1
|
Cao Y, Han Z, Zhang Z, He L, Huang C, Chen J, Dai F, Xuan L, Yan S, Si Z, Hu Y, Zhang T. UDP-glucosyltransferase 71C4 controls the flux of phenylpropanoid metabolism to shape cotton seed development. PLANT COMMUNICATIONS 2024; 5:100938. [PMID: 38689494 PMCID: PMC11369780 DOI: 10.1016/j.xplc.2024.100938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
Seeds play a crucial role in plant reproduction, making it essential to identify genes that affect seed development. In this study, we focused on UDP-glucosyltransferase 71C4 (UGT71C4) in cotton, a member of the glycosyltransferase family that shapes seed width and length, thereby influencing seed index and seed cotton yield. Overexpression of UGT71C4 results in seed enlargement owing to its glycosyltransferase activity on flavonoids, which redirects metabolic flux from lignin to flavonoid metabolism. This shift promotes cell proliferation in the ovule via accumulation of flavonoid glycosides, significantly enhancing seed cotton yield and increasing the seed index from 10.66 g to 11.91 g. By contrast, knockout of UGT71C4 leads to smaller seeds through activation of the lignin metabolism pathway and redirection of metabolic flux back to lignin synthesis. This redirection leads to increased ectopic lignin deposition in the ovule, inhibiting ovule growth and development, and alters yield components, increasing the lint percentage from 41.42% to 43.40% and reducing the seed index from 10.66 g to 8.60 g. Our research sheds new light on seed size development and reveals potential pathways for enhancing seed yield.
Collapse
Affiliation(s)
- Yiwen Cao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute, Zhejiang University, Sanya, China
| | - Zegang Han
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | | | - Lu He
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Chujun Huang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jinwen Chen
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Fan Dai
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Lisha Xuan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Sunyi Yan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhanfeng Si
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute, Zhejiang University, Sanya, China
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute, Zhejiang University, Sanya, China.
| |
Collapse
|
2
|
Yang S, Luo X, Jin J, Guo Y, Zhang L, Li J, Tong S, Luo Y, Li T, Chen X, Wu Y, Qin C. Key candidate genes for male sterility in peppers unveiled via transcriptomic and proteomic analyses. FRONTIERS IN PLANT SCIENCE 2024; 15:1334430. [PMID: 38384767 PMCID: PMC10880382 DOI: 10.3389/fpls.2024.1334430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/12/2024] [Indexed: 02/23/2024]
Abstract
This study aimed to enhance the use of male sterility in pepper to select superior hybrid generations. Transcriptomic and proteomic analyses of fertile line 1933A and nucleic male sterility line 1933B of Capsicum annuum L. were performed to identify male sterility-related proteins and genes. The phylogenetic tree, physical and chemical characteristics, gene structure characteristics, collinearity and expression characteristics of candidate genes were analyzed. The study identified 2,357 differentially expressed genes, of which 1,145 and 229 were enriched in the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases, respectively. A total of 7,628 quantifiable proteins were identified and 29 important proteins and genes were identified. It is worth noting that the existence of CaPRX genes has been found in both proteomics and transcriptomics, and 3 CaPRX genes have been identified through association analysis. A total of 66 CaPRX genes have been identified at the genome level, which are divided into 13 subfamilies, all containing typical CaPRX gene conformal domains. It is unevenly distributed across 12 chromosomes (including the virtual chromosome Chr00). Salt stress and co-expression analysis show that male sterility genes are expressed to varying degrees, and multiple transcription factors are co-expressed with CaPRXs, suggesting that they are involved in the induction of pepper salt stress. The study findings provide a theoretical foundation for genetic breeding by identifying genes, metabolic pathways, and molecular mechanisms involved in male sterility in pepper.
Collapse
Affiliation(s)
- Shimei Yang
- Industrial Technology Institute of Pepper, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
- Engineering Research Center of Zunyi Pepper Germplasm Resources Conservation and Breeding Cultivation of Guizhou Province, Department of Modern Agriculture, Zunyi Vocational and Technical College, Zunyi, China
| | - Xirong Luo
- Engineering Research Center of Zunyi Pepper Germplasm Resources Conservation and Breeding Cultivation of Guizhou Province, Department of Modern Agriculture, Zunyi Vocational and Technical College, Zunyi, China
| | - Jing Jin
- Industrial Technology Institute of Pepper, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Ya Guo
- Engineering Research Center of Zunyi Pepper Germplasm Resources Conservation and Breeding Cultivation of Guizhou Province, Department of Modern Agriculture, Zunyi Vocational and Technical College, Zunyi, China
| | - Lincheng Zhang
- Industrial Technology Institute of Pepper, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Jing Li
- Engineering Research Center of Zunyi Pepper Germplasm Resources Conservation and Breeding Cultivation of Guizhou Province, Department of Modern Agriculture, Zunyi Vocational and Technical College, Zunyi, China
| | - Shuoqiu Tong
- Industrial Technology Institute of Pepper, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Yin Luo
- Engineering Research Center of Zunyi Pepper Germplasm Resources Conservation and Breeding Cultivation of Guizhou Province, Department of Modern Agriculture, Zunyi Vocational and Technical College, Zunyi, China
| | - Tangyan Li
- Engineering Research Center of Zunyi Pepper Germplasm Resources Conservation and Breeding Cultivation of Guizhou Province, Department of Modern Agriculture, Zunyi Vocational and Technical College, Zunyi, China
| | - Xiaocui Chen
- Key Lab of Zunyi Crop Gene Resource and Germplasm Innovation, Zunyi Academy of Agricultural Sciences, Zunyi, China
| | - Yongjun Wu
- Industrial Technology Institute of Pepper, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Cheng Qin
- Engineering Research Center of Zunyi Pepper Germplasm Resources Conservation and Breeding Cultivation of Guizhou Province, Department of Modern Agriculture, Zunyi Vocational and Technical College, Zunyi, China
- Key Lab of Zunyi Crop Gene Resource and Germplasm Innovation, Zunyi Academy of Agricultural Sciences, Zunyi, China
| |
Collapse
|
3
|
Moon S, Derakhshani B, Gho YS, Kim EJ, Lee SK, Jiang X, Lee C, Jung KH. PRX102 Participates in Root Hairs Tip Growth of Rice. RICE (NEW YORK, N.Y.) 2023; 16:51. [PMID: 37971600 PMCID: PMC10654324 DOI: 10.1186/s12284-023-00668-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Root hairs are extensions of epidermal cells on the root tips that increase the root contract surface area with the soil. For polar tip growth, newly synthesized proteins and other materials must be incorporated into the tips of root hairs. Here, we report the characterization of PRX102, a root hair preferential endoplasmic reticulum peroxidase. During root hair growth, PRX102 has a polar localization pattern within the tip regions of root hairs but it loses this polarity after growth termination. Moreover, PRX102 participates in root hair outgrowth by regulating dense cytoplasmic streaming toward the tip. This role is distinct from those of other peroxidases playing roles in the root hairs and regulating reactive oxygen species homeostasis. RNA-seq analysis using prx102 root hairs revealed that 87 genes including glutathione S-transferase were downregulated. Our results therefore suggest a new function of peroxidase as a player in the delivery of substances to the tips of growing root hairs.
Collapse
Affiliation(s)
- Sunok Moon
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Behnam Derakhshani
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Yun Shil Gho
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Eui-Jung Kim
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Su Kyoung Lee
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Xu Jiang
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Choonseok Lee
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Ki-Hong Jung
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea.
| |
Collapse
|
4
|
Yoshikay-Benitez DA, Yokoyama Y, Ohira K, Fujita K, Tomiie A, Kijidani Y, Shigeto J, Tsutsumi Y. Populus alba cationic cell-wall-bound peroxidase (CWPO-C) regulates the plant growth and affects auxin concentration in Arabidopsis thaliana. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1671-1680. [PMID: 36387972 PMCID: PMC9636347 DOI: 10.1007/s12298-022-01241-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/10/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED The poplar cationic cell-wall-bound peroxidase (CWPO-C) mediates the oxidative polymerization of lignin precursors, especially sinapyl alcohols, and high molecular weight compounds that cannot be oxidized by other plant peroxidases, including horseradish peroxidase C. Therefore, CWPO-C is believed to be a lignification-specific peroxidase, but direct evidence of its function is lacking. Thus, the CWPO-C expression pattern in Arabidopsis thaliana (Arabidopsis) was determined using the β-glucuronidase gene as a reporter. Our data indicated that CWPO-C was expressed in young organs, including the meristem, leaf, root, flower, and young xylem in the upper part of the stem. Compared with the wild-type control, transgenic Arabidopsis plants overexpressing CWPO-C had shorter stems. Approximately 60% of the plants in the transgenic line with the highest CWPO-C content had curled stems. These results indicate that CWPO-C plays a role in cell elongation. When plants were placed horizontally, induced CWPO-C expression was detected in the curved part of the stem during the gravitropic response. The stem curvature associated with gravitropism is controlled by auxin localization. The time needed for Arabidopsis plants overexpressing CWPO-C placed horizontally to bend by 90° was almost double the time required for the similarly treated wild-type controls. Moreover, the auxin content was significantly lower in the CWPO-C-overexpressing plants than in the wild-type plants. These results strongly suggest that CWPO-C has pleiotropic effects on plant growth and indole-3-acetic acid (IAA) accumulation. These effects may be mediated by altered IAA concentration due to oxidation. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01241-0.
Collapse
Affiliation(s)
- Diego Alonso Yoshikay-Benitez
- Department of Agro-environmental Sciences, Graduate School of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395 Japan
| | - Yusuke Yokoyama
- Department of Agro-environmental Sciences, Graduate School of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395 Japan
| | - Kaori Ohira
- Department of Agro-environmental Sciences, Graduate School of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395 Japan
| | - Koki Fujita
- Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395 Japan
| | - Azusa Tomiie
- Division of Forest and Environmental Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibana-dai Nishi, Miyazaki, 889-2192 Japan
| | - Yoshio Kijidani
- Division of Forest and Environmental Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibana-dai Nishi, Miyazaki, 889-2192 Japan
| | - Jun Shigeto
- Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395 Japan
- Office of Research and Academia Government Community Collaboration, Hiroshima University, 1-3-2 Kagamiyama, Higashihiroshima, Hiroshima 739-8511 Japan
| | - Yuji Tsutsumi
- Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395 Japan
| |
Collapse
|
5
|
Marzol E, Borassi C, Carignani Sardoy M, Ranocha P, Aptekmann AA, Bringas M, Pennington J, Paez-Valencia J, Martínez Pacheco J, Rodríguez-Garcia DR, Rondón Guerrero YDC, Peralta JM, Fleming M, Mishler-Elmore JW, Mangano S, Blanco-Herrera F, Bedinger PA, Dunand C, Capece L, Nadra AD, Held M, Otegui MS, Estevez JM. Class III Peroxidases PRX01, PRX44, and PRX73 Control Root Hair Growth in Arabidopsis thaliana. Int J Mol Sci 2022; 23:5375. [PMID: 35628189 PMCID: PMC9141322 DOI: 10.3390/ijms23105375] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/29/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022] Open
Abstract
Root hair cells are important sensors of soil conditions. They grow towards and absorb water-soluble nutrients. This fast and oscillatory growth is mediated by continuous remodeling of the cell wall. Root hair cell walls contain polysaccharides and hydroxyproline-rich glycoproteins, including extensins (EXTs). Class-III peroxidases (PRXs) are secreted into the apoplastic space and are thought to trigger either cell wall loosening or polymerization of cell wall components, such as Tyr-mediated assembly of EXT networks (EXT-PRXs). The precise role of these EXT-PRXs is unknown. Using genetic, biochemical, and modeling approaches, we identified and characterized three root-hair-specific putative EXT-PRXs, PRX01, PRX44, and PRX73. prx01,44,73 triple mutation and PRX44 and PRX73 overexpression had opposite effects on root hair growth, peroxidase activity, and ROS production, with a clear impact on cell wall thickness. We use an EXT fluorescent reporter with contrasting levels of cell wall insolubilization in prx01,44,73 and PRX44-overexpressing background plants. In this study, we propose that PRX01, PRX44, and PRX73 control EXT-mediated cell wall properties during polar expansion of root hair cells.
Collapse
Affiliation(s)
- Eliana Marzol
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; (E.M.); (C.B.); (M.C.S.); (J.M.P.); (D.R.R.-G.); (Y.d.C.R.G.); (J.M.P.); (S.M.)
| | - Cecilia Borassi
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; (E.M.); (C.B.); (M.C.S.); (J.M.P.); (D.R.R.-G.); (Y.d.C.R.G.); (J.M.P.); (S.M.)
| | - Mariana Carignani Sardoy
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; (E.M.); (C.B.); (M.C.S.); (J.M.P.); (D.R.R.-G.); (Y.d.C.R.G.); (J.M.P.); (S.M.)
| | - Philippe Ranocha
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 24, Chemin de Borde-Rouge, 31320 Auzeville-Tolosane, France; (P.R.); (C.D.)
| | - Ariel A. Aptekmann
- Departamento de Fisiología, Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3). Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina; (A.A.A.); (A.D.N.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (IQUIBICEN-CONICET), Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Mauro Bringas
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (INQUIMAE-CONICET), Buenos Aires C1428EGA, Argentina; (M.B.); (L.C.)
| | - Janice Pennington
- Laboratory of Cell and Molecular Biology, University of Wisconsin, Madison and Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI 53706, USA; (J.P.); (J.P.-V.); (M.S.O.)
| | - Julio Paez-Valencia
- Laboratory of Cell and Molecular Biology, University of Wisconsin, Madison and Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI 53706, USA; (J.P.); (J.P.-V.); (M.S.O.)
| | - Javier Martínez Pacheco
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; (E.M.); (C.B.); (M.C.S.); (J.M.P.); (D.R.R.-G.); (Y.d.C.R.G.); (J.M.P.); (S.M.)
| | - Diana R. Rodríguez-Garcia
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; (E.M.); (C.B.); (M.C.S.); (J.M.P.); (D.R.R.-G.); (Y.d.C.R.G.); (J.M.P.); (S.M.)
| | - Yossmayer del Carmen Rondón Guerrero
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; (E.M.); (C.B.); (M.C.S.); (J.M.P.); (D.R.R.-G.); (Y.d.C.R.G.); (J.M.P.); (S.M.)
| | - Juan Manuel Peralta
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; (E.M.); (C.B.); (M.C.S.); (J.M.P.); (D.R.R.-G.); (Y.d.C.R.G.); (J.M.P.); (S.M.)
| | - Margaret Fleming
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878, USA; (M.F.); (P.A.B.)
| | - John W. Mishler-Elmore
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA; (J.W.M.-E.); (M.H.)
| | - Silvina Mangano
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; (E.M.); (C.B.); (M.C.S.); (J.M.P.); (D.R.R.-G.); (Y.d.C.R.G.); (J.M.P.); (S.M.)
| | - Francisca Blanco-Herrera
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8320000, Chile;
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello Santiago, Santiago 8370146, Chile
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio) and Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile
| | - Patricia A. Bedinger
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878, USA; (M.F.); (P.A.B.)
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 24, Chemin de Borde-Rouge, 31320 Auzeville-Tolosane, France; (P.R.); (C.D.)
| | - Luciana Capece
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (INQUIMAE-CONICET), Buenos Aires C1428EGA, Argentina; (M.B.); (L.C.)
| | - Alejandro D. Nadra
- Departamento de Fisiología, Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3). Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina; (A.A.A.); (A.D.N.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (IQUIBICEN-CONICET), Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Michael Held
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA; (J.W.M.-E.); (M.H.)
| | - Marisa S. Otegui
- Laboratory of Cell and Molecular Biology, University of Wisconsin, Madison and Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI 53706, USA; (J.P.); (J.P.-V.); (M.S.O.)
- Departments of Botany and Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - José M. Estevez
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; (E.M.); (C.B.); (M.C.S.); (J.M.P.); (D.R.R.-G.); (Y.d.C.R.G.); (J.M.P.); (S.M.)
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello Santiago, Santiago 8370146, Chile
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio) and Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile
| |
Collapse
|
6
|
Blaschek L, Pesquet E. Phenoloxidases in Plants-How Structural Diversity Enables Functional Specificity. FRONTIERS IN PLANT SCIENCE 2021; 12:754601. [PMID: 34659324 PMCID: PMC8517187 DOI: 10.3389/fpls.2021.754601] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/09/2021] [Indexed: 05/23/2023]
Abstract
The metabolism of polyphenolic polymers is essential to the development and response to environmental changes of organisms from all kingdoms of life, but shows particular diversity in plants. In contrast to other biopolymers, whose polymerisation is catalysed by homologous gene families, polyphenolic metabolism depends on phenoloxidases, a group of heterogeneous oxidases that share little beyond the eponymous common substrate. In this review, we provide an overview of the differences and similarities between phenoloxidases in their protein structure, reaction mechanism, substrate specificity, and functional roles. Using the example of laccases (LACs), we also performed a meta-analysis of enzyme kinetics, a comprehensive phylogenetic analysis and machine-learning based protein structure modelling to link functions, evolution, and structures in this group of phenoloxidases. With these approaches, we generated a framework to explain the reported functional differences between paralogs, while also hinting at the likely diversity of yet undescribed LAC functions. Altogether, this review provides a basis to better understand the functional overlaps and specificities between and within the three major families of phenoloxidases, their evolutionary trajectories, and their importance for plant primary and secondary metabolism.
Collapse
|
7
|
The Cell Wall Proteome of Craterostigma plantagineum Cell Cultures Habituated to Dichlobenil and Isoxaben. Cells 2021; 10:cells10092295. [PMID: 34571944 PMCID: PMC8468770 DOI: 10.3390/cells10092295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
The remarkable desiccation tolerance of the vegetative tissues in the resurrection species Craterostigma plantagineum (Hochst.) is favored by its unique cell wall folding mechanism that allows the ordered and reversible shrinking of the cells without damaging neither the cell wall nor the underlying plasma membrane. The ability to withstand extreme drought is also maintained in abscisic acid pre-treated calli, which can be cultured both on solid and in liquid culture media. Cell wall research has greatly advanced, thanks to the use of inhibitors affecting the biosynthesis of e.g., cellulose, since they allowed the identification of the compensatory mechanisms underlying habituation. Considering the innate cell wall plasticity of C. plantagineum, the goal of this investigation was to understand whether habituation to the cellulose biosynthesis inhibitors dichlobenil and isoxaben entailed or not identical mechanisms as known for non-resurrection species and to decipher the cell wall proteome of habituated cells. The results showed that exposure of C. plantagineum calli/cells triggered abnormal phenotypes, as reported in non-resurrection species. Additionally, the data demonstrated that it was possible to habituate Craterostigma cells to dichlobenil and isoxaben and that gene expression and protein abundance did not follow the same trend. Shotgun and gel-based proteomics revealed a common set of proteins induced upon habituation, but also identified candidates solely induced by habituation to one of the two inhibitors. Finally, it is hypothesized that alterations in auxin levels are responsible for the increased abundance of cell wall-related proteins upon habituation.
Collapse
|
8
|
Eljebbawi A, Guerrero YDCR, Dunand C, Estevez JM. Highlighting reactive oxygen species as multitaskers in root development. iScience 2021; 24:101978. [PMID: 33490891 PMCID: PMC7808913 DOI: 10.1016/j.isci.2020.101978] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Reactive oxygen species (ROS) are naturally produced by several redox reactions during plant regular metabolism such as photosynthesis and respiration. Due to their chemical properties and high reactivity, ROS were initially described as detrimental for cells during oxidative stress. However, they have been further recognized as key players in numerous developmental and physiological processes throughout the plant life cycle. Recent studies report the important role of ROS as growth regulators during plant root developmental processes such as in meristem maintenance, in root elongation, and in lateral root, root hair, endodermis, and vascular tissue differentiation. All involve multifaceted interplays between steady-state levels of ROS with transcriptional regulators, phytohormones, and nutrients. In this review, we attempt to summarize recent findings about how ROS are involved in multiple stages of plant root development during cell proliferation, elongation, and differentiation.
Collapse
Affiliation(s)
- Ali Eljebbawi
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 31326 Castanet Tolosan, France
| | | | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 31326 Castanet Tolosan, France
| | - José Manuel Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, CP C1405BWE, Argentina
- Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida (FCsV), Universidad Andres Bello and Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|
9
|
Kidwai M, Ahmad IZ, Chakrabarty D. Class III peroxidase: an indispensable enzyme for biotic/abiotic stress tolerance and a potent candidate for crop improvement. PLANT CELL REPORTS 2020; 39:1381-1393. [PMID: 32886139 DOI: 10.1007/s00299-020-02588-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/26/2020] [Indexed: 05/24/2023]
Abstract
Class III peroxidases are secretory enzymes which belong to a ubiquitous multigene family in higher plants and have been identified to play role in a broad range of physiological and developmental processes. Potentially, it is involved in generation and detoxification of hydrogen peroxide (H2O2), and their subcellular localization reflects through three different cycles, namely peroxidative cycle, oxidative and hydroxylic cycles to maintain the ROS level inside the cell. Being an antioxidant, class III peroxidases are an important initial defence adapted by plants to cope with biotic and abiotic stresses. Both these stresses have become a major concern in the field of agriculture due to their devastating effect on plant growth and development. Despite numerous studies on plant defence against both the stresses, only a handful role of class III peroxidases have been uncovered by its functional characterization. This review will cover our current understanding on class III peroxidases and the signalling involved in their regulation under both types of stresses. The review will give a view of class III peroxidases and highlights their indispensable role under stress conditions. Its future application will be discussed to showcase their importance in crop improvement by genetic manipulation and by transcriptome analysis.
Collapse
Affiliation(s)
- Maria Kidwai
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, Uttar Pradesh, India
- Integral University, Uttar Pradesh, Kursi road, Lucknow, 226001, India
| | | | - Debasis Chakrabarty
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
10
|
Hernaández-Esquivel AA, Castro-Mercado E, Valencia-Cantero E, Alexandre G, García-Pineda E. Application of Azospirillum brasilense Lipopolysaccharides to Promote Early Wheat Plant Growth and Analysis of Related Biochemical Responses. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.579976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
Xiao H, Wang C, Khan N, Chen M, Fu W, Guan L, Leng X. Genome-wide identification of the class III POD gene family and their expression profiling in grapevine (Vitis vinifera L). BMC Genomics 2020; 21:444. [PMID: 32600251 PMCID: PMC7325284 DOI: 10.1186/s12864-020-06828-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/15/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The class III peroxidases (PODs) are involved in a broad range of physiological activities, such as the formation of lignin, cell wall components, defense against pathogenicity or herbivore, and abiotic stress tolerance. The POD family members have been well-studied and characterized by bioinformatics analysis in several plant species, but no previous genome-wide analysis has been carried out of this gene family in grapevine to date. RESULTS We comprehensively identified 47 PODs in the grapevine genome and are further classified into 7 subgroups based on their phylogenetic analysis. Results of motif composition and gene structure organization analysis revealed that PODs in the same subgroup shared similar conjunction while the protein sequences were highly conserved. Intriguingly, the integrated analysis of chromosomal mapping and gene collinearity analysis proposed that both dispersed and tandem duplication events contributed to the expansion of PODs in grapevine. Also, the gene duplication analysis suggested that most of the genes (20) were dispersed followed by (15) tandem, (9) segmental or whole-genome duplication, and (3) proximal, respectively. The evolutionary analysis of PODs, such as Ka/Ks ratio of the 15 duplicated gene pairs were less than 1.00, indicated that most of the gene pairs exhibiting purifying selection and 7 pairs underwent positive selection with value greater than 1.00. The Gene Ontology Enrichment (GO), Kyoto Encyclopedia of Genes Genomics (KEGG) analysis, and cis-elements prediction also revealed the positive functions of PODs in plant growth and developmental activities, and response to stress stimuli. Further, based on the publically available RNA-sequence data, the expression patterns of PODs in tissue-specific response during several developmental stages revealed diverged expression patterns. Subsequently, 30 genes were selected for RT-PCR validation in response to (NaCl, drought, and ABA), which showed their critical role in grapevine. CONCLUSIONS In conclusion, we predict that these results will lead to novel insights regarding genetic improvement of grapevine.
Collapse
Affiliation(s)
- Huilin Xiao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P. R. China.,Yantai Academy of Agricultural Sciences, Yantai, 264000, P. R. China
| | - Chaoping Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Nadeem Khan
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, Ontario, K1A 0C6, Canada.,Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Mengxia Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Weihong Fu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Le Guan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P. R. China.
| | - Xiangpeng Leng
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, P. R. China.
| |
Collapse
|
12
|
Choudhary A, Kumar A, Kaur N. ROS and oxidative burst: Roots in plant development. PLANT DIVERSITY 2020; 42:33-43. [PMID: 32140635 PMCID: PMC7046507 DOI: 10.1016/j.pld.2019.10.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/02/2019] [Accepted: 10/10/2019] [Indexed: 05/03/2023]
Abstract
Reactive oxygen species (ROS) are widely generated in various redox reactions in plants. In earlier studies, ROS were considered toxic byproducts of aerobic metabolism. In recent years, it has become clear that ROS act as plant signaling molecules that participate in various processes such as growth and development. Several studies have elucidated the roles of ROS from seed germination to senescence. However, there is much to discover about the diverse roles of ROS as signaling molecules and their mechanisms of sensing and response. ROS may provide possible benefits to plant physiological processes by supporting cellular proliferation in cells that maintain basal levels prior to oxidative effects. Although ROS are largely perceived as either negative by-products of aerobic metabolism or makers for plant stress, elucidating the range of functions that ROS play in growth and development still require attention.
Collapse
|
13
|
Jin T, Sun Y, Zhao R, Shan Z, Gai J, Li Y. Overexpression of Peroxidase Gene GsPRX9 Confers Salt Tolerance in Soybean. Int J Mol Sci 2019; 20:E3745. [PMID: 31370221 PMCID: PMC6695911 DOI: 10.3390/ijms20153745] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/20/2019] [Accepted: 07/24/2019] [Indexed: 12/15/2022] Open
Abstract
Peroxidases play prominent roles in antioxidant responses and stress tolerance in plants; however, their functions in soybean tolerance to salt stress remain unclear. Here, we investigated the role of a peroxidase gene from the wild soybean (Glycine soja), GsPRX9, in soybean tolerance to salt stress. GsPRX9 gene expression was induced by salt treatment in the roots of both salt-tolerant and -sensitive soybean varieties, and its relative expression level in the roots of salt-tolerant soybean varieties showed a significantly higher increase than in salt-sensitive varieties after NaCl treatment, suggesting its possible role in soybean response to salt stress. GsPRX9-overexpressing yeast (strains of INVSc1 and G19) grew better than the control under salt and H2O2 stress, and GsPRX9-overexpressing soybean composite plants showed higher shoot fresh weight and leaf relative water content than control plants after NaCl treatment. Moreover, the GsPRX9-overexpressing soybean hairy roots had higher root fresh weight, primary root length, activities of peroxidase and superoxide dismutase, and glutathione level, but lower H2O2 content than those in control roots under salt stress. These findings suggest that the overexpression of the GsPRX9 gene enhanced the salt tolerance and antioxidant response in soybean. This study would provide new insights into the role of peroxidase in plant tolerance to salt stress.
Collapse
Affiliation(s)
- Ting Jin
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybeans (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Yangyang Sun
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybeans (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Ranran Zhao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybeans (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhong Shan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybeans (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Junyi Gai
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybeans (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybeans (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
14
|
Zhu T, Xin F, Wei S, Liu Y, Han Y, Xie J, Ding Q, Ma L. Genome-wide identification, phylogeny and expression profiling of class III peroxidases gene family in Brachypodium distachyon. Gene 2019; 700:149-162. [DOI: 10.1016/j.gene.2019.02.103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/04/2019] [Accepted: 02/21/2019] [Indexed: 11/16/2022]
|
15
|
Yang Y, Ma L, Zeng H, Chen LY, Zheng Y, Li CX, Yang ZP, Wu N, Mu X, Dai CY, Guan HL, Cui XM, Liu Y. iTRAQ-based proteomics screen for potential regulators of wheat (Triticum aestivum L.) root cell wall component response to Al stress. Gene 2018; 675:301-311. [DOI: 10.1016/j.gene.2018.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 12/14/2022]
|
16
|
Saini S, Kaur N, Pati PK. Reactive oxygen species dynamics in roots of salt sensitive and salt tolerant cultivars of rice. Anal Biochem 2018; 550:99-108. [PMID: 29704477 DOI: 10.1016/j.ab.2018.04.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/12/2018] [Accepted: 04/19/2018] [Indexed: 12/11/2022]
Abstract
Salinity stress is one of the major constraints for growth and survival of plants that affects rice productivity worldwide. Hence, in the present study, roots of two contrasting salinity sensitive cultivars, IR64 (IR64, salt sensitive) and Luna Suvarna (LS, salt tolerant) were compared with regard to the levels of reactive oxygen species (ROS) to derive clues for their differential salt stress adaptation mechanisms. In our investigation, the tolerant cultivar exhibited longer primary roots, more lateral roots, higher root number leading to increased root biomass, with respect to IR64. It was observed that LS roots maintained higher level of H2O2 in comparison to IR64. The activities of various enzymes involved in enzymatic antioxidant defense mechanism (SOD, CAT, GPX, DHAR and MDHAR) were found to be greater in LS roots. Further, the higher transcript level accumulation of genes encoding ROS generating (RbohA, RbohD and RbohE) and scavenging enzymes (Fe-SOD, Chloroplastic Cu/Zn-SOD, CAT and DHAR) were noticed in the roots of tolerant cultivar, LS. Moreover, the content of other stress markers such as total protein and proline were also elevated in LS roots. While, the expression of proline biosynthesis gene (P5CS) and proline catabolism gene (PDH) was observed to be lower in LS.
Collapse
Affiliation(s)
- Shivani Saini
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Navdeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
17
|
Vallejo-Ochoa J, López-Marmolejo M, Hernández-Esquivel AA, Méndez-Gómez M, Suárez-Soria LN, Castro-Mercado E, García-Pineda E. Early plant growth and biochemical responses induced by Azospirillum brasilense Sp245 lipopolysaccharides in wheat (Triticum aestivum L.) seedlings are attenuated by procyanidin B2. PROTOPLASMA 2018; 255:685-694. [PMID: 29110138 DOI: 10.1007/s00709-017-1180-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/26/2017] [Indexed: 06/07/2023]
Abstract
This study analyzes the effects of procyanidin B2 on early wheat plant growth and plant biochemical responses promoted by lipopolysaccharides (LPS) derived from the rhizobacteria Azospirillum brasilense Sp245. Measurements of leaf, root length, fresh weight, and dry weight showed in vitro plant growth stimulation 4 days after treatment with A. brasilense as well as LPS. Superoxide anion (O2·-) and hydrogen peroxide (H2O2) levels increased in seedling roots treated with LPS (100 μg mL-1). The chlorophyll content in leaf decreased while the starch content increased 24 h after treatment in seedling roots. The LPS treatment induced a high increase in total peroxidase (POX) (EC 1.11.1.7) activity and ionically bound cell wall POX content in roots, when compared to respective controls. Early plant growth and biochemical responses observed in wheat seedlings treated with LPS were inhibited by the addition of procyanidin B2 (5 μg mL-1), a B type proanthocyanidin (PAC), plant-derived polyphenolic compound with binding properties of LPS. All results suggest first that the ionically bound cell wall POX enzymes could be a molecular target of A. brasilense LPS, and second that the recognition or association of LPS by plant cells is required to activate plant responses. This last event could play a critical role during plant growth regulation by A. brasilense LPS.
Collapse
Affiliation(s)
- Juan Vallejo-Ochoa
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edificio A1´, 58040, Morelia, Michoacan, Mexico
| | - Mariel López-Marmolejo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edificio A1´, 58040, Morelia, Michoacan, Mexico
| | - Alma Alejandra Hernández-Esquivel
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edificio A1´, 58040, Morelia, Michoacan, Mexico
| | - Manuel Méndez-Gómez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edificio A1´, 58040, Morelia, Michoacan, Mexico
| | - Laura Nicolasa Suárez-Soria
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edificio A1´, 58040, Morelia, Michoacan, Mexico
| | - Elda Castro-Mercado
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edificio A1´, 58040, Morelia, Michoacan, Mexico
| | - Ernesto García-Pineda
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edificio A1´, 58040, Morelia, Michoacan, Mexico.
| |
Collapse
|
18
|
Soares ALC, Geilfus CM, Carpentier SC. Genotype-Specific Growth and Proteomic Responses of Maize Toward Salt Stress. FRONTIERS IN PLANT SCIENCE 2018; 9:661. [PMID: 29899749 PMCID: PMC5989331 DOI: 10.3389/fpls.2018.00661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/30/2018] [Indexed: 05/20/2023]
Abstract
Salt stress in plants triggers complex physiological responses that are genotype specific. Many of these responses are either not yet described or not fully understood or both. In this work, we phenotyped three maize genotypes of the CIMMYT gene bank alongside the reference B73 genotype (NCRPIS - United States) under both control and salt-stressed conditions. We have ranked their growth potential and we observed significant differences in Na+ and Cl- ion accumulation. Genotype CML421 showed the slowest growth, while CML451 had the lowest accumulation of ions in its leaves. The phenotyping defined the right timing for the proteomics analysis, allowing us to compare the contrasting genotypes. In general 1,747 proteins were identified, of which 209 were significantly more abundant in response to salt stress. The five most significantly enriched annotations that positively correlated with stress were oxidation reduction, catabolic process, response to chemical stimulus, translational elongation and response to water. We observed a higher abundance of proteins involved in reactions to oxidative stress, dehydration, respiration, and translation. The five most significantly enriched annotations negatively correlated with stress were nucleosome organization, chromatin assembly, protein-DNA complex assembly, DNA packaging and nucleosome assembly. The genotypic analysis revealed 52 proteins that were correlated to the slow-growing genotype CML421. Their annotations point toward cellular dehydration and oxidative stress. Three root proteins correlated to the CML451 genotype were annotated to protein synthesis and ion compartmentalization. In conclusion, our results highlight the importance of the anti-oxidative system for acclimatization to salt stress and identify potential genotypic marker proteins involved in salt-stress responses.
Collapse
Affiliation(s)
- Ana L. C. Soares
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven, Leuven, Belgium
| | - Christoph-Martin Geilfus
- Controlled Environment Horticulture, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt University of Berlin, Berlin, Germany
| | - Sebastien C. Carpentier
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven, Leuven, Belgium
- Genetic Resources, Bioversity International, Leuven, Belgium
- SYBIOMA, KU Leuven, Leuven, Belgium
- *Correspondence: Sebastien C. Carpentier,
| |
Collapse
|
19
|
Bielach A, Hrtyan M, Tognetti VB. Plants under Stress: Involvement of Auxin and Cytokinin. Int J Mol Sci 2017; 18:E1427. [PMID: 28677656 PMCID: PMC5535918 DOI: 10.3390/ijms18071427] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023] Open
Abstract
Plant growth and development are critically influenced by unpredictable abiotic factors. To survive fluctuating changes in their environments, plants have had to develop robust adaptive mechanisms. The dynamic and complementary actions of the auxin and cytokinin pathways regulate a plethora of developmental processes, and their ability to crosstalk makes them ideal candidates for mediating stress-adaptation responses. Other crucial signaling molecules responsible for the tremendous plasticity observed in plant morphology and in response to abiotic stress are reactive oxygen species (ROS). Proper temporal and spatial distribution of ROS and hormone gradients is crucial for plant survival in response to unfavorable environments. In this regard, the convergence of ROS with phytohormone pathways acts as an integrator of external and developmental signals into systemic responses organized to adapt plants to their environments. Auxin and cytokinin signaling pathways have been studied extensively. Nevertheless, we do not yet understand the impact on plant stress tolerance of the sophisticated crosstalk between the two hormones. Here, we review current knowledge on the function of auxin and cytokinin in redirecting growth induced by abiotic stress in order to deduce their potential points of crosstalk.
Collapse
Affiliation(s)
- Agnieszka Bielach
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Czech 62500, Brno, Czech Republic.
| | - Monika Hrtyan
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Czech 62500, Brno, Czech Republic.
| | - Vanesa B Tognetti
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Czech 62500, Brno, Czech Republic.
| |
Collapse
|
20
|
Liu XY, Li J, Liu MM, Yao Q, Chen JZ. Transcriptome Profiling to Understand the Effect of Citrus Rootstocks on the Growth of 'Shatangju' Mandarin. PLoS One 2017; 12:e0169897. [PMID: 28081213 PMCID: PMC5231354 DOI: 10.1371/journal.pone.0169897] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 12/24/2016] [Indexed: 01/01/2023] Open
Abstract
To obtain insight into potential mechanisms underlying the influence of rootstock on scion growth, we performed a comparative analysis of 'Shatangju' mandarin grafted onto 5 rootstocks: Fragrant orange (Citrus junons Sieb. ex. Tanaka), Red tangerine (Citrus reticulata Blanco), 'Shatangju' mandarin (Citrus reticulata Blanco), Rough lemon (Citrus jambhiri Lush) and Canton lemon (Citrus limonia Osbeck). The tree size of 'Shatangju' mandarin grafted onto Canton lemon and Rough lemon were the largest, followed by self-rooted rootstock trees, and the lowest tree sizes correspond to ones grafted on Red tangerine and Fragrant orange rootstocks. The levels of indoleacetic acid (IAA) and gibberellin (GA) were significantly and positively related to growth vigor. The differences of gene expression in leaves of trees grafted onto Red tangerine, Canton lemon and 'Shatangju' mandarin were analyzed by RNA-Seq. Results showed that more differentially expressed genes involved in oxidoreductase function, hormonal signal transduction and the glycolytic pathway were enriched in 'Red tangerine vs Canton lemon'. qRT-PCR analysis showed that expression levels of ARF1, ARF8, GH3 and IAA4 were negatively correlated with the growth vigor and IAA content. The metabolism of GA was influenced by the differential expression of KO1 and GA2OX1 in grafted trees. In addition, most of antioxidant enzyme genes were up-regulated in leaves of trees grafted onto Red tangerine, resulting in a higher peroxidase activity. We concluded that different rootstocks significantly affected the expression of genes involved in auxin signal transduction pathway and GA biosynthesis pathway in the grafted plants, and then regulated the hormone levels and their signal pathways.
Collapse
Affiliation(s)
- Xiang-Yu Liu
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, China
- Qingdao Agricultural University, Qingdao, Shandong, China
| | - Juan Li
- Department of Horticulture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Meng-Meng Liu
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qing Yao
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jie-Zhong Chen
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|
21
|
Shigeto J, Tsutsumi Y. Diverse functions and reactions of class III peroxidases. THE NEW PHYTOLOGIST 2016; 209:1395-402. [PMID: 26542837 DOI: 10.1111/nph.13738] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/28/2015] [Indexed: 05/22/2023]
Abstract
Higher plants contain plant-specific peroxidases (class III peroxidase; Prxs) that exist as large multigene families. Reverse genetic studies to characterize the function of each Prx have revealed that Prxs are involved in lignification, cell elongation, stress defense and seed germination. However, the underlying mechanisms associated with plant phenotypes following genetic engineering of Prx genes are not fully understood. This is because Prxs can function as catalytic enzymes that oxidize phenolic compounds while consuming hydrogen peroxide and/or as generators of reactive oxygen species. Moreover, biochemical efforts to characterize Prxs responsible for lignin polymerization have revealed specialized activities of Prxs. In conclusion, not only spatiotemporal regulation of gene expression and protein distribution, but also differentiated oxidation properties of each Prx define the function of this class of peroxidases.
Collapse
Affiliation(s)
- Jun Shigeto
- Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Yuji Tsutsumi
- Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| |
Collapse
|
22
|
Yolcu S, Ozdemir F, Güler A, Bor M. Histone acetylation influences the transcriptional activation of POX in Beta vulgaris L. and Beta maritima L. under salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 100:37-46. [PMID: 26773543 DOI: 10.1016/j.plaphy.2015.12.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/12/2015] [Accepted: 12/31/2015] [Indexed: 05/10/2023]
Abstract
Acetylation of histone proteins is a type of chromatin modification which facilitates the activation of genes. Recent studies brought up the importance of this reversible and rapid process for the regulation of gene expression especially in plant defense against a variety of environmental stresses. Deciphering the exact mechanisms of chromatin modifications under abiotic stress conditions is important for improving crop plants' performance and yield. In a previous study we compared the salt stress responses of Beta vulgaris (sugar beet) and Beta maritima (wild beet). In accordance with those results we suggested that chromatin remodeling can be an active process in the regulation of genes related to salt stress tolerance of these plants. Therefore we performed ChIP assay in control and salt stressed (250 and 500 mM NaCl) plants and compared the enrichment of acetylation in the associated chromatin sites. We found that the transcriptional activation of one peroxidase (POX) encoding gene was associated with the elevated levels of acetylation in H3K9 and H3K27 sites. The acetylation patterns were remarkably different between two species in which the highest acetylation levels were found at H3K9 and H3K27 in wild beet and sugar beet respectively.
Collapse
Affiliation(s)
- Seher Yolcu
- Faculty of Science, Department of Biology, Ege University, 35100 Bornova, Izmir, Turkey
| | - Filiz Ozdemir
- Faculty of Science, Department of Biology, Ege University, 35100 Bornova, Izmir, Turkey
| | - Aybüke Güler
- Faculty of Science, Department of Biology, Ege University, 35100 Bornova, Izmir, Turkey
| | - Melike Bor
- Faculty of Science, Department of Biology, Ege University, 35100 Bornova, Izmir, Turkey.
| |
Collapse
|
23
|
Singh R, Singh S, Parihar P, Mishra RK, Tripathi DK, Singh VP, Chauhan DK, Prasad SM. Reactive Oxygen Species (ROS): Beneficial Companions of Plants' Developmental Processes. FRONTIERS IN PLANT SCIENCE 2016; 7:1299. [PMID: 27729914 PMCID: PMC5037240 DOI: 10.3389/fpls.2016.01299] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 08/15/2016] [Indexed: 05/20/2023]
Abstract
Reactive oxygen species (ROS) are generated inevitably in the redox reactions of plants, including respiration and photosynthesis. In earlier studies, ROS were considered as toxic by-products of aerobic pathways of the metabolism. But in recent years, concept about ROS has changed because they also participate in developmental processes of plants by acting as signaling molecules. In plants, ROS regulate many developmental processes such as cell proliferation and differentiation, programmed cell death, seed germination, gravitropism, root hair growth and pollen tube development, senescence, etc. Despite much progress, a comprehensive update of advances in the understanding of the mechanisms evoked by ROS that mediate in cell proliferation and development are fragmentry and the matter of ROS perception and the signaling cascade remains open. Therefore, keeping in view the above facts, an attempt has been made in this article to summarize the recent findings regarding updates made in the regulatory action of ROS at various plant developmental stages, which are still not well-known.
Collapse
Affiliation(s)
- Rachana Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Samiksha Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Parul Parihar
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Rohit K. Mishra
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Durgesh K. Tripathi
- DD Pant Interdisciplinary Research Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Vijay P. Singh
- Government Ramanuj Pratap Singhdev Post Graduate CollegeBaikunthpur, India
- *Correspondence: Vijay P. Singh, Sheo M. Prasad,
| | - Devendra K. Chauhan
- DD Pant Interdisciplinary Research Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Sheo M. Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
- *Correspondence: Vijay P. Singh, Sheo M. Prasad,
| |
Collapse
|
24
|
Francoz E, Ranocha P, Nguyen-Kim H, Jamet E, Burlat V, Dunand C. Roles of cell wall peroxidases in plant development. PHYTOCHEMISTRY 2015; 112:15-21. [PMID: 25109234 DOI: 10.1016/j.phytochem.2014.07.020] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 07/15/2014] [Accepted: 07/17/2014] [Indexed: 05/18/2023]
Abstract
Class III peroxidases (CIII Prxs) are plant specific proteins. Based on in silico prediction and experimental evidence, they are mainly considered as cell wall localized proteins. Thanks to their dual hydroxylic and peroxidative cycles, they can produce ROS as well as oxidize cell wall aromatic compounds within proteins and phenolics that are either free or linked to polysaccharides. Thus, they are tightly associated to cell wall loosening and stiffening. They are members of large multigenic families, mostly due to an elevated rate of gene duplication in higher plants, resulting in a high risk of functional redundancy between them. However, proteomic and (micro)transcriptomic analyses have shown that CIII Prx expression profiles are highly specific. Based on these omic analyses, several reverse genetic studies have demonstrated the importance of the spatio-temporal regulation of their expression and ability to interact with cell wall microdomains in order to achieve specific activity in vivo. Each CIII Prx isoform could have specific functions in muro and this could explain the conservation of a high number of genes in plant genomes.
Collapse
Affiliation(s)
- Edith Francoz
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326 Castanet-Tolosan, France; CNRS, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Philippe Ranocha
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326 Castanet-Tolosan, France; CNRS, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Huan Nguyen-Kim
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326 Castanet-Tolosan, France; CNRS, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Elisabeth Jamet
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326 Castanet-Tolosan, France; CNRS, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France.
| | - Vincent Burlat
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326 Castanet-Tolosan, France; CNRS, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Christophe Dunand
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326 Castanet-Tolosan, France; CNRS, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France.
| |
Collapse
|
25
|
First TILLING platform in Cucurbita pepo: a new mutant resource for gene function and crop improvement. PLoS One 2014; 9:e112743. [PMID: 25386735 PMCID: PMC4227871 DOI: 10.1371/journal.pone.0112743] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/14/2014] [Indexed: 11/19/2022] Open
Abstract
Although the availability of genetic and genomic resources for Cucurbita pepo has increased significantly, functional genomic resources are still limited for this crop. In this direction, we have developed a high throughput reverse genetic tool: the first TILLING (Targeting Induced Local Lesions IN Genomes) resource for this species. Additionally, we have used this resource to demonstrate that the previous EMS mutant population we developed has the highest mutation density compared with other cucurbits mutant populations. The overall mutation density in this first C. pepo TILLING platform was estimated to be 1/133 Kb by screening five additional genes. In total, 58 mutations confirmed by sequencing were identified in the five targeted genes, thirteen of which were predicted to have an impact on the function of the protein. The genotype/phenotype correlation was studied in a peroxidase gene, revealing that the phenotype of seedling homozygous for one of the isolated mutant alleles was albino. These results indicate that the TILLING approach in this species was successful at providing new mutations and can address the major challenge of linking sequence information to biological function and also the identification of novel variation for crop breeding.
Collapse
|
26
|
Araújo P, Cesarino I, Mayer JLS, Ferrari IF, Kiyota E, Sawaya ACHF, Paes Leme AF, Mazzafera P. A model system to study the lignification process in Eucalyptus globulus. PHYSIOLOGIA PLANTARUM 2014; 152:17-31. [PMID: 24444279 DOI: 10.1111/ppl.12152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 12/09/2013] [Indexed: 05/06/2023]
Abstract
Recalcitrance of plant biomass is closely related to the presence of the phenolic heteropolymer lignin in secondary cell walls, which has a negative effect on forage digestibility, biomass-to-biofuels conversion and chemical pulping. The genus Eucalyptus is the main source of wood for pulp and paper industry. However, when compared to model plants such as Arabidopsis thaliana and poplar, relatively little is known about lignin biosynthesis in Eucalyptus and only a few genes were functionally characterized. An efficient, fast and inexpensive in vitro system was developed to study lignification in Eucalyptus globulus and to evaluate the potential role of candidate genes in this biological process. Seedlings were grown in four different conditions, in the presence or absence of light and with or without sucrose in the growth medium, and several aspects of lignin metabolism were evaluated. Our results showed that light and, to a lesser extent, sucrose induced lignin biosynthesis, which was followed by changes in S/G ratio, lignin oligomers accumulation and gene expression. In addition, higher total peroxidase activity and differential isoperoxidase profile were observed when seedlings were grown in the presence of light and sucrose. Peptide sequencing allowed the identification of differentially expressed peroxidases, which can be considered potential candidate class III peroxidases involved in lignin polymerization in E. globulus.
Collapse
Affiliation(s)
- Pedro Araújo
- Departamento de Biologia Vegetal, Instituto de Biologia, CP 6109, Universidade Estadual de Campinas, 13083-970 Campinas, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhao X, Si J, Miao Y, Peng Y, Wang L, Cai X. Comparative proteomics of Euphorbia kansui Liou milky sap at two different developmental stages. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 79:60-5. [PMID: 24681756 DOI: 10.1016/j.plaphy.2014.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/06/2014] [Indexed: 05/09/2023]
Abstract
Euphorbia kansui Liou is a unique traditional Chinese medicinal herb. Its milky sap proteins play important roles in laticifer development, synthesis and transport of its biologically active substances. A proteomic approach was applied to analyze the E. kansui latex proteins related to laticifer development and secondary metabolite synthesis by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and two-dimensional polyacrylamide gel electrophoresis. A total of 125 milky sap proteins associated with development of laticifers, disease and defense, and general metabolism were identified, and 19 differentially expressed proteins at two different developmental stages of laticifers were successfully detected. Peroxidase, cytochrome P450 mono-oxygenase superfamily, lipoxygenase, and multidrug resistance protein ABC transporter family may be involved in laticifer development, secondary metabolite synthesis and transport, and plant physiology.
Collapse
Affiliation(s)
- Xueyan Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an 710069, China
| | - Jingjing Si
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an 710069, China
| | - Yan Miao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an 710069, China
| | - Yong Peng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an 710069, China
| | - Li Wang
- School of Biological Science and Technology, Central South University, Changsha 410013, China
| | - Xia Cai
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an 710069, China.
| |
Collapse
|
28
|
Jin J, Hewezi T, Baum TJ. Arabidopsis peroxidase AtPRX53 influences cell elongation and susceptibility to Heterodera schachtii. PLANT SIGNALING & BEHAVIOR 2011; 6:1778-86. [PMID: 22212122 PMCID: PMC3329352 DOI: 10.4161/psb.6.11.17684] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cyst nematodes establish and maintain feeding sites (syncytia) in the roots of host plants by altering expression of host genes. Among these genes are members of the large gene family of class III peroxidases, which have reported functions in a variety of biological processes. In this study, we used Arabidopsis-Heterodera schachtii as a model system to functionally characterize peroxidase 53 (AtPRX53). Promoter assays showed that under non-infected conditions AtPRX53 is expressed mainly in the root, the hypocotyl and the base of the pistil. Under infected conditions, the AtPRX53 promoter showed upregulation at the nematode penetration sites and in their migration paths. Interestingly, strong GUS activity was observed in H. schachtii-induced syncytia during the early stage of infection and remained strong in the syncytia of third-stage juveniles. Also, AtPRX53 showed upregulation in response to wounding and jasmonic acid treatments. Manipulation of AtPRX53 expression through overexpression and knockout mutation affected both plant morphology and nematode susceptibility. While AtPRX53 overexpression lines exhibited short hypocotyls, aberrant flower development and reduced nematode susceptibility to H. schachtii, the atprx53 mutant showed long hypocotyls and a 3-carpel silique phenotype as well as a non significant increase of nematode susceptibility. Taken together these data, therefore, indicate diverse roles of AtPRX53 in the wound response, flower development and syncytium formation.
Collapse
Affiliation(s)
- Jing Jin
- Department of Plant Pathology and Microbiology, Iowa State University; Ames, IA USA
- Molecular, Cellular and Developmental Biology Graduate Program; Iowa State University; Ames, IA USA
| | - Tarek Hewezi
- Department of Plant Pathology and Microbiology, Iowa State University; Ames, IA USA
| | - Thomas J. Baum
- Department of Plant Pathology and Microbiology, Iowa State University; Ames, IA USA
- Molecular, Cellular and Developmental Biology Graduate Program; Iowa State University; Ames, IA USA
| |
Collapse
|
29
|
Simonetti E, Alba E, Montes MJ, Delibes A, López-Braña I. Analysis of ascorbate peroxidase genes expressed in resistant and susceptible wheat lines infected by the cereal cyst nematode, Heterodera avenae. PLANT CELL REPORTS 2010; 29:1169-1178. [PMID: 20690022 DOI: 10.1007/s00299-010-0903-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 06/28/2010] [Accepted: 07/18/2010] [Indexed: 05/29/2023]
Abstract
Changes in ascorbate peroxidase (APX) enzyme activity in response to nematode (Heterodera avenae) attack were studied in roots of three hexaploid wheat lines carrying Cre2, Cre5, or Cre7 nematode resistance genes and the susceptible Triticum aestivum cv. Anza. A spectrophotometric analysis was carried out with root extracts of infected plants 4, 7, 11, and 14 days after nematode inoculation using uninfected plant as control. APX induction in infected resistant genotypes was similar and higher than in the susceptible control. The introgression wheat/Aegilops ventricosa H-93-8 line, carrying the Cre2 gene, and its parental line H-10-15 as susceptible control were used to analyze whether this increase of activity was correlated with the induction of APX gene expression. Genes encoding cytosolic forms of APX were induced in roots of both lines in response to nematode infection. This induction took place both earlier and with greater intensity in the resistant line than in the susceptible one, and it was also higher in the root area at the site of nematode attachment.
Collapse
Affiliation(s)
- Ester Simonetti
- Departamento de Biotecnología, ETS Ing. Agrónomos, UPM, Madrid 28040, Spain
| | | | | | | | | |
Collapse
|
30
|
Simonetti E, Veronico P, Melillo MT, Delibes A, Andrés MF, López-Braña I. Analysis of class III peroxidase genes expressed in roots of resistant and susceptible wheat lines infected by Heterodera avenae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1081-92. [PMID: 19656043 DOI: 10.1094/mpmi-22-9-1081] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The response of resistant wheat-Aegilops ventricosa introgression line H-93-8 and its susceptible parent, Triticum aestivum H-10-15, to Ha71 Spanish population of Heterodera avenae was studied to determine the changes in peroxidase gene expression during incompatible and compatible wheat-nematode interactions. Twenty peroxidase genes were characterized from both 211 expressed sequence tags and 259 genomic DNA clones. Alignment of deduced amino acid sequences and phylogenetic clustering with peroxidases from other plant species showed that these enzymes fall into seven different groups (designated TaPrx108 to TaPrx114) which represent peroxidases secreted to the apoplast by a putative N-terminal peptide signal. TaPrx111, TaPrx112, and TaPrx113 were induced by nematode infection in both genotypes but with differing magnitude and timing. TaPrx112 and TaPrx113 groups increased more in resistant than in susceptible infected lines. In addition, in situ hybridization analyses of genes belonging to TaPrx111, TaPrx112, and TaPrx113 groups revealed a more intense signal in cells close to the vascular cylinder and parenchyma vascular cells of resistant than susceptible wheat when challenged by nematodes. These data seem to suggest that wheat apoplastic peroxidases, because of their different expression in quantity and timing, play different roles in the plant response to nematode infection.
Collapse
|