1
|
Gou C, Li J, Chen B, Cheng G, Zheng Z, Peng H, El-Sappah AH. Genome wide identification of Dof transcription factors in Carmine radish reveals RsDof33 role in cadmium stress and anthocyanin biosynthesis. Sci Rep 2025; 15:4766. [PMID: 39922841 PMCID: PMC11807106 DOI: 10.1038/s41598-025-88308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/28/2025] [Indexed: 02/10/2025] Open
Abstract
Carmine radish (Raphanus sativus L.) is cultivated in Fuling, Chongqing, for its red color. Dof-TFs are critical in regulating plant growth, development, stress responses, and signal transduction.This work comprehensively examined the structure, evolution, and expression of the carmine radish Dof gene and its behavior under cadmium (Cd) stress. The radish genome has 59 RsDofs, which are divided into nine clusters (A: 8, B1: 10, B2: 10, C1: 3, C2.1: 5, C2.2: 4, C3: 11, D1: 4, and D2: 4). Phylogenetic tree analysis revealed significant Dof gene family resemblance between Arabidopsis thaliana and Brassica napus. Perhaps segment duplication resulted in RsDof gene family expansion. Cd stress-induced RsDof expression patterns were studied using an RNA-seq atlas and qRT-PCR. The majority of RsDofs were tissue-specific and Cd-sensitive. The involvement of RsDof genes in Cd stress response and anthocyanin synthesis was verified using qRT-PCR. RsDof33 is involved in Cd stress response and anthocyanin synthesis. A. thaliana overexpressed the recombinant fusion protein RsDof33-GFP, which was localized to the nucleus, resulting in fewer rosette leaves, delayed flowering, and higher anthocyanin concentration. RsDof33-expressing plants had significantly higher transcript levels of the auxin biosynthetic genes YUCCA (AtYUC2), auxin efflux carrier (AtPIN4), and AtKNAT2, which are involved in leaf shape development, as well as AtPAL, AtCHS, AtCHI, AtDFR, AtLDOX, and AtUF3GT. These findings indicate that RsDofs are critical to plant development and stress responses.
Collapse
Affiliation(s)
- Caiming Gou
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, Sichuan, China.
| | - Jia Li
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, Sichuan, China
| | - Bo Chen
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, Sichuan, China
| | - Guoting Cheng
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants On the Loess Plateau, College of Life Sciences, 'Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Zhangfei Zheng
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350000, Fujian, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, Haidian, China
| | - Hua Peng
- Research Center for Tourism Agriculture Development, Sichuan Tourism College, Chengdu, 610100, Sichuan, China
| | - Ahmed H El-Sappah
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, Sichuan, China.
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| |
Collapse
|
2
|
Ma Y, Zhang Y, Xu J, Qi J, Liu X, Guo L, Zhang H. Research on the Mechanisms of Phytohormone Signaling in Regulating Root Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:3051. [PMID: 39519969 PMCID: PMC11548626 DOI: 10.3390/plants13213051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
Phytohormones are organic compounds produced in trace amounts within plants that regulate their physiological processes. Their physiological effects are highly complex and diverse. They influence processes ranging from cell division, elongation, and differentiation to plant germination and rooting. Therefore, phytohormones play a crucial regulatory role in plant growth and development. Recently, various studies have highlighted the role of PHs, such as auxin, cytokinin (CK), and abscisic acid (ABA), and newer classes of PHs, such as brassinosteroid (BR) and peptide hormone, in the plant responses toward environmental stresses. These hormones not only have distinct roles at different stages of plant growth but also interact to promote or inhibit each other, thus effectively regulating plant development. Roots are the primary organs for water and mineral absorption in plants. During seed germination, the radicle breaks through the seed coat and grows downward to form the primary root. This occurs because the root needs to quickly penetrate the soil to absorb water and nutrients, providing essential support for the plant's subsequent growth. Root development is a highly complex and precisely regulated process influenced by various signals. Changes in root architecture can affect the plant's ability to absorb nutrients and water, which in turn impacts crop yield. Thus, studying the regulation of root development is of great significance. Numerous studies have reported on the role of phytohormones, particularly auxins, in root regulation. This paper reviews recent studies on the regulation of root development by various phytohormones, both individually and in combination, providing a reference for researchers in this field and offering perspectives on future research directions for improving crop yields.
Collapse
Affiliation(s)
- Yuru Ma
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.M.); (J.X.); (J.Q.); (X.L.); (L.G.)
| | - Ying Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China;
| | - Jiahui Xu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.M.); (J.X.); (J.Q.); (X.L.); (L.G.)
| | - Jiahong Qi
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.M.); (J.X.); (J.Q.); (X.L.); (L.G.)
| | - Xigang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.M.); (J.X.); (J.Q.); (X.L.); (L.G.)
| | - Lin Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.M.); (J.X.); (J.Q.); (X.L.); (L.G.)
| | - Hao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.M.); (J.X.); (J.Q.); (X.L.); (L.G.)
| |
Collapse
|
3
|
Du K, Zhao W, Lv Z, Liu L, Ali S, Chen B, Hu W, Zhou Z, Wang Y. Auxin and abscisic acid play important roles in promoting glucose metabolism of reactivated young kernels of maize (Zea mays L.). PHYSIOLOGIA PLANTARUM 2023; 175:e14019. [PMID: 37882255 DOI: 10.1111/ppl.14019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 10/27/2023]
Abstract
In maize, young kernels that are less competitive and have poor sink activity often abort. Studies have indicated that such poor competitiveness depends, in part, on the regulation by auxin (IAA) and abscisic acid (ABA). However, the mechanisms for such effects remain unclear. We used pollination-blocking and hand-pollination treatments accompanied by multi-omics and physiological tests, to identify underlying mechanism by which IAA and ABA, along with sugar signaling affect kernel development. Results showed that preventing pollination of the primary ears reactivated kernels in the secondary ears and altered both sugar metabolism and hormone signaling pathways. This was accompanied by increased enzyme activities in carbon metabolism and concentrations of glucose and starch, as well as increased levels of IAA and decreased levels of ABA in the reactivated kernels. Positive and negative correlations were observed between IAA, ABA contents and cell wall invertase (CWIN) activity, and glucose contents, respectively. In vitro culture revealed that the expression of genes involved in glucose utilization was upregulated by IAA, but downregulated by ABA. IAA could promote the expression of ABA signaling genes ZmPP2C9 and ZmPP2C13 but downregulated the expression of Zmnced5, an ABA biosynthesis gene, and ZmSnRK2.10, which is involved in ABA signal transduction. However, these genes showed opposite trends when IAA transport was inhibited. To summarize, we suggest a regulatory model for how IAA inhibits ABA metabolism by promoting the smooth utilization of glucose in reactivated young kernels. Our findings highlight the importance of IAA in ABA signaling by regulating glucose production and transport in maize.
Collapse
Affiliation(s)
- Kang Du
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Wenqing Zhao
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Nanjing Agricultural University, Nanjing, China
| | - Zhiwei Lv
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Lin Liu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Saif Ali
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Binglin Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Nanjing Agricultural University, Nanjing, China
| | - Wei Hu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Nanjing Agricultural University, Nanjing, China
| | - Zhiguo Zhou
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Nanjing Agricultural University, Nanjing, China
| | - Youhua Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Kumar S, Shah SH, Vimala Y, Jatav HS, Ahmad P, Chen Y, Siddique KHM. Abscisic acid: Metabolism, transport, crosstalk with other plant growth regulators, and its role in heavy metal stress mitigation. FRONTIERS IN PLANT SCIENCE 2022; 13:972856. [PMID: 36186053 PMCID: PMC9515544 DOI: 10.3389/fpls.2022.972856] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/17/2022] [Indexed: 05/06/2023]
Abstract
Heavy metal (HM) stress is threatening agricultural crops, ecological systems, and human health worldwide. HM toxicity adversely affects plant growth, physiological processes, and crop productivity by disturbing cellular ionic balance, metabolic balance, cell membrane integrity, and protein and enzyme activities. Plants under HM stress intrinsically develop mechanisms to counter the adversities of HM but not prevent them. However, the exogenous application of abscisic acid (ABA) is a strategy for boosting the tolerance capacity of plants against HM toxicity by improving osmolyte accumulation and antioxidant machinery. ABA is an essential plant growth regulator that modulates various plant growth and metabolic processes, including seed development and germination, vegetative growth, stomatal regulation, flowering, and leaf senescence under diverse environmental conditions. This review summarizes ABA biosynthesis, signaling, transport, and catabolism in plant tissues and the adverse effects of HM stress on crop plants. Moreover, we describe the role of ABA in mitigating HM stress and elucidating the interplay of ABA with other plant growth regulators.
Collapse
Affiliation(s)
- Sandeep Kumar
- Plant Physiology and Tissue Culture Laboratory, Department of Botany, Chaudhary Charan Singh University, Meerut, India
| | - Sajad Hussain Shah
- Plant Physiology and Tissue Culture Laboratory, Department of Botany, Chaudhary Charan Singh University, Meerut, India
| | - Yerramilli Vimala
- Plant Physiology and Tissue Culture Laboratory, Department of Botany, Chaudhary Charan Singh University, Meerut, India
| | - Hanuman Singh Jatav
- Soil Science and Agricultural Chemistry, Sri Karan Narendra Agriculture University Jobner, Jaipur, India
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, Jammu and Kashmir, India
| | - Yinglong Chen
- The UWA Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
5
|
Huang X, Qin B, Xia S, Su Y, Ku W, Chen R, Peng K. A comparative study on the effects of strong light stress on the photosynthetic characteristics of the shade plant Camellia petelotii (Merr.) Sealy. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Márquez-López RE, Loyola-Vargas VM, Santiago-García PA. Interaction between fructan metabolism and plant growth regulators. PLANTA 2022; 255:49. [PMID: 35084581 DOI: 10.1007/s00425-022-03826-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
The relationship of fructan to plant growth regulators is clearly more complicated than it looks and is likely related to differences between fructan molecules in size and structure as well as localization. Fructans are a complex group of carbohydrates composed mainly of fructose units linked to a sucrose molecule. Fructans are present in plants as heterogeneous mixtures with diverse molecular structures and mass, different polymerization degrees, and linkage types between fructosyl residues. Like sucrose, they are frequently stored in leaves and other organs, acting as carbohydrate reserves. Fructans are synthesized in the cell vacuole by fructosyltransferase enzymes and catabolized by fructan exohydrolase enzymes. Several publications have shown that fructan metabolism varies with the stage of plant development and in response to the environment. Recent studies have shown a correlation between plant growth regulators (PGR), fructan metabolism, and tolerance to drought and cold. PGR are compounds that profoundly influence the growth and differentiation of plant cells, tissues, and organs. They play a fundamental role in regulating plant responses to developmental and environmental signals. In this review, we summarize the most up-to-date knowledge on the metabolism of fructans and their crosstalk with PGR signaling pathways. We identify areas that require more research to complete our understanding of the role of fructans in plants.
Collapse
Affiliation(s)
- Ruth E Márquez-López
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación Para el Desarrollo Integral Regional - Unidad Oaxaca, C.P. 71230, Santa Cruz Xoxocotlán, Oaxaca, Mexico
| | - Víctor M Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Patricia Araceli Santiago-García
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación Para el Desarrollo Integral Regional - Unidad Oaxaca, C.P. 71230, Santa Cruz Xoxocotlán, Oaxaca, Mexico.
| |
Collapse
|
7
|
Kirk P, Benitez-Alfonso Y. Plasmodesmata Structural Components and Their Role in Signaling and Plant Development. Methods Mol Biol 2022; 2457:3-22. [PMID: 35349130 DOI: 10.1007/978-1-0716-2132-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plasmodesmata are plant intercellular channels that mediate the transport of small and large molecules including RNAs and transcription factors (TFs) that regulate plant development. In this review, we present current research on plasmodesmata form and function and discuss the main regulatory pathways. We show the progress made in the development of approaches and tools to dissect the plasmodesmata proteome in diverse plant species and discuss future perspectives and challenges in this field of research.
Collapse
Affiliation(s)
- Philip Kirk
- Centre for Plant Science, School of Biology, University of Leeds, Leeds, UK
| | | |
Collapse
|
8
|
Whole-Genome Duplication and Purifying Selection Contributes to the Functional Redundancy of Auxin Response Factor ( ARF) Genes in Foxtail Millet ( Setaria italica L.). Int J Genomics 2021; 2021:2590665. [PMID: 34414231 PMCID: PMC8369178 DOI: 10.1155/2021/2590665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/19/2021] [Indexed: 11/20/2022] Open
Abstract
Auxin response factors (ARFs) play crucial roles in auxin-mediated response, whereas molecular genetics of ARF genes was seldom investigated in Setaria italica, an important crop and C4 model plant. In the present study, genome-wide evolutionary analysis of ARFs was performed in S. italica. Twenty-four SiARF genes were identified and unevenly distributed on eight of the nine chromosomes in S. italica. Duplication mode exploration implied that 13 SiARF proteins were originated from whole-genome duplication and suffered purifying selection. Phylogeny reconstruction of SiARFs by maximum likelihood and neighbor-joining trees revealed SiARFs could be divided into four clades. SiARFs clustered within the same clade shared similar gene structure and protein domain composition, implying functional redundancy. Moreover, amino acid composition of the middle regions was conserved in SiARFs belonged to the same clade. SiARFs were categorized into either activators or repressors according to the enrichment of specific amino acids. Intrinsic disorder was featured in the middle regions of ARF activators. Finally, expression profiles of SiARFs under hormone and abiotic stress treatment not only revealed their potential function in stress response but also indicate their functional redundancy. Overall, our results provide insights into evolutionary aspects of SiARFs and benefit for further functional characterization.
Collapse
|
9
|
Mohammadi F, Naghavi MR, Peighambari SA, Khosravi Dehaghi N, Khaldari I, Bravi E, Marconi O, Perretti G. Abscisic acid crosstalk with auxin and ethylene in biosynthesis and degradation of inulin-type fructans in chicory. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:636-642. [PMID: 33710751 DOI: 10.1111/plb.13252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
The effect of different hormones on fructan accumulation and the genes regulating biosynthesis and degradation is known; however, information on hormonal interaction mechanisms for fructan content and mean degree of polymerization (mDP) is limited. Cell suspension cultures of chicory were prepared and treated with abscisic acid (ABA), auxin (AUX), ethylene (ETH), ABA + AUX or ABA + ETH, then inulin concentration, mDP of inulin and expression of FAZY genes was determined. A low concentration of AUX and ETH increased fructan content, while a high concentration of AUX and ETH decreased it. Exogenous ABA increased mDP of inulin and this coincided with the low expression of 1-FEHII. In hormone interactions, ABA changed and adjusted the effect of both AUX and ETH. ABA, together with a low level of AUX and ETH, resulted in a decrease in inulin content and increase in mDP, which coincided with low expression of FEHII. ABA together with a high level of AUX and ETH caused an increase in inulin content with a lower mDP, which coincided with high expression of biosynthesis (1-FFT) and degradation (1-FEHII) genes. The effect of both AUX and ETH was almost the same, although the effect of ETH was more severe. ABA had a modulating role in combinations with AUX and ETH. Among biosynthesis and degradation genes, the expression of 1-FEHII was more affected by these hormones.
Collapse
Affiliation(s)
- F Mohammadi
- Division of Biotechnology, Agronomy and Plant Breeding Dept, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran
| | - M R Naghavi
- Division of Biotechnology, Agronomy and Plant Breeding Dept, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran
| | - S A Peighambari
- Division of Biotechnology, Agronomy and Plant Breeding Dept, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran
| | - N Khosravi Dehaghi
- Evidence-Based Phytotherapy & Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Pharmacognosy, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - I Khaldari
- Division of Biotechnology, Agronomy and Plant Breeding Dept, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran
| | - E Bravi
- Department of Agricultural, Food and Environmental Science, University of Perugia, Perugia, Italy
| | - O Marconi
- Department of Agricultural, Food and Environmental Science, University of Perugia, Perugia, Italy
| | - G Perretti
- Department of Agricultural, Food and Environmental Science, University of Perugia, Perugia, Italy
| |
Collapse
|
10
|
Li M, Yang Y, Raza A, Yin S, Wang H, Zhang Y, Dong J, Wang G, Zhong C, Zhang H, Liu J, Jin W. Heterologous expression of Arabidopsis thaliana rty gene in strawberry (Fragaria × ananassa Duch.) improves drought tolerance. BMC PLANT BIOLOGY 2021; 21:57. [PMID: 33478380 PMCID: PMC7818561 DOI: 10.1186/s12870-021-02839-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Strawberry (Fragaria × ananassa Duch.) is an important fruit crop worldwide. It was particularly sensitive to drought stress because of their fibrous and shallow root systems. Mutant rty of Arabidopsis thaliana ROOTY (RTY) results in increased endogenous auxin levels, more roots, and shoot growth. It is still unclear whether the rty gene improves stress tolerance in strawberry. RESULTS rty gene was isolated from Arabidopsis thaliana and placed under the control of the cauliflower mosaic virus (CaMV) 35S promoter in the pBI121-rty binary vector carrying the selectable marker of neomycin phosphotransferase II (NPT II). Seven transgenic lines were confirmed by PCR and western blot analysis. Accumulations of IAA and ABA were significantly increased in the transgenic plants. The endogenous IAA contents were 46.5 ng g- 1 and 66.0 ng g- 1in control and transgenic plants respectively. The endogenous ABA contents in the control plant were 236.3 ng g- 1 and in transgenic plants were 543.8 ng g- 1. The production of adventitious roots and trichomes were enhanced in the transgenic plants. Furthermore, transcript levels of the genes including IAA and ABA biosynthetic, and stress-responsive genes, were higher in the transgenic plants than in the control plants under drought conditions. Water use efficiency and a reduced water loss rate were enhanced in the transgenic strawberry plants. Additionally, peroxidase and catalase activities were significantly higher in the transgenic plants than in the control plants. The experiment results revealed a novel function for rty related to ABA and drought responses. CONCLUSIONS The rty gene improved hormone-mediated drought tolerance in transgenic strawberry. The heterologous expression of rty in strawberry improved drought tolerance by promoting auxin and ABA accumulation. These phytohormones together brought about various physiological changes that improved drought tolerance via increased root production, trichome density, and stomatal closure. Our results suggested that a transgenic approach can be used to overcome the inherent trade-off between plant growth and drought tolerance by enhancing water use efficiency and reducing water loss rate under water shortage conditions.
Collapse
Affiliation(s)
- Maofu Li
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100093, P. R. China
| | - Yuan Yang
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100093, P. R. China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, 100093, P. R. China
| | - Ali Raza
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, P. R. China
| | - Shanshan Yin
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100093, P. R. China
| | - Hua Wang
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100093, P. R. China
| | - Yuntao Zhang
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100093, P. R. China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, 100093, P. R. China
| | - Jing Dong
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100093, P. R. China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, 100093, P. R. China
| | - Guixia Wang
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100093, P. R. China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, 100093, P. R. China
| | - Chuanfei Zhong
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100093, P. R. China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, 100093, P. R. China
| | - Hong Zhang
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100093, P. R. China
| | - Jiashen Liu
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100093, P. R. China
| | - Wanmei Jin
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100093, P. R. China.
| |
Collapse
|
11
|
Xu F, Xue S, Deng L, Zhang S, Li Y, Zhao X. The piperazine compound ASP activates an auxin response in Arabidopsis thaliana. BMC Genomics 2020; 21:788. [PMID: 33176686 PMCID: PMC7659159 DOI: 10.1186/s12864-020-07203-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 10/28/2020] [Indexed: 11/10/2022] Open
Abstract
Background Auxins play key roles in the phytohormone network. Early auxin response genes in the AUX/IAA, SAUR, and GH3 families show functional redundancy, which makes it very difficult to study the functions of individual genes based on gene knockout analysis or transgenic technology. As an alternative, chemical genetics provides a powerful approach that can be used to address questions relating to plant hormones. Results By screening a small-molecule chemical library of compounds that can induce abnormal seedling and vein development, we identified and characterized a piperazine compound 1-[(4-bromophenoxy) acetyl]-4-[(4-fluorophenyl) sulfonyl] piperazine (ASP). The Arabidopsis DR5::GFP line was used to assess if the effects mentioned were correlated with the auxin response, and we accordingly verified that ASP altered the auxin-related pathway. Subsequently, we examined the regulatory roles of ASP in hypocotyl and root development, auxin distribution, and changes in gene expression. Following ASP treatment, we detected hypocotyl elongation concomitant with enhanced cell elongation. Furthermore, seedlings showed retarded primary root growth, reduced gravitropism and increased root hair development. These phenotypes were associated with an increased induction of DR5::GUS expression in the root/stem transition zone and root tips. Auxin-related mutants including tir1–1, aux1–7 and axr2–1 showed phenotypes with different root-development pattern from that of the wild type (Col-0), and were insensitive to ASP. Confocal images of propidium iodide (PI)-stained root tip cells showed no detectable damage by ASP. Furthermore, RT-qPCR analyses of two other genes, namely, Ethylene Response Factor (ERF115) and Mediator 18 (MED18), which are related to cell regeneration and damage, indicated that the ASP inhibitory effect on root growth was not attributable to toxicity. RT-qPCR analysis provided further evidence that ASP induced the expression of early auxin-response-related genes. Conclusions ASP altered the auxin response pathway and regulated Arabidopsis growth and development. These results provide a basis for dissecting specific molecular components involved in auxin-regulated developmental processes and offer new opportunities to discover novel molecular players involved in the auxin response. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07203-8.
Collapse
Affiliation(s)
- Fengyang Xu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Shuqi Xue
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Limeng Deng
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Sufen Zhang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yaxuan Li
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Xin Zhao
- College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
12
|
Liu Y, Liu N, Deng X, Liu D, Li M, Cui D, Hu Y, Yan Y. Genome-wide analysis of wheat DNA-binding with one finger (Dof) transcription factor genes: evolutionary characteristics and diverse abiotic stress responses. BMC Genomics 2020; 21:276. [PMID: 32245398 PMCID: PMC7118883 DOI: 10.1186/s12864-020-6691-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 03/24/2020] [Indexed: 12/31/2022] Open
Abstract
Background DNA binding with one finger (Dof) transcription factors play important roles in plant growth and abiotic stress responses. Although genome-wide identification and analysis of the DOF transcription factor family has been reported in other species, no relevant studies have emerged in wheat. The aim of this study was to investigate the evolutionary and functional characteristics associated with plant growth and abiotic stress responses by genome-wide analysis of the wheat Dof transcription factor gene family. Results Using the recently released wheat genome database (IWGSC RefSeq v1.0), we identified 96 wheat Dof gene family members, which were phylogenetically clustered into five distinct subfamilies. Gene duplication analysis revealed a broad and heterogeneous distribution of TaDofs on the chromosome groups 1 to 7, and obvious tandem duplication genes were present on chromosomes 2 and 3.Members of the same gene subfamily had similar exon-intron structures, while members of different subfamilies had obvious differences. Functional divergence analysis indicated that type-II functional divergence played a major role in the differentiation of the TaDof gene family. Positive selection analysis revealed that the Dof gene family experienced different degrees of positive selection pressure during the process of evolution, and five significant positive selection sites (30A, 31 T, 33A, 102G and 104S) were identified. Additionally, nine groups of coevolving amino acid sites, which may play a key role in maintaining the structural and functional stability of Dof proteins, were identified. The results from the RNA-seq data and qRT-PCR analysis revealed that TaDof genes exhibited obvious expression preference or specificity in different organs and developmental stages, as well as in diverse abiotic stress responses. Most TaDof genes were significantly upregulated by heat, PEG and heavy metal stresses. Conclusions The genome-wide analysis and identification of wheat DOF transcription factor family and the discovery of important amino acid sites are expected to provide new insights into the structure, evolution and function of the plant Dof gene family.
Collapse
Affiliation(s)
- Yue Liu
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048, Beijing, People's Republic of China
| | - Nannan Liu
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048, Beijing, People's Republic of China
| | - Xiong Deng
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048, Beijing, People's Republic of China
| | - Dongmiao Liu
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048, Beijing, People's Republic of China
| | - Mengfei Li
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048, Beijing, People's Republic of China
| | - Dada Cui
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048, Beijing, People's Republic of China
| | - Yingkao Hu
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048, Beijing, People's Republic of China.
| | - Yueming Yan
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048, Beijing, People's Republic of China. .,Hubei Collaborative Innovation Center for Grain Industry (HCICGI), Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
13
|
Mukherjee A, Mazumder M, Jana J, Srivastava AK, Mondal B, De A, Ghosh S, Saha U, Bose R, Chatterjee S, Dey N, Basu D. Enhancement of ABA Sensitivity Through Conditional Expression of the ARF10 Gene in Brassica juncea Reveals Fertile Plants with Tolerance Against Alternaria brassicicola. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1429-1447. [PMID: 31184524 DOI: 10.1094/mpmi-05-19-0132-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Concomitant increase of auxin-responsive factors ARF16 and ARF17, along with enhanced expression of ARF10 in resistant Sinapis alba compared with that in susceptible Brassica juncea upon challenge with Alternaria brassicicola, revealed that abscisic acid (ABA)-auxin crosstalk is a critical factor for resistance response. Here, we induced the ABA response through conditional expression of ARF10 in B. juncea using the A. brassicicola-inducible GH3.3 promoter. Induced ABA sensitivity caused by conditional expression of ARF10 in transgenic B. juncea resulted in tolerance against A. brassicicola and led to enhanced expression of several ABA-responsive genes without affecting the auxin biosynthetic gene expression. Compared with ABI3 and ABI4, ABI5 showed maximum upregulation in the most tolerant transgenic lines upon pathogen challenge. Moreover, elevated expression of ARF10 by different means revealed a direct correlation between ARF10 expression and the induction of ABI5 protein in B. juncea. Through in vitro DNA-protein experiments and chromosome immunoprecipitation using the ARF10 antibody, we demonstrated that ARF10 interacts with the auxin-responsive elements of the ABI5 promoter. This suggests that ARF10 may function as a modulator of ABI5 to induce ABA sensitivity and mediate the resistance response against A. brassicicola.
Collapse
Affiliation(s)
- Amrita Mukherjee
- Division of Plant Biology, Bose Institute, Centenary Campus P-1/12 C.I.T., Scheme-VIIM Kolkata, 700054, West Bengal, India
| | - Mrinmoy Mazumder
- Division of Plant Biology, Bose Institute, Centenary Campus P-1/12 C.I.T., Scheme-VIIM Kolkata, 700054, West Bengal, India
| | - Jagannath Jana
- Division of Plant Biology, Bose Institute, Centenary Campus P-1/12 C.I.T., Scheme-VIIM Kolkata, 700054, West Bengal, India
- Institut Curie, CNRS UMR 3348, Orsay, France
| | - Archana Kumari Srivastava
- Plant and Microbial biotechnology, Institute of Life Sciences (ILS), NALCO Square, Bhubaneswar, 751023, Odisha, India
| | - Banani Mondal
- Division of Plant Biology, Bose Institute, Centenary Campus P-1/12 C.I.T., Scheme-VIIM Kolkata, 700054, West Bengal, India
| | - Aishee De
- Division of Plant Biology, Bose Institute, Centenary Campus P-1/12 C.I.T., Scheme-VIIM Kolkata, 700054, West Bengal, India
| | - Swagata Ghosh
- Division of Plant Biology, Bose Institute, Centenary Campus P-1/12 C.I.T., Scheme-VIIM Kolkata, 700054, West Bengal, India
| | - Upala Saha
- Division of Plant Biology, Bose Institute, Centenary Campus P-1/12 C.I.T., Scheme-VIIM Kolkata, 700054, West Bengal, India
- Department of Botany, Sister Nivedita Government General Degree College for Girls, 20B Judge's Court Road, Hastings House, Alipore, Kolkata, 700027, West Bengal, India
| | - Rahul Bose
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Subhrangsu Chatterjee
- Division of Plant Biology, Bose Institute, Centenary Campus P-1/12 C.I.T., Scheme-VIIM Kolkata, 700054, West Bengal, India
| | - Nrisingha Dey
- Plant and Microbial biotechnology, Institute of Life Sciences (ILS), NALCO Square, Bhubaneswar, 751023, Odisha, India
| | - Debabrata Basu
- Division of Plant Biology, Bose Institute, Centenary Campus P-1/12 C.I.T., Scheme-VIIM Kolkata, 700054, West Bengal, India
| |
Collapse
|
14
|
Killiny N, Nehela Y. Abscisic acid deficiency caused by phytoene desaturase silencing is associated with dwarfing syndrome in citrus. PLANT CELL REPORTS 2019; 38:965-980. [PMID: 31055623 DOI: 10.1007/s00299-019-02418-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
In citrus, abscisic acid-deficiency was associated with a dwarfing phenotype, slow growth, small leaves, decreased fresh weight, and faster water loss. ABA supplementation reversed the dwarfing phenotype and enhanced growth. Abscisic acid (ABA) is a ubiquitously distributed phytohormone, which is almost produced by all living kingdoms. In plants, ABA plays pleiotropic physiological roles in growth, development, and stress responses. We explored the hidden relationship between ABA deficiency, and citrus dwarfing. We used targeted-HPLC, targeted-GC-MS, molecular genetics, immunoassays, and gene expression techniques to investigate the effects of the silencing of phytoene desaturase (PDS) gene on the ABA-biosynthetic pathway, endogenous ABA content, and other phytohormones. Silencing of PDS directly suppressed the carotenoids compounds involved in ABA biosynthesis, altered phytohormonal profile, and caused phytoene accumulation and ABA deficiency. The reduction of ABA presumably due to the limited availability of its precursor, zeaxanthin. The ABA-deficient citrus cuttings displayed photobleaching, a dwarf phenotype with impaired growth characteristics that included slow growth, small leaves, decreased fresh weight, and faster water loss. ABA supplementation enhanced the growth and reversed the dwarfing phenotype of the ABA-deficient cuttings. Our data demonstrate that ABA-deficiency may lead to dwarfing phenotype and impaired growth in citrus cuttings. The negative influence of ABA-deficiency on growth rate is the result of altered water relations. Addition of ABA to the CTV-tPDS roots restored shoot growth and reversed the dwarfing phenotype.
Collapse
Affiliation(s)
- Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA.
| | - Yasser Nehela
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA
| |
Collapse
|
15
|
Xu P, Cai W. Function of Brassica napus BnABI3 in Arabidopsis gs1, an Allele of AtABI3, in Seed Development and Stress Response. FRONTIERS IN PLANT SCIENCE 2019; 10:67. [PMID: 30804960 PMCID: PMC6370748 DOI: 10.3389/fpls.2019.00067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/17/2019] [Indexed: 05/30/2023]
Abstract
Abscisic acid (ABA) has been implicated in plant adaptation to various environmental stresses in addition to the regulation of seed dormancy and leaf senescence. ABI3 is a B3 domain-containing family protein and functions in the ABA signaling pathway during seed development. To date, the ABI3 orthologous have not been studied in Brassica napus. The aim of this study is to investigate the function of BnABI3 in plant development and stress response. Here, we identified an Arabidopsis line (gs1) from a population of mutagenized seeds and showed that GS1 is a new allele of AtABI3. When the Arabidopsis gs1 mutant was transformed with the BnABI3 gene, the transformed plants produced seeds that turned yellow and acquired desiccation tolerance. Moreover, BnABI3 regulates seed coat development and mucilage secretion by directly targeting the AtMUM1 and AtGATL5 genes. In addition, we showed that BnABI3 expression rescued gs1 freezing-induced green seed coloration by targeting AtSGR1/2 in transgenic Arabidopsis. BnABI3 is also involved in lateral root development and conferred a novel interaction between ABA and auxin signaling in roots. The potential role of ABI3 protein in endoplasmic reticulum homoeostasis was also tested. Altogether, our results indicated that BnABI3 mediates both plant development and the stress response.
Collapse
|
16
|
Liu N, Dong L, Deng X, Liu D, Liu Y, Li M, Hu Y, Yan Y. Genome-wide identification, molecular evolution, and expression analysis of auxin response factor (ARF) gene family in Brachypodium distachyon L. BMC PLANT BIOLOGY 2018; 18:336. [PMID: 30522432 PMCID: PMC6282295 DOI: 10.1186/s12870-018-1559-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/22/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND The auxin response factor (ARF) gene family is involved in plant development and hormone regulation. Although the ARF gene family has been studied in some plant species, its structural features, molecular evolution, and expression profiling in Brachypodium distachyon L. are still not clear. RESULTS Genome-wide analysis identified 19 ARF genes in B. distachyon. A phylogenetic tree constructed with 182 ARF genes from seven plant species revealed three different clades, and the ARF genes from within a clade exhibited structural conservation, although certain divergences occurred in different clades. The branch-site model identified some sites where positive selection may have occurred, and functional divergence analysis found more Type II divergence sites than Type I. In particular, both positive selection and functional divergence may have occurred in 241H, 243G, 244 L, 310 T, 340G and 355 T. Subcellular localization prediction and experimental verification indicated that BdARF proteins were present in the nucleus. Transcript expression analysis revealed that BdARFs were mainly expressed in the leaf and root tips, stems, and developing seeds. Some BdARF genes exhibited significantly upregulated expression under various abiotic stressors. Particularly, BdARF4 and BdARF8 were significantly upregulated in response to abiotic stress factors such as salicylic acid and heavy metals. CONCLUSION The ARF gene family in B. distachyon was highly conserved. Several important amino acid sites were identified where positive selection and functional divergence occurred, and they may play important roles in functional differentiation. BdARF genes had clear tissue and organ expression preference and were involved in abiotic stress response, suggesting their roles in plant growth and stress resistance.
Collapse
Affiliation(s)
- Nannan Liu
- College of Life Science, Capital Normal University, Beijing, 100048 China
| | - Liwei Dong
- College of Life Science, Capital Normal University, Beijing, 100048 China
| | - Xiong Deng
- College of Life Science, Capital Normal University, Beijing, 100048 China
| | - Dongmiao Liu
- College of Life Science, Capital Normal University, Beijing, 100048 China
| | - Yue Liu
- College of Life Science, Capital Normal University, Beijing, 100048 China
| | - Mengfei Li
- College of Life Science, Capital Normal University, Beijing, 100048 China
| | - Yingkao Hu
- College of Life Science, Capital Normal University, Beijing, 100048 China
| | - Yueming Yan
- College of Life Science, Capital Normal University, Beijing, 100048 China
| |
Collapse
|
17
|
Kozlova TA, Hardy BP, Levin DB. The combined influence of 24‑epibrassinolide and 3‑indoleacetic acid on growth and accumulation of pigments and fatty acids in the microalgae Scenedesmus quadricauda (CPCC-158). ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
18
|
Cao W, Luo L, Yi M, Jia Y. A theoretical study on the cross-talk of stress regulatory pathways in root cells. Biophys Chem 2018; 240:82-87. [PMID: 29945014 DOI: 10.1016/j.bpc.2018.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/15/2018] [Accepted: 06/17/2018] [Indexed: 11/29/2022]
Abstract
The plants developed more dedicated regulatory pathways than the animals did to response various environment stresses, since they could not run away. The cross-talk among the pathways generally introduce non-trivial regulatory behaviors, from which the plants may benefit. For better understanding the regulatory mechanism due to cross-talk, we study in this work two entangled stress regulatory pathways in root cells. A quantitative model of the regulatory network is constructed in the simplest fashion. An analytic parameter-free approach is then employed to analyse the response tendencies. It leads us to a simple constraint on the non-linear regulatory exponents. Under the constraint, a transition to the non-monotonic growth inhibition happens at finite concentration of ABA, due to which the plants could survive from cold/heat stress. The parameter-free tendency analysis would also be applied to further experiments, especially in the case of insufficient data for multi-parameter fitting.
Collapse
Affiliation(s)
- Wei Cao
- Department of Physics, Institute of Biophysics, Huazhong Normal University, Wuhan 430070, China; Department of Physics, Huazhong Agricultural University, Wuhan 430070, China
| | - Liang Luo
- Department of Physics, Huazhong Agricultural University, Wuhan 430070, China
| | - Ming Yi
- Department of Physics, Huazhong Agricultural University, Wuhan 430070, China; Institute of Applied Physics, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ya Jia
- Department of Physics, Institute of Biophysics, Huazhong Normal University, Wuhan 430070, China
| |
Collapse
|
19
|
Wójcik AM, Nodine MD, Gaj MD. miR160 and miR166/165 Contribute to the LEC2-Mediated Auxin Response Involved in the Somatic Embryogenesis Induction in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:2024. [PMID: 29321785 PMCID: PMC5732185 DOI: 10.3389/fpls.2017.02024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 11/14/2017] [Indexed: 05/04/2023]
Abstract
MicroRNAs are non-coding small RNA molecules that are involved in the post-transcriptional regulation of the genes that control various developmental processes in plants, including zygotic embryogenesis (ZE). miRNAs are also believed to regulate somatic embryogenesis (SE), a counterpart of the ZE that is induced in vitro in plant somatic cells. However, the roles of specific miRNAs in the regulation of the genes involved in SE, in particular those encoding transcription factors (TFs) with an essential function during SE including LEAFY COTYLEDON2 (LEC2), remain mostly unknown. The aim of the study was to reveal the function of miR165/166 and miR160 in the LEC2-controlled pathway of SE that is induced in in vitro cultured Arabidopsis explants.In ZE, miR165/166 controls the PHABULOSA/PHAVOLUTA (PHB/PHV) genes, which are the positive regulators of LEC2, while miR160 targets the AUXIN RESPONSE FACTORS (ARF10, ARF16, ARF17) that control the auxin signaling pathway, which plays key role in LEC2-mediated SE. We found that a deregulated expression/function of miR165/166 and miR160 resulted in a significant accumulation of auxin in the cultured explants and the spontaneous formation of somatic embryos. Our results show that miR165/166 might contribute to SE induction via targeting PHB, a positive regulator of LEC2 that controls embryogenic induction via activation of auxin biosynthesis pathway (Wójcikowska et al., 2013). Similar to miR165/166, miR160 was indicated to control SE induction through auxin-related pathways and the negative impact of miR160 on ARF10/ARF16/ARF17 was shown in an embryogenic culture. Altogether, the results suggest that the miR165/166- and miR160-node contribute to the LEC2-mediated auxin-related pathway of embryogenic transition that is induced in the somatic cells of Arabidopsis. A model summarizing the suggested regulatory interactions between the miR165/166-PHB and miR160-ARF10/ARF16/ARF17 nodes that control SE induction in Arabidopsis was proposed.
Collapse
Affiliation(s)
- Anna M. Wójcik
- Department of Genetics, University of Silesia, Faculty of Biology and Environmental Protection, Katowice, Poland
| | - Michael D. Nodine
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Małgorzata D. Gaj
- Department of Genetics, University of Silesia, Faculty of Biology and Environmental Protection, Katowice, Poland
| |
Collapse
|
20
|
Li X, Chen L, Forde BG, Davies WJ. The Biphasic Root Growth Response to Abscisic Acid in Arabidopsis Involves Interaction with Ethylene and Auxin Signalling Pathways. FRONTIERS IN PLANT SCIENCE 2017; 8:1493. [PMID: 28890725 PMCID: PMC5574904 DOI: 10.3389/fpls.2017.01493] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/11/2017] [Indexed: 05/18/2023]
Abstract
Exogenous abscisic acid (ABA) is known to either stimulate or inhibit root growth, depending on its concentration. In this study, the roles of ethylene and auxin in this biphasic effect of ABA on root elongation were investigated using chemical inhibitors and mutants. Inhibitors of ethylene perception and biosynthesis and an auxin influx inhibitor were all found to block the inhibitory effect of high ABA concentrations, but not the stimulatory effect of low ABA concentrations. In addition, three ethylene-insensitive mutants (etr1-1, ein2-1, and ein3-1), two auxin influx mutants (aux1-7, aux1-T) and an auxin-insensitive mutant (iaa7/axr2-1) were all insensitive to the inhibitory effect of high ABA concentrations. In the case of the stimulatory effect of low ABA concentrations, it was blocked by two different auxin efflux inhibitors and was less pronounced in an auxin efflux mutant (pin2/eir1-1) and in the iaa7/axr2-1 auxin-insensitive mutant. Thus it appears that the stimulatory effect seen at low ABA concentrations is via an ethylene-independent pathway requiring auxin signalling and auxin efflux through PIN2/EIR1, while the inhibitory effect at high ABA concentrations is via an ethylene-dependent pathway requiring auxin signalling and auxin influx through AUX1.
Collapse
Affiliation(s)
| | - Lin Chen
- *Correspondence: Lin Chen, ; Xiaoqing Li,
| | | | | |
Collapse
|
21
|
Xu YX, Xiao MZ, Liu Y, Fu JL, He Y, Jiang DA. The small auxin-up RNA OsSAUR45 affects auxin synthesis and transport in rice. PLANT MOLECULAR BIOLOGY 2017; 94:97-107. [PMID: 28321650 DOI: 10.1007/s11103-017-0595-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 02/16/2017] [Indexed: 05/25/2023]
Abstract
This research is the first to demonstrate that OsSAUR45 is involved in plant growth though affecting auxin synthesis and transport by repressing OsYUCCA and OsPIN gene expression in rice. Small auxin-up RNAs (SAURs) comprise a large multigene family and are rapidly activated as part of the primary auxin response in plants. However, little is known about the role of SAURs in plant growth and development, especially in monocots. Here, we report the biological function of OsSAUR45 in the model plant rice (Oryza sativa). OsSAUR45 is expressed in a tissue-specific pattern and is localized to the cytoplasm. Rice lines overexpressing OsSAUR45 displayed pleiotropic developmental defects including reduced plant height and primary root length, fewer adventitious roots, narrower leaves, and reduced seed setting. Auxin levels and transport were reduced in the OsSAUR45 overexpression lines, potentially because of decreased expression of Flavin-binding monooxygenase family proteins (OsYUCCAs) and PIN-FORMED family proteins (OsPINs). Exogenous auxin application rapidly induced OsSAUR45 expression and partially restored the phenotype of rice lines overexpressing OsSAUR45. These results demonstrate that OsSAUR45 is involved in plant growth by affecting auxin synthesis and transport through the repression of OsYUCCA and OsPIN gene expression in rice.
Collapse
Affiliation(s)
- Yan-Xia Xu
- National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou, 310008, China.
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Meng-Zhu Xiao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jun-Liang Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi He
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - De-An Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
22
|
Wang T, Li C, Wu Z, Jia Y, Wang H, Sun S, Mao C, Wang X. Abscisic Acid Regulates Auxin Homeostasis in Rice Root Tips to Promote Root Hair Elongation. FRONTIERS IN PLANT SCIENCE 2017; 8:1121. [PMID: 28702040 PMCID: PMC5487450 DOI: 10.3389/fpls.2017.01121] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/12/2017] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) plays an essential role in root hair elongation in plants, but the regulatory mechanism remains to be elucidated. In this study, we found that exogenous ABA can promote rice root hair elongation. Transgenic rice overexpressing SAPK10 (Stress/ABA-activated protein kinase 10) had longer root hairs; rice plants overexpressing OsABIL2 (OsABI-Like 2) had attenuated ABA signaling and shorter root hairs, suggesting that the effect of ABA on root hair elongation depends on the conserved PYR/PP2C/SnRK2 ABA signaling module. Treatment of the DR5-GUS and OsPIN-GUS lines with ABA and an auxin efflux inhibitor showed that ABA-induced root hair elongation depends on polar auxin transport. To examine the transcriptional response to ABA, we divided rice root tips into three regions: short root hair, long root hair and root tip zones; and conducted RNA-seq analysis with or without ABA treatment. Examination of genes involved in auxin transport, biosynthesis and metabolism indicated that ABA promotes auxin biosynthesis and polar auxin transport in the root tip, which may lead to auxin accumulation in the long root hair zone. Our findings shed light on how ABA regulates root hair elongation through crosstalk with auxin biosynthesis and transport to orchestrate plant development.
Collapse
Affiliation(s)
- Tao Wang
- National Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan UniversityShanghai, China
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Chengxiang Li
- National Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan UniversityShanghai, China
| | - Zhihua Wu
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Yancui Jia
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Hong Wang
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Shiyong Sun
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang UniversityHangzhou, China
| | - Xuelu Wang
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
- *Correspondence: Xuelu Wang,
| |
Collapse
|
23
|
Yang X, Bai Y, Shang J, Xin R, Tang W. The antagonistic regulation of abscisic acid-inhibited root growth by brassinosteroids is partially mediated via direct suppression of ABSCISIC ACID INSENSITIVE 5 expression by BRASSINAZOLE RESISTANT 1. PLANT, CELL & ENVIRONMENT 2016; 39:1994-2003. [PMID: 27149247 DOI: 10.1111/pce.12763] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/17/2016] [Accepted: 04/18/2016] [Indexed: 05/19/2023]
Abstract
Brassinosteroids (BRs) and abscisic acid (ABA) are plant hormones that antagonistically regulate many aspects of plant growth and development; however, the mechanisms that regulate the crosstalk of these two hormones are still not well understood. BRs regulate plant growth and development by activating BRASSINAZOLE RESISTANT 1 (BZR1) family transcription factors. Here we show that the crosstalk between BRs and ABA signalling is partially mediated by BZR1 regulated gene expression. bzr1-1D is a dominant mutant with enhanced BR signalling; our results showed that bzr1-1D mutant is less sensitive to ABA-inhibited primary root growth. By RNA sequencing, a subset of BZR1 regulated ABA-responsive root genes were identified. Of these genes, the expression of a major ABA signalling component ABA INSENSITIVE 5 (ABI5) was found to be suppressed by BR and by BZR1. Additional evidences showed that BZR1 could bind strongly with several G-box cis-elements in the promoter of ABI5, suppress the expression of ABI5 and make plants less sensitive to ABA. Our study demonstrated that ABI5 is a direct target gene of BZR1, and modulating the expression of ABI5 by BZR1 plays important roles in regulating the crosstalk between the BR and ABA signalling pathways.
Collapse
Affiliation(s)
- Xiaorui Yang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050016, China
| | - Yang Bai
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Jianxiu Shang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050016, China
| | - Ruijiao Xin
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050016, China
| | - Wenqiang Tang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050016, China
| |
Collapse
|
24
|
Xu T, Wang Y, Liu X, Gao S, Qi M, Li T. Solanum lycopersicum IAA15 functions in the 2,4-dichlorophenoxyacetic acid herbicide mechanism of action by mediating abscisic acid signalling. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3977-3990. [PMID: 25948703 DOI: 10.1093/jxb/erv199] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D), an important plant growth regulator, is the herbicide most commonly used worldwide to control weeds. However, broad-leaf fruits and vegetables are extremely sensitive to herbicides, which can cause damage and result in lost crops when applied in a manner inconsistent with the directions. Despite detailed knowledge of the mechanism of 2,4-D, the regulation of auxin signalling is still unclear. For example, although the major mediators of auxin signalling, including auxin/indole acetic acid (AUX/IAA) proteins and auxin response factors (ARFs), are known to mediate auxinic herbicides, the underlying mechanisms are still unclear. In this study, the effects of 2,4-D on AUX/IAA gene expression in tomato were investigated, and the two most notably up-regulated genes, SlIAA15 and SlIAA29, were selected for further study. Western blotting revealed the substantial accumulation of both SlIAA15 and SlIAA29, and the expression levels of the corresponding genes were increased following abscisic acid (ABA) and ethylene treatment. Overexpressing SlIAA15, but not SlIAA29, induced a 2,4-D herbicide damage phenotype. The 35S::SlIAA15 line exhibited a strong reduction in leaf stomatal density and altered expression of some R2R3 MYB genes that are putatively involved in the regulation of stomatal differentiation. Further study revealed that root elongation in 35S::SlIAA15 was sensitive to ABA treatment, and was most probably due to the altered expression of an ABA signal transduction gene. In addition, the altered auxin sensitivities of SlIAA15 transformants were also explored. These results suggested that SlIAA15 plays an important role in determining the effects of the herbicide 2,4-D.
Collapse
Affiliation(s)
- Tao Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
| | - Yanling Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
| | - Xin Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
| | - Song Gao
- Liaoning Cash Crop Institute, Liaoyang 111304, People's Republic of China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
| |
Collapse
|
25
|
Chien CH, Chiang-Hsieh YF, Chen YA, Chow CN, Wu NY, Hou PF, Chang WC. AtmiRNET: a web-based resource for reconstructing regulatory networks of Arabidopsis microRNAs. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bav042. [PMID: 25972521 PMCID: PMC4429749 DOI: 10.1093/database/bav042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 04/15/2015] [Indexed: 11/15/2022]
Abstract
Compared with animal microRNAs (miRNAs), our limited knowledge of how miRNAs involve in significant biological processes in plants is still unclear. AtmiRNET is a novel resource geared toward plant scientists for reconstructing regulatory networks of Arabidopsis miRNAs. By means of highlighted miRNA studies in target recognition, functional enrichment of target genes, promoter identification and detection of cis- and trans-elements, AtmiRNET allows users to explore mechanisms of transcriptional regulation and miRNA functions in Arabidopsis thaliana, which are rarely investigated so far. High-throughput next-generation sequencing datasets from transcriptional start sites (TSSs)-relevant experiments as well as five core promoter elements were collected to establish the support vector machine-based prediction model for Arabidopsis miRNA TSSs. Then, high-confidence transcription factors participate in transcriptional regulation of Arabidopsis miRNAs are provided based on statistical approach. Furthermore, both experimentally verified and putative miRNA-target interactions, whose validity was supported by the correlations between the expression levels of miRNAs and their targets, are elucidated for functional enrichment analysis. The inferred regulatory networks give users an intuitive insight into the pivotal roles of Arabidopsis miRNAs through the crosstalk between miRNA transcriptional regulation (upstream) and miRNA-mediate (downstream) gene circuits. The valuable information that is visually oriented in AtmiRNET recruits the scant understanding of plant miRNAs and will be useful (e.g. ABA-miR167c-auxin signaling pathway) for further research. Database URL:http://AtmiRNET.itps.ncku.edu.tw/
Collapse
Affiliation(s)
- Chia-Hung Chien
- College of Biosciences and Biotechnology, Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-Fan Chiang-Hsieh
- College of Biosciences and Biotechnology, Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-An Chen
- College of Biosciences and Biotechnology, Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chi-Nga Chow
- College of Biosciences and Biotechnology, Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Nai-Yun Wu
- College of Biosciences and Biotechnology, Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ping-Fu Hou
- College of Biosciences and Biotechnology, Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Wen-Chi Chang
- College of Biosciences and Biotechnology, Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
26
|
Valluru R. Fructan and hormone connections. FRONTIERS IN PLANT SCIENCE 2015; 6:180. [PMID: 25852727 PMCID: PMC4369654 DOI: 10.3389/fpls.2015.00180] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/05/2015] [Indexed: 05/22/2023]
|
27
|
Rojas-Pierce M, Whippo CW, Davis PA, Hangarter RP, Springer PS. PLASTID MOVEMENT IMPAIRED1 mediates ABA sensitivity during germination and implicates ABA in light-mediated Chloroplast movements. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 83:185-193. [PMID: 25154696 DOI: 10.1016/j.plaphy.2014.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/17/2014] [Indexed: 06/03/2023]
Abstract
The plant hormone abscisic acid (ABA) controls many aspects of plant growth and development, including seed development, germination and responses to water-deficit stress. A complex ABA signaling network integrates environmental signals including water availability and light intensity and quality to fine-tune the response to a changing environment. To further define the regulatory pathways that control water-deficit and ABA responses, we carried out a gene-trap tagging screen for water-deficit-regulated genes in Arabidopsis thaliana. This screen identified PLASTID MOVEMENT IMPAIRED1 (PMI1), a gene involved in blue-light-induced chloroplast movement, as functioning in ABA-response pathways. We provide evidence that PMI1 is involved in the regulation of seed germination by ABA, acting upstream of the intersection between ABA and low-glucose signaling pathways. Furthermore, PMI1 participates in the regulation of ABA accumulation during periods of water deficit at the seedling stage. The combined phenotypes of pmi1 mutants in chloroplast movement and ABA responses indicate that ABA signaling may modulate chloroplast motility. This result was further supported by the detection of altered chloroplast movements in the ABA mutants aba1-6, aba2-1 and abi1-1.
Collapse
Affiliation(s)
- Marcela Rojas-Pierce
- Department of Botany and Plant Sciences and the Center for Plant Cell Biology, University of California, Riverside, CA 92521, USA; Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA.
| | - Craig W Whippo
- Department of Biology, Indiana University, Bloomington, IN 47405-3700, USA; Department of Natural Science, Dickinson State University, Dickinson, ND 58601, USA
| | - Phillip A Davis
- Department of Biology, Indiana University, Bloomington, IN 47405-3700, USA
| | - Roger P Hangarter
- Department of Biology, Indiana University, Bloomington, IN 47405-3700, USA
| | - Patricia S Springer
- Department of Botany and Plant Sciences and the Center for Plant Cell Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
28
|
Mittal A, Balasubramanian R, Cao J, Singh P, Subramanian S, Hicks G, Nothnagel EA, Abidi N, Janda J, Galbraith DW, Rock CD. TOPOISOMERASE 6B is involved in chromatin remodelling associated with control of carbon partitioning into secondary metabolites and cell walls, and epidermal morphogenesis in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4217-39. [PMID: 24821950 PMCID: PMC4112631 DOI: 10.1093/jxb/eru198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant growth is continuous and modular, a combination that allows morphogenesis by cell division and elongation and serves to facilitate adaptation to changing environments. The pleiotropic phenotypes of the harlequin (hlq) mutant, isolated on the basis of ectopic expression of the abscisic acid (ABA)- and auxin-inducible proDc3:GUS reporter gene, were previously characterized. Mutants are skotomorphogenic, have deformed and collapsed epidermal cells which accumulate callose and starch, cell walls abundant in pectins and cell wall proteins, and abnormal and reduced root hairs and leaf trichomes. hlq and two additional alleles that vary in their phenotypic severity of starch accumulation in the light and dark have been isolated, and it is shown that they are alleles of bin3/hyp6/rhl3/Topoisomerase6B. Mutants and inhibitors affecting the cell wall phenocopy several of the traits displayed in hlq. A microarray analysis was performed, and coordinated expression of physically adjacent pairs/sets of genes was observed in hlq, suggesting a direct effect on chromatin. Histones, WRKY and IAA/AUX transcription factors, aquaporins, and components of ubiquitin-E3-ligase-mediated proteolysis, and ABA or biotic stress response markers as well as proteins involved in cellular processes affecting carbon partitioning into secondary metabolites were also identified. A comparative analysis was performed of the hlq transcriptome with other previously published TopoVI mutant transcriptomes, namely bin3, bin5, and caa39 mutants, and limited concordance between data sets was found, suggesting indirect or genotype-specific effects. The results shed light on the molecular mechanisms underlying the det/cop/fus-like pleiotropic phenotypes of hlq and support a broader role for TopoVI regulation of chromatin remodelling to mediate development in response to environmental and hormonal signals.
Collapse
Affiliation(s)
- Amandeep Mittal
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | - Rajagopal Balasubramanian
- Tamil Nadu Agricultural University, Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Madurai-625 104, India
| | - Jin Cao
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | - Prabhjeet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar-143 005, Punjab, India
| | - Senthil Subramanian
- South Dakota State University, Department of Plant Science, Brookings, SD 57007, USA
| | - Glenn Hicks
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA Department of Botany and Plant Sciences, University of California, Riverside CA 92521-0124, USA
| | - Eugene A Nothnagel
- Department of Botany and Plant Sciences, University of California, Riverside CA 92521-0124, USA
| | - Noureddine Abidi
- Texas Tech University, Department of Plant and Soil Science and Fiber and Biopolymer Research Institute, 1001 East Loop 289, Lubbock, TX 79409-5019, USA
| | - Jaroslav Janda
- University of Arizona, Department of Plant Sciences and BIO5 Institute, 341 Keating Bldg, Tucson, AZ 85721, USA
| | - David W Galbraith
- University of Arizona, Department of Plant Sciences and BIO5 Institute, 341 Keating Bldg, Tucson, AZ 85721, USA
| | - Christopher D Rock
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| |
Collapse
|
29
|
Abscisic acid regulates root elongation through the activities of auxin and ethylene in Arabidopsis thaliana. G3-GENES GENOMES GENETICS 2014; 4:1259-74. [PMID: 24836325 PMCID: PMC4455775 DOI: 10.1534/g3.114.011080] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Abscisic acid (ABA) regulates many aspects of plant growth and development, including inhibition of root elongation and seed germination. We performed an ABA resistance screen to identify factors required for ABA response in root elongation inhibition. We identified two classes of Arabidopsis thaliana AR mutants that displayed ABA-resistant root elongation: those that displayed resistance to ABA in both root elongation and seed germination and those that displayed resistance to ABA in root elongation but not in seed germination. We used PCR-based genotyping to identify a mutation in ABA INSENSITIVE2 (ABI2), positional information to identify mutations in AUXIN RESISTANT1 (AUX1) and ETHYLENE INSENSITIVE2 (EIN2), and whole genome sequencing to identify mutations in AUX1, AUXIN RESISTANT4 (AXR4), and ETHYLENE INSENSITIVE ROOT1/PIN-FORMED2 (EIR1/PIN2). Identification of auxin and ethylene response mutants among our isolates suggested that auxin and ethylene responsiveness were required for ABA inhibition of root elongation. To further our understanding of auxin/ethylene/ABA crosstalk, we examined ABA responsiveness of double mutants of ethylene overproducer1 (eto1) or ein2 combined with auxin-resistant mutants and found that auxin and ethylene likely operate in a linear pathway to affect ABA-responsive inhibition of root elongation, whereas these two hormones likely act independently to affect ABA-responsive inhibition of seed germination.
Collapse
|
30
|
Sanchez-Villarreal A, Shin J, Bujdoso N, Obata T, Neumann U, Du SX, Ding Z, Davis AM, Shindo T, Schmelzer E, Sulpice R, Nunes-Nesi A, Stitt M, Fernie AR, Davis SJ. TIME FOR COFFEE is an essential component in the maintenance of metabolic homeostasis in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:188-200. [PMID: 23869666 DOI: 10.1111/tpj.12292] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 06/12/2013] [Accepted: 07/02/2013] [Indexed: 05/08/2023]
Abstract
Plants often respond to environmental changes by reprogramming metabolic and stress-associated pathways. Homeostatic integration of signaling is a central requirement for ensuring metabolic stability in living organisms. Under diurnal conditions, properly timed rhythmic metabolism provides fitness benefits to plants. TIME FOR COFFEE (TIC) is a circadian regulator known to be involved in clock resetting at dawn. Here we explored the mechanism of influence of TIC in plant growth and development, as initiated by a microarray analysis. This global profiling showed that a loss of TIC function causes a major reprogramming of gene expression that predicts numerous developmental, metabolic, and stress-related phenotypes. This led us to demonstrate that this mutant exhibits late flowering, a plastochron defect, and diverse anatomical phenotypes. We further observed a starch-excess phenotype and altered soluble carbohydrate levels. tic exhibited hypersensitivity to oxidative stress and abscisic acid, and this was associated with a striking resistance to drought. These phenotypes were connected to an increase in total glutathione levels that correlated with a readjustment of amino acids and polyamine pools. By comparatively analyzing our transcriptomic and metabolomic data, we concluded that TIC is a central element in plant homeostasis that integrates and coordinates developmental, metabolic, and environmental signals.
Collapse
Affiliation(s)
- Alfredo Sanchez-Villarreal
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hong JH, Seah SW, Xu J. The root of ABA action in environmental stress response. PLANT CELL REPORTS 2013; 32:971-83. [PMID: 23571661 DOI: 10.1007/s00299-013-1439-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/24/2013] [Accepted: 03/26/2013] [Indexed: 05/05/2023]
Abstract
The growth and development of plants are influenced by the integration of diverse endogenous and environmental signals. Acting as a mediator of extrinsic signals, the stress hormone, abscisic acid (ABA), has been shown to regulate many aspects of plant development in response to unfavourable environmental stresses, allowing the plant to cope and survive in adverse conditions, such as drought, low or high temperature, or high salinity. Here, we summarize recent evidence on the roles of ABA in environmental stress responses in the Arabidopsis root; and on how ABA crosstalks with other phytohormones to modulate root development and growth in Arabidopsis. We also review literature findings showing that, in response to environmental stresses, ABA affects the root system architecture in other plant species, such as rice.
Collapse
Affiliation(s)
- Jing Han Hong
- Department of Biological Sciences and NUS Centre for BioImaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | | | | |
Collapse
|
32
|
Saini S, Sharma I, Kaur N, Pati PK. Auxin: a master regulator in plant root development. PLANT CELL REPORTS 2013; 32:741-57. [PMID: 23553556 DOI: 10.1007/s00299-013-1430-5] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/19/2013] [Accepted: 03/19/2013] [Indexed: 05/05/2023]
Abstract
The demand for increased crop productivity and the predicted challenges related to plant survival under adverse environmental conditions have renewed the interest in research in root biology. Various physiological and genetic studies have provided ample evidence in support of the role of plant growth regulators in root development. The biosynthesis and transport of auxin and its signaling play a crucial role in controlling root growth and development. The univocal role of auxin in root development has established it as a master regulator. Other plant hormones, such as cytokinins, brassinosteroids, ethylene, abscisic acid, gibberellins, jasmonic acid, polyamines and strigolactones interact either synergistically or antagonistically with auxin to trigger cascades of events leading to root morphogenesis and development. In recent years, the availability of biological resources, development of modern tools and experimental approaches have led to the advancement of knowledge in root development. Research in the areas of hormone signal perception, understanding network of events involved in hormone action and the transport of plant hormones has added a new dimension to root biology. The present review highlights some of the important conceptual developments in the interplay of auxin and other plant hormones and associated downstream events affecting root development.
Collapse
Affiliation(s)
- Shivani Saini
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, India
| | | | | | | |
Collapse
|
33
|
Jia F, Rock CD. MIR846 and MIR842 comprise a cistronic MIRNA pair that is regulated by abscisic acid by alternative splicing in roots of Arabidopsis. PLANT MOLECULAR BIOLOGY 2013; 81:447-60. [PMID: 23341152 PMCID: PMC3581712 DOI: 10.1007/s11103-013-0015-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/15/2013] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are ~21-nucleotide long endogenous small RNAs that regulate gene expression through post-transcriptional or transcriptional gene silencing and/or translational inhibition. miRNAs can arise from the "exon" of a MIRNA gene, from an intron (e.g. mirtrons in animals), or from the antisense strand of a protein coding gene (natural antisense microRNAs, nat-miRNAs). Here we demonstrate that two functionally related miRNAs, miR842 and miR846, arise from the same transcription unit but from alternate splicing isoforms. miR846 is expressed only from Isoform1 while in Isoforms2 and -3, a part of pre-miR846 containing the miRNA* sequence is included in the intron. The splicing of the intron truncates the pre-MIRNA and disrupts the expression of the mature miR846. We name this novel phenomenon splicing-regulated miRNA. Abscisic acid (ABA) is shown to mediate the alternative splicing event by reducing the functional Isoform1 and increasing the non-functional Isoform3, thus repressing the expression of miR846 concomitant with accumulation of an ABA-inducible target jacalin At5g28520 mRNA, whose cleavage was shown by modified 5'-RACE. This regulation shows the functional importance of splicing-regulated miRNA and suggests possible mechanisms for altered ABA response phenotypes of miRNA biogenesis mutants. Arabidopsis lyrata-MIR842 and Aly-MIR846 have conserved genomic arrangements with A. thaliana and candidate target jacalins, similar primary transcript structures and intron processing, and better miRNA-miRNA* pairings, suggesting that the interactions between ABA, MIR842, MIR846 and jacalins are similar in A. lyrata. Together, splicing-regulated miRNAs, nat-miRNAs/inc-miRNAs and mirtrons illustrate the complexity of MIRNA genes, the importance of introns in the biogenesis and regulation of miRNAs, and raise questions about the processes and molecular mechanisms that drive MIRNA evolution.
Collapse
|
34
|
Ristova D, Rosas U, Krouk G, Ruffel S, Birnbaum KD, Coruzzi GM. RootScape: a landmark-based system for rapid screening of root architecture in Arabidopsis. PLANT PHYSIOLOGY 2013; 161:1086-96. [PMID: 23335624 PMCID: PMC3585581 DOI: 10.1104/pp.112.210872] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/15/2013] [Indexed: 05/21/2023]
Abstract
The architecture of plant roots affects essential functions including nutrient and water uptake, soil anchorage, and symbiotic interactions. Root architecture comprises many features that arise from the growth of the primary and lateral roots. These root features are dictated by the genetic background but are also highly responsive to the environment. Thus, root system architecture (RSA) represents an important and complex trait that is highly variable, affected by genotype × environment interactions, and relevant to survival/performance. Quantification of RSA in Arabidopsis (Arabidopsis thaliana) using plate-based tissue culture is a very common and relatively rapid assay, but quantifying RSA represents an experimental bottleneck when it comes to medium- or high-throughput approaches used in mutant or genotype screens. Here, we present RootScape, a landmark-based allometric method for rapid phenotyping of RSA using Arabidopsis as a case study. Using the software AAMToolbox, we created a 20-point landmark model that captures RSA as one integrated trait and used this model to quantify changes in the RSA of Arabidopsis (Columbia) wild-type plants grown under different hormone treatments. Principal component analysis was used to compare RootScape with conventional methods designed to measure root architecture. This analysis showed that RootScape efficiently captured nearly all the variation in root architecture detected by measuring individual root traits and is 5 to 10 times faster than conventional scoring. We validated RootScape by quantifying the plasticity of RSA in several mutant lines affected in hormone signaling. The RootScape analysis recapitulated previous results that described complex phenotypes in the mutants and identified novel gene × environment interactions.
Collapse
|
35
|
Xu W, Jia L, Shi W, Liang J, Zhou F, Li Q, Zhang J. Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress. THE NEW PHYTOLOGIST 2013; 197:139-150. [PMID: 23106247 DOI: 10.1111/nph.12004] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/16/2012] [Indexed: 05/18/2023]
Abstract
Maintenance of root growth is essential for plant adaptation to soil drying. Here, we tested the hypothesis that auxin transport is involved in mediating ABA's modulation by activating proton secretion in the root tip to maintain root growth under moderate water stress. Rice and Arabidopsis plants were raised under a hydroponic system and subjected to moderate water stress (-0.47 MPa) with polyethylene glycol (PEG). ABA accumulation, auxin transport and plasma membrane H(+)-ATPase activity at the root tip were monitored in addition to the primary root elongation and root hair density. We found that moderate water stress increases ABA accumulation and auxin transport in the root apex. Additionally, ABA modulation is involved in the regulation of auxin transport in the root tip. The transported auxin activates the plasma membrane H(+)-ATPase to release more protons along the root tip in its adaption to moderate water stress. The proton secretion in the root tip is essential in maintaining or promoting primary root elongation and root hair development under moderate water stress. These results suggest that ABA accumulation modulates auxin transport in the root tip, which enhances proton secretion for maintaining root growth under moderate water stress.
Collapse
Affiliation(s)
- Weifeng Xu
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Liguo Jia
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- College of Agronomy, Inner Mongolia Agricultural University, Huhhot, China
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jiansheng Liang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Feng Zhou
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Qianfeng Li
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Jianhua Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
36
|
Yan H, Wang F, Wang H, Yang G. Miniaturized molecularly imprinted matrix solid-phase dispersion coupled with high performance liquid chromatography for rapid determination of auxins in orange samples. J Chromatogr A 2012; 1256:1-8. [DOI: 10.1016/j.chroma.2012.07.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 07/10/2012] [Accepted: 07/12/2012] [Indexed: 11/24/2022]
|
37
|
Rinaldi MA, Liu J, Enders TA, Bartel B, Strader LC. A gain-of-function mutation in IAA16 confers reduced responses to auxin and abscisic acid and impedes plant growth and fertility. PLANT MOLECULAR BIOLOGY 2012; 79:359-73. [PMID: 22580954 PMCID: PMC3382072 DOI: 10.1007/s11103-012-9917-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 04/22/2012] [Indexed: 05/19/2023]
Abstract
Auxin regulates many aspects of plant development, in part, through degradation of the Aux/IAA family of transcriptional repressors. Consequently, stabilizing mutations in several Aux/IAA proteins confer reduced auxin responsiveness. However, of the 29 apparent Aux/IAA proteins in Arabidopsis thaliana, fewer than half have roles established through mutant analysis. We identified iaa16-1, a dominant gain-of-function mutation in IAA16 (At3g04730), in a novel screen for reduced root responsiveness to abscisic acid. The iaa16-1 mutation also confers dramatically reduced auxin responses in a variety of assays, markedly restricts growth of adult plants, and abolishes fertility when homozygous. We compared iaa16-1 phenotypes with those of dominant mutants defective in the closely related IAA7/AXR2, IAA14/SLR, and IAA17/AXR3, along with the more distantly related IAA28, and found overlapping but distinct patterns of developmental defects. The identification and characterization of iaa16-1 provides a fuller understanding of the IAA7/IAA14/IAA16/IAA17 clade of Aux/IAA proteins and the diverse roles of these repressors in hormone response and plant development.
Collapse
Affiliation(s)
- Mauro A. Rinaldi
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| | - James Liu
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| | - Tara A. Enders
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | - Bonnie Bartel
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| | - Lucia C. Strader
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| |
Collapse
|
38
|
Wang Y, Li L, Ye T, Zhao S, Liu Z, Feng YQ, Wu Y. Cytokinin antagonizes ABA suppression to seed germination of Arabidopsis by downregulating ABI5 expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:249-61. [PMID: 21699589 DOI: 10.1111/j.1365-313x.2011.04683.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Abscisic acid (ABA) and cytokinin are key hormones controlling plant development. How ABA and cytokinin interplay to control the transition from a dry seed into a young seedling remains elusive. Here we undertook a gain-of-function genetic screen to identify ABA-insensitive mutants during seed germination in Arabidopsis using an estradiol-inducible approach. In the presence of estradiol, one of these mutants gim1 (germination insensitive to ABA mutant 1) exhibited an elevated level of cytokinin that was attributed to the estradiol-induced expression of AtIPT8 that encodes an isopentenyltransferase for the biosynthesis of cytokinins. Our data on OE-2 and Com-1 transgenic plants carrying the ectopically expressing AtIPT8 gene indicated that the elevation of cytokinin level was responsible for the ABA-insensitivity of gim1 seed germination. Further analyses on alterations of gene transcriptomes in the gim1 mutant demonstrated that the expression of some ABA-inducible genes, including ABI5, was reduced, and could not be restored by exogenous ABA treatment. Moreover, we also failed to observe the ABA-mediated repression of a family of cytokinin signal transducers and transcription repressors called type-A ARR4, ARR5 and ARR6 in the gim1 seedlings. Further analysis demonstrated that type-A ARR4, ARR5 and ARR6 could negatively regulate ABI5 expression, and the physical interaction of ABI5 and type-A ARR4, ARR5 and ARR6 proteins was detected. In summary, our study suggests that the interaction of ABA and cytokinin during seed germination and seedling growth can be mediated by the interplay of transcriptional regulators in Arabidopsis.
Collapse
Affiliation(s)
- Yanping Wang
- Department of Cell and Developmental Biology, College of Life Science, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Wang L, Hua D, He J, Duan Y, Chen Z, Hong X, Gong Z. Auxin Response Factor2 (ARF2) and its regulated homeodomain gene HB33 mediate abscisic acid response in Arabidopsis. PLoS Genet 2011; 7:e1002172. [PMID: 21779177 PMCID: PMC3136439 DOI: 10.1371/journal.pgen.1002172] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 05/19/2011] [Indexed: 01/10/2023] Open
Abstract
The phytohormone abscisic acid (ABA) is an important regulator of plant development and response to environmental stresses. In this study, we identified two ABA overly sensitive mutant alleles in a gene encoding Auxin Response Factor2 (ARF2). The expression of ARF2 was induced by ABA treatment. The arf2 mutants showed enhanced ABA sensitivity in seed germination and primary root growth. In contrast, the primary root growth and seed germination of transgenic plants over-expressing ARF2 are less inhibited by ABA than that of the wild type. ARF2 negatively regulates the expression of a homeodomain gene HB33, the expression of which is reduced by ABA. Transgenic plants over-expressing HB33 are more sensitive, while transgenic plants reducing HB33 by RNAi are more resistant to ABA in the seed germination and primary root growth than the wild type. ABA treatment altered auxin distribution in the primary root tips and made the relative, but not absolute, auxin accumulation or auxin signal around quiescent centre cells and their surrounding columella stem cells to other cells stronger in arf2-101 than in the wild type. These results indicate that ARF2 and HB33 are novel regulators in the ABA signal pathway, which has crosstalk with auxin signal pathway in regulating plant growth. Abscisic acid is a phytohormone that regulates many aspects in plant growth and development and response to different biotic and abiotic stresses. Research on ABA inhibiting seed germination, controlling stomatal movement, and regulating gene expression has been widely performed. However, the molecular mechanism for ABA regulating root growth is not well known. We have set up a genetic screen by using ABA inhibiting root growth to identify ABA related mutants and to dissect the molecular mechanism of ABA regulating root growth. In this study, we identified two new mutant alleles that are defective in ARF2 gene. ARF2 is a transcriptional suppressor that has been found to be involved in ethylene, auxin, and brassinosteroid pathway to control plant growth and development. Our study indicates that ARF2 is an ABA responsive regulator that functions in both seed germination and primary root growth. ARF2 directly regulates the expression of a homeodomain gene HB33. We demonstrate that ABA treatment reduces the cell division and alters auxin distribution more in arf2 mutant than in the wild type, suggesting an important mechanism in ABA inhibiting the primary root growth through mediating cell division in root tips.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Deping Hua
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Junna He
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ying Duan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhizhong Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xuhui Hong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- China Agricultural University–Purdue University Joint Research Center, Beijing, China
- National Center for Plant Gene Research, Beijing, China
- * E-mail:
| |
Collapse
|
40
|
Yan YS, Chen XY, Yang K, Sun ZX, Fu YP, Zhang YM, Fang RX. Overexpression of an F-box protein gene reduces abiotic stress tolerance and promotes root growth in rice. MOLECULAR PLANT 2011; 4:190-7. [PMID: 21059694 DOI: 10.1093/mp/ssq066] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
As one of the largest gene families, F-box domain proteins have important roles in regulating various developmental processes and stress responses. In this study, we have investigated a rice F-box domain gene, MAIF1. The MAIF1 protein is mainly localized in the plasma membrane and nucleus. MAIF1 expression is induced rapidly and strongly by abscisic acid (ABA) and abiotic stresses. MAIF1 expression is also induced in root tips by sucrose, independent of its hydrolytic hexose products, glucose and fructose, and the plant hormones auxin and cytokinin. Overexpression of MAIF1 reduces rice ABA sensitivity and abiotic stress tolerance and promotes rice root growth. These results suggest that MAIF1 is involved in multiple signaling pathways in regulating root growth. Growth restraint in plants is an acclimatization strategy against abiotic stress. Our results also suggest that MAIF1 plays the negative role in response to abiotic stress possibly by regulating root growth.
Collapse
Affiliation(s)
- Yong-Sheng Yan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Truman WM, Bennett MH, Turnbull CG, Grant MR. Arabidopsis auxin mutants are compromised in systemic acquired resistance and exhibit aberrant accumulation of various indolic compounds. PLANT PHYSIOLOGY 2010; 152:1562-73. [PMID: 20081042 PMCID: PMC2832264 DOI: 10.1104/pp.109.152173] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 01/04/2010] [Indexed: 05/18/2023]
Abstract
Systemic acquired resistance is a widespread phenomenon in the plant kingdom that confers heightened and often enduring immunity to a range of diverse pathogens. Systemic immunity develops through activation of plant disease resistance protein signaling networks following local infection with an incompatible pathogen. The accumulation of the phytohormone salicylic acid in systemically responding tissues occurs within days after a local immunizing infection and is essential for systemic resistance. However, our knowledge of the signaling components underpinning signal perception and the establishment of systemic immunity are rudimentary. Previously, we showed that an early and transient increase in jasmonic acid in distal responding tissues was central to effective establishment of systemic immunity. Based upon predicted transcriptional networks induced in naive Arabidopsis (Arabidopsis thaliana) leaves following avirulent Pseudomonas syringae challenge, we show that a variety of auxin mutants compromise the establishment of systemic immunity. Linking together transcriptional and targeted metabolite studies, our data provide compelling evidence for a role of indole-derived compounds, but not auxin itself, in the establishment and maintenance of systemic immunity.
Collapse
|
42
|
Izumi Y, Okazawa A, Bamba T, Kobayashi A, Fukusaki E. Development of a method for comprehensive and quantitative analysis of plant hormones by highly sensitive nanoflow liquid chromatography-electrospray ionization-ion trap mass spectrometry. Anal Chim Acta 2009; 648:215-25. [PMID: 19646587 DOI: 10.1016/j.aca.2009.07.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 06/24/2009] [Accepted: 07/01/2009] [Indexed: 02/01/2023]
Abstract
In recent plant hormone research, there is an increased demand for a highly sensitive and comprehensive analytical approach to elucidate the hormonal signaling networks, functions, and dynamics. We have demonstrated the high sensitivity of a comprehensive and quantitative analytical method developed with nanoflow liquid chromatography-electrospray ionization-ion trap mass spectrometry (LC-ESI-IT-MS/MS) under multiple-reaction monitoring (MRM) in plant hormone profiling. Unlabeled and deuterium-labeled isotopomers of four classes of plant hormones and their derivatives, auxins, cytokinins (CK), abscisic acid (ABA), and gibberellins (GA), were analyzed by this method. The optimized nanoflow-LC-ESI-IT-MS/MS method showed ca. 5-10-fold greater sensitivity than capillary-LC-ESI-IT-MS/MS, and the detection limits (S/N=3) of several plant hormones were in the sub-fmol range. The results showed excellent linearity (R(2) values of 0.9937-1.0000) and reproducibility of elution times (relative standard deviations, RSDs, <1.1%) and peak areas (RSDs, <10.7%) for all target compounds. Further, sample purification using Oasis HLB and Oasis MCX cartridges significantly decreased the ion-suppressing effects of biological matrix as compared to the purification using only Oasis HLB cartridge. The optimized nanoflow-LC-ESI-IT-MS/MS method was successfully used to analyze endogenous plant hormones in Arabidopsis and tobacco samples. The samples used in this analysis were extracted from only 17 tobacco dry seeds (1mg DW), indicating that the efficiency of analysis of endogenous plant hormones strongly depends on the detection sensitivity of the method. Our analytical approach will be useful for in-depth studies on complex plant hormonal metabolism.
Collapse
Affiliation(s)
- Yoshihiro Izumi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
43
|
Belin C, Megies C, Hauserová E, Lopez-Molina L. Abscisic acid represses growth of the Arabidopsis embryonic axis after germination by enhancing auxin signaling. THE PLANT CELL 2009; 21:2253-68. [PMID: 19666738 PMCID: PMC2751952 DOI: 10.1105/tpc.109.067702] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 07/14/2009] [Accepted: 07/25/2009] [Indexed: 05/18/2023]
Abstract
Under unfavorable environmental conditions, the stress phytohormone ABA inhibits the developmental transition from an embryo in a dry seed into a young seedling. We developed a genetic screen to isolate Arabidopsis thaliana mutants whose early seedling development is resistant to ABA. Here, we report the identification of a recessive mutation in AUXIN RESISTANT1 (AUX1), encoding a cellular auxin influx carrier. Although auxin is a major morphogenesis hormone in plants, little is known about ABA-auxin interactions during early seedling growth. We show that aux1 and pin2 mutants are insensitive to ABA-dependent repression of embryonic axis (hypocotyl and radicle) elongation. Genetic and physiological experiments show that this involves auxin transport to the embryonic axis elongation zone, where ABA enhances the activity of an auxin-responsive promoter. We propose that ABA represses embryonic axis elongation by potentiating auxin signaling in its elongation zone. This involves repression of the AUXIN INDUCIBLE (Aux/IAA) gene AXR2/IAA7, encoding a key component of ABA- and auxin-dependent responses during postgerminative growth.
Collapse
MESH Headings
- Abscisic Acid/pharmacology
- Arabidopsis/drug effects
- Arabidopsis/embryology
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Arabidopsis Proteins/physiology
- Blotting, Northern
- Blotting, Western
- Chromatography, High Pressure Liquid
- Gene Expression Regulation, Plant/drug effects
- Gene Expression Regulation, Plant/genetics
- Gene Expression Regulation, Plant/physiology
- Germination/drug effects
- Germination/genetics
- Germination/physiology
- Indoleacetic Acids/metabolism
- Microscopy, Fluorescence
- Plant Growth Regulators/metabolism
- Plants, Genetically Modified/drug effects
- Plants, Genetically Modified/embryology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Seedlings/drug effects
- Seedlings/embryology
- Seedlings/genetics
- Seedlings/metabolism
- Seeds/drug effects
- Seeds/embryology
- Seeds/genetics
- Seeds/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Signal Transduction/physiology
- Spectrometry, Mass, Electrospray Ionization
- Tandem Mass Spectrometry
Collapse
Affiliation(s)
- Christophe Belin
- Département de Biologie Végétale, Université de Genève, 1211 Genève 4, Switzerland
| | | | | | | |
Collapse
|
44
|
Rodrigues A, Santiago J, Rubio S, Saez A, Osmont KS, Gadea J, Hardtke CS, Rodriguez PL. The short-rooted phenotype of the brevis radix mutant partly reflects root abscisic acid hypersensitivity. PLANT PHYSIOLOGY 2009; 149:1917-28. [PMID: 19201913 PMCID: PMC2663733 DOI: 10.1104/pp.108.133819] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 02/03/2009] [Indexed: 05/18/2023]
Abstract
To gain further insight into abscisic acid (ABA) signaling and its role in growth regulation, we have screened for Arabidopsis (Arabidopsis thaliana) mutants hypersensitive to ABA-mediated root growth inhibition. As a result, we have identified a loss-of-function allele of BREVIS RADIX (BRX) in the Columbia background, named brx-2, which shows enhanced response to ABA-mediated inhibition of root growth. BRX encodes a key regulator of cell proliferation and elongation in the root, which has been implicated in the brassinosteroid (BR) pathway as well as in the regulation of auxin-responsive gene expression. Mutants affected in BR signaling that are not impaired in root growth, such as bes1-D, bzr1-D, and bsu1-D, also showed enhanced sensitivity to ABA-mediated inhibition of root growth. Triple loss-of-function mutants affected in PP2Cs, which act as negative regulators of ABA signaling, showed impaired root growth in the absence of exogenous ABA, indicating that disturbed regulation of ABA sensitivity impairs root growth. In agreement with this result, diminishing ABA sensitivity of brx-2 by crossing it with a 35S:HAB1 ABA-insensitive line allowed significantly higher recovery of root growth after brassinolide treatment. Finally, transcriptomic analysis revealed that ABA treatment negatively affects auxin signaling in wild-type and brx-2 roots and that ABA response is globally altered in brx-2. Taken together, our results reveal an interaction between BRs, auxin, and ABA in the control of root growth and indicate that altered sensitivity to ABA is partly responsible for the brx short-root phenotype.
Collapse
Affiliation(s)
- Americo Rodrigues
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, E-46022 Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Huang Y, Li CY, Biddle KD, Gibson SI. Identification, cloning and characterization of sis7 and sis10 sugar-insensitive mutants of Arabidopsis. BMC PLANT BIOLOGY 2008; 8:104. [PMID: 18854047 PMCID: PMC2579432 DOI: 10.1186/1471-2229-8-104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 10/14/2008] [Indexed: 05/20/2023]
Abstract
BACKGROUND The levels of soluble sugars, such as glucose and sucrose, help regulate many plant metabolic, physiological and developmental processes. Genetic screens are helping identify some of the loci involved in plant sugar response and reveal extensive cross-talk between sugar and phytohormone response pathways. RESULTS A forward genetic screen was performed to identify mutants with increased resistance to the inhibitory effects of high levels of exogenous sugars on early Arabidopsis seedling development. The positional cloning and characterization of two of these sugar insensitive (sis) mutants, both of which are also involved in abscisic acid (ABA) biosynthesis or response, are reported. Plants carrying mutations in SIS7/NCED3/STO1 or SIS10/ABI3 are resistant to the inhibitory effects of high levels of exogenous Glc and Suc. Quantitative RT-PCR analyses indicate transcriptional upregulation of ABA biosynthesis genes by high concentrations of Glc in wild-type germinating seeds. Gene expression profiling revealed that a significant number of genes that are expressed at lower levels in germinating sis7-1/nced3-4/sto1-4 seeds than in wild-type seeds are implicated in auxin biosynthesis or transport, suggesting cross-talk between ABA and auxin response pathways. The degree of sugar insensitivity of different sis10/abi3 mutant seedlings shows a strong positive correlation with their level of ABA insensitivity during seed germination. CONCLUSION Mutations in the SIS7/NCED3/STO1 gene, which is primarily required for ABA biosynthesis under drought conditions, confer a sugar-insensitive phenotype, indicating that a constitutive role in ABA biosynthesis is not necessary to confer sugar insensitivity. Findings presented here clearly demonstrate that mutations in ABI3 can confer a sugar-insensitive phenotype and help explain previous, mixed reports on this topic by showing that ABA and sugar insensitivity exhibit a strong positive correlation in different abi3 mutants. Expression profiling revealed a potentially novel regulation of auxin metabolism and transport in an ABA deficient mutant, sis7-1/nced3-4/sto1-4.
Collapse
Affiliation(s)
- Yadong Huang
- Department of Plant Biology, University of Minnesota, 1500 Gortner Avenue, Saint Paul, MN 55108, USA
| | - Chun Yao Li
- Department of Plant Biology, University of Minnesota, 1500 Gortner Avenue, Saint Paul, MN 55108, USA
| | - Kelly D Biddle
- Center for Technology in Teaching & Learning, MS-120, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Susan I Gibson
- Department of Plant Biology, University of Minnesota, 1500 Gortner Avenue, Saint Paul, MN 55108, USA
| |
Collapse
|
46
|
Abstract
Transcription factors (TFs) control gene expression by interacting with cis-elements in target gene promoters. Transcription regulators (TRs) assist in controlling gene expression through interaction with TFs, chromatin remodeling, or other mechanisms. Both types of proteins thus constitute master controllers of dynamic transcriptional networks. To uncover such control elements in the photosynthetic green alga Chlamydomonas reinhardtii, we performed a comprehensive analysis of its genome sequence. In total, we identified 234 genes encoding 147 TFs and 87 TRs of approximately 40 families. The set of putative TFs and TRs, including their transcript and protein sequences, domain architectures, and supporting information about putative orthologs, is available at http://plntfdb.bio.uni-potsdam.de/v2.0/. Twelve of 34 plant-specific TF families were found in at least one algal species, indicating their early evolutionary origin. Twenty-two plant-specific TF families and one plant-specific TR family were not observed in algae, suggesting their specific association with developmental or physiological processes characteristic to multicellular plants. We also analyzed the occurrence of proteins that constitute the light-regulated transcriptional network in angiosperms and found putative algal orthologs for most of them. Our analysis provides a solid ground for future experimental studies aiming at deciphering the transcriptional regulatory networks in green algae.
Collapse
|
47
|
Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC. Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:133-46. [PMID: 17672844 DOI: 10.1111/j.1365-313x.2007.03218.x] [Citation(s) in RCA: 378] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
AUXIN RESPONSE FACTORS (ARFs) are transcription factors involved in auxin signal transduction during many stages of plant growth development. ARF10, ARF16 and ARF17 are targeted by microRNA160 (miR160) in Arabidopsis thaliana. Here, we show that negative regulation of ARF10 by miR160 plays important roles in seed germination and post-germination. Transgenic plants expressing an miR160-resistant form of ARF10, which has silent mutations in the miRNA target site (termed mARF10), exhibited developmental defects such as serrated leaves, curled stems, contorted flowers and twisted siliques. These phenotypes were not observed in wild-type plants or plants transformed with the targeted ARF10 gene. During sensu stricto germination and post-germination, mARF10 mutant seeds and plants were hypersensitive to ABA in a dose-dependent manner. ABA hypersensitivity was mimicked in wild-type plants by exogenous auxin. In contrast, overexpression of MIR160 (35S:MIR160) resulted in reduced sensitivity to ABA during germination. Transcriptome analysis of germinating ARF10 and mARF10 seeds indicated that typical ABA-responsive genes expressed during seed maturation were overexpressed in germinating mARF10 seeds. These results indicate that negative regulation of ARF10 by miR160 plays a critical role in seed germination and post-embryonic developmental programs, at least in part by mechanisms involving interactions between ARF10-dependent auxin and ABA pathways.
Collapse
Affiliation(s)
- Po-Pu Liu
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | | | |
Collapse
|
48
|
Ko JH, Yang SH, Han KH. Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:343-55. [PMID: 16792696 DOI: 10.1111/j.1365-313x.2006.02782.x] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
RING (really interesting new gene) zinc-finger proteins have important regulatory roles in the development of a variety of organisms. The XERICO gene encodes a small protein (162 amino acids) with an N-terminal trans-membrane domain and a RING-H2 zinc-finger motif located at the C-terminus. In silico gene-expression analysis indicated that XERICO is induced by salt and osmotic stress. Compared with wild-type (WT) Arabidopsis plants, transgenic plants overexpressing XERICO (35S::XERICO) exhibited hypersensitivity to salt and osmotic stress and exogenous abscisic acid (ABA) during germination and early seedling growth. When subjected to a drought treatment, transcriptional upregulation of a key ABA-biosynthesis gene, AtNCED3, was much faster and stronger in 35S::XERICO plants compared with WT plants. Further, upregulation of XERICO substantially increased cellular ABA levels. The adult 35S::XERICO plants, in contrast to early seedling growth, showed a marked increase in their tolerance to drought stress. Yeast two-hybrid screening indicated that XERICO interacts with an E2 ubiquitin-conjugating enzyme (AtUBC8) and ASK1-interacting F-box protein (AtTLP9), which is involved in the ABA-signaling pathway. Affymetrix GeneChip array analysis showed that the expressions of many of the genes involved in the biosynthesis of plant hormones (e.g. ethylene, brassinosteroid, gibberellic acid) were significantly changed in the 35S::XERICO plants. These results suggest that the homeostasis of various plant hormones might be altered in 35S::XERICO plants, possibly by overaccumulation of ABA.
Collapse
Affiliation(s)
- Jae-Heung Ko
- Department of Forestry, 126 Natural Resources, Michigan State University, East Lansing, MI 48824-1222, USA
| | | | | |
Collapse
|