1
|
Volcko KL, Taghipourbibalan H, McCutcheon JE. Intermittent protein restriction elevates food intake and plasma ghrelin in male mice. Appetite 2024; 203:107671. [PMID: 39265824 DOI: 10.1016/j.appet.2024.107671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
Low-protein diets affect body weight, body composition, food intake, and food preferences in mice. Furthermore, single periods of protein restriction can have lasting effects on these parameters. We sought to examine the effect of multiple, short, bouts of protein restriction, relative to long-term maintenance on either a control (NR) or protein-restricted (PR) diet. We found that male mice experiencing intermittent protein restriction (IPR) were indistinguishable from NR mice in terms of body weight and composition, but had food intake and plasma ghrelin as high as mice on PR diet, even when they were returned to control diet. This was not found in female mice. The results of this experiment highlight the importance of diet history on food intake and ghrelin levels in male mice, and the difference in how PR diet might affect male and female mice.
Collapse
Affiliation(s)
- K L Volcko
- Department of Psychology, UiT the Arctic University of Norway, Tromsø, Norway.
| | - H Taghipourbibalan
- Department of Psychology, UiT the Arctic University of Norway, Tromsø, Norway
| | - J E McCutcheon
- Department of Psychology, UiT the Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
2
|
Kulkarni SS, Singh O, Zigman JM. The intersection between ghrelin, metabolism and circadian rhythms. Nat Rev Endocrinol 2024; 20:228-238. [PMID: 38123819 DOI: 10.1038/s41574-023-00927-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 12/23/2023]
Abstract
Despite the growing popular interest in sleep and diet, many gaps exist in our scientific understanding of the interaction between circadian rhythms and metabolism. In this Review, we explore a promising, bidirectional role for ghrelin in mediating this interaction. Ghrelin both influences and is influenced by central and peripheral circadian systems. Specifically, we focus on how ghrelin impacts outputs of circadian rhythm, including neuronal activity, circulating growth hormone levels, locomotor activity and eating behaviour. We also consider the effects of circadian rhythms on ghrelin expression and the consequences of disrupted circadian patterns, such as shift work and jet lag, on ghrelin secretion. Our Review is aimed at both the casual reader interested in gaining more insight into the scientific context surrounding the trending topics of sleep and metabolism, as well as experienced scientists in the fields of ghrelin and circadian biology seeking inspiration and a comprehensive overview of how these fields are related.
Collapse
Affiliation(s)
- Soumya S Kulkarni
- Medical Scientist Training Program, UT Southwestern Medical Center, Dallas, TX, USA
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Omprakash Singh
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA.
- Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA.
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Palmioli E, Dall'Aglio C, Fagotti A, Simoncelli F, Dobrzyn K, Di Rosa I, Maranesi M, De Felice E, Scocco P, Mercati F. Leptin system is not affected by different diets in the abomasum of the sheep reared in semi-natural pastures of the Central Apennines. Ann Anat 2023; 247:152069. [PMID: 36754242 DOI: 10.1016/j.aanat.2023.152069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/09/2023]
Abstract
The growing summer drought stress is affecting the nutritional value of pastures, no longer sufficient to support the nutritional status of sheep in extensive rearing. Adipokines affect organ and tissue functionality can be useful to evaluate animal welfare and prompt an improvement in the management of the grazing animals. Leptin (Lep) is an adipokine mainly produced by adipose tissue that regulates food intake by an anorexigenic action. Lep has also been detected in the human and rat gastrointestinal tract, where it regulates the rate of gastric emptying. In this study, Lep system was evaluated in the abomasum of 15 adult sheep reared on Apennine pastures and subjected to different diets. Until the maximum pasture flowering (MxF group), the sheep fed on fresh forage; from that moment until the maximum pasture dryness (MxD group), the experimental group (Exp group) received a feed supplementation in addition to MxD group feeding. The Lep system was investigated in the abomasum samples by immunohistochemistry (IHC) and RT-qPCR. Double-label localisation of Lep and leptin receptor (LepR) with neuroendocrine hormones was conducted to distinguish the gland cell types. The analysis performed revealed the presence of Lep and LepR in the chief and neuroendocrine cells of the fundic glands of the abomasum. RT-qPCR evidenced the transcript for Lep and LepR also identifying the long isoform (LepRb). No significant differences were observed among the three groups of sheep subjected to different diets. The abundant immunostaining observed in the fundic glands suggests that the Lep intervenes in the regulation of abomasum in sheep with a similar pattern to monogastric species while long term food supplementation seems do not influence the local function of the Lep system. A better understanding of the gastrointestinal system can contribute to improving sheep management and optimising the sustainability of livestock production.
Collapse
Affiliation(s)
- Elisa Palmioli
- Department of FISSUF, PhD Course in "Ethics of Communication, Scientific Research and Technological Innovation" Medical-Health Curriculum, University of Perugia, Piazza G. Ermini, 1, 06123 Perugia, Italy; Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy.
| | - Cecilia Dall'Aglio
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy.
| | - Anna Fagotti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy.
| | - Francesca Simoncelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy.
| | - Kamil Dobrzyn
- Department of Zoology, University of Warmia and Mazury in Olsztyn, Poland.
| | - Ines Di Rosa
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy.
| | - Margherita Maranesi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy.
| | - Elena De Felice
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, Italy.
| | - Paola Scocco
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, Italy.
| | - Francesca Mercati
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy.
| |
Collapse
|
4
|
Tchio C, Baba K, Piccione G, Tosini G. Removal of melatonin receptor type 1 signalling induces dyslipidaemia and hormonal changes in mice subjected to environmental circadian disruption. Endocrinol Diabetes Metab 2021; 4:e00171. [PMID: 33532613 PMCID: PMC7831213 DOI: 10.1002/edm2.171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 11/26/2022] Open
Abstract
Background Melatonin is a hormone secreted by the pineal gland in a circadian rhythmic manner with peak synthesis at night. Melatonin signalling was suggested to play a critical role in metabolism during the circadian disruption. Methods Melatonin-proficient (C3H-f+/+ or WT) and melatonin receptor type 1 knockout (MT1 KO) male and female mice were phase-advanced (6 hours) once a week for 6 weeks. Every week, we measured weight, food intake and basal glucose levels. At the end of the experiment, we sacrificed the animals and measured the blood's plasma for lipids profile (total lipids, phospholipids, triglycerides and total cholesterol), metabolic hormones profiles (ghrelin, leptin, insulin, glucagon, glucagon-like-peptide and resistin) and the body composition. Results Environmental circadian disruption (ECD) did not produce any significant effects in C3H-f+/+, while it increased lipids profile in MT1 KO with the significant increase observed in total lipids and triglycerides. For metabolic hormones profile, ECD decreased plasma ghrelin and increased plasma insulin in MT1 KO females. Under control condition, MT1 KO females have significantly different body weight, fat mass, total lipids and total cholesterol than the control C3H-f+/+ females. Conclusion Our data show that melatonin-proficient mice are not affected by ECD. When the MT1 receptors are removed, ECD induced dyslipidaemia in males and females with females experiencing the most adverse effect. Overall, our data demonstrate that MT1 signalling is an essential modulator of lipid and metabolic homeostasis during ECD.
Collapse
Affiliation(s)
- Cynthia Tchio
- Circadian Rhythms and Sleep Disorders ProgramNeuroscience InstituteAtlantaGAUSA
- Department of Pharmacology and ToxicologyMorehouse School of MedicineNeuroscience InstituteAtlantaGAUSA
| | - Kenkichi Baba
- Circadian Rhythms and Sleep Disorders ProgramNeuroscience InstituteAtlantaGAUSA
- Department of Pharmacology and ToxicologyMorehouse School of MedicineNeuroscience InstituteAtlantaGAUSA
| | - Giuseppe Piccione
- Dipartimento di Medicine VeterinariaUniversita di MessinaMessinaItaly
| | - Gianluca Tosini
- Circadian Rhythms and Sleep Disorders ProgramNeuroscience InstituteAtlantaGAUSA
- Department of Pharmacology and ToxicologyMorehouse School of MedicineNeuroscience InstituteAtlantaGAUSA
| |
Collapse
|
5
|
Martchenko A, Martchenko SE, Biancolin AD, Brubaker PL. Circadian Rhythms and the Gastrointestinal Tract: Relationship to Metabolism and Gut Hormones. Endocrinology 2020; 161:5909225. [PMID: 32954405 PMCID: PMC7660274 DOI: 10.1210/endocr/bqaa167] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 02/08/2023]
Abstract
Circadian rhythms are 24-hour biological rhythms within organisms that have developed over evolutionary time due to predefined environmental changes, mainly the light-dark cycle. Interestingly, metabolic tissues, which are largely responsible for establishing diurnal metabolic homeostasis, have been found to express cell-autonomous clocks that are entrained by food intake. Disruption of the circadian system, as seen in individuals who conduct shift work, confers significant risk for the development of metabolic diseases such as type 2 diabetes and obesity. The gastrointestinal (GI) tract is the first point of contact for ingested nutrients and is thus an essential organ system for metabolic control. This review will focus on the circadian function of the GI tract with a particular emphasis on its role in metabolism through regulation of gut hormone release. First, the circadian molecular clock as well as the organization of the mammalian circadian system is introduced. Next, a brief overview of the structure of the gut as well as the circadian regulation of key functions important in establishing metabolic homeostasis is discussed. Particularly, the focus of the review is centered around secretion of gut hormones; however, other functions of the gut such as barrier integrity and intestinal immunity, as well as digestion and absorption, all of which have relevance to metabolic control will be considered. Finally, we provide insight into the effects of circadian disruption on GI function and discuss chronotherapeutic intervention strategies for mitigating associated metabolic dysfunction.
Collapse
Affiliation(s)
| | | | | | - Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Correspondence: P.L. Brubaker, Rm 3366 Medical Sciences Building, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8 Canada. E-mail:
| |
Collapse
|
6
|
Kroll C, Trombelli MCMC, Schultz LF, El Rafihi-Ferreira R, Mastroeni MF. Association of LEP-rs7799039 and ADIPOQ-rs2241766 polymorphisms with sleep duration in preschool age children. Sleep Med 2020; 66:68-75. [DOI: 10.1016/j.sleep.2019.07.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 11/27/2022]
|
7
|
Schalla MA, Stengel A. The role of phoenixin in behavior and food intake. Peptides 2019; 114:38-43. [PMID: 30953667 DOI: 10.1016/j.peptides.2019.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/11/2019] [Accepted: 04/02/2019] [Indexed: 12/30/2022]
Abstract
The recently discovered peptide phoenixin was initially implicated in reproduction as a regulator of gonadotropin-releasing hormone (GnRH)-stimulated luteinizing hormone (LH) release from the pituitary. Subsequently, various functions of phoenixin have been demonstrated including mediation of itching sensation, stimulation of vasopressin secretion, stimulation of white adipogenesis and hypothalamic nutrient sensing. Subsequently, additional actions of phoenixin have been described, namely effects on behavior. A systematic search of four data bases was performed and original articles selected accordingly. The present systematic review will present the current knowledge on the effects of phoenixin on different behaviors such as anxiety and food intake as well as cognition. Lastly, gaps in knowledge will be mentioned to stimulate further research.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
8
|
Schalla MA, Stengel A. Phoenixin-A Pleiotropic Gut-Brain Peptide. Int J Mol Sci 2018; 19:ijms19061726. [PMID: 29891773 PMCID: PMC6032287 DOI: 10.3390/ijms19061726] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/28/2018] [Accepted: 06/08/2018] [Indexed: 12/17/2022] Open
Abstract
Phoenixin is a recently discovered brain peptide initially thought to be restricted to reproductive functions. The subsequent identification of phoenixin’s expression in peripheral tissues was accompanied by the description of several other actions of this hormone, such as effects on behavior, sensory perception, memory retention, the cardiovascular system as well as food intake, pointing towards a pleiotropic role of this peptide. The present review will discuss the present knowledge on phoenixin and the signaling involved as well as highlight gaps in knowledge to stimulate further research.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany.
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany.
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
9
|
Ren P, Yang XJ, Kim JS, Menon D, Pangeni D, Manu H, Tekeste A, Baidoo SK. Plasma acyl ghrelin and nonesterified fatty acids are the best predictors for hunger status in pregnant gilts. J Anim Sci 2018; 95:5485-5496. [PMID: 29293797 DOI: 10.2527/jas2017.1785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Sows are usually restricted fed during pregnancy to maximize their reproductive efficiency, which may predispose sows to a state of hunger. However, an objective measurement of hunger status has not been established. In the present study, we examined the correlation of plasma hormones and NEFA and selected the best predictors for hunger status using pregnant gilts. Three different levels of feed intake (0.5, 1.0 and 2.0 × maintenance energy intake [0.5M, 1.0M and 2.0M, respectively]) were imposed from Day 28 to 34 of gestation to create different hunger statuses in pregnant gilts. Plasma hormones related to energy homeostasis and NEFA were analyzed to quantify their response to different levels of feed intake. A total of 18 gilts (197.53 ± 6.41 kg) were allotted to 1 of 3 dietary treatments using a completely randomized design. Results showed that BW change, ADG, and G:F from Day 28 to 34 of gestation were higher ( < 0.01) for gilts on the 2.0M feeding level than for gilts on the 0.5M feeding level. Plasma acyl ghrelin concentrations showed a relatively flat pattern during the 24-h period. Plasma acyl ghrelin and NEFA concentrations and areas under the curve (AUC) were greater ( < 0.05) in gilts on the 0.5M level of feed intake than in those on the 2.0M level of feed intake. No differences were observed among the 3 feeding levels in terms of plasma glucagon-like peptide 1 and leptin concentrations. Additionally, consumption time for 1.82 kg feed on Day 35 of gestation was longer ( < 0.01) in gilts fed the 2.0M level of feed intake from Day 28 to 34 of gestation than in those on the 0.5M level of feed intake. Simple linear regression results showed that the AUC of acyl ghrelin was the best predictor for consumption time ( = 0.82), whereas the AUC of NEFA was the best predictor for BW ( = 0.55) or backfat change ( = 0.42) from Day 28 to 34 of gestation. In conclusion, our data suggested that a relative flat pattern existed in pregnant gilts in terms of the diurnal plasma profile of acyl ghrelin and that the level of feed intake of pregnant gilts was negatively correlated with plasma concentrations of acyl ghrelin and NEFA, which, in turn, were negatively associated with feed consumption time. The AUC of acyl ghrelin and NEFA seemed to be the best predictors for hunger status of pregnant gilts.
Collapse
|
10
|
Abstract
Most hormones display daily fluctuations of secretion during the 24-h cycle. This is also the case for adipokines, in particular the anorexigenic hormone, leptin. The temporal organization of the endocrine system is principally controlled by a network of circadian clocks. The circadian network comprises a master circadian clock, located in the suprachiasmatic nucleus of the hypothalamus, synchronized to the ambient light, and secondary circadian clocks found in various peripheral organs, such as the adipose tissues. Besides circadian clocks, other factors such as meals and metabolic status impact daily profiles of hormonal levels. In turn, the precise daily pattern of hormonal release provides temporal signaling information. This review will describe the reciprocal links between the circadian clocks and rhythmic secretion of leptin, and discuss the metabolic impact of circadian desynchronization and altered rhythmic leptin.
Collapse
Affiliation(s)
- Etienne Challet
- Circadian Clocks and Metabolism Team, Institute of Cellular and Integrative Neurosciences, UPR3212, Centre National de La Recherche Scientifique (CNRS), University of Strasbourg, France.
| |
Collapse
|
11
|
Flatow EA, Komegae EN, Fonseca MT, Brito CF, Musteata FM, Antunes-Rodrigues J, Steiner AA. Elucidating the role of leptin in systemic inflammation: a study targeting physiological leptin levels in rats and their macrophages. Am J Physiol Regul Integr Comp Physiol 2017; 313:R572-R582. [DOI: 10.1152/ajpregu.00171.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/18/2017] [Accepted: 07/26/2017] [Indexed: 01/24/2023]
Abstract
To elucidate the role of leptin in acute systemic inflammation, we investigated how its infusion at low, physiologically relevant doses affects the responses to bacterial lipopolysaccharide (LPS) in rats subjected to 24 h of food deprivation. Leptin was infused subcutaneously (0–20 μg·kg−1·h−1) or intracerebroventricularly (0–1 μg·kg−1·h−1). Using hypothermia and hypotension as biomarkers of systemic inflammation, we identified the phase extending from 90 to 240 min post-LPS as the most susceptible to modulation by leptin. In this phase, leptin suppressed the rise in plasma TNF-α and accelerated the recoveries from hypothermia and hypotension. Suppression of TNF-α was not accompanied by changes in other cytokines or prostaglandins. Leptin suppressed TNF-α when infused peripherally but not when infused into the brain. Importantly, the leptin dose that suppressed TNF-α corresponded to the lowest dose that limited food consumption; this dose elevated plasma leptin within the physiological range (to 5.9 ng/ml). We then conducted in vitro experiments to investigate whether an action of leptin on macrophages could parallel our in vivo observations. The results revealed that, when sensitized by food deprivation, LPS-stimulated peritoneal macrophages can be inhibited by leptin at concentrations that are lower than those reported to promote cytokine release. It is concluded that physiological levels of leptin do not exert a proinflammatory effect but rather an anti-inflammatory effect involving selective suppression of TNF-α via an action outside the brain. The mechanism of this effect might involve a previously unrecognized, suppressive action of leptin on macrophage subpopulations sensitized by food deprivation, but future studies are warranted.
Collapse
Affiliation(s)
- Elizabeth A. Flatow
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Evilin N. Komegae
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Monique T. Fonseca
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Camila F. Brito
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Florin M. Musteata
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York; and
| | - José Antunes-Rodrigues
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Alexandre A. Steiner
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Schalla M, Prinz P, Friedrich T, Scharner S, Kobelt P, Goebel-Stengel M, Rose M, Stengel A. Phoenixin-14 injected intracerebroventricularly but not intraperitoneally stimulates food intake in rats. Peptides 2017; 96:53-60. [PMID: 28844870 DOI: 10.1016/j.peptides.2017.08.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/10/2017] [Accepted: 08/14/2017] [Indexed: 01/07/2023]
Abstract
Phoenixin, a recently discovered 20-amino acid peptide was implicated in reproduction. However, the expression in food intake-regulatory nuclei such as the paraventricular nucleus, the arcuate nucleus and the nucleus of the solitary tract suggests an implication of phoenixin in food intake regulation. Therefore, we investigated the effects of phoenixin-14, the shorter form of phoenixin, on food intake following intracerebroventricular (icv) and intraperitoneal (ip) injection in ad libitum fed male Sprague-Dawley rats. Phoenixin-14 injected icv (0.2, 1.7 or 15nmol/rat) during the light phase induced a dose-dependent increase of light phase food intake reaching significance at a minimum dose of 1.7 nmol/rat (+72%, p<0.05 vs. vehicle) used for all further analyses. Assessment of the food intake microstructure showed an icv phoenixin-14-induced increase in meal size (+51%), meal duration (+157%), time spent in meals (+182%) and eating rate (+123%), while inter-meal intervals (-42%) and the satiety ratio (-64%) were decreased compared to vehicle (p<0.05). When injected icv during the dark phase, no modulation of food intake was observed (p>0.05). The light phase icv phoenixin-14-induced increase of water intake did not reach statistical significance compared to vehicle (+136%, p>0.05). The increase of food intake following icv phoenixin-14 was not associated with a significant alteration of grooming behavior (0.4-fold, p=0.377) or locomotion (6-fold, p=0.066) compared to vehicle. When injected ip at higher doses (0.6, 5nmol/kg or 45nmol/kg body weight) during the light phase, phoenixin-14 did not affect food intake (p>0.05). In summary, phoenixin-14 exerts a centrally-mediated orexigenic effect.
Collapse
Affiliation(s)
- Martha Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Philip Prinz
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Tiemo Friedrich
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sophie Scharner
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Peter Kobelt
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Miriam Goebel-Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Internal Medicine, Helios Clinic, Zerbst, Germany
| | - Matthias Rose
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Quantitative Health Sciences, Medical School University of Massachusetts, Worcester, MA, USA
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
13
|
Dodd GT, Andrews ZB, Simonds SE, Michael NJ, DeVeer M, Brüning JC, Spanswick D, Cowley MA, Tiganis T. A Hypothalamic Phosphatase Switch Coordinates Energy Expenditure with Feeding. Cell Metab 2017; 26:375-393.e7. [PMID: 28768176 DOI: 10.1016/j.cmet.2017.07.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/13/2017] [Accepted: 07/17/2017] [Indexed: 12/17/2022]
Abstract
Beige adipocytes can interconvert between white and brown-like states and switch between energy storage versus expenditure. Here we report that beige adipocyte plasticity is important for feeding-associated changes in energy expenditure and is coordinated by the hypothalamus and the phosphatase TCPTP. A fasting-induced and glucocorticoid-mediated induction of TCPTP, inhibited insulin signaling in AgRP/NPY neurons, repressed the browning of white fat and decreased energy expenditure. Conversely feeding reduced hypothalamic TCPTP, to increase AgRP/NPY neuronal insulin signaling, white adipose tissue browning and energy expenditure. The feeding-induced repression of hypothalamic TCPTP was defective in obesity. Mice lacking TCPTP in AgRP/NPY neurons were resistant to diet-induced obesity and had increased beige fat activity and energy expenditure. The deletion of hypothalamic TCPTP in obesity restored feeding-induced browning and increased energy expenditure to promote weight loss. Our studies define a hypothalamic switch that coordinates energy expenditure with feeding for the maintenance of energy balance.
Collapse
Affiliation(s)
- Garron T Dodd
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Zane B Andrews
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia; Department of Physiology, Monash University, Victoria 3800, Australia
| | - Stephanie E Simonds
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia; Department of Physiology, Monash University, Victoria 3800, Australia
| | - Natalie J Michael
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia; Department of Physiology, Monash University, Victoria 3800, Australia
| | - Michael DeVeer
- Monash Biomedical Imaging, Monash University, Victoria 3168, Australia
| | - Jens C Brüning
- Max Plank Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes, and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany; National Center for Diabetes Research (DZD), Ingolstädter Land Str. 1, 85764 Neuherberg, Germany
| | - David Spanswick
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia; Department of Physiology, Monash University, Victoria 3800, Australia
| | - Michael A Cowley
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia; Department of Physiology, Monash University, Victoria 3800, Australia
| | - Tony Tiganis
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia.
| |
Collapse
|
14
|
Rivas PMS, Vechiato FMV, Borges BC, Rorato R, Antunes-Rodrigues J, Elias LLK. Increase in hypothalamic AMPK phosphorylation induced by prolonged exposure to LPS involves ghrelin and CB1R signaling. Horm Behav 2017; 93:166-174. [PMID: 28576646 DOI: 10.1016/j.yhbeh.2017.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 05/15/2017] [Accepted: 05/28/2017] [Indexed: 12/29/2022]
Abstract
Acute administration of lipopolysaccharide (LPS) from Gram-negative bacteria induces hypophagia. However, the repeated administration of LPS leads to desensitization of hypophagia, which is associated with increased hypothalamic p-AMPK expression. Because ghrelin and endocannabinoids modulate AMPK activity in the hypothalamus, we hypothesized that these neuromodulators play a role in the reversal of tolerance to hypophagia in rats under long-term exposure to LPS. Male Wistar rats were treated with single (1 LPS, 100μg/kg body weight, ip) or repeated injections of LPS over 6days (6 LPS). Food intake was reduced in the 1 LPS, but not in the 6 LPS group. 6 LPS rats showed an increased serum concentration of acylated ghrelin and reduced ghrelin receptor mRNA expression in the hypothalamus. Ghrelin injection (40μg/kg body weight, ip) increased food intake, body weight gain, p-AMPK hypothalamic expression, neuropeptide Y (NPY) and Agouti related peptide (AgRP) mRNA expression in control animals (Saline). However, in 6 LPS rats, ghrelin did not alter these parameters. Central administration of a CB1R antagonist (AM251, 200ng/μl in 5μl/rat) induced hypophagia in 6 LPS animals, suggesting that the endocannabinoid system contributes to preserved food intake during LPS tolerance. In the presence of AM251, the ability of ghrelin to phosphorylate AMPK in the hypothalamus of 6 LPS group was restored, but not its orexigenic effect. Our data highlight that the orexigenic effects of ghrelin require CB1R signaling downstream of AMPK activation. Moreover, CB1R-mediated pathways contribute to the absence of hypophagia during repeated exposure to endotoxin.
Collapse
Affiliation(s)
- Priscila M S Rivas
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Fernanda M V Vechiato
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Beatriz C Borges
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Rodrigo Rorato
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Jose Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Lucila L K Elias
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil.
| |
Collapse
|
15
|
Lanfray D, Richard D. Emerging Signaling Pathway in Arcuate Feeding-Related Neurons: Role of the Acbd7. Front Neurosci 2017; 11:328. [PMID: 28690493 PMCID: PMC5481368 DOI: 10.3389/fnins.2017.00328] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/24/2017] [Indexed: 01/28/2023] Open
Abstract
The understanding of the mechanisms whereby energy balance is regulated is essential to the unraveling of the pathophysiology of obesity. In the last three decades, focus was put on the metabolic role played by the hypothalamic neurons expressing proopiomelanocortin (POMC) and cocaine and amphetamine regulated transcript (CART) and the neurons co-localizing agouti-related peptide (AgRP), neuropeptide Y (NPY), and gamma-aminobutyric acid (GABA). These neurons are part of the leptin-melanocortin pathway, whose role is key in energy balance regulation. More recently, the metabolic involvement of further hypothalamic uncharacterized neuron populations has been suggested. In this review, we discuss the potential homeostatic implication of hypothalamic GABAergic neurons that produce Acyl-Coa-binding domain containing protein 7 (ACBD7), precursor of the nonadecaneuropeptide (NDN), which has recently been characterized as a potent anorexigenic neuropeptide capable of relaying the leptin anorectic/thermogenic effect via the melanocortin system.
Collapse
Affiliation(s)
- Damien Lanfray
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université LavalQuébec, QC, Canada
| | - Denis Richard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université LavalQuébec, QC, Canada
| |
Collapse
|
16
|
Asarnow LD, Greer SM, Walker MP, Harvey AG. The Impact of Sleep Improvement on Food Choices in Adolescents With Late Bedtimes. J Adolesc Health 2017; 60:570-576. [PMID: 28111011 PMCID: PMC5558152 DOI: 10.1016/j.jadohealth.2016.11.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 11/28/2022]
Abstract
PURPOSE The aim was to investigate the effect of sleep improvement on desire for and intake of weight gain-promoting foods in adolescents with late bedtimes. METHODS A sample of 42 adolescents with late bedtimes was enrolled in an intervention designed to improve sleep. Their desire for and intake of food in the morning was assessed at before and after treatment. RESULTS Adolescents with earlier bedtimes at post-treatment relative to pretreatment increased their caloric intake of low glycemic index, fruit, and dairy foods at post-treatment. This effect was not observed in adolescents who did not improve their bedtime at post-treatment. CONCLUSIONS These findings suggest that advancing bedtimes earlier can improve breakfast choices, an important meal for obesity prevention during adolescence.
Collapse
Affiliation(s)
| | | | - Mathew P. Walker
- Department of Psychology, University of California, Berkeley,Helen Wills Neuroscience Institute, University of California, Berkeley
| | | |
Collapse
|
17
|
Cowan M, Azpeleta C, López-Olmeda JF. Rhythms in the endocrine system of fish: a review. J Comp Physiol B 2017; 187:1057-1089. [DOI: 10.1007/s00360-017-1094-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 03/20/2017] [Accepted: 04/06/2017] [Indexed: 12/20/2022]
|
18
|
Isorna E, de Pedro N, Valenciano AI, Alonso-Gómez ÁL, Delgado MJ. Interplay between the endocrine and circadian systems in fishes. J Endocrinol 2017; 232:R141-R159. [PMID: 27999088 DOI: 10.1530/joe-16-0330] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/20/2016] [Indexed: 12/11/2022]
Abstract
The circadian system is responsible for the temporal organisation of physiological functions which, in part, involves daily cycles of hormonal activity. In this review, we analyse the interplay between the circadian and endocrine systems in fishes. We first describe the current model of fish circadian system organisation and the basis of the molecular clockwork that enables different tissues to act as internal pacemakers. This system consists of a net of central and peripherally located oscillators and can be synchronised by the light-darkness and feeding-fasting cycles. We then focus on two central neuroendocrine transducers (melatonin and orexin) and three peripheral hormones (leptin, ghrelin and cortisol), which are involved in the synchronisation of the circadian system in mammals and/or energy status signalling. We review the role of each of these as overt rhythms (i.e. outputs of the circadian system) and, for the first time, as key internal temporal messengers that act as inputs for other endogenous oscillators. Based on acute changes in clock gene expression, we describe the currently accepted model of endogenous oscillator entrainment by the light-darkness cycle and propose a new model for non-photic (endocrine) entrainment, highlighting the importance of the bidirectional cross-talking between the endocrine and circadian systems in fishes. The flexibility of the fish circadian system combined with the absence of a master clock makes these vertebrates a very attractive model for studying communication among oscillators to drive functionally coordinated outputs.
Collapse
Affiliation(s)
- Esther Isorna
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Nuria de Pedro
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana I Valenciano
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Ángel L Alonso-Gómez
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - María J Delgado
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
19
|
Milk Leptin Surge and Biological Rhythms of Leptin and Other Regulatory Proteins in Breastmilk. PLoS One 2015; 10:e0145376. [PMID: 26680765 PMCID: PMC4682819 DOI: 10.1371/journal.pone.0145376] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/01/2015] [Indexed: 01/14/2023] Open
Abstract
A significant number of chronic diseases are linked to perinatal nutrition, and prevention may be associated to naturally occurring components of breast milk. One key hormone in breast milk is leptin, related with the protection from obesity in the adulthood, thus knowing its changes through the day or lactation is crucial. We aimed to investigate the daily rhythms in the milk levels of leptin, together with other two related hormones, ghrelin and adiponectin, during lactation (days 5, 10 and 15) in rat dams, and the relation with morphometric parameters (dams and pups). Summarizing the main results, the existence of biological rhythms, but not daily and maybe circasemidian, was confirmed for the three hormones at the earliest period of lactation. The correlations performed generally showed a possible dependence of milk hormone levels on plasma levels at the early phase of lactation, while with the progression of lactation this dependence may fade and the hormone levels are suggested to be more dependent on mammary gland production/maturation. There was also a correlation between milk leptin and adiponectin levels, especially in the first half of lactation, suggesting a possible parallel regulation. Interestingly, we describe a milk leptin surge around the mid of lactation (at day 10) which may be related with pup´s growth (males and females) and with the well-known (in the literature) plasma leptin surge in pups. All this knowledge may be crucial for future applications in the development of formula milk and in relation with the role of leptin surge during lactation.
Collapse
|
20
|
Kumar Jha P, Challet E, Kalsbeek A. Circadian rhythms in glucose and lipid metabolism in nocturnal and diurnal mammals. Mol Cell Endocrinol 2015; 418 Pt 1:74-88. [PMID: 25662277 DOI: 10.1016/j.mce.2015.01.024] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/12/2015] [Accepted: 01/19/2015] [Indexed: 12/22/2022]
Abstract
Most aspects of energy metabolism display clear variations during day and night. This daily rhythmicity of metabolic functions, including hormone release, is governed by a circadian system that consists of the master clock in the suprachiasmatic nuclei of the hypothalamus (SCN) and many secondary clocks in the brain and peripheral organs. The SCN control peripheral timing via the autonomic and neuroendocrine system, as well as via behavioral outputs. The sleep-wake cycle, the feeding/fasting rhythm and most hormonal rhythms, including that of leptin, ghrelin and glucocorticoids, usually show an opposite phase (relative to the light-dark cycle) in diurnal and nocturnal species. By contrast, the SCN clock is most active at the same astronomical times in these two categories of mammals. Moreover, in both species, pineal melatonin is secreted only at night. In this review we describe the current knowledge on the regulation of glucose and lipid metabolism by central and peripheral clock mechanisms. Most experimental knowledge comes from studies in nocturnal laboratory rodents. Nevertheless, we will also mention some relevant findings in diurnal mammals, including humans. It will become clear that as a consequence of the tight connections between the circadian clock system and energy metabolism, circadian clock impairments (e.g., mutations or knock-out of clock genes) and circadian clock misalignments (such as during shift work and chronic jet-lag) have an adverse effect on energy metabolism, that may trigger or enhancing obese and diabetic symptoms.
Collapse
Affiliation(s)
- Pawan Kumar Jha
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands; Regulation of Circadian Clocks Team, Institute of Cellular and Integrative Neurosciences, UPR3212, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, France; International Associated Laboratory LIA1061 Understanding the Neural Basis of Diurnality, CNRS, France and the Netherlands
| | - Etienne Challet
- Regulation of Circadian Clocks Team, Institute of Cellular and Integrative Neurosciences, UPR3212, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, France; International Associated Laboratory LIA1061 Understanding the Neural Basis of Diurnality, CNRS, France and the Netherlands
| | - Andries Kalsbeek
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands; International Associated Laboratory LIA1061 Understanding the Neural Basis of Diurnality, CNRS, France and the Netherlands; Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Chaplin A, Parra P, Serra F, Palou A. Conjugated Linoleic Acid Supplementation under a High-Fat Diet Modulates Stomach Protein Expression and Intestinal Microbiota in Adult Mice. PLoS One 2015; 10:e0125091. [PMID: 25915857 PMCID: PMC4411160 DOI: 10.1371/journal.pone.0125091] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/13/2015] [Indexed: 12/19/2022] Open
Abstract
The gastrointestinal tract constitutes a physiological interface integrating nutrient and microbiota-host metabolism. Conjugated linoleic acids (CLA) have been reported to contribute to decreased body weight and fat accretion. The modulation by dietary CLA of stomach proteins related to energy homeostasis or microbiota may be involved, although this has not been previously analysed. This is examined in the present study, which aims to underline the potential mechanisms of CLA which contribute to body weight regulation. Adult mice were fed either a normal fat (NF, 12% kJ content as fat) or a high-fat (HF, 43% kJ content as fat) diet. In the latter case, half of the animals received daily oral supplementation of CLA. Expression and content of stomach proteins and specific bacterial populations from caecum were analysed. CLA supplementation was associated with an increase in stomach protein expression, and exerted a prebiotic action on both Bacteroidetes/Prevotella and Akkermansia muciniphila. However, CLA supplementation was not able to override the negative effects of HF diet on Bifidobacterium spp., which was decreased in both HF and HF+CLA groups. Our data show that CLA are able to modulate stomach protein expression and exert a prebiotic effect on specific gut bacterial species.
Collapse
Affiliation(s)
- Alice Chaplin
- Laboratory of Molecular Biology, Nutrition and Biotechnology, University of the Balearic Islands and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain
| | - Pilar Parra
- Laboratory of Molecular Biology, Nutrition and Biotechnology, University of the Balearic Islands and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain
| | - Francisca Serra
- Laboratory of Molecular Biology, Nutrition and Biotechnology, University of the Balearic Islands and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology, University of the Balearic Islands and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain
| |
Collapse
|
22
|
Jaremka LM, Belury MA, Andridge RR, Malarkey WB, Glaser R, Christian L, Emery CF, Kiecolt-Glaser JK. Interpersonal stressors predict ghrelin and leptin levels in women. Psychoneuroendocrinology 2014; 48:178-88. [PMID: 25032903 PMCID: PMC4117712 DOI: 10.1016/j.psyneuen.2014.06.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/23/2014] [Accepted: 06/23/2014] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Stressful events enhance risk for weight gain and adiposity. Ghrelin and leptin, two hormones that are implicated in appetite regulation, may link stressful events to weight gain; a number of rodent studies suggest that stressors increase ghrelin production. The present study investigated the links among daily stressors, ghrelin and leptin, and dietary intake in humans. METHOD Women (n=50) completed three study appointments that were scheduled at least 2 weeks apart. At each visit, women arrived fasting and ate a standardized breakfast and lunch. Blood samples were collected 45min after each meal. Women completed a self-report version of the Daily Inventory of Stressful Events (DISE) at each appointment. Two composites were created from the DISE data, reflecting the number of stressors that did and did not involve interpersonal tension. RESULTS Women who experienced more stressors involving interpersonal tension had higher ghrelin and lower leptin levels than those who experienced fewer interpersonal stressors. Furthermore, women who experienced more interpersonal stressors had a diet that was higher in calories, fat, carbohydrates, protein, sugar, sodium, and fiber, and marginally higher in cholesterol, vegetables (but not fruits), vitamin A, and vitamin C. Stressors that did not involve interpersonal tension were unrelated to ghrelin and leptin levels or any of the dietary components examined. CONCLUSIONS These data suggest that ghrelin and leptin may link daily interpersonal stressors to weight gain and obesity.
Collapse
Affiliation(s)
- Lisa M Jaremka
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine, USA
| | - Martha A Belury
- Department of Human Sciences, The Ohio State University, USA
| | - Rebecca R Andridge
- College of Public Health, The Ohio State University College of Medicine, USA
| | - William B Malarkey
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine, USA; Department of Internal Medicine, The Ohio State University College of Medicine, USA; Comprehensive Cancer Center, The Ohio State University College of Medicine, USA
| | - Ronald Glaser
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine, USA; Comprehensive Cancer Center, The Ohio State University College of Medicine, USA; Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University College of Medicine, USA
| | - Lisa Christian
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine, USA; Department of Psychology, The Ohio State University, USA; Department of Psychiatry, The Ohio State University College of Medicine, USA; Department of Obstetrics and Gynecology, The Ohio State University College of Medicine, USA
| | - Charles F Emery
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine, USA; Department of Internal Medicine, The Ohio State University College of Medicine, USA; Department of Psychology, The Ohio State University, USA
| | - Janice K Kiecolt-Glaser
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine, USA; Comprehensive Cancer Center, The Ohio State University College of Medicine, USA; Department of Psychology, The Ohio State University, USA; Department of Psychiatry, The Ohio State University College of Medicine, USA.
| |
Collapse
|
23
|
Abstract
Individual meals are products of a complex interaction of signals related to both short-term and long-term availability of energy stores. In addition to maintaining the metabolic demands of the individual in the short term, levels of energy intake must also maintain and defend body weight over longer periods. To accomplish this, satiety pathways are regulated by a sophisticated network of endocrine and neuroendocrine pathways. Higher brain centers modulate meal size through descending inputs to caudal brainstem regions responsible for the motor pattern generators associated with ingestion. Gastric and intestinal signals interact with central nervous system pathways to terminate food intake. These inputs can be modified as a function of internal metabolic signals, external environmental influences, and learning to regulate meal size.
Collapse
|
24
|
Lamont EW, Bruton J, Blum ID, Abizaid A. Ghrelin receptor-knockout mice display alterations in circadian rhythms of activity and feeding under constant lighting conditions. Eur J Neurosci 2013; 39:207-17. [DOI: 10.1111/ejn.12390] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 09/16/2013] [Indexed: 12/01/2022]
Affiliation(s)
- E. Waddington Lamont
- Department of Neuroscience; Carleton University; 1125 Colonel By Drive Ottawa ON K1S 5B6 Canada
- Department of Psychology; Thompson Rivers University; Kamloops BC Canada
| | - J. Bruton
- Department of Neuroscience; Carleton University; 1125 Colonel By Drive Ottawa ON K1S 5B6 Canada
| | - I. D. Blum
- Department of Neuroscience; Carleton University; 1125 Colonel By Drive Ottawa ON K1S 5B6 Canada
| | - A. Abizaid
- Department of Neuroscience; Carleton University; 1125 Colonel By Drive Ottawa ON K1S 5B6 Canada
| |
Collapse
|
25
|
Wiater MF, Li AJ, Dinh TT, Jansen HT, Ritter S. Leptin-sensitive neurons in the arcuate nucleus integrate activity and temperature circadian rhythms and anticipatory responses to food restriction. Am J Physiol Regul Integr Comp Physiol 2013; 305:R949-60. [PMID: 23986359 DOI: 10.1152/ajpregu.00032.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Previously, we investigated the role of neuropeptide Y and leptin-sensitive networks in the mediobasal hypothalamus in sleep and feeding and found profound homeostatic and circadian deficits with an intact suprachiasmatic nucleus. We propose that the arcuate nuclei (Arc) are required for the integration of homeostatic circadian systems, including temperature and activity. We tested this hypothesis using saporin toxin conjugated to leptin (Lep-SAP) injected into Arc in rats. Lep-SAP rats became obese and hyperphagic and progressed through a dynamic phase to a static phase of growth. Circadian rhythms were examined over 49 days during the static phase. Rats were maintained on a 12:12-h light-dark (LD) schedule for 13 days and, thereafter, maintained in continuous dark (DD). After the first 13 days of DD, food was restricted to 4 h/day for 10 days. We found that the activity of Lep-SAP rats was arrhythmic in DD, but that food anticipatory activity was, nevertheless, entrainable to the restricted feeding schedule, and the entrained rhythm persisted during the subsequent 3-day fast in DD. Thus, for activity, the circuitry for the light-entrainable oscillator, but not for the food-entrainable oscillator, was disabled by the Arc lesion. In contrast, temperature remained rhythmic in DD in the Lep-SAP rats and did not entrain to restricted feeding. We conclude that the leptin-sensitive network that includes the Arc is required for entrainment of activity by photic cues and entrainment of temperature by food, but is not required for entrainment of activity by food or temperature by photic cues.
Collapse
Affiliation(s)
- Michael F Wiater
- Programs in Neuroscience, Washington State University, Pullman, Washington
| | | | | | | | | |
Collapse
|
26
|
Kentish SJ, Wittert GA, Blackshaw LA, Page AJ. A chronic high fat diet alters the homologous and heterologous control of appetite regulating peptide receptor expression. Peptides 2013; 46:150-8. [PMID: 23792934 DOI: 10.1016/j.peptides.2013.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/04/2013] [Accepted: 06/04/2013] [Indexed: 10/26/2022]
Abstract
Leptin, ghrelin and neuropeptide W (NPW) modulate vagal afferent activity, which may underlie their appetite regulatory actions. High fat diet (HFD)-induced obesity induces changes in the plasma levels of these peptides and alters the expression of receptors on vagal afferents. We investigated homologous and heterologous receptor regulation by leptin, ghrelin and NPW. Mice were fed (12 weeks) a standard laboratory diet (SLD) or HFD. Nodose ganglia were cultured overnight in the presence or absence of each peptide. Leptin (LepR), ghrelin (GHS-R), NPW (GPR7) and cholecystokinin type-1 (CCK1R) receptor mRNA, and the plasma leptin, ghrelin and NPW levels were measured. SLD: leptin reduced LepR, GPR7, increased GHS-R and CCK1R mRNA; ghrelin increased LepR, GPR7, CCK1R, and decreased GHS-R. HFD: leptin decreased GHS-R and GPR7, ghrelin increased GHS-R and GPR7. NPW decreased all receptors except GPR7 which increased with HFD. Plasma leptin was higher and NPW lower in HFD. Thus, HFD-induced obesity disrupts inter-regulation of appetite regulatory receptors in vagal afferents.
Collapse
MESH Headings
- Animals
- Appetite/physiology
- Appetite Regulation/physiology
- Cells, Cultured
- Diet, High-Fat
- Female
- Ghrelin/blood
- Ghrelin/metabolism
- Leptin/blood
- Leptin/metabolism
- Mice
- Mice, Inbred C57BL
- Neuropeptides/blood
- Neuropeptides/metabolism
- Nodose Ganglion/cytology
- Nodose Ganglion/drug effects
- Obesity/blood
- RNA, Messenger
- Receptor, Cholecystokinin A/genetics
- Receptors, G-Protein-Coupled/biosynthesis
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Ghrelin/metabolism
- Receptors, Leptin/metabolism
- Receptors, Neuropeptide/biosynthesis
- Receptors, Neuropeptide/metabolism
- Vagus Nerve/metabolism
Collapse
Affiliation(s)
- Stephen J Kentish
- Nerve Gut Research Laboratory, Department of Medicine, University of Adelaide, Frome Road, Adelaide, SA 5005, Australia
| | | | | | | |
Collapse
|
27
|
Modulation of AgRP-neuronal function by SOCS3 as an initiating event in diet-induced hypothalamic leptin resistance. Proc Natl Acad Sci U S A 2013; 110:E697-706. [PMID: 23386726 DOI: 10.1073/pnas.1218284110] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic consumption of a fat-rich diet leads to attenuation of leptin signaling in hypothalamic neurons, a hallmark feature of cellular leptin resistance. To date, little is known about the temporal and spatial dysregulation of neuronal function under conditions of nutrient excess. We show that agouti-related protein (AgRP)-expressing neurons precede proopiomelanocortin neurons in developing diet-induced cellular leptin resistance. High-fat diet-induced up-regulation of suppressor of cytokine signaling-3 (SOCS3) occurs in AgRP neurons before proopiomelanocortin and other hypothalamic neurons. SOCS3 expression in AgRP neurons increases after 2 d of high-fat feeding, but reduces after switching to a low-fat diet for 1 d. Consistently, transgenic overexpression of SOCS3 in AgRP neurons produces metabolic phenotypes resembling those observed after short-term high-fat feeding. We further show that AgRP neurons are the predominant cell type situated outside the blood-brain barrier in the mediobasal hypothalamus. AgRP neurons are more responsive to low levels of circulating leptin, but they are also more prone to development of leptin resistance in response to a small increase in blood leptin concentrations. Collectively, these results suggest that AgRP neurons are able to sense slight changes in plasma metabolic signals, allowing them to serve as first-line responders to fluctuation of energy intake. Furthermore, modulation of SOCS3 expression in AgRP neurons may play a dynamic and physiological role in metabolic fine tuning in response to short-term changes of nutritional status.
Collapse
|
28
|
Bagnol D, Al-Shamma HA, Behan D, Whelan K, Grottick AJ. Diet-induced models of obesity (DIO) in rodents. ACTA ACUST UNITED AC 2012; Chapter 9:Unit 9.38.1-13. [PMID: 22470151 DOI: 10.1002/0471142301.ns0938s59] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Obesity results from a complex interplay between a susceptible genotype and an environment that both promotes increased caloric intake and enables sustained decreases in energy expenditure. One commonly employed approach to modeling obesity in preclinical species is the diet-induced obese (DIO) rodent. Here, theoretical and practical considerations for producing obese rodents via dietary manipulation, and for assessing drug-induced changes in food intake and body weight are described. Based on these considerations, a standardized protocol for diet-induced obesity in both mouse and rat is provided and sample data from these models are also described.
Collapse
|
29
|
Lamont EW, Patterson Z, Rodrigues T, Vallejos O, Blum ID, Abizaid A. Ghrelin-deficient mice have fewer orexin cells and reduced cFOS expression in the mesolimbic dopamine pathway under a restricted feeding paradigm. Neuroscience 2012; 218:12-9. [PMID: 22641088 DOI: 10.1016/j.neuroscience.2012.05.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 05/15/2012] [Accepted: 05/17/2012] [Indexed: 11/16/2022]
Abstract
Ghrelin is an orexigenic stomach peptide previously found to be important for the full display of anticipatory locomotor activity and hypothalamic neuronal activation that precedes a daily scheduled meal in mice. Ghrelin is also important for food-related motivation and seems to have direct effects in the mesocorticolimbic dopamine reward system. Here we hypothesized that neuronal activation in reward-related areas in anticipation of a scheduled meal could be mediated by elevated ghrelin induced by scheduled feeding, and therefore this would be attenuated in ghrelin receptor knock-out (GHSR KO) animals. We found that this was indeed the case for the ventral tegmental area and the shell, but not the core, of the nucleus accumbens. In addition, our results show a reduction in the proportion of activated orexin-immunoreactive (IR) neurons in GHSR KO animals in anticipation of the scheduled meal in comparison to the proportion of activated orexin neurons in wild type (WT) mice. Interestingly we observed that both GHSR and ghrelin KO mice had fewer orexin-IR cells than their WT littermates suggesting that lack of ghrelin or sensitivity to ghrelin may play a role in the development of the orexin system. Our data also suggest that ghrelin may mediate food anticipation, in part, by stimulating both the orexin system and the mesolimbic reward system.
Collapse
Affiliation(s)
- E W Lamont
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6. ewlamont@mac. com
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Mammals have an endogenous timing system in the suprachiasmatic nuclei (SCN) of the hypothalamic region of the brain. This internal clock system is composed of an intracellular feedback loop that drives the expression of molecular components and their constitutive protein products to oscillate over a period of about 24 h (hence the term 'circadian'). These circadian oscillations bring about rhythmic changes in downstream molecular pathways and physiological processes such as those involved in nutrition and metabolism. It is now emerging that the molecular components of the clock system are also found within the cells of peripheral tissues, including the gastrointestinal tract, liver and pancreas. The present review examines their role in regulating nutritional and metabolic processes. In turn, metabolic status and feeding cycles are able to feed back onto the circadian clock in the SCN and in peripheral tissues. This feedback mechanism maintains the integrity and temporal coordination between various components of the circadian clock system. Thus, alterations in environmental cues could disrupt normal clock function, which may have profound effects on the health and well-being of an individual.
Collapse
|
31
|
Maric T, Sedki F, Ronfard B, Chafetz D, Shalev U. A limited role for ghrelin in heroin self-administration and food deprivation-induced reinstatement of heroin seeking in rats. Addict Biol 2012; 17:613-22. [PMID: 21995653 DOI: 10.1111/j.1369-1600.2011.00396.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Food deprivation (FD) or restriction augments the locomotor activating and reinforcing effects of drugs of abuse. It has been proposed that these effects might be mediated by FD-induced increase in plasma levels of ghrelin, a 28-amino acid orexigenic peptide demonstrated to functionally interact with the mesolimbic dopaminergic system. However, a role for ghrelin has been demonstrated only with psychostimulant drugs and alcohol associated behaviors. We therefore examined the role of ghrelin in ongoing heroin self-administration and FD-induced reinstatement of extinguished heroin seeking. As expected, infusions of ghrelin [0.0, 1.5 and 3.0 µg/rat, intracerebroventricular (i.c.v.)] produced increases in breakpoints on a progressive ratio schedule of heroin reinforcement. In contrast, central administration of a ghrelin receptor antagonist, [D-Lys-3]-GHRP-6 (0.0, or 20.0 µg/rat, i.c.v.) had no effect on ongoing heroin self-administration under a fixed-ratio 1 schedule, or on FD-induced reinstatement of heroin seeking. These results suggest that signals mediated through ghrelin receptors play a limited role in FD-induced augmentation of heroin reinforcement and reinstatement of extinguished heroin seeking.
Collapse
Affiliation(s)
- Tia Maric
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Group de Recherche en neurobiologie comportementale, Concordia University, Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
32
|
Caimari A, Oliver P, Palou A. Adipose triglyceride lipase expression and fasting regulation are differently affected by cold exposure in adipose tissues of lean and obese Zucker rats. J Nutr Biochem 2011; 23:1041-50. [PMID: 21944063 DOI: 10.1016/j.jnutbio.2011.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 05/09/2011] [Accepted: 05/16/2011] [Indexed: 01/04/2023]
Abstract
Adipose triglyceride lipase (ATGL) hydrolyzes triacylglycerols to diacylglycerols in the first step of lipolysis, providing substrates for hormone-sensitive lipase (HSL). Here we studied whether ATGL messenger RNA (mRNA) and protein levels were affected by 24-h cold exposure in different white adipose tissue depots and in interscapular brown adipose tissue of lean and obese Zucker rats submitted to feeding and 14-h fasting conditions. HSL mRNA expression was also studied in selected depots. In both lean and obese rats, as a general trend, cold exposure increased ATGL mRNA and protein levels in the different adipose depots, except in the brown adipose tissue of lean animals, where a decrease was observed. In lean rats, cold exposure strongly improved fasting up-regulation of ATGL expression in all the adipose depots. Moreover, in response to fasting, in cold-exposed lean rats, there was a stronger positive correlation between circulating nonesterified fatty acids (NEFA) and ATGL mRNA levels in the adipose depots and a higher percentage increase of circulating NEFA in comparison with control animals not exposed to cold. In obese rats, fasting-induced up-regulation of ATGL was impaired and was not improved by cold. The effects of obesity and cold exposure on HSL mRNA expression were similar to those observed for ATGL, suggesting common regulatory mechanisms for both proteins. Thus, cold exposure increases ATGL expression and improves its fasting-up-regulation in adipose tissue of lean rats. In obese rats, cold exposure also increases ATGL expression but fails to improve its regulation by fasting, which could contribute to the increased difficulty for mobilizing lipids in these animals.
Collapse
Affiliation(s)
- Antoni Caimari
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, and CIBER de Fisiopatología de la Obesidad y Nutrición, Palma de Mallorca, Spain
| | | | | |
Collapse
|
33
|
Manzar D, Hussain ME. Leptin rhythmicity and its relationship with other rhythm markers. BIOL RHYTHM RES 2011. [DOI: 10.1080/09291011003759558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Hariri N, Gougeon R, Thibault L. A highly saturated fat-rich diet is more obesogenic than diets with lower saturated fat content. Nutr Res 2011; 30:632-43. [PMID: 20934605 DOI: 10.1016/j.nutres.2010.09.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 09/01/2010] [Accepted: 09/01/2010] [Indexed: 11/25/2022]
Abstract
The present study tested the hypothesis that a saturated fatty acid (SFA)-rich diet is more obesogenic than diets with lower SFA content. In 8 female Sprague-Dawley rats fed a low-SFA canola or a moderate-SFA lard-rich diets at 67% of energy for 26 days, body weight gain, final body weight, obesity index, and food and energy intake were comparable. Twenty-nine rats were fed canola or high-SFA butter-rich diets (67% of energy) or chow for 50 days; then high-fat feeding was followed by ad libitum low-fat feeding (27% of energy) for 28 days and by a food-restricted low-fat diet for 32 days. High-fat feeding resulted in a greater body weight gain (P < .04), final body weight (P < .04), and energy intake (P < .008) in butter-fed rats than in canola- and chow-fed controls, after 26 or 50 days. Ad libitum canola and butter low-fat diets or chow feeding resulted in similar weight change, whereas food-restricted low-fat diets led to comparable weight loss and final weight. Canola-fed animals adjusted their intake based on diet energy density, whereas lard and butter-fed animals failed to do so. Abdominal fat (P = .012) and plasma leptin (P = .005) were higher in chow-fed controls than in canola-fed rats, but comparable with those of butter-fed rats. Prone and resistant phenotypes were detected with high-fat feeding. In conclusion, only feeding the high-SFA butter-rich diet led to obesity development and failure to adjust intake based on the energy density and preserving body fat even after weight loss. The high availability of SFA-rich foods in today's obesogenic environment could contribute to develop and maintain obesity.
Collapse
Affiliation(s)
- Niloofar Hariri
- School of Dietetics and Human Nutrition, Macdonald campus of McGill University, Quebec, Canada
| | | | | |
Collapse
|
35
|
Abstract
Epidemiological studies have shown a positive relationship between dietary fat intake and obesity. Since rats and mice show a similar relationship, they are considered an appropriate model for studying dietary obesity. The present paper describes the history of using high-fat diets to induce obesity in animals, aims to clarify the consequences of changing the amount and type of dietary fats on weight gain, body composition and adipose tissue cellularity, and explores the contribution of genetics and sex, as well as the biochemical basis and the roles of hormones such as leptin, insulin and ghrelin in animal models of dietary obesity. The major factors that contribute to dietary obesity - hyperphagia, energy density and post-ingestive effects of the dietary fat - are discussed. Other factors that affect dietary obesity including feeding rhythmicity, social factors and stress are highlighted. Finally, we comment on the reversibility of high-fat diet-induced obesity.
Collapse
|
36
|
Del Bianco-Borges B, Cabral FJ, Franci CR. Co-expression of leptin and oestrogen receptors in the preoptic-hypothalamic area. J Neuroendocrinol 2010; 22:996-1003. [PMID: 20584107 DOI: 10.1111/j.1365-2826.2010.02046.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The interaction between the reproductive axis and energy balance suggests that leptin acts as a possible mediator. This hormone acts in the regulation of metabolism, feeding behaviour and reproduction. Animals homozygous for the gene 'ob' (ob/ob) are obese and infertile, and these effects are reversed after systemic administration of leptin. Thus, the present study aimed to determine: (i) whether cells that express leptin also express oestrogen receptors of type-alpha (ER-alpha) or -beta (ER-beta) in the medial preoptic area (MPOA) and in the arcuate (ARC), dorsomedial (DMH) and ventromedial hypothalamic nucleus and (ii) whether there is change in the gene and protein expression of leptin in these brain areas in ovariectomised (OVX) animals when oestrogen-primed. Wistar female rats with normal oestrous cycles or ovariectomised oestrogen-primed or vehicle (oil)-primed were utilised. To determine whether there was a co-expression, immunofluorescence was utilised for double staining. Confocal microscopy was used to confirm the co-expression. The technique of real-time polymerase chain reaction and western blotting were employed to analyse gene and protein expression, respectively. The results obtained showed co-expression of leptin and ER-alpha in the MPOA and in the DMH, as well as leptin and ER-beta in the MPOA, DMH and ARC. However, we did not detect leptin in the MPOA, ARC and DMH using western blotting and there was no statistical difference in leptin gene expression in the MPOA, DMH, ARC, pituitary or adipose tissue between OVX rats treated with oestrogen or vehicle. In conclusion, the results obtained in the present study confirm that the brain is also a source of leptin and reveal co-expression of oestrogen receptors and leptin in the same cells from areas related to reproductive function and feeding behaviour. Although these data corroborate the previous evidence obtained concerning the interaction between the action of brain leptin and reproductive function, the physiological relevance of this interaction remains uncertain and additional studies are necessary to elucidate the exact role of central leptin.
Collapse
Affiliation(s)
- B Del Bianco-Borges
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | | |
Collapse
|
37
|
Sukumaran S, Xue B, Jusko WJ, Dubois DC, Almon RR. Circadian variations in gene expression in rat abdominal adipose tissue and relationship to physiology. Physiol Genomics 2010; 42A:141-52. [PMID: 20682845 DOI: 10.1152/physiolgenomics.00106.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Circadian rhythms occur in all levels of organization from expression of genes to complex physiological processes. Although much is known about the mechanism of the central clock in the suprachiasmatic nucleus, the regulation of clocks present in peripheral tissues as well as the genes regulated by those clocks is still unclear. In this study, the circadian regulation of gene expression was examined in rat adipose tissue. A rich time series involving 54 animals euthanized at 18 time points within the 24-h cycle (12:12 h light-dark) was performed. mRNA expression was examined with Affymetrix gene array chips and quantitative real-time PCR, along with selected physiological measurements. Transcription factors involved in the regulation of central rhythms were examined, and 13 showed circadian oscillations. Mining of microarray data identified 190 probe sets that showed robust circadian oscillations. Circadian regulated probe sets were further parsed into seven distinct temporal clusters, with >70% of the genes showing maximum expression during the active/dark period. These genes were grouped into eight functional categories, which were examined within the context of their temporal expression. Circadian oscillations were also observed in plasma leptin, corticosterone, insulin, glucose, triglycerides, free fatty acids, and LDL cholesterol. Circadian oscillation in these physiological measurements along with the functional categorization of these genes suggests an important role for circadian rhythms in controlling various functions in white adipose tissue including adipogenesis, energy metabolism, and immune regulation.
Collapse
Affiliation(s)
- Siddharth Sukumaran
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | | | | | | | | |
Collapse
|
38
|
Caimari A, Oliver P, Keijer J, Palou A. Peripheral blood mononuclear cells as a model to study the response of energy homeostasis-related genes to acute changes in feeding conditions. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 14:129-41. [PMID: 20235874 DOI: 10.1089/omi.2009.0092] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Peripheral blood mononuclear cells (PBMCs) are readily accessible biological material and a potential tissue source to discover novel biomarkers of response to environmental exposures including nutrition. We analyzed whether PBMCs could reflect molecular changes that take place in response to different feeding conditions in key organs/tissues involved in energy homeostasis. We studied energy balance-related genes whose expression was altered in normoweight (control) rats and in diet-induced (cafeteria) obese rats in response to ad libitum feeding, 14-h fasting, and 6-h refeeding after fasting, using whole-genome microarray analysis. In PBMCs, the expression of the genes central to energy metabolism was altered by the feeding conditions. The number of affected genes was 75 in the control rats, but only 23 in the cafeteria obese rats. Most of these genes play a role in metabolic pathways regulated by nutritional changes, such as lipid metabolism (the metabolic pathway mainly reflected in blood cells), carbohydrate metabolism, central energy metabolism, respiratory chain/mitochondrial ATPase system, and food intake regulation. Importantly, our results showed a similar behavior to that of the mesenteric white adipose tissue. In conclusion, metabolic adaptations to acute changes in feeding conditions are reflected in the expression of genes central to energy homeostasis in PBMCs of normoweight rats, while response is impaired in cafeteria obese animals. The lower number of genes affected in obese animals indicates impaired nutritional regulation. PBMCs appear as a suitable potential model to characterize metabolic adaptations to food intake and body weight maintenance in experimental animals. These findings may also inform the development of future peripheral tissue models in the emerging field of clinical nutrigenomics.
Collapse
Affiliation(s)
- Antoni Caimari
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain
| | | | | | | |
Collapse
|
39
|
Sánchez J, Cladera MM, Llopis M, Palou A, Picó C. The different satiating capacity of CHO and fats can be mediated by different effects on leptin and ghrelin systems. Behav Brain Res 2010; 213:183-8. [PMID: 20450938 DOI: 10.1016/j.bbr.2010.04.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 04/28/2010] [Accepted: 04/28/2010] [Indexed: 12/31/2022]
Abstract
Leptin and ghrelin are known to be the main hormones involved in the control of food intake, with opposite effects. Here we aimed to assess whether changes in leptin and ghrelin systems can be involved in the different satiating capacities of carbohydrates (CHO) and fat. Adult male Wistar rats were studied under 24h fasting conditions and after 24h fasting followed by a 12h re-feeding period with 64 kcal of CHO or fat, consisting of a mixture of wheat starch and sucrose or bacon, respectively. Serum levels of leptin and ghrelin, and mRNA levels of leptin and ObRb in the retroperitoneal and inguinal adipose tissue and of NPY, POMC, ObRb and GSHR in the hypothalamus were measured. CHO re-feeding resulted in higher leptin mRNA expression levels in the retroperitoneal adipose tissue and in higher circulating leptin levels compared with those after fat re-feeding. Moreover, circulating ghrelin levels and ghrelin/leptin ratio were significantly higher after fat re-feeding compared with CHO re-feeding, and hypothalamic expression levels of ghrelin receptor increased after fat, but not after CHO, re-feeding. Hence, expression levels of hypothalamic neuropeptides involved in food intake control and regulated by these hormones, particularly the orexigenic NPY and the anorexigenic pro-opiomelanocortin (POMC)-derived alpha-melanocyte-stimulating hormone, were also differently affected by CHO and fat re-feeding, resulting in a significantly lower NPY/POMC ratio after CHO re-feeding than after fat re-feeding. In conclusion, different effects on the leptin and ghrelin systems can account, at least in part, for the lower satiating capacity of fat compared to CHO.
Collapse
Affiliation(s)
- Juana Sánchez
- Molecular Biology, Nutrition and Biotechnology (Nutrigenomics), University of the Balearic Islands, Carretera Valldemossa Km 7.5, Palma de Mallorca, Spain
| | | | | | | | | |
Collapse
|
40
|
García AP, Palou M, Priego T, Sánchez J, Palou A, Picó C. Moderate caloric restriction during gestation results in lower arcuate nucleus NPY- and alphaMSH-neurons and impairs hypothalamic response to fed/fasting conditions in weaned rats. Diabetes Obes Metab 2010; 12:403-13. [PMID: 20415688 DOI: 10.1111/j.1463-1326.2009.01174.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
AIM We aimed to characterize the developmental programming effects of moderate caloric restriction during early pregnancy on factors involved in hypothalamic control of energy balance. METHODS Twenty-five-days-old offspring Wistar rats from 20% caloric restricted dams (from 1 to 12 days of pregnancy) (CR) and from control dams were studied under fed and 12 h fasting conditions. Morphometric studies on arcuate nucleus (ARC) and determinations of circulating parameters and hypothalamic levels of neuropeptide Y (NPY), proopiomelanocortin (POMC), long-form leptin receptor (ObRb), insulin receptor (InsR) and suppressor of cytokine signalling-3 (SOCS-3) mRNA were performed. RESULTS CR animals did not show different body weight with respect to their controls, but presented higher food intake. They exhibited lower neuropeptide Y- and alpha-melanocyte-stimulating hormone-neurons (decreases of 18 and 13% in males, and 10 and 18% in females respectively) and lower total cells (decrease of 3% in males and 18% in females) in ARC. Under fed conditions, CR animals presented lower circulating leptin and ghrelin levels (decreases of 37 and 43% in males, and 15 and 34% in females respectively); furthermore, hypothalamic POMC, NPY (only in females), ObRb and InsR mRNA levels were reduced (39, 16 and 26% in males, and 112, 33, 61 and 56% in females), and those of SOCS-3 were increased (86% in males and 74% in females). Unlike control animals, under fasting conditions, ObRb, InsR and POMC mRNA levels did not decrease in CR females, and NPY mRNA decreased instead of increase in CR males. CONCLUSIONS Moderate caloric restriction during gestation affects offspring hypothalamic structure and function, impairing its response to fed/fasting conditions, which suggests a predisposition to insulin and leptin resistance.
Collapse
Affiliation(s)
- A P García
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics), University of Balearic Islands and CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain
| | | | | | | | | | | |
Collapse
|
41
|
Silver R, Balsam P. Oscillators entrained by food and the emergence of anticipatory timing behaviors. Sleep Biol Rhythms 2010; 8:120-136. [PMID: 21544255 PMCID: PMC3085253 DOI: 10.1111/j.1479-8425.2010.00438.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Circadian rhythms are adjusted to the external environment by the light-dark cycle via the suprachiasmatic nucleus, and to the internal environment of the body by multiple cues that derive from feeding/fasting. These cues determine the timing of sleep/wake cycles and all the activities associated with these states. We suggest that numerous sources of temporal information, including hormonal cues such as corticoids, insulin, and ghrelin, as well as conditioned learned responses determined by the temporal relationships between photic and feeding/fasting signals, can determine the timing of regularly recurring circadian responses. We further propose that these temporal signals can act additively to modulate the pattern of daily activity. Based on such reasoning, we describe the rationale and methodology for separating the influences of these diverse sources of temporal information. The evidence indicates that there are individual differences in sensitivity to internal and external signals that vary over circadian time, time since the previous meal, time until the next meal, or with duration of food deprivation. All of these cues are integrated in sites and circuits modulating physiology and behavior. Individuals detect changes in internal and external signals, interpret those changes as "hunger," and adjust their physiological responses and activity levels accordingly.
Collapse
Affiliation(s)
- Rae Silver
- Department of Psychology, Barnard College, New York City, New York, USA
| | | |
Collapse
|
42
|
Depoortere I. Targeting the ghrelin receptor to regulate food intake. ACTA ACUST UNITED AC 2009; 156:13-23. [PMID: 19362579 DOI: 10.1016/j.regpep.2009.04.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 04/05/2009] [Indexed: 01/28/2023]
Affiliation(s)
- Inge Depoortere
- Centre for Gastroenterological Research, Gasthuisberg, O&N, box 701, B-3000 Leuven, Belgium.
| |
Collapse
|
43
|
Stomach ghrelin-secreting cells as food-entrainable circadian clocks. Proc Natl Acad Sci U S A 2009; 106:13582-7. [PMID: 19633195 DOI: 10.1073/pnas.0906426106] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Increases in arousal and activity in anticipation of a meal, termed "food anticipatory activity" (FAA), depend on circadian food-entrainable oscillators (FEOs), whose locations and output signals have long been sought. It is known that ghrelin is secreted in anticipation of a regularly scheduled mealtime. We show here that ghrelin administration increases locomotor activity in nondeprived animals in the absence of food. In mice lacking ghrelin receptors, FAA is significantly reduced. Impressively, the cumulative rise of activity before food presentation closely approximates a Gaussian function (r = 0.99) for both wild-type and ghrelin receptor knockout animals, with the latter having a smaller amplitude. For both groups, once an animal begins its daily anticipatory bout, it keeps running until the usual time of food availability, indicating that ghrelin affects response threshold. Oxyntic cells coexpress ghrelin and the circadian clock proteins PER1 and PER2. The expression of PER1, PER2, and ghrelin is rhythmic in light-dark cycles and in constant darkness with ad libitum food and after 48 h of food deprivation. In behaviorally arrhythmic-clock mutant mice, unlike control animals, there is no evidence of a premeal decrease in oxyntic cell ghrelin. Rhythmic ghrelin and PER expression are synchronized to prior feeding, and not to photic schedules. We conclude that oxyntic gland cells of the stomach contain FEOs, which produce a timed ghrelin output signal that acts widely at both brain and peripheral sites. It is likely that other FEOs also produce humoral signals that modulate FAA.
Collapse
|
44
|
Effects of fasting and refeeding on body mass, thermogenesis and serum leptin in Brandt's voles (Lasiopodomys brandtii). J Therm Biol 2009. [DOI: 10.1016/j.jtherbio.2009.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Kobashi M, Yanagihara M, Fujita M, Mitoh Y, Matsuo R. Fourth ventricular administration of ghrelin induces relaxation of the proximal stomach in the rat. Am J Physiol Regul Integr Comp Physiol 2009; 296:R217-23. [DOI: 10.1152/ajpregu.00878.2007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of fourth ventricular administration of ghrelin on motility of the proximal stomach were examined in anesthetized rats. Intragastric pressure (IGP) was measured using a balloon situated in the proximal part of the stomach. Administration of ghrelin into the fourth ventricle induced relaxation of the proximal stomach in a dose-dependent manner. Significant reduction of IGP was observed at doses of 3, 10, or 30 pmol. The administration of ghrelin (10 or 30 pmol) with growth hormone secretagogue receptor (GHS-R) antagonist ([d-Lys3] GHRP-6; 1 nmol) into the fourth ventricle did not induce a significant change in IGP. The sole administration of [d-Lys3] GHRP-6 also did not induce a significant change in IGP. Bilateral sectioning of the vagi at the cervical level abolished the relaxation induced by the administration of ghrelin (10 or 30 pmol) into the fourth ventricle, suggesting that relaxation induced by ghrelin is mediated by vagal preganglionic neurons. Microinjections of ghrelin (200 fmol) into the caudal part of the dorsal vagal complex (DVC) induced obvious relaxation of the proximal stomach. Similar injections into the intermediate part of the DVC did not induce significant change. Dose-response analyses revealed that the microinjection of 2 fmol of ghrelin into the caudal DVC significantly reduced IGP. These results revealed that ghrelin induced relaxation in the proximal stomach via GHS-R situated in the caudal DVC.
Collapse
|
46
|
Priego T, Sánchez J, Picó C, Palou A. Sex-associated differences in the leptin and ghrelin systems related with the induction of hyperphagia under high-fat diet exposure in rats. Horm Behav 2009; 55:33-40. [PMID: 18718472 DOI: 10.1016/j.yhbeh.2008.07.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 07/21/2008] [Accepted: 07/21/2008] [Indexed: 10/21/2022]
Abstract
Leptin and ghrelin are known to be main hormones involved in the control of food intake, with opposing effects. Here we have explored whether changes in the leptin and ghrelin system are involved in the long-term effects of high-fat (HF) diet feeding in rats and whether sex-associated differences exist. Male and female Wistar rats were fed until the age of 6 months with a normal-fat (NF) or an HF-diet. Food intake and body weight were followed. Gastric and serum levels of leptin and ghrelin, and mRNA levels of leptin (in stomach and adipose tissue), ghrelin (in stomach), and NPY, POMC, and leptin and ghrelin receptors (OB-Rb and GHS-R) (in the hypothalamus) were measured. In both males and females, total caloric intake and body weight were greater under the HF-diet feeding. In females, circulating ghrelin levels and leptin mRNA expression in the stomach were higher under HF-diet. HF-diet feeding also resulted in higher hypothalamic NPY/POMC mRNA levels, more marked in females, and in lower OB-Rb mRNA levels, more marked in males. In addition, in females, serum ghrelin levels correlated positively with hypothalamic NPY mRNA levels, and these with caloric intake. In males, hypothalamic OB-Rb mRNA levels correlated positively with POMC mRNA levels and these correlated negatively with caloric intake and with body weight. These data reflect differences between sexes in the effects of HF-diet feeding on food intake control systems, suggesting an impairment of the anorexigenic leptin-POMC system in males and an over-stimulation of the orexigenic ghrelin-NPY system in females.
Collapse
Affiliation(s)
- Teresa Priego
- Laboratory of Molecular Biology, University of the Balearic Islands and CIBER Fisiopatología de la Obesidad y Nutrición, Palma de Mallorca, Spain
| | | | | | | |
Collapse
|
47
|
Inhoff T, Mönnikes H, Noetzel S, Stengel A, Goebel M, Dinh QT, Riedl A, Bannert N, Wisser AS, Wiedenmann B, Klapp BF, Taché Y, Kobelt P. Desacyl ghrelin inhibits the orexigenic effect of peripherally injected ghrelin in rats. Peptides 2008; 29:2159-68. [PMID: 18938204 PMCID: PMC2586396 DOI: 10.1016/j.peptides.2008.09.014] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 09/18/2008] [Accepted: 09/19/2008] [Indexed: 12/22/2022]
Abstract
Studies showed that the metabolic unlike the neuroendocrine effects of ghrelin could be abrogated by co-administered unacylated ghrelin. The aim was to investigate the interaction between ghrelin and desacyl ghrelin administered intraperitoneally on food intake and neuronal activity (c-Fos) in the arcuate nucleus in non-fasted rats. Ghrelin (13 microg/kg) significantly increased food intake within the first 30 min post-injection. Desacyl ghrelin at 64 and 127 microg/kg injected simultaneously with ghrelin abolished the stimulatory effect of ghrelin on food intake. Desacyl ghrelin alone at both doses did not alter food intake. Both doses of desacyl ghrelin injected separately in the light phase had no effects on food intake when rats were fasted for 12h. Ghrelin and desacyl ghrelin (64 microg/kg) injected alone increased the number of Fos positive neurons in the arcuate nucleus compared to vehicle. The effect on neuronal activity induced by ghrelin was significantly reduced when injected simultaneously with desacyl ghrelin. Double labeling revealed that nesfatin-1 immunoreactive neurons in the arcuate nucleus are activated by simultaneous injection of ghrelin and desacyl ghrelin. These results suggest that desacyl ghrelin suppresses ghrelin-induced food intake by curbing ghrelin-induced increased neuronal activity in the arcuate nucleus and recruiting nesfatin-1 immunopositive neurons.
Collapse
Affiliation(s)
- Tobias Inhoff
- Department of Medicine, Division Hepatology, Gastroenterology, and Endocrinology, Charité - Universitätsmedizin Berlin, Campus Virchow, Berlin, Germany
| | - Hubert Mönnikes
- Department of Medicine and Institute of Neurogastroenterology, Martin-Luther-Hospital, Berlin, Germany
| | - Steffen Noetzel
- Department of Medicine, Division Hepatology, Gastroenterology, and Endocrinology, Charité - Universitätsmedizin Berlin, Campus Virchow, Berlin, Germany
| | - Andreas Stengel
- Department of Medicine, CURE Digestive Diseases Research Center, Center for Neurobiology of Stress, Digestive Diseases Division UCLA, and VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Miriam Goebel
- Department of Medicine, CURE Digestive Diseases Research Center, Center for Neurobiology of Stress, Digestive Diseases Division UCLA, and VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Q. Thai Dinh
- Department of Medicine, Division Psychosomatic Medicine and Psychotherapy; Charité, Campus Mitte; Universitätsmedizin Berlin, Germany
| | - Andrea Riedl
- Department of Medicine, Division Psychosomatic Medicine and Psychotherapy; Charité, Campus Mitte; Universitätsmedizin Berlin, Germany
| | | | - Anna-Sophia Wisser
- Department of Medicine, Division Hepatology, Gastroenterology, and Endocrinology, Charité - Universitätsmedizin Berlin, Campus Virchow, Berlin, Germany
| | - Bertram Wiedenmann
- Department of Medicine, Division Hepatology, Gastroenterology, and Endocrinology, Charité - Universitätsmedizin Berlin, Campus Virchow, Berlin, Germany
| | - Burghard F. Klapp
- Department of Medicine, Division Psychosomatic Medicine and Psychotherapy; Charité, Campus Mitte; Universitätsmedizin Berlin, Germany
| | - Yvette Taché
- Department of Medicine, CURE Digestive Diseases Research Center, Center for Neurobiology of Stress, Digestive Diseases Division UCLA, and VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Peter Kobelt
- Department of Medicine, Division Hepatology, Gastroenterology, and Endocrinology, Charité - Universitätsmedizin Berlin, Campus Virchow, Berlin, Germany
- Department of Medicine, Division Psychosomatic Medicine and Psychotherapy; Charité, Campus Mitte; Universitätsmedizin Berlin, Germany
| |
Collapse
|
48
|
Abstract
OBJECTIVE Fasting-induced lipolysis becomes less effective with age. We have studied whether nutritional regulation of adipose triglyceride lipase (ATGL)--with an important role in lipolysis in low energy states--is affected by age. DESIGN Wistar rats of different ages (from 1 to 13 months) were distributed in control and fasted groups (14 h-food deprivation). ATGL mRNA expression was measured in different adipose depots at different ages and in only one depot at 13 months by reverse transcription (RT)-PCR. ATGL protein levels were determined at 3 and 7 months (not at 13 months) by western blot. Nonesterified fatty acid (NEFA), insulin and leptin levels were assessed in serum by enzymatic assays. RESULTS ATGL expression was dependent on regional fat distribution, with higher levels in brown than in white adipose tissue depots; and was affected by age: ATGL mRNA was increased with age in the brown adipose tissue and was decreased in two of the studied white depots, the inguinal and retroperitoneal, not being affected in the epididymal and mesenteric. Age also affected ATGL nutritional regulation: fasting increased ATGL gene expression and protein levels in the different white adipose depots of the youngest rats (up to the age of 5 months), whereas there was no change in the oldest rats studied (7 and 13-months old). This was in agreement with the pattern of NEFA levels, which did not increase in serum of fasted rats in the oldest animals, whereas other homeostatic parameters, such as insulin and leptin, responded to fasting independently of age. ATGL expressed by brown adipose tissue was not affected by feeding conditions at any age. CONCLUSION Nutritional regulation of ATGL expression in white adipose tissue is impaired with age, which could contribute to the increased difficulty for mobilizing lipids when animals are exposed to nutritional stress such as fasting.
Collapse
|
49
|
Kobeissy FH, Jeung JA, Warren MW, Geier JE, Gold MS. Changes in leptin, ghrelin, growth hormone and neuropeptide-Y after an acute model of MDMA and methamphetamine exposure in rats. Addict Biol 2008; 13:15-25. [PMID: 17910739 DOI: 10.1111/j.1369-1600.2007.00083.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Club drug abuse is a growing problem in the United States. Beyond addiction and toxicity are endocrine effects which are not well characterized. Specifically, the changes in appetite following exposure to drugs of abuse are an interesting but poorly understood phenomenon. Serum hormones such as leptin, ghrelin, growth hormone (GH), and neuropeptide-Y (NP-Y) are known to affect appetite, but have not been studied extensively with drugs of abuse. In this work, we examine the effects of club drugs 3,4-methylenedioxymethamphetamine (MDMA) (ecstasy) and methamphetamine (METH) (doses of 5, 20 and 40 mg/kg) on serum concentrations of these hormones in adult male Sprague-Dawley rats 6, 12, 24 and 48 hours after drug administration. In a dose-dependent manner, MDMA was shown to cause transient significant decreases in serum leptin and GH followed by a base line recovery after 24 hours. Conversely, serum ghrelin increased and normalized after 24 hours. Interestingly, serum NP-Y showed a steady decrease in both treatment of MDMA and METH at different time points and dosages. In humans, abuse of these drugs reduces eating. As evident from these data, acute administration of METH and MDMA had significant effects on different serum hormone levels involved in appetite regulation. Future studies should be performed to see how chronic, low dose drug administration would affect hormone levels and try to answer questions about the physiological mechanisms involved in the anorexic paradigm observed in drug use.
Collapse
Affiliation(s)
- Firas H Kobeissy
- University of Florida College of Medicine, Gainesville, FL 32610, USA.
| | | | | | | | | |
Collapse
|
50
|
Sönmez MF, Ozan E. Determination of ghrelin immunoreactivity in the rat stomach after fasting and refeeding. Acta Histochem 2007; 109:193-9. [PMID: 17367847 DOI: 10.1016/j.acthis.2007.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 02/02/2007] [Accepted: 02/07/2007] [Indexed: 11/17/2022]
Abstract
Ghrelin is a recently discovered hormone secreted by cells of the stomach. The aim of this study was to investigate fasting and refeeding induced alterations on ghrelin immunolabelling of cells of the stomach. Thirty-six adult male Wistar rats were used in this study. Rats were divided into six groups. Group I: control group; Group II: rats fasted for 7 days; Group III: rats fed for 1 day after 7 days of fasting; Group IV: rats fed for 3 days after 7 days of fasting; Group V: rats fed for 5 days after 7 days of fasting; Group VI: rats fed for 7 days after 7 days of fasting. At the end of the experiment, rats were sacrificed and stomach tissues were processed for imunohistochemistry to localize ghrelin. Ghrelin-immunopositive cells were detected only in the mucosal lining of the stomach. After fasting for 7 days, the number of ghrelin-immunopositive cells increased significantly compared to the control rats. Following refeeding, the number of ghrelin-immunoreactive cells was reduced to a level comparable to the controls. Therefore, fasting and refeeding after fasting were observed to result in changes in ghrelin immunoreactivity in the cells of the stomach. We conclude that ghrelin is highly expressed in the stomach and that fasting increases the expression of ghrelin in the stomach, but this expression decreases after refeeding. Our results indicate that regulation of ghrelin is a process probably involved in the long-term control of nutritional states.
Collapse
Affiliation(s)
- Mehmet Fatih Sönmez
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, 38039 Kayseri, Turkey.
| | | |
Collapse
|