1
|
Tabassum S, Wu S, Lee CH, Yang BSK, Gusdon AM, Choi HA, Ren XS. Mitochondrial-targeted therapies in traumatic brain injury: From bench to bedside. Neurotherapeutics 2025; 22:e00515. [PMID: 39721917 DOI: 10.1016/j.neurot.2024.e00515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity and mortality worldwide, with limited effective therapeutic options currently available. Recent research has highlighted the pivotal role of mitochondrial dysfunction in the pathophysiology of TBI, making mitochondria an attractive target for therapeutic intervention. This review comprehensively examines advancements in mitochondrial-targeted therapies for TBI, bridging the gap from basic research to clinical applications. We discuss the underlying mechanisms of mitochondrial damage in TBI, including oxidative stress, impaired bioenergetics, mitochondrial dynamics, and apoptotic pathways. Furthermore, we highlight the complex interplay between mitochondrial dysfunction, inflammation, and blood-brain barrier (BBB) integrity, elucidating how these interactions exacerbate injury and impede recovery. We also evaluate various preclinical studies exploring pharmacological agents, gene therapy, and novel drug delivery systems designed to protect and restore mitochondrial function. Clinical trials and their outcomes are assessed to evaluate the translational potential of mitochondrial-targeted therapies in TBI. By integrating findings from bench to bedside, this review emphasizes promising therapeutic avenues and addresses remaining challenges. It also provides guidance for future research to pave the way for innovative treatments that improve patient outcomes in TBI.
Collapse
Affiliation(s)
- Sidra Tabassum
- Novel Treatments for Acute Brain Injury Institute, Texas Medical Center, TX, USA; Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Silin Wu
- Novel Treatments for Acute Brain Injury Institute, Texas Medical Center, TX, USA; Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Chang-Hun Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Bosco Seong Kyu Yang
- Novel Treatments for Acute Brain Injury Institute, Texas Medical Center, TX, USA; Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Aaron M Gusdon
- Novel Treatments for Acute Brain Injury Institute, Texas Medical Center, TX, USA; Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Huimahn A Choi
- Novel Treatments for Acute Brain Injury Institute, Texas Medical Center, TX, USA; Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Xuefang S Ren
- Novel Treatments for Acute Brain Injury Institute, Texas Medical Center, TX, USA; Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
2
|
Chen Y, Li Z, Zhang H, Chen H, Hao J, Liu H, Li X. Mitochondrial metabolism and targeted treatment strategies in ischemic-induced acute kidney injury. Cell Death Discov 2024; 10:69. [PMID: 38341438 DOI: 10.1038/s41420-024-01843-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Ischemia-reperfusion injury (IRI) is a common cause of acute kidney injury (AKI). The kidney is susceptible to IRI under several clinical conditions, including hypotension, sepsis, and surgical procedures, such as partial nephrectomy and kidney transplantation. Extensive research has been conducted on the mechanism and intervention strategies of renal IRI in past decades; however, the complex pathophysiology of IRI-induced AKI (IRI-AKI) is not fully understood, and there remains a lack of effective treatments for AKI. Renal IRI involves several processes, including reactive oxygen species (ROS) production, inflammation, and apoptosis. Mitochondria, the centers of energy metabolism, are increasingly recognized as substantial contributors to the early phases of IRI. Multiple mitochondrial lesions have been observed in the renal tubular epithelial cells (TECs) of IRI-AKI mice, and damaged or dysfunctional mitochondria are toxic to the cells because they produce ROS and release cell death factors, resulting in TEC apoptosis. In this review, we summarize the recent advances in the mitochondrial pathology in ischemic AKI and highlight promising therapeutic approaches targeting mitochondrial dysfunction to prevent or treat human ischemic AKI.
Collapse
Affiliation(s)
- Yongming Chen
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Zixian Li
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Hongyong Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhan-jiang Central Hospital, Zhanjiang, 524001, China
| | - Huixia Chen
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Junfeng Hao
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Huafeng Liu
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Xiaoyu Li
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
3
|
Nasb M, Tao W, Chen N. Alzheimer's Disease Puzzle: Delving into Pathogenesis Hypotheses. Aging Dis 2024; 15:43-73. [PMID: 37450931 PMCID: PMC10796101 DOI: 10.14336/ad.2023.0608] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disease characterized by both amnestic and non-amnestic clinical manifestations. It accounts for approximately 60-70% of all dementia cases worldwide. With the increasing number of AD patients, elucidating underlying mechanisms and developing corresponding interventional strategies are necessary. Hypotheses about AD such as amyloid cascade, Tau hyper-phosphorylation, neuroinflammation, oxidative stress, mitochondrial dysfunction, cholinergic, and vascular hypotheses are not mutually exclusive, and all of them play a certain role in the development of AD. The amyloid cascade hypothesis is currently the most widely studied; however, other hypotheses are also gaining support. This article summarizes the recent evidence regarding major pathological hypotheses of AD and their potential interplay, as well as the strengths and weaknesses of each hypothesis and their implications for the development of effective treatments. This could stimulate further studies and promote the development of more effective therapeutic strategies for AD.
Collapse
Affiliation(s)
| | | | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| |
Collapse
|
4
|
Vemireddy L, Bansal S. Contrast-Associated Acute Kidney Injury: Definitions, Epidemiology, Pathophysiology, and Implications. Interv Cardiol Clin 2023; 12:489-498. [PMID: 37673493 DOI: 10.1016/j.iccl.2023.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Acute kidney injury (AKI) is a common occurrence after contrast media administration. Hemodynamic changes, direct tubular injury, and reactive oxygen species are the proposed mechanisms involved in AKI. However, in most scenarios, it is not possible to establish causality despite extensive clinical evaluation, therefore, contrast-associated AKI (CA-AKI) has become a widely accepted term to define AKI postcontrast. CA-AKI is associated with worse clinical outcomes including cardiovascular events and mortality; however, discussions are ongoing whether CA-AKI is a marker of an increased risk of adverse outcomes or a mediator of such outcomes.
Collapse
Affiliation(s)
- Lalith Vemireddy
- Division of Nephrology, Department of Medicine, The University of Texas Health at San Antonio, 7703 Floyd Curl Drive, MSC 7882, San Antonio, TX 78229, USA.
| | - Shweta Bansal
- Division of Nephrology, The University of Texas Health at San Antonio, San Antonio, TX, USA. https://twitter.com/SBansalNeph
| |
Collapse
|
5
|
Colpman P, Dasgupta A, Archer SL. The Role of Mitochondrial Dynamics and Mitotic Fission in Regulating the Cell Cycle in Cancer and Pulmonary Arterial Hypertension: Implications for Dynamin-Related Protein 1 and Mitofusin2 in Hyperproliferative Diseases. Cells 2023; 12:1897. [PMID: 37508561 PMCID: PMC10378656 DOI: 10.3390/cells12141897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Mitochondria, which generate ATP through aerobic respiration, also have important noncanonical functions. Mitochondria are dynamic organelles, that engage in fission (division), fusion (joining) and translocation. They also regulate intracellular calcium homeostasis, serve as oxygen-sensors, regulate inflammation, participate in cellular and organellar quality control and regulate the cell cycle. Mitochondrial fission is mediated by the large GTPase, dynamin-related protein 1 (Drp1) which, when activated, translocates to the outer mitochondrial membrane (OMM) where it interacts with binding proteins (Fis1, MFF, MiD49 and MiD51). At a site demarcated by the endoplasmic reticulum, fission proteins create a macromolecular ring that divides the organelle. The functional consequence of fission is contextual. Physiological fission in healthy, nonproliferating cells mediates organellar quality control, eliminating dysfunctional portions of the mitochondria via mitophagy. Pathological fission in somatic cells generates reactive oxygen species and triggers cell death. In dividing cells, Drp1-mediated mitotic fission is critical to cell cycle progression, ensuring that daughter cells receive equitable distribution of mitochondria. Mitochondrial fusion is regulated by the large GTPases mitofusin-1 (Mfn1) and mitofusin-2 (Mfn2), which fuse the OMM, and optic atrophy 1 (OPA-1), which fuses the inner mitochondrial membrane. Mitochondrial fusion mediates complementation, an important mitochondrial quality control mechanism. Fusion also favors oxidative metabolism, intracellular calcium homeostasis and inhibits cell proliferation. Mitochondrial lipids, cardiolipin and phosphatidic acid, also regulate fission and fusion, respectively. Here we review the role of mitochondrial dynamics in health and disease and discuss emerging concepts in the field, such as the role of central versus peripheral fission and the potential role of dynamin 2 (DNM2) as a fission mediator. In hyperproliferative diseases, such as pulmonary arterial hypertension and cancer, Drp1 and its binding partners are upregulated and activated, positing mitochondrial fission as an emerging therapeutic target.
Collapse
Affiliation(s)
- Pierce Colpman
- Department of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Asish Dasgupta
- Department of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Stephen L Archer
- Department of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
6
|
Jiang L, Li J, Reilly S, Xin H, Guo N, Zhang X. Role of organellar Ca2+-activated K+ channels in disease development. Life Sci 2023; 316:121433. [PMID: 36708987 DOI: 10.1016/j.lfs.2023.121433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023]
Abstract
The organellar Ca2+-activated K+ channels share a similar ability to transfer the alteration of Ca2+ concentration to membrane conductance of potassium. Multiple effects of Ca2+-activated K+ channels on cell metabolism and complex signaling pathways during organ development have been explored. The organellar Ca2+-activated K+ channels are able to control the ionic equilibrium and are always associated with oxidative stress in different organelles and the whole cells. Some drugs targeting Ca2+-activated K+ channels have been tested for various diseases in clinical trials. In this review, the known roles of organellar Ca2+-activated K+ channels were described, and their effects on different diseases, particularly on diabetes, cardiovascular diseases, and neurological diseases were discussed. It was attempted to summarize the currently known operational modes with the involvement of organellar Ca2+-activated K+ channels. This review may assist scholars to more comprehensively understand organellar Ca2+-activated K+ channels and related diseases.
Collapse
Affiliation(s)
- Lan Jiang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiawei Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Nan Guo
- Department of Pharmacy, Minhang hospital, Fudan University, Shanghai, China.
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Vos M, Klein C, Hicks AA. Role of Ceramides and Sphingolipids in Parkinson's Disease. J Mol Biol 2023:168000. [PMID: 36764358 DOI: 10.1016/j.jmb.2023.168000] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/24/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Sphingolipids, including the basic ceramide, are a subset of bioactive lipids that consist of many different species. Sphingolipids are indispensable for proper neuronal function, and an increasing number of studies have emerged on the complexity and importance of these lipids in (almost) all biological processes. These include regulation of mitochondrial function, autophagy, and endosomal trafficking, which are affected in Parkinson's disease (PD). PD is the second most common neurodegenerative disorder and is characterized by the loss of dopaminergic neurons. Currently, PD cannot be cured due to the lack of knowledge of the exact pathogenesis. Nonetheless, important advances have identified molecular changes in mitochondrial function, autophagy, and endosomal function. Furthermore, recent studies have identified ceramide alterations in patients suffering from PD, and in PD models, suggesting a critical interaction between sphingolipids and related cellular processes in PD. For instance, autosomal recessive forms of PD cause mitochondrial dysfunction, including energy production or mitochondrial clearance, that is directly influenced by manipulating sphingolipids. Additionally, endo-lysosomal recycling is affected by genes that cause autosomal dominant forms of the disease, such as VPS35 and SNCA. Furthermore, endo-lysosomal recycling is crucial for transporting sphingolipids to different cellular compartments where they will execute their functions. This review will discuss mitochondrial dysfunction, defects in autophagy, and abnormal endosomal activity in PD and the role sphingolipids play in these vital molecular processes.
Collapse
Affiliation(s)
- Melissa Vos
- Institute of Neurogenetics, University of Luebeck, 23562 Luebeck, Germany.
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, 23562 Luebeck, Germany
| | - Andrew A Hicks
- Institute for Biomedicine (affiliated to the University of Luebeck, Luebeck, Germany), Eurac Research, 39100 Bolzano, Italy. https://twitter.com/andrewhicks
| |
Collapse
|
8
|
Patel A, Simkulet M, Maity S, Venkatesan M, Matzavinos A, Madesh M, Alevriadou BR. The mitochondrial Ca 2+ uniporter channel synergizes with fluid shear stress to induce mitochondrial Ca 2+ oscillations. Sci Rep 2022; 12:21161. [PMID: 36476944 PMCID: PMC9729216 DOI: 10.1038/s41598-022-25583-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The mitochondrial calcium (Ca2+) uniporter (MCU) channel is responsible for mitochondrial Ca2+ influx. Its expression was found to be upregulated in endothelial cells (ECs) under cardiovascular disease conditions. Since the role of MCU in regulating cytosolic Ca2+ homeostasis in ECs exposed to shear stress (SS) is unknown, we studied mitochondrial Ca2+ dynamics (that is known to decode cytosolic Ca2+ signaling) in sheared ECs. To understand cause-and-effect, we ectopically expressed MCU in ECs. A higher percentage of MCU-transduced ECs exhibited mitochondrial Ca2+ transients/oscillations, and at higher frequency, under SS compared to sheared control ECs. Transients/oscillations correlated with mitochondrial reactive oxygen species (mROS) flashes and mitochondrial membrane potential (ΔΨm) flickers, and depended on activation of the mechanosensitive Piezo1 channel and the endothelial nitric oxide synthase (eNOS). A positive feedback loop composed of mitochondrial Ca2+ uptake/mROS flashes/ΔΨm flickers and endoplasmic reticulum Ca2+ release, in association with Piezo1 and eNOS, provided insights into the mechanism by which SS, under conditions of high MCU activity, may shape vascular EC energetics and function.
Collapse
Affiliation(s)
- Akshar Patel
- grid.273335.30000 0004 1936 9887Vascular Mechanobiology Laboratory, Department of Biomedical Engineering, and Center for Cell, Gene, and Tissue Engineering, University at Buffalo – The State University of New York, Buffalo, NY 14260 USA
| | - Matthew Simkulet
- grid.273335.30000 0004 1936 9887Vascular Mechanobiology Laboratory, Department of Biomedical Engineering, and Center for Cell, Gene, and Tissue Engineering, University at Buffalo – The State University of New York, Buffalo, NY 14260 USA
| | - Soumya Maity
- grid.267309.90000 0001 0629 5880Center for Mitochondrial Medicine, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229 USA
| | - Manigandan Venkatesan
- grid.267309.90000 0001 0629 5880Center for Mitochondrial Medicine, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229 USA
| | - Anastasios Matzavinos
- grid.7870.80000 0001 2157 0406Institute for Mathematical and Computational Engineering, Pontifical Catholic University of Chile, Santiago, Chile
| | - Muniswamy Madesh
- grid.267309.90000 0001 0629 5880Center for Mitochondrial Medicine, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229 USA
| | - B. Rita Alevriadou
- grid.273335.30000 0004 1936 9887Vascular Mechanobiology Laboratory, Department of Biomedical Engineering, and Center for Cell, Gene, and Tissue Engineering, University at Buffalo – The State University of New York, Buffalo, NY 14260 USA
| |
Collapse
|
9
|
Structural characterization of the mitochondrial Ca 2+ uniporter provides insights into Ca 2+ uptake and regulation. iScience 2021; 24:102895. [PMID: 34401674 PMCID: PMC8353469 DOI: 10.1016/j.isci.2021.102895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The mitochondrial uniporter is a Ca2+-selective ion-conducting channel in the inner mitochondrial membrane that is involved in various cellular processes. The components of this uniporter, including the pore-forming membrane subunit MCU and the modulatory subunits MCUb, EMRE, MICU1, and MICU2, have been identified in recent years. Previously, extensive studies revealed various aspects of uniporter activities and proposed multiple regulatory models of mitochondrial Ca2+ uptake. Recently, the individual auxiliary components of the uniporter and its holocomplex have been structurally characterized, providing the first insight into the component structures and their spatial relationship within the context of the uniporter. Here, we review recent uniporter structural studies in an attempt to establish an architectural framework, elucidating the mechanism that governs mitochondrial Ca2+ uptake and regulation, and to address some apparent controversies. This information could facilitate further characterization of mitochondrial Ca2+ permeation and a better understanding of uniporter-related disease conditions. The uniporter contains multiple subunits regulating various cellular processes Significant structural progresses have been made for the holo-complex of uniporter The holo-complex structures have inspired to propose several regulatory models
Collapse
|
10
|
Danylovych HV, Chunikhin AY, Danylovych YV, Kosterin SO. Application of petri nets methodology to determine biophysicochemical parameters of mitochondria functioning. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.03.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
11
|
Královičová J, Borovská I, Pengelly R, Lee E, Abaffy P, Šindelka R, Grutzner F, Vořechovský I. Restriction of an intron size en route to endothermy. Nucleic Acids Res 2021; 49:2460-2487. [PMID: 33550394 PMCID: PMC7969005 DOI: 10.1093/nar/gkab046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 11/15/2022] Open
Abstract
Ca2+-insensitive and -sensitive E1 subunits of the 2-oxoglutarate dehydrogenase complex (OGDHC) regulate tissue-specific NADH and ATP supply by mutually exclusive OGDH exons 4a and 4b. Here we show that their splicing is enforced by distant lariat branch points (dBPs) located near the 5' splice site of the intervening intron. dBPs restrict the intron length and prevent transposon insertions, which can introduce or eliminate dBP competitors. The size restriction was imposed by a single dominant dBP in anamniotes that expanded into a conserved constellation of four dBP adenines in amniotes. The amniote clusters exhibit taxon-specific usage of individual dBPs, reflecting accessibility of their extended motifs within a stable RNA hairpin rather than U2 snRNA:dBP base-pairing. The dBP expansion took place in early terrestrial species and was followed by a uridine enrichment of large downstream polypyrimidine tracts in mammals. The dBP-protected megatracts permit reciprocal regulation of exon 4a and 4b by uridine-binding proteins, including TIA-1/TIAR and PUF60, which promote U1 and U2 snRNP recruitment to the 5' splice site and BP, respectively, but do not significantly alter the relative dBP usage. We further show that codons for residues critically contributing to protein binding sites for Ca2+ and other divalent metals confer the exon inclusion order that mirrors the Irving-Williams affinity series, linking the evolution of auxiliary splicing motifs in exons to metallome constraints. Finally, we hypothesize that the dBP-driven selection for Ca2+-dependent ATP provision by E1 facilitated evolution of endothermy by optimizing the aerobic scope in target tissues.
Collapse
Affiliation(s)
- Jana Královičová
- University of Southampton, Faculty of Medicine, HDH, Southampton SO16 6YD, UK
- Slovak Academy of Sciences, Centre for Biosciences, 840 05 Bratislava, Slovak Republic
| | - Ivana Borovská
- Slovak Academy of Sciences, Centre for Biosciences, 840 05 Bratislava, Slovak Republic
| | - Reuben Pengelly
- University of Southampton, Faculty of Medicine, HDH, Southampton SO16 6YD, UK
| | - Eunice Lee
- School of Biological Sciences, University of Adelaide, Adelaide 5005, SA, Australia
| | - Pavel Abaffy
- Czech Academy of Sciences, Institute of Biotechnology, 25250 Vestec, Czech Republic
| | - Radek Šindelka
- Czech Academy of Sciences, Institute of Biotechnology, 25250 Vestec, Czech Republic
| | - Frank Grutzner
- School of Biological Sciences, University of Adelaide, Adelaide 5005, SA, Australia
| | - Igor Vořechovský
- University of Southampton, Faculty of Medicine, HDH, Southampton SO16 6YD, UK
| |
Collapse
|
12
|
Underwood E, Redell JB, Zhao J, Moore AN, Dash PK. A method for assessing tissue respiration in anatomically defined brain regions. Sci Rep 2020; 10:13179. [PMID: 32764697 PMCID: PMC7413397 DOI: 10.1038/s41598-020-69867-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/16/2020] [Indexed: 12/28/2022] Open
Abstract
The survival and function of brain cells requires uninterrupted ATP synthesis. Different brain structures subserve distinct neurological functions, and therefore have different energy production/consumption requirements. Typically, mitochondrial function is assessed following their isolation from relatively large amounts of starting tissue, making it difficult to ascertain energy production/failure in small anatomical locations. In order to overcome this limitation, we have developed and optimized a method to measure mitochondrial function in brain tissue biopsy punches excised from anatomically defined brain structures, including white matter tracts. We describe the procedures for maintaining tissue viability prior to performing the biopsy punches, as well as provide guidance for optimizing punch size and the drug doses needed to assess various aspects of mitochondrial respiration. We demonstrate that our method can be used to measure mitochondrial respiration in anatomically defined subfields within the rat hippocampus. Using this method, we present experimental results which show that a mild traumatic brain injury (mTBI, often referred to as concussion) causes differential mitochondrial responses within these hippocampal subfields and the corpus callosum, novel findings that would have been difficult to obtain using traditional mitochondrial isolation methods. Our method is easy to implement and will be of interest to researchers working in the field of brain bioenergetics and brain diseases.
Collapse
Affiliation(s)
- Erica Underwood
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - John B Redell
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Jing Zhao
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Anthony N Moore
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Pramod K Dash
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, 77030, USA.
| |
Collapse
|
13
|
Chu L, Yin H, Gao L, Gao L, Xia Y, Zhang C, Chen Y, Liu T, Huang J, Boheler KR, Zhou Y, Yang HT. Cardiac Na +-Ca 2+ exchanger 1 (ncx1h) is critical for the ventricular cardiomyocyte formation via regulating the expression levels of gata4 and hand2 in zebrafish. SCIENCE CHINA-LIFE SCIENCES 2020; 64:255-268. [PMID: 32648190 DOI: 10.1007/s11427-019-1706-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/22/2020] [Indexed: 10/23/2022]
Abstract
Ca2+ signaling is critical for heart development; however, the precise roles and regulatory pathways of Ca2+ transport proteins in cardiogenesis remain largely unknown. Sodium-calcium exchanger 1 (Ncx1) is responsible for Ca2+ efflux in cardiomyocytes. It is involved in cardiogenesis, while the mechanism is unclear. Here, using the forward genetic screening in zebrafish, we identified a novel mutation at a highly-conserved leucine residue in ncx1 gene (mutantLDD353/ncx1hL154P) that led to smaller hearts with reduced heart rate and weak contraction. Mechanistically, the number of ventricular but not atrial cardiomyocytes was reduced in ncx1hL154P zebrafish. These defects were mimicked by knockdown or knockout of ncx1h. Moreover, ncx1hL154P had cytosolic and mitochondrial Ca2+ overloading and Ca2+ transient suppression in cardiomyocytes. Furthermore, ncx1hL154P and ncx1h morphants downregulated cardiac transcription factors hand2 and gata4 in the cardiac regions, while overexpression of hand2 and gata4 partially rescued cardiac defects including the number of ventricular myocytes. These findings demonstrate an essential role of the novel 154th leucine residue in the maintenance of Ncx1 function in zebrafish, and reveal previous unrecognized critical roles of the 154th leucine residue and Ncx1 in the formation of ventricular cardiomyocytes by at least partially regulating the expression levels of gata4 and hand2.
Collapse
Affiliation(s)
- Liming Chu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China.,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
| | - Huimin Yin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China.,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
| | - Lei Gao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China.,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
| | - Li Gao
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yu Xia
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China.,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
| | - Chiyuan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China.,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
| | - Yi Chen
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tingxi Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China.,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
| | - Jijun Huang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China.,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
| | - Kenneth R Boheler
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Yong Zhou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China. .,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China.
| | - Huang-Tian Yang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China. .,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China.
| |
Collapse
|
14
|
Depaoli MR, Karsten F, Madreiter-Sokolowski CT, Klec C, Gottschalk B, Bischof H, Eroglu E, Waldeck-Weiermair M, Simmen T, Graier WF, Malli R. Real-Time Imaging of Mitochondrial ATP Dynamics Reveals the Metabolic Setting of Single Cells. Cell Rep 2019; 25:501-512.e3. [PMID: 30304688 PMCID: PMC6456002 DOI: 10.1016/j.celrep.2018.09.027] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/07/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022] Open
Abstract
Reprogramming of metabolic pathways determines cell functions and fate. In our work, we have used organelle-targeted ATP biosensors to evaluate cellular metabolic settings with high resolution in real time. Our data indicate that mitochondria dynamically supply ATP for glucose phosphorylation in a variety of cancer cell types. This hexokinase-dependent process seems to be reversed upon the removal of glucose or other hexose sugars. Our data further verify that mitochondria in cancer cells have increased ATP consumption. Similar subcellular ATP fluxes occurred in young mouse embryonic fibroblasts (MEFs). However, pancreatic beta cells, senescent MEFs, and MEFs lacking mitofusin 2 displayed completely different mitochondrial ATP dynamics, indicative of increased oxidative phosphorylation. Our findings add perspective to the variability of the cellular bioenergetics and demonstrate that live cell imaging of mitochondrial ATP dynamics is a powerful tool to evaluate metabolic flexibility and heterogeneity at a single-cell level.
Collapse
Affiliation(s)
- Maria R Depaoli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Felix Karsten
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Corina T Madreiter-Sokolowski
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Christiane Klec
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; Division of Oncology, Research Unit for Long Non-coding RNAs and Genome Editing in Cancer, Medical University of Graz, Stiftingtalstraße 24, 8010 Graz, Austria
| | - Benjamin Gottschalk
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Helmut Bischof
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Emrah Eroglu
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Markus Waldeck-Weiermair
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Thomas Simmen
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Wolfgang F Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Roland Malli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria.
| |
Collapse
|
15
|
Bischof H, Burgstaller S, Waldeck-Weiermair M, Rauter T, Schinagl M, Ramadani-Muja J, Graier WF, Malli R. Live-Cell Imaging of Physiologically Relevant Metal Ions Using Genetically Encoded FRET-Based Probes. Cells 2019; 8:E492. [PMID: 31121936 PMCID: PMC6562680 DOI: 10.3390/cells8050492] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 01/02/2023] Open
Abstract
Essential biochemical reactions and processes within living organisms are coupled to subcellular fluctuations of metal ions. Disturbances in cellular metal ion homeostasis are frequently associated with pathological alterations, including neurotoxicity causing neurodegeneration, as well as metabolic disorders or cancer. Considering these important aspects of the cellular metal ion homeostasis in health and disease, measurements of subcellular ion signals are of broad scientific interest. The investigation of the cellular ion homeostasis using classical biochemical methods is quite difficult, often even not feasible or requires large cell numbers. Here, we report of genetically encoded fluorescent probes that enable the visualization of metal ion dynamics within individual living cells and their organelles with high temporal and spatial resolution. Generally, these probes consist of specific ion binding domains fused to fluorescent protein(s), altering their fluorescent properties upon ion binding. This review focuses on the functionality and potential of these genetically encoded fluorescent tools which enable monitoring (sub)cellular concentrations of alkali metals such as K+, alkaline earth metals including Mg2+ and Ca2+, and transition metals including Cu+/Cu2+ and Zn2+. Moreover, we discuss possible approaches for the development and application of novel metal ion biosensors for Fe2+/Fe3+, Mn2+ and Na+.
Collapse
Affiliation(s)
- Helmut Bischof
- Gottfried Schatz Research Center, Chair of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
| | - Sandra Burgstaller
- Gottfried Schatz Research Center, Chair of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
| | - Markus Waldeck-Weiermair
- Gottfried Schatz Research Center, Chair of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
| | - Thomas Rauter
- Gottfried Schatz Research Center, Chair of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
| | - Maximilian Schinagl
- Gottfried Schatz Research Center, Chair of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
| | - Jeta Ramadani-Muja
- Gottfried Schatz Research Center, Chair of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
| | - Wolfgang F Graier
- Gottfried Schatz Research Center, Chair of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
- BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria.
| | - Roland Malli
- Gottfried Schatz Research Center, Chair of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
- BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria.
| |
Collapse
|
16
|
Checchetto V, Szabò I. Electrophysiological Characterization of Calcium-Permeable Channels Using Planar Lipid Bilayer. Methods Mol Biol 2019; 1925:65-73. [PMID: 30674017 DOI: 10.1007/978-1-4939-9018-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Numerous researchers tried to identify the key players of calcium signaling in mitochondria using molecular and cell biology techniques for more than five decades. However, only an integrated approach involving also electrophysiological techniques has finally allowed to define the components of the protein complex responsible for the uptake of this ion into mitochondria.Here we describe the protocol used for the electrophysiological characterization of the mitochondrial calcium uniporter (MCU) complex: the following outline indicates step-by-step the setup of planar lipid bilayer experiments.
Collapse
Affiliation(s)
| | - Ildikò Szabò
- Department of Biology, University of Padua, Padua, Italy
| |
Collapse
|
17
|
Chamberland S, Zamora Moratalla A, Topolnik L. Calcium extrusion mechanisms in dendrites of mouse hippocampal CA1 inhibitory interneurons. Cell Calcium 2019; 77:49-57. [DOI: 10.1016/j.ceca.2018.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/25/2018] [Accepted: 12/03/2018] [Indexed: 12/18/2022]
|
18
|
High-Resolution Imaging of STIM/Orai Subcellular Localization Using Array Confocal Laser Scanning Microscopy. Methods Mol Biol 2018. [PMID: 30203287 DOI: 10.1007/978-1-4939-8704-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The expression of chimeras that consist of a fluorescent protein (FP) conjugated with a protein of interest provides the ability to visualize, track, and quantify the subcellular localization and dynamics of specific proteins in biological samples. Array confocal laser scanning microscopy is an eminently suitable technique for live-cell imaging of FP-tagged fusion proteins. Here, we describe real-time monitoring of the subcellular dynamics of the stromal-interacting molecule 1 (STIM1) and Orai1, the key protagonists of store-operated Ca2+ entry (SOCE) under resting conditions, and upon Ca2+ mobilization from the endoplasmic reticulum (ER).
Collapse
|
19
|
Cadenas S. Mitochondrial uncoupling, ROS generation and cardioprotection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:940-950. [DOI: 10.1016/j.bbabio.2018.05.019] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/11/2018] [Accepted: 05/29/2018] [Indexed: 12/31/2022]
|
20
|
Bhattacharya S, García-Posadas L, Hodges RR, Makarenkova HP, Masli S, Dartt DA. Alteration in nerves and neurotransmitter stimulation of lacrimal gland secretion in the TSP-1 -/- mouse model of aqueous deficiency dry eye. Mucosal Immunol 2018; 11:1138-1148. [PMID: 29445135 PMCID: PMC6030454 DOI: 10.1038/s41385-018-0002-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 01/02/2018] [Accepted: 01/04/2018] [Indexed: 02/04/2023]
Abstract
The purpose of this study is to determine neural, vascular, protein secretion, and cellular signaling changes with disease progression in lacrimal glands of the thrombospondin-1-/- (TSP-1-/-) mouse model of dry eye compared to C57BL/6 wild-type (WT) mice. Neural innervation was reduced in TSP-1-/- lacrimal glands compared to WT controls, whereas the number of blood vessels was increased. Intracellular Ca2+ stores and the amount of lysosomes, mitochondria, and secretory granules, but not the endoplasmic reticulum, were reduced in TSP-1-/- compared to WT acini at 12 weeks of age. Ex vivo high KCl-evoked secretion was decreased in TSP-1-/- compared to WT lacrimal gland tissue pieces. The α1D-adrenergic agonist-stimulated response was increased in TSP-1-/- at 4 and 24 weeks but decreased at 12 weeks, and the ATP and MeSATP-stimulated peak [Ca2+]i responses were decreased at 24 weeks. These changes were observed prior to the appearance of mononuclear infiltrates. We conclude that in the lacrimal gland the absence of TSP-1: injures peripheral nerves; blocks efferent nerve activation; decreases protein secretion; and alters intracellular Ca2+ stores. Through these effects the absence of TSP-1 leads to disruption of ocular surface homeostasis and development of dry eye.
Collapse
Affiliation(s)
- Sumit Bhattacharya
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Laura García-Posadas
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Robin R Hodges
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Helen P Makarenkova
- Molecular Medicine Department, The Scripps Research Institute, La Jolla, CA, USA
| | - Sharmila Masli
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
| | - Darlene A Dartt
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Panja D, Vedeler CA, Schubert M. Paraneoplastic cerebellar degeneration: Yo antibody alters mitochondrial calcium buffering capacity. Neuropathol Appl Neurobiol 2018; 45:141-156. [PMID: 29679372 PMCID: PMC7379599 DOI: 10.1111/nan.12492] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/02/2018] [Indexed: 12/16/2022]
Abstract
Aim Neurodegeneration is associated with dysfunction of calcium buffering capacity and thereby sustained cellular and mitochondrial calcium overload. Paraneoplastic cerebellar degeneration (PCD), characterized by progressive Purkinje neurone degeneration following paraneoplastic Yo antibody internalization and binding to cerebellar degeneration‐related protein CDR2 and CDR2L, has been linked to intracellular calcium homeostasis imbalance due to calbindin D28k malfunction. Therefore, we hypothesized that Yo antibody internalization affects not only calbindin calcium binding capacity, but also calcium‐sensitive mitochondrial‐associated signalling, causing mitochondrial calcium overload and thereby Purkinje neurone death. Methods Immunohistochemically, we evaluated cerebellar organotypic slice cultures of rat brains after inducing PCD through the application of Yo antibody‐positive PCD patient sera or purified antibodies against CDR2 and CDR2L how pharmacologically biased mitochondrial signalling affected PCD pathology. Results We found that Yo antibody internalization into Purkinje neurons caused depletion of Purkinje neurone calbindin‐immunoreactivity, cannabinoid 1 receptor over‐activation and alterations in the actions of the mitochondria permeability transition pore (MPTP), voltage‐dependent anion channels, reactive oxygen species (ROS) and Na+/Ca2+ exchangers (NCX). The pathological mechanisms caused by Yo antibody binding to CDR2 or CDR2L differed between the two targets. Yo‐CDR2 binding did not alter the mitochondrial calcium retention capacity, cyclophilin D‐independent opening of MPTP or activity of NCX. Conclusion These findings suggest that minimizing intracellular calcium overload toxicity either directly with cyclosporin‐A or indirectly with cannabidiol or the ROS scavenger butylated hydroxytoluene promotes mitochondrial calcium homeostasis and may therefore be used as future neuroprotective therapy for PCD patients.
Collapse
Affiliation(s)
- D Panja
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway
| | - C A Vedeler
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway.,Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - M Schubert
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
22
|
Koch RE, Hill GE. Behavioural mating displays depend on mitochondrial function: a potential mechanism for linking behaviour to individual condition. Biol Rev Camb Philos Soc 2018; 93:1387-1398. [DOI: 10.1111/brv.12400] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/15/2018] [Accepted: 01/19/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Rebecca E. Koch
- Department of Biological Sciences; Auburn University; Auburn AL 36849 U.S.A
| | - Geoffrey E. Hill
- Department of Biological Sciences; Auburn University; Auburn AL 36849 U.S.A
| |
Collapse
|
23
|
Terron A, Bal-Price A, Paini A, Monnet-Tschudi F, Bennekou SH, Leist M, Schildknecht S. An adverse outcome pathway for parkinsonian motor deficits associated with mitochondrial complex I inhibition. Arch Toxicol 2018; 92:41-82. [PMID: 29209747 PMCID: PMC5773657 DOI: 10.1007/s00204-017-2133-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/22/2017] [Indexed: 12/21/2022]
Abstract
Epidemiological studies have observed an association between pesticide exposure and the development of Parkinson's disease, but have not established causality. The concept of an adverse outcome pathway (AOP) has been developed as a framework for the organization of available information linking the modulation of a molecular target [molecular initiating event (MIE)], via a sequence of essential biological key events (KEs), with an adverse outcome (AO). Here, we present an AOP covering the toxicological pathways that link the binding of an inhibitor to mitochondrial complex I (i.e., the MIE) with the onset of parkinsonian motor deficits (i.e., the AO). This AOP was developed according to the Organisation for Economic Co-operation and Development guidelines and uploaded to the AOP database. The KEs linking complex I inhibition to parkinsonian motor deficits are mitochondrial dysfunction, impaired proteostasis, neuroinflammation, and the degeneration of dopaminergic neurons of the substantia nigra. These KEs, by convention, were linearly organized. However, there was also evidence of additional feed-forward connections and shortcuts between the KEs, possibly depending on the intensity of the insult and the model system applied. The present AOP demonstrates mechanistic plausibility for epidemiological observations on a relationship between pesticide exposure and an elevated risk for Parkinson's disease development.
Collapse
Affiliation(s)
| | | | - Alicia Paini
- European Commission Joint Research Centre, Ispra, Italy
| | | | | | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitätsstr. 10, PO Box M657, 78457, Konstanz, Germany
| | - Stefan Schildknecht
- In Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitätsstr. 10, PO Box M657, 78457, Konstanz, Germany.
| |
Collapse
|
24
|
Li X, Zhang S, Liu X, Wang X, Zhou A, Liu P. Dynamic analysis on the calcium oscillation model considering the influences of mitochondria. Biosystems 2017; 163:36-46. [PMID: 29229425 DOI: 10.1016/j.biosystems.2017.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 10/08/2017] [Accepted: 12/05/2017] [Indexed: 11/26/2022]
Abstract
Based on the model considering the influences of mitochondria, a further theoretical study on the dynamic behaviors of calcium signals is made. First of all, the reason for the generation and disappearance of calcium oscillations is verified in theory. Second, an analysis on the model considering the influences of mitochondria and the model neglecting the influences of mitochondria is carried out. Third, β (representing calcium leak) is introduced and it can be found that with the increase of β, the Hopf bifurcation points of system move towards the decreasing direction of μ (representing stimulus intensity) and calcium oscillations region gradually decreases. Forth, the study on τh (representing relaxation time) indicates that with the increase of τh, the second Hopf bifurcation point of system moves towards the increasing direction of μ and calcium oscillations region gradually increases. Under certain stimulus intensity, when relaxation time increases, calcium oscillation peak rises rapidly and the period increases obviously. Fifth, two-parameter bifurcation diagram of Vm1 (representing mitochondria activity) and μ contains three regions: stable region, oscillation region and unstable region. When the parameters fall in the unstable region Ca2+ gather towards mitochondria and further lead to cell apoptosis. With the increase of Vm1, calcium oscillations region shrinks gradually. Vm1 and μ both play a key role in regulating cell apoptosis. Only when Vm1 and μ are high enough can cells enter into programmed cell death and the higher Vm1 is, the lower the stimulus intensity required by cell apoptosis is.
Collapse
Affiliation(s)
- Xiang Li
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300354, PR China; Tianjin Key Laboratory of Nonlinear Dynamics and Chaos Control, Tianjin 300354, PR China.
| | - Suxia Zhang
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300354, PR China; Tianjin Key Laboratory of Nonlinear Dynamics and Chaos Control, Tianjin 300354, PR China.
| | - Xijun Liu
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300354, PR China; Tianjin Key Laboratory of Nonlinear Dynamics and Chaos Control, Tianjin 300354, PR China
| | - Xiaojing Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China
| | - Anqi Zhou
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300354, PR China; Tianjin Key Laboratory of Nonlinear Dynamics and Chaos Control, Tianjin 300354, PR China
| | - Peng Liu
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300354, PR China; Tianjin Key Laboratory of Nonlinear Dynamics and Chaos Control, Tianjin 300354, PR China
| |
Collapse
|
25
|
Worth AP, Louisse J, Macko P, Sala Benito JV, Paini A. Virtual Cell Based Assay simulations of intra-mitochondrial concentrations in hepatocytes and cardiomyocytes. Toxicol In Vitro 2017; 45:222-232. [PMID: 28911986 PMCID: PMC5745147 DOI: 10.1016/j.tiv.2017.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 09/04/2017] [Accepted: 09/08/2017] [Indexed: 01/16/2023]
Abstract
In order to replace the use of animals in toxicity testing, there is a need to predict human in vivo toxic doses from concentrations that cause adverse effects in in vitro test systems. The virtual cell based assay (VCBA) has been developed to simulate intracellular concentrations as a function of time, and can be used to interpret in vitro concentration-response curves. In this study we refine and extend the VCBA model by including additional target-organ cell models and by simulating the fate and effects of chemicals at the organelle level. In particular, we describe the extension of the original VCBA to simulate chemical fate in liver (HepaRG) cells and cardiomyocytes (ICell cardiomyocytes), and we explore the effects of chemicals at the mitochondrial level. This includes a comparison of: a) in vitro results on cell viability and mitochondrial membrane potential (mmp) from two cell models (HepaRG cells and ICell cardiomyocytes); and b) VCBA simulations, including the cell and mitochondrial compartment, simulating the mmp for both cell types. This proof of concept study illustrates how the relationship between intra cellular, intra mitochondrial concentration, mmp and cell toxicity can be obtained by using the VCBA.
Collapse
Affiliation(s)
- Andrew P Worth
- European Commission, Joint Research Centre, Directorate F - Health, Consumers and Reference Materials, Chemical Safety and Alternative Methods Unit, EURL ECVAM, Ispra, Italy
| | - Jochem Louisse
- European Commission, Joint Research Centre, Directorate F - Health, Consumers and Reference Materials, Chemical Safety and Alternative Methods Unit, EURL ECVAM, Ispra, Italy
| | - Peter Macko
- European Commission, Joint Research Centre, Directorate F - Health, Consumers and Reference Materials, Chemical Safety and Alternative Methods Unit, EURL ECVAM, Ispra, Italy
| | - J V Sala Benito
- European Commission, Joint Research Centre, Directorate F - Health, Consumers and Reference Materials, Chemical Safety and Alternative Methods Unit, EURL ECVAM, Ispra, Italy
| | - Alicia Paini
- European Commission, Joint Research Centre, Directorate F - Health, Consumers and Reference Materials, Chemical Safety and Alternative Methods Unit, EURL ECVAM, Ispra, Italy.
| |
Collapse
|
26
|
Chemotherapeutic agents induce mitochondrial superoxide production and toxicity but do not alter respiration in skeletal muscle in vitro. Mitochondrion 2017; 42:33-49. [PMID: 29079447 DOI: 10.1016/j.mito.2017.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/21/2017] [Accepted: 10/23/2017] [Indexed: 12/31/2022]
Abstract
Chemotherapeutic agents (CAs) can independently promote skeletal muscle dysfunction, fatigue and wasting with mitochondrial toxicity implicated as a possible mechanism. Thus, we aimed to characterise the effects of various CAs on mitochondrial function, viability and oxidant production in C2C12 myoblasts and myotubes. All CAs significantly reduced the viable mitochondrial pool but did not affect mitochondrial functional parameters. Doxorubicin and oxaliplatin increased oxidant production in myotubes while all CAs, except for irinotecan, increased oxidant production in myoblasts and reduced myotube diameter. Our data demonstrate CAs mito-toxic effects, highlighting the potential for mitochondria-protective therapeutics to address chemotherapy-induced skeletal muscle damage.
Collapse
|
27
|
Abstract
This brief review assesses the role of Ca2+ signaling in lung endothelium in regulation of endothelial permeability. The disconnect between experimental and clinical outcomes to date may be due, in part, to the use of tools which yield information about aggregate permeability or Ca2+ responses in lung or in endothelial monolayers. The teaching point of this review is to “unpack the box,” i.e. consider the many potential issues which could impact interpretation of outcomes. These include phenotypic heterogeneity and resultant segment-specific permeability responses, methodologic issues related to permeability measures, contributions from Ca2+ channels in cells other than endothelium—such as alveolar macrophages or blood leukocytes), Ca2+ dynamic patterns, rather than averaged Ca2+ responses to channel activation, and the background context, such as changes in endothelial bioenergetics with sepsis. Any or all of these issues might color interpretation of permeability and Ca2+ signaling in lung.
Collapse
Affiliation(s)
- Mary I Townsley
- 12214 Department of Physiology & Cell Biology, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
28
|
Li S, Wang Y, Zhao H, He Y, Li J, Jiang G, Xing M. NF-κB-mediated inflammation correlates with calcium overload under arsenic trioxide-induced myocardial damage in Gallus gallus. CHEMOSPHERE 2017; 185:618-627. [PMID: 28728119 DOI: 10.1016/j.chemosphere.2017.07.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
Arsenic is a known environmental pollutant and highly hazardous toxin to human health. Due to the biological accumulation, arsenic produces a variety of cardiovascular diseases. However, the exact mechanism is still unclear. Here, our objective was to evaluate myocardial damage and determine the potential mechanism under arsenic exposure in chickens. Arsenic trioxide (As2O3) (1.25 mg/kg BW, corresponding 15 mg/kg feed) was administered as basal diet to male Hy-line chickens (one-day-old) for 4, 8 and 12 weeks. The results showed that As2O3-induced histological and ultrastructural damage in heart accompanied with significantly Ca2+ overload and increased the activities of myocardial enzymes. Moreover, As2O3 exposure significantly increased (P < 0.05) the mRNA levels of ITPR3, PMCA, TRPC1, TRPC3, STIM1, ORAI1 and pro-inflammatory genes, while the mRNA levels of ITPR1, ITPR2, RyR1, RyR3, SERCA, SLC8A1, CACNA1S and interleukin-10 were decreased (P < 0.05) by As2O3 exposure at 4, 8 and 12 weeks as compared with the corresponding control group. Western blot results showed that As2O3 exposure decreased the expression of SERCA and SLC8A1 protein, while the expression of TNF-α, NF-κB, iNOS and PMCA1 increased compared with the corresponding control group. Additionally, correlation analysis and protein-protein interaction prediction shown that NF-κB-mediated inflammatory response have a function correlation with calcium (Ca) regulation-related genes. In conclusion, this study indicated that As2O3-induced inflammatory response might dependent on Ca overload in myocardial damage of chickens. Our work has implications for the development of potential therapeutic approaches by resisting Ca overload for arsenic-induced myocardial damage.
Collapse
Affiliation(s)
- Siwen Li
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Yu Wang
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Ying He
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Jinglun Li
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Guangshun Jiang
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| |
Collapse
|
29
|
Bordi M, Nazio F, Campello S. The Close Interconnection between Mitochondrial Dynamics and Mitophagy in Cancer. Front Oncol 2017; 7:81. [PMID: 28512624 PMCID: PMC5411450 DOI: 10.3389/fonc.2017.00081] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/11/2017] [Indexed: 01/11/2023] Open
Abstract
Recent decades have revealed the shape changes of mitochondria and their regulators to be main players in a plethora of physiological cell processes. Mitochondria are extremely dynamic organelles whose highly controlled morphological changes respond to specific and diverse pathophysiological needs. Thus, their qualitative control is crucial for the determination of cell function and fate. Moreover, ever-new metabolic changes, mainly attributable to mitochondrial (dys)functions, are strongly connected to cancer and its microenvironment. For this reason, the aspects controlling mitochondria activity and status are in the oncological spotlight. In this review, we elucidate the most intriguing discoveries related to two apparently independent but strictly interconnected processes crucial for the organelle functionality and fate, mitochondrial dynamics, and mitophagy. We will mostly focus on their metabolic interconnections and regulations that can causally foster a tumoral context.
Collapse
Affiliation(s)
- Matteo Bordi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Nazio
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Silvia Campello
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.,IRCCS, Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
30
|
Chevalier A, Khdour OM, Schmierer M, Bandyopadhyay I, Hecht SM. Influence of substituent heteroatoms on the cytoprotective properties of pyrimidinol antioxidants. Bioorg Med Chem 2017; 25:1703-1716. [PMID: 28189395 DOI: 10.1016/j.bmc.2017.01.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/18/2017] [Accepted: 01/21/2017] [Indexed: 01/04/2023]
Abstract
Recently, we described the optimization of novel pyrimidinol-based antioxidants as potential therapeutic molecules for targeting mitochondrial diseases. That study focused on improving the potency and metabolic stability of pyrimidinol antioxidants. This led us to consider the possibility of altering the positions of the exocyclic alkoxy and alkylamino substituents on the pyrimidinol scaffold. Twelve new analogues were prepared and their biological activities were investigated. The metabolic stability of the prepared regioisomers was also assessed in vitro using bovine liver microsomes. Unexpectedly, the 2-alkoxy-4-alkylamino substituted pyrimidinol antioxidants were found to have properties in protecting mitochondrial function superior to the isomeric 4-alkoxy-2-alkylamino substituted pyrimidinols evaluated in all earlier studies. This observation suggests a possible mode of action involving the intermediacy of an ortho-iminoquinone, a species not previously associated with mitochondrial respiratory chain function.
Collapse
Affiliation(s)
- Arnaud Chevalier
- Biodesign Center for BioEnergetics, Biodesign Institute, and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Omar M Khdour
- Biodesign Center for BioEnergetics, Biodesign Institute, and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Margaret Schmierer
- Biodesign Center for BioEnergetics, Biodesign Institute, and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Indrajit Bandyopadhyay
- Biodesign Center for BioEnergetics, Biodesign Institute, and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Sidney M Hecht
- Biodesign Center for BioEnergetics, Biodesign Institute, and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States.
| |
Collapse
|
31
|
Charoensin S, Eroglu E, Opelt M, Bischof H, Madreiter-Sokolowski CT, Kirsch A, Depaoli MR, Frank S, Schrammel A, Mayer B, Waldeck-Weiermair M, Graier WF, Malli R. Intact mitochondrial Ca 2+ uniport is essential for agonist-induced activation of endothelial nitric oxide synthase (eNOS). Free Radic Biol Med 2017; 102:248-259. [PMID: 27923677 PMCID: PMC5381715 DOI: 10.1016/j.freeradbiomed.2016.11.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 11/14/2016] [Accepted: 11/28/2016] [Indexed: 12/18/2022]
Abstract
Mitochondrial Ca2+ uptake regulates diverse endothelial cell functions and has also been related to nitric oxide (NO•) production. However, it is not entirely clear if the organelles support or counteract NO• biosynthesis by taking up Ca2+. The objective of this study was to verify whether or not mitochondrial Ca2+ uptake influences Ca2+-triggered NO• generation by endothelial NO• synthase (eNOS) in an immortalized endothelial cell line (EA.hy926), respective primary human umbilical vein endothelial cells (HUVECs) and eNOS-RFP (red fluorescent protein) expressing human embryonic kidney (HEK293) cells. We used novel genetically encoded fluorescent NO• probes, the geNOps, and Ca2+ sensors to monitor single cell NO• and Ca2+ dynamics upon cell treatment with ATP, an inositol 1,4,5-trisphosphate (IP3)-generating agonist. Mitochondrial Ca2+ uptake was specifically manipulated by siRNA-mediated knock-down of recently identified key components of the mitochondrial Ca2+ uniporter machinery. In endothelial cells and the eNOS-RFP expressing HEK293 cells we show that reduced mitochondrial Ca2+ uptake upon the knock-down of the mitochondrial calcium uniporter (MCU) protein and the essential MCU regulator (EMRE) yield considerable attenuation of the Ca2+-triggered NO• increase independently of global cytosolic Ca2+ signals. The knock-down of mitochondrial calcium uptake 1 (MICU1), a gatekeeper of the MCU, increased both mitochondrial Ca2+ sequestration and Ca2+-induced NO• signals. The positive correlation between mitochondrial Ca2+ elevation and NO• production was independent of eNOS phosphorylation at serine1177. Our findings emphasize that manipulating mitochondrial Ca2+ uptake may represent a novel strategy to control eNOS-mediated NO• production.
Collapse
Affiliation(s)
- Suphachai Charoensin
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Austria
| | - Emrah Eroglu
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Austria
| | - Marissa Opelt
- Institute of Pharmaceutical Sciences, Department of Pharmacology and Toxicology, University of Graz, Austria
| | - Helmut Bischof
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Austria
| | | | - Andrijana Kirsch
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Austria
| | - Maria R Depaoli
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Austria
| | - Saša Frank
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Austria
| | - Astrid Schrammel
- Institute of Pharmaceutical Sciences, Department of Pharmacology and Toxicology, University of Graz, Austria
| | - Bernd Mayer
- Institute of Pharmaceutical Sciences, Department of Pharmacology and Toxicology, University of Graz, Austria
| | - Markus Waldeck-Weiermair
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Austria
| | - Wolfgang F Graier
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Austria
| | - Roland Malli
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Austria.
| |
Collapse
|
32
|
Malli R, Graier WF. The Role of Mitochondria in the Activation/Maintenance of SOCE: The Contribution of Mitochondrial Ca 2+ Uptake, Mitochondrial Motility, and Location to Store-Operated Ca 2+ Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:297-319. [PMID: 28900921 DOI: 10.1007/978-3-319-57732-6_16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In most cell types, the depletion of internal Ca2+ stores triggers the activation of Ca2+ entry. This crucial phenomenon is known since the 1980s and referred to as store-operated Ca2+ entry (SOCE). With the discoveries of the stromal-interacting molecules (STIMs) and the Ca2+-permeable Orai channels as the long-awaited molecular constituents of SOCE, the role of mitochondria in controlling the activity of this particular Ca2+ entry pathway is kind of buried in oblivion. However, the capability of mitochondria to locally sequester Ca2+ at sites of Ca2+ release and entry was initially supposed to rule SOCE by facilitating the Ca2+ depletion of the endoplasmic reticulum and removing entering Ca2+ from the Ca2+-inhibitable channels, respectively. Moreover, the central role of these organelles in controlling the cellular energy metabolism has been linked to the activity of SOCE. Nevertheless, the exact molecular mechanisms by which mitochondria actually determine SOCE are still pretty obscure. In this essay we describe the complexity of the mitochondrial Ca2+ uptake machinery and its regulation, molecular components, and properties, which open new ways for scrutinizing the contribution of mitochondria to SOCE. Moreover, data concerning the variability of the morphology and cellular distribution of mitochondria as putative determinants of SOCE activation, maintenance, and termination are summarized.
Collapse
Affiliation(s)
- Roland Malli
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/6, 8010, Graz, Austria
| | - Wolfgang F Graier
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/6, 8010, Graz, Austria.
| |
Collapse
|
33
|
Popov LD. Mitochondrial networking in diabetic left ventricle cardiomyocytes. Mitochondrion 2016; 34:24-31. [PMID: 28007605 DOI: 10.1016/j.mito.2016.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 10/07/2016] [Accepted: 12/16/2016] [Indexed: 12/17/2022]
Abstract
Cardiomyocyte mitochondria preserve "the quorum sensing" attribute of their aerobic bacterial ancestors, as shown by the transient physical connectivity and communication not only with each other, but also with other intracellular organelles and with cytosol, ensuing cellular homeostasis. In this review, we present original electron microscopy evidence on mitochondrial networking within diabetic left ventricular cardiomyocytes, focusing on: (i) the inter-mitochondrial communication, allowing electrochemical signals transfer and outer membrane components or matrix proteins exchange, (ii) the interplay between mitochondria and the cardiomyocyte nucleus, nucleolus, sarcoplasmic reticulum, lysosomes, and lipid droplets viewed as attributes of mitochondrial "quality control" and "retrograde signaling function", and (iii) the crosstalk between mitochondria and cardiomyocyte cytosol, as part of the adaptive responses that allow cells survival. Confirmation of such interactions in diabetic myocardium and identification of molecules involved are ongoing, foreseeing the alleviation of heart contractile dysfunction in cardiomyopathy.
Collapse
Affiliation(s)
- Lucia-Doina Popov
- "Nicolae Simionescu" Institute of Cellular Biology and Pathology of the Romanian Academy, 8, B.P. Hasdeu Street, Bucharest 050568, Romania.
| |
Collapse
|
34
|
Nuclear but not mitochondrial-encoded oxidative phosphorylation genes are altered in aging, mild cognitive impairment, and Alzheimer's disease. Alzheimers Dement 2016; 13:510-519. [PMID: 27793643 DOI: 10.1016/j.jalz.2016.09.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/30/2016] [Accepted: 09/12/2016] [Indexed: 01/01/2023]
Abstract
INTRODUCTION We have comprehensively described the expression profiles of mitochondrial DNA and nuclear DNA genes that encode subunits of the respiratory oxidative phosphorylation (OXPHOS) complexes (I-V) in the hippocampus from young controls, age matched, mild cognitively impaired (MCI), and Alzheimer's disease (AD) subjects. METHODS Hippocampal tissues from 44 non-AD controls (NC), 10 amnestic MCI, and 18 AD cases were analyzed on Affymetrix Hg-U133 plus 2.0 arrays. RESULTS The microarray data revealed significant down regulation in OXPHOS genes in AD, particularly those encoded in the nucleus. In contrast, there was up regulation of the same gene(s) in MCI subjects compared to AD and ND cases. No significant differences were observed in mtDNA genes identified in the array between AD, ND, and MCI subjects except one mt-ND6. DISCUSSION Our findings suggest that restoration of the expression of nuclear-encoded OXPHOS genes in aging could be a viable strategy for blunting AD progression.
Collapse
|
35
|
Age-Related Changes in Axonal and Mitochondrial Ultrastructure and Function in White Matter. J Neurosci 2016; 36:9990-10001. [PMID: 27683897 DOI: 10.1523/jneurosci.1316-16.2016] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/02/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The impact of aging on CNS white matter (WM) is of general interest because the global effects of aging on myelinated nerve fibers are more complex and profound than those in cortical gray matter. It is important to distinguish between axonal changes created by normal aging and those caused by neurodegenerative diseases, including multiple sclerosis, stroke, glaucoma, Alzheimer's disease, and traumatic brain injury. Using three-dimensional electron microscopy, we show that in mouse optic nerve, which is a pure and fully myelinated WM tract, aging axons are larger, have thicker myelin, and are characterized by longer and thicker mitochondria, which are associated with altered levels of mitochondrial shaping proteins. These structural alterations in aging mitochondria correlate with lower ATP levels and increased generation of nitric oxide, protein nitration, and lipid peroxidation. Moreover, mitochondria-smooth endoplasmic reticulum interactions are compromised due to decreased associations and decreased levels of calnexin and calreticulin, suggesting a disruption in Ca(2+) homeostasis and defective unfolded protein responses in aging axons. Despite these age-related modifications, axon function is sustained in aging WM, which suggests that age-dependent changes do not lead to irreversible functional decline under normal conditions, as is observed in neurodegenerative diseases. SIGNIFICANCE STATEMENT Aging is a common risk factor for a number of neurodegenerative diseases, including stroke. Mitochondrial dysfunction and oxidative damage with age are hypothesized to increase risk for stroke. We compared axon-myelin-node-mitochondrion-smooth endoplasmic reticulum (SER) interactions in white matter obtained at 1 and 12 months. We show that aging axons have enlarged volume, thicker myelin, and elongated and thicker mitochondria. Furthermore, there are reduced SER connections to mitochondria that correlate with lower calnexin and calreticulin levels. Despite a prominent decrease in number, elongated aging mitochondria produce excessive stress markers with reduced ATP production. Because axons maintain function under these conditions, our study suggests that it is important to understand the process of normal brain aging to identify neurodegenerative changes.
Collapse
|
36
|
Chevalier A, Alam MP, Khdour OM, Schmierer M, Arce PM, Cripe CD, Hecht SM. Optimization of pyrimidinol antioxidants as mitochondrial protective agents: ATP production and metabolic stability. Bioorg Med Chem 2016; 24:5206-5220. [PMID: 27624526 DOI: 10.1016/j.bmc.2016.08.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/17/2016] [Accepted: 08/22/2016] [Indexed: 12/19/2022]
Abstract
Previously we described a novel series of pyrimidinol antioxidants and their structural optimization as potential therapeutic agents for neurodegenerative and mitochondrial disorders. Our initial lead compound was a potent antioxidant in vitro, but was subsequently found to exhibit poor stability to oxidative metabolism. The current study focused on balancing potency with metabolic stability through structural modification, and involved modifications at positions 2 and 4 of the pyrimidinol redox core, likely sites of oxidative metabolism. Eight new analogues have been prepared and their ability to suppress lipid peroxidation and reactive oxygen species (ROS), and to preserve mitochondrial membrane potential (Δψm) and support ATP production, has been investigated. The metabolic stability of the prepared compounds was also assessed in vitro using bovine liver microsomes to obtain preliminary insight on this class of compounds. This study revealed the complexity of balancing reasonable metabolic stability with efficient antioxidant properties. While a few analogues appear promising, especially in terms of metabolic stability, a 4-isopropoxy derivative conserved the favorable biological activity and exhibited good metabolic stability. The favorable metabolic stability conferred by the combination of the azetidine and isopropoxy moieties in analogue 6 makes this compound an excellent candidate for further evaluation.
Collapse
Affiliation(s)
- Arnaud Chevalier
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Mohammad Parvez Alam
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Omar M Khdour
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Margaret Schmierer
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Pablo M Arce
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Cameron D Cripe
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Sidney M Hecht
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States.
| |
Collapse
|
37
|
Torrezan-Nitao E, Boni R, Marques-Santos LF. Mitochondrial permeability transition pore (MPTP) desensitization increases sea urchin spermatozoa fertilization rate. Cell Biol Int 2016; 40:1071-83. [PMID: 27449751 DOI: 10.1002/cbin.10647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/17/2016] [Indexed: 01/09/2023]
Abstract
Mitochondrial permeability transition pore (MPTP) is a protein complex whose opening promotes an abrupt increase in mitochondrial inner membrane permeability. Calcium signaling pathways are described in gametes and are involved in the fertilization process. Although mitochondria may act as Ca(2+) store and have a fast calcium-releasing mechanism through MPTP, its contribution to fertilization remains unclear. The work aimed to investigate the MPTP phenomenon in sea urchin spermatozoa and its role on the fertilization. Several pharmacological tools were used to evaluate the MPTP's physiology. Our results demonstrated that MPTP occurs in male gametes in a Ca(2+) - and voltage-dependent manner and it is sensitive to cyclosporine A. Additionally, our data show that MPTP opening does not alter ROS generation in sperm cells. Inhibition of MPTP in spermatozoa strongly improved the fertilization rate, which may involve mechanisms that increase the spermatozoa lifespan. The present work is the first report of the presence of a voltage- and Ca(2+) -dependent MPTP in gametes of invertebrates and indicates MPTP opening as another evolutionary feature shared by sea urchins and mammals. Studies about MPTP in sea urchin male gametes may contribute to the elucidation of several mechanisms involved in sperm infertility.
Collapse
Affiliation(s)
- Elis Torrezan-Nitao
- Laboratório de Biologia Celular e do Desenvolvimento, Departamento de Biologia Molecular, Universidade Federal da Paraíba, Campus I, Cidade Universitária, CEP: 58051-900, João Pessoa, Paraíba, Brazil
| | - Raianna Boni
- Laboratório de Biologia Celular e do Desenvolvimento, Departamento de Biologia Molecular, Universidade Federal da Paraíba, Campus I, Cidade Universitária, CEP: 58051-900, João Pessoa, Paraíba, Brazil
| | - Luis Fernando Marques-Santos
- Laboratório de Biologia Celular e do Desenvolvimento, Departamento de Biologia Molecular, Universidade Federal da Paraíba, Campus I, Cidade Universitária, CEP: 58051-900, João Pessoa, Paraíba, Brazil.
| |
Collapse
|
38
|
Motloch LJ, Larbig R, Gebing T, Reda S, Schwaiger A, Leitner J, Wolny M, Eckardt L, Hoppe UC. By Regulating Mitochondrial Ca2+-Uptake UCP2 Modulates Intracellular Ca2+. PLoS One 2016; 11:e0148359. [PMID: 26849136 PMCID: PMC4746117 DOI: 10.1371/journal.pone.0148359] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/19/2016] [Indexed: 12/31/2022] Open
Abstract
Introduction The possible role of UCP2 in modulating mitochondrial Ca2+-uptake (mCa2+-uptake) via the mitochondrial calcium uniporter (MCU) is highly controversial. Methods Thus, we analyzed mCa2+-uptake in isolated cardiac mitochondria, MCU single-channel activity in cardiac mitoplasts, dual Ca2+-transients from mitochondrial ((Ca2+)m) and intracellular compartment ((Ca2+)c) in the whole-cell configuration in cardiomyocytes of wild-type (WT) and UCP2-/- mice. Results Isolated mitochondria showed a Ru360 sensitive mCa2+-uptake, which was significantly decreased in UCP2-/- (229.4±30.8 FU vs. 146.3±23.4 FU, P<0.05). Single-channel registrations confirmed a Ru360 sensitive voltage-gated Ca2+-channel in mitoplasts, i.e. mCa1, showing a reduced single-channel activity in UCP2-/- (Po,total: 0.34±0.05% vs. 0.07±0.01%, P<0.05). In UCP2-/- cardiomyocytes (Ca2+)m was decreased (0.050±0.009 FU vs. 0.021±0.005 FU, P<0.05) while (Ca2+)c was unchanged (0.032±0.002 FU vs. 0.028±0.004 FU, P>0.05) and transsarcolemmal Ca2+-influx was inhibited suggesting a possible compensatory mechanism. Additionally, we observed an inhibitory effect of ATP on mCa2+-uptake in WT mitoplasts and (Ca2+)m of cardiomyocytes leading to an increase of (Ca2+)c while no ATP dependent effect was observed in UCP2-/-. Conclusion Our results indicate regulatory effects of UCP2 on mCa2+-uptake. Furthermore, we propose, that previously described inhibitory effects on MCU by ATP may be mediated via UCP2 resulting in changes of excitation contraction coupling.
Collapse
Affiliation(s)
- Lukas Jaroslaw Motloch
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
- * E-mail:
| | - Robert Larbig
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
- Division of Electrophysiology, Department of Cardiovascular Medicine, University Hospital Muenster, Muenster, Germany
| | - Tina Gebing
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| | - Sara Reda
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| | - Astrid Schwaiger
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| | - Johannes Leitner
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| | - Martin Wolny
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| | - Lars Eckardt
- Division of Electrophysiology, Department of Cardiovascular Medicine, University Hospital Muenster, Muenster, Germany
| | - Uta C. Hoppe
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
39
|
Stary V, Puppala D, Scherrer-Crosbie M, Dillmann WH, Armoundas AA. SERCA2a upregulation ameliorates cellular alternans induced by metabolic inhibition. J Appl Physiol (1985) 2016; 120:865-75. [PMID: 26846549 DOI: 10.1152/japplphysiol.00588.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 01/27/2016] [Indexed: 12/26/2022] Open
Abstract
Cardiac alternans has been associated with the incidence of ventricular tachyarrhythmias and sudden cardiac death. The aim of this study was to investigate the effect of impaired mitochondrial function in the genesis of cellular alternans and to examine whether modulating the sarcoplasmic reticulum (SR) Ca(2+)ameliorates the level of alternans. Cardiomyocytes isolated from control and doxycyline-induced sarco(endo)plasmic reticulum Ca(2+)-ATPase 2a (SERCA2a)-upregulated mice were loaded with two different Ca(2+)indicators to selectively measure mitochondrial and cytosolic Ca(2+)using a custom-made fluorescence photometry system. The degree of alternans was defined as the alternans ratio (AR) [1 - (small Ca(2+)intensity)/(large Ca(2+)intensity)]. Blocking of complex I and II, cytochrome-coxidase, F0F1synthase, α-ketoglutarate dehydrogenase of the electron transport chain, increased alternans in both control and SERCA2a mice (P< 0.01). Changes in AR in SERCA2a-upregulated mice were significantly less pronounced than those observed in control in seven of nine tested conditions (P< 0.04).N-acetyl-l-cysteine (NAC), rescued alternans in myocytes that were previously exposed to an oxidizing agent (P< 0.001). CGP, an antagonist of the mitochondrial Na(+)-Ca(2+)exchanger, had the most severe effect on AR. Exposure to cyclosporin A, a blocker of the mitochondrial permeability transition pore reduced CGP-induced alternans (P< 0.0001). The major findings of this study are that impairment of mitochondrial Ca(2+)cycling and energy production leads to a higher amplitude of alternans in both control and SERCA2a-upregulated mice, but changes in SERCA2a-upregulated mice are less severe, indicating that SERCA2a mice are more capable of sustaining electrical stability during stress. This suggests a relationship between sarcoplasmic Ca(2+)content and mitochondrial dysfunction during alternans, which may potentially help to understand changes in Ca(2+)signaling in myocytes from diseased hearts, leading to new therapeutic targets.
Collapse
Affiliation(s)
- Victoria Stary
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts; Department of Cardiology and Pulmonology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany; and
| | - Dheeraj Puppala
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Wolfgang H Dillmann
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Antonis A Armoundas
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts;
| |
Collapse
|
40
|
Scheitlin CG, Julian JA, Shanmughapriya S, Madesh M, Tsoukias NM, Alevriadou BR. Endothelial mitochondria regulate the intracellular Ca2+ response to fluid shear stress. Am J Physiol Cell Physiol 2016; 310:C479-90. [PMID: 26739489 DOI: 10.1152/ajpcell.00171.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 01/04/2016] [Indexed: 02/04/2023]
Abstract
Shear stress is known to stimulate an intracellular free calcium concentration ([Ca(2+)]i) response in vascular endothelial cells (ECs). [Ca(2+)]i is a key second messenger for signaling that leads to vasodilation and EC survival. Although it is accepted that the shear-induced [Ca(2+)]i response is, in part, due to Ca(2+) release from the endoplasmic reticulum (ER), the role of mitochondria (second largest Ca(2+) store) is unknown. We hypothesized that the mitochondria play a role in regulating [Ca(2+)]i in sheared ECs. Cultured ECs, loaded with a Ca(2+)-sensitive fluorophore, were exposed to physiological levels of shear stress. Shear stress elicited [Ca(2+)]i transients in a percentage of cells with a fraction of them displaying oscillations. Peak magnitudes, percentage of oscillating ECs, and oscillation frequencies depended on the shear level. [Ca(2+)]i transients/oscillations were present when experiments were conducted in Ca(2+)-free solution (plus lanthanum) but absent when ECs were treated with a phospholipase C inhibitor, suggesting that the ER inositol 1,4,5-trisphosphate receptor is responsible for the [Ca(2+)]i response. Either a mitochondrial uncoupler or an electron transport chain inhibitor, but not a mitochondrial ATP synthase inhibitor, prevented the occurrence of transients and especially inhibited the oscillations. Knockdown of the mitochondrial Ca(2+) uniporter also inhibited the shear-induced [Ca(2+)]i transients/oscillations compared with controls. Hence, EC mitochondria, through Ca(2+) uptake/release, regulate the temporal profile of shear-induced ER Ca(2+) release. [Ca(2+)]i oscillation frequencies detected were within the range for activation of mechanoresponsive kinases and transcription factors, suggesting that dysfunctional EC mitochondria may contribute to cardiovascular disease by deregulating the shear-induced [Ca(2+)]i response.
Collapse
Affiliation(s)
- Christopher G Scheitlin
- Departments of Biomedical Engineering and Internal Medicine, Division of Cardiovascular Medicine, and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Justin A Julian
- Departments of Biomedical Engineering and Internal Medicine, Division of Cardiovascular Medicine, and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Santhanam Shanmughapriya
- Department of Medical Genetics and Molecular Biochemistry and Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania; and
| | - Muniswamy Madesh
- Department of Medical Genetics and Molecular Biochemistry and Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania; and
| | - Nikolaos M Tsoukias
- Department of Biomedical Engineering, Florida International University, Miami, Florida
| | - B Rita Alevriadou
- Departments of Biomedical Engineering and Internal Medicine, Division of Cardiovascular Medicine, and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio;
| |
Collapse
|
41
|
Randhawa PK, Jaggi AS. TRPV4 channels: physiological and pathological role in cardiovascular system. Basic Res Cardiol 2015; 110:54. [PMID: 26415881 DOI: 10.1007/s00395-015-0512-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/11/2015] [Accepted: 09/22/2015] [Indexed: 12/12/2022]
Abstract
TRPV4 channels are non-selective cation channels permeable to Ca(2+), Na(+), and Mg(2+) ions. Recently, TRPV4 channels have received considerable attention as these channels are widely expressed in the cardiovascular system including endothelial cells, cardiac fibroblasts, vascular smooth muscles, and peri-vascular nerves. Therefore, these channels possibly play a pivotal role in the maintenance of cardiovascular homeostasis. TRPV4 channels critically regulate flow-induced arteriogenesis, TGF-β1-induced differentiation of cardiac fibroblasts into myofibroblasts, and heart failure-induced pulmonary edema. These channels also mediate hypoxia-induced increase in proliferation and migration of pulmonary artery smooth muscle cells and progression of pulmonary hypertension. These channels also maintain flow-induced vasodilation and preserve vascular function by directly activating Ca(2+)-dependent KCa channels. Furthermore, these may also induce vasodilation and maintain blood pressure indirectly by evoking the release of NO, CGRP, and substance P. The present review discusses the evidences and the potential mechanisms implicated in diverse responses including arteriogenesis, cardiac remodeling, congestive heart failure-induced pulmonary edema, pulmonary hypertension, flow-induced dilation, regulation of blood pressure, and hypoxic preconditioning.
Collapse
Affiliation(s)
- Puneet Kaur Randhawa
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala, 147002, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala, 147002, India.
| |
Collapse
|
42
|
UCP2 modulates single-channel properties of a MCU-dependent Ca(2+) inward current in mitochondria. Pflugers Arch 2015; 467:2509-18. [PMID: 26275882 PMCID: PMC4646917 DOI: 10.1007/s00424-015-1727-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 01/14/2023]
Abstract
The mitochondrial Ca(2+) uniporter is a highly Ca(2+)-selective protein complex that consists of the pore-forming mitochondrial Ca(2+) uniporter protein (MCU), the scaffolding essential MCU regulator (EMRE), and mitochondrial calcium uptake 1 and 2 (MICU1/2), which negatively regulate mitochondrial Ca(2+) uptake. We have previously reported that uncoupling proteins 2 and 3 (UCP2/3) are also engaged in the activity of mitochondrial Ca(2+) uptake under certain conditions, while the mechanism by which UCP2/3 facilitates mitochondrial Ca(2+) uniport remains elusive. This work was designed to investigate the impact of UCP2 on the three distinct mitochondrial Ca(2+) currents found in mitoplasts isolated from HeLa cells, the intermediate- (i-), burst- (b-) and extra-large (xl-) mitochondrial/mitoplast Ca(2+) currents (MCC). Using the patch clamp technique on mitoplasts from cells with reduced MCU and EMRE unveiled a very high affinity of MCU for xl-MCC that succeeds that for i-MCC, indicating the coexistence of at least two MCU/EMRE-dependent Ca(2+) currents. The manipulation of the expression level of UCP2 by either siRNA-mediated knockdown or overexpression changed exclusively the open probability (NPo) of xl-MCC by approx. 38% decrease or nearly a 3-fold increase, respectively. These findings confirm a regulatory role of UCP2 in mitochondrial Ca(2+) uptake and identify UCP2 as a selective modulator of just one distinct MCU/EMRE-dependent mitochondrial Ca(2+) inward current.
Collapse
|
43
|
Montes de Oca Balderas P, Aguilera P. A Metabotropic-Like Flux-Independent NMDA Receptor Regulates Ca2+ Exit from Endoplasmic Reticulum and Mitochondrial Membrane Potential in Cultured Astrocytes. PLoS One 2015; 10:e0126314. [PMID: 25954808 PMCID: PMC4425671 DOI: 10.1371/journal.pone.0126314] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 03/31/2015] [Indexed: 01/22/2023] Open
Abstract
Astrocytes were long thought to be only structural cells in the CNS; however, their functional properties support their role in information processing and cognition. The ionotropic glutamate N-methyl D-aspartate (NMDA) receptor (NMDAR) is critical for CNS functions, but its expression and function in astrocytes is still a matter of research and debate. Here, we report immunofluorescence (IF) labeling in rat cultured cortical astrocytes (rCCA) of all NMDAR subunits, with phenotypes suggesting their intracellular transport, and their mRNA were detected by qRT-PCR. IF and Western Blot revealed GluN1 full-length synthesis, subunit critical for NMDAR assembly and transport, and its plasma membrane localization. Functionally, we found an iCa2+ rise after NMDA treatment in Fluo-4-AM labeled rCCA, an effect blocked by the NMDAR competitive inhibitors D(-)-2-amino-5-phosphonopentanoic acid (APV) and Kynurenic acid (KYNA) and dependent upon GluN1 expression as evidenced by siRNA knock down. Surprisingly, the iCa2+ rise was not blocked by MK-801, an NMDAR channel blocker, or by extracellular Ca2+ depletion, indicating flux-independent NMDAR function. In contrast, the IP3 receptor (IP3R) inhibitor XestosponginC did block this response, whereas a Ryanodine Receptor inhibitor did so only partially. Furthermore, tyrosine kinase inhibition with genistein enhanced the NMDA elicited iCa2+ rise to levels comparable to those reached by the gliotransmitter ATP, but with different population dynamics. Finally, NMDA depleted the rCCA mitochondrial membrane potential (mΔψ) measured with JC-1. Our results demonstrate that rCCA express NMDAR subunits which assemble into functional receptors that mediate a metabotropic-like, non-canonical, flux-independent iCa2+ increase.
Collapse
Affiliation(s)
- Pavel Montes de Oca Balderas
- Unidad de Neurobiología Dinámica, Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, México City, México
- * E-mail:
| | - Penélope Aguilera
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía, México City, México
| |
Collapse
|
44
|
Wang L, Yang X, Shen Y. Molecular mechanism of mitochondrial calcium uptake. Cell Mol Life Sci 2015; 72:1489-98. [PMID: 25548802 PMCID: PMC11113575 DOI: 10.1007/s00018-014-1810-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/15/2014] [Accepted: 12/18/2014] [Indexed: 12/21/2022]
Abstract
Mitochondrial calcium uptake plays a critical role in various cellular functions. After half a century of extensive studies, the molecular components and important regulators of the mitochondrial calcium uptake complex have been identified. However, the mechanism by which these protein molecules interact with one another and coordinate to regulate calcium passage through mitochondrial membranes remains elusive. Here, we summarize recent progress in the structural and functional characterization of these important protein molecules, which are involved in mitochondrial calcium uptake. In particular, we focus on the current understanding of the molecular mechanism underlying calcium through two mitochondrial membranes. Additionally, we provide a new perspective for future directions in investigation and molecular intervention.
Collapse
Affiliation(s)
- Lele Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin, 300071 China
| | - Xue Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin, 300071 China
| | - Yuequan Shen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin, 300071 China
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
| |
Collapse
|
45
|
Pardo AC, Rinaldi GJ, Mosca SM. Mitochondrial calcium handling in normotensive and spontaneously hypertensive rats: correlation with systolic blood pressure levels. Mitochondrion 2014; 20:75-81. [PMID: 25530492 DOI: 10.1016/j.mito.2014.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/04/2014] [Accepted: 12/11/2014] [Indexed: 01/10/2023]
Abstract
The aim was to study the mitochondrial Ca(2+) handling of mitochondria isolated from normotensive Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR) hearts and to establish a possible correlation with systolic blood pressure (SBP). Mitochondrial swelling after Ca(2+) addition, Ca(2+)-retention capacity (CRC) by calcium green method, and membrane potential (ΔΨm) were assessed. SBP was 124±1 (WKY) and 235±6mmHg (SHR). CRC, Ca(2+) response and ΔΨm were lower in SHR than WKY mitochondria. The conclusion is: the more depolarized state of SHR than WKY mitochondria results in an abnormal Ca(2+) handling and this event is closely associated with the SBP.
Collapse
Affiliation(s)
- Alejandro Ciocci Pardo
- Centro de Investigaciones Cardiovasculares, CCT-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Gustavo J Rinaldi
- Centro de Investigaciones Cardiovasculares, CCT-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Susana M Mosca
- Centro de Investigaciones Cardiovasculares, CCT-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
46
|
Greineisen WE, Speck M, Shimoda LMN, Sung C, Phan N, Maaetoft-Udsen K, Stokes AJ, Turner H. Lipid body accumulation alters calcium signaling dynamics in immune cells. Cell Calcium 2014; 56:169-80. [PMID: 25016314 DOI: 10.1016/j.ceca.2014.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 10/25/2022]
Abstract
There is well-established variability in the numbers of lipid bodies (LB) in macrophages, eosinophils, and neutrophils. Similarly to the steatosis observed in adipocytes and hepatocytes during hyperinsulinemia and nutrient overload, immune cell LB hyper-accumulate in response to bacterial and parasitic infection and inflammatory presentations. Recently we described that hyperinsulinemia, both in vitro and in vivo, drives steatosis and phenotypic changes in primary and transformed mast cells and basophils. LB reach high numbers in these steatotic cytosols, and here we propose that they could dramatically impact the transcytoplasmic signaling pathways. We compared calcium release and influx responses at the population and single cell level in normal and steatotic model mast cells. At the population level, all aspects of FcɛRI-dependent calcium mobilization, as well as activation of calcium-dependent downstream signaling targets such as NFATC1 phosphorylation are suppressed. At the single cell level, we demonstrate that LB are both sources and sinks of calcium following FcɛRI cross-linking. Unbiased analysis of the impact of the presence of LB on the rate of trans-cytoplasmic calcium signals suggest that LB enrichment accelerates calcium propagation, which may reflect a Bernoulli effect. LB abundance thus impacts this fundamental signaling pathway and its downstream targets.
Collapse
Affiliation(s)
- William E Greineisen
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, United States
| | - Mark Speck
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, United States
| | - Lori M N Shimoda
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, United States
| | - Carl Sung
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, United States
| | - Nolwenn Phan
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, United States
| | - Kristina Maaetoft-Udsen
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, United States
| | - Alexander J Stokes
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, United States
| | - Helen Turner
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, United States; Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, United States.
| |
Collapse
|
47
|
Deak AT, Blass S, Khan MJ, Groschner LN, Waldeck-Weiermair M, Hallström S, Graier WF, Malli R. IP3-mediated STIM1 oligomerization requires intact mitochondrial Ca2+ uptake. J Cell Sci 2014; 127:2944-55. [PMID: 24806964 PMCID: PMC4077590 DOI: 10.1242/jcs.149807] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mitochondria contribute to cell signaling by controlling store-operated Ca2+ entry (SOCE). SOCE is activated by Ca2+ release from the endoplasmic reticulum (ER), whereupon stromal interacting molecule 1 (STIM1) forms oligomers, redistributes to ER–plasma-membrane junctions and opens plasma membrane Ca2+ channels. The mechanisms by which mitochondria interfere with the complex process of SOCE are insufficiently clarified. In this study, we used an shRNA approach to investigate the direct involvement of mitochondrial Ca2+ buffering in SOCE. We demonstrate that knockdown of either of two proteins that are essential for mitochondrial Ca2+ uptake, the mitochondrial calcium uniporter (MCU) or uncoupling protein 2 (UCP2), results in decelerated STIM1 oligomerization and impaired SOCE following cell stimulation with an inositol-1,4,5-trisphosphate (IP3)-generating agonist. Upon artificially augmented cytosolic Ca2+ buffering or ER Ca2+ depletion by sarcoplasmic or endoplasmic reticulum Ca2+-ATPase (SERCA) inhibitors, STIM1 oligomerization did not rely on intact mitochondrial Ca2+ uptake. However, MCU-dependent mitochondrial sequestration of Ca2+ entering through the SOCE pathway was essential to prevent slow deactivation of SOCE. Our findings show a stimulus-specific contribution of mitochondrial Ca2+ uptake to the SOCE machinery, likely through a role in shaping cytosolic Ca2+ micro-domains.
Collapse
Affiliation(s)
- Andras T Deak
- The Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010-Graz, Austria
| | - Sandra Blass
- The Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010-Graz, Austria
| | - Muhammad J Khan
- The Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010-Graz, Austria
| | - Lukas N Groschner
- The Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010-Graz, Austria
| | - Markus Waldeck-Weiermair
- The Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010-Graz, Austria
| | - Seth Hallström
- The Institute of Physiological Chemistry, Center of Physiological Medicine, Medical University of Graz, 8010-Graz, Austria
| | - Wolfgang F Graier
- The Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010-Graz, Austria
| | - Roland Malli
- The Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010-Graz, Austria
| |
Collapse
|
48
|
Zhang F, Xie R, Munoz FM, Lau SS, Monks TJ. PARP-1 hyperactivation and reciprocal elevations in intracellular Ca2+ during ROS-induced nonapoptotic cell death. Toxicol Sci 2014; 140:118-34. [PMID: 24752504 DOI: 10.1093/toxsci/kfu073] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The generation of reactive oxygen species (ROS) has been implicated in the pathogenesis of renal ischemia/reperfusion injury, and many other pathological conditions. DNA strand breaks caused by ROS lead to the activation of poly(ADP-ribose)polymerase-1 (PARP-1), the excessive activation of which can result in cell death. We have utilized a model in which 2,3,5-tris(glutathion-S-yl)hydroquinone (TGHQ), a nephrotoxic and nephrocarcinogenic metabolite of hydroquinone, causes ROS-dependent cell death in human renal proximal tubule epithelial cells (HK-2), to further elucidate the role of PARP-1 in ROS-dependent cell death. TGHQ-induced ROS generation, DNA strand breaks, hyperactivation of PARP-1, rapid depletion of nicotinamide adenine dinucleotide (NAD), elevations in intracellular Ca(2+) concentrations, and subsequent nonapoptotic cell death in both a PARP- and Ca(2+)-dependent manner. Thus, inhibition of PARP-1 with PJ34 completely blocked TGHQ-mediated accumulation of poly(ADP-ribose) polymers and NAD consumption, and delayed HK-2 cell death. In contrast, chelation of intracellular Ca(2+) with BAPTA completely abrogated TGHQ-induced cell death. Ca(2+) chelation also attenuated PARP-1 hyperactivation. Conversely, inhibition of PARP-1 modulated TGHQ-mediated changes in Ca(2+) homeostasis. Interestingly, PARP-1 hyperactivation was not accompanied by the translocation of apoptosis-inducing factor (AIF) from mitochondria to the nucleus, a process usually associated with PARP-dependent cell death. Thus, pathways coupling PARP-1 hyperactivation to cell death are likely to be context-dependent, and therapeutic strategies designed to target PARP-1 need to recognize such variability. Our studies provide new insights into PARP-1-mediated nonapoptotic cell death, during which PARP-1 hyperactivation and elevations in intracellular Ca(2+) are reciprocally coupled to amplify ROS-induced nonapoptotic cell death.
Collapse
Affiliation(s)
- Fengjiao Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Health Sciences Center, Tucson, Arizona 85721
| | - Ruiye Xie
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Health Sciences Center, Tucson, Arizona 85721 Department of Pediatrics and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla,CA 92093-0651
| | - Frances M Munoz
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Health Sciences Center, Tucson, Arizona 85721
| | - Serrine S Lau
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Health Sciences Center, Tucson, Arizona 85721
| | - Terrence J Monks
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Health Sciences Center, Tucson, Arizona 85721
| |
Collapse
|
49
|
Vishnu N, Jadoon Khan M, Karsten F, Groschner LN, Waldeck-Weiermair M, Rost R, Hallström S, Imamura H, Graier WF, Malli R. ATP increases within the lumen of the endoplasmic reticulum upon intracellular Ca2+ release. Mol Biol Cell 2014; 25:368-79. [PMID: 24307679 PMCID: PMC3907277 DOI: 10.1091/mbc.e13-07-0433] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/19/2013] [Accepted: 11/22/2013] [Indexed: 01/02/2023] Open
Abstract
Multiple functions of the endoplasmic reticulum (ER) essentially depend on ATP within this organelle. However, little is known about ER ATP dynamics and the regulation of ER ATP import. Here we describe real-time recordings of ER ATP fluxes in single cells using an ER-targeted, genetically encoded ATP sensor. In vitro experiments prove that the ATP sensor is both Ca(2+) and redox insensitive, which makes it possible to monitor Ca(2+)-coupled ER ATP dynamics specifically. The approach uncovers a cell type-specific regulation of ER ATP homeostasis in different cell types. Moreover, we show that intracellular Ca(2+) release is coupled to an increase of ATP within the ER. The Ca(2+)-coupled ER ATP increase is independent of the mode of Ca(2+) mobilization and controlled by the rate of ATP biosynthesis. Furthermore, the energy stress sensor, AMP-activated protein kinase, is essential for the ATP increase that occurs in response to Ca(2+) depletion of the organelle. Our data highlight a novel Ca(2+)-controlled process that supplies the ER with additional energy upon cell stimulation.
Collapse
Affiliation(s)
- Neelanjan Vishnu
- Institute of Molecular Biology and Biochemistry, Center of Physiological Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Muhammad Jadoon Khan
- Institute of Molecular Biology and Biochemistry, Center of Physiological Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Felix Karsten
- Institute of Molecular Biology and Biochemistry, Center of Physiological Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Lukas N. Groschner
- Institute of Molecular Biology and Biochemistry, Center of Physiological Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Markus Waldeck-Weiermair
- Institute of Molecular Biology and Biochemistry, Center of Physiological Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Rene Rost
- Institute of Molecular Biology and Biochemistry, Center of Physiological Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Seth Hallström
- Institute of Physiological Chemistry, Center of Physiological Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Hiromi Imamura
- Precursory Research for Embryonic Science, Japan Science and Technology Agency, Tokyo 102-0075, Japan
| | - Wolfgang F. Graier
- Institute of Molecular Biology and Biochemistry, Center of Physiological Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Roland Malli
- Institute of Molecular Biology and Biochemistry, Center of Physiological Medicine, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
50
|
Campello S, Strappazzon F, Cecconi F. Mitochondrial dismissal in mammals, from protein degradation to mitophagy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:451-60. [PMID: 24275087 DOI: 10.1016/j.bbabio.2013.11.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/06/2013] [Accepted: 11/15/2013] [Indexed: 11/17/2022]
Abstract
Mitochondria are double-membraned highly dynamic organelles; the shape, location and function of which are determined by a constant balance between opposing fusion and fission events. A fine modulation of mitochondrial structure is crucial for their correct functionality and for many physiological cell processes, the status of these organelles, being thus a key aspect in a cell's fate. Indeed, the homeostasis of mitochondria needs to be highly regulated for the above mentioned reasons, and since a) they are the major source of energy; b) they participate in various signaling pathways; albeit at the same time c) they are also the major source of reactive oxygen species (ROS, the main damaging detrimental players for all cell components). Elaborate mechanisms of mitochondrial quality control have evolved for maintaining a functional mitochondrial network and avoiding cell damage. The first mechanism is the removal of damaged mitochondrial proteins within the organelle via chaperones and protease; the second is the cytosolic ubiquitin-proteasome system (UPS), able to eliminate proteins embedded in the outer mitochondrial membrane; the third is the removal of the entire mitochondria through mitophagy, in the case of extensive organelle damage and dysfunction. In this review, we provide an overview of these mitochondria stability and quality control mechanisms, highlighting mitophagy, and emphasizing the central role of mitochondrial dynamics in this context. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components.
Collapse
Affiliation(s)
| | - Flavie Strappazzon
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Francesco Cecconi
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; Unit of Cell Stress and Survival, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|