day of DI (DI5), using single-photon emission computed tomography (SPECT) with radiopharmaceutical 99mTc-hexamethyl propylene amine oxime (99mTc-HMPAO). SPECT images were processed using statistical parametric mapping (SPM12) software. At DI5, we observed a significant decrease in rCBF in 32 cortical and subcortical regions, with greater hypoperfusion in basal ganglia (right putamen peak level: z=4.71, p uncorr<0.001), bilateral occipital regions (left superior occipital peak level: z=4.51, p uncorr<0.001), bilateral insula (right insula peak level: 4.10, p uncorr<0.001), and bilateral inferior temporal (right inferior temporal peak level: 4.07, p uncorr<0.001). No significant difference was found between the control and cuffs groups on change in rCBF after 5days of DI. After a 5-day DI, we found a decrease in rCBF in cortical and subcortical regions. However, thigh cuffs countermeasure failed to prevent hypoperfusion. To date, this is the first study measuring rCBF in DI. Further investigations are needed in order to better understand the underlying mechanisms in cerebral blood flow (CBF) changes after exposure to microgravity.
Collapse
Affiliation(s)
- Laurent Guillon
- Department of Nuclear Medicine, Toulouse University Hospital, Toulouse, France
| | - Marc Kermorgant
- INSERM UMR 1297, Institute of Cardiovascular and Metabolic Diseases (I2MC), Toulouse University Hospital, Toulouse, France
| | - Thomas Charvolin
- Department of Neuroradiology, Toulouse University Hospital, Toulouse, France
| | - Fabrice Bonneville
- Department of Neuroradiology, Toulouse University Hospital, Toulouse, France
- INSERM URM 1214, Toulouse NeuroImaging Center (ToNIC), Toulouse University Hospital, Toulouse, France
| | | | - Emmanuelle Cassol
- Department of Nuclear Medicine, Toulouse University Hospital, Toulouse, France
| | - Arnaud Beck
- Institute for Space Medicine and Physiology (MEDES), Toulouse, France
| | - Marie Beaurain
- Department of Nuclear Medicine, Toulouse University Hospital, Toulouse, France
| | - Patrice Péran
- INSERM URM 1214, Toulouse NeuroImaging Center (ToNIC), Toulouse University Hospital, Toulouse, France
| | - Jean-Albert Lotterie
- Department of Nuclear Medicine, Toulouse University Hospital, Toulouse, France
- INSERM URM 1214, Toulouse NeuroImaging Center (ToNIC), Toulouse University Hospital, Toulouse, France
| | - Anne Pavy-Le Traon
- INSERM UMR 1297, Institute of Cardiovascular and Metabolic Diseases (I2MC), Toulouse University Hospital, Toulouse, France
- Department of Neurology, Toulouse University Hospital, Toulouse, France
| | - Pierre Payoux
- Department of Nuclear Medicine, Toulouse University Hospital, Toulouse, France
- INSERM URM 1214, Toulouse NeuroImaging Center (ToNIC), Toulouse University Hospital, Toulouse, France
| |
Collapse
|
42
|
Characterizing SERCA Function in Murine Skeletal Muscles after 35-37 Days of Spaceflight. Int J Mol Sci 2021; 22:ijms222111764. [PMID: 34769190 PMCID: PMC8584217 DOI: 10.3390/ijms222111764] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022] Open
Abstract
It is well established that microgravity exposure causes significant muscle weakness and atrophy via muscle unloading. On Earth, muscle unloading leads to a disproportionate loss in muscle force and size with the loss in muscle force occurring at a faster rate. Although the exact mechanisms are unknown, a role for Ca2+ dysregulation has been suggested. The sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) pump actively brings cytosolic Ca2+ into the SR, eliciting muscle relaxation and maintaining low intracellular Ca2+ ([Ca2+]i). SERCA dysfunction contributes to elevations in [Ca2+]i, leading to cellular damage, and may contribute to the muscle weakness and atrophy observed with spaceflight. Here, we investigated SERCA function, SERCA regulatory protein content, and reactive oxygen/nitrogen species (RONS) protein adduction in murine skeletal muscle after 35–37 days of spaceflight. In male and female soleus muscles, spaceflight led to drastic impairments in Ca2+ uptake despite significant increases in SERCA1a protein content. We attribute this impairment to an increase in RONS production and elevated total protein tyrosine (T) nitration and cysteine (S) nitrosylation. Contrarily, in the tibialis anterior (TA), we observed an enhancement in Ca2+ uptake, which we attribute to a shift towards a faster muscle fiber type (i.e., increased myosin heavy chain IIb and SERCA1a) without elevated total protein T-nitration and S-nitrosylation. Thus, spaceflight affects SERCA function differently between the soleus and TA.
Collapse
|
43
|
Berezovskaya AS, Tyganov SA, Nikolaeva SD, Naumova AA, Merkulyeva NS, Shenkman BS, Glazova MV. Dynamic Foot Stimulations During Short-Term Hindlimb Unloading Prevent Dysregulation of the Neurotransmission in the Hippocampus of Rats. Cell Mol Neurobiol 2021; 41:1549-1561. [PMID: 32683580 DOI: 10.1007/s10571-020-00922-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/11/2020] [Indexed: 12/11/2022]
Abstract
Spaceflight and simulated microgravity both affect learning and memory, which are mostly controlled by the hippocampus. However, data about molecular alterations in the hippocampus in real or simulated microgravity conditions are limited. Adult Wistar rats were recruited in the experiments. Here we analyzed whether short-term simulated microgravity caused by 3-day hindlimb unloading (HU) will affect the glutamatergic and GABAergic systems of the hippocampus and how dynamic foot stimulation (DFS) to the plantar surface applied during HU can contribute in the regulation of hippocampus functioning. The results demonstrated a decreased expression of vesicular glutamate transporters 1 and 2 (VGLUT1/2) in the hippocampus after 3 days of HU, while glutamate decarboxylase 67 (GAD67) expression was not affected. HU also significantly induced Akt signaling and transcriptional factor CREB that are supposed to activate the neuroprotective mechanisms. On the other hand, DFS led to normalization of VGLUT1/2 expression and activity of Akt and CREB. Analysis of exocytosis proteins revealed the inhibition of SNAP-25, VAMP-2, and syntaxin 1 expression in DFS group proposing attenuation of excitatory neurotransmission. Thus, we revealed that short-term HU causes dysregulation of glutamatergic system of the hippocampus, but, at the same time, stimulates neuroprotective Akt-dependent mechanism. In addition, most importantly, we demonstrated positive effect of DFS on the hippocampus functioning that probably depends on the regulation of neurotransmitter exocytosis.
Collapse
Affiliation(s)
- Anna S Berezovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., 194223, St.Petersburg, Russia
| | - Sergey A Tyganov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Svetlana D Nikolaeva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., 194223, St.Petersburg, Russia
| | - Alexandra A Naumova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., 194223, St.Petersburg, Russia
| | - Natalia S Merkulyeva
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Boris S Shenkman
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Margarita V Glazova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., 194223, St.Petersburg, Russia.
| |
Collapse
|
44
|
ElGindi M, Sapudom J, Ibrahim IH, Al-Sayegh M, Chen W, Garcia-Sabaté A, Teo JCM. May the Force Be with You (Or Not): The Immune System under Microgravity. Cells 2021; 10:1941. [PMID: 34440709 PMCID: PMC8391211 DOI: 10.3390/cells10081941] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
All terrestrial organisms have evolved and adapted to thrive under Earth's gravitational force. Due to the increase of crewed space flights in recent years, it is vital to understand how the lack of gravitational forces affects organisms. It is known that astronauts who have been exposed to microgravity suffer from an array of pathological conditions including an impaired immune system, which is one of the most negatively affected by microgravity. However, at the cellular level a gap in knowledge exists, limiting our ability to understand immune impairment in space. This review highlights the most significant work done over the past 10 years detailing the effects of microgravity on cellular aspects of the immune system.
Collapse
Affiliation(s)
- Mei ElGindi
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Ibrahim Hamed Ibrahim
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates;
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY 11201, USA;
- Department of Biomedical Engineering, New York University, Brooklyn, NY 11201, USA
| | - Anna Garcia-Sabaté
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Jeremy C. M. Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY 11201, USA;
- Department of Biomedical Engineering, New York University, Brooklyn, NY 11201, USA
| |
Collapse
|
45
|
Manganotti P, Buoite Stella A, Ajcevic M, di Girolamo FG, Biolo G, Franchi MV, Monti E, Sirago G, Marusic U, Simunic B, Narici MV, Pisot R. Peripheral nerve adaptations to 10 days of horizontal bed rest in healthy young adult males. Am J Physiol Regul Integr Comp Physiol 2021; 321:R495-R503. [PMID: 34318712 DOI: 10.1152/ajpregu.00146.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Space analogs, such as bed rest, are used to reproduce microgravity-induced morphological and physiological changes and can be used as clinical models of prolonged inactivity. Nevertheless, nonuniform decreases in muscle mass and function have been frequently reported, and peripheral nerve adaptations have been poorly studied, although some of these mechanisms may be explained. Ten young healthy males (18-33 yr) underwent 10 days of horizontal bed rest. Peripheral neurophysiological assessments were performed bilaterally for the dominant (DL) and nondominant upper and lower limbs (N-DL) on the 1st and 10th day of bed rest, including ultrasound of the median, deep peroneal nerve (DPN), and common fibular nerve (CFN) , as well as a complete nerve conduction study (NCS) of the upper and lower limbs. Consistently, reduced F waves, suggesting peripheral nerve dysfunction, of both the peroneal (DL: P = 0.005, N-DL: P = 0.013) and tibial nerves (DL: P = 0.037, N-DL: P = 0.005) were found bilaterally, whereas no changes were observed in nerve ultrasound or other parameters of the NCS of both the upper and lower limbs. In these young healthy males, only the F waves, known to respond to postural changes, were significantly affected by short-term bed rest. These preliminary results suggest that during simulated microgravity, most changes occur at the muscle or central nervous system level. Since the assessment of F waves is common in clinical neurophysiological examinations, caution should be used when testing individuals after prolonged immobility.
Collapse
Affiliation(s)
- Paolo Manganotti
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital of Trieste, University of Trieste, Trieste, Italy
| | - Alex Buoite Stella
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital of Trieste, University of Trieste, Trieste, Italy
| | - Milos Ajcevic
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital of Trieste, University of Trieste, Trieste, Italy.,Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Filippo Giorgio di Girolamo
- Clinica Medica, Azienda Sanitaria Universitaria Giuliano Isontina, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Gianni Biolo
- Clinica Medica, Azienda Sanitaria Universitaria Giuliano Isontina, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Martino V Franchi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Elena Monti
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Giuseppe Sirago
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Uros Marusic
- Science and Research Center Koper, Institute for Kinesiology Research, Koper, Slovenia.,Department of Health Sciences, Alma Mater Europaea - European Center Maribor, Maribor, Slovenia
| | - Bostjan Simunic
- Science and Research Center Koper, Institute for Kinesiology Research, Koper, Slovenia
| | - Marco V Narici
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Science and Research Center Koper, Institute for Kinesiology Research, Koper, Slovenia
| | - Rado Pisot
- Science and Research Center Koper, Institute for Kinesiology Research, Koper, Slovenia
| |
Collapse
|
46
|
Rabinstein AA, Braksick SA, Wijdicks EF. Subarachnoid hemorrhage from sudden gravitational changes. Neuroradiol J 2021; 35:240-242. [PMID: 34235989 DOI: 10.1177/19714009211030540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Diffuse subarachnoid hemorrhage is commonly attributed to the rupture of intracranial aneurysms or other vascular malformations. Non-aneurysmal hemorrhages often have a characteristic pattern or clear mechanism (e.g. trauma) with an often more benign clinical course. We report the case of a diffuse non-aneurysmal subarachnoid hemorrhage due to sudden gravitational changes encountered during complex airflight maneuvers, complicated by hydrocephalus and cerebral vasospasm. This case illustrates a rare phenomenon that may again be encountered in the future with the advent and advancement of civilian spaceflight.
Collapse
|
47
|
Braddock M. From Target Identification to Drug Development in Space: Using the Microgravity Assist. Curr Drug Discov Technol 2021; 17:45-56. [PMID: 30648510 DOI: 10.2174/1570163816666190112150014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 12/19/2022]
Abstract
The unique nature of microgravity encountered in space provides an opportunity for drug discovery and development that cannot be replicated on Earth. From the production of superior protein crystals to the identification and validation of new drug targets to microarray analyses of transcripts attenuated by microgravity, there are numerous examples which demonstrate the benefit of exploiting the space environment. Moreover, studies conducted on Space Shuttle missions, the International Space Station and other craft have had a direct benefit for drug development programmes such as those directed against reducing bone and muscle loss or increasing bone formation. This review will highlight advances made in both drug discovery and development and offer some future insight into how drug discovery and associated technologies may be further advanced using the microgravity assist.
Collapse
Affiliation(s)
- Martin Braddock
- Sherwood Observatory, Mansfield and Sutton Astronomical Society, Coxmoor Road, Sutton-in-Ashfield, Nottinghamshire, NG17 5LF, United Kingdom
| |
Collapse
|
48
|
|
49
|
Rubinstein L, Paul AM, Houseman C, Abegaz M, Tabares Ruiz S, O’Neil N, Kunis G, Ofir R, Cohen J, Ronca AE, Globus RK, Tahimic CGT. Placenta-Expanded Stromal Cell Therapy in a Rodent Model of Simulated Weightlessness. Cells 2021; 10:940. [PMID: 33921854 PMCID: PMC8073415 DOI: 10.3390/cells10040940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/05/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
Long duration spaceflight poses potential health risks to astronauts during flight and re-adaptation after return to Earth. There is an emerging need for NASA to provide successful and reliable therapeutics for long duration missions when capability for medical intervention will be limited. Clinically relevant, human placenta-derived therapeutic stromal cells (PLX-PAD) are a promising therapeutic alternative. We found that treatment of adult female mice with PLX-PAD near the onset of simulated weightlessness by hindlimb unloading (HU, 30 d) was well-tolerated and partially mitigated decrements caused by HU. Specifically, PLX-PAD treatment rescued HU-induced thymic atrophy, and mitigated HU-induced changes in percentages of circulating neutrophils, but did not rescue changes in the percentages of lymphocytes, monocytes, natural killer (NK) cells, T-cells and splenic atrophy. Further, PLX-PAD partially mitigated HU effects on the expression of select cytokines in the hippocampus. In contrast, PLX-PAD failed to protect bone and muscle from HU-induced effects, suggesting that the mechanisms which regulate the structure of these mechanosensitive tissues in response to disuse are discrete from those that regulate the immune- and central nervous system (CNS). These findings support the therapeutic potential of placenta-derived stromal cells for select physiological deficits during simulated spaceflight. Multiple countermeasures are likely needed for comprehensive protection from the deleterious effects of prolonged spaceflight.
Collapse
Affiliation(s)
- Linda Rubinstein
- Universities Space Research Association, Columbia, MD 21046, USA; (L.R.); (A.M.P.)
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (C.H.); (M.A.); (S.T.R.); (N.O.); (J.C.); (A.E.R.); (R.K.G.)
| | - Amber M. Paul
- Universities Space Research Association, Columbia, MD 21046, USA; (L.R.); (A.M.P.)
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (C.H.); (M.A.); (S.T.R.); (N.O.); (J.C.); (A.E.R.); (R.K.G.)
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114, USA
| | - Charles Houseman
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (C.H.); (M.A.); (S.T.R.); (N.O.); (J.C.); (A.E.R.); (R.K.G.)
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA
| | - Metadel Abegaz
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (C.H.); (M.A.); (S.T.R.); (N.O.); (J.C.); (A.E.R.); (R.K.G.)
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA
| | - Steffy Tabares Ruiz
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (C.H.); (M.A.); (S.T.R.); (N.O.); (J.C.); (A.E.R.); (R.K.G.)
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA
| | - Nathan O’Neil
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (C.H.); (M.A.); (S.T.R.); (N.O.); (J.C.); (A.E.R.); (R.K.G.)
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA
| | - Gilad Kunis
- Pluristem Ltd., Haifa 31905, Israel; (G.K.); (R.O.)
| | - Racheli Ofir
- Pluristem Ltd., Haifa 31905, Israel; (G.K.); (R.O.)
| | - Jacob Cohen
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (C.H.); (M.A.); (S.T.R.); (N.O.); (J.C.); (A.E.R.); (R.K.G.)
| | - April E. Ronca
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (C.H.); (M.A.); (S.T.R.); (N.O.); (J.C.); (A.E.R.); (R.K.G.)
- Wake Forest Medical School, Winston-Salem, NC 27101, USA
| | - Ruth K. Globus
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (C.H.); (M.A.); (S.T.R.); (N.O.); (J.C.); (A.E.R.); (R.K.G.)
| | - Candice G. T. Tahimic
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (C.H.); (M.A.); (S.T.R.); (N.O.); (J.C.); (A.E.R.); (R.K.G.)
- KBR, Houston, TX 77002, USA
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| |
Collapse
|
50
|
Britten RA, Wellman LL, Sanford LD. Progressive increase in the complexity and translatability of rodent testing to assess space-radiation induced cognitive impairment. Neurosci Biobehav Rev 2021; 126:159-174. [PMID: 33766676 DOI: 10.1016/j.neubiorev.2021.01.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/15/2020] [Accepted: 01/07/2021] [Indexed: 11/29/2022]
Abstract
Ground-based rodent models have established that space radiation doses (approximately those that astronauts will be exposed to on a mission to Mars) significantly impair performance in a wide range of cognitive tasks. Over the last 40 years there has been a progressive increase in both the complexity and the translatability (to humans) of the cognitive tasks investigated. This review outlines technical and conceptual advances in space radiation rodent testing approaches, along with the advances in analytical approaches, that will make data from ground based studies more amenable to probabilistic risk analysis. While great progress has been made in determining the impact of space radiation on many advanced cognitive processes, challenges remain that need to be addressed prior to commencing deep space missions. A summary of on-going attempts to address existing knowledge gaps and the critical role that rodent studies will have in establishing the impact of space radiation on even more complex (human) cognitive tasks are presented and discussed.
Collapse
Affiliation(s)
- Richard A Britten
- Department of Radiation Oncology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA; Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA; Leroy T Canoles Jr. Cancer Center, Eastern Virginia Medical School, Norfolk, VA, 23507, USA; Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA, 23507, USA.
| | - Laurie L Wellman
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA, 23507, USA; Department of Pathology & Anatomy, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
| | - Larry D Sanford
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA, 23507, USA; Department of Pathology & Anatomy, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
| |
Collapse
|