1
|
Medvedev RY, Afolabi SO, Turner DGP, Glukhov AV. Mechanisms of stretch-induced electro-anatomical remodeling and atrial arrhythmogenesis. J Mol Cell Cardiol 2024; 193:11-24. [PMID: 38797242 PMCID: PMC11260238 DOI: 10.1016/j.yjmcc.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Atrial fibrillation (AF) is the most common cardiac rhythm disorder, often occurring in the setting of atrial distension and elevated myocardialstretch. While various mechano-electrochemical signal transduction pathways have been linked to AF development and progression, the underlying molecular mechanisms remain poorly understood, hampering AF therapies. In this review, we describe different aspects of stretch-induced electro-anatomical remodeling as seen in animal models and in patients with AF. Specifically, we focus on cellular and molecular mechanisms that are responsible for mechano-electrochemical signal transduction and the development of ectopic beats triggering AF from pulmonary veins, the most common source of paroxysmal AF. Furthermore, we describe structural changes caused by stretch occurring before and shortly after the onset of AF as well as during AF progression, contributing to longstanding forms of AF. We also propose mechanical stretch as a new dimension to the concept "AF begets AF", in addition to underlying diseases. Finally, we discuss the mechanisms of these electro-anatomical alterations in a search for potential therapeutic strategies and the development of novel antiarrhythmic drugs targeted at the components of mechano-electrochemical signal transduction not only in cardiac myocytes, but also in cardiac non-myocyte cells.
Collapse
Affiliation(s)
- Roman Y Medvedev
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Saheed O Afolabi
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; Department of Pharmacology and Therapeutics, University of Ilorin, Ilorin, Nigeria
| | - Daniel G P Turner
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Alexey V Glukhov
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
2
|
Liu X, Liu B, Luo X, Liu Z, Tan X, Zhu K, Ouyang F. Research progress on the role of p53 in pulmonary arterial hypertension. Respir Investig 2024; 62:541-550. [PMID: 38643536 DOI: 10.1016/j.resinv.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 04/23/2024]
Abstract
PURPOSE OF REVIEW Pulmonary arterial hypertension (PAH) is a devastating disease characterized by increased pulmonary vascular resistance and pulmonary arterial pressure. At present, the definitive pathology of PAH has not been elucidated and its effective treatment remains lacking. Despite PAHs having multiple pathogeneses, the cancer-like characteristics of cells have been considered the main reason for PAH progression. RECENT FINDINGS p53 protein, an important tumor suppressor, regulates a multitude of gene expressions to maintain normal cellular functions and suppress the progression of malignant tumors. Recently, p53 has been found to exert multiple biological effects on cardiovascular diseases. Since PAH shares similar metabolic features with cancer cells, the regulatory roles of p53 in PAH are mainly the induction of cell cycle, inhibition of cell proliferation, and promotion of apoptosis. SUMMARY This paper summarized the advanced findings on the molecular mechanisms and regulatory functions of p53 in PAH, aiming to reveal the potential therapeutic targets for PAH.
Collapse
Affiliation(s)
- Xiangyang Liu
- Department of Cardiovascular Medicine, Zhuzhou Central Hospital, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, No.116 Changjiangnan Road, Tianyuan District, Zhuzhou City, 412000, Hunan, China
| | - Biao Liu
- Department of Cardiovascular Medicine, Taojiang County People's Hospital, No.328 Taohuaxi Road, Taohuajiang Town, Taojiang County, Yiyang City, 413499, Hunan, China
| | - Xin Luo
- Department of Cardiovascular Medicine, Zhuzhou Central Hospital, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, No.116 Changjiangnan Road, Tianyuan District, Zhuzhou City, 412000, Hunan, China
| | - Zhenfang Liu
- Department of Cardiovascular Medicine, Zhuzhou Central Hospital, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, No.116 Changjiangnan Road, Tianyuan District, Zhuzhou City, 412000, Hunan, China
| | - Xiaoli Tan
- Department of Cardiovascular Medicine, Zhuzhou Central Hospital, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, No.116 Changjiangnan Road, Tianyuan District, Zhuzhou City, 412000, Hunan, China
| | - Ke Zhu
- Department of Cardiovascular Medicine, Zhuzhou Central Hospital, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, No.116 Changjiangnan Road, Tianyuan District, Zhuzhou City, 412000, Hunan, China.
| | - Fan Ouyang
- Department of Cardiovascular Medicine, Zhuzhou Central Hospital, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, No.116 Changjiangnan Road, Tianyuan District, Zhuzhou City, 412000, Hunan, China.
| |
Collapse
|
3
|
Wang Z, Zhang G, Hu S, Fu M, Zhang P, Zhang K, Hao L, Chen S. Research progress on the protective effect of hormones and hormone drugs in myocardial ischemia-reperfusion injury. Biomed Pharmacother 2024; 176:116764. [PMID: 38805965 DOI: 10.1016/j.biopha.2024.116764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/05/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
Ischemic heart disease (IHD) is a condition where the heart muscle does not receive enough blood flow, leading to cardiac dysfunction. Restoring blood flow to the coronary artery is an effective clinical therapy for myocardial ischemia. This strategy helps lower the size of the myocardial infarction and improves the prognosis of patients. Nevertheless, if the disrupted blood flow to the heart muscle is restored within a specific timeframe, it leads to more severe harm to the previously deprived heart tissue. This condition is referred to as myocardial ischemia/reperfusion injury (MIRI). Until now, there is a dearth of efficacious strategies to prevent and manage MIRI. Hormones are specialized substances that are produced directly into the circulation by endocrine organs or tissues in humans and animals, and they have particular effects on the body. Hormonal medications utilize human or animal hormones as their active components, encompassing sex hormones, adrenaline medications, thyroid hormone medications, and others. While several studies have examined the preventive properties of different endocrine hormones, such as estrogen and hormone analogs, on myocardial injury caused by ischemia-reperfusion, there are other hormone analogs whose mechanisms of action remain unexplained and whose safety cannot be assured. The current study is on hormones and hormone medications, elucidating the mechanism of hormone pharmaceuticals and emphasizing the cardioprotective effects of different endocrine hormones. It aims to provide guidance for the therapeutic use of drugs and offer direction for the examination of MIRI in clinical therapy.
Collapse
Affiliation(s)
- Zhongyi Wang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Gaojiang Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Shan Hu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Meilin Fu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Pingyuan Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Kuo Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Sichong Chen
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
4
|
Vora N, Patel P, Gajjar A, Ladani P, Konat A, Bhanderi D, Gadam S, Prajjwal P, Sharma K, Arunachalam SP. Gene therapy for heart failure: A novel treatment for the age old disease. Dis Mon 2024; 70:101636. [PMID: 37734966 DOI: 10.1016/j.disamonth.2023.101636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Across the globe, cardiovascular disease (CVD) is the leading cause of mortality. According to reports, around 6.2 million people in the United states have heart failure. Current standards of care for heart failure can delay but not prevent progression of disease. Gene therapy is one of the novel treatment modalities that promises to fill this limitation in the current standard of care for Heart Failure. In this paper we performed an extensive search of the literature on various advances made in gene therapy for heart failure till date. We review the delivery methods, targets, current applications, trials, limitations and feasibility of gene therapy for heart failure. Various methods have been employed till date for administering gene therapies including but not limited to arterial and venous infusion, direct myocardial injection and pericardial injection. Various strategies such as AC6 expression, S100A1 protein upregulation, VEGF-B and SDF-1 gene therapy have shown promise in recent preclinical trials. Furthermore, few studies even show that stimulation of cardiomyocyte proliferation such as through cyclin A2 overexpression is a realistic avenue. However, a considerable number of obstacles need to be overcome for gene therapy to be part of standard treatment of care such as definitive choice of gene, gene delivery systems and a suitable method for preclinical trials and clinical trials on patients. Considering the challenges and taking into account the recent advances in gene therapy research, there are encouraging signs to indicate gene therapy for heart failure to be a promising treatment modality for the future. However, the time and feasibility of this option remains in a situation of balance.
Collapse
Affiliation(s)
- Neel Vora
- B. J. Medical College, Ahmedabad, India
| | - Parth Patel
- Pramukhswami Medical College, Karamsad, India
| | | | | | - Ashwati Konat
- University School of Sciences, Gujarat University, Ahmedabad, India
| | | | | | | | - Kamal Sharma
- U. N. Mehta Institute of Cardiology and Research Centre, Ahmedabad, India.
| | | |
Collapse
|
5
|
Chen S, Chen J, Du W, Mickelsen DM, Shi H, Yu H, Kumar S, Yan C. PDE10A Inactivation Prevents Doxorubicin-Induced Cardiotoxicity and Tumor Growth. Circ Res 2023; 133:138-157. [PMID: 37232184 PMCID: PMC10428174 DOI: 10.1161/circresaha.122.322264] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Cyclic nucleotides play critical roles in cardiovascular biology and disease. PDE10A (phosphodiesterase 10A) is able to hydrolyze both cAMP and cGMP. PDE10A expression is induced in various human tumor cell lines, and PDE10A inhibition suppresses tumor cell growth. Chemotherapy drug such as doxorubicin (DOX) is widely used in chemotherapy. However, cardiotoxicity of DOX remains to be a serious clinical complication. In the current study, we aim to determine the role of PDE10A and the effect of PDE10A inhibition on cancer growth and cardiotoxicity induced by DOX. METHODS We used global PDE10A knockout (KO) mice and PDE10A inhibitor TP-10 to block PDE10A function. DOX-induced cardiotoxicity was evaluated in C57Bl/6J mice and nude mice with implanted ovarian cancer xenografts. Isolated adult mouse cardiomyocytes and a human ovarian cancer cell line were used for in vitro functional and mechanistic studies. RESULTS We found that PDE10A deficiency or inhibition alleviated DOX-induced myocardial atrophy, apoptosis, and dysfunction in C57Bl/6J mice. RNA sequencing study revealed a number of PDE10A-regulated signaling pathways involved in DOX-induced cardiotoxicity. PDE10A inhibition increased the death, decreased the proliferation, and potentiated the effect of DOX on various human cancer cells. Importantly, in nude mice with implanted ovarian cancer xenografts, PDE10A inhibition attenuated tumor growth while protecting DOX-induced cardiotoxicity. In isolated cardiomyocytes, PDE10A contributed to DOX-induced cardiomyocyte death via increasing Top2β (topoisomerase 2β) expression, mitochondrial dysfunction, and DNA damage by antagonizing cGMP/PKG (protein kinase G) signaling. PDE10A contributed to cardiomyocyte atrophy via potentiating FoxO3 (forkhead box O3) signaling via both cAMP/PKA (protein kinase A)- and cGMP/PKG-dependent signaling. CONCLUSIONS Taken together, our study elucidates a novel role for PDE10A in cardiotoxicity induced by DOX and cancer growth. Given that PDE10A has been already proven to be a safe drug target, PDE10A inhibition may represent a novel therapeutic strategy in cancer therapy, with effects preventing DOX-induced cardiotoxicity and simultaneously antagonizing cancer growth.
Collapse
Affiliation(s)
- Si Chen
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jiawei Chen
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Current position: Department of Cardiology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, P.R.China
- Current position: Institute of Cardiovascular Diseases, Shanghai Jiao-Tong University School of Medicine, Shanghai, P.R.China
| | - Wenting Du
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Current Position: Department of Geriatrics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Deanne M. Mickelsen
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Hangchuan Shi
- Department of Clinical and Translational Research, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Han Yu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Sparsh Kumar
- Multidisciplinary Studies Center, University of Rochester, Rochester, NY, USA
| | - Chen Yan
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
6
|
Lymperopoulos A. Clinical pharmacology of cardiac cyclic AMP in human heart failure: too much or too little? Expert Rev Clin Pharmacol 2023; 16:623-630. [PMID: 37403791 PMCID: PMC10529896 DOI: 10.1080/17512433.2023.2233891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/04/2023] [Indexed: 07/06/2023]
Abstract
INTRODUCTION Cyclic 3', 5'-adenosine monophosphate (cAMP) is a major signaling hub in cardiac physiology. Although cAMP signaling has been extensively studied in cardiac cells and animal models of heart failure (HF), not much is known about its actual amount present inside human failing or non-failing cardiomyocytes. Since many drugs used in HF work via cAMP, it is crucial to determine the status of its intracellular levels in failing vs. normal human hearts. AREAS COVERED Only studies performed on explanted/excised cardiac tissues from patients were examined. Studies that contained no data from human hearts or no data on cAMP levels per se were excluded from this perspective's analysis. EXPERT OPINION Currently, there is no consensus on the status of cAMP levels in human failing vs. non-failing hearts. Several studies on animal models may suggest maladaptive (e.g. pro-apoptotic) effects of cAMP on HF, advocating for cAMP lowering for therapy, but human studies almost universally indicate that myocardial cAMP levels are deficient in human failing hearts. It is the expert opinion of this perspective that intracellular cAMP levels are too low in human failing hearts, contributing to the disease. Strategies to increase (restore), not decrease, these levels should be pursued in human HF.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University Barry and Judy Silverman College of Pharmacy, Fort Lauderdale, FL, USA
| |
Collapse
|
7
|
Borges JI, Suster MS, Lymperopoulos A. Cardiac RGS Proteins in Human Heart Failure and Atrial Fibrillation: Focus on RGS4. Int J Mol Sci 2023; 24:ijms24076136. [PMID: 37047106 PMCID: PMC10147095 DOI: 10.3390/ijms24076136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
The regulator of G protein signaling (RGS) proteins are crucial for the termination of G protein signals elicited by G protein-coupled receptors (GPCRs). This superfamily of cell membrane receptors, by far the largest and most versatile in mammals, including humans, play pivotal roles in the regulation of cardiac function and homeostasis. Perturbations in both the activation and termination of their G protein-mediated signaling underlie numerous heart pathologies, including heart failure (HF) and atrial fibrillation (AFib). Therefore, RGS proteins play important roles in the pathophysiology of these two devasting cardiac diseases, and several of them could be targeted therapeutically. Although close to 40 human RGS proteins have been identified, each RGS protein seems to interact only with a specific set of G protein subunits and GPCR types/subtypes in any given tissue or cell type. Numerous in vitro and in vivo studies in animal models, and also in diseased human heart tissue obtained from transplantations or tissue banks, have provided substantial evidence of the roles various cardiomyocyte RGS proteins play in cardiac normal homeostasis as well as pathophysiology. One RGS protein in particular, RGS4, has been reported in what are now decades-old studies to be selectively upregulated in human HF. It has also been implicated in protection against AFib via knockout mice studies. This review summarizes the current understanding of the functional roles of cardiac RGS proteins and their implications for the treatment of HF and AFib, with a specific focus on RGS4 for the aforementioned reasons but also because it can be targeted successfully with small organic molecule inhibitors.
Collapse
Affiliation(s)
- Jordana I Borges
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverrman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Malka S Suster
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverrman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverrman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
8
|
Cyclic nucleotide phosphodiesterases as therapeutic targets in cardiac hypertrophy and heart failure. Nat Rev Cardiol 2023; 20:90-108. [PMID: 36050457 DOI: 10.1038/s41569-022-00756-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 01/21/2023]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) modulate the neurohormonal regulation of cardiac function by degrading cAMP and cGMP. In cardiomyocytes, multiple PDE isozymes with different enzymatic properties and subcellular localization regulate local pools of cyclic nucleotides and specific functions. This organization is heavily perturbed during cardiac hypertrophy and heart failure (HF), which can contribute to disease progression. Clinically, PDE inhibition has been considered a promising approach to compensate for the catecholamine desensitization that accompanies HF. Although PDE3 inhibitors, such as milrinone or enoximone, have been used clinically to improve systolic function and alleviate the symptoms of acute HF, their chronic use has proved to be detrimental. Other PDEs, such as PDE1, PDE2, PDE4, PDE5, PDE9 and PDE10, have emerged as new potential targets to treat HF, each having a unique role in local cyclic nucleotide signalling pathways. In this Review, we describe cAMP and cGMP signalling in cardiomyocytes and present the various PDE families expressed in the heart as well as their modifications in pathological cardiac hypertrophy and HF. We also appraise the evidence from preclinical models as well as clinical data pointing to the use of inhibitors or activators of specific PDEs that could have therapeutic potential in HF.
Collapse
|
9
|
Neves JS, Vasques-Nóvoa F, Borges-Canha M, Leite AR, Sharma A, Carvalho D, Packer M, Zannad F, Leite-Moreira A, Ferreira JP. Risk of adverse events with liraglutide in heart failure with reduced ejection fraction: A post hoc analysis of the FIGHT trial. Diabetes Obes Metab 2023; 25:189-197. [PMID: 36082522 PMCID: PMC9742170 DOI: 10.1111/dom.14862] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/25/2022] [Accepted: 09/04/2022] [Indexed: 02/06/2023]
Abstract
AIM To perform a post hoc analysis of the FIGHT trial, evaluating the effect of liraglutide (vs. placebo) on the totality of events in patients with heart failure with reduced ejection fraction (HFrEF). MATERIALS AND METHODS FIGHT was a double-blind randomized controlled trial (RCT) that studied liraglutide versus placebo in 300 recently hospitalized patients with HFrEF followed for 180 days. The main outcome of the present analysis was total events of hospitalizations for heart failure (HF) or all-cause death. Secondary outcomes included total arrhythmic events and prespecified total events of interest (arrhythmias, sudden cardiac death, acute coronary syndrome, worsening HF, cerebrovascular event, venous thromboembolism, lightheadedness, presyncope/syncope or worsening renal function). Treatment effect was evaluated with negative binomial regression. RESULTS Compared to placebo, there was a trend towards increased risk with liraglutide of total HF hospitalizations or all-cause deaths (96 vs. 143 events, incidence rate ratio [IRR] 1.41, 95% confidence interval [CI] 0.98-2.04; P = 0.064) and total arrhythmias (21 vs. 39, IRR 1.76, 95% CI 0.92-3.37; P = 0.088). Total prespecified events of interest were increased with liraglutide compared to placebo (196 vs. 295, IRR 1.43, 95% CI 1.06-1.92; P = 0.018). The risk of HF hospitalizations or all-cause deaths with liraglutide was higher among patients in New York Heart Association (NYHA) Class III to IV (IRR 1.86, 95% CI 1.21-2.85) than in those in NYHA Class I to II (IRR 0.62, 95% CI 0.31-1.23; interaction P = 0.008), and among patients with diabetes (interaction P = 0.051). The risk of arrhythmic events was higher among those without an implanted cardiac device (interaction P = 0.047). CONCLUSIONS In patients with HFrEF, liraglutide might increase the risk of cardiovascular adverse effects, an effect possibly driven by excess risk of arrhythmias and worsening HF events. As this was a post hoc analysis, these results should be interpreted as exploratory and hypothesis-generating. Further RCTs must be conducted before drawing definitive conclusions.
Collapse
Affiliation(s)
- João Sérgio Neves
- Cardiovascular R&D Centre - Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Francisco Vasques-Nóvoa
- Cardiovascular R&D Centre - Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Department of Internal Medicine, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Marta Borges-Canha
- Cardiovascular R&D Centre - Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Ana Rita Leite
- Cardiovascular R&D Centre - Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Abhinav Sharma
- Division of Cardiology, DREAM-CV Lab, McGill University Health Centre, Montreal, Canada
| | - Davide Carvalho
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário de São João, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
| | - Milton Packer
- Baylor University Medical Center, Dallas, Texas, USA
- Imperial College, London, United Kingdom
| | - Faiez Zannad
- Université de Lorraine, Inserm, Centre d’Investigations Cliniques, - Plurithématique 14-33, and Inserm U1116, CHRU Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - Adelino Leite-Moreira
- Cardiovascular R&D Centre - Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Department of Cardiothoracic Surgery, Centro Hospitalar Universitário São João, Porto, Portugal
| | - João Pedro Ferreira
- Cardiovascular R&D Centre - Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Université de Lorraine, Inserm, Centre d’Investigations Cliniques, - Plurithématique 14-33, and Inserm U1116, CHRU Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| |
Collapse
|
10
|
Del Calvo G, Baggio Lopez T, Lymperopoulos A. The therapeutic potential of targeting cardiac RGS4. Ther Adv Cardiovasc Dis 2023; 17:17539447231199350. [PMID: 37724539 PMCID: PMC10510358 DOI: 10.1177/17539447231199350] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023] Open
Abstract
G protein-coupled receptors (GPCRs) play pivotal roles in regulation of cardiac function and homeostasis. To function properly, every cell needs these receptors to be stimulated only when a specific extracellular stimulus is present, and to be silenced the moment that stimulus is removed. The regulator of G protein signaling (RGS) proteins are crucial for the latter to occur at the cell membrane, where the GPCR normally resides. Perturbations in both activation and termination of G protein signaling underlie numerous heart pathologies. Although more than 30 mammalian RGS proteins have been identified, each RGS protein seems to interact only with a specific set of G protein subunits and GPCR types/subtypes in any given tissue or cell type, and this applies to the myocardium as well. A large number of studies have provided substantial evidence for the roles various RGS proteins expressed in cardiomyocytes play in cardiac physiology and heart disease pathophysiology. This review summarizes the current understanding of the functional roles of cardiac RGS proteins and their implications for the treatment of specific heart diseases, such as heart failure and atrial fibrillation. We focus on cardiac RGS4 in particular, since this isoform appears to be selectively (among the RGS protein family) upregulated in human heart failure and is also the target of ongoing drug discovery efforts for the treatment of a variety of diseases.
Collapse
Affiliation(s)
- Giselle Del Calvo
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Teresa Baggio Lopez
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, HPD (Terry) Building/Room 1350, Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
11
|
Phosphodiesterase 4D contributes to angiotensin II-induced abdominal aortic aneurysm through smooth muscle cell apoptosis. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1201-1213. [PMID: 35999453 PMCID: PMC9440214 DOI: 10.1038/s12276-022-00815-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/08/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a permanent expansion of the abdominal aorta that has a high mortality but limited treatment options. Phosphodiesterase (PDE) 4 family members are cAMP-specific hydrolyzing enzymes and have four isoforms (PDE4A-PDE4D). Several pan-PDE4 inhibitors are used clinically. However, the regulation and function of PDE4 in AAA remain largely unknown. Herein, we showed that PDE4D expression is upregulated in human and angiotensin II-induced mouse AAA tissues using RT-PCR, western blotting, and immunohistochemical staining. Furthermore, smooth muscle cell (SMC)-specific Pde4d knockout mice showed significantly reduced vascular destabilization and AAA development in an experimental AAA model. The PDE4 inhibitor rolipram also suppressed vascular pathogenesis and AAA formation in mice. In addition, PDE4D deficiency inhibited caspase 3 cleavage and SMC apoptosis in vivo and in vitro, as shown by bulk RNA-seq, western blotting, flow cytometry and TUNEL staining. Mechanistic studies revealed that PDE4D promotes apoptosis by suppressing the activation of cAMP-activated protein kinase A (PKA) instead of the exchange protein directly activated by cAMP (Epac). Additionally, the phosphorylation of BCL2-antagonist of cell death (Bad) was reversed by PDE4D siRNA in vitro, which indicates that PDE4D regulates SMC apoptosis via the cAMP-PKA-pBad axis. Overall, these findings indicate that PDE4D upregulation in SMCs plays a causative role in AAA development and suggest that pharmacological inhibition of PDE4 may represent a potential therapeutic strategy.
Collapse
|
12
|
Bosma KJ, Ghosh M, Andrei SR, Zhong L, Dunn JC, Ricciardi VF, Burkett JB, Hatzopoulos AK, Damron DS, Gannon M. Pharmacological modulation of prostaglandin E 2 (PGE 2 ) EP receptors improves cardiomyocyte function under hyperglycemic conditions. Physiol Rep 2022; 10:e15212. [PMID: 35403369 PMCID: PMC8995713 DOI: 10.14814/phy2.15212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023] Open
Abstract
Type 2 diabetes (T2D) affects >30 million Americans and nearly 70% of individuals with T2D will die from cardiovascular disease (CVD). Circulating levels of the inflammatory signaling lipid, prostaglandin E2 (PGE2 ), are elevated in the setting of obesity and T2D and are associated with decreased cardiac function. The EP3 and EP4 PGE2 receptors have opposing actions in several tissues, including the heart: overexpression of EP3 in cardiomyocytes impairs function, while EP4 overexpression improves function. Here we performed complementary studies in vitro with isolated cardiomyocytes and in vivo using db/db mice, a model of T2D, to analyze the effects of EP3 inhibition or EP4 activation on cardiac function. Using echocardiography, we found that 2 weeks of systemic treatment of db/db mice with 20 mg/kg of EP3 antagonist, beginning at 6 weeks of age, improves ejection fraction and fractional shortening (with no effect on heart rate). We further show that either EP3 blockade or EP4 activation enhances contractility and calcium cycling in isolated mouse cardiomyocytes cultured in both normal and high glucose. Thus, peak [Ca2+ ]I transient amplitude was increased, while time to peak [Ca2+ ]I and [Ca2+ ]I decay were decreased. These data suggest that modulation of EP3 and EP4 activity has beneficial effects on cardiomyocyte contractility and overall heart function.
Collapse
Affiliation(s)
- Karin J. Bosma
- Department of Veterans Affairs Tennessee Valley AuthorityNashvilleTennesseeUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Monica Ghosh
- Department of Biological SciencesSchool of Biomedical SciencesKent State UniversityKentOhioUSA
| | - Spencer R. Andrei
- Department of Veterans Affairs Tennessee Valley AuthorityNashvilleTennesseeUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Lin Zhong
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Jennifer C. Dunn
- Department of Veterans Affairs Tennessee Valley AuthorityNashvilleTennesseeUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | | | - Juliann B. Burkett
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | - Antonis K. Hatzopoulos
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTennesseeUSA
| | - Derek S. Damron
- Department of Biological SciencesSchool of Biomedical SciencesKent State UniversityKentOhioUSA
| | - Maureen Gannon
- Department of Veterans Affairs Tennessee Valley AuthorityNashvilleTennesseeUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTennesseeUSA
| |
Collapse
|
13
|
PDE-Mediated Cyclic Nucleotide Compartmentation in Vascular Smooth Muscle Cells: From Basic to a Clinical Perspective. J Cardiovasc Dev Dis 2021; 9:jcdd9010004. [PMID: 35050214 PMCID: PMC8777754 DOI: 10.3390/jcdd9010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases are important causes of mortality and morbidity worldwide. Vascular smooth muscle cells (SMCs) are major components of blood vessels and are involved in physiologic and pathophysiologic conditions. In healthy vessels, vascular SMCs contribute to vasotone and regulate blood flow by cyclic nucleotide intracellular pathways. However, vascular SMCs lose their contractile phenotype under pathological conditions and alter contractility or signalling mechanisms, including cyclic nucleotide compartmentation. In the present review, we focus on compartmentalized signaling of cyclic nucleotides in vascular smooth muscle. A deeper understanding of these mechanisms clarifies the most relevant axes for the regulation of vascular tone. Furthermore, this allows the detection of possible changes associated with pathological processes, which may be of help for the discovery of novel drugs.
Collapse
|
14
|
Korpela H, Järveläinen N, Siimes S, Lampela J, Airaksinen J, Valli K, Turunen M, Pajula J, Nurro J, Ylä-Herttuala S. Gene therapy for ischaemic heart disease and heart failure. J Intern Med 2021; 290:567-582. [PMID: 34033164 DOI: 10.1111/joim.13308] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/27/2022]
Abstract
Gene therapy has been expected to become a novel treatment method since the structure of DNA was discovered in 1953. The morbidity from cardiovascular diseases remains remarkable despite the improvement of percutaneous interventions and pharmacological treatment, underlining the need for novel therapeutics. Gene therapy-mediated therapeutic angiogenesis could help those who have not gained sufficient symptom relief with traditional treatment methods. Especially patients with severe coronary artery disease and heart failure could benefit from gene therapy. Some clinical trials have reported improved myocardial perfusion and symptom relief in CAD patients, but few trials have come up with disappointing negative results. Translating preclinical success into clinical applications has encountered difficulties in successful transduction, study design, endpoint selection, and patient selection and recruitment. However, promising new methods for transducing the cells, such as retrograde delivery and cardiac-specific AAV vectors, hold great promise for myocardial gene therapy. This review introduces gene therapy for ischaemic heart disease and heart failure and discusses the current status and future developments in this field.
Collapse
Affiliation(s)
- H Korpela
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - N Järveläinen
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - S Siimes
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - J Lampela
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - J Airaksinen
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - K Valli
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - M Turunen
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - J Pajula
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - J Nurro
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - S Ylä-Herttuala
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
15
|
Ramos-Kuri M, Meka SH, Salamanca-Buentello F, Hajjar RJ, Lipskaia L, Chemaly ER. Molecules linked to Ras signaling as therapeutic targets in cardiac pathologies. Biol Res 2021; 54:23. [PMID: 34344467 PMCID: PMC8330049 DOI: 10.1186/s40659-021-00342-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/26/2021] [Indexed: 12/11/2022] Open
Abstract
Abstract The Ras family of small Guanosine Triphosphate (GTP)-binding proteins (G proteins) represents one of the main components of intracellular signal transduction required for normal cardiac growth, but is also critically involved in the development of cardiac hypertrophy and heart failure. The present review provides an update on the role of the H-, K- and N-Ras genes and their related pathways in cardiac diseases. We focus on cardiac hypertrophy and heart failure, where Ras has been studied the most. We also review other cardiac diseases, like genetic disorders related to Ras. The scope of the review extends from fundamental concepts to therapeutic applications. Although the three Ras genes have a nearly identical primary structure, there are important functional differences between them: H-Ras mainly regulates cardiomyocyte size, whereas K-Ras regulates cardiomyocyte proliferation. N-Ras is the least studied in cardiac cells and is less associated to cardiac defects. Clinically, oncogenic H-Ras causes Costello syndrome and facio-cutaneous-skeletal syndromes with hypertrophic cardiomyopathy and arrhythmias. On the other hand, oncogenic K-Ras and alterations of other genes of the Ras-Mitogen-Activated Protein Kinase (MAPK) pathway, like Raf, cause Noonan syndrome and cardio-facio-cutaneous syndromes characterized by cardiac hypertrophy and septal defects. We further review the modulation by Ras of key signaling pathways in the cardiomyocyte, including: (i) the classical Ras-Raf-MAPK pathway, which leads to a more physiological form of cardiac hypertrophy; as well as other pathways associated with pathological cardiac hypertrophy, like (ii) The SAPK (stress activated protein kinase) pathways p38 and JNK; and (iii) The alternative pathway Raf-Calcineurin-Nuclear Factor of Activated T cells (NFAT). Genetic alterations of Ras isoforms or of genes in the Ras-MAPK pathway result in Ras-opathies, conditions frequently associated with cardiac hypertrophy or septal defects among other cardiac diseases. Several studies underline the potential role of H- and K-Ras as a hinge between physiological and pathological cardiac hypertrophy, and as potential therapeutic targets in cardiac hypertrophy and failure. Graphic abstract ![]()
The Ras (Rat Sarcoma) gene family is a group of small G proteins Ras is regulated by growth factors and neurohormones affecting cardiomyocyte growth and hypertrophy Ras directly affects cardiomyocyte physiological and pathological hypertrophy Genetic alterations of Ras and its pathways result in various cardiac phenotypes Ras and its pathway are differentially regulated in acquired heart disease Ras modulation is a promising therapeutic target in various cardiac conditions.
Collapse
Affiliation(s)
- Manuel Ramos-Kuri
- Instituto Nacional de Cancerología, Unidad de Investigación Biomédica en Cáncer, Secretarìa de Salud/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, México.,Researcher of the Facultad de Bioética, Cátedra de Infertilidad, Universidad Anáhuac, Mexico City, México.,Centro de Investigación en Bioética y Genética, Querétaro, México
| | - Sri Harika Meka
- Division of Nephrology, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Clinical and Translational Research Center, 875 Ellicott Street, Suite 8030B, Buffalo, NY, 14203, USA
| | - Fabio Salamanca-Buentello
- University of Toronto Institute of Medical Science, Medical Sciences Building, 1 King's College Circle, Room 2374, Toronto, ON, M5S 1A8, Canada
| | | | - Larissa Lipskaia
- INSERM U955 and Département de Physiologie, Hôpital Henri Mondor, FHU SENEC, AP-HP, and Université Paris-Est Créteil (UPEC), 94010, Créteil, France
| | - Elie R Chemaly
- Division of Nephrology, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Clinical and Translational Research Center, 875 Ellicott Street, Suite 8030B, Buffalo, NY, 14203, USA.
| |
Collapse
|
16
|
Bathe-Peters M, Gmach P, Boltz HH, Einsiedel J, Gotthardt M, Hübner H, Gmeiner P, Lohse MJ, Annibale P. Visualization of β-adrenergic receptor dynamics and differential localization in cardiomyocytes. Proc Natl Acad Sci U S A 2021; 118:e2101119118. [PMID: 34088840 PMCID: PMC8201832 DOI: 10.1073/pnas.2101119118] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A key question in receptor signaling is how specificity is realized, particularly when different receptors trigger the same biochemical pathway(s). A notable case is the two β-adrenergic receptor (β-AR) subtypes, β1 and β2, in cardiomyocytes. They are both coupled to stimulatory Gs proteins, mediate an increase in cyclic adenosine monophosphate (cAMP), and stimulate cardiac contractility; however, other effects, such as changes in gene transcription leading to cardiac hypertrophy, are prominent only for β1-AR but not for β2-AR. Here, we employ highly sensitive fluorescence spectroscopy approaches, in combination with a fluorescent β-AR antagonist, to determine the presence and dynamics of the endogenous receptors on the outer plasma membrane as well as on the T-tubular network of intact adult cardiomyocytes. These techniques allow us to visualize that the β2-AR is confined to and diffuses within the T-tubular network, as opposed to the β1-AR, which is found to diffuse both on the outer plasma membrane as well as on the T-tubules. Upon overexpression of the β2-AR, this compartmentalization is lost, and the receptors are also seen on the cell surface. Such receptor segregation depends on the development of the T-tubular network in adult cardiomyocytes since both the cardiomyoblast cell line H9c2 and the cardiomyocyte-differentiated human-induced pluripotent stem cells express the β2-AR on the outer plasma membrane. These data support the notion that specific cell surface targeting of receptor subtypes can be the basis for distinct signaling and functional effects.
Collapse
MESH Headings
- Animals
- Cell Line
- Cell Membrane/genetics
- Cell Membrane/metabolism
- Humans
- Induced Pluripotent Stem Cells/metabolism
- Mice
- Mice, Transgenic
- Molecular Imaging
- Myocytes, Cardiac/metabolism
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
Collapse
Affiliation(s)
- Marc Bathe-Peters
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
| | - Philipp Gmach
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
| | - Horst-Holger Boltz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Department for Modelling and Simulation of Complex Processes, Zuse Institute Berlin, 14195 Berlin, Germany
| | - Jürgen Einsiedel
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich Alexander Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Michael Gotthardt
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, 10785 Berlin, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich Alexander Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich Alexander Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Martin J Lohse
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany;
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
- Department of Chemistry and Biochemistry, Free University of Berlin, 14195 Berlin, Germany
- ISAR Bioscience Institute, 82152 Munich-Planegg, Germany
| | - Paolo Annibale
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany;
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
| |
Collapse
|
17
|
Lymperopoulos A, Cora N, Maning J, Brill AR, Sizova A. Signaling and function of cardiac autonomic nervous system receptors: Insights from the GPCR signalling universe. FEBS J 2021; 288:2645-2659. [DOI: 10.1111/febs.15771] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/02/2021] [Accepted: 02/16/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation Department of Pharmaceutical Sciences Nova Southeastern University Fort Lauderdale FL USA
| | - Natalie Cora
- Laboratory for the Study of Neurohormonal Control of the Circulation Department of Pharmaceutical Sciences Nova Southeastern University Fort Lauderdale FL USA
| | - Jennifer Maning
- Laboratory for the Study of Neurohormonal Control of the Circulation Department of Pharmaceutical Sciences Nova Southeastern University Fort Lauderdale FL USA
| | - Ava R. Brill
- Laboratory for the Study of Neurohormonal Control of the Circulation Department of Pharmaceutical Sciences Nova Southeastern University Fort Lauderdale FL USA
| | - Anastasiya Sizova
- Laboratory for the Study of Neurohormonal Control of the Circulation Department of Pharmaceutical Sciences Nova Southeastern University Fort Lauderdale FL USA
| |
Collapse
|
18
|
McCabe KJ, Rangamani P. Computational modeling approaches to cAMP/PKA signaling in cardiomyocytes. J Mol Cell Cardiol 2021; 154:32-40. [PMID: 33548239 DOI: 10.1016/j.yjmcc.2021.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
The cAMP/PKA pathway is a fundamental regulator of excitation-contraction coupling in cardiomyocytes. Activation of cAMP has a variety of downstream effects on cardiac function including enhanced contraction, accelerated relaxation, adaptive stress response, mitochondrial regulation, and gene transcription. Experimental advances have shed light on the compartmentation of cAMP and PKA, which allow for control over the varied targets of these second messengers and is disrupted in heart failure conditions. Computational modeling is an important tool for understanding the spatial and temporal complexities of this system. In this review article, we outline the advances in computational modeling that have allowed for deeper understanding of cAMP/PKA dynamics in the cardiomyocyte in health and disease, and explore new modeling frameworks that may bring us closer to a more complete understanding of this system. We outline various compartmental and spatial signaling models that have been used to understand how β-adrenergic signaling pathways function in a variety of simulation conditions. We also discuss newer subcellular models of cardiovascular function that may be used as templates for the next phase of computational study of cAMP and PKA in the heart, and outline open challenges which are important to consider in future models.
Collapse
Affiliation(s)
- Kimberly J McCabe
- Simula Research Laboratory, Department of Computational Physiology, PO Box 134, 1325 Lysaker, Norway.
| | - Padmini Rangamani
- University of California San Diego, Department of Mechanical and Aerospace Engineering, 9500 Gilman Drive MC 0411, La Jolla, CA 92093, United States of America
| |
Collapse
|
19
|
Chen S, Yan C. An update of cyclic nucleotide phosphodiesterase as a target for cardiac diseases. Expert Opin Drug Discov 2021; 16:183-196. [PMID: 32957823 PMCID: PMC7854486 DOI: 10.1080/17460441.2020.1821643] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Cyclic nucleotides, cAMP, and cGMP, are important second messengers of intracellular signaling and play crucial roles in cardiovascular biology and diseases. Cyclic nucleotide phosphodiesterases (PDEs) control the duration, magnitude, and compartmentalization of cyclic nucleotide signaling by catalyzing the hydrolysis of cyclic nucleotides. Individual PDEs modulate distinct signaling pathways and biological functions in the cell, making it a potential therapeutic target for the treatment of different cardiovascular disorders. The clinical success of several PDE inhibitors has ignited continued interest in PDE inhibitors and in PDE-target therapeutic strategies. AREAS COVERED This review concentrates on recent research advances of different PDE isoforms with regard to their expression patterns and biological functions in the heart. The limitations of current research and future directions are then discussed. The current and future development of PDE inhibitors is also covered. EXPERT OPINION Despite the therapeutic success of several marketed PDE inhibitors, the use of PDE inhibitors can be limited by their side effects, lack of efficacy, and lack of isoform selectivity. Advances in our understanding of the mechanisms by which cellular functions are changed through PDEs may enable the development of new approaches to achieve effective and specific PDE inhibition for various cardiac therapies.
Collapse
Affiliation(s)
- Si Chen
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Chen Yan
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
20
|
Neurohumoral, cardiac and inflammatory markers in the evaluation of heart failure severity and progression. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2021; 18:47-66. [PMID: 33613659 PMCID: PMC7868913 DOI: 10.11909/j.issn.1671-5411.2021.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Heart failure is common in adult population, accounting for substantial morbidity and mortality worldwide. The main risk factors for heart failure are coronary artery disease, hypertension, obesity, diabetes mellitus, chronic pulmonary diseases, family history of cardiovascular diseases, cardiotoxic therapy. The main factor associated with poor outcome of these patients is constant progression of heart failure. In the current review we present evidence on the role of established and candidate neurohumoral biomarkers for heart failure progression management and diagnostics. A growing number of biomarkers have been proposed as potentially useful in heart failure patients, but not one of them still resembles the characteristics of the “ideal biomarker.” A single marker will hardly perform well for screening, diagnostic, prognostic, and therapeutic management purposes. Moreover, the pathophysiological and clinical significance of biomarkers may depend on the presentation, stage, and severity of the disease. The authors cover main classification of heart failure phenotypes, based on the measurement of left ventricular ejection fraction, including heart failure with preserved ejection fraction, heart failure with reduced ejection fraction, and the recently proposed category heart failure with mid-range ejection fraction. One could envisage specific sets of biomarker with different performances in heart failure progression with different left ventricular ejection fraction especially as concerns prediction of the future course of the disease and of left ventricular adverse/reverse remodeling. This article is intended to provide an overview of basic and additional mechanisms of heart failure progression will contribute to a more comprehensive knowledge of the disease pathogenesis.
Collapse
|
21
|
Abstract
The field of cAMP signaling is witnessing exciting developments with the recognition that cAMP is compartmentalized and that spatial regulation of cAMP is critical for faithful signal coding. This realization has changed our understanding of cAMP signaling from a model in which cAMP connects a receptor at the plasma membrane to an intracellular effector in a linear pathway to a model in which cAMP signals propagate within a complex network of alternative branches and the specific functional outcome strictly depends on local regulation of cAMP levels and on selective activation of a limited number of branches within the network. In this review, we cover some of the early studies and summarize more recent evidence supporting the model of compartmentalized cAMP signaling, and we discuss how this knowledge is starting to provide original mechanistic insight into cell physiology and a novel framework for the identification of disease mechanisms that potentially opens new avenues for therapeutic interventions. SIGNIFICANCE STATEMENT: cAMP mediates the intracellular response to multiple hormones and neurotransmitters. Signal fidelity and accurate coordination of a plethora of different cellular functions is achieved via organization of multiprotein signalosomes and cAMP compartmentalization in subcellular nanodomains. Defining the organization and regulation of subcellular cAMP nanocompartments is necessary if we want to understand the complex functional ramifications of pharmacological treatments that target G protein-coupled receptors and for generating a blueprint that can be used to develop precision medicine interventions.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anna Zerio
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Miguel J Lobo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
Burton RAB, Terrar DA. Emerging Evidence for cAMP-calcium Cross Talk in Heart Atrial Nanodomains Where IP 3-Evoked Calcium Release Stimulates Adenylyl Cyclases. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2021; 4:25152564211008341. [PMID: 37366374 PMCID: PMC10243587 DOI: 10.1177/25152564211008341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/01/2021] [Accepted: 03/07/2021] [Indexed: 06/28/2023]
Abstract
Calcium handling is vital to normal physiological function in the heart. Human atrial arrhythmias, eg. atrial fibrillation, are a major morbidity and mortality burden, yet major gaps remain in our understanding of how calcium signaling pathways function and interact. Inositol trisphosphate (IP3) is a calcium-mobilizing second messenger and its agonist-induced effects have been observed in many tissue types. In the atria IP3 receptors (IR3Rs) residing on junctional sarcoplasmic reticulum augment cellular calcium transients and, when over-stimulated, lead to arrhythmogenesis. Recent studies have demonstrated that the predominant pathway for IP3 actions in atrial myocytes depends on stimulation of calcium-dependent forms of adenylyl cyclase (AC8 and AC1) by IP3-evoked calcium release from the sarcoplasmic reticulum. AC8 shows co-localisation with IP3Rs and AC1 appears to be nearby. These observations support crosstalk between calcium and cAMP pathways in nanodomains in atria. Similar mechanisms also appear to operate in the pacemaker region of the sinoatrial node. Here we discuss these significant advances in our understanding of atrial physiology and pathology, together with implications for the identification of potential novel targets and modulators for the treatment of atrial arrhythmias.
Collapse
Affiliation(s)
| | - Derek A. Terrar
- Department of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
23
|
Capel RA, Bose SJ, Collins TP, Rajasundaram S, Ayagama T, Zaccolo M, Burton RAB, Terrar DA. IP 3-mediated Ca 2+ release regulates atrial Ca 2+ transients and pacemaker function by stimulation of adenylyl cyclases. Am J Physiol Heart Circ Physiol 2020; 320:H95-H107. [PMID: 33064562 PMCID: PMC7864251 DOI: 10.1152/ajpheart.00380.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inositol trisphosphate (IP3) is a Ca2+-mobilizing second messenger shown to modulate atrial muscle contraction and is thought to contribute to atrial fibrillation. Cellular pathways underlying IP3 actions in cardiac tissue remain poorly understood, and the work presented here addresses the question whether IP3-mediated Ca2+ release from the sarcoplasmic reticulum is linked to adenylyl cyclase activity including Ca2+-stimulated adenylyl cyclases (AC1 and AC8) that are selectively expressed in atria and sinoatrial node (SAN). Immunocytochemistry in guinea pig atrial myocytes identified colocalization of type 2 IP3 receptors with AC8, while AC1 was located in close vicinity. Intracellular photorelease of IP3 by UV light significantly enhanced the amplitude of the Ca2+ transient (CaT) evoked by electrical stimulation of atrial myocytes (31 ± 6% increase 60 s after photorelease, n = 16). The increase in CaT amplitude was abolished by inhibitors of adenylyl cyclases (MDL-12,330) or protein kinase A (H89), showing that cAMP signaling is required for this effect of photoreleased IP3. In mouse, spontaneously beating right atrial preparations, phenylephrine, an α-adrenoceptor agonist with effects that depend on IP3-mediated Ca2+ release, increased the maximum beating rate by 14.7 ± 0.5%, n = 10. This effect was substantially reduced by 2.5 µmol/L 2-aminoethyl diphenylborinate and abolished by a low dose of MDL-12,330, observations which are again consistent with a functional interaction between IP3 and cAMP signaling involving Ca2+ stimulation of adenylyl cyclases in the SAN pacemaker. Understanding the interaction between IP3 receptor pathways and Ca2+-stimulated adenylyl cyclases provides important insights concerning acute mechanisms for initiation of atrial arrhythmias. NEW & NOTEWORTHY This study provides evidence supporting the proposal that IP3 signaling in cardiac atria and sinoatrial node involves stimulation of Ca2+-activated adenylyl cyclases (AC1 and AC8) by IP3-evoked Ca2+ release from junctional sarcoplasmic reticulum. AC8 and IP3 receptors are shown to be located close together, while AC1 is nearby. Greater understanding of these novel aspects of the IP3 signal transduction mechanism is important for future study in atrial physiology and pathophysiology, particularly atrial fibrillation.
Collapse
Affiliation(s)
- Rebecca A Capel
- Department of Pharmacology, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Samuel J Bose
- Department of Pharmacology, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Thomas P Collins
- Department of Pharmacology, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Skanda Rajasundaram
- Department of Pharmacology, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Thamali Ayagama
- Department of Pharmacology, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Rebecca-Ann Beatrice Burton
- Department of Pharmacology, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Derek A Terrar
- Department of Pharmacology, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
24
|
Mougenot N, Mika D, Czibik G, Marcos E, Abid S, Houssaini A, Vallin B, Guellich A, Mehel H, Sawaki D, Vandecasteele G, Fischmeister R, Hajjar RJ, Dubois-Randé JL, Limon I, Adnot S, Derumeaux G, Lipskaia L. Cardiac adenylyl cyclase overexpression precipitates and aggravates age-related myocardial dysfunction. Cardiovasc Res 2020; 115:1778-1790. [PMID: 30605506 DOI: 10.1093/cvr/cvy306] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/18/2018] [Accepted: 12/11/2018] [Indexed: 11/13/2022] Open
Abstract
AIMS Increase of cardiac cAMP bioavailability and PKA activity through adenylyl-cyclase 8 (AC8) overexpression enhances contractile function in young transgenic mice (AC8TG). Ageing is associated with decline of cardiac contraction partly by the desensitization of β-adrenergic/cAMP signalling. Our objective was to evaluate cardiac cAMP signalling as age increases between 2 months and 12 months and to explore whether increasing the bioavailability of cAMP by overexpression of AC8 could prevent cardiac dysfunction related to age. METHODS AND RESULTS Cardiac cAMP pathway and contractile function were evaluated in AC8TG and their non-transgenic littermates (NTG) at 2- and 12 months old. AC8TG demonstrated increased AC8, PDE1, 3B and 4D expression at both ages, resulting in increased phosphodiesterase and PKA activity, and increased phosphorylation of several PKA targets including sarco(endo)plasmic-reticulum-calcium-ATPase (SERCA2a) cofactor phospholamban (PLN) and GSK3α/β a main regulator of hypertrophic growth and ageing. Confocal immunofluorescence revealed that the major phospho-PKA substrates were co-localized with Z-line in 2-month-old NTG but with Z-line interspace in AC8TG, confirming the increase of PKA activity in the compartment of PLN/SERCA2a. In both 12-month-old NTG and AC8TG, PLN and GSK3α/β phosphorylation was increased together with main localization of phospho-PKA substrates in Z-line interspaces. Haemodynamics demonstrated an increased contractile function in 2- and 12-month-old AC8TG, but not in NTG. In contrast, echocardiography and tissue Doppler imaging (TDI) performed in conscious mice unmasked myocardial dysfunction with a decrease of systolic strain rate in both old AC8TG and NTG. In AC8TG TDI showed a reduced strain rate even in 2-month-old animals. Development of age-related cardiac dysfunction was accelerated in AC8TG, leading to heart failure (HF) and premature death. Histological analysis confirmed early cardiomyocyte hypertrophy and interstitial fibrosis in AC8TG when compared with NTG. CONCLUSION Our data demonstrated an early and accelerated cardiac remodelling in AC8TG mice, leading to the development of HF and reduced lifespan. Age-related reorganization of cAMP/PKA signalling can accelerate cardiac ageing, partly through GSK3α/β phosphorylation.
Collapse
Affiliation(s)
| | - Delphine Mika
- INSERM, UMR-S1180, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Gabor Czibik
- INSERM, U955 and Département de Physiologie, Hôpital Henri Mondor, AP-HP, DHU ATVB, Créteil, France.,Université Paris-Est, Faculté de Médecine, Créteil, France
| | - Elizabeth Marcos
- INSERM, U955 and Département de Physiologie, Hôpital Henri Mondor, AP-HP, DHU ATVB, Créteil, France.,Université Paris-Est, Faculté de Médecine, Créteil, France
| | - Shariq Abid
- INSERM, U955 and Département de Physiologie, Hôpital Henri Mondor, AP-HP, DHU ATVB, Créteil, France.,Université Paris-Est, Faculté de Médecine, Créteil, France
| | - Amal Houssaini
- INSERM, U955 and Département de Physiologie, Hôpital Henri Mondor, AP-HP, DHU ATVB, Créteil, France.,Université Paris-Est, Faculté de Médecine, Créteil, France
| | - Benjamin Vallin
- Sorbonne Université Institute of Biology Paris-Seine, B2A, UMR8256, Paris, France
| | - Aziz Guellich
- INSERM, UMR-S1180, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Hind Mehel
- INSERM, UMR-S1180, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Daigo Sawaki
- INSERM, UMR-S1180, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France.,INSERM, U955 and Département de Physiologie, Hôpital Henri Mondor, AP-HP, DHU ATVB, Créteil, France
| | | | - Rodolphe Fischmeister
- INSERM, UMR-S1180, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Roger J Hajjar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Luc Dubois-Randé
- INSERM, U955 and Département de Physiologie, Hôpital Henri Mondor, AP-HP, DHU ATVB, Créteil, France.,Université Paris-Est, Faculté de Médecine, Créteil, France
| | - Isabelle Limon
- Sorbonne Université Institute of Biology Paris-Seine, B2A, UMR8256, Paris, France
| | - Serge Adnot
- INSERM, U955 and Département de Physiologie, Hôpital Henri Mondor, AP-HP, DHU ATVB, Créteil, France.,Université Paris-Est, Faculté de Médecine, Créteil, France
| | - Geneviève Derumeaux
- INSERM, U955 and Département de Physiologie, Hôpital Henri Mondor, AP-HP, DHU ATVB, Créteil, France.,Université Paris-Est, Faculté de Médecine, Créteil, France
| | - Larissa Lipskaia
- INSERM, U955 and Département de Physiologie, Hôpital Henri Mondor, AP-HP, DHU ATVB, Créteil, France.,Université Paris-Est, Faculté de Médecine, Créteil, France.,Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
25
|
Heinick A, Pluteanu F, Hermes C, Klemme A, Domnik M, Husser X, Gerke V, Schmitz W, Müller FU. Annexin A4 N-terminal peptide inhibits adenylyl cyclase 5 and limits β-adrenoceptor-mediated prolongation of cardiac action potential. FASEB J 2020; 34:10489-10504. [PMID: 32579290 DOI: 10.1096/fj.201902094rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 05/08/2020] [Accepted: 05/26/2020] [Indexed: 11/11/2022]
Abstract
Adenylyl cyclases (AC) are essential for the normal and pathophysiological response of many cells. In cardiomyocytes, the predominant AC isoforms are AC5 and AC6. Specific AC5 inhibition was suggested as an option for the treatment of heart failure potentially advantageous over β-blockers. We previously reported an interaction between the calcium-binding protein annexin A4 (ANXA4) and AC5 in human embryonic kidney 293 (HEK293) cells and an inhibition of cyclic adenosine monophosphate (cAMP) production in cardiomyocytes. Here, we investigated whether ANXA4 is able to differentiate between AC5 and AC6. In transfected HEK293 cells, ANXA4 specifically co-immunoprecipitated with AC5 and not with AC6, via its N-terminal domain. Both ANXA4 and a peptide comprising the ANXA4 N-terminal sequence (A4N1-22 ) decreased the cAMP production in AC5 and not in AC6 expressing cells. In line with ACs inhibition, in myocytes from ANXA4-deficient mice, β-adrenoceptor (βAR) stimulation led to a higher increase of the L-type calcium current (ICaL ) and to an excessive action potential duration (APD) prolongation as compared to wild-type cardiomyocytes. This enhanced response was reversed in the presence of A4N1-22 peptide likely via specific AC5 inhibition. We conclude that via the N-terminal domain ANXA4 inhibits AC5 not AC6, and that A4N1-22 as a specific AC5 inhibitor could serve as a novel therapeutic tool for the treatment of AC5-linked diseases.
Collapse
Affiliation(s)
- Alexander Heinick
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Florentina Pluteanu
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Christina Hermes
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Andre Klemme
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Manuel Domnik
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Xenia Husser
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany.,Interdisciplinary Clinical Research Center, University of Münster, Münster, Germany
| | - Wilhelm Schmitz
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Frank U Müller
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| |
Collapse
|
26
|
Han Z, Wu X, Gao Y, Liu X, Bai J, Gu R, Lan R, Xu B, Xu W. PDK1-AKT signaling pathway regulates the expression and function of cardiac hyperpolarization-activated cyclic nucleotide-modulated channels. Life Sci 2020; 250:117546. [PMID: 32184125 DOI: 10.1016/j.lfs.2020.117546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/03/2020] [Accepted: 03/11/2020] [Indexed: 11/18/2022]
Abstract
AIM The enzyme 3-phosphoinositide-dependent protein kinase-1 (PDK1) is associated with cardiac and pathological remodeling and ion channel function regulation. However, whether it regulates hyperpolarization-activated cyclic nucleotide-modulated channels (HCNs) remains unclear. MAIN METHODS In the atrial myocytes of heart-specific PDK1 "knockout" mouse model and neonatal mice, protein kinase B (AKT)-related inhibitors or agonists as well as knockdown or overexpression plasmids were used to study the relationship between PDK1 and HCNs. KEY FINDINGS HCN1 expression and AKT phosphorylation at the Thr308 site were significantly decreased in atrial myocytes after PDK1 knockout or inhibition; in contrast, HCN2 and HCN4 levels were significantly increased. Also, a similar trend of HCNs expression has been observed in cultured atrial myocytes after PDK1 inhibition, as further demonstrated via immunofluorescence and patch-clamp experiments. Moreover, these results of PDK1 overexpression indicate an opposite trend compared with the previous experimental results. However, the results of PDK1 inhibition or overexpression could be reversed by activating or inhibiting AKT, respectively. SIGNIFICANCE These results indicate that the PDK1-AKT signaling pathway is involved in the regulation of HCN mRNA transcription, protein expression, HCN current density, and cell membrane location.
Collapse
Affiliation(s)
- Zhonglin Han
- Department of Cardiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Xiang Wu
- Department of Cardiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Yuan Gao
- Department of Cardiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Xuehua Liu
- Department of Cardiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Jian Bai
- Department of Cardiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Rong Gu
- Department of Cardiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - RongFang Lan
- Department of Cardiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Biao Xu
- Department of Cardiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Wei Xu
- Department of Cardiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China.
| |
Collapse
|
27
|
Chen S, Zhang Y, Lighthouse JK, Mickelsen DM, Wu J, Yao P, Small EM, Yan C. A Novel Role of Cyclic Nucleotide Phosphodiesterase 10A in Pathological Cardiac Remodeling and Dysfunction. Circulation 2019; 141:217-233. [PMID: 31801360 DOI: 10.1161/circulationaha.119.042178] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Heart failure is a leading cause of death worldwide. Cyclic nucleotide phosphodiesterases (PDEs), through degradation of cyclic nucleotides, play critical roles in cardiovascular biology and disease. Our preliminary screening studies have revealed PDE10A upregulation in the diseased heart. However, the roles of PDE10A in cardiovascular biology and disease are largely uncharacterized. The current study is aimed to investigate the regulation and function of PDE10A in cardiac cells and in the progression of cardiac remodeling and dysfunction. METHODS We used isolated adult mouse cardiac myocytes and fibroblasts, as well as preclinical mouse models of hypertrophy and heart failure. The PDE10A selective inhibitor TP-10, and global PDE10A knock out mice were used. RESULTS We found that PDE10A expression remains relatively low in normal and exercised heart tissues. However, PDE10A is significantly upregulated in mouse and human failing hearts. In vitro, PDE10A deficiency or inhibiting PDE10A with selective inhibitor TP-10, attenuated cardiac myocyte pathological hypertrophy induced by Angiotensin II, phenylephrine, and isoproterenol, but did not affect cardiac myocyte physiological hypertrophy induced by IGF-1 (insulin-like growth factor 1). TP-10 also reduced TGF-β (transforming growth factor-β)-stimulated cardiac fibroblast activation, proliferation, migration and extracellular matrix synthesis. TP-10 treatment elevated both cAMP and cGMP levels in cardiac myocytes and cardiac fibroblasts, consistent with PDE10A as a cAMP/cGMP dual-specific PDE. In vivo, global PDE10A deficiency significantly attenuated myocardial hypertrophy, cardiac fibrosis, and dysfunction induced by chronic pressure overload via transverse aorta constriction or chronic neurohormonal stimulation via Angiotensin II infusion. Importantly, we demonstrated that the pharmacological effect of TP-10 is specifically through PDE10A inhibition. In addition, TP-10 is able to reverse pre-established cardiac hypertrophy and dysfunction. RNA-Sequencing and bioinformatics analysis further identified a PDE10A-regualted transcriptome involved in cardiac hypertrophy, fibrosis, and cardiomyopathy. CONCLUSIONS Taken together, our study elucidates a novel role for PDE10A in the regulation of pathological cardiac remodeling and development of heart failure. Given that PDE10A has been proven to be a safe drug target, PDE10A inhibition may represent a novel therapeutic strategy for preventing and treating cardiac diseases associated with cardiac remodeling.
Collapse
Affiliation(s)
- Si Chen
- Aab Cardiovascular Research Institute, Department of Medicine (S.C., Y.Z., J.K.L., D.M.M., J.W., P.Y., E.M.S., C.Y.), University of Rochester School of Medicine and Dentistry, NY.,Department of Pharmacology and Physiology (S.C.), University of Rochester School of Medicine and Dentistry, NY
| | - Yishuai Zhang
- Aab Cardiovascular Research Institute, Department of Medicine (S.C., Y.Z., J.K.L., D.M.M., J.W., P.Y., E.M.S., C.Y.), University of Rochester School of Medicine and Dentistry, NY
| | - Janet K Lighthouse
- Aab Cardiovascular Research Institute, Department of Medicine (S.C., Y.Z., J.K.L., D.M.M., J.W., P.Y., E.M.S., C.Y.), University of Rochester School of Medicine and Dentistry, NY
| | - Deanne M Mickelsen
- Aab Cardiovascular Research Institute, Department of Medicine (S.C., Y.Z., J.K.L., D.M.M., J.W., P.Y., E.M.S., C.Y.), University of Rochester School of Medicine and Dentistry, NY
| | - Jiangbin Wu
- Aab Cardiovascular Research Institute, Department of Medicine (S.C., Y.Z., J.K.L., D.M.M., J.W., P.Y., E.M.S., C.Y.), University of Rochester School of Medicine and Dentistry, NY
| | - Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine (S.C., Y.Z., J.K.L., D.M.M., J.W., P.Y., E.M.S., C.Y.), University of Rochester School of Medicine and Dentistry, NY.,Department of Biochemistry and Biophysics (P.Y.), University of Rochester School of Medicine and Dentistry, NY
| | - Eric M Small
- Aab Cardiovascular Research Institute, Department of Medicine (S.C., Y.Z., J.K.L., D.M.M., J.W., P.Y., E.M.S., C.Y.), University of Rochester School of Medicine and Dentistry, NY
| | - Chen Yan
- Aab Cardiovascular Research Institute, Department of Medicine (S.C., Y.Z., J.K.L., D.M.M., J.W., P.Y., E.M.S., C.Y.), University of Rochester School of Medicine and Dentistry, NY
| |
Collapse
|
28
|
Beladiya JV, Chaudagar KK, Mehta AA. Protective effects of Gαq-RGS2 signalling inhibitor in aminophylline induced cardiac arrhythmia. Clin Exp Pharmacol Physiol 2019; 46:1037-1043. [PMID: 31330058 DOI: 10.1111/1440-1681.13143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022]
Abstract
An over activation of GPCR mediated Gαq dependent signalling pathway is widely associated with the development of cardiovascular abnormalities. The objective of study was to evaluate the effects of (1-(5-chloro-2-hydroxyphenyl)-3-(4-(trifluoromethyl)phenyl)-1H-1,2,4-triazol-5(4H)-one) Gαq-RGS2 signalling inhibitor on aminophylline induced cardiac arrhythmia in rats. Rats were divided into four groups; normal rats, disease control (DC, aminophylline treated 100 mg/kg/d, i.p., 7 days), Gαq-RGS2 signalling inhibitor (1 and 10 mg/kg/d, p.o., 7 days) treated arrhythmic rats. Gαq-RGS2 signalling inhibitor was administered 1 hour prior to the administration of aminophylline from 1st day. At the end of study, heart rate (HR), QRS complex, QT and RR interval were measured by electrocardiogram (ECG) of anesthetized rats. Systolic and diastolic blood pressure (SBP, DBP) by invasive method, cardiac damage markers (CK-MB, LDH) in the serum, antioxidant enzymes (SOD, catalase, glutathione) and cAMP level were measured. The treatment of Gαq-RGS2 signalling inhibitor (10 mg/kg) significantly abolished the aminophylline induced increase of heart rate, prolongation of RR and QT interval as compared to DC rats. Gαq-RGS2 signalling inhibitor (1 and 10 mg/kg) significantly attenuated the prolongation in QRS complex, increase of SBP, DBP and cardiac damage markers as compared to DC. Gαq-RGS2 signalling inhibitor treatment (10 mg/kg) significantly reduced the cAMP level and increased the antioxidant enzyme level as compared to DC. Gαq-RGS2 signalling inhibitor (10 mg/kg) showed the protective effect against the aminophylline induced cardiac arrhythmia and it might be due to improvement in cAMP level and antioxidant enzymes.
Collapse
Affiliation(s)
- Jayesh V Beladiya
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Kiranj K Chaudagar
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Anita A Mehta
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| |
Collapse
|
29
|
Johnson DM, Antoons G. Arrhythmogenic Mechanisms in Heart Failure: Linking β-Adrenergic Stimulation, Stretch, and Calcium. Front Physiol 2018; 9:1453. [PMID: 30374311 PMCID: PMC6196916 DOI: 10.3389/fphys.2018.01453] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/25/2018] [Indexed: 12/22/2022] Open
Abstract
Heart failure (HF) is associated with elevated sympathetic tone and mechanical load. Both systems activate signaling transduction pathways that increase cardiac output, but eventually become part of the disease process itself leading to further worsening of cardiac function. These alterations can adversely contribute to electrical instability, at least in part due to the modulation of Ca2+ handling at the level of the single cardiac myocyte. The major aim of this review is to provide a definitive overview of the links and cross talk between β-adrenergic stimulation, mechanical load, and arrhythmogenesis in the setting of HF. We will initially review the role of Ca2+ in the induction of both early and delayed afterdepolarizations, the role that β-adrenergic stimulation plays in the initiation of these and how the propensity for these may be altered in HF. We will then go onto reviewing the current data with regards to the link between mechanical load and afterdepolarizations, the associated mechano-sensitivity of the ryanodine receptor and other stretch activated channels that may be associated with HF-associated arrhythmias. Furthermore, we will discuss how alterations in local Ca2+ microdomains during the remodeling process associated the HF may contribute to the increased disposition for β-adrenergic or stretch induced arrhythmogenic triggers. Finally, the potential mechanisms linking β-adrenergic stimulation and mechanical stretch will be clarified, with the aim of finding common modalities of arrhythmogenesis that could be targeted by novel therapeutic agents in the setting of HF.
Collapse
Affiliation(s)
- Daniel M Johnson
- Department of Cardiothoracic Surgery, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Gudrun Antoons
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
30
|
Roles of PDE1 in Pathological Cardiac Remodeling and Dysfunction. J Cardiovasc Dev Dis 2018; 5:jcdd5020022. [PMID: 29690591 PMCID: PMC6023290 DOI: 10.3390/jcdd5020022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/05/2018] [Accepted: 04/20/2018] [Indexed: 12/16/2022] Open
Abstract
Pathological cardiac hypertrophy and dysfunction is a response to various stress stimuli and can result in reduced cardiac output and heart failure. Cyclic nucleotide signaling regulates several cardiac functions including contractility, remodeling, and fibrosis. Cyclic nucleotide phosphodiesterases (PDEs), by catalyzing the hydrolysis of cyclic nucleotides, are critical in the homeostasis of intracellular cyclic nucleotide signaling and hold great therapeutic potential as drug targets. Recent studies have revealed that the inhibition of the PDE family member PDE1 plays a protective role in pathological cardiac remodeling and dysfunction by the modulation of distinct cyclic nucleotide signaling pathways. This review summarizes recent key findings regarding the roles of PDE1 in the cardiac system that can lead to a better understanding of its therapeutic potential.
Collapse
|
31
|
Leroy J, Vandecasteele G, Fischmeister R. Cyclic AMP signaling in cardiac myocytes. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2017.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Pavlaki N, Nikolaev VO. Imaging of PDE2- and PDE3-Mediated cGMP-to-cAMP Cross-Talk in Cardiomyocytes. J Cardiovasc Dev Dis 2018; 5:jcdd5010004. [PMID: 29367582 PMCID: PMC5872352 DOI: 10.3390/jcdd5010004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/13/2022] Open
Abstract
Cyclic nucleotides 3′,5′-cyclic adenosine monophosphate (cAMP) and 3′,5′-cyclic guanosine monophosphate (cGMP) are important second messengers that regulate cardiovascular function and disease by acting in discrete subcellular microdomains. Signaling compartmentation at these locations is often regulated by phosphodiesterases (PDEs). Some PDEs are also involved in the cross-talk between the two second messengers. The purpose of this review is to summarize and highlight recent findings about the role of PDE2 and PDE3 in cardiomyocyte cyclic nucleotide compartmentation and visualization of this process using live cell imaging techniques.
Collapse
Affiliation(s)
- Nikoleta Pavlaki
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany.
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany.
| |
Collapse
|
33
|
Weber S, Zeller M, Guan K, Wunder F, Wagner M, El-Armouche A. PDE2 at the crossway between cAMP and cGMP signalling in the heart. Cell Signal 2017; 38:76-84. [PMID: 28668721 DOI: 10.1016/j.cellsig.2017.06.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/19/2017] [Accepted: 06/27/2017] [Indexed: 11/26/2022]
Abstract
The cyclic nucleotides cAMP and cGMP are central second messengers in cardiac cells and critical regulators of cardiac physiology as well as pathophysiology. Consequently, subcellular compartmentalization allows for spatiotemporal control of cAMP/cGMP metabolism and subsequent regulation of their respective effector kinases PKA or PKG is most important for cardiac function in health and disease. While acute cAMP-mediated signalling is a mandatory prerequisite for the physiological fight-or-flight response, sustained activation of this pathway may lead to the progression of heart failure. In contrast, acute as well as sustained cGMP-mediated signalling can foster beneficial features, e.g. anti-hypertrophic and vasodilatory effects. These two signalling pathways seem to be intuitively counteracting and there is increasing evidence for a functionally relevant crosstalk between cAMP and cGMP signalling pathways on the level of cyclic nucleotide hydrolysing phosphodiesterases (PDEs). Among this diverse group of enzymes, PDE2 may fulfill a unique integrator role. Equipped with dual substrate specificity for cAMP as well as for cGMP, it is the only cAMP hydrolysing PDE, which is allosterically activated by cGMP. Recent studies have revealed strongly remodelled cAMP/cGMP microdomains and subcellular concentration profiles in different cardiac pathologies, leading to a putatively enhanced involvement of PDE2 in cAMP/cGMP breakdown and crosstalk compared to the other cardiac PDEs. This review sums up the current knowledge about molecular properties and regulation of PDE2 and explains the complex signalling network encompassing PDE2 in order to better understand the functional role of PDE2 in distinct cell types in cardiac health and disease. Moreover, this review gives an outlook in which way PDE2 may serve as a therapeutic target to treat cardiac disease.
Collapse
Affiliation(s)
- Silvio Weber
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany.
| | - Miriam Zeller
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany
| | - Kaomei Guan
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany
| | - Frank Wunder
- Drug Discovery, Bayer AG, Aprather Weg 18a, Wuppertal 42113, Germany
| | - Michael Wagner
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany.
| |
Collapse
|
34
|
Lohse C, Bock A, Maiellaro I, Hannawacker A, Schad LR, Lohse MJ, Bauer WR. Experimental and mathematical analysis of cAMP nanodomains. PLoS One 2017; 12:e0174856. [PMID: 28406920 PMCID: PMC5391016 DOI: 10.1371/journal.pone.0174856] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 03/16/2017] [Indexed: 12/13/2022] Open
Abstract
In their role as second messengers, cyclic nucleotides such as cAMP have a variety of intracellular effects. These complex tasks demand a highly organized orchestration of spatially and temporally confined cAMP action which should be best achieved by compartmentalization of the latter. A great body of evidence suggests that cAMP compartments may be established and maintained by cAMP degrading enzymes, e.g. phosphodiesterases (PDEs). However, the molecular and biophysical details of how PDEs can orchestrate cAMP gradients are entirely unclear. In this paper, using fusion proteins of cAMP FRET-sensors and PDEs in living cells, we provide direct experimental evidence that the cAMP concentration in the vicinity of an individual PDE molecule is below the detection limit of our FRET sensors (<100nM). This cAMP gradient persists in crude cytosol preparations. We developed mathematical models based on diffusion-reaction equations which describe the creation of nanocompartments around a single PDE molecule and more complex spatial PDE arrangements. The analytically solvable equations derived here explicitly determine how the capability of a single PDE, or PDE complexes, to create a nanocompartment depend on the cAMP degradation rate, the diffusive mobility of cAMP, and geometrical and topological parameters. We apply these generic models to our experimental data and determine the diffusive mobility and degradation rate of cAMP. The results obtained for these parameters differ by far from data in literature for free soluble cAMP interacting with PDE. Hence, restricted cAMP diffusion in the vincinity of PDE is necessary to create cAMP nanocompartments in cells.
Collapse
Affiliation(s)
- Christian Lohse
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Computer Assisted Clinical Medicine, University of Heidelberg, Heidelberg, Germany
| | - Andreas Bock
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Isabella Maiellaro
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Annette Hannawacker
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Lothar R. Schad
- Computer Assisted Clinical Medicine, University of Heidelberg, Heidelberg, Germany
| | - Martin J. Lohse
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany
- * E-mail:
| | - Wolfgang R. Bauer
- Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany
- Department of Medicine I, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
35
|
|
36
|
Dessauer CW, Watts VJ, Ostrom RS, Conti M, Dove S, Seifert R. International Union of Basic and Clinical Pharmacology. CI. Structures and Small Molecule Modulators of Mammalian Adenylyl Cyclases. Pharmacol Rev 2017; 69:93-139. [PMID: 28255005 PMCID: PMC5394921 DOI: 10.1124/pr.116.013078] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adenylyl cyclases (ACs) generate the second messenger cAMP from ATP. Mammalian cells express nine transmembrane AC (mAC) isoforms (AC1-9) and a soluble AC (sAC, also referred to as AC10). This review will largely focus on mACs. mACs are activated by the G-protein Gαs and regulated by multiple mechanisms. mACs are differentially expressed in tissues and regulate numerous and diverse cell functions. mACs localize in distinct membrane compartments and form signaling complexes. sAC is activated by bicarbonate with physiologic roles first described in testis. Crystal structures of the catalytic core of a hybrid mAC and sAC are available. These structures provide detailed insights into the catalytic mechanism and constitute the basis for the development of isoform-selective activators and inhibitors. Although potent competitive and noncompetitive mAC inhibitors are available, it is challenging to obtain compounds with high isoform selectivity due to the conservation of the catalytic core. Accordingly, caution must be exerted with the interpretation of intact-cell studies. The development of isoform-selective activators, the plant diterpene forskolin being the starting compound, has been equally challenging. There is no known endogenous ligand for the forskolin binding site. Recently, development of selective sAC inhibitors was reported. An emerging field is the association of AC gene polymorphisms with human diseases. For example, mutations in the AC5 gene (ADCY5) cause hyperkinetic extrapyramidal motor disorders. Overall, in contrast to the guanylyl cyclase field, our understanding of the (patho)physiology of AC isoforms and the development of clinically useful drugs targeting ACs is still in its infancy.
Collapse
Affiliation(s)
- Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Val J Watts
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Rennolds S Ostrom
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Marco Conti
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Stefan Dove
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Roland Seifert
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| |
Collapse
|
37
|
Jung SR, Seo JB, Deng Y, Asbury CL, Hille B, Koh DS. Contributions of protein kinases and β-arrestin to termination of protease-activated receptor 2 signaling. ACTA ACUST UNITED AC 2016; 147:255-71. [PMID: 26927499 PMCID: PMC4772372 DOI: 10.1085/jgp.201511477] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Systematic imaging studies and modeling reveal new details of the regulation of the Gq-coupled GPCR, protease-activated receptor 2, by phosphorylation and β-arrestin. Activated Gq protein–coupled receptors (GqPCRs) can be desensitized by phosphorylation and β-arrestin binding. The kinetics and individual contributions of these two mechanisms to receptor desensitization have not been fully distinguished. Here, we describe the shut off of protease-activated receptor 2 (PAR2). PAR2 activates Gq and phospholipase C (PLC) to hydrolyze phosphatidylinositol 4,5-bisphosphate (PIP2) into diacylglycerol and inositol trisphosphate (IP3). We used fluorescent protein–tagged optical probes to monitor several consequences of PAR2 signaling, including PIP2 depletion and β-arrestin translocation in real time. During continuous activation of PAR2, PIP2 was depleted transiently and then restored within a few minutes, indicating fast receptor activation followed by desensitization. Knockdown of β-arrestin 1 and 2 using siRNA diminished the desensitization, slowing PIP2 restoration significantly and even adding a delayed secondary phase of further PIP2 depletion. These effects of β-arrestin knockdown on PIP2 recovery were prevented when serine/threonine phosphatases that dephosphorylate GPCRs were inhibited. Thus, PAR2 may continuously regain its activity via dephosphorylation when there is insufficient β-arrestin to trap phosphorylated receptors. Similarly, blockers of protein kinase C (PKC) and G protein–coupled receptor kinase potentiated the PIP2 depletion. In contrast, an activator of PKC inhibited receptor activation, presumably by augmenting phosphorylation of PAR2. Our interpretations were strengthened by modeling. Simulations supported the conclusions that phosphorylation of PAR2 by protein kinases initiates receptor desensitization and that recruited β-arrestin traps the phosphorylated state of the receptor, protecting it from phosphatases. Speculative thinking suggested a sequestration of phosphatidylinositol 4-phosphate 5 kinase (PIP5K) to the plasma membrane by β-arrestin to explain why knockdown of β-arrestin led to secondary depletion of PIP2. Indeed, artificial recruitment of PIP5K removed the secondary loss of PIP2 completely. Altogether, our experimental and theoretical approaches demonstrate roles and dynamics of the protein kinases, β-arrestin, and PIP5K in the desensitization of PAR2.
Collapse
Affiliation(s)
- Seung-Ryoung Jung
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Jong Bae Seo
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Yi Deng
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Charles L Asbury
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Bertil Hille
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Duk-Su Koh
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195 Department of Physics, Pohang University of Science and Technology, Pohang, Kyungbuk, 790-784, Republic of Korea
| |
Collapse
|
38
|
Neviere R, Delguste F, Durand A, Inamo J, Boulanger E, Preau S. Abnormal Mitochondrial cAMP/PKA Signaling Is Involved in Sepsis-Induced Mitochondrial and Myocardial Dysfunction. Int J Mol Sci 2016; 17:ijms17122075. [PMID: 27973394 PMCID: PMC5187875 DOI: 10.3390/ijms17122075] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/18/2016] [Accepted: 12/06/2016] [Indexed: 12/11/2022] Open
Abstract
Adrenergic receptors couple to Gs-proteins leading to transmembrane adenylyl cyclase activation and cytosolic cyclic adenosine monophosphate (cAMP) production. Cyclic AMP is also produced in the mitochondrial matrix, where it regulates respiration through protein kinase A (PKA)-dependent phosphorylation of respiratory chain complexes. We hypothesized that a blunted mitochondrial cAMP-PKA pathway would participate in sepsis-induced heart dysfunction. Adult male mice were subjected to intra-abdominal sepsis. Mitochondrial respiration of cardiac fibers and myocardial contractile performance were evaluated in response to 8Br-cAMP, PKA inhibition (H89), soluble adenylyl cyclase inhibition (KH7), and phosphodiesterase inhibition (IBMX; BAY60-7550). Adenosine diphosphate (ADP)-stimulated respiratory rates of cardiac fibers were reduced in septic mice. Compared with controls, stimulatory effects of 8Br-cAMP on respiration rates were enhanced in septic fibers, whereas inhibitory effects of H89 were reduced. Ser-58 phosphorylation of cytochrome c oxidase subunit IV-1 was reduced in septic hearts. In vitro, incubation of septic cardiac fibers with BAY60-7550 increased respiratory control ratio and improved cardiac MVO2 efficiency in isolated septic heart. In vivo, BAY60-7550 pre-treatment of septic mice have limited impact on myocardial function. Mitochondrial cAMP-PKA signaling is impaired in the septic myocardium. PDE2 phosphodiesterase inhibition by BAY60-7550 improves mitochondrial respiration and cardiac MVO2 efficiency in septic mice.
Collapse
Affiliation(s)
- Remi Neviere
- Département de Physiologie, Faculté de Médecine, Université Lille, 1 Place de Verdun, F-59000 Lille CEDEX 59045, France.
- INSERM LIRIC U995/Team "Glycation: From Inflammation to Aging", Université Lille, F-59000 Lille, France.
| | - Florian Delguste
- INSERM LIRIC U995/Team "Glycation: From Inflammation to Aging", Université Lille, F-59000 Lille, France.
| | - Arthur Durand
- INSERM LIRIC U995/Team "Glycation: From Inflammation to Aging", Université Lille, F-59000 Lille, France.
- Pôle Réanimation Médicale, CHU Lille, Bd Pr Leclercq, F-59000 Lille, France.
| | - Jocelyn Inamo
- Département de Cardiologie, CHU Martinique, Faculté de Médecine, Université des Antilles, F-97200 Fort de France, France.
| | - Eric Boulanger
- INSERM LIRIC U995/Team "Glycation: From Inflammation to Aging", Université Lille, F-59000 Lille, France.
| | - Sebastien Preau
- INSERM LIRIC U995/Team "Glycation: From Inflammation to Aging", Université Lille, F-59000 Lille, France.
- Pôle Réanimation Médicale, CHU Lille, Bd Pr Leclercq, F-59000 Lille, France.
| |
Collapse
|
39
|
Treinys R, Bogdelis A, Rimkutė L, Jurevičius J, Skeberdis VA. Differences in the control of basal L-type Ca(2+) current by the cyclic AMP signaling cascade in frog, rat, and human cardiac myocytes. J Physiol Sci 2016; 66:327-36. [PMID: 26676115 PMCID: PMC10716949 DOI: 10.1007/s12576-015-0430-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/26/2015] [Indexed: 12/20/2022]
Abstract
β-adrenergic receptors (β-ARs) mediate the positive inotropic effects of catecholamines by cAMP-dependent phosphorylation of the L-type Ca(2+) channels (LTCCs), which provide Ca(2+) for the initiation and regulation of cell contraction. The overall effect of cAMP-modulating agents on cardiac calcium current (I Ca,L) and contraction depends on the basal activity of LTCCs which, in turn, depends on the basal activities of key enzymes involved in the cAMP signaling cascade. Our current work is a comparative study demonstrating the differences in the basal activities of β-ARs, adenylyl cyclase, phosphodiesterases, phosphatases, and LTCCs in the frog and rat ventricular and human atrial myocytes. The main conclusion is that the basal I Ca,L, and consequently the contractile function of the heart, is secured from unnecessary elevation of its activity and energy consumption at the several "checking-points" of cAMP-dependent signaling cascade and the loading of these "checking-points" may vary in different species and tissues.
Collapse
Affiliation(s)
- Rimantas Treinys
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 17, 50009, Kaunas, Lithuania
| | - Andrius Bogdelis
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 17, 50009, Kaunas, Lithuania
| | - Lina Rimkutė
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 17, 50009, Kaunas, Lithuania
| | - Jonas Jurevičius
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 17, 50009, Kaunas, Lithuania
| | - Vytenis Arvydas Skeberdis
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 17, 50009, Kaunas, Lithuania.
| |
Collapse
|
40
|
Wang Z, Liu D, Varin A, Nicolas V, Courilleau D, Mateo P, Caubere C, Rouet P, Gomez AM, Vandecasteele G, Fischmeister R, Brenner C. A cardiac mitochondrial cAMP signaling pathway regulates calcium accumulation, permeability transition and cell death. Cell Death Dis 2016; 7:e2198. [PMID: 27100892 PMCID: PMC4855650 DOI: 10.1038/cddis.2016.106] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/17/2016] [Accepted: 03/21/2016] [Indexed: 12/19/2022]
Abstract
Although cardiac cytosolic cyclic 3',5'-adenosine monophosphate (cAMP) regulates multiple processes, such as beating, contractility, metabolism and apoptosis, little is known yet on the role of this second messenger within cardiac mitochondria. Using cellular and subcellular approaches, we demonstrate here the local expression of several actors of cAMP signaling within cardiac mitochondria, namely a truncated form of soluble AC (sACt) and the exchange protein directly activated by cAMP 1 (Epac1), and show a protective role for sACt against cell death, apoptosis as well as necrosis in primary cardiomyocytes. Upon stimulation with bicarbonate (HCO3(-)) and Ca(2+), sACt produces cAMP, which in turn stimulates oxygen consumption, increases the mitochondrial membrane potential (ΔΨm) and ATP production. cAMP is rate limiting for matrix Ca(2+) entry via Epac1 and the mitochondrial calcium uniporter and, as a consequence, prevents mitochondrial permeability transition (MPT). The mitochondrial cAMP effects involve neither protein kinase A, Epac2 nor the mitochondrial Na(+)/Ca(2+) exchanger. In addition, in mitochondria isolated from failing rat hearts, stimulation of the mitochondrial cAMP pathway by HCO3(-) rescued the sensitization of mitochondria to Ca(2+)-induced MPT. Thus, our study identifies a link between mitochondrial cAMP, mitochondrial metabolism and cell death in the heart, which is independent of cytosolic cAMP signaling. Our results might have implications for therapeutic prevention of cell death in cardiac pathologies.
Collapse
Affiliation(s)
- Z Wang
- INSERM UMR-S 1180, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - D Liu
- INSERM UMR-S 1180, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - A Varin
- INSERM UMR-S 1180, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - V Nicolas
- UMS–IPSIT, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - D Courilleau
- UMS–IPSIT, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - P Mateo
- INSERM UMR-S 1180, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - C Caubere
- INSERM I2MC, UMR 1048, Université Paul Sabatier, Toulouse, France
| | - P Rouet
- INSERM I2MC, UMR 1048, Université Paul Sabatier, Toulouse, France
| | - A-M Gomez
- INSERM UMR-S 1180, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - G Vandecasteele
- INSERM UMR-S 1180, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - R Fischmeister
- INSERM UMR-S 1180, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
- UMS–IPSIT, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - C Brenner
- INSERM UMR-S 1180, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
- UMS–IPSIT, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
41
|
Moghtadaei M, Polina I, Rose RA. Electrophysiological effects of natriuretic peptides in the heart are mediated by multiple receptor subtypes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 120:37-49. [DOI: 10.1016/j.pbiomolbio.2015.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/25/2015] [Accepted: 12/02/2015] [Indexed: 12/13/2022]
|
42
|
Schoner A, Tyrrell C, Wu M, Gelow JM, Hayes AA, Lindner JR, Thornburg KL, Hasan W. Endocardial Endothelial Dysfunction Progressively Disrupts Initially Anti then Pro-Thrombotic Pathways in Heart Failure Mice. PLoS One 2015; 10:e0142940. [PMID: 26565707 PMCID: PMC4643996 DOI: 10.1371/journal.pone.0142940] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/28/2015] [Indexed: 01/01/2023] Open
Abstract
Objective An experimental model of endocardial thrombosis has not been developed and endocardial endothelial dysfunction in heart failure (HF) is understudied. We sought to determine whether disruption of the endothelial anti-coagulant activated protein C (APC) pathway in CREBA133 HF mice promotes endocardial thrombosis in the acute decompensated phase of the disease, and whether alterations in von Willebrand factor (vWF) secretion from HF endocardium reduces thrombus formation as HF stabilizes. Approach and results Echocardiography was used to follow HF development and to detect endocardial thrombi in CREBA133 mice. Endocardial thrombi incidence was confirmed with immunohistochemistry and histology. In early and acute decompensated phases of HF, CREBA133 mice had the highest incidence of endocardial thrombi and these mice also had a shorter tail-bleeding index consistent with a pro-thrombotic milieu. Both APC generation, and expression of receptors that promote APC function (thrombomodulin, endothelial protein C receptor, protein S), were suppressed in the endocardium of acute decompensated HF mice. However, in stable compensated HF mice, an attenuation occurred for vWF protein content and secretion from endocardial endothelial cells, vWF-dependent platelet agglutination (by ristocetin), and thrombin generation on the endocardial surface. Conclusions CREBA133 mice develop HF and endocardial endothelial dysfunction. Attenuation of the anti-coagulant APC pathway promotes endocardial thrombosis in early and acute decompensated phases of HF. However, in stable compensated HF mice, disruptions in endothelial vWF expression and extrusion may actually reduce the incidence of endocardial thrombosis.
Collapse
Affiliation(s)
- Amanda Schoner
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Christina Tyrrell
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Melinda Wu
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Jill M. Gelow
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Alicia A. Hayes
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Jonathan R. Lindner
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Kent L. Thornburg
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Wohaib Hasan
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
43
|
Boularan C, Gales C. Cardiac cAMP: production, hydrolysis, modulation and detection. Front Pharmacol 2015; 6:203. [PMID: 26483685 PMCID: PMC4589651 DOI: 10.3389/fphar.2015.00203] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/03/2015] [Indexed: 01/04/2023] Open
Abstract
Cyclic adenosine 3′,5′-monophosphate (cAMP) modulates a broad range of biological processes including the regulation of cardiac myocyte contractile function where it constitutes the main second messenger for β-adrenergic receptors' signaling to fulfill positive chronotropic, inotropic and lusitropic effects. A growing number of studies pinpoint the role of spatial organization of the cAMP signaling as an essential mechanism to regulate cAMP outcomes in cardiac physiology. Here, we will briefly discuss the complexity of cAMP synthesis and degradation in the cardiac context, describe the way to detect it and review the main pharmacological arsenal to modulate its availability.
Collapse
Affiliation(s)
- Cédric Boularan
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, U1048, Université Toulouse III Paul Sabatier Toulouse, France
| | - Céline Gales
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, U1048, Université Toulouse III Paul Sabatier Toulouse, France
| |
Collapse
|
44
|
Kang YH, Kim KK, Kim DJ, Choe M. Antiobesity effects of the water-soluble fraction of the ethanol extract of Smilax china L. leaf in 3T3-L1 adipocytes. Nutr Res Pract 2015; 9:606-12. [PMID: 26634049 PMCID: PMC4667201 DOI: 10.4162/nrp.2015.9.6.606] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/05/2015] [Accepted: 06/16/2015] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND/OBJECTIVES Several medicinal properties of Smilax china L. have been studied including antioxidant, anti-inflammatory, and anti-cancer effects. However, the antiobesity activity and mechanism by which the water-soluble fraction of this plant mediates its effects are not clear. In the present study, we investigated the lipolytic actions of the water-soluble fraction of Smilax china L. leaf ethanol extract (wsSCLE) in 3T3-L1 adipocytes. MATERIALS/METHODS The wsSCLE was identified by measuring the total polyphenol and flavonoid content. The wsSCLE was evaluated for its effects on cell viability, lipid accumulation, glycerol, and cyclic adenosine monophosphate (cAMP) contents. In addition, western blot analysis was used to evaluate the effects on protein kinase A (PKA), PKA substrates (PKAs), and hormone-sensitive lipase (HSL). For the lipid accumulation assay, 3T3-L1 adipocytes were treated with different doses of wsSCLE for 9 days starting 2 days post-confluence. In other cell experiments, mature 3T3-L1 adipocytes were treated for 24 h with wsSCLE. RESULTS Results showed that treatment with wsSCLE at 0.05, 0.1, and 0.25 mg/mL had no effect on cell morphology and viability. Without evidence of toxicity, wsSCLE treatment decreased lipid accumulation compared with the untreated adipocyte controls as shown by the lower absorbance of Oil Red O stain. The wsSCLE significantly induced glycerol release and cAMP production in mature 3T3-L1 cells. Furthermore, protein levels of phosphorylated PKA, PKAs, and HSL significantly increased following wsSCLE treatment. CONCLUSION These results demonstrate that the potential antiobesity activity of wsSCLE is at least in part due to the stimulation of cAMP-PKA-HSL signaling. In addition, the wsSCLE-stimulated lipolysis induced by the signaling is mediated via activation of the β-adrenergic receptor.
Collapse
Affiliation(s)
- Yun Hwan Kang
- Research and Development Division, Korean Promotion Institute for Traditional Medicine Industry, Gyeongsan, 712-260, Korea
| | - Kyoung Kon Kim
- Department of Bio-Health Technology, College of Biomedical Science, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon, Gangwon 200-701, Korea
| | - Dae Jung Kim
- Well-Being Bioproducts R&D Regional Innovation Center, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon, Gangwon 200-701, Korea
| | - Myeon Choe
- Department of Bio-Health Technology, College of Biomedical Science, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon, Gangwon 200-701, Korea. ; Well-Being Bioproducts R&D Regional Innovation Center, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon, Gangwon 200-701, Korea
| |
Collapse
|
45
|
Huang YMM, Huber G, McCammon JA. Electrostatic steering enhances the rate of cAMP binding to phosphodiesterase: Brownian dynamics modeling. Protein Sci 2015; 24:1884-9. [PMID: 26346301 DOI: 10.1002/pro.2794] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/20/2015] [Accepted: 08/24/2015] [Indexed: 01/18/2023]
Abstract
Signaling in cells often involves co-localization of the signaling molecules. Most experimental evidence has shown that intracellular compartmentalization restricts the range of action of the second messenger, 3'-5'-cyclic adenosine monophosphate (cAMP), which is degraded by phosphodiesterases (PDEs). The objective of this study is to understand the details of molecular encounter that may play a role in efficient operation of the cAMP signaling apparatus. The results from electrostatic potential calculations and Brownian dynamics simulations suggest that positive potential of the active site from PDE enhances capture of diffusing cAMP molecules. This electrostatic steering between cAMP and the active site of a PDE plays a major role in the enzyme-substrate encounter, an effect that may be of significance in sequestering cAMP released from a nearby binding site or in attracting more freely diffusing cAMP molecules.
Collapse
Affiliation(s)
- Yu-ming M Huang
- Department of Pharmacology, University of California, San Diego, La Jolla, California, 92093
| | - Gary Huber
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California, 92093
| | - J Andrew McCammon
- Department of Pharmacology, University of California, San Diego, La Jolla, California, 92093.,Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California, 92093.,Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, 92093
| |
Collapse
|
46
|
Wright PT, Schobesberger S, Gorelik J. Studying GPCR/cAMP pharmacology from the perspective of cellular structure. Front Pharmacol 2015; 6:148. [PMID: 26236239 PMCID: PMC4505077 DOI: 10.3389/fphar.2015.00148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/05/2015] [Indexed: 12/02/2022] Open
Abstract
Signal transduction via G-protein coupled receptors (GPCRs) relies upon the production of cAMP and other signaling cascades. A given receptor and agonist pair, produce multiple effects upon cellular physiology which can be opposite in different cell types. The production of variable cellular effects via the signaling of the same GPCR in different cell types is a result of signal organization in space and time (compartmentation). This organization is usually based upon the physical and chemical properties of the membranes in which the GPCRs reside and the repertoire of downstream effectors and co-factors that are available at that location. In this review we explore mechanisms of GPCR signal compartmentation and broadly review the state-of-the-art methodologies which can be utilized to study them. We provide a clear rationale for a “localized” approach to the study of the pharmacology and physiology of GPCRs and particularly the secondary messenger cAMP.
Collapse
Affiliation(s)
- Peter T Wright
- Functional Microscopy, Myocardial Function, National Heart and Lung Institute, Imperial College London , Du Cane Road, London, UK
| | - Sophie Schobesberger
- Functional Microscopy, Myocardial Function, National Heart and Lung Institute, Imperial College London , Du Cane Road, London, UK
| | - Julia Gorelik
- Functional Microscopy, Myocardial Function, National Heart and Lung Institute, Imperial College London , Du Cane Road, London, UK
| |
Collapse
|
47
|
Heinick A, Husser X, Himmler K, Kirchhefer U, Nunes F, Schulte JS, Seidl MD, Rolfes C, Dedman JR, Kaetzel MA, Gerke V, Schmitz W, Müller FU. Annexin A4 is a novel direct regulator of adenylyl cyclase type 5. FASEB J 2015; 29:3773-87. [PMID: 26023182 DOI: 10.1096/fj.14-269837] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/12/2015] [Indexed: 12/14/2022]
Abstract
Annexin A4 (AnxA4), a Ca(2+)- and phospholipid-binding protein, is up-regulated in the human failing heart. In this study, we examined the impact of AnxA4 on β-adrenoceptor (β-AR)/cAMP-dependent signal transduction. Expression of murine AnxA4 in human embryonic kidney (HEK)293 cells dose-dependently inhibited cAMP levels after direct stimulation of adenylyl cyclases (ACs) with forskolin (FSK), as determined with an exchange protein activated by cAMP-Förster resonance energy transfer (EPAC-FRET) sensor and an ELISA (control vs. +AnxA4: 1956 ± 162 vs. 1304 ± 185 fmol/µg protein; n = 8). Disruption of the anxA4 gene led to a consistent increase in intracellular cAMP levels in isolated adult mouse cardiomyocytes, with heart-directed expression of the EPAC-FRET sensor, stimulated with FSK, and as determined by ELISA, also in mouse cardiomyocytes stimulated with the β-AR agonist isoproterenol (ISO) (anxA4a(+/+) vs. anxA4a(-/-): 5.1 ± 0.3 vs. 6.7 ± 0.6 fmol/µg protein) or FSK (anxA4a(+/+) vs. anxA4a(-/-): 1891 ± 238 vs. 2796 ± 343 fmol/µg protein; n = 9-10). Coimmunoprecipitation experiments in HEK293 cells revealed a direct interaction of murine AnxA4 with human membrane-bound AC type 5 (AC5). As a functional consequence of AnxA4-mediated AC inhibition, AnxA4 inhibited the FSK-induced transcriptional activation mediated by the cAMP response element (CRE) in reporter gene studies (10-fold vs. control; n = 4 transfections) and reduced the FSK-induced phosphorylation of the CRE-binding protein (CREB) measured on Western blots (control vs. +AnxA4: 150 ± 17% vs. 105 ± 10%; n = 6) and by the use of the indicator of CREB activation caused by phosphorylation (ICAP)-FRET sensor, indicating CREB phosphorylation. Inactivation of AnxA4 in anxA4a(-/-) mice was associated with an increased cardiac response to β-AR stimulation. Together, these results suggest that AnxA4 is a novel direct negative regulator of AC5, adding a new facet to the functions of annexins.
Collapse
Affiliation(s)
- Alexander Heinick
- *Institute of Pharmacology and Toxicology, Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Center, University of Münster, Münster, Germany; and Department of Genome Science, University of Cincinnati Genome Research Institute, Cincinnati, Ohio, USA
| | - Xenia Husser
- *Institute of Pharmacology and Toxicology, Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Center, University of Münster, Münster, Germany; and Department of Genome Science, University of Cincinnati Genome Research Institute, Cincinnati, Ohio, USA
| | - Kirsten Himmler
- *Institute of Pharmacology and Toxicology, Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Center, University of Münster, Münster, Germany; and Department of Genome Science, University of Cincinnati Genome Research Institute, Cincinnati, Ohio, USA
| | - Uwe Kirchhefer
- *Institute of Pharmacology and Toxicology, Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Center, University of Münster, Münster, Germany; and Department of Genome Science, University of Cincinnati Genome Research Institute, Cincinnati, Ohio, USA
| | - Frank Nunes
- *Institute of Pharmacology and Toxicology, Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Center, University of Münster, Münster, Germany; and Department of Genome Science, University of Cincinnati Genome Research Institute, Cincinnati, Ohio, USA
| | - Jan S Schulte
- *Institute of Pharmacology and Toxicology, Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Center, University of Münster, Münster, Germany; and Department of Genome Science, University of Cincinnati Genome Research Institute, Cincinnati, Ohio, USA
| | - Matthias D Seidl
- *Institute of Pharmacology and Toxicology, Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Center, University of Münster, Münster, Germany; and Department of Genome Science, University of Cincinnati Genome Research Institute, Cincinnati, Ohio, USA
| | - Christina Rolfes
- *Institute of Pharmacology and Toxicology, Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Center, University of Münster, Münster, Germany; and Department of Genome Science, University of Cincinnati Genome Research Institute, Cincinnati, Ohio, USA
| | - John R Dedman
- *Institute of Pharmacology and Toxicology, Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Center, University of Münster, Münster, Germany; and Department of Genome Science, University of Cincinnati Genome Research Institute, Cincinnati, Ohio, USA
| | - Marcia A Kaetzel
- *Institute of Pharmacology and Toxicology, Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Center, University of Münster, Münster, Germany; and Department of Genome Science, University of Cincinnati Genome Research Institute, Cincinnati, Ohio, USA
| | - Volker Gerke
- *Institute of Pharmacology and Toxicology, Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Center, University of Münster, Münster, Germany; and Department of Genome Science, University of Cincinnati Genome Research Institute, Cincinnati, Ohio, USA
| | - Wilhelm Schmitz
- *Institute of Pharmacology and Toxicology, Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Center, University of Münster, Münster, Germany; and Department of Genome Science, University of Cincinnati Genome Research Institute, Cincinnati, Ohio, USA
| | - Frank U Müller
- *Institute of Pharmacology and Toxicology, Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Center, University of Münster, Münster, Germany; and Department of Genome Science, University of Cincinnati Genome Research Institute, Cincinnati, Ohio, USA
| |
Collapse
|
48
|
Wang L, Burmeister BT, Johnson KR, Baillie GS, Karginov AV, Skidgel RA, O'Bryan JP, Carnegie GK. UCR1C is a novel activator of phosphodiesterase 4 (PDE4) long isoforms and attenuates cardiomyocyte hypertrophy. Cell Signal 2015; 27:908-22. [PMID: 25683917 DOI: 10.1016/j.cellsig.2015.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/03/2015] [Accepted: 02/05/2015] [Indexed: 01/21/2023]
Abstract
Hypertrophy increases the risk of heart failure and arrhythmia. Prevention or reversal of the maladaptive hypertrophic phenotype has thus been proposed to treat heart failure. Chronic β-adrenergic receptor (β-AR) stimulation induces cardiomyocyte hypertrophy by elevating 3',5'-cyclic adenosine monophosphate (cAMP) levels and activating downstream effectors such protein kinase A (PKA). Conversely, hydrolysis of cAMP by phosphodiesterases (PDEs) spatiotemporally restricts cAMP signaling. Here, we demonstrate that PDE4, but not PDE3, is critical in regulating cardiomyocyte hypertrophy, and may represent a potential target for preventing maladaptive hypertrophy. We identify a sequence within the upstream conserved region 1 of PDE4D, termed UCR1C, as a novel activator of PDE4 long isoforms. UCR1C activates PDE4 in complex with A-kinase anchoring protein (AKAP)-Lbc resulting in decreased PKA signaling facilitated by AKAP-Lbc. Expression of UCR1C in cardiomyocytes inhibits hypertrophy in response to chronic β-AR stimulation. This effect is partially due to inhibition of nuclear PKA activity, which decreases phosphorylation of the transcription factor cAMP response element-binding protein (CREB). In conclusion, PDE4 activation by UCR1C attenuates cardiomyocyte hypertrophy by specifically inhibiting nuclear PKA activity.
Collapse
Affiliation(s)
- Li Wang
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, E403 MSB, 835 South Wolcott Avenue, Chicago, IL 60612, USA
| | - Brian T Burmeister
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, E403 MSB, 835 South Wolcott Avenue, Chicago, IL 60612, USA
| | - Keven R Johnson
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, E403 MSB, 835 South Wolcott Avenue, Chicago, IL 60612, USA
| | - George S Baillie
- Institute of Cardiovascular and Medical Science, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G128QQ, Scotland, United Kingdom
| | - Andrei V Karginov
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, E403 MSB, 835 South Wolcott Avenue, Chicago, IL 60612, USA; University of Illinois Cancer Center, College of Medicine, University of Illinois at Chicago, E403 MSB, 835 South Wolcott Avenue, Chicago, IL 60612, USA
| | - Randal A Skidgel
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, E403 MSB, 835 South Wolcott Avenue, Chicago, IL 60612, USA
| | - John P O'Bryan
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, E403 MSB, 835 South Wolcott Avenue, Chicago, IL 60612, USA; University of Illinois Cancer Center, College of Medicine, University of Illinois at Chicago, E403 MSB, 835 South Wolcott Avenue, Chicago, IL 60612, USA; Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, E403 MSB, 835 South Wolcott Avenue, Chicago, IL 60612, USA; Jessie Brown VA Medical Center, 820 S Damen Ave, Chicago, IL 60612, USA.
| | - Graeme K Carnegie
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, E403 MSB, 835 South Wolcott Avenue, Chicago, IL 60612, USA
| |
Collapse
|
49
|
Wang Y, Teng Z, Li G, Mu X, Wang Z, Feng L, Niu W, Huang K, Xiang X, Wang C, Zhang H, Xia G. Cyclic AMP in oocytes controls meiotic prophase I and primordial folliculogenesis in the perinatal mouse ovary. Development 2014; 142:343-51. [PMID: 25503411 DOI: 10.1242/dev.112755] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In mammalian ovaries, a fixed population of primordial follicles forms during the perinatal stage and the oocytes contained within are arrested at the dictyate stage of meiotic prophase I. In the current study, we provide evidence that the level of cyclic AMP (cAMP) in oocytes regulates oocyte meiotic prophase I and primordial folliculogenesis in the perinatal mouse ovary. Our results show that the early meiotic development of oocytes is closely correlated with increased levels of intra-oocyte cAMP. Inhibiting cAMP synthesis in fetal ovaries delayed oocyte meiotic progression and inhibited the disassembly and degradation of synaptonemal complex protein 1. In addition, inhibiting cAMP synthesis in in vitro cultured fetal ovaries prevented primordial follicle formation. Finally, using an in situ oocyte chromosome analysis approach, we found that the dictyate arrest of oocytes is essential for primordial follicle formation under physiological conditions. Taken together, these results suggest a role for cAMP in early meiotic development and primordial follicle formation in the mouse ovary.
Collapse
Affiliation(s)
- Yijing Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Zhen Teng
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Ge Li
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China
| | - Xinyi Mu
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China
| | - Zhengpin Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Lizhao Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Wanbao Niu
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Kun Huang
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Xi Xiang
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Hua Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - Guoliang Xia
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|