1
|
Niemczak CE, Ford JC, Roth RM, Leigh SM, Parsonnet J, Martin C, Soule SO, Haron TM, Buckey JC, Wylie GR. Neuroimaging markers of cognitive fatigue in individuals with post-acute sequelae of SARS-CoV-2 infection. Brain Cogn 2024; 183:106254. [PMID: 39667116 DOI: 10.1016/j.bandc.2024.106254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
Persistent cognitive fatigue (CF) is the most reported symptom in Post-Acute Sequelae of SARS-CoV-2 Infection (PASC), but little is known about its underlying neural basis. This pilot study examined fMRI brain activation patterns during a fatiguing task in those with and without PASC. We hypothesized that individuals with PASC would show changes in CF-related brain activation within fatigue network. Participants were 10 adults with PASC and persistent CF and 10 age- and gender-matched healthy controls. The 2-back working memory task was used during fMRI to induce CF. Patients with PASC reported greater CF, as measured using a Visual Analogue Scale of Fatigue (VAS-F), throughout the task. The relationship of brain activation in the fatigue network to increased CF during the fatiguing task did not differ between groups. There were, however, more areas inside and outside the fatigue network that were activated in the PASC group as reported CF increased. The relationship between brain activation and scores on the 2-back did differ between groups, with the PASC group showing more frontal activation. Findings suggest that individuals with PASC and CF may need to exert greater mental effort during demanding cognitive tasks, reflected in recruitment of a broader network of brain regions.
Collapse
Affiliation(s)
- Christopher E Niemczak
- Geisel School of Medicine at Dartmouth, Space Medicine Innovations Laboratory, Lebanon, NH, USA; Dartmouth Health, Department of Medicine, Lebanon, NH, USA.
| | - James C Ford
- Dartmouth Health/Geisel School of Medicine, Brain Imaging Laboratory, Department of Psychiatry, Lebanon, NH, USA
| | - Robert M Roth
- Dartmouth Health/Geisel School of Medicine, Brain Imaging Laboratory, Department of Psychiatry, Lebanon, NH, USA
| | - Samantha M Leigh
- Geisel School of Medicine at Dartmouth, Space Medicine Innovations Laboratory, Lebanon, NH, USA
| | - Jeffrey Parsonnet
- Dartmouth Health, Department of Infectious Disease, Lebanon, NH, USA
| | - Christina Martin
- Dartmouth Health, Department of Infectious Disease, Lebanon, NH, USA
| | - Shreve O Soule
- Dartmouth Health, Advanced Imaging Center, Lebanon, NH, USA
| | | | - Jay C Buckey
- Geisel School of Medicine at Dartmouth, Space Medicine Innovations Laboratory, Lebanon, NH, USA; Dartmouth Health, Department of Medicine, Lebanon, NH, USA
| | - Glenn R Wylie
- Kessler Foundation, Rocco Ortenzio Neuroimaging Center, West Orange, NJ, USA; Rutgers University Medical School, Newark, NJ, USA; Department of Veterans' Affairs, East Orange, NJ, USA
| |
Collapse
|
2
|
Baldini S, Sartori A, Rossi L, Favero A, Pasquin F, Dinoto A, Bratina A, Bosco A, Manganotti P. Fatigue in Multiple Sclerosis: A Resting-State EEG Microstate Study. Brain Topogr 2024; 37:1203-1216. [PMID: 38847997 PMCID: PMC11408556 DOI: 10.1007/s10548-024-01053-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/16/2024] [Indexed: 09/18/2024]
Abstract
Fatigue affects approximately 80% of people with Multiple Sclerosis (PwMS) and can impact several domains of daily life. However, the neural underpinnings of fatigue in MS are still not completely clear. The aim of our study was to investigate the spontaneous large-scale networks functioning associated with fatigue in PwMS using the EEG microstate approach with a spectral decomposition. Forty-three relapsing-remitting MS patients and twenty-four healthy controls (HCs) were recruited. All participants underwent an administration of Modified Fatigue Impact scale (MFIS) and a 15-min resting-state high-density EEG recording. We compared the microstates of healthy subjects, fatigued (F-MS) and non-fatigued (nF-MS) patients with MS; correlations with clinical and behavioral fatigue scores were also analyzed. Microstates analysis showed six templates across groups and frequencies. We found that in the F-MS emerged a significant decrease of microstate F, associated to the salience network, in the broadband and in the beta band. Moreover, the microstate B, associated to the visual network, showed a significant increase in fatigued patients than healthy subjects in broadband and beta bands. The multiple linear regression showed that the high cognitive fatigue was predicted by both an increase and decrease, respectively, in delta band microstate B and beta band microstate F. On the other hand, higher physical fatigue was predicted with lower occurrence microstate F in beta band. The current findings suggest that in MS the higher level of fatigue might be related to a maladaptive functioning of the salience and visual network.
Collapse
Affiliation(s)
- Sara Baldini
- Department of Medicine, Surgery and Health Sciences, Neurology Unit, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy.
| | - Arianna Sartori
- Department of Medicine, Surgery and Health Sciences, Neurology Unit, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy
| | - Lucrezia Rossi
- Department of Medicine, Surgery and Health Sciences, Neurology Unit, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy
| | - Anna Favero
- Department of Medicine, Surgery and Health Sciences, Neurology Unit, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy
| | - Fulvio Pasquin
- Neurology Unit, Hospital of Gorizia, ASUGI, Gorizia, Italy
| | - Alessandro Dinoto
- Department of Neuroscience, Biomedicine and Movement Sciences, Neurology Unit, University of Verona, Verona, Italy
| | - Alessio Bratina
- Department of Medicine, Surgery and Health Sciences, Neurology Unit, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy
| | - Antonio Bosco
- Department of Medicine, Surgery and Health Sciences, Neurology Unit, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy
| | - Paolo Manganotti
- Department of Medicine, Surgery and Health Sciences, Neurology Unit, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy
| |
Collapse
|
3
|
Erani F, Stoll H, Patel D, Schultheis MT, Medaglia JD. Money versus performance feedback: money associated with lower feelings of cognitive fatigue. J Clin Exp Neuropsychol 2024; 46:794-809. [PMID: 39611366 DOI: 10.1080/13803395.2024.2424533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/24/2024] [Indexed: 11/30/2024]
Abstract
OBJECTIVE Prior research suggests that effort and reward are central to cognitive fatigue. To better understand the influence of reward on cognitive fatigue, this study examined the effect of reward type and frequency on cognitive fatigue. PARTICIPANTS AND METHODS In an online between-subjects study, 400 participants completed a computerized switching task and were randomly sorted into one of the five possible groups based on reward condition: [1] infrequent money, [2] frequent money, [3] infrequent performance-feedback, [4] frequent performance feedback, and [5] no-reward. Cognitive fatigue was assessed using the Visual Analog Scale for Fatigue (VAS-F) during the task. Mixed effects models were used to estimate the influence of reward type and frequency on task performance and cognitive fatigue. RESULTS We found that participants in the monetary groups were significantly faster (p < .001) compared to participants in the feedback and no-reward groups. We also found that participants in the frequent-money group were significantly faster than those in the infrequent-money group (p < .001). We found that the group receiving infrequent-money was associated with a decrease in VAS-F scores compared to no-reward (p = .04). CONCLUSIONS The current study supports the role of reward in cognitive fatigue. Our results confirm well-established findings that money positively influences on-task behavior, especially when money is provided frequently. In a cognitively healthy sample, there is some evidence to suggest that money provided infrequently could decrease feelings of fatigue. Continued work is needed to understand how, and which, specific behavioral reward manipulations reduce fatigue, especially in clinical populations most affected by fatigue.
Collapse
Affiliation(s)
- Fareshte Erani
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Harrison Stoll
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Darshan Patel
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Maria T Schultheis
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - John D Medaglia
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Hanzal S, Learmonth G, Thut G, Harvey M. Probing sustained attention and fatigue across the lifespan. PLoS One 2024; 19:e0292695. [PMID: 39018279 PMCID: PMC11253940 DOI: 10.1371/journal.pone.0292695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/24/2024] [Indexed: 07/19/2024] Open
Abstract
Trait fatigues reflects tiredness that persists throughout a prolonged period, whereas state fatigue is a short-term reaction to intense or prolonged effort. We investigated the impact of sustained attention (using the SART) on both trait and state fatigue levels in the general population. An online version of the SART was undertaken by 115 participants, stratified across the whole adult lifespan. While pre-task trait fatigue was a strong indicator of the initial state fatigue levels, undergoing the task itself induced an increase in reported subjective state fatigue, and an accompanying reduction in subjective energy rating. Consistent with this finding, greater subjective state fatigue levels were associated with reduced accuracy. In addition, age was the best predictor of inter-participant accuracy (the older the participants, the greater the accuracy), and learning (i.e., task duration reducing reaction times). Moreover, a ceiling effect occurred where participants with higher trait fatigue did not experience greater state fatigue changes relative to those with low trait scores. In summary, we found improved accuracy in older adults, as well as a tight coupling between state fatigue and SART performance decline (in an online environment). The findings warrant further investigation into fatigue as a dynamic, task-dependent state and into SART performance as an objective measure and inducer of fatigue.
Collapse
Affiliation(s)
- Simon Hanzal
- School of Psychology and Neuroscience University of Glasgow, Glasgow, United Kingdom
| | - Gemma Learmonth
- School of Psychology and Neuroscience University of Glasgow, Glasgow, United Kingdom
- Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Gregor Thut
- School of Psychology and Neuroscience University of Glasgow, Glasgow, United Kingdom
| | - Monika Harvey
- School of Psychology and Neuroscience University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
5
|
Baldasso BD, Raza SZ, Islam SS, Burry IB, Newell CJ, Hillier SR, Ploughman M. Disrupted hemodynamic response within dorsolateral prefrontal cortex during cognitive tasks among people with multiple sclerosis-related fatigue. PLoS One 2024; 19:e0303211. [PMID: 38837991 DOI: 10.1371/journal.pone.0303211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/21/2024] [Indexed: 06/07/2024] Open
Abstract
INTRODUCTION Mental fatigue is an early and enduring symptom in persons with autoimmune disease particularly multiple sclerosis (MS). Neuromodulation has emerged as a potential treatment although optimal cortical targets have yet to be determined. We aimed to examine cortical hemodynamic responses within bilateral dorsolateral prefrontal cortex (dlPFC) and frontopolar areas during single and dual cognitive tasks in persons with MS-related fatigue compared to matched controls. METHODS We recruited persons (15 MS and 12 age- and sex-matched controls) who did not have physical or cognitive impairment and were free from depressive symptoms. Functional near infrared spectroscopy (fNIRS) registered hemodynamic responses during the tasks. We calculated oxyhemoglobin peak, time-to-peak, coherence between channels (a potential marker of neurovascular coupling) and functional connectivity (z-score). RESULTS In MS, dlPFC demonstrated disrupted hemodynamic coherence during both single and dual tasks, as evidenced by non-significant and negative correlations between fNIRS channels. In MS, reduced coherence occurred in left dorsolateral PFC during the single task but occurred bilaterally as the task became more challenging. Functional connectivity was lower during dual compared to single tasks in the right dorsolateral PFC in both groups. Lower z-score was related to greater feelings of fatigue. Peak and time-to-peak hemodynamic response did not differ between groups or tasks. CONCLUSIONS Hemodynamic responses were inconsistent and disrupted in people with MS experiencing mental fatigue, which worsened as the task became more challenging. Our findings point to dlPFC, but not frontopolar areas, as a potential target for neuromodulation to treat cognitive fatigue.
Collapse
Affiliation(s)
- Bruna D Baldasso
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Syed Z Raza
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Sadman S Islam
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
- Computer Science, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Isabella B Burry
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Caitlin J Newell
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Sydney R Hillier
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Michelle Ploughman
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
6
|
Salihu AT, Hill KD, Jaberzadeh S. Age and Type of Task-Based Impact of Mental Fatigue on Balance: Systematic Review and Meta-Analysis. J Mot Behav 2024; 56:373-391. [PMID: 38189442 DOI: 10.1080/00222895.2023.2299706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/21/2023] [Indexed: 01/09/2024]
Abstract
The role of cognition in balance control suggests that mental fatigue may negatively affect balance. However, cognitive involvement in balance control varies with the type or difficulty of the balance task and age. Steady-state balance tasks, such as quiet standing, are well-learned tasks executed automatically through reflex activities controlled by the brainstem and spinal cord. In contrast, novel, and challenging balance tasks, such as proactively controlling balance while walking over rugged terrain or reacting to unexpected external perturbations, may require cognitive processing. Furthermore, individuals with preexisting balance impairments due to aging or pathology may rely on cognitive processes to control balance in most circumstances. This systematic review and meta-analysis investigated the effect of mental fatigue on different types of balance control tasks in young and older adults. A literature search was conducted in seven electronic databases and 12 studies met eligibility criteria. The results indicated that mental fatigue had a negative impact on both proactive (under increased cognitive load) and reactive balance in young adults. In older adults, mental fatigue affected steady-state and proactive balance. Therefore, mentally fatigued older individuals may be at increased risk of a loss of balance during steady-state balance task compared to their younger counterparts.
Collapse
Affiliation(s)
- Abubakar Tijjani Salihu
- Monash Neuromodulation Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia
| | - Keith D Hill
- Rehabilitation, Ageing and Independent Living (RAIL) Research Centre, School of Primary and Allied Health Care, Monash University, Frankston, Victoria, Australia
| | - Shapour Jaberzadeh
- Monash Neuromodulation Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Goh HT, Stewart J, Becker K. Validating the Fatigue Scale for Motor and Cognitive Function (FSMC) in chronic stroke. NeuroRehabilitation 2024; 54:275-285. [PMID: 38143385 DOI: 10.3233/nre-230189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
BACKGROUND Post-stroke fatigue can manifest as both physical and mental fatigue. The Fatigue Scale for Motor and Cognitive Functions (FSMC) evaluates fatigue on the motor and cognitive domains separately, however, the psychometric properties of this measure in stroke have not been reported. OBJECTIVE To determine the internal consistency, test-retest reliability, and concurrent validity of the FSMC in chronic stroke. METHODS Thirty-four participants with chronic stroke (55.26±12.27 years of age; 59.53±89.21 months post-stroke) completed the FSMC on two separate visits. Internal consistency and reliability of the FSMC were examined using Cronbach's alpha and two-way mixed effects intraclass correlation coefficients (ICC), respectively. Correlation between the FSMC and the Fatigue Severity Scale and Visual Analog Scale-Fatigue was used to assess concurrent validity. RESULTS Internal consistency was excellent (Cronbach's alpha > 0.9) and reliability was moderate to good (ICC = 0.72-0.81) for all FSMC scores. The FSMC demonstrated moderate to good concurrent validity with the Fatigue Severity Scale (ρ= 0.66-0.72) but only fair concurrent validity with the Visual Analog Scale-Fatigue (ρ= 0.37-0.44). CONCLUSION The FSMC is a valid and reliable measure of post-stroke fatigue and may be a useful tool to examine physical fatigue and cognitive fatigue in chronic stroke.
Collapse
Affiliation(s)
- Hui-Ting Goh
- School of Physical Therapy, Texas Woman's University, Dallas, TX, USA
| | - Jill Stewart
- Department of Exercise Science, Physical Therapy Program, University of South Carolina, Columbus, SC, USA
| | - Kevin Becker
- Department of Kinesiology, Recreation, and Sport Studies, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
8
|
Wylie GR, Genova HM, Yao B, Chiaravalloti N, Román CAF, Sandroff BM, DeLuca J. Evaluating the effects of brain injury, disease and tasks on cognitive fatigue. Sci Rep 2023; 13:20166. [PMID: 37978235 PMCID: PMC10656417 DOI: 10.1038/s41598-023-46918-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
Because cognitive fatigue (CF) is common and debilitating following brain injury or disease we investigated the relationships among CF, behavioral performance, and cerebral activation within and across populations by combining the data from two cross-sectional studies. Individuals with multiple sclerosis (MS) were included to model CF resulting from neurological disease; individuals who had sustained a traumatic brain injury (TBI) were included to model CF resulting from neurological insult; both groups were compared with a control group (Controls). CF was induced while neuroimaging data was acquired using two different tasks. CF significantly differed between the groups, with the clinical groups reporting more CF than Controls-a difference that was statistically significant for the TBI group and trended towards significance for the MS group. The accrual of CF did not differ across the three groups; and CF ratings were consistent across tasks. Increasing CF was associated with longer response time for all groups. The brain activation in the caudate nucleus and the thalamus was consistently correlated with CF in all three groups, while more dorsally in the caudate, activation differed across the groups. These results suggest the caudate and thalamus to be central to CF while more dorsal aspects of the caudate may be sensitive to damage associated with particular types of insult.
Collapse
Affiliation(s)
- Glenn R Wylie
- Rocco Ortenzio Neuroimaging Center, Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ, 07052, USA.
- Department of Physical Medicine and Rehabilitation, Rutgers University, New Jersey Medical School, Newark, USA.
- Department of Veterans' Affairs, The War Related Illness and Injury Center, East Orange Campus, East Orange, NJ, 07018, USA.
| | - Helen M Genova
- Rocco Ortenzio Neuroimaging Center, Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ, 07052, USA
- Department of Physical Medicine and Rehabilitation, Rutgers University, New Jersey Medical School, Newark, USA
| | - Bing Yao
- Rocco Ortenzio Neuroimaging Center, Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ, 07052, USA
- Department of Physical Medicine and Rehabilitation, Rutgers University, New Jersey Medical School, Newark, USA
| | - Nancy Chiaravalloti
- Rocco Ortenzio Neuroimaging Center, Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ, 07052, USA
- Department of Physical Medicine and Rehabilitation, Rutgers University, New Jersey Medical School, Newark, USA
| | - Cristina A F Román
- Rocco Ortenzio Neuroimaging Center, Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ, 07052, USA
| | - Brian M Sandroff
- Rocco Ortenzio Neuroimaging Center, Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ, 07052, USA
- Department of Physical Medicine and Rehabilitation, Rutgers University, New Jersey Medical School, Newark, USA
| | - John DeLuca
- Rocco Ortenzio Neuroimaging Center, Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ, 07052, USA
- Department of Physical Medicine and Rehabilitation, Rutgers University, New Jersey Medical School, Newark, USA
- Department of Neurology, Rutgers University, New Jersey Medical School, Newark, NJ, 07101, USA
| |
Collapse
|
9
|
Chen R, Wang R, Fei J, Huang L, Wang J. Quantitative identification of daily mental fatigue levels based on multimodal parameters. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:095106. [PMID: 37695118 DOI: 10.1063/5.0162312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/23/2023] [Indexed: 09/12/2023]
Abstract
Fatigue has become an important health problem in modern life; excessive mental fatigue may induce various cardiovascular diseases. Most current mental fatigue recognition is based only on specific scenarios and tasks. To improve the accuracy of daily mental fatigue recognition, this paper proposes a multimodal fatigue grading method that combines three signals of electrocardiogram (ECG), photoplethysmography (PPG), and blood pressure (BP). We collected ECG, PPG, and BP from 22 subjects during three time periods: morning, afternoon, and evening. Based on these three signals, 56 characteristic parameters were extracted from multiple dimensions, which comprehensively covered the physiological information in different fatigue states. The extracted parameters were compared with the feature optimization ability of recursive feature elimination (RFE), maximal information coefficient, and joint mutual information, and the optimum feature matrix selected was input into random forest (RF) for a three-level classification. The results showed that the accuracy of classification of fatigue using only one physiological feature was 88.88%, 92.72% using a combination of two physiological features, and 94.87% using all three physiological features. This study indicates that the fusion of multiple physiological traits contains more comprehensive information and better identifies the level of mental fatigue, and the RFE-RF model performs best in fatigue identification. The BP variability index is useful for fatigue classification.
Collapse
Affiliation(s)
- Ruijuan Chen
- School of Life Sciences, TianGong University, Tianjin 300387, China
| | - Rui Wang
- School of Electrical and Information Engineering, TianGong University, Tianjin 300387, China
| | - Jieying Fei
- School of Electrical and Information Engineering, TianGong University, Tianjin 300387, China
| | - Lengjie Huang
- School of Electrical and Information Engineering, TianGong University, Tianjin 300387, China
| | - Jinhai Wang
- School of Life Sciences, TianGong University, Tianjin 300387, China
| |
Collapse
|
10
|
Alsharif ZI, Mansuri FA, Alamri YA, Alkalbi NA, Almutairi MM, Abu Alkhair AF. The Role of Exercise on Fatigue Among Patients With Multiple Sclerosis in the King Fahad Hospital, Madinah, Saudi Arabia: An Analytical Cross-Sectional Study. Cureus 2023; 15:e42061. [PMID: 37601996 PMCID: PMC10433400 DOI: 10.7759/cureus.42061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Background Multiple sclerosis (MS) is a chronic autoimmune disease caused by multiple factors. It can lead to many physical and mental symptoms. Fatigue is one of the most commonly mentioned complaints among MS patients that can affect their quality of life. Physical activity has many benefits for the physical and mental health of patients with MS. Aim To assess the role of exercise on fatigue among patients with multiple sclerosis and identify the relationship between depression, sleep quality, sociodemographic variables, and fatigue. Methods This is an analytical cross-sectional study based on a sample size of 235 patients recruited from the MS clinic at King Fahad Hospital (KFH) in Madinah. The outcome of the study was fatigue among MS patients. Data were collected through telephone calls from February to May 2022 using a structured questionnaire and scales, such as the Godin Leisure-Time Exercise Questionnaire (GLTEQ), Modified Fatigue Impact Scale (MFIS), Patient Health Questionnaire (PHQ2), and Pittsburgh Sleep Quality Index (PSQI). Data were analyzed through SPSS version 20 (IBM Corp., Armonk, NY, USA). The correlation coefficient (r), Chi-square tests, and simple and multiple logistic regression were used as found appropriate. Results Out of the total samples, 37.4% were male and 62.6% were female. The median age of patients was 36 years. The prevalence of fatigue was 37% among patients, with a reported median fatigue score of 26. It was found that 63% of the patients were physically inactive; 32.2% were overweight, 14.2% were obese; 63.8% of patients had poor sleep quality. The fatigue score was negatively correlated with the GLTEQ score, but the results were not significant (r=-0.066; P-value (level of significance)=0.335). Nonetheless, a moderately significant correlation was observed between the MFIS and PSQI and MFIS and PHQ2 (r=0.505, P=<0.001 and r=0.520, P=<0.001, respectively). The Chi-square test showed a significant association between fatigue and progressive types of MS, the primary progressive MS (PPMS), secondary progressive MS (SPMS), and relapsing-remitting MS (RRMS) (odds ratio (OR)=4.4; 95% confidence interval (CI): 2.1-8.9), P=<0.001). Depressed patients were 9.7 times more likely to develop fatigue compared to non-depressed patients (P=<0.001). Those with poor sleep quality were 4.6 times more likely to develop fatigue compared to those with good sleep quality (P=<0.001). Fifty-six percent of fatigue among MS patients were predicted by low income, progressive types, unemployment, obesity, depression, and poor sleep quality. Conclusion Fatigue is a major complaint among MS patients. Most of the patients were found to be physically inactive, depressed, and have poor sleep quality. This study found an association between physical inactivity and fatigue, but the results were not significant. There was a significant association between sociodemographic factors like low income and unemployment, poor sleep quality, obesity, progressive types of MS, depression, and fatigue. Encouraging exercise practice and implementing a regular exercise program are needed, along with weight management plans. Further studies and psychological support meetings are required, with the importance of a holistic approach to patient care.
Collapse
Affiliation(s)
- Zahrah I Alsharif
- Department of Preventive Medicine, Saudi Board of Preventive Medicine, Ministry of Health, Madinah, SAU
| | - Farah A Mansuri
- Department of Family and Community Medicine, Taibah University, Madinah, SAU
| | - Yasser A Alamri
- Department of Neurology, King Salman Bin Abdulaziz Medical City, Madinah, SAU
| | - Nouf A Alkalbi
- Department of Preventive Medicine, Saudi Board of Preventive Medicine, Ministry of Health, Madinah, SAU
| | - Maha M Almutairi
- Department of Preventive Medicine, Saudi Board of Preventive Medicine, Ministry of Health, Madinah, SAU
| | - Ahmed F Abu Alkhair
- Department of Preventive Medicine, Saudi Board of Preventive Medicine, Ministry of Health, Madinah, SAU
| |
Collapse
|
11
|
Salihu AT, Usman JS, Hill KD, Zoghi M, Jaberzadeh S. Mental fatigue does not affect static balance under both single and dual task conditions in young adults. Exp Brain Res 2023:10.1007/s00221-023-06643-4. [PMID: 37219602 DOI: 10.1007/s00221-023-06643-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
The ability to control balance and prevent falls while carrying out daily life activities may require a predominantly controlled (cognitive) or automatic processing depending on the balance challenge, age, or other factors. Consequently, this process may be affected by mental fatigue which has been shown to impair cognitive abilities. Controlling static balance in young adults is a relatively easy task that may proceed automatically with minimal cognitive input making it insusceptible to mental fatigue. To investigate this hypothesis, static single and dual task (while concurrently counting backward by seven) balance was assessed in 60 young adults (25.2 ± 2.4 years) before and after 45 min of Stroop task (mental fatigue condition) and watching documentary (control), presented in a randomized counterbalanced order on separate days. Moreover, because mental fatigue can occur due to task underload or overload, participants carried out two different Stroop tasks (i.e., all congruent, and mainly incongruent trials) on separate days in the mental fatigue condition. Results of the study revealed a significantly higher feeling of mental fatigue after the mental fatigue conditions compared to control (p < 0.001). Similarly, the performance on congruent Stroop trials decreases with time indicating objective mental fatigue (p < 0.01). However, there was no difference in balance or concurrent task performance under both single and dual task assessments between the three conditions (p > 0.05) indicating lack of effect of mental fatigue on static balance in this population. Therefore, future studies investigating this phenomenon in occupational or sport settings in similar population should consider using more challenging balance tasks.
Collapse
Affiliation(s)
- Abubakar Tijjani Salihu
- Monash Neuromodulation Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia.
| | - Jibrin Sammani Usman
- Department of Physiotherapy, Faculty of Allied Health Sciences, Bayero University, Kano, Nigeria
| | - Keith D Hill
- Rehabilitation, Ageing and Independent Living (RAIL) Research Centre, School of Primary and Allied Health Care, Monash University, Frankston, Australia
| | - Maryam Zoghi
- Discipline of Physiotherapy, Institute of Health and Wellbeing, Federation University Australia, Gippsland, Australia
| | - Shapour Jaberzadeh
- Monash Neuromodulation Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| |
Collapse
|
12
|
Slowing processing speed is associated with cognitive fatigue in newly diagnosed multiple sclerosis patients. J Int Neuropsychol Soc 2023; 29:283-289. [PMID: 35465860 DOI: 10.1017/s1355617722000157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To further investigate objective measures of cognitive fatigue (CF), defined as the inability to sustain performance over time, in newly diagnosed multiple sclerosis (MS) patients, by conducting a performance analysis on the Paced Auditory Serial Addition Test (PASAT) based on the type of errors (omissions vs. incorrect responses) committed. METHOD Sixty-two newly diagnosed patients with MS (pwMS) and 41 healthy controls (HC) completed the PASAT. Analysis of the change in performance during the test was performed by comparing the number of correct responses, incorrect responses, and omissions in the 1st versus the 3rd tertile of the PASAT. RESULTS A significant decline in accuracy over time was observed to be related to an increment in the number of omissions, significantly more pronounced in pwMS than in HC. No change in the number of incorrect responses throughout the PASAT was observed for either group. CONCLUSIONS CF can be detected even in newly diagnosed pwMS and might objectively manifest as a progressive increase in omissions during a sustained highly demanding task (i.e., PASAT). This pattern may reflect slowed processing speed and increased fatigue in pwMS. Focusing on omissions on the PASAT instead of correct responses only may improve its specificity as an objective measure of CF.
Collapse
|
13
|
Preziosa P, Rocca MA, Pagani E, Valsasina P, Amato MP, Brichetto G, Bruschi N, Chataway J, Chiaravalloti ND, Cutter G, Dalgas U, DeLuca J, Farrell R, Feys P, Freeman J, Inglese M, Meani A, Meza C, Motl RW, Salter A, Sandroff BM, Feinstein A, Filippi M. Structural and functional magnetic resonance imaging correlates of fatigue and dual-task performance in progressive multiple sclerosis. J Neurol 2023; 270:1543-1563. [PMID: 36436069 DOI: 10.1007/s00415-022-11486-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Frontal cortico-subcortical dysfunction may contribute to fatigue and dual-task impairment of walking and cognition in progressive multiple sclerosis (PMS). PURPOSE To explore the associations among fatigue, dual-task performance and structural and functional abnormalities of frontal cortico-subcortical network in PMS. METHODS Brain 3 T structural and functional MRI sequences, Modified Fatigue Impact Scale (MFIS), dual-task motor and cognitive performances were obtained from 57 PMS patients and 10 healthy controls (HC). The associations of thalamic, caudate nucleus and dorsolateral prefrontal cortex (DLPFC) atrophy, microstructural abnormalities of their connections and their resting state effective connectivity (RS-EC) with fatigue and dual-task performance were investigated using random forest. RESULTS Thirty-seven PMS patients were fatigued (F) (MFIS ≥ 38). Compared to HC, non-fatigued (nF) and F-PMS patients had significantly worse dual-task performance (p ≤ 0.002). Predictors of fatigue (out-of-bag [OOB]-accuracy = 0.754) and its severity (OOB-R2 = 0.247) were higher Expanded Disability Status scale (EDSS) score, lower RS-EC from left-caudate nucleus to left-DLPFC, lower fractional anisotropy between left-caudate nucleus and left-thalamus, higher mean diffusivity between right-caudate nucleus and right-thalamus, and longer disease duration. Microstructural abnormalities in connections among thalami, caudate nuclei and DLPFC, mainly left-lateralized in nF-PMS and more bilateral in F-PMS, higher RS-EC from left-DLPFC to right-DLPFC in nF-PMS and lower RS-EC from left-caudate nucleus to left-DLPFC in F-PMS, higher EDSS score, higher WM lesion volume, and lower cortical volume predicted worse dual-task performances (OOB-R2 from 0.426 to 0.530). CONCLUSIONS In PMS, structural and functional frontal cortico-subcortical abnormalities contribute to fatigue and worse dual-task performance, with different patterns according to the presence of fatigue.
Collapse
Affiliation(s)
- Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Valsasina
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Pia Amato
- Department NEUROFARBA, Section Neurosciences, University of Florence, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Giampaolo Brichetto
- Scientific Research Area, Italian Multiple Sclerosis Foundation (FISM), Genoa, Italy.,AISM Rehabilitation Service, Italian Multiple Sclerosis Society, Genoa, Italy
| | - Nicolò Bruschi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Jeremy Chataway
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,National Institute for Health Research, Biomedical Research Centre, University College London Hospitals, London, UK
| | - Nancy D Chiaravalloti
- Kessler Foundation, West Orange, NJ, USA.,Department of Physical Medicine and Rehabilitation, Rutgers NJ Medical School, Newark, NJ, USA
| | - Gary Cutter
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ulrik Dalgas
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - John DeLuca
- Kessler Foundation, West Orange, NJ, USA.,Department of Physical Medicine and Rehabilitation, Rutgers NJ Medical School, Newark, NJ, USA
| | - Rachel Farrell
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,National Institute for Health Research, Biomedical Research Centre, University College London Hospitals, London, UK
| | - Peter Feys
- REVAL, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium
| | - Jennifer Freeman
- Faculty of Health, School of Health Professions, University of Plymouth, Plymouth, UK
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Alessandro Meani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cecilia Meza
- Department of Psychiatry, University of Toronto and Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Robert W Motl
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, USA
| | - Amber Salter
- Department of Neurology, Section on Statistical Planning and Analysis, UT Southwestern Medical Center, Dallas, TX, USA
| | - Brian M Sandroff
- Kessler Foundation, West Orange, NJ, USA.,Department of Physical Medicine and Rehabilitation, Rutgers NJ Medical School, Newark, NJ, USA
| | - Anthony Feinstein
- Department of Psychiatry, University of Toronto and Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy. .,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy. .,Vita-Salute San Raffaele University, Milan, Italy.
| | | |
Collapse
|
14
|
Cagna CJ, Ceceli AO, Sandry J, Bhanji JP, Tricomi E, Dobryakova E. Altered functional connectivity during performance feedback processing in multiple sclerosis. Neuroimage Clin 2023; 37:103287. [PMID: 36516729 PMCID: PMC9755233 DOI: 10.1016/j.nicl.2022.103287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Effective learning from performance feedback is vital for adaptive behavior regulation necessary for successful cognitive performance. Yet, how this learning operates in clinical groups that experience cognitive dysfunction is not well understood. Multiple sclerosis (MS) is an autoimmune, degenerative disease of the central nervous system characterized by physical and cognitive dysfunction. A highly prevalent impairment in MS is cognitive fatigue (CF). CF is associated with altered functioning within cortico-striatal regions that also facilitate feedback-based learning in neurotypical (NT) individuals. Despite this cortico-striatal overlap, research about feedback-based learning in MS, its associated neural underpinnings, and its sensitivity to CF, are all lacking. The present study investigated feedback-based learning ability in MS, as well as associated cortico-striatal function and connectivity. MS and NT participants completed a functional magnetic resonance imaging (fMRI) paired-word association task during which they received trial-by-trial monetary, non-monetary, and uninformative performance feedback. Despite reporting greater CF throughout the task, MS participants displayed comparable task performance to NTs, suggesting preserved feedback-based learning ability in the MS group. Both groups recruited the ventral striatum (VS), caudate nucleus, and ventromedial prefrontal cortex in response to the receipt of performance feedback, suggesting that people with MS also recruit cortico-striatal regions during feedback-based learning. However, compared to NT participants, MS participants also displayed stronger functional connectivity between the VS and task-relevant regions, including the left angular gyrus and right superior temporal gyrus, in response to feedback receipt. Results indicate that CF may not interfere with feedback-based learning in MS. Nonetheless, people with MS may recruit alternative connections with the striatum to assist with this form of learning. These findings have implications for cognitive rehabilitation treatments that incorporate performance feedback to remediate cognitive dysfunction in clinical populations.
Collapse
Affiliation(s)
- Christopher J Cagna
- Department of Psychology, Rutgers University - Newark, 101 Warren Street, Newark, NJ 07102, United States.
| | - Ahmet O Ceceli
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, United States.
| | - Joshua Sandry
- Department of Psychology, Montclair State University, 1 Normal Avenue, Montclair, NJ 07043, United States.
| | - Jamil P Bhanji
- Department of Psychology, Rutgers University - Newark, 101 Warren Street, Newark, NJ 07102, United States.
| | - Elizabeth Tricomi
- Department of Psychology, Rutgers University - Newark, 101 Warren Street, Newark, NJ 07102, United States.
| | - Ekaterina Dobryakova
- Center for Traumatic Brain Injury Research, Kessler Foundation, 120 Eagle Rock Avenue, East Hanover, NJ 07936, United States.
| |
Collapse
|
15
|
Salihu AT, Hill KD, Jaberzadeh S. Neural mechanisms underlying state mental fatigue: a systematic review and activation likelihood estimation meta-analysis. Rev Neurosci 2022; 33:889-917. [PMID: 35700454 DOI: 10.1515/revneuro-2022-0023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/26/2022] [Indexed: 12/14/2022]
Abstract
Sustained performance of cognitive tasks could lead to the development of state mental fatigue characterized by subjective sensation of mental weariness and decrease in cognitive performance. In addition to the occupational hazards associated with mental fatigue, it can also affect physical performance reducing endurance, balance, and sport-specific technical skills. Similarly, mental fatigue is a common symptom in certain chronic health conditions such as multiple sclerosis affecting quality of life of the patients. Despite its widely acknowledged negative impact, the neural mechanisms underlining this phenomenon are still not fully understood. We conducted a systematic review and activation likelihood estimation (ALE) meta-analysis of functional neuroimaging studies investigating the effect of mental fatigue due to time-on-task (TOT) on brain activity to elucidate the possible underlying mechanisms. Studies were included if they examined change in brain activity induced by experimental mental fatigue (TOT effect) or investigated the relationship between brain activity and subjective mental fatigue due to TOT. A total of 33 studies met the review's inclusion criteria, 13 of which were included in meta-analyses. Results of the meta-analyses revealed a decrease in activity with TOT in brain areas that constitute the cognitive control network. Additionally, an increased activity with TOT, as well as negative relationship with subjective mental fatigue was found in parts of the default mode network of the brain. The changes in cognitive control and the default mode networks of the brain due to state mental fatigue observed in this study were discussed in relation to the existing theories of mental fatigue.
Collapse
Affiliation(s)
- Abubakar Tijjani Salihu
- Monash Neuromodulation Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Keith D Hill
- Rehabilitation, Ageing and Independent Living (RAIL) Research Centre, School of Primary and Allied Health Care, Monash University, Frankston, Australia
| | - Shapour Jaberzadeh
- Monash Neuromodulation Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| |
Collapse
|
16
|
Wang X, Lu H, He Y, Sun K, Feng T, Zhu X. Listening to 15 Hz Binaural Beats Enhances the Connectivity of Functional Brain Networks in the Mental Fatigue State—An EEG Study. Brain Sci 2022; 12:brainsci12091161. [PMID: 36138896 PMCID: PMC9496831 DOI: 10.3390/brainsci12091161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/12/2022] [Accepted: 08/26/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction: It is clear that mental fatigue can have many negative impacts on individuals, such as impairing cognitive function or affecting performance. The aim of this study was to investigate the role of sound interventions in combating mental fatigue. Method: The subjects were assessed on various scales, a psychomotor vigilance task (PVT) task, and a 3 min resting-state electroencephalogram (EEG), followed by a 20 min mental fatigue–inducing task (Time Load Dual Back, TloadDback), during which subjects in different condition groups listened to either 15 Hz binaural beats, 40 Hz binaural beats, relaxing music, or a 240 Hz pure tone. After the mental fatigue–inducing task, subjects were again assessed on various scales, a PVT task, and a 3 min resting-state EEG. Results: After the fatigue-inducing task, there was no significant difference between the four groups on the scales or the PVT task performance. In TloadDback, the accuracy rate of the 40 Hz binaural beats group and the relaxing music group decreased in the middle stage of the task, while the 15 Hz binaural beats group and the 240 Hz pure tone group remained unchanged in all stages of the task. The EEG results showed that after fatigue inducement, the average path length of the 15 Hz binaural beats group decreased, and local efficiency showed an increasing tendency, indicating enhanced brain network connectivity. Meanwhile, the 240 Hz pure tone group showed enhanced functional connectivity, suggesting a state of mental fatigue in the group. Conclusions: The results of this study show that listening to 15 Hz binaural beats is a proven intervention for mental fatigue that can contribute to maintaining working memory function, enhancing brain topological structure, and alleviating the decline in brain function that occurs in a mentally fatigued state. As such, these results are of great scientific and practical value.
Collapse
|
17
|
Patejdl R, Zettl UK. The pathophysiology of motor fatigue and fatigability in multiple sclerosis. Front Neurol 2022; 13:891415. [PMID: 35968278 PMCID: PMC9363784 DOI: 10.3389/fneur.2022.891415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple Sclerosis (MS) is a heterogeneous immune mediated disease of the central nervous system (CNS). Fatigue is one of the most common and disabling symptom of MS. It interferes with daily activities on the level of cognition and motor endurance. Motor fatigue can either result from lesions in cortical networks or motor pathways (“primary fatigue”) or it may be a consequence of detraining with subsequent adaptions of muscle and autonomic function. Programmed exercise interventions are used frequently to increase physical fitness in MS-patients. Studies investigating the effects of training on aerobic capacity, objective endurance and perceived fatigability have yielded heterogenous results, most likely due to the heterogeneity of interventions and patients, but probably also due to the non-uniform pathophysiology of fatigability among MS-patients. The aim of this review is to summarize the current knowledge on the pathophysiology of motor fatigability with special reference to the basic exercise physiology that underlies our understanding of both pathogenesis and treatment interventions.
Collapse
Affiliation(s)
- Robert Patejdl
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Rostock, Germany
- *Correspondence: Robert Patejdl
| | - Uwe K. Zettl
- Department of Neurology, Clinical Neuroimmunology Section, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
18
|
Román CAF, Wylie GR, DeLuca J, Yao B. Associations of White Matter and Basal Ganglia Microstructure to Cognitive Fatigue Rate in Multiple Sclerosis. Front Neurol 2022; 13:911012. [PMID: 35860487 PMCID: PMC9289668 DOI: 10.3389/fneur.2022.911012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Fatigue, including cognitive fatigue, is one of the most debilitating symptoms reported by persons with multiple sclerosis (pwMS). Cognitive fatigue has been associated with disruptions in striato-thalamo-cortical and frontal networks, but what remains unknown is how the rate at which pwMS become fatigued over time relates to microstructural properties within the brain. The current study aims to fill this gap in knowledge by investigating how cognitive fatigue rate relates to white matter and basal ganglia microstructure in a sample of 62 persons with relapsing-remitting MS. Participants rated their level of cognitive fatigue at baseline and after each block (x7) of a within-scanner cognitive fatigue inducing task. The slope of the regression line of all eight fatigue ratings was designated as “cognitive fatigue rate.” Diffusional kurtosis imaging maps were processed using tract-based spatial statistics and regional analyses (i.e., basal ganglia) and associated with cognitive fatigue rate. Results showed cognitive fatigue rate to be related to several white matter tracts, with many having been associated with basal ganglia connectivity or the previously proposed “fatigue network.” In addition, cognitive fatigue rate was associated with the microstructure within the putamen, though this did not survive multiple comparisons correction. Our approach of using cognitive fatigue rate, rather than trait fatigue, brings us closer to understanding how brain pathology may be impacting the experience of fatigue in the moment, which is crucial for developing interventions. These results hold promise for continuing to unpack the complex construct that is cognitive fatigue.
Collapse
Affiliation(s)
- Cristina A. F. Román
- Rocco Ortenzio Neuroimaging Center, Kessler Foundation, West Orange, NJ, United States
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, New Jersey, NJ, United States
| | - Glenn R. Wylie
- Rocco Ortenzio Neuroimaging Center, Kessler Foundation, West Orange, NJ, United States
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, New Jersey, NJ, United States
- Department of Veterans Affairs, The War Related Illness and Injury Center, New Jersey Healthcare System, East Orange, NJ, United States
| | - John DeLuca
- Rocco Ortenzio Neuroimaging Center, Kessler Foundation, West Orange, NJ, United States
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, New Jersey, NJ, United States
- Department of Neurology, Rutgers New Jersey Medical School, Newark, NJ, United States
- *Correspondence: John DeLuca
| | - Bing Yao
- Rocco Ortenzio Neuroimaging Center, Kessler Foundation, West Orange, NJ, United States
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, New Jersey, NJ, United States
| |
Collapse
|
19
|
Wylie GR, Pra Sisto AJ, Genova HM, DeLuca J. Fatigue Across the Lifespan in Men and Women: State vs. Trait. Front Hum Neurosci 2022; 16:790006. [PMID: 35615746 PMCID: PMC9124897 DOI: 10.3389/fnhum.2022.790006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Fatigue is commonly thought to worsen with age, but the literature is mixed: some studies show that older individuals experience more fatigue, others report the reverse. Some inconsistencies in the literature may be related to gender differences in fatigue while others may be due to differences in the instruments used to study fatigue, since the correlation between state (in the moment) and trait (over an extended period of time) measures of fatigue has been shown to be weak. The purpose of the current study was to examine both state and trait fatigue across age and gender using neuroimaging and self-report data. Methods We investigated the effects of age and gender in 43 healthy individuals on self-reported fatigue using the Modified Fatigue Impact Scale (MFIS), a measure of trait fatigue. We also conducted fMRI scans on these individuals and collected self-reported measures of state fatigue using the visual analog scale of fatigue (VAS-F) during a fatiguing task. Results There was no correlation between age and total MFIS score (trait fatigue) (r = –0.029, p = 0.873), nor was there an effect of gender [F(1,31) < 1]. However, for state fatigue, increasing age was associated with less fatigue [F(1,35) = 9.19, p < 0.01, coefficient = –0.4]. In the neuroimaging data, age interacted with VAS-F in the middle frontal gyrus. In younger individuals (20–32), more activation was associated with less fatigue, for individuals aged 33–48 there was no relationship, and for older individuals (55+) more activation was associated with more fatigue. Gender also interacted with VAS-F in several areas including the orbital, middle, and inferior frontal gyri. For women, more activation was associated with less fatigue while for men, more activation was associated with more fatigue. Conclusion Older individuals reported less fatigue during task performance (state measures). The neuroimaging data indicate that the role of middle frontal areas change across age: younger individuals may use these areas to combat fatigue, but this is not the case with older individuals. Moreover, these results may suggest greater resilience in females than males when faced with a fatiguing task.
Collapse
Affiliation(s)
- Glenn R. Wylie
- Kessler Foundation, Rocco Ortenzio Neuroimaging Center, West Orange, NJ, United States
- Department of Physical Medicine and Rehabilitation, New Jersey Medical School, Rutgers University, Newark, NJ, United States
- Department of Veterans’ Affairs, War Related Illness and Injury Study Center, New Jersey Healthcare System, East Orange, NJ, United States
- *Correspondence: Glenn R. Wylie,
| | - Amanda J. Pra Sisto
- Kessler Foundation, Rocco Ortenzio Neuroimaging Center, West Orange, NJ, United States
- Department of Physical Medicine and Rehabilitation, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Helen M. Genova
- Kessler Foundation, Rocco Ortenzio Neuroimaging Center, West Orange, NJ, United States
- Department of Physical Medicine and Rehabilitation, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - John DeLuca
- Kessler Foundation, Rocco Ortenzio Neuroimaging Center, West Orange, NJ, United States
- Department of Physical Medicine and Rehabilitation, New Jersey Medical School, Rutgers University, Newark, NJ, United States
- Department of Neurology, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| |
Collapse
|
20
|
Adibi I, Sanayei M, Tabibian F, Ramezani N, Pourmohammadi A, Azimzadeh K. Multiple sclerosis-related fatigue lacks a unified definition: A narrative review. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2022; 27:24. [PMID: 35419061 PMCID: PMC8995308 DOI: 10.4103/jrms.jrms_1401_20] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 09/19/2021] [Accepted: 11/01/2021] [Indexed: 11/05/2022]
Abstract
Fatigue is the most common symptom in multiple sclerosis (MS). Although MS-related fatigue (MS-F) strongly affects quality of life and social performance of patients, there is currently a lack of knowledge about its pathophysiology, which in turns leads to poor objective diagnosis and management. Recent studies have attempted to explain potential etiologies as well as treatments for MS-F. However, it seems that without a consensus on its nature, these data could not provide a route to a successful approach. In this Article, we review definitions, epidemiology, risk factors and correlated comorbidities, pathophysiology, assessment methods, neuroimaging findings, and pharmacological and nonpharmacological treatments of MS-F. Further studies are warranted to define fatigue in MS patients more accurately, which could result in precise diagnosis and management.
Collapse
Affiliation(s)
- Iman Adibi
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Sanayei
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Farinaz Tabibian
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Neda Ramezani
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Pourmohammadi
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kiarash Azimzadeh
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
21
|
Román CAF, DeLuca J, Yao B, Genova HM, Wylie GR. Signal Detection Theory as a Novel Tool to Understand Cognitive Fatigue in Individuals With Multiple Sclerosis. Front Behav Neurosci 2022; 16:828566. [PMID: 35368296 PMCID: PMC8966482 DOI: 10.3389/fnbeh.2022.828566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple Sclerosis (MS) affects 2.8 million persons worldwide. One of the most persistent, pervasive, and debilitating symptoms of MS is cognitive fatigue. While this has been known for over a century, cognitive fatigue has been difficult to study because patients' subjective (self-reported) cognitive fatigue has consistently failed to correlate with more objective measures, such as reaction time (RT) and accuracy. Here, we investigated whether more nuanced metrics of performance, specifically the metrics of Signal Detection Theory (SDT), would show a relationship to cognitive fatigue even if RT and accuracy did not. We also measured brain activation to see whether SDT metrics were related to activation in brain areas that have been shown to be sensitive to cognitive fatigue. Fifty participants (30 MS, 20 controls) took part in this study and cognitive fatigue was induced using four blocks of a demanding working memory paradigm. Participants reported their fatigue before and after each block, and their performance was used to calculate SDT metrics (Perceptual Certainty and Criterion) and RT and accuracy. The results showed that the SDT metric of Criterion (i.e., response bias) was positively correlated with subjective cognitive fatigue. Moreover, the activation in brain areas previously shown to be related to cognitive fatigue, such as the striatum, was also related to Criterion. These results suggest that the metrics of SDT may represent a novel tool with which to study cognitive fatigue in MS and other neurological populations. These results hold promise for characterizing cognitive fatigue in MS and developing effective interventions in the future.
Collapse
Affiliation(s)
- Cristina A. F. Román
- Rocco Ortenzio Neuroimaging Center, Kessler Foundation, West Orange, NJ, United States
- Department of Physical Medicine and Rehabilitation, Rutgers University, Newark, NJ, United States
| | - John DeLuca
- Rocco Ortenzio Neuroimaging Center, Kessler Foundation, West Orange, NJ, United States
- Department of Physical Medicine and Rehabilitation, Rutgers University, Newark, NJ, United States
- Department of Neurology, New Jersey Medical School, Newark, NJ, United States
| | - Bing Yao
- Rocco Ortenzio Neuroimaging Center, Kessler Foundation, West Orange, NJ, United States
- Department of Physical Medicine and Rehabilitation, Rutgers University, Newark, NJ, United States
| | - Helen M. Genova
- Rocco Ortenzio Neuroimaging Center, Kessler Foundation, West Orange, NJ, United States
- Department of Physical Medicine and Rehabilitation, Rutgers University, Newark, NJ, United States
| | - Glenn R. Wylie
- Rocco Ortenzio Neuroimaging Center, Kessler Foundation, West Orange, NJ, United States
- Department of Physical Medicine and Rehabilitation, Rutgers University, Newark, NJ, United States
- Department of Veterans Affairs, The War Related Illness and Injury Center, New Jersey Healthcare System, East Orange, NJ, United States
| |
Collapse
|
22
|
Plow M, Gunzler DD. Disentangling self-reported fatigue, depression, and cognitive impairment in people with multiple sclerosis. Mult Scler Relat Disord 2022; 61:103736. [PMID: 35405560 DOI: 10.1016/j.msard.2022.103736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/15/2022] [Accepted: 03/10/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Fatigue is a common problem among people with multiple sclerosis (MS) and can have a negative effect on mental, physical, and social function. Self-reported measures of MS fatigue are often operationalized as a multi-dimensional symptom. However, questions remain about how best to account for the multi-dimensional aspects of self-reported fatigue and whether these aspects are distinct entities. Thus, the purpose of this study was to explore the overlap and distinctions between self-reported measures of the severity and impact of fatigue, between mental and physical fatigue, and between mental fatigue, depressive symptoms, and cognitive impairment. METHODS An observational study was conducted with 289 participants with MS . The questionnaires were the Unidimensional Fatigue Impact Scale (UFIS), the Chalder Fatigue Scale (CFS), the Fatigue Scale for Motor and Cognitive Functions (FSMC), the Multiple Sclerosis Neuropsychological Screening Questionnaire (MSNSQ), and the Quality of Life in Neurological Disorders short form for depression (Neuro-QoL). Spearman's correlation coefficient was used to examine the bivariate correlations between composite and subscale scores. Exploratory structural equation modeling (ESEM) was used to determine the factor structure under a pre-specified number of factors to retain in the modeling of multiple items across questionnaires and examine model fit. Subsequently for poor fitting models in an iterative procedure to determine a better fitting multidimensional model, we posited a bifactor confirmatory factor analysis model. RESULTS The bivariate correlation analysis revealed that subscales from the same questionnaire measuring different aspects of fatigue had the highest correlations (r = 0.61-0.68), subscales from different questionnaires measuring the same aspect of fatigue had the next highest correlations (r = 0.43-0.60), and subscales from different questionnaires measuring different aspects of fatigue had the lowest correlations (r = 0.34-0.40). Bifactor models with a general fatigue factor and subdomains pertaining to impact, severity, and mental and physical fatigue had relatively good model fits compared to models omitting the subdomains. However, an ESEM model using subscales from the CFS and FSMC fit poorly and did not adequately identify separate factors for mental and physical fatigue. An ESEM model with separate factors for self-reported mental fatigue, depressive symptoms, and cognitive impairment was a good fit. CONCLUSIONS The working study hypothesis that fatigue constructs would be moderately correlated yet distinct entities was generally supported by the results of the study. However, we found that our hypothesized separation into a latent dimension existed only when the items or subscales came from the same questionnaire, in which case their level of specificity in terms of target, action, context, and time elements for measuring fatigue were consistent. The implications for the principle of compatibility in measuring self-reported MS fatigue are discussed.
Collapse
Affiliation(s)
- Matthew Plow
- Frances Payne Bolton School of Nursing, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, United States.
| | - Douglas D Gunzler
- Population and Quantitative Health Sciences, Metrohealth Medical Center, School of Medicine, Case Western Reserve University, 2500 Metrohealth Drive, Cleveland, OH, United States
| |
Collapse
|
23
|
Abstract
OBJECTIVE People with Multiple Sclerosis (PwMS) and healthy controls (HCs) were evaluated on cognitive variability indices and we examined the relationship between fatigue and cognitive variability between these groups. Intraindividual variability (IIV) on a neuropsychological test battery was hypothesized to mediate the group differences expected in fatigue. METHOD Fifty-nine PwMS and 51 HCs completed a psychosocial interview and battery of neuropsychological tests and questionnaires during a 1-day visit. Fatigue in this study was measured with the Fatigue Impact Scale (FIS), a self-report multidimensional measure of fatigue. IIV was operationalized using two different measures, a maximum discrepancy score (MDS) and intraindividual standard deviation (ISD), in two cognitive domains, memory and attention/processing speed. Two mediation analyses with group (PwMS or HCs) as the independent variable, variability composite (memory or attention/processing speed) measures as the mediators, total residual fatigue (after accounting for age) as the outcome, and depression as a covariate were conducted. The Baron and Kenny approach to testing mediation and the PROCESS macro for testing the strength of the indirect effect were used. RESULTS Results of a mediation analysis using 5000 bootstrap samples indicated that IIV in domains of both attention/processing speed and memory significantly mediated the effect of patient status on total residual fatigue. CONCLUSION IIV is an objective performance measure that is related to differences in fatigue impact between PwMS and HCs. PwMS experience more variability across tests of attention/processing speed and memory and this experience of variable performance may increase the impact of fatigue.
Collapse
|
24
|
Rönnbäck L, Johansson B. Long-Lasting Pathological Mental Fatigue After Brain Injury–A Dysfunction in Glutamate Neurotransmission? Front Behav Neurosci 2022; 15:791984. [PMID: 35173592 PMCID: PMC8841553 DOI: 10.3389/fnbeh.2021.791984] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/21/2021] [Indexed: 12/26/2022] Open
Abstract
Long-lasting mental or cognitive fatigue may be a disabling symptom after physically recovered skull trauma, stroke, infection, or inflammation in the central nervous system (CNS). It is difficult to go back to work and participate in familiar social activities, as typically the person is only able to remain mentally active for short periods, and if mentally exhausted, the recovery time will be disproportionally long. Mental fatigue after traumatic brain injury correlates with brain information processing speed. Information processing is energy consuming and requires widespread and specific neural signaling. Glutamate signaling is essential for information processing, including learning and memory. Low levels and the fine-tuning of extracellular glutamate are necessary to maintain a high precision in information processing. The astroglial cells are responsible for the fine-tuning of the glutamate transmission, but this capacity is attenuated by substances or conditions associated with neuro-inflammation in brain pathology. In this paper, we extend our previously presented hypothesis on the cellular mechanisms underlying mental fatigue suggesting a dysfunction in the astroglial support of the glutamate transmission. Changes in other neurotransmitters such as dopamine, serotonin, norepinephrine, GABA, and acetylcholine after brain injury are also taken into consideration.
Collapse
|
25
|
Barrios L, Amon R, Oldrati P, Hilty M, Holz C, Lutterotti A. Cognitive fatigability assessment test (cFAST): Development of a new instrument to assess cognitive fatigability and pilot study on its association to perceived fatigue in multiple sclerosis. Digit Health 2022; 8:20552076221117740. [PMID: 36046638 PMCID: PMC9421030 DOI: 10.1177/20552076221117740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/06/2022] [Accepted: 07/18/2022] [Indexed: 11/28/2022] Open
Abstract
Background Fatigue is a common symptom of many diseases, including multiple sclerosis. It manifests as a cognitive or physical condition. Fatigue is poorly understood, and effective therapies are missing. Furthermore, there is a lack of methods to measure fatigue objectively. Fatigability, the measurable decline in performance during a task, has been suggested as a complementary method to quantify fatigue. Objective To develop a new and objective measurement of cognitive fatigability and investigate its association with perceived fatigue. Methods We introduced the cognitive fatigability assessment test (cFAST), a novel smartphone-based test to quantify cognitive fatigability. Forty-two people with multiple sclerosis (23 fatigued and 19 non-fatigued, defined by the Fatigue Scale for Motor and Cognitive Functions) took part in our validation study. Patients completed cFAST twice. We used t-tests, Monte Carlo sampling, and area under the receiver operating characteristic curves to evaluate our approach using two sets of proposed metrics. Results When classifying fatigue, our fatigability metric Δresponse time has a mean area under the receiver operating characteristic curve of 0.74 (95% CI 0.64–0.84), making it the best performing metric for this task. Furthermore, Δresponse time shows a statistically significant difference between the fatigued and non-fatigued groups (t = 2.27, P = .03). Particularly, cognitively-fatigued patients decline in performance, while non-fatigued patients do not. Conclusions We introduce cFAST, a new instrument to quantify cognitive fatigability. Our pilot study provides evidence that cognitive fatigability assessment test produces a quantifiable drop in cognitive performance in a short period. Furthermore, our results indicate that cFAST may have the potential to serve as a surrogate for subjective cognitive fatigue. cFAST is significantly shorter than the existing fatigability assessments and does not require specialized equipment. Thus, it could enable frequent and remote monitoring, which could substantially aid clinicians in better understanding and treating fatigue.
Collapse
Affiliation(s)
- Liliana Barrios
- Department of Computer Science, ETH Zurich, Zurich, Switzerland
| | - Rok Amon
- University Hospital of Zurich, Zurich, Switzerland
| | - Pietro Oldrati
- University Hospital of Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Marc Hilty
- University Hospital of Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Christian Holz
- Department of Computer Science, ETH Zurich, Zurich, Switzerland
| | - Andreas Lutterotti
- University Hospital of Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
- Neurozentrum Bellevue and Department of Neurology Hirslanden, Zurich, Switzerland
| |
Collapse
|
26
|
Redlicka J, Zielińska-Nowak E, Lipert A, Miller E. Impact of Moderate Individually Tailored Physical Activity in Multiple Sclerosis Patients with Fatigue on Functional, Cognitive, Emotional State, and Postural Stability. Brain Sci 2021; 11:brainsci11091214. [PMID: 34573235 PMCID: PMC8470948 DOI: 10.3390/brainsci11091214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic disease, with fatigue syndrome as one of the main symptoms. The aim of this study was to demonstrate that moderate physical activity (MPA) may have a beneficial effect on postural stability, balance, and clinical parameters. The research group consisted of 137 randomized patients hospitalized at the Department of Neurological Rehabilitation, Medical University of Lodz. Finally, 76 patients were qualified who were divided into two groups—high fatigue (HF) and low fatigue (LF). Participants were assessed twice: before and after a 4-week MPA program using: the Expanded Disability Status Scale (EDSS), the Fatigue Severity Scale (FSS), the Mini-Mental State Examination (MMSE), the Montreal Cognitive Assessment (MoCA), the Beck Depression Inventory (BDI), and the Geriatric Depression Scale (GDS), and stabilometric platform tests were performed. Results obtained after the 4-week MPA program showed a positive effect of the MPA with differences between LF and HF groups. The MPA was more effective in MS patients with LF in cognitive functions, functional status, and postural stability but among HF patients in an emotional state, especially in MS patients below 65 years, although in total, both groups benefited from the MPA.
Collapse
Affiliation(s)
- Justyna Redlicka
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland; (J.R.); (E.Z.-N.)
| | - Ewa Zielińska-Nowak
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland; (J.R.); (E.Z.-N.)
| | - Anna Lipert
- Department of Sports Medicine, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland;
| | - Elżbieta Miller
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland; (J.R.); (E.Z.-N.)
- Correspondence:
| |
Collapse
|
27
|
Prak RF, Marsman JBC, Renken R, van der Naalt J, Zijdewind I. Fatigue following mild traumatic brain injury relates to visual processing and effort perception in the context of motor performance. Neuroimage Clin 2021; 32:102783. [PMID: 34425550 PMCID: PMC8379650 DOI: 10.1016/j.nicl.2021.102783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Following mild traumatic brain injury (mTBI), a substantial number of patients experience disabling fatigue for months after the initial injury. To date, the underlying mechanisms of fatigue remain unclear. Recently, it was shown that mTBI patients with persistent fatigue do not demonstrate increased performance fatigability (i.e., objective performance decline) during a sustained motor task. However, it is not known whether the neural activation required to sustain this performance is altered after mTBI. METHODS Blood oxygen level-dependent (BOLD) fMRI data were acquired from 19 mTBI patients (>3 months post-injury) and 19 control participants during two motor tasks. Force was recorded from the index finger abductors of both hands during submaximal contractions and a 2-minute maximal voluntary contraction (MVC) with the right hand. Voluntary muscle activation (i.e., CNS drive) was indexed during the sustained MVC using peripheral nerve stimulation. Fatigue was quantified using the Fatigue Severity Scale (FSS) and Modified Fatigue Impact Scale (MFIS). Questionnaire, task, and BOLD data were compared across groups, and linear regression was used to evaluate the relationship between BOLD-activity and fatigue in the mTBI group. RESULTS The mTBI patients reported significantly higher levels of fatigue (FSS: 5.3 vs. 2.6, p < 0.001). Both mTBI- and control groups demonstrated significant performance fatigability during the sustained MVC, but no significant differences in task performance or BOLD-activity were observed between groups. However, mTBI patients reporting higher FSS scores showed increased BOLD-activity in the bilateral visual cortices (mainly extrastriate) and the left midcingulate gyrus. Furthermore, across all participants mean voluntary muscle activation during the sustained MVC correlated with long lasting post-contraction BOLD-activation in the right insula and midcingulate cortex. CONCLUSION The fMRI findings suggest that self-reported fatigue in mTBI may relate to visual processing and effort perception. Long lasting activation associated with high levels of CNS drive might be related to changes in cortical homeostasis in the context of high effort.
Collapse
Affiliation(s)
- Roeland F Prak
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Jan-Bernard C Marsman
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Remco Renken
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Joukje van der Naalt
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Inge Zijdewind
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
28
|
Has Silemek AC, Ranjeva J, Audoin B, Heesen C, Gold SM, Kühn S, Weygandt M, Stellmann J. Delayed access to conscious processing in multiple sclerosis: Reduced cortical activation and impaired structural connectivity. Hum Brain Mapp 2021; 42:3379-3395. [PMID: 33826184 PMCID: PMC8249884 DOI: 10.1002/hbm.25440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 01/24/2023] Open
Abstract
Although multiple sclerosis (MS) is frequently accompanied by visuo‐cognitive impairment, especially functional brain mechanisms underlying this impairment are still not well understood. Consequently, we used a functional MRI (fMRI) backward masking task to study visual information processing stratifying unconscious and conscious in MS. Specifically, 30 persons with MS (pwMS) and 34 healthy controls (HC) were shown target stimuli followed by a mask presented 8–150 ms later and had to compare the target to a reference stimulus. Retinal integrity (via optical coherence tomography), optic tract integrity (visual evoked potential; VEP) and whole brain structural connectivity (probabilistic tractography) were assessed as complementary structural brain integrity markers. On a psychophysical level, pwMS reached conscious access later than HC (50 vs. 16 ms, p < .001). The delay increased with disease duration (p < .001, β = .37) and disability (p < .001, β = .24), but did not correlate with conscious information processing speed (Symbol digit modality test, β = .07, p = .817). No association was found for VEP and retinal integrity markers. Moreover, pwMS were characterized by decreased brain activation during unconscious processing compared with HC. No group differences were found during conscious processing. Finally, a complementary structural brain integrity analysis showed that a reduced fractional anisotropy in corpus callosum and an impaired connection between right insula and primary visual areas was related to delayed conscious access in pwMS. Our study revealed slowed conscious access to visual stimulus material in MS and a complex pattern of functional and structural alterations coupled to unconscious processing of/delayed conscious access to visual stimulus material in MS.
Collapse
Affiliation(s)
- Arzu C. Has Silemek
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS)Universitätsklinikum Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Jean‐Philippe Ranjeva
- Aix‐Marseille UniversityCNRS, CRMBMMarseille CedexFrance
- APHMHopital de la Timone, CEMEREMMarseilleFrance
| | - Bertrand Audoin
- Aix‐Marseille UniversityCNRS, CRMBMMarseille CedexFrance
- APHMHopital de la Timone, CEMEREMMarseilleFrance
| | - Christoph Heesen
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS)Universitätsklinikum Hamburg‐Eppendorf (UKE)HamburgGermany
- Klinik und Poliklinik für NeurologieUniversitätsklinikum Hamburg‐EppendorfHamburgGermany
| | - Stefan M. Gold
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS)Universitätsklinikum Hamburg‐Eppendorf (UKE)HamburgGermany
- Charité ‐ Universitätsmedizin Berlin, Freie Universität BerlinHumboldt Universität zu Berlin, and Berlin Institute of Health (BIH), Klinik für Psychiatrie & Psychotherapie und Medizinische Klinik m.S. Psychosomatik, Campus Benjamin Franklin (CBF)BerlinGermany
| | - Simone Kühn
- Clinic for Psychiatry and PsychotherapyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Lise Meitner Group for Environmental NeuroscienceMax Planck Institute for Human DevelopmentBerlinGermany
| | - Martin Weygandt
- Max Delbrück Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of Health, Experimental and Clinical Research CenterBerlinGermany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research CenterBerlinGermany
| | - Jan‐Patrick Stellmann
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS)Universitätsklinikum Hamburg‐Eppendorf (UKE)HamburgGermany
- Aix‐Marseille UniversityCNRS, CRMBMMarseille CedexFrance
- APHMHopital de la Timone, CEMEREMMarseilleFrance
- Klinik und Poliklinik für NeurologieUniversitätsklinikum Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
29
|
Anatomical Covariance Analysis: Detection of Disrupted Correlation Network Related to Clinical Trait Fatigue in Multiple Sclerosis: A Pilot Study. Behav Neurol 2020. [PMID: 32175581 PMCID: PMC7775148 DOI: 10.1155/2020/5807496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Fatigue is one of the most distressing symptoms among persons with multiple sclerosis (PwMS). The experience of fatigue is inherently interoceptive, yet no study to date has explicitly investigated the insular cortex (IC) as a primary goal in the experience of fatigue in PwMS. In addition, it is unknown how brain regions such as IC play a role in state or trait fatigue. Objective Assess the involvement of the IC in trait fatigue and state fatigue in PwMS with and without clinical fatigue. Methods Trait and state fatigue, cognitive status, and structural MRI were assessed in 27 PwMS. PwMS were stratified into nonclinical fatigue (nF-MS, FSS ≤ 4.0) (n = 10) and clinical fatigue (F-MS, FSS ≥ 5.0) (n = 10). Voxel-based morphometry analysis (VBM) for the whole sample (n = 20) and for the two groups was performed. Anatomical covariance analysis (ACA) analysis was conducted by selecting different volumes included in the corticostriatal network (CoStN) and analyzing interhemispheric correlations between those volumes to explore the state of the CoStN in both groups. Results In the VBM analysis, when considering the whole sample of PwMS, higher levels of trait fatigue were negatively associated with grey matter (GM) volume in the left dorsal anterior insula (dAI) (rho = −0.647; p = 0.002; R2 = 0.369). When comparing nF-MS versus F-MS, significant differences were found in the left dAI, where the F-MS group showed less GM volume in the left dAI. In the ACA analysis, the F-MS group showed fewer significant interhemispheric correlations in comparison with the Low-FSS group. Conclusions The present results provide support to the interoceptive component of self-reported fatigue and suggest that changes in the relationship between the different anatomical regions involved in the CoStN are present even in nonclinical trait fatigue. Those changes might be responsible for the experience of trait fatigue in PwMS. Future studies with larger samples and multimodal MRI acquisitions should be considered to fully understand the changes in the CoStN and the specific role of the IC in trait fatigue.
Collapse
|
30
|
Wylie GR, Yao B, Genova HM, Chen MH, DeLuca J. Using functional connectivity changes associated with cognitive fatigue to delineate a fatigue network. Sci Rep 2020; 10:21927. [PMID: 33318529 PMCID: PMC7736266 DOI: 10.1038/s41598-020-78768-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/24/2020] [Indexed: 12/22/2022] Open
Abstract
Cognitive fatigue, or fatigue related to mental work, is a common experience. A growing body of work using functional neuroimaging has identified several regions that appear to be related to cognitive fatigue and that potentially comprise a "fatigue network". These include the striatum of the basal ganglia, the dorsolateral prefrontal cortex (DLPFC), the dorsal anterior cingulate cortex (dACC), the ventro-medial prefrontal cortex (vmPFC) and the anterior insula. However, no work has been conducted to assess whether the connectivity between these regions changes as a function of cognitive fatigue. We used a task-based functional neuroimaging paradigm to induce fatigue in 39 healthy individuals, regressed the signal associated with the task out of the data, and investigated how the functional connectivity between these regions changed as cognitive fatigue increased. We observed functional connectivity between these regions and other frontal regions largely decreased as cognitive fatigue increased while connectivity between these seeds and more posterior regions increased. Furthermore the striatum, the DLPFC, the insula and the vmPFC appeared to be central 'nodes' or hubs of the fatigue network. These findings represent the first demonstration that the functional connectivity between these areas changes as a function of cognitive fatigue.
Collapse
Affiliation(s)
- G R Wylie
- Kessler Foundation, Rocco Ortenzio Neuroimaging Center, 1199 Pleasant Valley Way, West Orange, NJ, 07052, USA.
- Department of Physical Medicine and Rehabilitation, Rutgers University, New Jersey Medical School, Newark, NJ, 07101, USA.
- The Department of Veterans' Affairs, The War Related Illness and Injury Center, New Jersey Healthcare System, East Orange Campus, East Orange, NJ, 07018, USA.
| | - B Yao
- Kessler Foundation, Rocco Ortenzio Neuroimaging Center, 1199 Pleasant Valley Way, West Orange, NJ, 07052, USA
- Department of Physical Medicine and Rehabilitation, Rutgers University, New Jersey Medical School, Newark, NJ, 07101, USA
| | - H M Genova
- Kessler Foundation, Rocco Ortenzio Neuroimaging Center, 1199 Pleasant Valley Way, West Orange, NJ, 07052, USA
- Department of Physical Medicine and Rehabilitation, Rutgers University, New Jersey Medical School, Newark, NJ, 07101, USA
| | - M H Chen
- Kessler Foundation, Rocco Ortenzio Neuroimaging Center, 1199 Pleasant Valley Way, West Orange, NJ, 07052, USA
- Department of Physical Medicine and Rehabilitation, Rutgers University, New Jersey Medical School, Newark, NJ, 07101, USA
| | - J DeLuca
- Kessler Foundation, Rocco Ortenzio Neuroimaging Center, 1199 Pleasant Valley Way, West Orange, NJ, 07052, USA
- Department of Physical Medicine and Rehabilitation, Rutgers University, New Jersey Medical School, Newark, NJ, 07101, USA
- Department of Neurology, Rutgers University, New Jersey Medical School, Newark, NJ, 07101, USA
| |
Collapse
|
31
|
Cognitive Fatigue Is Associated with Altered Functional Connectivity in Interoceptive and Reward Pathways in Multiple Sclerosis. Diagnostics (Basel) 2020; 10:diagnostics10110930. [PMID: 33182742 PMCID: PMC7696273 DOI: 10.3390/diagnostics10110930] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/16/2022] Open
Abstract
Cognitive fatigue is common and debilitating among persons with multiple sclerosis (pwMS). Neural mechanisms underlying fatigue are not well understood, which results in lack of adequate treatment. The current study examined cognitive fatigue-related functional connectivity among 26 pwMS and 14 demographically matched healthy controls (HCs). Participants underwent functional magnetic resonance imaging (fMRI) scanning while performing a working memory task (n-back), with two conditions: one with higher cognitive load (2-back) to induce fatigue and one with lower cognitive load (0-back) as a control condition. Task-independent residual functional connectivity was assessed, with seeds in brain regions previously implicated in cognitive fatigue (dorsolateral prefrontal cortex (DLPFC), ventromedial prefrontal cortex (vmPFC), dorsal anterior cingulate cortex (dACC), insula, and striatum). Cognitive fatigue was measured using the Visual Analogue Scale of Fatigue (VAS-F). Results indicated that as VAS-F scores increased, HCs showed increased residual functional connectivity between the striatum and the vmPFC (crucial in reward processing) during the 2-back condition compared to the 0-back condition. In contrast, pwMS displayed increased residual functional connectivity from interoceptive hubs—the insula and the dACC—to the striatum. In conclusion, pwMS showed a hyperconnectivity within the interoceptive network and disconnection within the reward circuitry when experiencing cognitive fatigue.
Collapse
|
32
|
Zielińska-Nowak E, Włodarczyk L, Kostka J, Miller E. New Strategies for Rehabilitation and Pharmacological Treatment of Fatigue Syndrome in Multiple Sclerosis. J Clin Med 2020; 9:E3592. [PMID: 33171768 PMCID: PMC7695014 DOI: 10.3390/jcm9113592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is the most common autoimmune disease of the central nervous system (CNS), with an inflammatory demyelinating basis and a progressive course. The course of the disease is very diverse and unpredictable. Patients face many problems on a daily basis, such as problems with vision; sensory, balance, and gait disturbances; pain; muscle weakness; spasticity; tremor; urinary and fecal disorders; depression; and rapidly growing fatigue, which significantly influences quality of life among MS patients. Excessive fatigue occurs in most MS patients in all stages of this disease and is named MS-related fatigue. The crucial issue is the lack of effective treatment; therefore, this review focuses not only on the most common treatment methods, but also on additional novel therapies such as whole-body cryotherapy (WBC), functional electrical stimulation (FES), and non-invasive brain stimulation (NIBS). We also highlight the advantages and disadvantages of the most popular clinical scales used to measure fatigue. The entire understanding of the origins of MS-related fatigue may lead to the development of more effective strategies that can improve quality of life among MS patients. A literature search was performed using MEDLINE, EMBASE, and PEDro databases.
Collapse
Affiliation(s)
- Ewa Zielińska-Nowak
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 90-001 Lodz, Poland;
| | - Lidia Włodarczyk
- Department of Occupational Diseases and Environmental Health, Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland;
| | - Joanna Kostka
- Department of Gerontology, Medical University of Lodz, Milionowa 14, 90-001 Lodz, Poland;
| | - Elżbieta Miller
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 90-001 Lodz, Poland;
| |
Collapse
|
33
|
Herden L, Weissert R. The Effect of Coffee and Caffeine Consumption on Patients with Multiple Sclerosis-Related Fatigue. Nutrients 2020; 12:nu12082262. [PMID: 32731633 PMCID: PMC7468779 DOI: 10.3390/nu12082262] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Coffee and caffeine are considered to have beneficial effects in patients with multiple sclerosis (MS), an autoimmune disease of the central nervous system (CNS) that can lead to disability and chronic fatigue. Methods: In the present study the preference in terms of coffee and caffeine consumption in patients with MS was assessed. In total the opinions of 124 MS patients were explored with a questionnaire, which was developed to investigate the consumption behavior and associated beneficial and harmful effects of coffee and caffeine concerning symptoms of fatigue. Results: Our study showed that 37.1% of the included patients experience severe symptoms of fatigue. In our cohort, fatigue was not related to age, type of diagnosis or duration of the disease. The effects of coffee did not differ between MS patients with and without fatigue. Very few side effects linked to coffee consumption were reported, and we could demonstrate that coffee consumption had no negative impact on quality of sleep. A positive effect on everyday life was observed particularly among patients with a mid-level expanded disability status scale (EDSS). The strongest effects of coffee consumption were observed regarding a better ability to concentrate while fulfilling tasks, an expanded attention span and a better structured daily routine. Conclusions: Since coffee showed no severe side effects and in the absence of an effective fatigue therapy, coffee consumption might be a therapeutic approach for selected patients with MS-related fatigue.
Collapse
|
34
|
Dacosta-Aguayo R, Wylie G, DeLuca J, Genova H. Changes in plant function and root mycobiome caused by flood and drought in a riparian tree. Behav Neurol 2020; 40:886-903. [PMID: 32175581 PMCID: PMC7775148 DOI: 10.1093/treephys/tpaa031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023] Open
Abstract
Under increasingly harsh climatic conditions, conservation of threatened species requires integrative studies to understand stress tolerance. Riparian Ulmus minor Mill. populations have been massively reduced by Dutch Elm disease (DED). However, resistant genotypes were selected to restore lost populations. To understand the acclimation mechanisms to the succession of abiotic stresses, ramets of five DED-tolerant U. minor genotypes were subjected to flood and subsequently to drought. Physiological and biochemical responses were evaluated together with shifts in root-fungal assemblages. During both stresses, plants exhibited a decline in leaf net photosynthesis and an increase in percentage loss of stem hydraulic conductivity and in leaf and root proline content. Stomatal closure was produced by chemical signals during flood and hydraulic signals during drought. Despite broad similarities in plant response to both stresses, root-mycobiome shifts were markedly different. The five genotypes were similarly tolerant to moderate drought, however, flood tolerance varied between genotypes. In general, flood did not enhance drought susceptibility due to fast flood recovery, nevertheless, different responses to drought after flood were observed between genotypes. Associations were found between some fungal taxonomic groups and plant functional traits varying with flood and drought (e.g. proline, chlorophyll and starch content) indicating that the thriving of certain taxa depends on host responses to abiotic stress.
Collapse
Affiliation(s)
- Rosalia Dacosta-Aguayo
- Neuropsychology and Neuroscience, Kessler Foundation, 120 Eagle Rock Avenue, Suite 100, East Hanover, New Jersey 07936, USA
- Department of Physical Medicine and Rehabilitation, Rutgers University, New Jersey Medical School, Newark, NJ 07101, USA
| | - Glenn Wylie
- Department of Physical Medicine and Rehabilitation, Rutgers University, New Jersey Medical School, Newark, NJ 07101, USA
- Rocco Ortenzio Neuroimaging Center, Kessler Foundation, West Orange, NJ, USA
| | - John DeLuca
- Neuropsychology and Neuroscience, Kessler Foundation, 120 Eagle Rock Avenue, Suite 100, East Hanover, New Jersey 07936, USA
- Department of Physical Medicine and Rehabilitation, Rutgers University, New Jersey Medical School, Newark, NJ 07101, USA
- Rocco Ortenzio Neuroimaging Center, Kessler Foundation, West Orange, NJ, USA
| | - Helen Genova
- Neuropsychology and Neuroscience, Kessler Foundation, 120 Eagle Rock Avenue, Suite 100, East Hanover, New Jersey 07936, USA
- Department of Physical Medicine and Rehabilitation, Rutgers University, New Jersey Medical School, Newark, NJ 07101, USA
| |
Collapse
|