1
|
Jędrychowska J, Vardanyan V, Wieczor M, Marciniak A, Czub J, Amini R, Jain R, Shen H, Choi H, Kuznicki J, Korzh V. Mutant analysis of Kcng4b reveals how the different functional states of the voltage-gated potassium channel regulate ear development. Dev Biol 2024; 513:50-62. [PMID: 38492873 DOI: 10.1016/j.ydbio.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
The voltage gated (Kv) slow-inactivating delayed rectifier channel regulates the development of hollow organs of the zebrafish. The functional channel consists of the tetramer of electrically active Kcnb1 (Kv2.1) subunits and Kcng4b (Kv6.4) modulatory or electrically silent subunits. The two mutations in zebrafish kcng4b gene - kcng4b-C1 and kcng4b-C2 (Gasanov et al., 2021) - have been studied during ear development using electrophysiology, developmental biology and in silico structural modelling. kcng4b-C1 mutation causes a C-terminal truncation characterized by mild Kcng4b loss-of-function (LOF) manifested by failure of kinocilia to extend and formation of ectopic otoliths. In contrast, the kcng4b-C2-/- mutation causes the C-terminal domain to elongate and the ectopic seventh transmembrane (TM) domain to form, converting the intracellular C-terminus to an extracellular one. Kcng4b-C2 acts as a Kcng4b gain-of-function (GOF) allele. Otoliths fail to develop and kinocilia are reduced in kcng4b-C2-/-. These results show that different mutations of the silent subunit Kcng4 can affect the activity of the Kv channel and cause a wide range of developmental defects.
Collapse
Affiliation(s)
- Justyna Jędrychowska
- International Institute of Molecular and Cell Biology in Warsaw, Poland; Department of Genetics, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Vitya Vardanyan
- Institute of Molecular Biology, Armenian Academy of Sciences, Yerevan, Armenia
| | - Milosz Wieczor
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Antoni Marciniak
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Jacek Czub
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Razieh Amini
- International Institute of Molecular and Cell Biology in Warsaw, Poland
| | - Ruchi Jain
- International Institute of Molecular and Cell Biology in Warsaw, Poland
| | - Hongyuan Shen
- Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore
| | - Hyungwon Choi
- Cardiovascular Research Institute, National University Health Sciences, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jacek Kuznicki
- International Institute of Molecular and Cell Biology in Warsaw, Poland
| | - Vladimir Korzh
- International Institute of Molecular and Cell Biology in Warsaw, Poland.
| |
Collapse
|
2
|
Gan N, Zeng W, Han Y, Chen Q, Jiang Y. Structural mechanism of proton conduction in otopetrin proton channel. Nat Commun 2024; 15:7250. [PMID: 39179582 PMCID: PMC11343839 DOI: 10.1038/s41467-024-51803-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024] Open
Abstract
The otopetrin (OTOP) proteins were recently characterized as extracellular proton-activated proton channels. Several recent OTOP channel structures demonstrated that the channels form a dimer with each subunit adopting a double-barrel architecture. However, the structural mechanisms underlying some basic functional properties of the OTOP channels remain unresolved, including extracellular pH activation, proton conducting pathway, and rapid desensitization. In this study, we performed structural and functional characterization of the Caenorhabditis elegans OTOP8 (CeOTOP8) and mouse OTOP2 (mOTOP2) and illuminated a set of conformational changes related to the proton-conducting process in OTOP. The structures of CeOTOP8 reveal the conformational change at the N-terminal part of TM12 that renders the channel in a transiently proton-transferring state, elucidating an inter-barrel, Glu/His-bridged proton passage within each subunit. The structures of mOTOP2 reveal the conformational change at the N-terminal part of TM6 that exposes the central glutamate to the extracellular solution for protonation. In addition, the structural comparison between CeOTOP8 and mOTOP2, along with the structure-based mutagenesis, demonstrates that an inter-subunit movement at the OTOP channel dimer interface plays a central role in regulating channel activity. Combining the structural information from both channels, we propose a working model describing the multi-step conformational changes during the proton conducting process.
Collapse
Affiliation(s)
- Ninghai Gan
- Howard Hughes Medical Institute and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Weizhong Zeng
- Howard Hughes Medical Institute and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yan Han
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qingfeng Chen
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Youxing Jiang
- Howard Hughes Medical Institute and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Kalka M, Bielak K, Ptak M, Stolarski J, Dobryszycki P, Wojtas M. Calcium carbonate polymorph selection in fish otoliths: A key role of phosphorylation of Starmaker-like protein. Acta Biomater 2024; 174:437-446. [PMID: 38061675 DOI: 10.1016/j.actbio.2023.11.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
Fish otoliths are calcium carbonate biominerals found in the inner ear commonly used for tracking fish biochronologies and as a model system for biomineralization. The process of fish otolith formation is biologically controlled by numerous biomacromolecules which not only affect crystal size, shape, mechanical properties, but also selection of calcium carbonate polymorph (e.g., aragonite, vaterite). The proteinaceous control over calcium carbonate polymorph selection occurs in many other species (e.g., corals, mollusks, echinoderms) but the exact mechanism of protein interactions with calcium and carbonate ions - constituents of CaCO3 - are not fully elucidated. Herein, we focus on a native Starmaker-like protein isolated from vaterite asteriscus otoliths from Cyprinus carpio. The proteomic studies show the presence of the phosphorylated protein in vaterite otoliths. In a series of in vitro mineralization experiments with Starmaker-like, we show that native phosphorylation is a crucial determinant for the selection of a crystal's polymorphic form. This is the first report showing that the switch in calcium carbonate phase depends on the phosphorylation pattern of a single isolated protein. STATEMENT OF SIGNIFICANCE: Calcium carbonate has numerous applications in industry and medicine. However, we still do not understand the mechanism of biologically driven polymorph selection which results in specific biomineral properties. Previous work on calcium carbonate biominerals showed that either several macromolecular factors or high magnesium concentration (non-physiological) are required for proper polymorph selection (e.g., in mollusk shells, corals and otoliths). In this work, we showed for the first time that protein phosphorylation is a crucial factor for controlling the calcium carbonate crystal phase. This is important because a single protein from the otolith organic matrix could switch between polymorphs depending on the phosphorylation level. It seems that protein post-translational modifications (native, not artificial) are more important for biomolecular control of crystal growth than previously considered.
Collapse
Affiliation(s)
- Marta Kalka
- Wroclaw University of Science and Technology, Faculty of Chemistry, Department of Biochemistry, Molecular Biology and Biotechnology, Wrocław, Poland
| | - Klaudia Bielak
- Wroclaw University of Science and Technology, Faculty of Chemistry, Department of Biochemistry, Molecular Biology and Biotechnology, Wrocław, Poland
| | - Maciej Ptak
- Division of Optical Spectroscopy, Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wrocław, Poland
| | | | - Piotr Dobryszycki
- Wroclaw University of Science and Technology, Faculty of Chemistry, Department of Biochemistry, Molecular Biology and Biotechnology, Wrocław, Poland
| | - Magdalena Wojtas
- Wroclaw University of Science and Technology, Faculty of Chemistry, Department of Biochemistry, Molecular Biology and Biotechnology, Wrocław, Poland.
| |
Collapse
|
4
|
Yuan M, Zeng C, Lu H, Yue Y, Sun T, Zhou X, Li G, Ai N, Ge W. Genetic and Epigenetic Evidence for Nonestrogenic Disruption of Otolith Development by Bisphenol A in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16190-16205. [PMID: 37752410 DOI: 10.1021/acs.est.3c04336] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Bisphenol A (BPA) is a well-known endocrine-disrupting chemical (EDC) that has estrogenic activities. In addition to disrupting reproductive development and function via estrogenic signaling pathways, BPA can also interfere with nonreproductive functions through nonestrogenic pathways; however, the mechanisms underlying such nonestrogenic activities are not well understood. In this study, we demonstrated that BPA could disrupt otolith formation during the early development of zebrafish with long-lasting ethological effects. Using multiple mutants of estrogen receptors, we provided strong genetic evidence that the BPA-induced otolith malformation was independent of estrogen signaling. Transcriptome analysis revealed that two genes related to otolith development, otopetrin 1 (otop1) and starmaker (stm), decreased their expression significantly after BPA exposure. Knockout of both otop1 and stm genes could phenocopy the BPA-induced otolith malformation, while microinjection of their mRNAs could rescue the BPA-induced abnormalities of otolith formation. Further experiments showed that BPA inhibited the expression of otop1 and stm by activating the MEK/ERK-EZH2-H3K27me3 signaling pathway. Taken together, our study provided comprehensive genetic and molecular evidence that BPA induced the otolith malformation through nonestrogenic pathway during zebrafish early development and its activities involved epigenetic control of key genes (e.g., otop1 and stm) participating in otolith formation.
Collapse
Affiliation(s)
- Mingzhe Yuan
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
| | - Chu Zeng
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
| | - Huijie Lu
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
| | - Yiming Yue
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
| | - Ting Sun
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Gang Li
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
| | - Nana Ai
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
| | - Wei Ge
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
| |
Collapse
|
5
|
Chaves G, Jardin C, Derst C, Musset B. Voltage-Gated Proton Channels in the Tree of Life. Biomolecules 2023; 13:1035. [PMID: 37509071 PMCID: PMC10377628 DOI: 10.3390/biom13071035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
With a single gene encoding HV1 channel, proton channel diversity is particularly low in mammals compared to other members of the superfamily of voltage-gated ion channels. Nonetheless, mammalian HV1 channels are expressed in many different tissues and cell types where they exert various functions. In the first part of this review, we regard novel aspects of the functional expression of HV1 channels in mammals by differentially comparing their involvement in (1) close conjunction with the NADPH oxidase complex responsible for the respiratory burst of phagocytes, and (2) in respiratory burst independent functions such as pH homeostasis or acid extrusion. In the second part, we dissect expression of HV channels within the eukaryotic tree of life, revealing the immense diversity of the channel in other phylae, such as mollusks or dinoflagellates, where several genes encoding HV channels can be found within a single species. In the last part, a comprehensive overview of the biophysical properties of a set of twenty different HV channels characterized electrophysiologically, from Mammalia to unicellular protists, is given.
Collapse
Affiliation(s)
- Gustavo Chaves
- Center of Physiology, Pathophysiology and Biophysics, The Nuremberg Location, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Christophe Jardin
- Center of Physiology, Pathophysiology and Biophysics, The Nuremberg Location, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Christian Derst
- Center of Physiology, Pathophysiology and Biophysics, The Nuremberg Location, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Boris Musset
- Center of Physiology, Pathophysiology and Biophysics, The Nuremberg Location, Paracelsus Medical University, 90419 Nuremberg, Germany
- Center of Physiology, Pathophysiology and Biophysics, The Salzburg Location, Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
6
|
Li S, Al-Sheikh U, Chen Y, Kang L. Nematode homologs of the sour taste receptor Otopetrin1 are evolutionarily conserved acid-sensitive proton channels. Front Cell Dev Biol 2023; 11:1133890. [PMID: 36776560 PMCID: PMC9909269 DOI: 10.3389/fcell.2023.1133890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Numerous taste receptors and related molecules have been identified in vertebrates and invertebrates. Otopetrin1 has recently been identified as mammalian sour taste receptor which is essential for acid sensation. However, whether other Otopetrin proteins are involved in PH-sensing remains unknown. In C. elegans, there are eight otopetrin homologous genes but their expression patterns and functions have not been reported so far. Through heterologous expression in HEK293T cells, we found that ceOTOP1a can be activated by acid in NMDG+ solution without conventional cations, which generated inward currents and can be blocked by zinc ions. Moreover, we found that Otopetrin channels are widely expressed in numerous tissues, especially in sensory neurons in the nematode. These results suggest that the biophysical characteristics of the Otopetrin channels in nematodes are generally conserved. However, a series of single gene mutations of otopetrins, which were constructed by CRISPR-Cas9 method, did not affect either calcium responses in ASH polymodal sensory neurons to acid stimulation or acid avoidance behaviors, suggesting that Otopetrin channels might have diverse functions among species. This study reveals that nematode Otopetrins are evolutionarily conserved acid-sensitive proton channels, and provides a framework for further revealing the function and mechanisms of Otopetrin channels in both invertebrates and vertebrates.
Collapse
Affiliation(s)
- Shitian Li
- Department of Neurobiology and Department of Neurosurgery of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China,NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Umar Al-Sheikh
- Department of Neurobiology and Department of Neurosurgery of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China,NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yili Chen
- Department of Neurobiology and Department of Neurosurgery of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,*Correspondence: Yili Chen, ; Lijun Kang,
| | - Lijun Kang
- Department of Neurobiology and Department of Neurosurgery of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China,NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,*Correspondence: Yili Chen, ; Lijun Kang,
| |
Collapse
|
7
|
Tian L, Zhang H, Yang S, Luo A, Kamau PM, Hu J, Luo L, Lai R. Vertebrate OTOP1 is also an alkali-activated channel. Nat Commun 2023; 14:26. [PMID: 36596786 PMCID: PMC9810603 DOI: 10.1038/s41467-022-35754-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
Although alkaline sensation is critical for survival, alkali-activated receptors are yet to be identified in vertebrates. Here, we showed that the OTOP1 channel can be directly activated by extracellular alkali. Notably, OTOP1 biphasically mediated proton influx and efflux with extracellular acid and base stimulation, respectively. Mutations of K221 and R554 at the S5-S6 and S11-S12 linkers significantly reduced alkali affinity without affecting acid activation, suggesting that different domains are responsible for acid- and alkali-activation of OTOP1. The selectivity for H+ was significantly higher in OTOP1 activated by alkali than that by acid, further suggesting that the two activations might be independent gating processes. Given that the alkali-activation of OTOP1 and the required key residues were conserved in the six representative vertebrates, we cautiously propose that OTOP1 participates in alkaline sensation in vertebrates. Thus, our study identified OTOP1 as an alkali-activated channel.
Collapse
Affiliation(s)
- Lifeng Tian
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province/National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China.,National Resource Center for Non-Human Primates, Kunming Primate Research Center/National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, 650107, Kunming, Yunnan, China.,University of Chinese Academy of Sciences, 100049, Beijing, China.,School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310024, Hangzhou, China.,The cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 310022, Hangzhou, China
| | - Hao Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province/National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China.,National Resource Center for Non-Human Primates, Kunming Primate Research Center/National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, 650107, Kunming, Yunnan, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shilong Yang
- College of Wildlife and Protected Area, Northeast Forestry University, 150040, Harbin, China
| | - Anna Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province/National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China.,National Resource Center for Non-Human Primates, Kunming Primate Research Center/National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, 650107, Kunming, Yunnan, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Peter Muiruri Kamau
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province/National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China.,National Resource Center for Non-Human Primates, Kunming Primate Research Center/National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, 650107, Kunming, Yunnan, China.,University of Chinese Academy of Sciences, 100049, Beijing, China.,Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China
| | - Jingmei Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province/National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China.,National Resource Center for Non-Human Primates, Kunming Primate Research Center/National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, 650107, Kunming, Yunnan, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lei Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province/National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China. .,National Resource Center for Non-Human Primates, Kunming Primate Research Center/National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, 650107, Kunming, Yunnan, China.
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province/National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China. .,National Resource Center for Non-Human Primates, Kunming Primate Research Center/National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, 650107, Kunming, Yunnan, China. .,School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310024, Hangzhou, China. .,Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China.
| |
Collapse
|
8
|
Requirement for an Otopetrin-like protein for acid taste in Drosophila. Proc Natl Acad Sci U S A 2021; 118:2110641118. [PMID: 34911758 PMCID: PMC8713817 DOI: 10.1073/pnas.2110641118] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
Receptors for bitter, sugar, and other tastes have been identified in the fruit fly Drosophila melanogaster, while a broadly tuned receptor for the taste of acid has been elusive. Previous work showed that such a receptor was unlikely to be encoded by a gene within one of the two major families of taste receptors in Drosophila, the "gustatory receptors" and "ionotropic receptors." Here, to identify the acid taste receptor, we tested the contributions of genes encoding proteins distantly related to the mammalian Otopertrin1 (OTOP1) proton channel that functions as a sour receptor in mice. RNA interference (RNAi) knockdown or mutation by CRISPR/Cas9 of one of the genes, Otopetrin-Like A (OtopLA), but not of the others (OtopLB or OtopLC) severely impaired the behavioral rejection to a sweet solution laced with high levels of HCl or carboxylic acids and greatly reduced acid-induced action potentials measured from taste hairs. An isoform of OtopLA that we isolated from the proboscis was sufficient to restore behavioral sensitivity and acid-induced action potential firing in OtopLA mutant flies. At lower concentrations, HCl was attractive to the flies, and this attraction was abolished in the OtopLA mutant. Cell type-specific rescue experiments showed that OtopLA functions in distinct subsets of gustatory receptor neurons for repulsion and attraction to high and low levels of protons, respectively. This work highlights a functional conservation of a sensory receptor in flies and mammals and shows that the same receptor can function in both appetitive and repulsive behaviors.
Collapse
|
9
|
Song P, Zhao X, Xu Y, Zhao Z, Liu Y, Gao Q. Morphological Effect of Vitamin D Deficiency on Globular Substances in Mice. Otol Neurotol 2021; 42:e1313-e1317. [PMID: 34121084 DOI: 10.1097/mao.0000000000003229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Many authors, including us, elucidated that vitamin D deficiency was a risk factor for benign paroxysmal position vertigo. We speculated vitamin D deficiency was likely to intervene otoconia formation by globular substance (GS). METHODS Kunming mice were randomly divided into three groups: vitamin D sufficient group (12-wk standard control diet), vitamin D deficiency group (16-wk vitamin D deficiency diet), and vitamin D supplement group (16-wk vitamin D deficiency diet and followed 8-wk standard control diet). At 12, 16, and 24 weeks, blood was collected for measuring vitamin D and macula utriculi were obtained for research under scanning electron microscope (SEM). We randomly selected 10 SEM photographs of macula utriculi in each mouse, counted cilium and GS, and measured diameters of counted GS. The ratio of the number of GS to cilium in each SEM photograph was defined as density of GS. RESULTS The diameter and density of GS were larger and higher in vitamin D deficiency group than sufficient group (p < 0.05; p < 0.05). There was no significant difference in density and diameters of GS between vitamin D deficiency and supplement group. The rough and grainy surface became smoother and smoother along with vitamin D deficiency, and reappeared after vitamin D supplement for 8 weeks. CONCLUSION GS secreted as a precursor of mature otoconia is affected by vitamin D deficiency and vitamin D supplementation can mitigate the effects in mice. The density of GS, a quantitative method we designed, can quantify GS well.
Collapse
Affiliation(s)
- Penglong Song
- Department of Otolaryngology/Head and Neck Surgery, The First Affiliated Hospital, Harbin Medical University
| | - Xianshu Zhao
- Health Center of Screening and Prevention of Diseases, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yanjun Xu
- Department of Otolaryngology/Head and Neck Surgery, The First Affiliated Hospital, Harbin Medical University
| | - Zhigang Zhao
- Department of Otolaryngology/Head and Neck Surgery, The First Affiliated Hospital, Harbin Medical University
| | - Yang Liu
- Department of Otolaryngology/Head and Neck Surgery, The First Affiliated Hospital, Harbin Medical University
| | - Qian Gao
- Department of Otolaryngology/Head and Neck Surgery, The First Affiliated Hospital, Harbin Medical University
| |
Collapse
|
10
|
Loeppky AR, Belding LD, Quijada-Rodriguez AR, Morgan JD, Pracheil BM, Chakoumakos BC, Anderson WG. Influence of ontogenetic development, temperature, and pCO 2 on otolith calcium carbonate polymorph composition in sturgeons. Sci Rep 2021; 11:13878. [PMID: 34230512 PMCID: PMC8260795 DOI: 10.1038/s41598-021-93197-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Changes to calcium carbonate (CaCO3) biomineralization in aquatic organisms is among the many predicted effects of climate change. Because otolith (hearing/orientation structures in fish) CaCO3 precipitation and polymorph composition are controlled by genetic and environmental factors, climate change may be predicted to affect the phenotypic plasticity of otoliths. We examined precipitation of otolith polymorphs (aragonite, vaterite, calcite) during early life history in two species of sturgeon, Lake Sturgeon, (Acipenser fulvescens) and White Sturgeon (A. transmontanus), using quantitative X-ray microdiffraction. Both species showed similar fluctuations in otolith polymorphs with a significant shift in the proportions of vaterite and aragonite in sagittal otoliths coinciding with the transition to fully exogenous feeding. We also examined the effect of the environment on otolith morphology and polymorph composition during early life history in Lake Sturgeon larvae reared in varying temperature (16/22 °C) and pCO2 (1000/2500 µatm) environments for 5 months. Fish raised in elevated temperature had significantly increased otolith size and precipitation of large single calcite crystals. Interestingly, pCO2 had no statistically significant effect on size or polymorph composition of otoliths despite blood pH exhibiting a mild alkalosis, which is contrary to what has been observed in several studies on marine fishes. These results suggest climate change may influence otolith polymorph composition during early life history in Lake Sturgeon.
Collapse
Affiliation(s)
- Alison R Loeppky
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | - Luke D Belding
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | | - John D Morgan
- Department of Resource Management and Protection, Vancouver Island University, Nanaimo, BC, Canada
| | - Brenda M Pracheil
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, Canada
| | - Bryan C Chakoumakos
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, Canada
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
11
|
Sampilo NF, Stepicheva NA, Song JL. microRNA-31 regulates skeletogenesis by direct suppression of Eve and Wnt1. Dev Biol 2021; 472:98-114. [PMID: 33484703 PMCID: PMC7956219 DOI: 10.1016/j.ydbio.2021.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 11/22/2022]
Abstract
microRNAs (miRNAs) play a critical role in a variety of biological processes, including embryogenesis and the physiological functions of cells. Evolutionarily conserved microRNA-31 (miR-31) has been found to be involved in cancer, bone formation, and lymphatic development. We previously discovered that, in the sea urchin, miR-31 knockdown (KD) embryos have shortened dorsoventral connecting rods, mispatterned skeletogenic primary mesenchyme cells (PMCs) and shifted and expanded Vegf3 expression domain. Vegf3 itself does not contain miR-31 binding sites; however, we identified its upstream regulators Eve and Wnt1 to be directly suppressed by miR-31. Removal of miR-31's suppression of Eve and Wnt1 resulted in skeletal and PMC patterning defects, similar to miR-31 KD phenotypes. Additionally, removal of miR-31's suppression of Eve and Wnt1 results in an expansion and anterior shift in expression of Veg1 ectodermal genes, including Vegf3 in the blastulae. This indicates that miR-31 indirectly regulates Vegf3 expression through directly suppressing Eve and Wnt1. Furthermore, removing miR-31 suppression of Eve is sufficient to cause skeletogenic defects, revealing a novel regulatory role of Eve in skeletogenesis and PMC patterning. Overall, this study provides a proposed molecular mechanism of miR-31's regulation of skeletogenesis and PMC patterning through its cross-regulation of a Wnt signaling ligand and a transcription factor of the endodermal and ectodermal gene regulatory network.
Collapse
Affiliation(s)
- Nina Faye Sampilo
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Nadezda A Stepicheva
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Jia L Song
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
12
|
Jedrychowska J, Gasanov EV, Korzh V. Kcnb1 plays a role in development of the inner ear. Dev Biol 2020; 471:65-75. [PMID: 33316259 DOI: 10.1016/j.ydbio.2020.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
The function of the inner ear depends on the maintenance of high concentrations of K+ ions. The slow-inactivating delayed rectifier Kv2.1/KCNB1 channel works in the inner ear in mammals. The kcnb1 gene is expressed in the otic vesicle of developing zebrafish, suggesting its role in development of the inner ear. In the present study, we found that a Kcnb1 loss-of-function mutation affected development of the inner ear at multiple levels, including otic vesicle expansion, otolith formation, and the proliferation and differentiation of mechanosensory cells. This resulted in defects of kinocilia and stereocilia and abnormal function of the inner ear detected by behavioral assays. The quantitative transcriptional analysis of 75 genes demonstrated that the kcnb1 mutation affected the transcription of genes that are involved in K+ metabolism, cell proliferation, cilia development, and intracellular protein trafficking. These results demonstrate a role for Kv2.1/Kcnb1 channels in development of the inner ear in zebrafish.
Collapse
Affiliation(s)
- Justyna Jedrychowska
- International Institute of Molecular and Cell Biology in Warsaw, Poland; Postgraduate School of Molecular Medicine, Warsaw Medical University, Warsaw, Poland
| | - Eugene V Gasanov
- International Institute of Molecular and Cell Biology in Warsaw, Poland
| | - Vladimir Korzh
- International Institute of Molecular and Cell Biology in Warsaw, Poland.
| |
Collapse
|
13
|
Khor JM, Ettensohn CA. Transcription Factors of the Alx Family: Evolutionarily Conserved Regulators of Deuterostome Skeletogenesis. Front Genet 2020; 11:569314. [PMID: 33329706 PMCID: PMC7719703 DOI: 10.3389/fgene.2020.569314] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Members of the alx gene family encode transcription factors that contain a highly conserved Paired-class, DNA-binding homeodomain, and a C-terminal OAR/Aristaless domain. Phylogenetic and comparative genomic studies have revealed complex patterns of alx gene duplications during deuterostome evolution. Remarkably, alx genes have been implicated in skeletogenesis in both echinoderms and vertebrates. In this review, we provide an overview of current knowledge concerning alx genes in deuterostomes. We highlight their evolutionarily conserved role in skeletogenesis and draw parallels and distinctions between the skeletogenic gene regulatory circuitries of diverse groups within the superphylum.
Collapse
Affiliation(s)
- Jian Ming Khor
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
14
|
Pax2a is expressed in oocytes and is responsible for early development and oogenesis in zebrafish. Biochem Biophys Res Commun 2020; 533:592-599. [PMID: 32981680 DOI: 10.1016/j.bbrc.2020.09.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/15/2020] [Indexed: 11/23/2022]
Abstract
Eleven genes, including pax2a, were selected as candidate ovulation-inducing genes on the basis of microarray analysis and RNA sequencing in our previous study. The purpose of this study was to investigate the role of the pax2a gene in the ovulation-inducing process. F2 pax2a homozygous mutant zebrafish possessing a deletion of 6 nucleotides were established in this study. However, the deletion included the start codon (ATG) of the pax2a gene, and the Pax2a protein was still detected, which indicated that the deletion caused a shift in the start codon to the next ATG, resulting in a 12-amino acid deletion. F2 pax2a homozygous mutant zebrafish showed ovulation. However, the embryos showed an abnormal oval shape at the epiboly stage that resulted in yolk and tail formation abnormalities and heart edema. The surviving F3 homozygous mutants did not develop ovaries. Pax2a was detected in oocytes and eggs but not after the Prim-22 stage. It is suggested that pax2a is expressed as a maternal gene in oocytes and is necessary for oogenesis and early development.
Collapse
|
15
|
Abstract
The inner ear, which mediates the senses of hearing and balance, derives from a simple ectodermal vesicle in the vertebrate embryo. In the zebrafish, the otic placode and vesicle express a whole suite of genes required for ciliogenesis and ciliary motility. Every cell of the otic epithelium is ciliated at early stages; at least three different ciliary subtypes can be distinguished on the basis of length, motility, genetic requirements and function. In the early otic vesicle, most cilia are short and immotile. Long, immotile kinocilia on the first sensory hair cells tether the otoliths, biomineralized aggregates of calcium carbonate and protein. Small numbers of motile cilia at the poles of the otic vesicle contribute to the accuracy of otolith tethering, but neither the presence of cilia nor ciliary motility is absolutely required for this process. Instead, otolith tethering is dependent on the presence of hair cells and the function of the glycoprotein Otogelin. Otic cilia or ciliary proteins also mediate sensitivity to ototoxins and coordinate responses to extracellular signals. Other studies are beginning to unravel the role of ciliary proteins in cellular compartments other than the kinocilium, where they are important for the integrity and survival of the sensory hair cell. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.
Collapse
Affiliation(s)
- Tanya T Whitfield
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
16
|
Różycka M, Coronado I, Brach K, Olesiak‐Bańska J, Samoć M, Zarębski M, Dobrucki J, Ptak M, Weber E, Polishchuk I, Pokroy B, Stolarski J, Ożyhar A. Lattice Shrinkage by Incorporation of Recombinant Starmaker-Like Protein within Bioinspired Calcium Carbonate Crystals. Chemistry 2019; 25:12740-12750. [PMID: 31241793 PMCID: PMC6790713 DOI: 10.1002/chem.201902157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Indexed: 11/16/2022]
Abstract
The biological mediation of mineral formation (biomineralization) is realized through diverse organic macromolecules that guide this process in a spatial and temporal manner. Although the role of these molecules in biomineralization is being gradually revealed, the molecular basis of their regulatory function is still poorly understood. In this study, the incorporation and distribution of the model intrinsically disordered starmaker-like (Stm-l) protein, which is active in fish otoliths biomineralization, within calcium carbonate crystals, is revealed. Stm-l promotes crystal nucleation and anisotropic tailoring of crystal morphology. Intracrystalline incorporation of Stm-l protein unexpectedly results in shrinkage (and not expansion, as commonly described in biomineral and bioinspired crystals) of the crystal lattice volume, which is described herein, for the first time, for bioinspired mineralization. A ring pattern was observed in crystals grown for 48 h; this was composed of a protein-enriched region flanked by protein-depleted regions. It can be explained as a result of the Ostwald-like ripening process and intrinsic properties of Stm-l, and bears some analogy to the daily growth layers of the otolith.
Collapse
Affiliation(s)
- Mirosława Różycka
- Department of BiochemistryFaculty of ChemistryWroclaw University of Science and TechnologyWroclaw50-370Poland
| | - Ismael Coronado
- Institute of PaleobiologyPolish Academy of SciencesWarsaw00-818Poland
| | - Katarzyna Brach
- Advanced Materials Engineering and Modelling GroupFaculty of ChemistryWroclaw University of Science and TechnologyWroclaw50-370Poland
| | - Joanna Olesiak‐Bańska
- Advanced Materials Engineering and Modelling GroupFaculty of ChemistryWroclaw University of Science and TechnologyWroclaw50-370Poland
| | - Marek Samoć
- Advanced Materials Engineering and Modelling GroupFaculty of ChemistryWroclaw University of Science and TechnologyWroclaw50-370Poland
| | - Mirosław Zarębski
- Department of Cell BiophysicsFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakow30-387Poland
| | - Jerzy Dobrucki
- Department of Cell BiophysicsFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakow30-387Poland
| | - Maciej Ptak
- Institute of Low Temperature and Structure ResearchPolish Academy of SciencesWroclaw50-422Poland
| | - Eva Weber
- Department of Materials Science and Engineering and the Russell Berrie Nanotechnology InstituteTechnion Israel Institute of TechnologyHaifa32000Israel
| | - Iryna Polishchuk
- Department of Materials Science and Engineering and the Russell Berrie Nanotechnology InstituteTechnion Israel Institute of TechnologyHaifa32000Israel
| | - Boaz Pokroy
- Department of Materials Science and Engineering and the Russell Berrie Nanotechnology InstituteTechnion Israel Institute of TechnologyHaifa32000Israel
| | | | - Andrzej Ożyhar
- Department of BiochemistryFaculty of ChemistryWroclaw University of Science and TechnologyWroclaw50-370Poland
| |
Collapse
|
17
|
Han J, Liu K, Wang R, Zhang Y, Zhou B. Exposure to cadmium causes inhibition of otolith development and behavioral impairment in zebrafish larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 214:105236. [PMID: 31260825 DOI: 10.1016/j.aquatox.2019.105236] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/23/2019] [Accepted: 06/25/2019] [Indexed: 06/09/2023]
Abstract
Otolith consisting largely of calcium carbonate, fibrous and proteins, is vital for maintaining body balance and/or hearing of fish. The formation of otolith involves Ca2+ transport and deposition. In the present study, we investigated the effects of Cd2+ on otoliths development by using zebrafish embryos as model. The results showed that exposure to Cd2+ inhibited the utricular and saccular otoliths growth, indicated by reduced lateral areas. Swimming speeds were reduced and a losing balance control was observed in Cd2+ exposed larvae. The genes related to Ca2+ transport (e.g. plasma membrane Ca2+-ATPase isoform 2, pmca2; Ca2+-ATPase isoform 2, atp2b1a) and regulation (e.g. parathyroid hormone ligand type-1, pth1; stanniocalcin isoform 1, stc1) were significantly downregulated. However, the adverse effects of Cd2+ on otoliths growth and swimming activity can be protected by supplementation of Ca2+ in exposure medium. Body burden of Cd2+ in larvae was reduced upon the supplement with Ca2+. The overall results suggest that exposure to Cd2+ can inhibit influx of Ca2+, leading to less deposition of CaCO3 for otolith growth, and finally result in impaired balance control and swimming activity in zebrafish larvae.
Collapse
Affiliation(s)
- Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Rongchun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
18
|
Saotome K, Teng B, Tsui CCA, Lee WH, Tu YH, Kaplan JP, Sansom MSP, Liman ER, Ward AB. Structures of the otopetrin proton channels Otop1 and Otop3. Nat Struct Mol Biol 2019; 26:518-525. [PMID: 31160780 PMCID: PMC6564688 DOI: 10.1038/s41594-019-0235-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/26/2019] [Indexed: 01/08/2023]
Abstract
Otopetrins (Otop1-Otop3) comprise one of two known eukaryotic proton-selective channel families. Otop1 is required for otoconia formation and a candidate mammalian sour taste receptor. Here we report cryo-EM structures of zebrafish Otop1 and chicken Otop3 in lipid nanodiscs. The structures reveal a dimeric architecture, with each subunit forming 12 transmembrane helices divided into structurally similar amino (N) and carboxy (C) domains. Cholesterol-like molecules occupy various sites in Otop1 and Otop3 and occlude a central tunnel. In molecular dynamics simulations, hydrophilic vestibules formed by the N and C domains and in the intrasubunit interface between N and C domains form conduits for water entry into the membrane core, suggesting three potential proton conduction pathways. By mutagenesis, we tested the roles of charged residues in each putative permeation pathway. Our results provide a structural basis for understanding selective proton permeation and gating of this conserved family of proton channels.
Collapse
Affiliation(s)
- Kei Saotome
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Bochuan Teng
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Che Chun Alex Tsui
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Yu-Hsiang Tu
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Joshua P Kaplan
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Emily R Liman
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
19
|
Chen Q, Zeng W, She J, Bai XC, Jiang Y. Structural and functional characterization of an otopetrin family proton channel. eLife 2019; 8:46710. [PMID: 30973323 PMCID: PMC6483595 DOI: 10.7554/elife.46710] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022] Open
Abstract
The otopetrin (OTOP) proteins were recently characterized as proton channels. Here we present the cryo-EM structure of OTOP3 from Xenopus tropicalis (XtOTOP3) along with functional characterization of the channel. XtOTOP3 forms a homodimer with each subunit containing 12 transmembrane helices that can be divided into two structurally homologous halves; each half assembles as an α-helical barrel that could potentially serve as a proton conduction pore. Both pores open from the extracellular half before becoming occluded at a central constriction point consisting of three highly conserved residues - Gln232/585-Asp262/Asn623-Tyr322/666 (the constriction triads). Mutagenesis shows that the constriction triad from the second pore is less amenable to perturbation than that of the first pore, suggesting an unequal contribution between the two pores to proton transport. We also identified several key residues at the interface between the two pores that are functionally important, particularly Asp509, which confers intracellular pH-dependent desensitization to OTOP channels.
Collapse
Affiliation(s)
- Qingfeng Chen
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Weizhong Zeng
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Ji She
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Xiao-Chen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Youxing Jiang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
20
|
Thiessen KD, Grzegorski SJ, Chin Y, Higuchi LN, Wilkinson CJ, Shavit JA, Kramer KL. Zebrafish otolith biomineralization requires polyketide synthase. Mech Dev 2019; 157:1-9. [PMID: 30974150 PMCID: PMC6531356 DOI: 10.1016/j.mod.2019.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/12/2019] [Accepted: 04/01/2019] [Indexed: 11/20/2022]
Abstract
Deflecting biomineralized crystals attached to vestibular hair cells are necessary for maintaining balance. Zebrafish (Danio rerio) are useful organisms to study these biomineralized crystals called otoliths, as many required genes are homologous to human otoconial development. We sought to identify and characterize the causative gene in a trio of homozygous recessive mutants, no content (nco) and corkscrew (csr), and vanished (vns), which fail to develop otoliths during early ear development. We show that nco, csr, and vns have potentially deleterious mutations in polyketide synthase (pks1), a multi-modular protein that has been previously implicated in biomineralization events in chordates and echinoderms. We found that Otoconin-90 (Oc90) expression within the otocyst is diffuse in nco and csr; therefore, it is not sufficient for otolith biomineralization in zebrafish. Similarly, normal localization of Otogelin, a protein required for otolith tethering in the otolithic membrane, is not sufficient for Oc90 attachment. Furthermore, eNOS signaling and Endothelin-1 signaling were the most up- and down-regulated pathways during otolith agenesis in nco, respectively. Our results demonstrate distinct processes for otolith nucleation and biomineralization in vertebrates and will be a starting point for models that are independent of Oc90-mediated seeding. This study will serve as a basis for investigating the role of eNOS signaling and Endothelin-1 signaling during otolith formation.
Collapse
Affiliation(s)
- Kevin D Thiessen
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - Steven J Grzegorski
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States
| | - Yvonne Chin
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, United Kingdom
| | - Lisa N Higuchi
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - Christopher J Wilkinson
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, United Kingdom
| | - Jordan A Shavit
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States
| | - Kenneth L Kramer
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States.
| |
Collapse
|
21
|
Klangnurak W, Fukuyo T, Rezanujjaman MD, Seki M, Sugano S, Suzuki Y, Tokumoto T. Candidate gene identification of ovulation-inducing genes by RNA sequencing with an in vivo assay in zebrafish. PLoS One 2018; 13:e0196544. [PMID: 29715317 PMCID: PMC5929532 DOI: 10.1371/journal.pone.0196544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/14/2018] [Indexed: 01/24/2023] Open
Abstract
We previously reported the microarray-based selection of three ovulation-related genes in zebrafish. We used a different selection method in this study, RNA sequencing analysis. An additional eight up-regulated candidates were found as specifically up-regulated genes in ovulation-induced samples. Changes in gene expression were confirmed by qPCR analysis. Furthermore, up-regulation prior to ovulation during natural spawning was verified in samples from natural pairing. Gene knock-out zebrafish strains of one of the candidates, the starmaker gene (stm), were established by CRISPR genome editing techniques. Unexpectedly, homozygous mutants were fertile and could spawn eggs. However, a high percentage of unfertilized eggs and abnormal embryos were produced from these homozygous females. The results suggest that the stm gene is necessary for fertilization. In this study, we selected additional ovulation-inducing candidate genes, and a novel function of the stm gene was investigated.
Collapse
Affiliation(s)
- Wanlada Klangnurak
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Taketo Fukuyo
- Department of Biological Science, Faculty of Science, National University Corporation Shizuoka University, Shizuoka, Japan
| | - M. D. Rezanujjaman
- Biological Science Course, Graduate School of Science and Technology, National University Corporation, Shizuoka University, Oya 836, Suruga-ku, Shizuoka, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Sumio Sugano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Toshinobu Tokumoto
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
- Department of Biological Science, Faculty of Science, National University Corporation Shizuoka University, Shizuoka, Japan
- Biological Science Course, Graduate School of Science and Technology, National University Corporation, Shizuoka University, Oya 836, Suruga-ku, Shizuoka, Japan
- * E-mail:
| |
Collapse
|
22
|
Hołubowicz R, Wojtas M, Taube M, Kozak M, Ożyhar A, Dobryszycki P. Effect of calcium ions on structure and stability of the C1q-like domain of otolin-1 from human and zebrafish. FEBS J 2017; 284:4278-4297. [DOI: 10.1111/febs.14308] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 10/17/2017] [Accepted: 10/24/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Rafał Hołubowicz
- Department of Biochemistry; Faculty of Chemistry; Wroclaw University of Science and Technology; Poland
| | - Magdalena Wojtas
- Department of Biochemistry; Faculty of Chemistry; Wroclaw University of Science and Technology; Poland
| | - Michał Taube
- Department of Macromolecular Physics; Faculty of Physics; A. Mickiewicz University; Poznan Poland
| | - Maciej Kozak
- Department of Macromolecular Physics; Faculty of Physics; A. Mickiewicz University; Poznan Poland
| | - Andrzej Ożyhar
- Department of Biochemistry; Faculty of Chemistry; Wroclaw University of Science and Technology; Poland
| | - Piotr Dobryszycki
- Department of Biochemistry; Faculty of Chemistry; Wroclaw University of Science and Technology; Poland
| |
Collapse
|
23
|
A transcriptomic survey of Migdolus fryanus (sugarcane rhizome borer) larvae. PLoS One 2017; 12:e0173059. [PMID: 28248990 PMCID: PMC5332103 DOI: 10.1371/journal.pone.0173059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 02/14/2017] [Indexed: 11/19/2022] Open
Abstract
Sugarcane, a major crop grown in the tropical and subtropical areas of the world, is produced mainly for sucrose, which is used as a sweetener or for the production of bioethanol. Among the numerous pests that significantly affect the yield of sugarcane, the sugarcane rhizome borer (Migdolus fryanus, a cerambycidae beetle) is known to cause severe damage to the crops in Brazil. The absence of molecular information about this insect reinforces the need for studies and an effective method to control this pest. In this study, RNA-Seq technology was employed to study different parts of M. fryanus larvae. The generated data will help in further investigations about the taxonomy, development, and adaptation of this insect. RNA was extracted from six different parts (head, fat body, integument, hindgut, midgut, and foregut) using Trizol methodology. Using Illumina paired-end sequencing technology and the Trinity platform, trimming and de novo assembly was performed, resulting in 44,567 contigs longer than 200 nt for a reunion of data from all transcriptomes, with a mean length of 1,095.27 nt. Transcripts were annotated using BLAST against different protein databanks (Uniprot/Swissprot, PFAM, KEEG, SignalP 4.1, Gene Ontology, and CAZY) and were compared for similarity using a Venn diagram. Differential expression patterns were studied for select genes through qPCR and FPKM comprising important protein families (digestive peptidases, glucosyl hydrolases, serine protease inhibitors and otopetrin), which allowed a better understanding of the insect’s digestion, immunity and gravity sensorial mechanisms.
Collapse
|
24
|
Xu Y, Zhang Y, Lundberg YW. Spatiotemporal differences in otoconial gene expression. Genesis 2016; 54:613-625. [PMID: 27792272 DOI: 10.1002/dvg.22990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/02/2016] [Accepted: 10/26/2016] [Indexed: 11/06/2022]
Abstract
Otoconia are minute biocrystals composed of glycoproteins, proteoglycans, and CaCO3 , and are indispensable for sensory processing in the utricle and saccule. Otoconia abnormalities and degeneration can cause or facilitate crystal dislocation to the ampulla, leading to vertigo and imbalance in humans. In order to better understand the molecular mechanism controlling otoconia formation and maintenance, we have examined the spatial and temporal expression differences of otoconial genes in the mouse inner ear at developmental, mature and aging stages using whole transcriptome sequencing (RNA-Seq) and quantitative RT-PCR. We show that the expression levels of most otoconial genes are much higher in the utricle and saccule compared with other inner ear tissues before postnatal stages in C57Bl/6J mice, and the expression of a few of these genes is restricted to the embryonic utricle and saccule. After the early postnatal stages, expression of all otoconial genes in the utricle and saccule is drastically reduced, while a few genes gain expression dominance in the aging ampulla, indicating a potential for ectopic debris formation in the latter tissue at old ages. The data suggest that the expression of otoconial genes is tightly regulated spatially and temporally during developmental stages and can become unregulated at aging stages. Birth Defects Research (Part A) 106:613-625, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yinfang Xu
- Vestibular Genetics Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, 68131, USA.,Cell Electrophysiology Laboratory, Shanghai Research Center of Acupuncture and Meridians, Shanghai, 201203, China
| | - Yan Zhang
- Vestibular Genetics Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, 68131, USA
| | - Yunxia Wang Lundberg
- Vestibular Genetics Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, 68131, USA
| |
Collapse
|
25
|
Loewen TN, Carriere B, Reist JD, Halden NM, Anderson WG. Linking physiology and biomineralization processes to ecological inferences on the life history of fishes. Comp Biochem Physiol A Mol Integr Physiol 2016; 202:123-140. [PMID: 27328377 DOI: 10.1016/j.cbpa.2016.06.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 06/10/2016] [Accepted: 06/14/2016] [Indexed: 02/07/2023]
Abstract
Biomineral chemistry is frequently used to infer life history events and habitat use in fishes; however, significant gaps remain in our understanding of the underlying mechanisms. Here we have taken a multidisciplinary approach to review the current understanding of element incorporation into biomineralized structures in fishes. Biominerals are primarily composed of calcium-based derivatives such as calcium carbonate found in otoliths and calcium phosphates found in scales, fins and bones. By focusing on non-essential life elements (strontium and barium) and essential life elements (calcium, zinc and magnesium), we attempt to connect several fields of study to synergise how physiology may influence biomineralization and subsequent inference of life history. Data provided in this review indicate that the presence of non-essential elements in biominerals of fish is driven primarily by hypo- and hyper-calcemic environmental conditions. The uptake kinetics between environmental calcium and its competing mimics define what is ultimately incorporated in the biomineral structure. Conversely, circannual hormonally driven variations likely influence essential life elements like zinc that are known to associate with enzyme function. Environmental temperature and pH as well as uptake kinetics for strontium and barium isotopes demonstrate the role of mass fractionation in isotope selection for uptake into fish bony structures. In consideration of calcium mobilisation, the action of osteoclast-like cells on calcium phosphates of scales, fins and bones likely plays a role in fractionation along with transport kinetics. Additional investigations into calcium mobilisation are warranted to understand differing views of strontium, and barium isotope fractionation between calcium phosphates and calcium carbonate structures in fishes.
Collapse
Affiliation(s)
- T N Loewen
- Interdisciplinary Studies (Geological Sciences), University of Manitoba, Winnipeg, MB, Canada; Freshwater Institute, Fisheries & Oceans, Winnipeg, MB, Canada.
| | - B Carriere
- Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - J D Reist
- Freshwater Institute, Fisheries & Oceans, Winnipeg, MB, Canada
| | - N M Halden
- Geological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - W G Anderson
- Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
26
|
High magnetic field induced otolith fusion in the zebrafish larvae. Sci Rep 2016; 6:24151. [PMID: 27063288 PMCID: PMC4827070 DOI: 10.1038/srep24151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 03/21/2016] [Indexed: 01/07/2023] Open
Abstract
Magnetoreception in animals illustrates the interaction of biological systems with the geomagnetic field (geoMF). However, there are few studies that identified the impact of high magnetic field (MF) exposure from Magnetic Resonance Imaging (MRI) scanners (>100,000 times of geoMF) on specific biological targets. Here, we investigated the effects of a 14 Tesla MRI scanner on zebrafish larvae. All zebrafish larvae aligned parallel to the B0 field, i.e. the static MF, in the MRI scanner. The two otoliths (ear stones) in the otic vesicles of zebrafish larvae older than 24 hours post fertilization (hpf) fused together after the high MF exposure as short as 2 hours, yielding a single-otolith phenotype with aberrant swimming behavior. The otolith fusion was blocked in zebrafish larvae under anesthesia or embedded in agarose. Hair cells may play an important role on the MF-induced otolith fusion. This work provided direct evidence to show that high MF interacts with the otic vesicle of zebrafish larvae and causes otolith fusion in an "all-or-none" manner. The MF-induced otolith fusion may facilitate the searching for MF sensors using genetically amenable vertebrate animal models, such as zebrafish.
Collapse
|
27
|
Baxendale S, Whitfield TT. Methods to study the development, anatomy, and function of the zebrafish inner ear across the life course. Methods Cell Biol 2016; 134:165-209. [PMID: 27312494 DOI: 10.1016/bs.mcb.2016.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The inner ear is a remarkably intricate structure able to detect sound, motion, and gravity. During development of the zebrafish embryo, the ear undergoes dynamic morphogenesis from a simple epithelial vesicle into a complex labyrinth, consisting of three semicircular canals and three otolithic sensory organs, each with an array of differentiated cell types. This microcosm of biology has led to advances in understanding molecular and cellular changes in epithelial patterning and morphogenesis, through to mechanisms of mechanosensory transduction and the origins of reflexive behavior. In this chapter, we describe different methods to study the zebrafish ear, including high-speed imaging of otic cilia, confocal microscopy, and light-sheet fluorescent microscopy. Many dyes, antibodies, and transgenic lines for labeling the ear are available, and we provide a comprehensive review of these resources. The developing ear is amenable to genetic, chemical, and physical manipulations, including injection and transplantation. Chemical modulation of developmental signaling pathways has paved the way for zebrafish to be widely used in drug discovery. We describe two chemical screens with relevance to the ear: a fluorescent-based screen for compounds that protect against ototoxicity, and an in situ-based screen for modulators of a signaling pathway involved in semicircular canal development. We also describe methods for dissection and imaging of the adult otic epithelia. We review both manual and automated methods to test the function of the inner ear and lateral line, defects in which can lead to altered locomotor behavior. Finally, we review a collection of zebrafish models that are generating new insights into human deafness and vestibular disorders.
Collapse
Affiliation(s)
- S Baxendale
- University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
28
|
Naini SM, Choukroun GJ, Ryan JR, Hentschel DM, Shah JV, Bonventre JV. Cytosolic phospholipase A2α regulates G1 progression through modulating FOXO1 activity. FASEB J 2015; 30:1155-70. [PMID: 26644349 DOI: 10.1096/fj.15-278416] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/09/2015] [Indexed: 12/14/2022]
Abstract
Group IVA phospholipase A2 [cytosolic phospholipase A2α (cPLA2α)] is a key mediator of inflammation and tumorigenesis. In this study, by using a combination of chemical inhibition and genetic approaches in zebrafish and murine cells, we identify a mechanism by which cPLA2α promotes cell proliferation. We identified 2 cpla2α genes in zebrafish, cpla2αa and cpla2αb, with conserved phospholipase activity. In zebrafish, loss of cpla2α expression or inhibition of cpla2α activity diminished G1 progression through the cell cycle. This phenotype was also seen in both mouse embryonic fibroblasts and mesangial cells. G1 progression was rescued by the addition of arachidonic acid or prostaglandin E2 (PGE2), indicating a phospholipase-dependent mechanism. We further show that PGE2, through PI3K/AKT activation, promoted Forkhead box protein O1 (FOXO1) phosphorylation and FOXO1 nuclear export. This led to up-regulation of cyclin D1 and down-regulation of p27(Kip1), thus promoting G1 progression. Finally, using pharmacologic inhibitors, we show that cPLA2α, rapidly accelerated fibrosarcoma (RAF)/MEK/ERK, and PI3K/AKT signaling pathways cooperatively regulate G1 progression in response to platelet-derived growth factor stimulation. In summary, these data indicate that cPLA2α, through its phospholipase activity, is a critical effector of G1 phase progression through the cell cycle and suggest that pharmacological targeting of this enzyme may have important therapeutic benefits in disease mechanisms that involve excessive cell proliferation, in particular, cancer and proliferative glomerulopathies.
Collapse
Affiliation(s)
- Said Movahedi Naini
- *Renal Division, Brigham and Women's Hospital, Department of Medicine, and Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA; Renal Division, Amiens Southern Hospital, Amiens, France; Harvard Stem Cell Institute, Cambridge, Massachusetts, USA; and Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Gabriel J Choukroun
- *Renal Division, Brigham and Women's Hospital, Department of Medicine, and Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA; Renal Division, Amiens Southern Hospital, Amiens, France; Harvard Stem Cell Institute, Cambridge, Massachusetts, USA; and Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - James R Ryan
- *Renal Division, Brigham and Women's Hospital, Department of Medicine, and Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA; Renal Division, Amiens Southern Hospital, Amiens, France; Harvard Stem Cell Institute, Cambridge, Massachusetts, USA; and Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Dirk M Hentschel
- *Renal Division, Brigham and Women's Hospital, Department of Medicine, and Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA; Renal Division, Amiens Southern Hospital, Amiens, France; Harvard Stem Cell Institute, Cambridge, Massachusetts, USA; and Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jagesh V Shah
- *Renal Division, Brigham and Women's Hospital, Department of Medicine, and Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA; Renal Division, Amiens Southern Hospital, Amiens, France; Harvard Stem Cell Institute, Cambridge, Massachusetts, USA; and Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Joseph V Bonventre
- *Renal Division, Brigham and Women's Hospital, Department of Medicine, and Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA; Renal Division, Amiens Southern Hospital, Amiens, France; Harvard Stem Cell Institute, Cambridge, Massachusetts, USA; and Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
29
|
Hojo M, Omi A, Hamanaka G, Shindo K, Shimada A, Kondo M, Narita T, Kiyomoto M, Katsuyama Y, Ohnishi Y, Irie N, Takeda H. Unexpected link between polyketide synthase and calcium carbonate biomineralization. ZOOLOGICAL LETTERS 2015; 1:3. [PMID: 26605048 PMCID: PMC4604110 DOI: 10.1186/s40851-014-0001-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/15/2014] [Indexed: 06/05/2023]
Abstract
INTRODUCTION Calcium carbonate biominerals participate in diverse physiological functions. Despite intensive studies, little is known about how mineralization is initiated in organisms. RESULTS We analyzed the medaka spontaneous mutant, ha, defective in otolith (calcareous ear stone) formation. ha lacks a trigger for otolith mineralization, and the causative gene was found to encode polyketide synthase (pks), a multifunctional enzyme mainly found in bacteria, fungi, and plant. Subsequent experiments demonstrate that the products of medaka PKS, most likely polyketides or their derivatives, act as nucleation facilitators in otolith mineralization. The generality of this novel PKS function is supported by the essential role of echinoderm PKS in calcareous skeleton formation together with the presence of PKSs in a much wider range of animals from coral to vertebrates. CONCLUSION The present study first links PKS to biomineralization and provides a genetic cue for biogeochemistry of carbon and calcium cycles.
Collapse
Affiliation(s)
- Motoki Hojo
- />Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
- />Present address: Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24–1, Hyakunincho, Shinju-ku, Tokyo 169-0073 Japan
| | - Ai Omi
- />Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
- />Present address: Division of Molecular Pathology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022 Japan
| | - Gen Hamanaka
- />Tateyama Marine Laboratory, Marine and Coastal Research Center, Ochanomizu University, Kou-yatsu 11, Tateyama, Chiba 294-0301 Japan
| | - Kazutoshi Shindo
- />Department of Food and Nutrition, Japan Women’s University, 2-8-1, Mejirodai, Bunkyo-ku, Tokyo 112-8681 Japan
| | - Atsuko Shimada
- />Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Mariko Kondo
- />Misaki Marine Biological Station, Graduate School of Science, University of Tokyo, 1024 Koajiro, Misaki, Miura, Kanagawa 238-0225 Japan
| | - Takanori Narita
- />Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
- />Present address: Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, 1866 Kameino, Fujisawa, Kanagawa 252-0880 Japan
| | - Masato Kiyomoto
- />Tateyama Marine Laboratory, Marine and Coastal Research Center, Ochanomizu University, Kou-yatsu 11, Tateyama, Chiba 294-0301 Japan
| | - Yohei Katsuyama
- />Department of Biotechnology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657 Japan
| | - Yasuo Ohnishi
- />Department of Biotechnology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657 Japan
| | - Naoki Irie
- />Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Hiroyuki Takeda
- />Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
| |
Collapse
|
30
|
Różycka M, Wojtas M, Jakób M, Stigloher C, Grzeszkowiak M, Mazur M, Ożyhar A. Intrinsically disordered and pliable Starmaker-like protein from medaka (Oryzias latipes) controls the formation of calcium carbonate crystals. PLoS One 2014; 9:e114308. [PMID: 25490041 PMCID: PMC4260845 DOI: 10.1371/journal.pone.0114308] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/07/2014] [Indexed: 01/31/2023] Open
Abstract
Fish otoliths, biominerals composed of calcium carbonate with a small amount of organic matrix, are involved in the functioning of the inner ear. Starmaker (Stm) from zebrafish (Danio rerio) was the first protein found to be capable of controlling the formation of otoliths. Recently, a gene was identified encoding the Starmaker-like (Stm-l) protein from medaka (Oryzias latipes), a putative homologue of Stm and human dentine sialophosphoprotein. Although there is no sequence similarity between Stm-l and Stm, Stm-l was suggested to be involved in the biomineralization of otoliths, as had been observed for Stm even before. The molecular properties and functioning of Stm-l as a putative regulatory protein in otolith formation have not been characterized yet. A comprehensive biochemical and biophysical analysis of recombinant Stm-l, along with in silico examinations, indicated that Stm-l exhibits properties of a coil-like intrinsically disordered protein. Stm-l possesses an elongated and pliable structure that is able to adopt a more ordered and rigid conformation under the influence of different factors. An in vitro assay of the biomineralization activity of Stm-l indicated that Stm-l affected the size, shape and number of calcium carbonate crystals. The functional significance of intrinsically disordered properties of Stm-l and the possible role of this protein in controlling the formation of calcium carbonate crystals is discussed.
Collapse
Affiliation(s)
- Mirosława Różycka
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Magdalena Wojtas
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Michał Jakób
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Christian Stigloher
- Division of Electron Microscopy, Biocenter, University of Würzburg, Würzburg, Germany
| | - Mikołaj Grzeszkowiak
- NanoBioMedical Centre and Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
| | - Maciej Mazur
- Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
- * E-mail:
| |
Collapse
|
31
|
Lundberg YW, Xu Y, Thiessen KD, Kramer KL. Mechanisms of otoconia and otolith development. Dev Dyn 2014; 244:239-53. [PMID: 25255879 DOI: 10.1002/dvdy.24195] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Otoconia are bio-crystals that couple mechanic forces to the sensory hair cells in the utricle and saccule, a process essential for us to sense linear acceleration and gravity for the purpose of maintaining bodily balance. In fish, structurally similar bio-crystals called otoliths mediate both balance and hearing. Otoconia abnormalities are common and can cause vertigo and imbalance in humans. However, the molecular etiology of these illnesses is unknown, as investigators have only begun to identify genes important for otoconia formation in recent years. RESULTS To date, in-depth studies of selected mouse otoconial proteins have been performed, and about 75 zebrafish genes have been identified to be important for otolith development. CONCLUSIONS This review will summarize recent findings as well as compare otoconia and otolith development. It will provide an updated brief review of otoconial proteins along with an overview of the cells and cellular processes involved. While continued efforts are needed to thoroughly understand the molecular mechanisms underlying otoconia and otolith development, it is clear that the process involves a series of temporally and spatially specific events that are tightly coordinated by numerous proteins. Such knowledge will serve as the foundation to uncover the molecular causes of human otoconia-related disorders.
Collapse
Affiliation(s)
- Yunxia Wang Lundberg
- Vestibular Genetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska
| | | | | | | |
Collapse
|
32
|
Lundberg YW, Xu Y, Thiessen KD, Kramer KL. Mechanisms of otoconia and otolith development. Dev Dyn 2014. [PMID: 25255879 DOI: 10.1002/dvdy.24195(2014)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Otoconia are bio-crystals that couple mechanic forces to the sensory hair cells in the utricle and saccule, a process essential for us to sense linear acceleration and gravity for the purpose of maintaining bodily balance. In fish, structurally similar bio-crystals called otoliths mediate both balance and hearing. Otoconia abnormalities are common and can cause vertigo and imbalance in humans. However, the molecular etiology of these illnesses is unknown, as investigators have only begun to identify genes important for otoconia formation in recent years. RESULTS To date, in-depth studies of selected mouse otoconial proteins have been performed, and about 75 zebrafish genes have been identified to be important for otolith development. CONCLUSIONS This review will summarize recent findings as well as compare otoconia and otolith development. It will provide an updated brief review of otoconial proteins along with an overview of the cells and cellular processes involved. While continued efforts are needed to thoroughly understand the molecular mechanisms underlying otoconia and otolith development, it is clear that the process involves a series of temporally and spatially specific events that are tightly coordinated by numerous proteins. Such knowledge will serve as the foundation to uncover the molecular causes of human otoconia-related disorders.
Collapse
Affiliation(s)
- Yunxia Wang Lundberg
- Vestibular Genetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska
| | | | | | | |
Collapse
|
33
|
Rafiq K, Shashikant T, McManus CJ, Ettensohn CA. Genome-wide analysis of the skeletogenic gene regulatory network of sea urchins. Development 2014; 141:950-61. [PMID: 24496631 DOI: 10.1242/dev.105585] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A central challenge of developmental and evolutionary biology is to understand the transformation of genetic information into morphology. Elucidating the connections between genes and anatomy will require model morphogenetic processes that are amenable to detailed analysis of cell/tissue behaviors and to systems-level approaches to gene regulation. The formation of the calcified endoskeleton of the sea urchin embryo is a valuable experimental system for developing such an integrated view of the genomic regulatory control of morphogenesis. A transcriptional gene regulatory network (GRN) that underlies the specification of skeletogenic cells (primary mesenchyme cells, or PMCs) has recently been elucidated. In this study, we carried out a genome-wide analysis of mRNAs encoded by effector genes in the network and uncovered transcriptional inputs into many of these genes. We used RNA-seq to identify >400 transcripts differentially expressed by PMCs during gastrulation, when these cells undergo a striking sequence of behaviors that drives skeletal morphogenesis. Our analysis expanded by almost an order of magnitude the number of known (and candidate) downstream effectors that directly mediate skeletal morphogenesis. We carried out genome-wide analysis of (1) functional targets of Ets1 and Alx1, two pivotal, early transcription factors in the PMC GRN, and (2) functional targets of MAPK signaling, a pathway that plays an essential role in PMC specification. These studies identified transcriptional inputs into >200 PMC effector genes. Our work establishes a framework for understanding the genomic regulatory control of a major morphogenetic process and has important implications for reconstructing the evolution of biomineralization in metazoans.
Collapse
Affiliation(s)
- Kiran Rafiq
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
34
|
Renn J, Winkler C. Osterix/Sp7 regulates biomineralization of otoliths and bone in medaka (Oryzias latipes). Matrix Biol 2014; 34:193-204. [PMID: 24407212 DOI: 10.1016/j.matbio.2013.12.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 12/17/2022]
Abstract
Osterix/Sp7 is a zinc finger transcription factor and critical regulator of osteoblast differentiation, maturation and activity. Osterix expression has also been described in non-skeletal tissues but functional analyses are lacking. In the present study, we show that in the teleost model medaka, osterix is present as two alternatively spliced transcripts, osx_tv1 and osx_tv2. Knock-down of osx_tv1 and/or osx_tv2 results in mineralization loss in early intramembranous bones while cartilage formation is mostly unaffected. Formation of the parasphenoid, the earliest mineralized bone in the medaka skeleton, is impaired and fails to recover at later stages. Ossification of later bones, such as the operculum and cleithrum, is delayed but recovers during further development. In the axial skeleton, formation of the neural arches and centra is strongly delayed. In vivo analyses using osterix:nlGFP and osteocalcin:GFP transgenic medaka and whole mount in situ hybridization suggest that bone defects observed after knock-down of osterix are caused by a delay of osteoblast maturation and activity. Furthermore, we analyzed expression profile and function of osterix during ear and otolith formation. We show that osterix is expressed in otic placodes at the otic vesicle stage and that its knock-down results in a loss of otoliths. Taken together, we show that osterix is required for bone formation in a teleost fish and that its important regulatory functions are conserved between teleosts and mammals. Furthermore, we provide the first functional evidence for a role of Osterix in a non-skeletal tissue, i.e. the otoliths.
Collapse
Affiliation(s)
- Jörg Renn
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; Centre for BioImaging Sciences (CBIS), National University of Singapore, Singapore 117543, Singapore.
| | - Christoph Winkler
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; Centre for BioImaging Sciences (CBIS), National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
35
|
Zamora LY, Lu Z. Alcohol-induced morphological deficits in the development of octavolateral organs of the zebrafish (Danio rerio). Zebrafish 2013; 10:52-61. [PMID: 23461415 DOI: 10.1089/zeb.2012.0830] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Prenatal alcohol exposure is known to have many profound detrimental effects on human fetal development (fetal alcohol spectrum disorders), which may manifest as lifelong disabilities. However, how alcohol affects the auditory/vestibular system is still largely unknown. This is the first study to investigate morphological effects of alcohol on the developing octavolateral system (the inner ear and lateral line) using the zebrafish, Danio rerio. Zebrafish embryos of 2 hours post fertilization (hpf) were treated in 2% alcohol for 48 hours and screened at 72 hpf for morphological defects of the inner ear and lateral line. Octavolateral organs from both alcohol-treated and control zebrafish were examined using light, confocal, and scanning electron microscopy. We observed several otolith phenotypes for alcohol-treated zebrafish including zero, one, two abnormal, two normal, and multiple otoliths. Results of this study show that alcohol treatment during early development impairs the inner ear (smaller ear, abnormal otoliths, and fewer sensory hair cells) and the lateral line (smaller neuromasts, fewer neuromasts and hair cells per neuromast, and shorter kinocilia of hair cells). Early embryonic alcohol exposure may also result in defects in hearing, balance, and hydrodynamic function of zebrafish.
Collapse
Affiliation(s)
- Lilliann Y Zamora
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA
| | | |
Collapse
|
36
|
Rabconnectin3α promotes stable activity of the H+ pump on synaptic vesicles in hair cells. J Neurosci 2012; 32:11144-56. [PMID: 22875945 DOI: 10.1523/jneurosci.1705-12.2012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acidification of synaptic vesicles relies on the vacuolar-type ATPase (V-ATPase) and provides the electrochemical driving force for neurotransmitter exchange. The regulatory mechanisms that ensure assembly of the V-ATPase holoenzyme on synaptic vesicles are unknown. Rabconnectin3α (Rbc3α) is a potential candidate for regulation of V-ATPase activity because of its association with synaptic vesicles and its requirement for acidification of intracellular compartments. Here, we provide the first evidence for a role of Rbc3α in synaptic vesicle acidification and neurotransmission. In this study, we characterized mutant alleles of rbc3α isolated from a large-scale screen for zebrafish with auditory/vestibular defects. We show that Rbc3α is localized to basal regions of hair cells in which synaptic vesicles are present. To determine whether Rbc3α regulates V-ATPase activity, we examined the acidification of synaptic vesicles and localization of the V-ATPase in hair cells. In contrast to wild-type hair cells, we observed that synaptic vesicles had elevated pH, and a cytosolic subunit of the V-ATPase was no longer enriched in synaptic regions of mutant hair cells. As a consequence of defective acidification of synaptic vesicles, afferent neurons in rbc3α mutants had reduced firing rates and reduced accuracy of phase-locked action potentials in response to mechanical stimulation of hair cells. Collectively, our data suggest that Rbc3α modulates synaptic transmission in hair cells by promoting V-ATPase activity in synaptic vesicles.
Collapse
|
37
|
Horn ER, El-Yamany NA, Gradl D. The vestibuloocular reflex of tadpoles (Xenopus laevis) after knock-down of the isthmus related transcription factor XTcf-4. J Exp Biol 2012; 216:733-41. [DOI: 10.1242/jeb.079319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Summary
Development of the amphibian vestibular organ is regulated by molecular and neuronal mechanisms and by environmental input. The molecular component includes inductive signals derived from neural tissue of the hindbrain and from the surrounding mesoderm. The integrity of hindbrain patterning, on the other hand, depends on instructive signals from the isthmus organizer of the midbrain including the transcription factor XTcf-4. If the development of the vestibular system depends on the integrity of the isthmus as organizing centre, suppression of isthmus maintenance should modify vestibular morphology and function. We tested this hypothesis by down-regulation of the transcription factor XTcf-4. 10 pMol XTcf-4-specific antisense morpholino oligonucleotide were injected in one blastomere of 2-cell stage embryos of Xenopus laevis. For reconstitution experiments, 500 pg mRNA of the repressing XTcf-4A isoform or the activating XTcf-4C isoform were co-injected. Over-expression experiments were included using the same isoforms. Otoconia formation and vestibular controlled behaviour such as the roll-induced vestibuloocular reflex (rVOR) and swimming were recorded two weeks later. In 50% of tadpoles, down-regulation of XTcf-4 induced (1) a depression of otoconia formation accompanied by a reduction of the rVOR, (2) abnormal tail development, and (3) loop swimming behaviour. (4) All effects were rescued by co-injection of XTcf-4C but not or only partially by XTcf-4A. (5) Over-expression of XTcf-4A caused similar morphological and rVOR modifications as XTcf-4 depletion while over-expression of XTcf-4C had no effect. Because XTcf-4C has been described as essential factor for isthmus development, we postulate that the isthmus is strongly involved in vestibular development.
Collapse
Affiliation(s)
- Eberhard R. Horn
- Zoological Institute, Cell and Developmental Biology, Karlsruhe Institute of Technology, Germany
| | | | - Dietmar Gradl
- Zoological Institute, Cell and Developmental Biology, Karlsruhe Institute of Technology, Germany
| |
Collapse
|
38
|
Chou SW, Hwang P, Gomez G, Fernando CA, West MC, Pollock LM, Lin-Jones J, Burnside B, McDermott BM. Fascin 2b is a component of stereocilia that lengthens actin-based protrusions. PLoS One 2011; 6:e14807. [PMID: 21625653 PMCID: PMC3082522 DOI: 10.1371/journal.pone.0014807] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Accepted: 07/22/2010] [Indexed: 02/04/2023] Open
Abstract
Stereocilia are actin-filled protrusions that permit mechanotransduction in the
internal ear. To identify proteins that organize the cytoskeleton of
stereocilia, we scrutinized the hair-cell transcriptome of zebrafish. One
promising candidate encodes fascin 2b, a filamentous actin-bundling protein
found in retinal photoreceptors. Immunolabeling of zebrafish hair cells and the
use of transgenic zebrafish that expressed fascin 2b fused to green fluorescent
protein demonstrated that fascin 2b localized to stereocilia specifically. When
filamentous actin and recombinant fusion protein containing fascin 2b were
combined in vitro to determine their dissociation constant, a
Kd≈0.37 µM was observed. Electron
microscopy showed that fascin 2b-actin filament complexes formed parallel actin
bundles in vitro. We demonstrated that expression of fascin 2b
or espin, another actin-bundling protein, in COS-7 cells induced the formation
of long filopodia. Coexpression showed synergism between these proteins through
the formation of extra-long protrusions. Using phosphomutant fascin 2b proteins,
which mimicked either a phosphorylated or a nonphosphorylated state, in COS-7
cells and in transgenic hair cells, we showed that both formation of long
filopodia and localization of fascin 2b to stereocilia were dependent on serine
38. Overexpression of wild-type fascin 2b in hair cells was correlated with
increased stereociliary length relative to controls. These findings indicate
that fascin 2b plays a key role in shaping stereocilia.
Collapse
Affiliation(s)
- Shih-Wei Chou
- Department of Otolaryngology–Head and
Neck Surgery, Case Western Reserve University School of Medicine, Cleveland,
Ohio, United States of America
- Department of Biology, Case Western Reserve
University, Cleveland, Ohio, United States of America
| | - Philsang Hwang
- Department of Otolaryngology–Head and
Neck Surgery, Case Western Reserve University School of Medicine, Cleveland,
Ohio, United States of America
- Department of Biology, Case Western Reserve
University, Cleveland, Ohio, United States of America
| | - Gustavo Gomez
- Department of Otolaryngology–Head and
Neck Surgery, Case Western Reserve University School of Medicine, Cleveland,
Ohio, United States of America
| | - Carol A. Fernando
- Department of Otolaryngology–Head and
Neck Surgery, Case Western Reserve University School of Medicine, Cleveland,
Ohio, United States of America
| | - Megan C. West
- Department of Otolaryngology–Head and
Neck Surgery, Case Western Reserve University School of Medicine, Cleveland,
Ohio, United States of America
- Department of Biology, Case Western Reserve
University, Cleveland, Ohio, United States of America
| | - Lana M. Pollock
- Department of Otolaryngology–Head and
Neck Surgery, Case Western Reserve University School of Medicine, Cleveland,
Ohio, United States of America
- Department of Genetics, Case Western Reserve
University School of Medicine, Cleveland, Ohio, United States of
America
| | - Jennifer Lin-Jones
- Department of Molecular and Cell Biology,
University of California, Berkeley, California, United States of
America
| | - Beth Burnside
- Department of Molecular and Cell Biology,
University of California, Berkeley, California, United States of
America
| | - Brian M. McDermott
- Department of Otolaryngology–Head and
Neck Surgery, Case Western Reserve University School of Medicine, Cleveland,
Ohio, United States of America
- Department of Biology, Case Western Reserve
University, Cleveland, Ohio, United States of America
- Department of Genetics, Case Western Reserve
University School of Medicine, Cleveland, Ohio, United States of
America
- Department of Neurosciences, Case Western
Reserve University School of Medicine, Cleveland, Ohio, United States of
America
- * E-mail:
| |
Collapse
|
39
|
Xu Y, Zhang H, Yang H, Zhao X, Lovas S, Lundberg YYW. Expression, functional, and structural analysis of proteins critical for otoconia development. Dev Dyn 2011; 239:2659-73. [PMID: 20803598 DOI: 10.1002/dvdy.22405] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Otoconia, developed during late gestation and perinatal stages, couple mechanic force to the sensory hair cells in the vestibule for motion detection and bodily balance. In the present work, we have investigated whether compensatory deposition of another protein(s) may have taken place to partially alleviate the detrimental effects of Oc90 deletion by analyzing a comprehensive list of plausible candidates, and have found a drastic increase in the deposition of Sparc-like 1 (aka Sc1 or hevin) in Oc90 null versus wt otoconia. We show that such up-regulation is specific to Sc1, and that stable transfection of Oc90 and Sc1 full-length expression constructs in NIH/3T3 cells indeed promotes matrix calcification. Analysis and modeling of Oc90 and Sc1 protein structures show common features that may be critical requirements for the otoconial matrix backbone protein. Such information will serve as the foundation for future regenerative purposes.
Collapse
Affiliation(s)
- Yinfang Xu
- Vestibular Neurogenetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska 68131, USA
| | | | | | | | | | | |
Collapse
|
40
|
Yu X, Lau D, Ng CP, Roy S. Cilia-driven fluid flow as an epigenetic cue for otolith biomineralization on sensory hair cells of the inner ear. Development 2011; 138:487-94. [DOI: 10.1242/dev.057752] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ciliary motility is necessary for many developmental and physiological processes in animals. In zebrafish, motile cilia are thought to be required for the deposition of otoliths, which comprise crystals of protein and calcium carbonate, on hair cells of the inner ear. The identity of the motile cilia and their role in otolith biogenesis, however, remain controversial. Here, we show that the ear vesicle differentiates numerous motile cilia, the spatial distribution of which changes as a function of the expression pattern of the ciliogenic gene foxj1b. By contrast, the hair cells develop immotile kinocilia that serve as static tethers for otolith crystallization. In ears devoid of all cilia, otoliths can form but they are of irregular shapes and sizes and appear to attach instead to the hair cell apical membranes. Moreover, overproduction of motile cilia also disrupts otolith deposition through sustained agitation of the precursor particles. Therefore, the correct spatial and temporal distribution of the motile cilia is crucial for proper otolith formation. Our findings support the view that the hair cells express a binding factor for the otolith precursors, while the motile cilia ensure that the precursors do not sediment prematurely and are efficiently directed towards the hair cells. We also provide evidence that the kinocilia are modified motile cilia that depend on Foxj1b for their differentiation. We propose that in hair cells, a Foxj1b-dependent motile ciliogenic program is altered by the proneural Atoh proteins to promote the differentiation of immotile kinocilia.
Collapse
Affiliation(s)
- Xianwen Yu
- Institute of Molecular and Cell Biology, Cancer and Developmental Cell Biology Division, Proteos, 61 Biopolis Drive, 138673 Singapore
- Department of Biological Sciences, Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Doreen Lau
- Institute of Molecular and Cell Biology, Cancer and Developmental Cell Biology Division, Proteos, 61 Biopolis Drive, 138673 Singapore
| | - Chee Peng Ng
- Institute of Molecular and Cell Biology, Cancer and Developmental Cell Biology Division, Proteos, 61 Biopolis Drive, 138673 Singapore
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Cancer and Developmental Cell Biology Division, Proteos, 61 Biopolis Drive, 138673 Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore
| |
Collapse
|
41
|
Hurle B, Marques-Bonet T, Antonacci F, Hughes I, Ryan JF, Eichler EE, Ornitz DM, Green ED. Lineage-specific evolution of the vertebrate Otopetrin gene family revealed by comparative genomic analyses. BMC Evol Biol 2011; 11:23. [PMID: 21261979 PMCID: PMC3038909 DOI: 10.1186/1471-2148-11-23] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 01/24/2011] [Indexed: 11/19/2022] Open
Abstract
Background Mutations in the Otopetrin 1 gene (Otop1) in mice and fish produce an unusual bilateral vestibular pathology that involves the absence of otoconia without hearing impairment. The encoded protein, Otop1, is the only functionally characterized member of the Otopetrin Domain Protein (ODP) family; the extended sequence and structural preservation of ODP proteins in metazoans suggest a conserved functional role. Here, we use the tools of sequence- and cytogenetic-based comparative genomics to study the Otop1 and the Otop2-Otop3 genes and to establish their genomic context in 25 vertebrates. We extend our evolutionary study to include the gene mutated in Usher syndrome (USH) subtype 1G (Ush1g), both because of the head-to-tail clustering of Ush1g with Otop2 and because Otop1 and Ush1g mutations result in inner ear phenotypes. Results We established that OTOP1 is the boundary gene of an inversion polymorphism on human chromosome 4p16 that originated in the common human-chimpanzee lineage more than 6 million years ago. Other lineage-specific evolutionary events included a three-fold expansion of the Otop genes in Xenopus tropicalis and of Ush1g in teleostei fish. The tight physical linkage between Otop2 and Ush1g is conserved in all vertebrates. To further understand the functional organization of the Ushg1-Otop2 locus, we deduced a putative map of binding sites for CCCTC-binding factor (CTCF), a mammalian insulator transcription factor, from genome-wide chromatin immunoprecipitation-sequencing (ChIP-seq) data in mouse and human embryonic stem (ES) cells combined with detection of CTCF-binding motifs. Conclusions The results presented here clarify the evolutionary history of the vertebrate Otop and Ush1g families, and establish a framework for studying the possible interaction(s) of Ush1g and Otop in developmental pathways.
Collapse
Affiliation(s)
- Belen Hurle
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Deans MR, Peterson JM, Wong GW. Mammalian Otolin: a multimeric glycoprotein specific to the inner ear that interacts with otoconial matrix protein Otoconin-90 and Cerebellin-1. PLoS One 2010; 5:e12765. [PMID: 20856818 PMCID: PMC2939893 DOI: 10.1371/journal.pone.0012765] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 08/23/2010] [Indexed: 01/29/2023] Open
Abstract
Background The mammalian otoconial membrane is a dense extracellular matrix containing bio-mineralized otoconia. This structure provides the mechanical stimulus necessary for hair cells of the vestibular maculae to respond to linear accelerations and gravity. In teleosts, Otolin is required for the proper anchoring of otolith crystals to the sensory maculae. Otoconia detachment and subsequent entrapment in the semicircular canals can result in benign paroxysmal positional vertigo (BPPV), a common form of vertigo for which the molecular basis is unknown. Several cDNAs encoding protein components of the mammalian otoconia and otoconial membrane have recently been identified, and mutations in these genes result in abnormal otoconia formation and balance deficits. Principal Findings Here we describe the cloning and characterization of mammalian Otolin, a protein constituent of otoconia and the otoconial membrane. Otolin is a secreted glycoprotein of ∼70 kDa, with a C-terminal globular domain that is homologous to the immune complement C1q, and contains extensive posttranslational modifications including hydroxylated prolines and glycosylated lysines. Like all C1q/TNF family members, Otolin multimerizes into higher order oligomeric complexes. The expression of otolin mRNA is restricted to the inner ear, and immunohistochemical analysis identified Otolin protein in support cells of the vestibular maculae and semi-circular canal cristae. Additionally, Otolin forms protein complexes with Cerebellin-1 and Otoconin-90, two protein constituents of the otoconia, when expressed in vitro. Otolin was also found in subsets of support cells and non-sensory cells of the cochlea, suggesting that Otolin is also a component of the tectorial membrane. Conclusion Given the importance of Otolin in lower organisms, the molecular cloning and biochemical characterization of the mammalian Otolin protein may lead to a better understanding of otoconial development and vestibular dysfunction.
Collapse
Affiliation(s)
- Michael R. Deans
- Department of Otolaryngology, Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Center for Hearing and Balance, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jonathan M. Peterson
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - G. William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
43
|
Kim E, Hyrc KL, Speck J, Lundberg YW, Salles FT, Kachar B, Goldberg MP, Warchol ME, Ornitz DM. Regulation of cellular calcium in vestibular supporting cells by otopetrin 1. J Neurophysiol 2010; 104:3439-50. [PMID: 20554841 DOI: 10.1152/jn.00525.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Otopetrin 1 (OTOP1) is a multitransmembrane domain protein, which is essential for mineralization of otoconia, the calcium carbonate biominerals required for vestibular function, and the normal sensation of gravity. The mechanism driving mineralization of otoconia is poorly understood, but it has been proposed that supporting cells and a mechanism to maintain high concentrations of calcium are critical. Using Otop1 knockout mice and a utricular epithelial organ culture system, we show that OTOP1 is expressed at the apex of supporting cells and functions to increase cytosolic calcium in response to purinergic agonists, such as adenosine 5'-triphosphate (ATP). This is achieved by blocking mobilization of calcium from intracellular stores in an extracellular calcium-dependent manner and by mediating influx of extracellular calcium. These data support a model in which OTOP1 acts as a sensor of the extracellular calcium concentration near supporting cells and responds to ATP in the endolymph to increase intracellular calcium levels during otoconia mineralization.
Collapse
Affiliation(s)
- Euysoo Kim
- Washington University School of Medicine, Department of Developmental Biology, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hong SK, Levin CS, Brown JL, Wan H, Sherman BT, Huang DW, Lempicki RA, Feldman B. Pre-gastrula expression of zebrafish extraembryonic genes. BMC DEVELOPMENTAL BIOLOGY 2010; 10:42. [PMID: 20423468 PMCID: PMC2873407 DOI: 10.1186/1471-213x-10-42] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 04/27/2010] [Indexed: 01/11/2023]
Abstract
Background Many species form extraembryonic tissues during embryogenesis, such as the placenta of humans and other viviparous mammals. Extraembryonic tissues have various roles in protecting, nourishing and patterning embryos. Prior to gastrulation in zebrafish, the yolk syncytial layer - an extraembryonic nuclear syncytium - produces signals that induce mesoderm and endoderm formation. Mesoderm and endoderm precursor cells are situated in the embryonic margin, an external ring of cells along the embryo-yolk interface. The yolk syncytial layer initially forms below the margin, in a domain called the external yolk syncytial layer (E-YSL). Results We hypothesize that key components of the yolk syncytial layer's mesoderm and endoderm inducing activity are expressed as mRNAs in the E-YSL. To identify genes expressed in the E-YSL, we used microarrays to compare the transcription profiles of intact pre-gastrula embryos with pre-gastrula embryonic cells that we had separated from the yolk and yolk syncytial layer. This identified a cohort of genes with enriched expression in intact embryos. Here we describe our whole mount in situ hybridization analysis of sixty-eight of them. This includes ten genes with E-YSL expression (camsap1l1, gata3, znf503, hnf1ba, slc26a1, slc40a1, gata6, gpr137bb, otop1 and cebpa), four genes with expression in the enveloping layer (EVL), a superficial epithelium that protects the embryo (zgc:136817, zgc:152778, slc14a2 and elovl6l), three EVL genes whose expression is transiently confined to the animal pole (elovl6l, zgc:136359 and clica), and six genes with transient maternal expression (mtf1, wu:fj59f04, mospd2, rftn2, arrdc1a and pho). We also assessed the requirement of Nodal signaling for the expression of selected genes in the E-YSL, EVL and margin. Margin expression was Nodal dependent for all genes we tested, including the concentrated margin expression of an EVL gene: zgc:110712. All other instances of EVL and E-YSL expression that we tested were Nodal independent. Conclusion We have devised an effective strategy for enriching and identifying genes expressed in the E-YSL of pre-gastrula embryos. To our surprise, maternal genes and genes expressed in the EVL were also enriched by this strategy. A number of these genes are promising candidates for future functional studies on early embryonic patterning.
Collapse
Affiliation(s)
- Sung-Kook Hong
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abbas L, Whitfield TT. The zebrafish inner ear. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1546-5098(10)02904-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
46
|
Trapani JG, Nicolson T. Physiological recordings from zebrafish lateral-line hair cells and afferent neurons. Methods Cell Biol 2010; 100:219-31. [PMID: 21111219 DOI: 10.1016/b978-0-12-384892-5.00008-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sensory signal transduction, the process by which the features of external stimuli are encoded into action potentials, is a complex process that is not fully understood. In fish and amphibia, the lateral-line organ detects water movement and vibration and is critical for schooling behavior and the detection of predators and prey. The lateral-line system in zebrafish serves as an ideal platform to examine encoding of stimuli by sensory hair cells. Here, we describe methods for recording hair-cell microphonics and activity of afferent neurons using intact zebrafish larvae. The recordings are performed by immobilizing and mounting larvae for optimal stimulation of lateral-line hair cells. Hair cells are stimulated with a pressure-controlled water jet and a recording electrode is positioned next to the site of mechanotransduction in order to record microphonics--extracellular voltage changes due to currents through hair-cell mechanotransduction channels. Another readout of the hair-cell activity is obtained by recording action currents from single afferent neurons in response to water-jet stimulation of innervated hair cells. When combined, these techniques make it possible to probe the function of the lateral-line sensory system in an intact zebrafish using controlled, repeatable, physiological stimuli.
Collapse
Affiliation(s)
- Josef G Trapani
- Howard Hughes Medical Institute, Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| | | |
Collapse
|
47
|
Clendenon SG, Shah B, Miller CA, Schmeisser G, Walter A, Gattone VH, Barald KF, Liu Q, Marrs JA. Cadherin-11 controls otolith assembly: evidence for extracellular cadherin activity. Dev Dyn 2009; 238:1909-22. [PMID: 19582870 DOI: 10.1002/dvdy.22015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cadherin-11/Cdh11 is expressed through early development and strongly during inner ear development (otic placode and vesicle). Here we show that antisense knockdown of Cdh11 during early zebrafish development interferes with otolith formation. Immunofluorescence labeling showed that Cdh11 expression was concentrated on and within the otolith. Cdh11 was faintly detected at the lateral surface (sites of cell-cell contact) of otic epithelial cells and in the cytoplasm. Strongly labeled Cdh11 containing puncta were detected within the otolymph (the fluid within the otic vesicle) and associated with the otolith surface. BODIPY-ceramine-labeled vesicular structures detected in the otolymph were larger and more numerous in Cdh11 knockdown embryos. We present evidence supporting a working model that vesicular structures containing Cdh11 (perhaps containing biomineralization components) are exported from the otic epithelium into the otolymph, adhere to one another and to the surface of the growing otolith, facilitating otolith growth.
Collapse
Affiliation(s)
- Sherry G Clendenon
- Department of Medicine, Indiana University Medical Center, Indianapolis, Indiana 46202-5130, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kapłon TM, Michnik A, Drzazga Z, Richter K, Kochman M, Ożyhar A. The rod-shaped conformation of Starmaker. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1616-24. [DOI: 10.1016/j.bbapap.2009.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/14/2009] [Accepted: 07/16/2009] [Indexed: 12/13/2022]
|
49
|
Identification ofstarmaker-likein medaka as a putative target gene of Pax2 in the otic vesicle. Dev Dyn 2009; 238:2860-6. [DOI: 10.1002/dvdy.22093] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
50
|
Kapłon TM, Rymarczyk G, Nocula-Ługowska M, Jakób M, Kochman M, Lisowski M, Szewczuk Z, Ożyhar A. Starmaker Exhibits Properties of an Intrinsically Disordered Protein. Biomacromolecules 2008; 9:2118-25. [DOI: 10.1021/bm800135m] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tomasz M. Kapłon
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzez˙e Wyspiańskiego 27, 50-370 Wrocław, Poland, and Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Grzegorz Rymarczyk
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzez˙e Wyspiańskiego 27, 50-370 Wrocław, Poland, and Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Małgorzata Nocula-Ługowska
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzez˙e Wyspiańskiego 27, 50-370 Wrocław, Poland, and Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Michał Jakób
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzez˙e Wyspiańskiego 27, 50-370 Wrocław, Poland, and Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Marian Kochman
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzez˙e Wyspiańskiego 27, 50-370 Wrocław, Poland, and Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Marek Lisowski
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzez˙e Wyspiańskiego 27, 50-370 Wrocław, Poland, and Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Zbigniew Szewczuk
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzez˙e Wyspiańskiego 27, 50-370 Wrocław, Poland, and Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzez˙e Wyspiańskiego 27, 50-370 Wrocław, Poland, and Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| |
Collapse
|