1
|
Barrientos-Sanhueza C, Zurita-Silva A, Knipfer T, McElrone AJ, Cuneo IF. Unique root hydraulic and mechanical properties support the resilience of grapevines adapted to the Atacama Desert. PLANT, CELL & ENVIRONMENT 2024; 47:5126-5139. [PMID: 39163322 DOI: 10.1111/pce.15085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 08/22/2024]
Abstract
Cortical lacunae caused by drought, especially observed in hybrids originating from Vitis rupestris, disrupt the connection between roots and soil. Yet, the physiological processes behind lacuna formation during drought and its consistency across Vitis species remain unclear. Here, we used a root pressure probe to investigate fine root hydraulic and mechanical properties, in the arid-adapted R-65 and drought-susceptible 101-14Mgt cultivars. We then performed P-V curves, root sap osmolality, and electrolyte leakage (EL) and used fluorescent light microscopy techniques. Only 101-14Mgt showed lacunae formation during drought due to its stiffer cortical tissue, unlike R-65. Lacunae resulted in a notable decline in root hydraulic conductivity during severe drought, with increased EL and root sap osmolality, indicating potential cellular damage. R-65 displayed different and xerophyte-like characteristics featuring a higher turgor loss point and decreased root capacitance, essential for maintaining root structural integrity in arid conditions. Our findings highlight lacuna formation is impacted by root tissue elasticity possibly linked to specific Vitis species favoring deeper rooting. In arid-adapted grapevines, hydraulic regulators such as reduced turgor loss point, and root capacitance could contribute to enhanced drought tolerance.
Collapse
Affiliation(s)
- Cesar Barrientos-Sanhueza
- Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Andrés Zurita-Silva
- Centro de Investigación Intihuasi, Instituto de Investigaciones Agropecuarias INIA, La Serena, Chile
| | - Thorsten Knipfer
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew J McElrone
- USDA-ARS, Davis, California, USA
- Department of Viticulture & Enology, University of California, Davis, California, USA
| | - Italo F Cuneo
- Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
2
|
Liu T, Kreszies T. The exodermis: A forgotten but promising apoplastic barrier. JOURNAL OF PLANT PHYSIOLOGY 2023; 290:154118. [PMID: 37871477 DOI: 10.1016/j.jplph.2023.154118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/25/2023]
Abstract
The endodermis and exodermis are widely recognized as two important barriers in plant roots that play a role in regulating the movement of water and ions. While the endodermis is present in nearly all plant roots, the exodermis, characterized by Casparian strips and suberin lamellae is absent in certain plant species. The exodermis can be classified into three types: uniform, dimorphic, and inducible exodermis. Apart from its role in water and ion transport, the exodermis acts as a protective barrier against harmful substances present in the external environment. Furthermore, the exodermis is a complex barrier influenced by various environmental factors, and its resistance to water and ions varies depending on the type of exodermis and the maturity of the root. Therefore, investigations concerning the exodermis necessitate a plant-specific approach. However, our current understanding of the exodermal physiological functions and molecular mechanisms governing its development is limited due to the absence of an exodermis in the model plant Arabidopsis. Due to that, unfortunately, the exodermis has been largely overlooked until now. In this review, we aim to summarize the current fundamental knowledge regarding the exodermis in common research used crop species and propose suggestions for future research endeavors.
Collapse
Affiliation(s)
- Tingting Liu
- Institute of Applied Plant Nutrition, University of Göttingen, Carl-Sprengel-Weg 1, 37075, Göttingen, Germany
| | - Tino Kreszies
- Plant Nutrition and Crop Physiology, University of Göttingen, Carl-Sprengel-Weg 1, 37075, Göttingen, Germany.
| |
Collapse
|
3
|
Drobnitch ST, Comas LH, Flynn N, Ibarra Caballero J, Barton RW, Wenz J, Person T, Bushey J, Jahn CE, Gleason SM. Drought-Induced Root Pressure in Sorghum bicolor. FRONTIERS IN PLANT SCIENCE 2021; 12:571072. [PMID: 33613594 PMCID: PMC7886691 DOI: 10.3389/fpls.2021.571072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 01/08/2021] [Indexed: 05/26/2023]
Abstract
Root pressure, also manifested as profusive sap flowing from cut stems, is a phenomenon in some species that has perplexed biologists for much of the last century. It is associated with increased crop production under drought, but its function and regulation remain largely unknown. In this study, we investigated the initiation, mechanisms, and possible adaptive function of root pressure in six genotypes of Sorghum bicolor during a drought experiment in the greenhouse. We observed that root pressure was induced in plants exposed to drought followed by re-watering but possibly inhibited by 100% re-watering in some genotypes. We found that root pressure in drought stressed and re-watered plants was associated with greater ratio of fine: coarse root length and shoot biomass production, indicating a possible role of root allocation in creating root pressure and adaptive benefit of root pressure for shoot biomass production. Using RNA-Seq, we identified gene transcripts that were up- and down-regulated in plants with root pressure expression, focusing on genes for aquaporins, membrane transporters, and ATPases that could regulate inter- and intra-cellular transport of water and ions to generate positive xylem pressure in root tissue.
Collapse
Affiliation(s)
- Sarah Tepler Drobnitch
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States
| | - Louise H. Comas
- Water Management Research Unit, Agricultural Research Service, USDA, Ft. Collins, CO, United States
| | - Nora Flynn
- Water Management Research Unit, Agricultural Research Service, USDA, Ft. Collins, CO, United States
| | - Jorge Ibarra Caballero
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
| | - Ryan W. Barton
- Water Management Research Unit, Agricultural Research Service, USDA, Ft. Collins, CO, United States
| | - Joshua Wenz
- Water Management Research Unit, Agricultural Research Service, USDA, Ft. Collins, CO, United States
| | - Taylor Person
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
| | - Julie Bushey
- Water Management Research Unit, Agricultural Research Service, USDA, Ft. Collins, CO, United States
| | - Courtney E. Jahn
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
| | - Sean M. Gleason
- Water Management Research Unit, Agricultural Research Service, USDA, Ft. Collins, CO, United States
| |
Collapse
|
4
|
Sivasakthi K, Tharanya M, Zaman-Allah M, Kholová J, Thirunalasundari T, Vadez V. Transpiration difference under high evaporative demand in chickpea (Cicer arietinum L.) may be explained by differences in the water transport pathway in the root cylinder. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:769-780. [PMID: 32558986 DOI: 10.1111/plb.13147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/04/2020] [Indexed: 05/24/2023]
Abstract
Terminal drought substantially reduces chickpea yield. Reducing water use at vegetative stage by reducing transpiration under high vapor pressure deficit (VPD), i.e. under dry/hot conditions, contributes to drought adaptation. We hypothesized that this trait could relate to differences in a genotype's dependence on root water transport pathways and hydraulics. Transpiration rate responses in conservative and profligate chickpea genotypes were evaluated under increasing VPD in the presence/absence of apoplastic and cell-to-cell transport inhibitors. Conservative genotypes ICC 4958 and ICC 8058 restricted transpiration under high VPD compared to the profligate genotypes ICC 14799 and ICC 867. Profligate genotypes were more affected by aquaporin inhibition of the cell-to-cell pathway than conservative genotypes, as measured by the root hydraulic conductance and transpiration under high VPD. Aquaporin inhibitor treatment also led to a larger reduction in root hydraulic conductivity in profligate than in conservative genotypes. In contrast, blockage of the apoplastic pathway in roots decreased transpiration more in conservative than in profligate genotypes. Interestingly, conservative genotypes had high early vigour, whereas profligate genotypes had low early vigour. In conclusion, profligate genotypes depend more on the cell-to-cell pathway, which might explain their higher root hydraulic conductivity, whereas water-saving by restricting transpiration led to higher dependence on the apoplastic pathway. This opens the possibility to screen for conservative or profligate chickpea phenotypes using inhibitors, itself opening to the search of the genetic basis of these differences.
Collapse
Affiliation(s)
- K Sivasakthi
- Crop Physiology Laboratory, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
- Department of Industrial Biotechnology, Bharathidasan University, Tiruchirappalli, Tamilnadu, India
| | - M Tharanya
- Crop Physiology Laboratory, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
- Department of Industrial Biotechnology, Bharathidasan University, Tiruchirappalli, Tamilnadu, India
| | - M Zaman-Allah
- International Center for Maize and Wheat Improvement (CIMMYT), Mount Pleasant Harare, Zimbabwe
| | - J Kholová
- Crop Physiology Laboratory, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - T Thirunalasundari
- Department of Industrial Biotechnology, Bharathidasan University, Tiruchirappalli, Tamilnadu, India
| | - V Vadez
- Crop Physiology Laboratory, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
- IRD (Institut de Recherche pour le Developpement) - Univ. Montpellier - UMR DIADE, Montpellier cedex 5, France
| |
Collapse
|
5
|
Qi X, Tam NFY, Li WC, Ye Z. The role of root apoplastic barriers in cadmium translocation and accumulation in cultivars of rice (Oryza sativa L.) with different Cd-accumulating characteristics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114736. [PMID: 32417578 DOI: 10.1016/j.envpol.2020.114736] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/20/2020] [Accepted: 05/03/2020] [Indexed: 05/25/2023]
Abstract
The radial translocation of cadmium (Cd) from the root to the shoot is one of the major processes affecting Cd accumulation in rice (Oryza sativa L.) grains, but few studies have focused on Cd apoplastic transport in rice. The aim of this study was to determine how apoplastic barriers affect Cd translocation via the apoplastic pathway, Cd accumulation levels in upper parts (shoot and grains) of rice cultivars, and the possible mechanism involved. Hydroponic and soil pot trials were conducted to study the development and chemical constituents of apoplastic barriers and their permeability to bypass flow, and to determine Cd localization in the roots of rice cultivars with different Cd-accumulating characteristics. The Cd accumulation in upper parts was positively correlated with bypass flow in the root and the apparent Cd concentration in the xylem, indicating that the apoplastic pathway may play an important role in Cd root-shoot translocation in rice. Apoplastic barriers were deposited closer to the root tip and were thicker in low Cd-accumulating cultivars than in high Cd-accumulating cultivars. The amounts and rates of increase in lignin and suberin were significantly higher in ZD14 (a low Cd-accumulating cultivar) than in FYXZ (a high Cd-accumulating cultivar) under Cd stress, indicating that stronger barriers were induced by Cd in ZD14. The stronger and earlier formation of barriers in the low Cd-accumulating cultivar decreased bypass flow more efficiently, so that more Cd was retained in the root during apoplastic translocation. This was confirmed by localization analyses of Cd in root transverse sections. These results suggest that apoplastic barriers reduce Cd root-to-shoot translocation via the apoplastic pathway, leading to lower Cd accumulation in the upper parts of rice plants. Bypass flow may have the potential to be used as a rapid screening indicator for low Cd-accumulating rice cultivars.
Collapse
Affiliation(s)
- Xiaoli Qi
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Nora Fung-Yee Tam
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wai Chin Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
| | - Zhihong Ye
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Qi Y, Huang JL, Zhang SB. Correlated evolution of leaf and root anatomic traits in Dendrobium (Orchidaceae). AOB PLANTS 2020; 12:plaa034. [PMID: 32818052 PMCID: PMC7426005 DOI: 10.1093/aobpla/plaa034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 07/15/2020] [Indexed: 06/02/2023]
Abstract
The whole-plant economic spectrum concept predicts that leaf and root traits evolve in coordination to cope with environmental stresses. However, this hypothesis is difficult to test in many species because their leaves and roots are exposed to different environments, above- and below-ground. In epiphytes, both leaves and roots are exposed to the atmosphere. Thus, we suspect there are consistent water conservation strategies in leaf and root traits of epiphytes due to similar selection pressures. Here, we measured the functional traits of 21 species in the genus Dendrobium, which is one of the largest epiphytic taxa in the family Orchidaceae, and used phylogenetically independent contrasts to test the relationships among traits, and between traits and the environment. Our results demonstrate that species with a thicker velamen tended to have thicker roots, a thicker root cortex and vascular cylinder, and a larger number of vessels in the root. Correspondingly, these species also had higher leaf mass per area, and thicker leaf lower cuticles. Leaf and root traits associated with water conservation showed significantly positive relationships. The number of velamen layers, leaf density and the ratio of vascular cylinder radius to root radius were significantly affected by the species' differing environments. Thus, traits related to water conservation and transport may play an important role in helping Dendrobium cope with the cool and dry conditions found at high elevations. These findings confirmed the hypothesis that leaf and root traits have evolved in coordination, and also provide insights into trait evolution and ecological adaptation in epiphytic orchids.
Collapse
Affiliation(s)
- Ying Qi
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Lin Huang
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Shi-Bao Zhang
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
7
|
Becker M, Ngo NS, Schenk MKA. Silicon reduces the iron uptake in rice and induces iron homeostasis related genes. Sci Rep 2020; 10:5079. [PMID: 32193423 PMCID: PMC7081191 DOI: 10.1038/s41598-020-61718-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Gramineous plants take up silicon (Si) that enhances the formation of exodermal Casparian bands (CBs) in the roots of rice (Oryza sativa L.). Furthermore, it is known that Si supply reduces the concentration of Fe in rice shoots. We hypothesized that the Si-enhanced CB formation in the exodermis reduces in the flux of Fe in the apoplast and the uptake of Fe loaded deoxymugineic acid. Thus, the effect of silicic acid supply at varied Fe concentrations and Fe forms was investigated in nutrient solution. The Fe concentrations in the shoot and apoplastic Fe concentrations in the root were determined and an Affymetrix GeneChip experiment was carried out together with qRT-PCR measurements for observation of transcriptomic reactions. Additionally, the Fe uptake of an overexpression mutant of OsABCG25 with an enhanced exodermal CB formation was investigated. The application of silicic acid reduced the Fe concentrations in shoot DM independently of the supplied Fe concentration and Fe form. As a reaction to the Fe shortage, the full cascade of Fe-homeostasis-related genes in the roots was upregulated. Silicic acid supply also decreased the apoplastic Fe concentrations in roots. In addition, an overexpression mutant of OsABCG25 with an enhanced CB formation showed a reduced uptake of Fe in excess Fe conditions. The results suggest that the Si-induced CB formation in the exodermis hampers the flux of Fe into the apoplast of the cortex and, thus, Fe uptake of rice grown in nutrient solution which is reflected in the upregulation of Fe homeostasis-related genes.
Collapse
Affiliation(s)
- Martin Becker
- Institute of Plant Nutrition, Faculty of Natural Sciences, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany.
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Plant Reproductive Biology; Corrensstr. 3; D-06466 Seeland/OT, Gatersleben, Germany.
| | - Ngoc Sang Ngo
- Institute of Plant Nutrition, Faculty of Natural Sciences, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Manfred Karl Adolf Schenk
- Institute of Plant Nutrition, Faculty of Natural Sciences, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| |
Collapse
|
8
|
Zhang R, Zhou Y, Yue Z, Chen X, Cao X, Ai X, Jiang B, Xing Y. The leaf-air temperature difference reflects the variation in water status and photosynthesis of sorghum under waterlogged conditions. PLoS One 2019; 14:e0219209. [PMID: 31295276 PMCID: PMC6624001 DOI: 10.1371/journal.pone.0219209] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 06/18/2019] [Indexed: 11/19/2022] Open
Abstract
Waterlogging stress is one of the most important abiotic stresses limiting sorghum growth and development. Consequently, the responses of sorghum to waterlogging must be monitored and studied. This study investigated changes in the leaf water status, xylem exudation rate, leaf anatomical structure, leaf temperature and photosynthetic performance. Waterlogging-tolerant (Jinuoliang 01, abbreviated JN01) and waterlogging-sensitive (Jinza 31, abbreviated JZ31) sorghum cultivars were planted in pots. The experiment was carried out using a split block design with three replications. Waterlogging stress was imposed at the sorghum five-leaf stage. The leaf free water content (FWC) and relative water content (RWC) decreased under the waterlogged condition. The leaf thickness was thinner under the waterlogged condition, and the main changes occurred in the upper epidermal and mesophyll cells. Gas exchange parameters and the xylem exudation rate were also restrained by waterlogging; however, greater responses of these parameters were observed in JZ31. JZ31 had a higher leaf-air temperature difference (ΔT) than JN01. We found that changes in ΔT were always consistent with changes in the RWC and the gas exchange parameters. ΔT was significantly associated with the leaf RWC, photosynthetic rate (Pn) and transpiration rate (Tr). The results suggest that ΔT may be an indicator reflecting the water status in leaves and can be used to evaluate the tolerance of sorghum to waterlogging.
Collapse
Affiliation(s)
- Ruidong Zhang
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
- Institute of Cash Crops, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi, China
| | - Yufei Zhou
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Zhongxiao Yue
- Institute of Cash Crops, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi, China
| | - Xiaofei Chen
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xiong Cao
- Institute of Cash Crops, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi, China
| | - Xueying Ai
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Bing Jiang
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yifan Xing
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
9
|
Ding L, Lu Z, Gao L, Guo S, Shen Q. Is Nitrogen a Key Determinant of Water Transport and Photosynthesis in Higher Plants Upon Drought Stress? FRONTIERS IN PLANT SCIENCE 2018; 9:1143. [PMID: 30186291 PMCID: PMC6113670 DOI: 10.3389/fpls.2018.01143] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/17/2018] [Indexed: 05/19/2023]
Abstract
Drought stress is a major global issue limiting agricultural productivity. Plants respond to drought stress through a series of physiological, cellular, and molecular changes for survival. The regulation of water transport and photosynthesis play crucial roles in improving plants' drought tolerance. Nitrogen (N, ammonium and nitrate) is an essential macronutrient for plants, and it can affect many aspects of plant growth and metabolic pathways, including water relations and photosynthesis. This review focuses on how drought stress affects water transport and photosynthesis, including the regulation of hydraulic conductance, aquaporin expression, and photosynthesis. It also discusses the cross talk between N, water transport, and drought stress in higher plants.
Collapse
Affiliation(s)
- Lei Ding
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Zhifeng Lu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Limin Gao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Kreszies T, Schreiber L, Ranathunge K. Suberized transport barriers in Arabidopsis, barley and rice roots: From the model plant to crop species. JOURNAL OF PLANT PHYSIOLOGY 2018; 227:75-83. [PMID: 29449027 DOI: 10.1016/j.jplph.2018.02.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 05/09/2023]
Abstract
Water is the most important prerequisite for life and plays a major role during uptake and transport of nutrients. Roots are the plant organs that take up the major part of water, from the surrounding soil. Water uptake is related to the root system architecture, root growth, age and species dependent complex developmental changes in the anatomical structures. The latter is mainly attributed to the deposition of suberized barriers in certain layers of cell walls, such as endo- and exodermis. With respect to water permeability, changes in the suberization of roots are most relevant. Water transport or hydraulic conductivity of roots (Lpr) can be described by the composite transport model and is known to be very variable between plant species and growth conditions and root developmental states. In this review, we summarize how anatomical structures and apoplastic barriers of roots can diversely affect water transport, comparing the model plant Arabidopsis with crop plants, such as barley and rice. Results comparing the suberin amounts and water transport properties indicate that the common assumption that suberin amount negatively correlates with water and solute transport through roots may not always be true. The composition, microstructure and localization of suberin may also have a great impact on the formation of efficient barriers to water and solutes.
Collapse
Affiliation(s)
- Tino Kreszies
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Kosala Ranathunge
- School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley 6009, Perth, Australia.
| |
Collapse
|
11
|
Kim YX, Ranathunge K, Lee S, Lee Y, Lee D, Sung J. Composite Transport Model and Water and Solute Transport across Plant Roots: An Update. FRONTIERS IN PLANT SCIENCE 2018; 9:193. [PMID: 29503659 PMCID: PMC5820301 DOI: 10.3389/fpls.2018.00193] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/01/2018] [Indexed: 05/19/2023]
Abstract
The present review examines recent experimental findings in root transport phenomena in terms of the composite transport model (CTM). It has been a well-accepted conceptual model to explain the complex water and solute flows across the root that has been related to the composite anatomical structure. There are three parallel pathways involved in the transport of water and solutes in roots - apoplast, symplast, and transcellular paths. The role of aquaporins (AQPs), which facilitate water flows through the transcellular path, and root apoplast is examined in terms of the CTM. The contribution of the plasma membrane bound AQPs for the overall water transport in the whole plant level was varying depending on the plant species, age of roots with varying developmental stages of apoplastic barriers, and driving forces (hydrostatic vs. osmotic). Many studies have demonstrated that the apoplastic barriers, such as Casparian bands in the primary anticlinal walls and suberin lamellae in the secondary cell walls, in the endo- and exodermis are not perfect barriers and unable to completely block the transport of water and some solute transport into the stele. Recent research on water and solute transport of roots with and without exodermis triggered the importance of the extension of conventional CTM adding resistances that arrange in series (epidermis, exodermis, mid-cortex, endodermis, and pericycle). The extension of the model may answer current questions about the applicability of CTM for composite water and solute transport of roots that contain complex anatomical structures with heterogeneous cell layers.
Collapse
Affiliation(s)
- Yangmin X. Kim
- Division of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Kosala Ranathunge
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
| | - Seulbi Lee
- Division of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Yejin Lee
- Division of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Deogbae Lee
- Division of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Jwakyung Sung
- Division of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| |
Collapse
|
12
|
Frouin J, Languillaume A, Mas J, Mieulet D, Boisnard A, Labeyrie A, Bettembourg M, Bureau C, Lorenzini E, Portefaix M, Turquay P, Vernet A, Périn C, Ahmadi N, Courtois B. Tolerance to mild salinity stress in japonica rice: A genome-wide association mapping study highlights calcium signaling and metabolism genes. PLoS One 2018; 13:e0190964. [PMID: 29342194 PMCID: PMC5771603 DOI: 10.1371/journal.pone.0190964] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 12/22/2017] [Indexed: 01/08/2023] Open
Abstract
Salinity tolerance is an important quality for European rice grown in river deltas. We evaluated the salinity tolerance of a panel of 235 temperate japonica rice accessions genotyped with 30,000 SNP markers. The panel was exposed to mild salt stress (50 mM NaCl; conductivity of 6 dS m-1) at the seedling stage. Eight different root and shoot growth parameters were measured for both the control and stressed treatments. The Na+ and K+ mass fractions of the stressed plants were measured using atomic absorption spectroscopy. The salt treatment affected plant growth, particularly the shoot parameters. The panel showed a wide range of Na+/K+ ratio and the temperate accessions were distributed over an increasing axis, from the most resistant to the most susceptible checks. We conducted a genome-wide association study on indices of stress response and ion mass fractions in the leaves using a classical mixed model controlling structure and kinship. A total of 27 QTLs validated by sub-sampling were identified. For indices of stress responses, we also used another model that focused on marker × treatment interactions and detected 50 QTLs, three of which were also identified using the classical method. We compared the positions of the significant QTLs to those of approximately 300 genes that play a role in rice salt tolerance. The positions of several QTLs were close to those of genes involved in calcium signaling and metabolism, while other QTLs were close to those of kinases. These results reveal the salinity tolerance of accessions with a temperate japonica background. Although the detected QTLs must be confirmed by other approaches, the number of associations linked to candidate genes involved in calcium-mediated ion homeostasis highlights pathways to explore in priority to understand the salinity tolerance of temperate rice.
Collapse
Affiliation(s)
- Julien Frouin
- Centre de coopération internationale en recherche agronomique pour le développement, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
| | - Antoine Languillaume
- Centre de coopération internationale en recherche agronomique pour le développement, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
| | - Justine Mas
- Centre de coopération internationale en recherche agronomique pour le développement, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
| | - Delphine Mieulet
- Centre de coopération internationale en recherche agronomique pour le développement, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
| | | | - Axel Labeyrie
- Centre de coopération internationale en recherche agronomique pour le développement, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
| | - Mathilde Bettembourg
- Centre de coopération internationale en recherche agronomique pour le développement, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
| | - Charlotte Bureau
- Centre de coopération internationale en recherche agronomique pour le développement, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
| | - Eve Lorenzini
- Centre de coopération internationale en recherche agronomique pour le développement, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
| | - Muriel Portefaix
- Institut National de la Recherche Agronomique, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
| | - Patricia Turquay
- Centre de coopération internationale en recherche agronomique pour le développement, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
| | - Aurore Vernet
- Centre de coopération internationale en recherche agronomique pour le développement, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
| | - Christophe Périn
- Centre de coopération internationale en recherche agronomique pour le développement, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
| | - Nourollah Ahmadi
- Centre de coopération internationale en recherche agronomique pour le développement, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
| | - Brigitte Courtois
- Centre de coopération internationale en recherche agronomique pour le développement, Unité mixte de recherche Amélioration génétique et adaptation des plantes méditerranéennes et tropicales, Montpellier, France
- * E-mail:
| |
Collapse
|
13
|
Zhong S, Mahmood K, Bi YM, Rothstein SJ, Ranathunge K. Altered Expression of OsNLA1 Modulates Pi Accumulation in Rice ( Oryza sativa L.) Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:928. [PMID: 28626465 PMCID: PMC5454049 DOI: 10.3389/fpls.2017.00928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Current agricultural practices rely on heavy use of fertilizers for increased crop productivity. However, the problems associated with heavy fertilizer use, such as high cost and environmental pollution, require the development of crop species with increased nutrient use efficiency. In this study, by using transgenic approaches, we have revealed the critical role of OsNLA1 in phosphate (Pi) accumulation of rice plants. When grown under sufficient Pi and nitrate levels, OsNLA1 knockdown (Osnla1-1, Osnla1-2, and Osnla1-3) lines accumulated higher Pi content in their shoot tissues compared to wild-type, whereas, over-expression lines (OsNLA1-OE1, OsNLA1-OE2, and OsNLA1-OE3) accumulated the least levels of Pi. However, under high Pi levels, knockdown lines accumulated much higher Pi content compared to wild-type and exhibited Pi toxicity symptoms in the leaves. In contrast, the over-expression lines had 50-60% of the Pi content of wild-type and did not show such symptoms. When grown under limiting nitrate levels, OsNLA1 transgenic lines also displayed a similar pattern in Pi accumulation and Pi toxicity symptoms compared to wild-type suggesting an existence of cross-talk between nitrogen (N) and phosphorous (P), which is regulated by OsNLA1. The greater Pi accumulation in knockdown lines was a result of enhanced Pi uptake/permeability of roots compared to the wild-type. The cross-talk between N and P was found to be nitrate specific since the knockdown lines failed to over-accumulate Pi under low (sub-optimal) ammonium level. Moreover, OsNLA1 was also found to interact with OsPHO2, a known regulator of Pi homeostasis, in a Yeast Two-Hybrid (Y2H) assay. Taken together, these results show that OsNLA1 is involved in Pi homeostasis regulating Pi uptake and accumulation in rice plants and may provide an opportunity to enhance P use efficiency by manipulating nitrate supply in the soil.
Collapse
Affiliation(s)
- Sihui Zhong
- Department of Molecular and Cellular Biology, University of Guelph, GuelphON, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, LondonON, Canada
| | - Kashif Mahmood
- Department of Molecular and Cellular Biology, University of Guelph, GuelphON, Canada
- The Samuel Roberts Noble Foundation, ArdmoreOK, United States
| | - Yong-Mei Bi
- Department of Molecular and Cellular Biology, University of Guelph, GuelphON, Canada
| | - Steven J. Rothstein
- Department of Molecular and Cellular Biology, University of Guelph, GuelphON, Canada
| | - Kosala Ranathunge
- Department of Molecular and Cellular Biology, University of Guelph, GuelphON, Canada
- School of Biological Sciences, The University of Western Australia, CrawleyWA, Australia
- *Correspondence: Kosala Ranathunge,
| |
Collapse
|
14
|
Ishikawa-Sakurai J, Murai-Hatano M, Hayashi H, Matsunami M, Kuwagata T. Rice aquaporins and their responses to environmental stress. ACTA ACUST UNITED AC 2017. [DOI: 10.3117/rootres.26.39] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Junko Ishikawa-Sakurai
- Tohoku Agricultural Research Center, NARO
- Institute of Crop Science, NARO
- United Graduate School of Agricultural Sciences, Iwate University
| | | | - Hidehiro Hayashi
- Tohoku Agricultural Research Center, NARO
- United Graduate School of Agricultural Sciences, Iwate University
| | - Maya Matsunami
- Tohoku Agricultural Research Center, NARO
- JSPS Research Fellow
| | | |
Collapse
|
15
|
Grondin A, Mauleon R, Vadez V, Henry A. Root aquaporins contribute to whole plant water fluxes under drought stress in rice (Oryza sativa L.). PLANT, CELL & ENVIRONMENT 2016; 39:347-65. [PMID: 26226878 DOI: 10.1111/pce.12616] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/26/2015] [Indexed: 05/20/2023]
Abstract
Aquaporin activity and root anatomy may affect root hydraulic properties under drought stress. To better understand the function of aquaporins in rice root water fluxes under drought, we studied the root hydraulic conductivity (Lpr) and root sap exudation rate (Sr) in the presence or absence of an aquaporin inhibitor (azide) under well-watered conditions and following drought stress in six diverse rice varieties. Varieties varied in Lpr and Sr under both conditions. The contribution of aquaporins to Lpr was generally high (up to 79% under well-watered conditions and 85% under drought stress) and differentially regulated under drought. Aquaporin contribution to Sr increased in most varieties after drought, suggesting a crucial role for aquaporins in osmotic water fluxes during drought and recovery. Furthermore, root plasma membrane aquaporin (PIP) expression and root anatomical properties were correlated with hydraulic traits. Three chromosome regions highly correlated with hydraulic traits of the OryzaSNP panel were identified, but did not co-locate with known aquaporins. These results therefore highlight the importance of aquaporins in the rice root radial water pathway, but emphasize the complex range of additional mechanisms related to root water fluxes and drought response.
Collapse
Affiliation(s)
- Alexandre Grondin
- International Rice Research Institute, Crop Environmental Sciences Division, DAPO Box 7777, Metro Manila, Philippines
- University of Nebraska-Lincoln, Department of Agronomy and Horticulture, Lincoln, NE, 68583, USA
| | - Ramil Mauleon
- International Rice Research Institute, Crop Environmental Sciences Division, DAPO Box 7777, Metro Manila, Philippines
| | - Vincent Vadez
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, 502 324, Andhra Pradesh, India
| | - Amelia Henry
- International Rice Research Institute, Crop Environmental Sciences Division, DAPO Box 7777, Metro Manila, Philippines
| |
Collapse
|
16
|
Fleck AT, Schulze S, Hinrichs M, Specht A, Waßmann F, Schreiber L, Schenk MK. Silicon Promotes Exodermal Casparian Band Formation in Si-Accumulating and Si-Excluding Species by Forming Phenol Complexes. PLoS One 2015; 10:e0138555. [PMID: 26383862 PMCID: PMC4575055 DOI: 10.1371/journal.pone.0138555] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 08/31/2015] [Indexed: 11/19/2022] Open
Abstract
We studied the effect of Silicon (Si) on Casparian band (CB) development, chemical composition of the exodermal CB and Si deposition across the root in the Si accumulators rice and maize and the Si non-accumulator onion. Plants were cultivated in nutrient solution with and without Si supply. The CB development was determined in stained root cross-sections. The outer part of the roots containing the exodermis was isolated after enzymatic treatment. The exodermal suberin was transesterified with MeOH/BF3 and the chemical composition was measured using gas chromatography-mass spectroscopy (GC-MS) and flame ionization detector (GC-FID). Laser ablation-inductively coupled plasma-mass spectroscopy (LA-ICP-MS) was used to determine the Si deposition across root cross sections. Si promoted CB formation in the roots of Si-accumulator and Si non-accumulator species. The exodermal suberin was decreased in rice and maize due to decreased amounts of aromatic suberin fractions. Si did not affect the concentration of lignin and lignin-like polymers in the outer part of rice, maize and onion roots. The highest Si depositions were found in the tissues containing CB. These data along with literature were used to suggest a mechanism how Si promotes the CB development by forming complexes with phenols.
Collapse
Affiliation(s)
- Alexander T. Fleck
- Institute of Plant Nutrition, Faculty of Natural Sciences, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
- * E-mail:
| | - Sascha Schulze
- Institute of Plant Nutrition, Faculty of Natural Sciences, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Martin Hinrichs
- Institute of Plant Nutrition, Faculty of Natural Sciences, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - André Specht
- Institute of Plant Nutrition, Faculty of Natural Sciences, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Friedrich Waßmann
- Institute of Cellular and Molecular Botany, Department of Ecophysiology, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Lukas Schreiber
- Institute of Cellular and Molecular Botany, Department of Ecophysiology, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Manfred K. Schenk
- Institute of Plant Nutrition, Faculty of Natural Sciences, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| |
Collapse
|
17
|
Das P, Nutan KK, Singla-Pareek SL, Pareek A. Understanding salinity responses and adopting 'omics-based' approaches to generate salinity tolerant cultivars of rice. FRONTIERS IN PLANT SCIENCE 2015; 6:712. [PMID: 26442026 PMCID: PMC4563168 DOI: 10.3389/fpls.2015.00712] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/25/2015] [Indexed: 05/21/2023]
Abstract
Soil salinity is one of the main constraints affecting production of rice worldwide, by reducing growth, pollen viability as well as yield of the plant. Therefore, detailed understanding of the response of rice towards soil salinity at the physiological and molecular level is a prerequisite for its effective management. Various approaches have been adopted by molecular biologists or breeders to understand the mechanism for salinity tolerance in plants and to develop salt tolerant rice cultivars. Genome wide analysis using 'omics-based' tools followed by identification and functional validation of individual genes is becoming one of the popular approaches to tackle this task. On the other hand, mutation breeding and insertional mutagenesis has also been exploited to obtain salinity tolerant crop plants. This review looks into various responses at cellular and whole plant level generated in rice plants toward salinity stress thus, evaluating the suitability of intervention of functional genomics to raise stress tolerant plants. We have tried to highlight the usefulness of the contemporary 'omics-based' approaches such as genomics, proteomics, transcriptomics and phenomics towards dissecting out the salinity tolerance trait in rice. In addition, we have highlighted the importance of integration of various 'omics' approaches to develop an understanding of the machinery involved in salinity response in rice and to move forward to develop salt tolerant cultivars of rice.
Collapse
Affiliation(s)
- Priyanka Das
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Kamlesh K. Nutan
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Sneh L. Singla-Pareek
- Plant Molecular Biology Group, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| |
Collapse
|
18
|
Kadam NN, Yin X, Bindraban PS, Struik PC, Jagadish KSV. Does morphological and anatomical plasticity during the vegetative stage make wheat more tolerant of water deficit stress than rice? PLANT PHYSIOLOGY 2015; 167:1389-401. [PMID: 25614066 PMCID: PMC4378155 DOI: 10.1104/pp.114.253328] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 01/16/2015] [Indexed: 05/18/2023]
Abstract
Water scarcity and the increasing severity of water deficit stress are major challenges to sustaining irrigated rice (Oryza sativa) production. Despite the technologies developed to reduce the water requirement, rice growth is seriously constrained under water deficit stress compared with other dryland cereals such as wheat (Triticum aestivum). We exposed rice cultivars with contrasting responses to water deficit stress and wheat cultivars well adapted to water-limited conditions to the same moisture stress during vegetative growth to unravel the whole-plant (shoot and root morphology) and organ/tissue (root anatomy) responses. Wheat cultivars followed a water-conserving strategy by reducing specific leaf area and developing thicker roots and moderate tillering. In contrast, rice 'IR64' and 'Apo' adopted a rapid water acquisition strategy through thinner roots under water deficit stress. Root diameter, stele and xylem diameter, and xylem number were more responsive and varied with different positions along the nodal root under water deficit stress in wheat, whereas they were relatively conserved in rice cultivars. Increased metaxylem diameter and lower metaxylem number near the root tips and exactly the opposite phenomena at the root-shoot junction facilitated the efficient use of available soil moisture in wheat. Tolerant rice 'Nagina 22' had an advantage in root morphological and anatomical attributes over cultivars IR64 and Apo but lacked plasticity, unlike wheat cultivars exposed to water deficit stress. The key traits determining the adaptation of wheat to dryland conditions have been summarized and discussed.
Collapse
Affiliation(s)
- Niteen N Kadam
- International Rice Research Institute, Los Baños, Laguna, Philippines (N.N.K., K.S.V.J.);Centre for Crop Systems Analysis, Wageningen University and Research Centre, 6700 AK Wageningen, The Netherlands (N.N.K., X.Y., P.C.S.); andVirtual Fertilizer Research Center, Washington, District of Columbia 20005 (P.S.B.)
| | - Xinyou Yin
- International Rice Research Institute, Los Baños, Laguna, Philippines (N.N.K., K.S.V.J.);Centre for Crop Systems Analysis, Wageningen University and Research Centre, 6700 AK Wageningen, The Netherlands (N.N.K., X.Y., P.C.S.); andVirtual Fertilizer Research Center, Washington, District of Columbia 20005 (P.S.B.)
| | - Prem S Bindraban
- International Rice Research Institute, Los Baños, Laguna, Philippines (N.N.K., K.S.V.J.);Centre for Crop Systems Analysis, Wageningen University and Research Centre, 6700 AK Wageningen, The Netherlands (N.N.K., X.Y., P.C.S.); andVirtual Fertilizer Research Center, Washington, District of Columbia 20005 (P.S.B.)
| | - Paul C Struik
- International Rice Research Institute, Los Baños, Laguna, Philippines (N.N.K., K.S.V.J.);Centre for Crop Systems Analysis, Wageningen University and Research Centre, 6700 AK Wageningen, The Netherlands (N.N.K., X.Y., P.C.S.); andVirtual Fertilizer Research Center, Washington, District of Columbia 20005 (P.S.B.)
| | - Krishna S V Jagadish
- International Rice Research Institute, Los Baños, Laguna, Philippines (N.N.K., K.S.V.J.);Centre for Crop Systems Analysis, Wageningen University and Research Centre, 6700 AK Wageningen, The Netherlands (N.N.K., X.Y., P.C.S.); andVirtual Fertilizer Research Center, Washington, District of Columbia 20005 (P.S.B.)
| |
Collapse
|
19
|
Ahmadi N, Audebert A, Bennett MJ, Bishopp A, de Oliveira AC, Courtois B, Diedhiou A, Diévart A, Gantet P, Ghesquière A, Guiderdoni E, Henry A, Inukai Y, Kochian L, Laplaze L, Lucas M, Luu DT, Manneh B, Mo X, Muthurajan R, Périn C, Price A, Robin S, Sentenac H, Sine B, Uga Y, Véry AA, Wissuwa M, Wu P, Xu J. The roots of future rice harvests. RICE (NEW YORK, N.Y.) 2014; 7:29. [PMID: 26224558 PMCID: PMC4884021 DOI: 10.1186/s12284-014-0029-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 10/12/2014] [Indexed: 05/05/2023]
Abstract
Rice production faces the challenge to be enhanced by 50% by year 2030 to meet the growth of the population in rice-eating countries. Whereas yield of cereal crops tend to reach plateaus and a yield is likely to be deeply affected by climate instability and resource scarcity in the coming decades, building rice cultivars harboring root systems that can maintain performance by capturing water and nutrient resources unevenly distributed is a major breeding target. Taking advantage of gathering a community of rice root biologists in a Global Rice Science Partnership workshop held in Montpellier, France, we present here the recent progresses accomplished in this area and focal points where an international network of laboratories should direct their efforts.
Collapse
Affiliation(s)
| | | | - Malcolm J Bennett
- />Centre for Plant Integrative Biology, University of Nottingham, Loughborough, LE12 5RD UK
| | - Anthony Bishopp
- />Centre for Plant Integrative Biology, University of Nottingham, Loughborough, LE12 5RD UK
| | | | | | - Abdala Diedhiou
- />Université Cheikh Anta Diop (UCAD), Département de Biologie Végétale, Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Centre de Recherche de Bel Air - BP 1386, CP 18524 Dakar, Sénégal
- />Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux (LAPSE), Centre de Recherche de Bel Air - BP 1386, CP 18524 Dakar, Sénégal
| | - Anne Diévart
- />CIRAD, UMR AGAP, Montpellier Cedex 5, 34398 France
| | - Pascal Gantet
- />Université Montpellier 2, UMR DIADE, Montpellier, France
- />IRD, LMI RICE, USTH, Agronomical Genetics Institute, Hanoi, Vietnam
| | | | | | | | - Yoshiaki Inukai
- />International Cooperation Center for Agricultural Education (ICCAE), Nagoya University, Furo-cho, Chikusa 464-8601 Nagoya, Japan
| | - Leon Kochian
- />Robert W. Holley Center for Agriculture and Health, USDA-ARS and Department of Plant Biology, Cornell University, Ithaca, 14853 NY USA
| | - Laurent Laplaze
- />Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux (LAPSE), Centre de Recherche de Bel Air - BP 1386, CP 18524 Dakar, Sénégal
- />IRD, UMR DIADE, Montpellier, France
| | | | - Doan Trung Luu
- />Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/386 INRA/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 2, France
| | - Baboucarr Manneh
- />Africa Rice Center, AfricaRice Sahel Regional Station, B.P. 96, St Louis, Senegal
| | - Xiaorong Mo
- />State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, 310058 China
| | | | | | - Adam Price
- />University of Aberdeen, Aberdeen, AB24 3UU UK
| | | | - Hervé Sentenac
- />Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/386 INRA/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 2, France
| | - Bassirou Sine
- />Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux (LAPSE), Centre de Recherche de Bel Air - BP 1386, CP 18524 Dakar, Sénégal
- />ISRA, CERAAS, Thiès, Senegal
| | - Yusaku Uga
- />National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kannondai, Tsukuba, 305-8602 Ibaraki, Japan
| | - Anne Aliénor Véry
- />Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/386 INRA/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 2, France
| | - Matthias Wissuwa
- />Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, 305-8686 Japan
| | - Ping Wu
- />State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, 310058 China
| | - Jian Xu
- />Department of Biological Sciences and NUS Centre for BioImaging Sciences, Faculty of Science, National University of Singapore, Singapore 117543 Singapore
| |
Collapse
|
20
|
Nada RM, Abogadallah GM. Aquaporins are major determinants of water use efficiency of rice plants in the field. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 227:165-80. [PMID: 25219318 DOI: 10.1016/j.plantsci.2014.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/13/2014] [Accepted: 08/15/2014] [Indexed: 05/08/2023]
Abstract
This study aimed at specifying the reasons of unbalanced water relations of rice in the field at midday which results in slowing down photosynthesis and reducing water use efficiency (WUE) in japonica and indica rice under well-watered and droughted conditions. Leaf relative water content (RWC) decreased in the well-watered plants at midday in the field, but more dramatically in the droughted indica (75.6 and 71.4%) than japonica cultivars (85.5 and 80.8%). Gas exchange was measured at three points during the day (9:00, 13:00 and 17:00). Leaf internal CO2 (Ci) was not depleted when midday stomatal depression was highest indicating that Ci was not limiting to photosynthesis. Most aquaporins were predominantly expressed in leaves suggesting higher water permeability in leaves than in roots. The expression of leaf aquaporins was further induced by drought at 9:00 without comparable responses in roots. The data suggest that aquaporin expression in the root endodermis was limiting to water uptake. Upon removal of the radial barriers to water flow in roots, transpiration increased instantly and photosynthesis increased after 4h resulting in increasing WUE after 4h, demonstrating that WUE in rice is largely limited by the inadequate aquaporin expression profiles in roots.
Collapse
Affiliation(s)
- Reham M Nada
- Department of Botany, Faculty of Science, Damietta University, New Damietta 34517, Egypt
| | - Gaber M Abogadallah
- Department of Botany, Faculty of Science, Damietta University, New Damietta 34517, Egypt.
| |
Collapse
|
21
|
Tu Y, Jiang A, Gan L, Hossain M, Zhang J, Peng B, Xiong Y, Song Z, Cai D, Xu W, Zhang J, He Y. Genome duplication improves rice root resistance to salt stress. RICE (NEW YORK, N.Y.) 2014; 7:15. [PMID: 25184027 PMCID: PMC4151024 DOI: 10.1186/s12284-014-0015-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 07/15/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Salinity is a stressful environmental factor that limits the productivity of crop plants, and roots form the major interface between plants and various abiotic stresses. Rice is a salt-sensitive crop and its polyploid shows advantages in terms of stress resistance. The objective of this study was to investigate the effects of genome duplication on rice root resistance to salt stress. RESULTS Both diploid rice (HN2026-2x and Nipponbare-2x) and their corresponding tetraploid rice (HN2026-4x and Nipponbare-4x) were cultured in half-strength Murashige and Skoog medium with 150 mM NaCl for 3 and 5 days. Accumulations of proline, soluble sugar, malondialdehyde (MDA), Na(+) content, H(+) (proton) flux at root tips, and the microstructure and ultrastructure in rice roots were examined. We found that tetraploid rice showed less root growth inhibition, accumulated higher proline content and lower MDA content, and exhibited a higher frequency of normal epidermal cells than diploid rice. In addition, a protective gap appeared between the cortex and pericycle cells in tetraploid rice. Next, ultrastructural analysis showed that genome duplication improved membrane, organelle, and nuclei stability. Furthermore, Na(+) in tetraploid rice roots significantly decreased while root tip H(+) efflux in tetraploid rice significantly increased. CONCLUSIONS Our results suggest that genome duplication improves root resistance to salt stress, and that enhanced proton transport to the root surface may play a role in reducing Na(+) entrance into the roots.
Collapse
Affiliation(s)
- Yi Tu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan 430062, P.R. China
| | - Aiming Jiang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan 430062, P.R. China
- Faculty of Biochemistry and Environmental Engineering, Yunyang Teachers’ College, Shiyan 442000, P.R. China
| | - Lu Gan
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan 430062, P.R. China
- Faculty of Biochemistry and Environmental Engineering, Yunyang Teachers’ College, Shiyan 442000, P.R. China
| | - Mokter Hossain
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jinming Zhang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan 430062, P.R. China
| | - Bo Peng
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan 430062, P.R. China
| | - Yuguo Xiong
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan 430062, P.R. China
| | - Zhaojian Song
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan 430062, P.R. China
| | - Detian Cai
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan 430062, P.R. China
| | - Weifeng Xu
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jianhua Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuchi He
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan 430062, P.R. China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
22
|
Mertz RA, Brutnell TP. Bundle sheath suberization in grass leaves: multiple barriers to characterization. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3371-80. [PMID: 24659485 DOI: 10.1093/jxb/eru108] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
High-yielding, stress-tolerant grass crops are essential to meet future food and energy demands. Efforts are underway to engineer improved varieties of the C3 cereal crop rice by introducing NADP-malic enzyme C4 photosynthesis using maize as a model system. However, several modifications to the rice leaf vasculature are potentially necessary, including the introduction of suberin lamellae into the bundle sheath cell walls. Suberized cell walls are ubiquitous in the root endodermis of all grasses, and developmental similarities are apparent between endodermis and bundle sheath cell walls. Nonetheless, there is considerable heterogeneity in sheath cell development and suberin composition both within and between grass taxa. The effect of this variation on physiological function remains ambiguous over forty years after suberin lamellae were initially proposed to regulate solute and photoassimilate fluxes and C4 gas exchange. Interspecies variation has confounded efforts to ascribe physiological differences specifically to the presence or absence of suberin lamellae. Thus, specific perturbation of suberization within a uniform genetic background is needed, but, until recently, the genetic resources to manipulate suberin composition in the grasses were largely unavailable. The recent dissection of the suberin biosynthesis pathway in model dicots and the identification of several promising candidate genes in model grasses will facilitate the characterization of the first suberin biosynthesis genes in a monocot. Much remains to be learned about the role of bundle sheath suberization in leaf physiology, but the stage is set for significant advances in the near future.
Collapse
Affiliation(s)
- Rachel A Mertz
- Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | | |
Collapse
|
23
|
Krishnamurthy P, Jyothi-Prakash PA, Qin L, He J, Lin Q, Loh CS, Kumar PP. Role of root hydrophobic barriers in salt exclusion of a mangrove plant Avicennia officinalis. PLANT, CELL & ENVIRONMENT 2014; 37:1656-71. [PMID: 24417377 DOI: 10.1111/pce.12272] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 12/17/2013] [Accepted: 01/04/2014] [Indexed: 05/17/2023]
Abstract
Salt exclusion at the roots and salt secretion in the leaves were examined in a mangrove, Avicennia officinalis. The non-secretor mangrove Bruguiera cylindrica was used for comparative study of hydrophobic barrier formation in the roots. Bypass flow was reduced when seedlings were previously treated with high salt concentration. A biseriate exodermis was detected in the salt-treated roots, along with an enhanced deposition of hydrophobic barriers in the endodermis. These barriers reduced Na(+) loading into the xylem, accounting for a 90-95% salt exclusion in A. officinalis. Prominent barriers were found in the roots of B. cylindrica even in the absence of salt treatment. A cytochrome P450 gene that may regulate suberin biosynthesis was up-regulated within hours of salt treatment in A. officinalis roots and leaves, corresponding with increased suberin deposition. X-ray microanalysis showed preferential deposition of Na(+) and Cl(-) in the root cortex compared with the stele, suggesting that the endodermis is the primary site of salt exclusion. Enhanced salt secretion and increased suberin deposition surrounding the salt glands were seen in the leaves with salt treatment. Overall, these data show that the deposition of apoplastic barriers increases resistance to bypass flow leading to efficient salt exclusion at the roots in mangroves.
Collapse
Affiliation(s)
- Pannaga Krishnamurthy
- Department of Biological Sciences, National University of Singapore, 117543, Singapore; NUS Environmental Research Institute (NERI), National University of Singapore, 117411, Singapore
| | | | | | | | | | | | | |
Collapse
|
24
|
Ranathunge K, El-kereamy A, Gidda S, Bi YM, Rothstein SJ. AMT1;1 transgenic rice plants with enhanced NH4(+) permeability show superior growth and higher yield under optimal and suboptimal NH4(+) conditions. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:965-79. [PMID: 24420570 PMCID: PMC3935567 DOI: 10.1093/jxb/ert458] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The major source of nitrogen for rice (Oryza sativa L.) is ammonium (NH4(+)). The NH4(+) uptake of roots is mainly governed by membrane transporters, with OsAMT1;1 being a prominent member of the OsAMT1 gene family that is known to be involved in NH4(+) transport in rice plants. However, little is known about its involvement in NH4(+) uptake in rice roots and subsequent effects on NH4(+) assimilation. This study shows that OsAMT1;1 is a constitutively expressed, nitrogen-responsive gene, and its protein product is localized in the plasma membrane. Its expression level is under the control of circadian rhythm. Transgenic rice lines (L-2 and L-3) overexpressing the OsAMT1;1 gene had the same root structure as the wild type (WT). However, they had 2-fold greater NH4(+) permeability than the WT, whereas OsAMT1;1 gene expression was 20-fold higher than in the WT. Analogous to the expression, transgenic lines had a higher NH4(+) content in the shoots and roots than the WT. Direct NH4(+) fluxes in the xylem showed that the transgenic lines had significantly greater uptake rates than the WT. Higher NH4(+) contents also promoted higher expression levels of genes in the nitrogen assimilation pathway, resulting in greater nitrogen assimilates, chlorophyll, starch, sugars, and grain yield in transgenic lines than in the WT under suboptimal and optimal nitrogen conditions. OsAMT1;1 also enhanced overall plant growth, especially under suboptimal NH4(+) levels. These results suggest that OsAMT1;1 has the potential for improving nitrogen use efficiency, plant growth, and grain yield under both suboptimal and optimal nitrogen fertilizer conditions.
Collapse
Affiliation(s)
- Kosala Ranathunge
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Ashraf El-kereamy
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Satinder Gidda
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Yong-Mei Bi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Steven J. Rothstein
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| |
Collapse
|
25
|
Anatomy and Histochemistry of Roots and Shoots in Wild Rice (Zizania latifolia Griseb.). ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/181727] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Wild rice (Zizania latifolia Griseb.) is a famous, perennial, emergent vegetable in China. The current work explores the anatomy and histochemistry of roots, stems, and leaves and the permeability of apoplastic barriers of wild rice. The adventitious roots in wild rice have suberized and lignified endodermis and adjacent, thick-walled cortical layers and suberized and lignified hypodermis, composed of a uniseriate sclerenchyma layer (SC) underlying uniseriate exodermis; they also have lysigenous aerenchyma. Stems have a thickened epidermal cuticle, a narrow peripheral mechanical ring (PMR), an outer ring of vascular bundles, and an inner ring of vascular bundles embedded in a multiseriate sclerenchyma ring (SCR). There is evidence of suberin in stem SCR and PMR sclerenchyma cells. Sheathing leaves are characterized by thick cuticles and fibrous bundle sheath extensions. Air spaces in stems and leaves consist of mostly lysigenous aerenchyma and pith cavities in stems. Apoplastic barriers are found in roots and stems.
Collapse
|
26
|
Nawrath C, Schreiber L, Franke RB, Geldner N, Reina-Pinto JJ, Kunst L. Apoplastic diffusion barriers in Arabidopsis. THE ARABIDOPSIS BOOK 2013; 11:e0167. [PMID: 24465172 PMCID: PMC3894908 DOI: 10.1199/tab.0167] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
During the development of Arabidopsis and other land plants, diffusion barriers are formed in the apoplast of specialized tissues within a variety of plant organs. While the cuticle of the epidermis is the primary diffusion barrier in the shoot, the Casparian strips and suberin lamellae of the endodermis and the periderm represent the diffusion barriers in the root. Different classes of molecules contribute to the formation of extracellular diffusion barriers in an organ- and tissue-specific manner. Cutin and wax are the major components of the cuticle, lignin forms the early Casparian strip, and suberin is deposited in the stage II endodermis and the periderm. The current status of our understanding of the relationships between the chemical structure, ultrastructure and physiological functions of plant diffusion barriers is discussed. Specific aspects of the synthesis of diffusion barrier components and protocols that can be used for the assessment of barrier function and important barrier properties are also presented.
Collapse
Affiliation(s)
- Christiane Nawrath
- University of Lausanne, Department of Plant Molecular Biology, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Lukas Schreiber
- University of Bonn, Department of Ecophysiology of Plants, Institute of Cellular and Molecular Botany (IZMB), Kirschallee 1, D-53115 Bonn, Germany
| | - Rochus Benni Franke
- University of Bonn, Department of Ecophysiology of Plants, Institute of Cellular and Molecular Botany (IZMB), Kirschallee 1, D-53115 Bonn, Germany
| | - Niko Geldner
- University of Lausanne, Department of Plant Molecular Biology, Biophore Building, CH-1015 Lausanne, Switzerland
| | - José J. Reina-Pinto
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM-UMA-CSIC), Department of Plant Breeding, Estación Experimental ‘La Mayora’. 29750 Algarrobo-Costa. Málaga. Spain
| | - Ljerka Kunst
- University of British Columbia, Department of Botany, Vancouver, B.C. V6T 1Z4, Canada
| |
Collapse
|
27
|
Neilson KA, Scafaro AP, Chick JM, George IS, Van Sluyter SC, Gygi SP, Atwell BJ, Haynes PA. The influence of signals from chilled roots on the proteome of shoot tissues in rice seedlings. Proteomics 2013; 13:1922-33. [DOI: 10.1002/pmic.201200475] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/06/2012] [Accepted: 02/07/2013] [Indexed: 02/02/2023]
Affiliation(s)
- Karlie A. Neilson
- Department of Chemistry and Biomolecular Sciences; Macquarie University; New South Wales; Australia
| | - Andrew P. Scafaro
- Department of Biological Sciences, Macquarie University; New South Wales Australia
| | - Joel M. Chick
- Department of Cell Biology, Harvard Medical School; MA USA
| | - Iniga S. George
- Department of Chemistry and Biomolecular Sciences; Macquarie University; New South Wales; Australia
| | - Steven C. Van Sluyter
- Department of Chemistry and Biomolecular Sciences; Macquarie University; New South Wales; Australia
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School; MA USA
| | - Brian J. Atwell
- Department of Biological Sciences, Macquarie University; New South Wales Australia
| | - Paul A. Haynes
- Department of Chemistry and Biomolecular Sciences; Macquarie University; New South Wales; Australia
| |
Collapse
|
28
|
Horie T, Karahara I, Katsuhara M. Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants. RICE (NEW YORK, N.Y.) 2012; 5:11. [PMID: 27234237 PMCID: PMC5520831 DOI: 10.1186/1939-8433-5-11] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 06/22/2012] [Indexed: 05/04/2023]
Abstract
Elevated Na(+) levels in agricultural lands are increasingly becoming a serious threat to the world agriculture. Plants suffer osmotic and ionic stress under high salinity due to the salts accumulated at the outside of roots and those accumulated at the inside of the plant cells, respectively. Mechanisms of salinity tolerance in plants have been extensively studied and in the recent years these studies focus on the function of key enzymes and plant morphological traits. Here, we provide an updated overview of salt tolerant mechanisms in glycophytes with a particular interest in rice (Oryza sativa) plants. Protective mechanisms that prevent water loss due to the increased osmotic pressure, the development of Na(+) toxicity on essential cellular metabolisms, and the movement of ions via the apoplastic pathway (i.e. apoplastic barriers) are described here in detail.
Collapse
Affiliation(s)
- Tomoaki Horie
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano, 386-8567 Japan
| | - Ichirou Karahara
- Department of Biology, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, 930-8555 Japan
| | - Maki Katsuhara
- Institute of Plant Science and Resources, Okayama University, 20-1, Chuo-2-chome, Kurashiki, Okayama, 710-0046 Japan
| |
Collapse
|
29
|
Kuwagata T, Ishikawa-Sakurai J, Hayashi H, Nagasuga K, Fukushi K, Ahamed A, Takasugi K, Katsuhara M, Murai-Hatano M. Influence of low air humidity and low root temperature on water uptake, growth and aquaporin expression in rice plants. PLANT & CELL PHYSIOLOGY 2012; 53:1418-31. [PMID: 22685088 DOI: 10.1093/pcp/pcs087] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The effects of low air humidity and low root temperature (LRT) on water uptake, growth and aquaporin gene expression were investigated in rice plants. The daily transpiration of the plants grown at low humidity was 1.5- to 2-fold higher than that at high humidity. LRT at 13°C reduced transpiration, and the extent was larger at lower humidity. LRT also reduced total dry matter production and leaf area expansion, and the extent was again larger at lower humidity. These observations suggest that the suppression of plant growth by LRT is associated with water stress due to decreased water uptake ability of the root. On the other hand, the net assimilation rate was not affected by low humidity and LRT, and water use efficiency was larger for LRT. We found that low humidity induced coordinated up-regulation of many PIP and TIP aquaporin genes in both the leaves and the roots. Expression levels of two root-specific aquaporin genes, OsPIP2;4 and OsPIP2;5, were increased significantly after 6 and 13 d of LRT exposure. Taken together, we discuss the possibility that aquaporins are part of an integrated response of this crop to low air humidity and LRT.
Collapse
Affiliation(s)
- Tsuneo Kuwagata
- National Institute for Agro-environmental Sciences, Agro-Meteorology Division, Tsukuba, 305-8604 Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Henry A, Cal AJ, Batoto TC, Torres RO, Serraj R. Root attributes affecting water uptake of rice (Oryza sativa) under drought. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4751-63. [PMID: 22791828 PMCID: PMC3427995 DOI: 10.1093/jxb/ers150] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Lowland rice roots have a unique physiological response to drought because of their adaptation to flooded soil. Rice root attributes that facilitate growth under flooded conditions may affect rice response to drought, but the relative roles of root structural and functional characteristics for water uptake under drought in rice are not known. Morphological, anatomical, biochemical, and molecular attributes of soil-grown rice roots were measured to investigate the genotypic variability and genotype×environment interactions of water uptake under variable soil water regimes. Drought-resistant genotypes had the lowest night-time bleeding rates of sap from the root system in the field. Diurnal fluctuation predominated as the strongest source of variation for bleeding rates in the field and root hydraulic conductivity (Lpr) in the greenhouse, and was related to expression trends of various PIP and TIP aquaporins. Root anatomy was generally more responsive to drought treatments in drought-resistant genotypes. Suberization and compaction of sclerenchyma layer cells decreased under drought, whereas suberization of the endodermis increased, suggesting differential roles of these two cell layers for the retention of oxygen under flooded conditions (sclerenchyma layer) and retention of water under drought (endodermis). The results of this study point to the genetic variability in responsiveness to drought of rice roots in terms of morphology, anatomy, and function.
Collapse
Affiliation(s)
- Amelia Henry
- International Rice Research Institute, Los Baños Philippines.
| | | | | | | | | |
Collapse
|
31
|
Yang X, Li Y, Ren B, Ding L, Gao C, Shen Q, Guo S. Drought-Induced Root Aerenchyma Formation Restricts Water Uptake in Rice Seedlings Supplied with Nitrate. ACTA ACUST UNITED AC 2012; 53:495-504. [DOI: 10.1093/pcp/pcs003] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Nishiuchi S, Yamauchi T, Takahashi H, Kotula L, Nakazono M. Mechanisms for coping with submergence and waterlogging in rice. RICE (NEW YORK, N.Y.) 2012; 5:2. [PMID: 24764502 PMCID: PMC3834488 DOI: 10.1186/1939-8433-5-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 02/27/2012] [Indexed: 05/19/2023]
Abstract
Rice (Oryza sativa L.), unlike other cereals, can grow well in paddy fields and is highly tolerant of excess water stress, from either submergence (in which part or all of the plant is under water) or waterlogging (in which excess water in soil limits gas diffusion). Rice handles submergence stress by internal aeration and growth controls. A quiescence strategy based on Submergence-1A (SUB1A) or an escape strategy based on SNORKEL1 (SK1) and SNORKEL2 (SK2) is used for the growth controls. On the other hand, rice handles waterlogging stress by forming lysigenous aerenchyma and a barrier to radial O2 loss (ROL) in roots in order to supply O2 to the root tip. In this article, we summarize recent advances in understanding the mechanisms of responding to excess water stresses (i.e., submergence and waterlogging) in rice and other gramineous plants.
Collapse
Affiliation(s)
- Shunsaku Nishiuchi
- Laboratory of Plant Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Takaki Yamauchi
- Laboratory of Plant Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Hirokazu Takahashi
- Laboratory of Plant Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Lukasz Kotula
- Laboratory of Plant Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Mikio Nakazono
- Laboratory of Plant Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
33
|
Joshi R, Kumar P. Lysigenous aerenchyma formation involves non-apoptotic programmed cell death in rice (Oryza sativa L.) roots. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2012; 18:1-9. [PMID: 23573035 PMCID: PMC3550533 DOI: 10.1007/s12298-011-0093-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In waterlogged soil, deficiency of oxygen triggers development of aerenchyma in roots which facilitates gas diffusion between roots and the aerial environment. However, in contrast to other monocots, roots of rice (Oryza sativa L.) constitutively form aerenchyma even in aerobic conditions. The formation of cortical aerenchyma in roots is thought to occur by either lysigeny or schizogeny. Schizogenous aerenchyma is developed without cortical cell death. However, lysigenous gas-spaces are formed as a consequence of senescence of specific cells in primary cortex followed by their death due to autolysis. In the last stage of aerenchyma formation, a 'spoked wheel' arrangement is observed in the cortical region of root. Ultrastructural studies show that cell death is constitutive and no characteristic cell structural differentiation takes place in the dying cells with respect to surrounding cells. Cell collapse initiation occurs in the center of the cortical tissues which are characterized by shorter with radically enlarged diameter. Then, cell death proceeds by acidification of cytoplasm followed by rupturing of plasma membrane, loss of cellular contents and cell wall degradation, while cells nuclei remain intact. Dying cells releases a signal through symplast which initiates cell death in neighboring cells. During early stages, middle lamella-degenerating enzymes are synthesized in the rough endoplasmic reticulum which are transported through dictyosome and discharged through plasmalemma beneath the cell wall. In rice several features of root aerenchyma formation are analogous to a gene regulated developmental process called programmed cell death (PCD), for instance, specific cortical cell death, obligate production of aerenchyma under environmental stresses and early changes in nuclear structure which includes clumping of chromatin, fragmentation, disruption of nuclear membrane and apparent engulfment by the vacuole. These processes are followed by crenulation of plasma membrane, formation of electron-lucent regions in the cytoplasm, tonoplast disintegration, organellar swelling and disruption, loss of cytoplasmic contents, and collapse of cell. Many processes in lysing cells are structural features of apoptosis, but certain characteristics of apoptosis i.e., pycnosis of the nucleus, plasma membrane blebbing, and apoptotic bodies formation are still lacking and thus classified as non-apoptotic PCD. This review article, describes most recent observations alike to PCD involved in aerenchyma formation and their systematic distributions in rice roots.
Collapse
Affiliation(s)
- Rohit Joshi
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Pramod Kumar
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
34
|
Ranathunge K, Lin J, Steudle E, Schreiber L. Stagnant deoxygenated growth enhances root suberization and lignifications, but differentially affects water and NaCl permeabilities in rice (Oryza sativa L.) roots. PLANT, CELL & ENVIRONMENT 2011; 34:1223-40. [PMID: 21414017 DOI: 10.1111/j.1365-3040.2011.02318.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
It has been shown that rice roots grown in a stagnant medium develop a tight barrier to radial oxygen loss (ROL), whereas aerated roots do not. This study investigated whether the induction of a barrier to ROL affects water and solute permeabilities. Growth in stagnant medium markedly reduced the root growth rate relative to aerated conditions. Histochemical studies revealed an early deposition of Casparian bands (CBs) and suberin lamellae (SL) in both the endodermis (EN) and exodermis, and accelerated lignification of stagnant roots. The absolute amounts of suberin, lignin and esterified aromatics (coumaric and ferulic acid) in these barriers were significantly higher in stagnant roots. However, correlative permeability studies revealed that early deposition of barriers in stagnant roots failed to reduce hydraulic conductivity (Lp(r) ) below those of aerated roots. In contrast to Lp(r) , the NaCl permeability (P(sr) ) of stagnant roots was markedly lower than that of aerated roots, as indicated by an increased reflection coefficient (σ(sr) ). In stagnant roots, P(sr) decreased by 60%, while σ(sr) increased by 55%. The stagnant medium differentially affected the Lp(r) and P(sr) of roots, which can be explained in terms of the physical properties of the molecules used and the size of the pores in the apoplast.
Collapse
Affiliation(s)
- Kosala Ranathunge
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | | | | | | |
Collapse
|
35
|
Krishnamurthy P, Ranathunge K, Nayak S, Schreiber L, Mathew MK. Root apoplastic barriers block Na+ transport to shoots in rice (Oryza sativa L.). JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4215-28. [PMID: 21558150 PMCID: PMC3153681 DOI: 10.1093/jxb/err135] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 03/26/2011] [Accepted: 04/04/2011] [Indexed: 05/18/2023]
Abstract
Rice is an important crop that is very sensitive to salinity. However, some varieties differ greatly in this feature, making investigations of salinity tolerance mechanisms possible. The cultivar Pokkali is salinity tolerant and is known to have more extensive hydrophobic barriers in its roots than does IR20, a more sensitive cultivar. These barriers located in the root endodermis and exodermis prevent the direct entry of external fluid into the stele. However, it is known that in the case of rice, these barriers are bypassed by most of the Na(+) that enters the shoot. Exposing plants to a moderate stress of 100 mM NaCl resulted in deposition of additional hydrophobic aliphatic suberin in both cultivars. The present study demonstrated that Pokkali roots have a lower permeability to water (measured using a pressure chamber) than those of IR20. Conditioning plants with 100 mM NaCl effectively reduced Na(+) accumulation in the shoot and improved survival of the plants when they were subsequently subjected to a lethal stress of 200 mM NaCl. The Na(+) accumulated during the conditioning period was rapidly released when the plants were returned to the control medium. It has been suggested that the location of the bypass flow is around young lateral roots, the early development of which disrupts the continuity of the endodermal and exodermal Casparian bands. However, in the present study, the observed increase in lateral root densities during stress in both cultivars did not correlate with bypass flow. Overall the data suggest that in rice roots Na(+) bypass flow is reduced by the deposition of apoplastic barriers, leading to improved plant survival under salt stress.
Collapse
Affiliation(s)
| | - Kosala Ranathunge
- Institute of Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Shraddha Nayak
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India
| | - Lukas Schreiber
- Institute of Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - M. K. Mathew
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Zhou Q, Wang L, Cai X, Wang D, Hua X, Qu L, Lin J, Chen T. Net sodium fluxes change significantly at anatomically distinct root zones of rice (Oryza sativa L.) seedlings. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1249-55. [PMID: 21353327 DOI: 10.1016/j.jplph.2011.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 01/19/2011] [Accepted: 01/19/2011] [Indexed: 05/24/2023]
Abstract
Casparian bands of endodermis and exodermis play crucial roles in blocking apoplastic movement of ions and water into the stele of roots through the cortex. These apoplastic barriers differ considerably in structure and function along the developing root. The present study assessed net Na+ fluxes in anatomically distinct root zones of rice seedlings and analyzed parts of individual roots showing different Na+ uptake. The results indicated that anatomically distinct root zones contributed differently to the overall uptake of Na+. The average Na+ uptake in root zones in which Casparian bands of the endo- and exo-dermis were interrupted by initiating lateral root primordia (root zone III) was significantly greater than that at the root apex, where Casparian bands were not yet formed (root zone I), or in the region where endo- and exo-dermis with Casparian bands were well developed (root zone II). The measurement of net Na+ fluxes using a non-invasive scanning ion-selective electrode technique (SIET) demonstrated that net Na+ flux varied significantly in different positions along developing rice roots, and a net Na+ influx was obvious at the base of young lateral root primordia. Since sodium fluxes changed significantly along developing roots of rice seedlings, we suggest that the significantly distinct net Na+ flux profile may be attributed to different apoplastic permeability due to lateral root primordia development for non-selective apoplastic bypass of ions along the apoplast.
Collapse
Affiliation(s)
- Qingyuan Zhou
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijng 100093, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Sakurai-Ishikawa J, Murai-Hatano M, Hayashi H, Ahamed A, Fukushi K, Matsumoto T, Kitagawa Y. Transpiration from shoots triggers diurnal changes in root aquaporin expression. PLANT, CELL & ENVIRONMENT 2011; 34:1150-63. [PMID: 21414014 DOI: 10.1111/j.1365-3040.2011.02313.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Root hydraulic conductivity (Lp(r)) and aquaporin amounts change diurnally. Previously, these changes were considered to be spontaneously driven by a circadian rhythm. Here, we evaluated the new hypothesis that diurnal changes could be triggered and enhanced by transpirational demand from shoots. When rice plants were grown under a 12h light/12h dark regime, Lp(r) was low in the dark and high in the light period. Root aquaporin mRNA levels also changed diurnally, but the amplitudes differed among aquaporin isoforms. Aquaporins, such as OsPIP2;1, showed moderate changes, whereas root-specific aquaporins, such as OsPIP2;5, showed temporal and dramatic induction around 2h after light initiation. When darkness was extended for 12h after the usual dark period, no such induction was observed. Furthermore, plants under 100% relative humidity (RH) showed no induction even in the presence of light. These results suggest that transpirational demand triggers a dramatic increase in gene expressions such as OsPIP2;5. Immunocytochemistry showed that OsPIP2;5 accumulated on the proximal end of the endodermis and of the cell surface around xylem. The strong induction by transpirational demand and the polar localization suggest that OsPIP2;5 contributes to fine adjustment of radial water transport in roots to sustain high Lp(r) during the day.
Collapse
Affiliation(s)
- Junko Sakurai-Ishikawa
- Climate Change Research Team, National Agricultural Research Center for Tohoku Region, Morioka, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Fleck AT, Nye T, Repenning C, Stahl F, Zahn M, Schenk MK. Silicon enhances suberization and lignification in roots of rice (Oryza sativa). JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2001-11. [PMID: 21172812 PMCID: PMC3060683 DOI: 10.1093/jxb/erq392] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/10/2010] [Accepted: 11/11/2010] [Indexed: 05/18/2023]
Abstract
The beneficial element silicon (Si) may affect radial oxygen loss (ROL) of rice roots depending on suberization of the exodermis and lignification of sclerenchyma. Thus, the effect of Si nutrition on the oxidation power of rice roots, suberization and lignification was examined. In addition, Si-induced alterations of the transcript levels of 265 genes related to suberin and lignin synthesis were studied by custom-made microarray and quantitative Real Time-PCR. Without Si supply, the oxidation zone of 12 cm long adventitious roots extended along the entire root length but with Si supply the oxidation zone was restricted to 5 cm behind the root tip. This pattern coincided with enhanced suberization of the exodermis and lignification of sclerenchyma by Si supply. Suberization of the exodermis started, with and without Si supply, at 4-5 cm and 8-9 cm distance from the root tip (drt), respectively. Si significantly increased transcript abundance of 12 genes, while two genes had a reduced transcript level. A gene coding for a leucine-rich repeat protein exhibited a 25-fold higher transcript level with Si nutrition. Physiological, histochemical, and molecular-biological data showing that Si has an active impact on rice root anatomy and gene transcription is presented here.
Collapse
Affiliation(s)
- Alexander T Fleck
- Institute of Plant Nutrition, Faculty of Natural Sciences, Leibniz University Hannover, Herrenhäuser Str. 2, D-30419 Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
39
|
Ranathunge K, Schreiber L. Water and solute permeabilities of Arabidopsis roots in relation to the amount and composition of aliphatic suberin. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1961-74. [PMID: 21421706 PMCID: PMC3060681 DOI: 10.1093/jxb/erq389] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 11/05/2010] [Accepted: 11/08/2010] [Indexed: 05/18/2023]
Abstract
Although it is implied that suberized apoplastic barriers of roots negatively correlate with water and solute permeabilities, direct transport measurements across roots with altered amounts and compositions of aliphatic suberin are scarce. In the present study, hydroponically grown Arabidopsis wild types (Col8 and Col0) and different suberin mutants with altered amounts and/or compositions (horst, esb1-1, and esb1-2) were used to test this hypothesis. Detailed histochemical studies revealed late development of Casparian bands and suberin lamellae in the horst mutant compared with wild types and esb mutants. Suberin analysis with gas chromatography and mass spectrometry (GC-MS) showed that the horst mutant had ∼33% lower amounts of aliphatic monomers than Col8 and Col0. In contrast, enhanced suberin mutants (esb1-1 and esb1-2) had twice the amount of suberin as the wild types. Correlative permeability measurements, which were carried out for the first time with a root pressure probe for Arabidopsis, revealed that the hydraulic conductivity (Lp(r)) and NaCl permeability (P(sr)) of the whole root system of the horst mutant were markedly greater than in the respective wild types. This was reflected by the total amounts of aliphatic suberin determined in the roots. However, increased levels of aliphatic suberin in esb mutants failed to reduce either water or NaCl permeabilities below those of the wild types. It was concluded that the simple view and the conventional assumption that the amount of root suberin negatively correlates with permeability may not always be true. The aliphatic monomer arrangement in the suberin biopolymer and its microstructure also play a role in apoplastic barrier formation.
Collapse
Affiliation(s)
- Kosala Ranathunge
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany.
| | | |
Collapse
|
40
|
Ranathunge K, Schreiber L, Franke R. Suberin research in the genomics era--new interest for an old polymer. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:399-413. [PMID: 21421386 DOI: 10.1016/j.plantsci.2010.11.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 11/08/2010] [Accepted: 11/09/2010] [Indexed: 05/22/2023]
Abstract
Suberin is an apoplastic biopolymer with tissue-specific deposition in the cell walls of the endo- and exodermis of roots, of periderms including wound periderm and other border tissues. Suberised cell walls contain both polyaliphatic and polyaromatic domains which are supposedly cross-linked. The predominant aliphatic components are ω-hydroxyacids, α,ω-diacids, fatty acids and primary alcohols, whereas hydroxycinnamic acids, especially ferulic acid, are the main components of the polyaromatic domain. Although the monomeric composition of suberin has been known for decades, its biosynthesis and deposition has mainly been a subject of speculation. Only recently, significant progress elucidating suberin biosynthesis has been achieved using molecular genetic approaches, especially in the model species Arabidopsis. In parallel, the long-standing hypothesis that suberin functions as an apoplastic barrier has been corroborated by sophisticated, quantitative physiological studies in the past decade. These studies demonstrated that suberised cell walls could act as barriers, minimising the movement of water and nutrients, restricting pathogen invasion and impeding toxic gas diffusion. In addition, suberised cell walls provide a barrier to radial oxygen loss from roots to the anaerobic root substrate in wetland plants. The recent onset of multidisciplinary approaches combining genetic, analytical and physiological studies has begun to deliver further insights into the physiological importance of suberin depositions in plants.
Collapse
Affiliation(s)
- Kosala Ranathunge
- Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | | | | |
Collapse
|
41
|
Meyer CJ, Peterson CA, Steudle E. Permeability of Iris germanica's multiseriate exodermis to water, NaCl, and ethanol. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1911-1926. [PMID: 21131546 PMCID: PMC3060676 DOI: 10.1093/jxb/erq380] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 10/12/2010] [Accepted: 11/02/2010] [Indexed: 05/28/2023]
Abstract
The exodermis of Iris germanica roots is multiseriate. Its outermost layer matures first with typical Casparian bands and suberin lamellae. But as subsequent layers mature, the Casparian band extends into the tangential and anticlinal walls of their cells. Compared with roots in which the endodermis represents the major transport barrier, the multiseriate exodermis (MEX) was expected to reduce markedly radial water and solute transport. To test this idea, precocious maturation of the exodermis was induced with a humid air gap inside a hydroponic chamber. Hydraulic conductivity (Lp(pc)) was measured on completely submerged roots (with an immature exodermis) and on air-gap-exposed root regions (with two mature exodermal layers) using a pressure chamber. Compared with regions of roots with no mature exodermal layers, the mature MEX reduced Lp(pc) from 8.5×10(-8) to 3.9×10(-8) m s(-1) MPa(-1). Puncturing the MEX increased Lp(pc) to 19×10(-8) m s(-1) MPa(-1), indicating that this layer constituted a substantial hydraulic resistance within the root (75% of the total). Alternatively, a root pressure probe was used to produce pressure transients from which hydraulic conductivity was determined, but this device measured mainly flow through the endodermis in these wide-diameter roots. The permeability of roots to NaCl and ethanol was also reduced in the presence of two mature MEX layers. The data are discussed in terms of the validity of current root models and in terms of a potential role for I. germanica MEX during conditions of drought and salt stress.
Collapse
Affiliation(s)
- Chris J Meyer
- Department of Biology, University of Waterloo, 200 University Avenue W, Waterloo, Ontario, Canada N2L 3G1
| | | | | |
Collapse
|
42
|
Cai X, Chen T, Zhou Q, Xu L, Qu L, Hua X, Lin J. Development of Casparian strip in rice cultivars. PLANT SIGNALING & BEHAVIOR 2011; 6:59-65. [PMID: 21248477 PMCID: PMC3122007 DOI: 10.4161/psb.6.1.13545] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Accepted: 09/07/2010] [Indexed: 05/18/2023]
Abstract
The development of Casparian strips (CSs) on the endo- and exodermis and their chemical components in roots of three cultivars of rice (Oryza sativa) with different salt tolerance were compared using histochemistry and Fourier transform infrared (FTIR) spectroscopy. The development and deposition of suberin lamellae of CSs on the endo- and exodermis in the salt-tolerant cultivar Liaohan 109 was earlier than in the moderately tolerant cultivar Tianfeng 202 and the sensitive cultivar Nipponbare. The detection of chemical components indicated major contributions to the structure of the outer part from aliphatic suberin, lignin, and cell wall proteins and carbohydrates to the rhizodermis, exodermis, sclerenchyma, and one layer of cortical cells in series (OPR) and the endodermal Casparian strip. Moreover, the amounts of these major chemical components in the outer part of the Liaohan 109 root were higher than in Tianfeng 202 and Nipponbare, but there was no distinct difference in endodermal CSs among the three rice cultivars. The results suggest that the exodermis of the salt-tolerant cultivar Liaohan 109 functions as a barrier for resisting salt stress.
Collapse
Affiliation(s)
- Xia Cai
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Faiyue B, Vijayalakshmi C, Nawaz S, Nagato Y, Taketa S, Ichii M, Al-Azzawi MJ, Flowers TJ. Studies on sodium bypass flow in lateral rootless mutants lrt1 and lrt2, and crown rootless mutant crl1 of rice (Oryza sativa L.). PLANT, CELL & ENVIRONMENT 2010; 33:687-701. [PMID: 19930131 DOI: 10.1111/j.1365-3040.2009.02077.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
An apoplastic pathway, the so-called bypass flow, is important for Na+ uptake in rice (Oryza sativa L.) under saline conditions; however, the precise site of entry is not yet known. We report the results of our test of the hypothesis that bypass flow of Na+ in rice occurs at the site where lateral roots emerge from the main roots. We investigated Na+ uptake and bypass flow in lateral rootless mutants (lrt1, lrt2), a crown rootless mutant (crl1), their wild types (Oochikara, Nipponbare and Taichung 65, respectively) and in seedlings of rice cv. IR36. The results showed that shoot Na+ concentration in lrt1, lrt2 and crl1 was lower (by 20-23%) than that of their wild types. In contrast, the bypass flow quantified using trisodium-8-hydroxy-1,3,6-pyrenetrisulphonic acid (PTS) was significantly increased in the mutants, from an average of 1.1% in the wild types to 3.2% in the mutants. Similarly, bypass flow in shoots of IR36 where the number of lateral and crown roots had been reduced through physical and hormonal manipulations was dramatically increased (from 5.6 to 12.5%) as compared to the controls. The results suggest that the path of bypass flow in rice is not at the sites of lateral root emergence.
Collapse
Affiliation(s)
- Bualuang Faiyue
- Department of Biology and Environmental Science, School of Life Sciences, University of Sussex, Brighton BN19QG, UK.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Joshi R, Shukla A, Mani SC, Kumar P. Hypoxia induced non-apoptotic cellular changes during aerenchyma formation in rice (Oryza sativa L.) roots. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2010; 16:99-106. [PMID: 23572959 PMCID: PMC3550622 DOI: 10.1007/s12298-010-0012-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The stress of low oxygen concentrations in a waterlogged environment is minimized in some plants that produce aerenchyma, a tissue characterized by prominent intercellular spaces. It is produced by the predictable collapse of root cortex cells, indicating a programmed cell death (PCD) and facilitates gas diffusion between root and the aerial environment. The objective of this study was to characterize the cellular changes take place during aerenchyma formation in root of rice that accompany PCD. Scanning electron microscopy and transmission electron microscopy were used for cellular analysis of roots. Aerenchyma development was observed in both aerobic and flooded conditions. Structural changes in membranes and organelles were examined during development of root cortex cells to compare with previous examples of PCD. There was an initial collapse which started at a specific position in the mid cortex, indicating loss of turgor, and the cytoplasm became more electron dense. These cells were distinct in shape from those located towards the periphery. Mitochondria and endoplasmic reticulum appeared normal at this early stage though the tonoplast lost its integrity. Subsequently it underwent further degeneration while the plasmalemma retracted from the cell wall followed by death of neighboring cells followed a radial path. However, pycnosis of the nucleus, blebbing of plasma membrane and production of apoptotic bodies were not found which in turn indicated nonapoptotic PCD during aerenchyma formation in rice.
Collapse
Affiliation(s)
- Rohit Joshi
- />Department of Plant Physiology, G.B.P.U.A&T., Pantnagar, U.S. Nagar, Uttarakhand, 263 145 India
| | - Alok Shukla
- />Department of Plant Physiology, G.B.P.U.A&T., Pantnagar, U.S. Nagar, Uttarakhand, 263 145 India
| | - S. C. Mani
- />Department of Plant Breeding and Genetics, G.B.P.U.A&T., Pantnagar, U.S. Nagar, Uttarakhand, 263 145 India
| | - Pramod Kumar
- />Division of Plant Physiology, Indian Agriculture Research Institute, New Delhi, 110 012 India
| |
Collapse
|
45
|
Gutjahr C, Casieri L, Paszkowski U. Glomus intraradices induces changes in root system architecture of rice independently of common symbiosis signaling. THE NEW PHYTOLOGIST 2009; 182:829-837. [PMID: 19383099 DOI: 10.1111/j.1469-8137.2009.02839.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Arbuscular mycorrhizal fungi colonize the roots of most monocotyledons and dicotyledons despite their different root architecture and cell patterning. Among the cereal hosts of arbuscular mycorrhizal fungi, Oryza sativa (rice) possesses a peculiar root system composed of three different types of roots: crown roots; large lateral roots; and fine lateral roots. Characteristic is the constitutive formation of aerenchyma in crown roots and large lateral roots and the absence of cortex from fine lateral roots. Here, we assessed the distribution of colonization by Glomus intraradices within this root system and determined its effect on root system architecture. Large lateral roots are preferentially colonized, and fine lateral roots are immune to arbuscular mycorrhizal colonization. Fungal preference for large lateral roots also occurred in sym mutants that block colonization of the root beyond rhizodermal penetration. Initiation of large lateral roots is significantly induced by G. intraradices colonization and does not require a functional common symbiosis signaling pathway from which some components are known to be needed for symbiosis-mediated lateral root induction in Medicago truncatula. Our results suggest variation of symbiotic properties among the different rice root-types and induction of the preferred tissue by arbuscular mycorrhizal fungi. Furthermore, signaling for arbuscular mycorrhizal-elicited alterations of the root system differs between rice and M. truncatula.
Collapse
Affiliation(s)
| | | | - Uta Paszkowski
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| |
Collapse
|
46
|
Meyer CJ, Seago JL, Peterson CA. Environmental effects on the maturation of the endodermis and multiseriate exodermis of Iris germanica roots. ANNALS OF BOTANY 2009; 103:687-702. [PMID: 19151041 PMCID: PMC2707867 DOI: 10.1093/aob/mcn255] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 10/28/2008] [Accepted: 11/17/2008] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS Most studies of exodermal structure and function have involved species with a uniseriate exodermis. To extend this work, the development and apoplastic permeability of Iris germanica roots with a multiseriate exodermis (MEX) were investigated. The effects of different growth conditions on MEX maturation were also tested. In addition, the exodermises of eight Iris species were observed to determine if their mature anatomy correlated with habitat. METHODS Plants were grown in soil, hydroponics (with and without a humid air gap) or aeroponics. Roots were sectioned and stained with various dyes to detect MEX development from the root apical meristem, Casparian bands, suberin lamellae and tertiary wall thickenings. Apoplastic permeability was tested using dye (berberine) and ionic (ferric) tracers. KEY RESULTS The root apical meristem was open and MEX development non-uniform. In soil-grown roots, the exodermis started maturing (i.e. Casparian bands and suberin lamellae were deposited) 10 mm from the tip, and two layers had matured by 70 mm. In both hydro- and aeroponically grown roots, exodermal maturation was delayed. However, in areas of roots exposed to an air gap in the hydroponic system, MEX maturation was accelerated. In contrast, maturation of the endodermis was not influenced by the growth conditions. The mature MEX had an atypical Casparian band that was continuous around the root circumference. The MEX prevented the influx and efflux of berberine, but had variable resistance to ferric ions due to their toxic effects. Iris species living in well-drained soils developed a MEX, but species in water-saturated substrates had a uniseriate exodermis and aerenchyma. CONCLUSIONS MEX maturation was influenced by the roots' growth medium. The MEX matures very close to the root tip in soil, but much further from the tip in hydro- and aeroponic culture. The air gap accelerated maturation of the second exodermal layer. In Iris, the type of exodermis was correlated with natural habitat suggesting that a MEX may be advantageous for drought tolerance.
Collapse
Affiliation(s)
- Chris J. Meyer
- Department of Biology, University of Waterloo, 200 University Avenue W, Waterloo, Ontario, N2L 3G1, Canada
| | - James L. Seago
- Department of Biological Sciences, State University of New York, Oswego, NY 13126, USA
| | - Carol A. Peterson
- Department of Biology, University of Waterloo, 200 University Avenue W, Waterloo, Ontario, N2L 3G1, Canada
- For correspondence. E-mail
| |
Collapse
|
47
|
Kotula L, Ranathunge K, Schreiber L, Steudle E. Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice (Oryza sativa L.) grown in aerated or deoxygenated solution. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2155-67. [PMID: 19443620 DOI: 10.1093/jxb/erp089] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Radial oxygen loss (ROL) and root porosity of rice (Oryza sativa L.) plants grown in either aerated or deoxygenated (stagnant) conditions were combined for the first time with extensive histochemical and biochemical studies of the apoplastic barriers in the roots' peripheral cell layers. Growth in stagnant solution significantly affected structural and, consequently, the physiological features of rice roots. It increased adventitious root porosity by about 20% and decreased the ROL towards the base to zero at a distance of 40 mm from the apex. By contrast, roots of plants grown in aerated solutions revealed the highest rates of ROL at 30 mm from the apex. Differences in the ROL pattern along the root were related to histochemical studies, which showed an early development of Casparian bands and suberin lamellae in the exodermis, and lignified sclerenchyma cells in roots of plants grown in deoxygenated solution. In agreement with anatomical studies, absolute contents of suberin and lignin in the outer part of the roots (OPR) were higher in plants grown in deoxygenated solution. Regardless of growth conditions, the levels of suberin and lignin increased along the roots towards the base. It is concluded that radial oxygen loss can be effectively restricted by the formation of a suberized exodermis and/or lignified sclerenchyma in the OPR. However, the relative contribution of suberin and lignin in the formation of a tight barrier is unclear. Knowing the permeability coefficient across OPR for roots of plants grown in both conditions will allow a more precise understanding of the mechanisms controlling ROL.
Collapse
Affiliation(s)
- Lukasz Kotula
- Department of Plant Ecology, University of Bayreuth, Germany
| | | | | | | |
Collapse
|
48
|
Kotula L, Steudle E. Measurements of oxygen permeability coefficients of rice (Oryza sativa L.) roots using a new perfusion technique. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:567-80. [PMID: 19088333 PMCID: PMC2651460 DOI: 10.1093/jxb/ern300] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A new approach is described to analyse the barrier properties of the outer part of rice (Oryza sativa L.) roots towards oxygen. By using a root-sleeving O(2) electrode, radial oxygen loss at different distances from the root apex was measured and related to the corresponding root structure. In addition, internal oxygen concentrations were precisely adjusted using a newly developed perfusion technique. Thus, the oxygen permeability coefficient of the outer part of the root (OPR) could be calculated, since both (i) the oxygen flow across the OPR and (ii) the oxygen concentration gradient across the OPR from inside to outside were known. On the basis of the permeability coefficient, it can be decided whether or not different rates of oxygen loss across the OPR are due to changes in the OPR structure and/or to changes in the concentration gradient. The technique was applied to rice root segments, which enabled rapid perfusion of aerenchyma. In the present study, roots of rice grown under aerobic conditions were used which should have a higher O(2) permeability compared with that of plants grown in deoxygenated solution. Both radial oxygen losses and permeability coefficients decreased along the root, reaching the lowest values at the basal positions. Values of oxygen permeability coefficients of the OPR were corrected for external unstirred layers. They decreased from (2.8+/-0.2)x10(-6) m s(-1) at 30 mm to (1.1+/-0.2)x10(-6) m s(-1) at 60 mm from the apex (n=5; +/-SE). They were similar to those measured previously for cuticles. Low diffusional oxygen permeability of the OPR suggested that the barrier to radial oxygen loss was effective. This may help to retain oxygen within the root and enhance diffusion of oxygen towards the apex in the presence of a relatively high water permeability. The results are discussed in terms of the inter-relationship between the water and oxygen permeabilities as roots develop in either aerated or deoxygenated (stagnant) media.
Collapse
|
49
|
Malik AI, English JP, Colmer TD. Tolerance of Hordeum marinum accessions to O2 deficiency, salinity and these stresses combined. ANNALS OF BOTANY 2009; 103:237-48. [PMID: 18701600 PMCID: PMC2707305 DOI: 10.1093/aob/mcn142] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 05/27/2008] [Accepted: 06/17/2008] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS When root-zone O(2) deficiency occurs together with salinity, regulation of shoot ion concentrations is compromised even more than under salinity alone. Tolerance was evaluated amongst 34 accessions of Hordeum marinum, a wild species in the Triticeae, to combined salinity and root-zone O(2) deficiency. Interest in H. marinum arises from the potential to use it as a donor for abiotic stress tolerance into wheat. METHODS Two batches of 17 H. marinum accessions, from (1) the Nordic Gene Bank and (2) the wheat belt of Western Australia, were exposed to 0.2 or 200 mol m(-3) NaCl in aerated or stagnant nutrient solution for 28-29 d. Wheat (Triticum aestivum) was included as a sensitive check species. Growth, root porosity, root radial O(2) loss (ROL) and leaf ion (Na(+), K(+), Cl(-)) concentrations were determined. KEY RESULTS Owing to space constraints, this report is focused mainly on the accessions from the Nordic Gene Bank. The 17 accessions varied in tolerance; relative growth rate was reduced by 2-38 % in stagnant solution, by 8-42 % in saline solution (aerated) and by 39-71 % in stagnant plus saline treatment. When in stagnant solution, porosity of adventitious roots was 24-33 %; salinity decreased the root porosity in some accessions, but had no effect in others. Roots grown in stagnant solution formed a barrier to ROL, but variation existed amongst accessions in apparent barrier 'strength'. Leaf Na(+) concentration was 142-692 micromol g(-1) d. wt for plants in saline solution (aerated), and only increased to 247-748 micromol g(-1) d. wt in the stagnant plus saline treatment. Leaf Cl(-) also showed only small effects of stagnant plus saline treatment, compared with saline alone. In comparison with H. marinum, wheat was more adversely affected by each stress alone, and particularly when combined; growth reductions were greater, adventitious root porosity was 21 %, it lacked a barrier to ROL, leaf K(+) declined to lower levels, and leaf Na(+) and Cl(-) concentrations were 3.1-9-fold and 2.8-6-fold higher, respectively, in wheat. CONCLUSIONS Stagnant treatment plus salinity reduced growth more than salinity alone, or stagnant alone, but some accessions of H. marinum were still relatively tolerant of these combined stresses, maintaining Na(+) and Cl(-) 'exclusion' even in an O(2)-deficient, saline rooting medium.
Collapse
Affiliation(s)
- Al Imran Malik
- School of Plant Biology (M084)
- Future Farm Industries CRC, Faculty of Natural and Agricultural Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Jeremy Parker English
- School of Plant Biology (M084)
- Future Farm Industries CRC, Faculty of Natural and Agricultural Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Timothy David Colmer
- School of Plant Biology (M084)
- Future Farm Industries CRC, Faculty of Natural and Agricultural Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
50
|
Murai-Hatano M, Kuwagata T, Sakurai J, Nonami H, Ahamed A, Nagasuga K, Matsunami T, Fukushi K, Maeshima M, Okada M. Effect of low root temperature on hydraulic conductivity of rice plants and the possible role of aquaporins. PLANT & CELL PHYSIOLOGY 2008; 49:1294-1305. [PMID: 18676378 DOI: 10.1093/pcp/pcn104] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The role of root temperature T(R) in regulating the water-uptake capability of rice roots and the possible relationship with aquaporins were investigated. The root hydraulic conductivity Lp(r) decreased with decreasing T(R) in a measured temperature range between 10 degrees C and 35 degrees C. A single break point (T(RC) = 15 degrees C) was detected in the Arrhenius plot for steady-state Lp(r). The temperature dependency of Lp(r) represented by activation energy was low (28 kJ mol(-1)) above T(RC), but the value is slightly higher than that for the water viscosity. Addition of an aquaporin inhibitor, HgCl(2), into root medium reduced osmotic exudation by 97% at 25 degrees C, signifying that aquaporins play a major role in regulating water uptake. Below T(RC), Lp(r) declined precipitously with decreasing T(R) (E(a) = 204 kJ mol(-1)). When T(R) is higher than T(RC), the transient time for reaching the steady-state of Lp(r) after the immediate change in T(R) (from 25 degrees C) was estimated as 10 min, while it was prolonged up to 2-3 h when T(R) < T(RC). The Lp(r) was completely recovered to the initial levels when T(R) was returned back to 25 degrees C. Immunoblot analysis using specific antibodies for the major aquaporin members of PIPs and TIPs in rice roots revealed that there were no significant changes in the abundance of aquaporins during 5 h of low temperature treatment. Considering this result and the significant inhibition of water-uptake by the aquaporin inhibitor, we hypothesize that the decrease in Lp(r) when T(R) < T(RC) was regulated by the activity of aquaporins rather than their abundance.
Collapse
Affiliation(s)
- Mari Murai-Hatano
- National Agricultural Research Center for Tohoku Region, Climate Change Research Team, Morioka, 020-0198 Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|