1
|
Fernandes-da-Silva A, Santana-Oliveira DA, Oliveira ASD, Ferreira TAM, Monteiro NC, Silva-Veiga FM, Martins FF, Cummins CL, Romeiro LAS, Souza-Mello V. LDT409 (pan-PPAR partial agonist) mitigates metabolic dysfunction-associated steatotic liver disease in high-fructose-fed mice. Mol Cell Endocrinol 2024; 594:112380. [PMID: 39332468 DOI: 10.1016/j.mce.2024.112380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 09/29/2024]
Abstract
AIM This study sought to evaluate the effects of LDT409, a pan-PPAR partial agonist obtained from the main industrial waste from cashew nut processing, on hepatic remodeling, highlighting energy metabolism and endoplasmic reticulum (ER) stress in high-fructose-fed mice. METHODS Male C57BL/6 mice received a control diet (C) or a high-fructose diet (HFRU) for ten weeks. Then, a five-week treatment started: C, C-LDT409, HFRU, and HFRU-LDT409. The LDT409 (40 mg/kg of body weight) was mixed with the diets. RESULTS The HFRU diet caused insulin resistance and endoplasmic reticulum (ER) stress. High Pparg and decreased Ppara expression increased steatosis and pro-fibrogenic gene expression in livers of HFRU-fed mice. Suppressed lipogenic factors, orchestrated by PPAR-gamma, and mitigated ER stress concomitant with the increase in beta-oxidation driven by PPAR-alpha mediated the LDT409 beneficial effects. CONCLUSIONS LDT409 may represent a potential low-cost approach to treat metabolic dysfunction-associated steatotic liver disease, which does not currently have a specific treatment.
Collapse
Affiliation(s)
- Aline Fernandes-da-Silva
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daiana Araujo Santana-Oliveira
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andressa S de Oliveira
- Graduate Program in Pharmaceutical Sciences, Department of Pharmacy, Health Sciences Faculty, University of Brasília, Brasília, DF, Brazil; Laboratory of Development of Therapeutic Innovations (LDT), Center for Tropical Medicine, Faculty of Medicine, University of Brasília, Brasília, DF, Brazil
| | - Thaís A M Ferreira
- Graduate Program in Pharmaceutical Sciences, Department of Pharmacy, Health Sciences Faculty, University of Brasília, Brasília, DF, Brazil; Laboratory of Development of Therapeutic Innovations (LDT), Center for Tropical Medicine, Faculty of Medicine, University of Brasília, Brasília, DF, Brazil
| | - Natália Cipriano Monteiro
- Graduate Program in Pharmaceutical Sciences, Department of Pharmacy, Health Sciences Faculty, University of Brasília, Brasília, DF, Brazil; Laboratory of Development of Therapeutic Innovations (LDT), Center for Tropical Medicine, Faculty of Medicine, University of Brasília, Brasília, DF, Brazil
| | - Flávia Maria Silva-Veiga
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiane Ferreira Martins
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Luiz Antonio Soares Romeiro
- Graduate Program in Pharmaceutical Sciences, Department of Pharmacy, Health Sciences Faculty, University of Brasília, Brasília, DF, Brazil; Laboratory of Development of Therapeutic Innovations (LDT), Center for Tropical Medicine, Faculty of Medicine, University of Brasília, Brasília, DF, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Peppi PF, Faria CA, Machado JPC, Virote BCR, Carneiro WF, Solis-Murgas LD, Portz L, Santos CR, Campos LRS, Lira GA, Lima EMM, Bicudo AJA, Barreto-Vianna ARC. The effects of isocaloric diets derived from different lipid sources on zebrafish. BRAZ J BIOL 2024; 84:e280948. [PMID: 39230077 DOI: 10.1590/1519-6984.280948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/06/2024] [Indexed: 09/05/2024] Open
Abstract
Characterizing the effects of saturated fat intake on metabolic health and its changes remains a major challenge. Lipid diets, from different sources, vary widely in their physiological effects on health; therefore, it is important to consider the specific lipid source consumed. The objective of the study was to evaluate the effect of the imposition of isocaloric diets with different lipid sources in zebrafish (fish oil/pork lard). Depicting how metabolic, morphological and behavioral parameters might express themselves in these fishes. Forty adult female fishes were used for the experiment. The animals were divided into a control group (C), fed with unsaturated fatty acid diet, and a saturated fatty acid group (Sat). They received food three times a day, during the 11-week period. The results showed that animals in the Sat group had increased body weight, with a difference relative to the C group, from the third week of diet until the end of the experiment. At the end of the last week, the Sat group had a body weight 32% higher (P=0.0182) than the body weight of the control group. The consumption of a diet rich in saturated fatty acids did not generate signs related to stress and anxiety in zebrafish. There was an increase in glycemia at T60 and T120, with a statistically significant difference between the two moments. Animals in the Sat group showed an increase (P=0.0086) in hepatic steatosis compared to animals in the control group. The results obtained on the relationship between diet and metabolic changes are fundamental to ensure the understanding and appropriate treatment of these problems.
Collapse
Affiliation(s)
- P F Peppi
- Universidade Federal do Paraná - UFPR, Palotina, PR, Brasil
| | - C A Faria
- Universidade Federal do Paraná - UFPR, Palotina, PR, Brasil
| | - J P C Machado
- Universidade Federal do Paraná - UFPR, Palotina, PR, Brasil
| | - B C R Virote
- Universidade Federal de Lavras - UFLA, Departamento de Medicina Veterinária, Lavras, MG, Brasil
| | - W F Carneiro
- Universidade Federal de Lavras - UFLA, Departamento de Medicina Veterinária, Lavras, MG, Brasil
| | - L D Solis-Murgas
- Universidade Federal de Lavras - UFLA, Departamento de Medicina Veterinária, Lavras, MG, Brasil
| | - L Portz
- Universidade Federal do Paraná - UFPR, Departamento de Zootecnia, Palotina, PR, Brasil
| | - C R Santos
- Universidade de Brasília - UnB, Faculdade de Agronomia e Medicina Veterinária, Brasília, DF, Brasil
| | - L R S Campos
- Universidade de Brasília - UnB, Faculdade de Agronomia e Medicina Veterinária, Brasília, DF, Brasil
| | - G A Lira
- Universidade de Brasília - UnB, Faculdade de Agronomia e Medicina Veterinária, Brasília, DF, Brasil
| | - E M M Lima
- Universidade de Brasília - UnB, Faculdade de Agronomia e Medicina Veterinária, Brasília, DF, Brasil
| | - A J A Bicudo
- Universidade Federal do Paraná - UFPR, Departamento de Zootecnia, Palotina, PR, Brasil
| | | |
Collapse
|
3
|
Correia FDS, Spada ECL, Estevam BCP, Conceição TCO, Cruz GNDA, Silva WBDA, Elias MPS, Lemes SAF. Acrocomia aculeata (Jacq.) improves the antioxidant system but induces lipid accumulation in the liver of rats. AN ACAD BRAS CIENC 2024; 96:e20220974. [PMID: 39046016 DOI: 10.1590/0001-3765202420220974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/20/2023] [Indexed: 07/25/2024] Open
Abstract
Acrocomia aculeata pulp (ACP) is a source of oleic acid, phenolic compounds, and flavonoids that protect against diseases and improve antioxidant capacity. We evaluated whether regular intake of ACP, in combination with a standard diet, improves the antioxidant system and physiological parameters. Male Wistar rats were divided into: control (C), 250 mg/kg ACP, and 500 mg/kg ACP groups. Rats received either water or the respective A. aculeata solution doses for 28 days. We observed increased food intake, lower carcass protein levels, and higher carcass lipid levels in the 500 mg/kg ACP group than in the other groups. Postprandial glucose, oral glucose tolerance test results, and the area under the curve were greater, while urea was lower in the 500 mg/kg ACP group. Total liver lipids were increased, and PPAR-α, PPARγ, and carbonylated protein levels were reduced in the 500 mg/kg ACP group. NRF2 contents and glutathione reductase, superoxide dismutase, and catalase activities were increased in the 500 mg/kg ACP group. In the 250 mg/kg ACP group, only glutathione system activity increased. Thus, ACP intake improved the enzymatic antioxidant system in the liver at the evaluated doses, although the 500 mg/kg dose induced alterations in lipid, protein, and carbohydrate metabolism.
Collapse
Affiliation(s)
- Francyele Dos S Correia
- Universidade Federal de Mato Grosso, Departamento de Química, Avenida Fernando Correa da Costa, 2367, 78060-900 Cuiabá, MT, Brazil
| | - Elaine C L Spada
- Universidade Federal de Mato Grosso, Departamento de Química, Avenida Fernando Correa da Costa, 2367, 78060-900 Cuiabá, MT, Brazil
| | - Bruna C P Estevam
- Universidade Federal de Mato Grosso, Departamento de Química, Avenida Fernando Correa da Costa, 2367, 78060-900 Cuiabá, MT, Brazil
| | - Thayanne C O Conceição
- Universidade Federal de Mato Grosso, Departamento de Química, Avenida Fernando Correa da Costa, 2367, 78060-900 Cuiabá, MT, Brazil
| | - Guilherme N DA Cruz
- Universidade Federal de Mato Grosso, Departamento de Química, Avenida Fernando Correa da Costa, 2367, 78060-900 Cuiabá, MT, Brazil
| | - Wéliton B DA Silva
- Universidade Federal de Mato Grosso, Departamento de Química, Avenida Fernando Correa da Costa, 2367, 78060-900 Cuiabá, MT, Brazil
| | - Maísa P S Elias
- Universidade Federal de Mato Grosso, Faculdade de Engenharia Florestal, Avenida Fernando Correa da Costa, 2367, 78060-900 Cuiabá, MT, Brazil
| | - Suélem A F Lemes
- Universidade Federal de Mato Grosso, Departamento de Química, Avenida Fernando Correa da Costa, 2367, 78060-900 Cuiabá, MT, Brazil
| |
Collapse
|
4
|
Souza-Tavares H, Santana-Oliveira DA, Vasques-Monteiro IML, Silva-Veiga FM, Mandarim-de-Lacerda CA, Souza-Mello V. Exercise enhances hepatic mitochondrial structure and function while preventing endoplasmic reticulum stress and metabolic dysfunction-associated steatotic liver disease in mice fed a high-fat diet. Nutr Res 2024; 126:180-192. [PMID: 38759501 DOI: 10.1016/j.nutres.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has attracted increasing attention from the scientific community because of its severe but silent progression and the lack of specific treatment. Glucolipotoxicity triggers endoplasmic reticulum (ER) stress with decreased beta-oxidation and enhanced lipogenesis, promoting the onset of MASLD, whereas regular physical exercise can prevent MASLD by preserving ER and mitochondrial function. Thus, the hypothesis of this study was that high-intensity interval training (HIIT) could prevent the development of MASLD in high-fat (HF)-fed C57BL/6J mice by maintaining insulin sensitivity, preventing ER stress, and promoting beta-oxidation. Forty male C57BL/6J mice (3 months old) comprised 4 experimental groups: the control (C) diet group, the C diet + HIIT (C-HIIT) group, the HF diet group, and the HF diet + HIIT (HF-HIIT) group. HIIT sessions lasted 12 minutes and were performed 3 times weekly by trained mice. The diet and exercise protocols lasted for 10 weeks. The HIIT protocol prevented weight gain and maintained insulin sensitivity in the HF-HIIT group. A chronic HF diet increased ER stress-related gene and protein expression, but HIIT helped to maintain ER homeostasis, preserve mitochondrial ultrastructure, and maximize beta-oxidation. The increased sirtuin-1/peroxisome proliferator-activated receptor-gamma coactivator 1-alpha expression implies that HIIT enhanced mitochondrial biogenesis and yielded adequate mitochondrial dynamics. High hepatic fibronectin type III domain containing 5/irisin agreed with the antilipogenic and anti-inflammatory effects observed in the HF-HIIT group, reinforcing the antisteatotic effects of HIIT. Thus, we confirmed that practicing HIIT 3 times per week maintained insulin sensitivity, prevented ER stress, and enhanced hepatic beta-oxidation, impeding MASLD development in this mouse model even when consuming high energy intake from saturated fatty acids.
Collapse
Affiliation(s)
- Henrique Souza-Tavares
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Daiana Araujo Santana-Oliveira
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Isabela Macedo Lopes Vasques-Monteiro
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Flavia Maria Silva-Veiga
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Vasques-Monteiro IML, Fernandes-da-Silva A, Miranda CS, Silva-Veiga FM, Daleprane JB, Souza-Mello V. Anti-steatotic effects of PPAR-alpha and gamma involve gut-liver axis modulation in high-fat diet-fed mice. Mol Cell Endocrinol 2024; 585:112177. [PMID: 38373652 DOI: 10.1016/j.mce.2024.112177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/21/2024]
Abstract
AIM To evaluate the effects of PPARα and PPARγ activation (alone or in combination) on the gut-liver axis, emphasizing the integrity of the intestinal barrier and hepatic steatosis in mice fed a high saturated fat diet. METHODS Male C57BL/6J were fed a control diet (C) or a high-fat diet (HF) for ten weeks. Then, a four-week treatment started: HF-α (WY14643), HF-γ (low-dose pioglitazone), and HF-αγ (combination). RESULTS The HF caused overweight, insulin resistance, impaired gut-liver axis, and marked hepatic steatosis. Treatments reduced body mass, improved glucose homeostasis, and restored the gut microbiota diversity and intestinal barrier gene expression. Treatments also lowered the plasma lipopolysaccharide concentrations and favored beta-oxidation genes, reducing macrophage infiltration and steatosis in the liver. CONCLUSION Treatment with PPAR agonists modulated the gut microbiota and rescued the integrity of the intestinal barrier, alleviating hepatic steatosis. These results show that these agonists can contribute to metabolic-associated fatty liver disease treatment.
Collapse
Affiliation(s)
- Isabela Macedo Lopes Vasques-Monteiro
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Aline Fernandes-da-Silva
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Carolline Santos Miranda
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Flavia Maria Silva-Veiga
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Julio Beltrame Daleprane
- Laboratory for Studies of Interactions Between Nutrition and Genetics (LEING), Institute of Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Mendes GP, Silva PHS, Gonçalves PVP, Lima EMM, Barreto-Vianna ARC. Quantification of the liver structure of zebrafish (Danio rerio) submitted to different diets and physical exercise. BRAZ J BIOL 2024; 83:e276465. [PMID: 38422266 DOI: 10.1590/1519-6984.276465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/29/2023] [Indexed: 03/02/2024] Open
Abstract
The zebrafish has been used in research for over 80 years. In the last three decades, discoveries about the fundamental properties of development, regeneration, cancer, and other diseases have established the zebrafish as an important model organism in biomedical research. This study aimed to evaluate liver alterations in zebrafish by quantitatively assessing the areas occupied by hepatocytes, as well as connective and adipose tissues. Forty-eight adult Danio rerio (38 males and 10 females) of approximately 13 months of age were used. They were divided into four groups, with 12 animals each. The fish were randomly distributed to form the groups, which received a maintenance and/or hypercaloric diet, with or without the addition of physical exercise. The animals underwent six hours of forced exercise (5 cm/s) for thirteen weeks. The animals that practiced physical exercise had a higher volumetric density of the area occupied by hepatocytes (65.92%±1.81 - GMex and 50.75%±2.24 GHex) among the groups. The GH group had a higher volumetric density of the area occupied by connective tissue (15.12%±0.72), followed by the GHex group (13.53%±1.43). Regarding the volumetric density of the area occupied by adipose tissue, the GH group had a higher density (27.21%±1.36), followed by the GHex group (21.66%±1.11) with statistically significant differences. The GMex had a volumetric density of the area occupied by adipose tissue of 3.5%±0.76, while the GM had 5.7%±0.5, with statistical difference. In relation to the animals in the GHex group, they had 20.39% less fat than the animals in the GH group. The animals in the GMex group had 72.47% less fat than those in the GM group. It is concluded that the different dietary constitutions and the imposition of physical exercise were able to modify the structural architecture of the liver of Danio rerio. These are acceptable criteria for modulations, thus aiming at the control and possible interferences directly related to the metabolism of the species and therefore the control of diseases.
Collapse
Affiliation(s)
- G P Mendes
- Universidade de Brasília - UnB, Laboratório de Anatomia Veterinária, Brasília, DF, Brasil
| | - P H S Silva
- Universidade de Brasília - UnB, Laboratório de Anatomia Veterinária, Brasília, DF, Brasil
| | - P V P Gonçalves
- Universidade de Brasília - UnB, Laboratório de Anatomia Veterinária, Brasília, DF, Brasil
| | - E M M Lima
- Universidade de Brasília - UnB, Laboratório de Anatomia Veterinária, Brasília, DF, Brasil
| | - A R C Barreto-Vianna
- Universidade Federal do Paraná - UFPR, Laboratório de Anatomia Veterinária, Palotina, PR, Brasil
| |
Collapse
|
7
|
Du J, Zhao L, Kang Q, He Y, Bi Y. An optimized method for Oil Red O staining with the salicylic acid ethanol solution. Adipocyte 2023; 12:2179334. [PMID: 36779587 PMCID: PMC9980477 DOI: 10.1080/21623945.2023.2179334] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/07/2023] [Indexed: 02/14/2023] Open
Abstract
Oil Red O (ORO) staining is a commonly used experimental technique to detect lipid content in cells or tissues. Freshly prepared ORO in 60% isopropanol is the most widely used method at present. However, isopropanol is volatile and harmful to the human body. It will also affect the interpretation of the results due to the formation of crystals and non-specific diffuse staining. In this paper, by screening and validation, we report a salicylic acid ethanol solution (containing 50% ethanol, 5%-10% salicylic acid) for the preparation of ORO solution, which has a better staining effect on lipid staining in cells and tissues, with a clean background and short dyeing time. What's more, this ORO solution is non-toxic, convenient to prepare, and can be stored for a long time. Therefore, it is reliable, easy to operate, and can be widely popularized and applied in laboratories.
Collapse
Affiliation(s)
- Junbao Du
- Stem Cell Biology and Therapy Laboratory, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, P.R. China
| | - Li Zhao
- Stem Cell Biology and Therapy Laboratory, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, P.R. China
| | - Quan Kang
- Stem Cell Biology and Therapy Laboratory, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Yun He
- Stem Cell Biology and Therapy Laboratory, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, P.R. China
| | - Yang Bi
- Stem Cell Biology and Therapy Laboratory, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, P.R. China
| |
Collapse
|
8
|
Zhang D, Zhang Y, Wang Z, Lei L. Thymoquinone attenuates hepatic lipid accumulation by inducing autophagy via AMPK/mTOR/ULK1-dependent pathway in nonalcoholic fatty liver disease. Phytother Res 2023; 37:781-797. [PMID: 36479746 DOI: 10.1002/ptr.7662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 12/12/2022]
Abstract
Thymoquinone (TQ) has been proved to exert wide-ranging pharmacological activities, with anti-inflammatory, antioxidant, anticonvulsant, antimicrobial, anti-tumor, and antidiabetic properties. In this study, we investigated the beneficial effects of TQ on a high-fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD) in C57BL/6 N mice in vivo and free fatty acid (FFA)-induced human hepatocellular carcinoma HepG2 cells in vitro. Further, the underlying mechanisms of TQ to promote hepatic autophagy were also discovered. Data showed that TQ caused (p < 0.01) body weight reduction, improved glucose homeostasis, alleviated hepatosteatosis, and decreased hepatic lipid accumulation related to the induction of autophagy in HFD-fed mice. In vitro, TQ obviously increased (p < 0.01) autophagic flux in FFA-induced HepG2 cells and consequently reduced the lipid accumulation in combination with activation of AMPK/mTOR/ULK1 signaling pathways. Moreover, pharmacological inhibition of the AMPK pathway by addition with AMPK inhibitor Compound C (CC) or silence of ULK1 by transfection with siRNA(ULK1) into HepG2 cells reversed these beneficial effects of TQ on triggering hepatic autophagy and reducing lipid accumulation (p < 0.01). Taken together, these results suggested that TQ alleviated hepatic lipid accumulation by triggering autophagy through the AMPK/mTOR/ULK1-dependent signaling pathway. Our study supports a potential role for TQ in ameliorating NAFLD.
Collapse
Affiliation(s)
- Di Zhang
- Department of Gastroenterology and Hepatology, Sichuan Provincial People's Hospital, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Yinghui Zhang
- Department of Gastroenterology and Hepatology, Sichuan Provincial People's Hospital, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Zhilan Wang
- Department of Gastroenterology and Hepatology, Sichuan Provincial People's Hospital, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Lei Lei
- Department of Gastroenterology and Hepatology, Sichuan Provincial People's Hospital, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
9
|
A Single Strain of Lactobacillus (CGMCC 21661) Exhibits Stable Glucose- and Lipid-Lowering Effects by Regulating Gut Microbiota. Nutrients 2023; 15:nu15030670. [PMID: 36771383 PMCID: PMC9920280 DOI: 10.3390/nu15030670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Type 2 diabetes (T2D) is usually accompanied by obesity and nonalcoholic fatty-liver-related insulin resistance. The link between T2D and dysbiosis has been receiving increasing attention. Probiotics can improve insulin sensitivity by regulating imbalances in microbiota, but efficacy varies based on the probiotic used. This study screened the main strain in the feces of healthy adult mice and found it to be a new Lactobacillus (abbreviated as Lb., named as CGMCC No. 21661) after genetic testing. We designed the most common Bifidobacterium longum subsp. longum (CGMCC1.2186, abbreviated as B. longum. subsp.), fecal microbiota transplantation (FMT), and Lb. CGMCC No. 21661 protocols to explore the best way for modulating dysbiosis to improve T2D. After 6 weeks of gavage in T2D mice, it was found that all three protocols had a therapeutic alleviating effect. Among them, compared with the B. longum. subsp. and FMT, the Lb. CGMCC No. 21661 showed a 1- to 2-fold decrease in blood glucose (11.84 ± 1.29 mmol/L, p < 0.05), the lowest HOMA-IR (p < 0.05), a 1 fold increase in serum glucagon-like peptide-1 (5.84 ± 1.1 pmol/L, p < 0.05), and lowest blood lipids (total cholesterol, 2.21 ± 0.68 mmol/L, p < 0.01; triglycerides, 0.4 ± 0.15 mmol/L, p < 0.01; Low-density lipoprotein cholesterol, 0.53 ± 0.16 mmol/L, p < 0.01). In addition, tissue staining in the Lb. CGMCC No. 21661 showed a 2- to 3-fold reduction in T2D-induced fatty liver (p < 0.0001), a 1- to 2-fold decrease in pancreatic apoptotic cells (p < 0.05), and a significant increase in colonic mucus layer thickness (p < 0.05) compared with the B. longum. subsp. and FMT. The glucose and lipid lowering effects of this Lb. CGMCC No. 21661 indicate that it may provide new ideas for the treatment of diabetes.
Collapse
|
10
|
Ding SB, Chu XL, Jin YX, Jiang JJ, Zhao X, Yu M. Epigallocatechin gallate alleviates high-fat diet-induced hepatic lipotoxicity by targeting mitochondrial ROS-mediated ferroptosis. Front Pharmacol 2023; 14:1148814. [PMID: 37025486 PMCID: PMC10070829 DOI: 10.3389/fphar.2023.1148814] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) is a chronic advanced liver disease that is highly related to metabolic disorders and induced by a high-fat diet (HFD). Recently, epigallocatechin gallate (EGCG) has been regarded as a protective bioactive polyphenol in green tea that has the ability to protect against non-alcoholic fatty liver disease, but the molecular mechanism remains poorly deciphered. Ferroptosis plays a vital role in the progression of non-alcoholic fatty liver disease, but experimental evidence of ferroptosis inhibition by epigallocatechin gallate is limited. Hence, our study aimed to investigate the effect and mechanisms of epigallocatechin gallate on hepatic ferroptosis to mitigate hepatic injury in high-fat diet-fed mice. Methods: Fifty male C57BL/6 mice were fed either a standard chow diet (SCD), a high-fat diet, or a high-fat diet and administered epigallocatechin gallate or ferrostatin-1 (a ferroptosis-specific inhibitor) for 12 weeks. Liver injury, lipid accumulation, hepatic steatosis, oxidative stress, iron overload, and ferroptosis marker proteins were examined. In vitro, steatotic L-02 cells were used to explore the underlying mechanism. Results: In our research, we found that epigallocatechin gallate notably alleviated liver injury and lipid accumulation, oxidative stress, hepatic steatosis, decreased iron overload and inhibited ferroptosis in a high-fat diet-induced murine model of non-alcoholic fatty liver disease. In vitro experiments, using ferrostatin-1 and a mitochondrial reactive oxygen species (MtROS) scavenger (Mito-TEMPO), we found that epigallocatechin gallate remarkably alleviated oxidative stress and inhibited ferroptosis by reducing the level of mitochondrial reactive oxygen species in steatotic L-02 cells. Conclusion: Taken together, our results revealed that epigallocatechin gallate may exert protective effects on hepatic lipotoxicity by inhibiting mitochondrial reactive oxygen species-mediated hepatic ferroptosis. Findings from our study provide new insight into prevention and treatment strategies for non-alcoholic fatty liver disease pathological processes.
Collapse
|
11
|
Ajackson M, Nagagata BA, Marcondes-de-Castro IA, Mandarim-de-Lacerda CA, Aguila MB. Adult mice offspring of obese mothers supplemented with melatonin show lessened liver steatosis, inflammation, oxidative stress, and endoplasmic reticulum stress. Life Sci 2023; 312:121253. [PMID: 36481166 DOI: 10.1016/j.lfs.2022.121253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022]
Abstract
AIMS To investigate, in the liver of adult offspring, the possible effects of melatonin supplementation in the obese mother during pregnancy and lactation. MAIN METHODS C57BL/6 females were fed with a control (C) or a high-fat (HF) diet and supplemented with melatonin (Mel) during the pregnancy and lactation, forming the groups: C, CMel, HF, and HFMel. After weaning until three months old, the offspring only received the C diet. KEY FINDINGS The HF mothers and their offspring showed higher body weight (BW) than the C mothers and offspring. However, at 3-mo-old, BW was reduced in HFMel vs. HF offspring. Also, plasmatic and liver lipid markers increased in HF vs. C offspring but were reduced in HFMel vs. HF offspring. Liver lipid content was lessened in HFMel vs. HF offspring by 50 %. Also, lipid metabolism, pro-inflammatory and endoplasmic reticulum (ER) stress genes were higher expressed in HF vs. C offspring but reduced in HFMel vs. HF offspring. Contrarily, beta-oxidation and antioxidant enzyme genes were less expressed in HF vs. C offspring but improved in HFMel vs. HF offspring. Finally, AMPK/mTOR pathway genes, initially dysregulated in the HF, were restored in the HFMel offspring. SIGNIFICANCE The obese mother leads to liver alterations in the offspring. Current findings demonstrated the maternal melatonin supplementation during pregnancy and lactation in adult offspring's liver. Consequently, the effects were seen in mitigating the liver's AMPK/mTOR pathway genes, lipogenesis, beta-oxidation, inflammation, oxidative stress, and ER stress, preventing liver disease progression in the offspring.
Collapse
Affiliation(s)
- Matheus Ajackson
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Brenda A Nagagata
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ilitch A Marcondes-de-Castro
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
12
|
Reis-Barbosa PH, Marinho TS, Matsuura C, Aguila MB, de Carvalho JJ, Mandarim-de-Lacerda CA. The obesity and nonalcoholic fatty liver disease mouse model revisited: Liver oxidative stress, hepatocyte apoptosis, and proliferation. Acta Histochem 2022; 124:151937. [PMID: 35952484 DOI: 10.1016/j.acthis.2022.151937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 11/18/2022]
Abstract
The study revisited the diet-induced obesity (DIO) mice and the nonalcoholic fatty liver disease (NAFLD) pathogenesis to serve as a translational model. Hepatic beta-oxidation pathways, lipogenesis, oxidative stress, hepatocyte apoptosis, and proliferation were investigated in obese mice. Three-month-old male mice were divided according to their diet for fifteen weeks, the control diet (C group, containing 10% energy from fat) and the high-fat diet (HF group, containing 50% energy from fat). Body weight (BW), liver mass, and steatosis were higher in the HF group than in the C group. Also, gene expression related to beta-oxidation and lipogenesis showed an adverse profile, and insulin and glucose signaling pathways were impaired in the HF group compared to the C group. As a result, steatosis was prevalent in the HF group but not in the C group. Furthermore, the pathways that generate NAFLD were negatively modulated by oxidative stress in the HF animals than in the C ones. The caspase 3 immunolabeled HF hepatocytes with increased gene and protein expressions related to apoptosis while proliferating cell nuclear antigen labeled C hepatocytes. In conclusion, the findings in the DIO mouse model reproduce the NAFLD profile relative to the human NAFLD's apoptosis, insulin signaling, lipogenesis, beta-oxidation, and oxidative stress. Therefore, the model is adequate for a translational perspective's morphological, biochemical, and molecular research on NAFLD.
Collapse
Affiliation(s)
- Pedro H Reis-Barbosa
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, The University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Laboratory of Ultrastructure and Tissue Biology, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Thatiany Souza Marinho
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, The University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Cristiane Matsuura
- Department of Pharmacology, The University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, The University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Jorge J de Carvalho
- Laboratory of Ultrastructure and Tissue Biology, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, The University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
13
|
Pinto AP, da Rocha AL, Teixeira GR, Rovina RL, Veras ASC, Frantz F, Pauli JR, de Moura LP, Cintra DE, Ropelle ER, Quadrilatero J, da Silva ASR. Rapamycin did not prevent the excessive exercise-induced hepatic fat accumulation. Life Sci 2022; 306:120800. [PMID: 35839860 DOI: 10.1016/j.lfs.2022.120800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 01/18/2023]
Affiliation(s)
- Ana P Pinto
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Alisson L da Rocha
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Giovana R Teixeira
- Multicentric Program of Postgraduate in Physiological Sciences, São Paulo State University (UNESP), School of Dentistry of Araçatuba, Araçatuba, São Paulo, Brazil; Department of Physical Education, State University of São Paulo (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Rafael L Rovina
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Allice S C Veras
- Multicentric Program of Postgraduate in Physiological Sciences, São Paulo State University (UNESP), School of Dentistry of Araçatuba, Araçatuba, São Paulo, Brazil
| | - Fabiani Frantz
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Clinical, Toxicological, and Bromatological Analysis, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - José R Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Leandro P de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Dennys E Cintra
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Eduardo R Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Joe Quadrilatero
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Adelino S R da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil; School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
14
|
Melatonin Alleviates PM 2.5-Induced Hepatic Steatosis and Metabolic-Associated Fatty Liver Disease in ApoE -/- Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8688643. [PMID: 35720187 PMCID: PMC9200552 DOI: 10.1155/2022/8688643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/06/2022] [Indexed: 12/25/2022]
Abstract
Background Exposure to fine particulate matter (PM2.5) is associated with the risk of developing metabolic-associated fatty liver disease (MAFLD). Melatonin is the main secreted product of the pineal gland and has been reported to prevent hepatic lipid metabolism disorders. However, it remains uncertain whether melatonin could protect against PM2.5-induced MAFLD. Methods and Results The purpose of our study was to investigate the mitigating effects of melatonin on hepatic fatty degeneration accelerated by PM2.5 in vivo and in vitro. Histopathological analysis and ultrastructural images showed that PM2.5 induced hepatic steatosis and lipid vacuolation in ApoE−/− mice, which could be effectively alleviated by melatonin administration. Increased ROS production and decreased expression of antioxidant enzymes were detected in the PM2.5-treated group, whereas melatonin showed recovery effects after PM2.5-induced oxidative damage in both the liver and L02 cells. Further investigation revealed that PM2.5 induced oxidative stress to activate PTP1B, which in turn had a positive feedback regulation effect on ROS release. When a PTP1B inhibitor or melatonin was administered, SP1/SREBP-1 signalling was effectively suppressed, while Nrf2/Keap1 signalling was activated in the PM2.5-treated groups. Conclusion Our study is the first to show that melatonin alleviates the disturbance of PM2.5-triggered hepatic steatosis and liver damage by regulating the ROS-mediated PTP1B and Nrf2 signalling pathways in ApoE−/− mice. These results suggest that melatonin administration might be a prospective therapy for the prevention and treatment of MAFLD associated with air pollution.
Collapse
|
15
|
Silva-Veiga FM, Miranda CS, Vasques-Monteiro IML, Souza-Tavares H, Martins FF, Daleprane JB, Souza-Mello V. Peroxisome proliferator-activated receptor-alpha activation and dipeptidyl peptidase-4 inhibition target dysbiosis to treat fatty liver in obese mice. World J Gastroenterol 2022; 28:1814-1829. [PMID: 35633911 PMCID: PMC9099201 DOI: 10.3748/wjg.v28.i17.1814] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/04/2022] [Accepted: 03/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Obesity and comorbidities onset encompass gut dysbiosis, altered intestinal permeability, and endotoxemia. Treatments that target gut dysbiosis can cope with obesity and nonalcoholic fatty liver disease (NAFLD) management. Peroxisome proliferator-activated receptor (PPAR)-alpha activation and dipeptidyl-peptidase-4 (DPP-4) inhibition alleviate NAFLD, but the mechanism may involve gut microbiota modulation and merits further investigation. AIM To address the effects of PPAR-alpha activation and DPP-4 inhibition (isolated or combined) upon the gut-liver axis, emphasizing inflammatory pathways in NAFLD management in high-fat-fed C57BL/6J mice. METHODS Male C57BL/6J mice were fed a control diet (C, 10% of energy as lipids) or a high-fat diet (HFD, 50% of energy as lipids) for 12 wk, when treatments started, forming the groups: C, HF, HFA (HFD + PPAR-alpha agonist WY14643, 2.5 mg/kg body mass), HFL (HFD + DPP-4 inhibitor linagliptin, 15 mg/kg body mass), and HFC (HFD + the combination of WY14643 and linagliptin). RESULTS The HFD was obesogenic compared to the C diet. All treatments elicited significant body mass loss, and the HFC group showed similar body mass to the C group. All treatments tackled oral glucose intolerance and raised plasma glucagon-like peptide-1 concentrations. These metabolic benefits restored Bacteroidetes/Firmicutes ratio, resulting in increased goblet cells per area of the large intestine and reduced lipopolysaccharides concentrations in treated groups. At the gene level, treated groups showed higher intestinal Mucin 2, Occludin, and Zo-1 expression than the HFD group. The reduced endotoxemia suppressed inflammasome and macrophage gene expression in the liver of treated animals. These observations complied with the mitigation of liver steatosis and reduced hepatic triacylglycerol, reassuring the role of the proposed treatments on NAFLD mitigation. CONCLUSION PPAR alpha activation and DPP-4 inhibition (isolated or combined) tackled NAFLD in diet-induced obese mice by restoration of gut-liver axis. The reestablishment of the intestinal barrier and the rescued phylogenetic gut bacteria distribution mitigated liver steatosis through anti-inflammatory signals. These results can cope with NAFLD management by providing pre-clinical evidence that drugs used to treat obesity comorbidities can help to alleviate this silent and harmful liver disease.
Collapse
Affiliation(s)
- Flavia Maria Silva-Veiga
- Department of Anatomy, Institute of Biology, State University of Rio de Janeiro, Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Rio de Janeiro 20551-030, Brazil
| | - Carolline Santos Miranda
- Department of Anatomy, Institute of Biology, State University of Rio de Janeiro, Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Rio de Janeiro 20551-030, Brazil
| | - Isabela Macedo Lopes Vasques-Monteiro
- Department of Anatomy, Institute of Biology, State University of Rio de Janeiro, Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Rio de Janeiro 20551-030, Brazil
| | - Henrique Souza-Tavares
- Department of Anatomy, Institute of Biology, State University of Rio de Janeiro, Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Rio de Janeiro 20551-030, Brazil
| | - Fabiane Ferreira Martins
- Department of Anatomy, Institute of Biology, State University of Rio de Janeiro, Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Rio de Janeiro 20551-030, Brazil
| | - Julio Beltrame Daleprane
- Department of Clinical and Toxicology Analysis, State University of Rio de Janeiro, Nutrition Institute, State University of Rio de Janeiro, Nutrition Institute, University of Sao Paulo, Rio de Janeiro 20551-030, Brazil
| | - Vanessa Souza-Mello
- Department of Anatomy, Institute of Biology, State University of Rio de Janeiro, Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Rio de Janeiro 20551-030, Brazil
| |
Collapse
|
16
|
Jiang JJ, Zhang GF, Zheng JY, Sun JH, Ding SB. Targeting Mitochondrial ROS-Mediated Ferroptosis by Quercetin Alleviates High-Fat Diet-Induced Hepatic Lipotoxicity. Front Pharmacol 2022; 13:876550. [PMID: 35496312 PMCID: PMC9039018 DOI: 10.3389/fphar.2022.876550] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/24/2022] [Indexed: 12/31/2022] Open
Abstract
Background: The protective effect of quercetin on nonalcoholic fatty liver disease (NAFLD) has been reported, but its mechanism remains poorly understood. Recently, quercetin was reported to be capable of inhibiting ferroptosis, which is a recognized type of regulated cell death. Moreover, hepatic ferroptosis plays an important role in the progression of NAFLD, but experimental evidence is limited. Hence, our study aimed to investigate the effect of quercetin on hepatic ferroptosis in high-fat diet (HFD)-induced NAFLD and further elucidate the underlying molecular mechanism. Methods: C57BL/6J mice were fed either a normal diet (ND), an HFD, or an HFD supplemented with quercetin for 12 weeks. Hepatic lipid peroxidation, steatosis, ferroptosis and iron overload were examined. In vitro, steatotic L-02 cells was used to study the potential mechanism. Results: We found that the HFD caused lipid peroxidation, lipid accumulation and ferroptosis in the liver, which were rescued by quercetin supplementation. Consistent with the in vivo results, quercetin alleviated lipid droplet accumulation and reduced the levels of lipid reactive oxygen species (ROS) and ferroptosis in steatotic L-02 cells. Using a mitochondrial ROS (MtROS) scavenger (Mito-TEMPO) and ferroptosis specific inhibitor (Fer-1), we found that quercetin remarkably alleviated lipid droplet accumulation and lipid peroxidation by reducing MtROS-mediated ferroptosis in steatotic L-02 cells. Conclusion: Our data showed that HFD consumption induced lipid accumulation and triggered ferroptosis in liver, ultimately leading to hepatic lipotoxicity, which can be alleviated by quercetin. Findings from this study provide new insight into the mechanism by which quercetin can be used for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Jin-Jin Jiang
- Jiangsu Vocational College of Medicine, Yancheng, China
| | - Guo-Fu Zhang
- Department of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Jia-Yi Zheng
- Jiangsu Vocational College of Medicine, Yancheng, China
| | - Ji-Hu Sun
- Jiangsu Vocational College of Medicine, Yancheng, China
- *Correspondence: Shi-Bin Ding, ; Ji-Hu Sun,
| | - Shi-Bin Ding
- Jiangsu Vocational College of Medicine, Yancheng, China
- *Correspondence: Shi-Bin Ding, ; Ji-Hu Sun,
| |
Collapse
|
17
|
Intermittent fasting, high-intensity interval training, or a combination of both have beneficial effects in obese mice with nonalcoholic fatty liver disease. J Nutr Biochem 2022; 104:108997. [DOI: 10.1016/j.jnutbio.2022.108997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/03/2021] [Accepted: 02/22/2022] [Indexed: 01/10/2023]
|
18
|
Veras K, Lucena CF, Goedcke J, Evangelista FS, Carpinelli A, Carvalho CRDO. Moderate Exercise Training Combined With a High-Fat and Sucrose Diet Protects Pancreatic Islet Function in Male C57BL/6J Mice. Front Endocrinol (Lausanne) 2022; 13:881236. [PMID: 35669687 PMCID: PMC9165053 DOI: 10.3389/fendo.2022.881236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is mainly caused by excess energy intake and physical inactivity, and the number of overweight/obese individuals has been steadily increasing for decades. Previous studies showed that rodents fed westernized diets exhibit endocrine pancreas deterioration and a range of metabolic disorders. This study evaluated the effects of moderated aerobic treadmill exercise training on pancreatic islet cell viability and function in mice consuming a high-fat and sucrose diet. In the present study, 60-day-old male C57BL/6J mice were divided into four groups: control (C), fed a standard diet AIN-93M (3.83 kcal/g; 70% carbohydrate (cornstarch and dextrinized starch were chosen as the major source of carbohydrate for the AIN-93 diet. In addition, a small amount of sucrose), 20% protein (casein), and 10% fat (soybean) with no training (i.e., sedentary); C + training (CTR, fed the standard diet with eight weeks of exercise; high-fat diet + sucrose (HFDS), fed a high fat and sucrose diet (5.2 kcal/g; 20% carbohydrate (cornstarch and dextrinized starch were chosen as the major source of carbohydrate), 20% protein (casein), 60% fat (Lard was chosen as the major source of fat and a small amount of soybean) + 20% sucrose diluted in drinking water with no training; and HFDS + training (HFDSTR). After eight weeks, the HFDS mice displayed increased body weight (P<0.001) and epididymal, inguinal and retroperitoneal adipose tissue mass (P<0.01). These mice also presented insulin resistance (P<0.01), glucose intolerance (P<0.001), impaired glucose-stimulated insulin secretion (GSIS) and were less responsive to the physiological net ROS production induced by glucose stimulus. The HFDS group's pancreatic islet cells were 38% less viable and 59% more apoptotic than those from the C group (P<0.05). The HFDSTR improved glucose tolerance, body mass, insulin sensitivity and GSIS (P<0.05). Furthermore, HFDSTR mice had 53% more viable isolated pancreatic islets cells and 29% fewer apoptotic cells than the HFDS group (P<0.01). Thus, exercise training may slow down and/or prevent adverse metabolic effects associated with consuming a westernized diet.
Collapse
Affiliation(s)
- Katherine Veras
- Institute of Biomedical Sciences, Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
| | - Camila Ferraz Lucena
- Institute of Biomedical Sciences, Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
| | - Julia Goedcke
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
| | | | - Angelo Carpinelli
- Institute of Biomedical Sciences, Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
19
|
Zhu F, Zhang D, Shen F, Xu K, Huang X, Liu J, Zhang J, Teng Y. Maternal Socs3 knockdown attenuates postnatal obesity caused by an early life environment of maternal obesity and intrauterine overnutrition in progeny mice. IUBMB Life 2021; 73:1210-1221. [PMID: 34184397 DOI: 10.1002/iub.2526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/29/2021] [Accepted: 06/20/2021] [Indexed: 11/07/2022]
Abstract
Pathological states in the early life environment of mammalian offspring, including maternal obesity and intrauterine overnutrition, can induce obesity and metabolic disorder later in life. Leptin resistance caused by upregulation of Socs3 in the hypothalamus of offspring was believed to be the main mechanism of this effect. In this study, obese mother (OM) and lean mother (LM) models were generated by feeding C57BL/6N female mice a high-fat diet or standard lean diet, respectively. Additionally, an obese mother with intervention (OMI) model was generated by injecting the high-fat diet group with Socs3-shRNA lentivirus during early pregnancy. The offspring of the groups was correspondingly named OM-F1 , LM-F1 , and OMI-F1 , representing progeny mouse models of different early life environments. The offspring were fed a high-fat diet to test their propensity for obesity. The body weight, food intake and fat accumulation were higher, while glucose intolerance and insulin resistance were worse in the OM-F1 group than LM-F1 group. By contrast, the obesity phenotype, hyperphagia and metabolic disorder were alleviated in the OMI-F1 group compared with the OM-F1 group. The mechanism was identified that downregulation of hypothalamic SOCS3 resulted in an increased level of p-STAT3 and p-JAK2, which ameliorated the leptin resistance and restored the lean expression of appetite regulatory genes (Pomc and Agrp) in hypothalamus of OMI-F1 group. Taken together, these results indicate that reducing maternal Socs3 expression during pregnancy can attenuate obesity caused by the early life environment in mice, which may inspire therapies that enable obese mothers to bear metabolically healthy children.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Graduate, Bengbu Medical College, Bengbu, China
- College of Biological and Chemical Science and Engineering, Jiaxing University, Jiaxing, China
- Children's Medical Center, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Dawei Zhang
- College of Biological and Chemical Science and Engineering, Jiaxing University, Jiaxing, China
| | - Fangfang Shen
- Children's Medical Center, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Ke Xu
- Children's Medical Center, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xin Huang
- College of Biological and Chemical Science and Engineering, Jiaxing University, Jiaxing, China
| | - Jue Liu
- Children's Medical Center, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jin Zhang
- College of Biological and Chemical Science and Engineering, Jiaxing University, Jiaxing, China
| | - Yiqun Teng
- Department of Graduate, Bengbu Medical College, Bengbu, China
- Children's Medical Center, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
20
|
Obese mice weight loss role on nonalcoholic fatty liver disease and endoplasmic reticulum stress treated by a GLP-1 receptor agonist. Int J Obes (Lond) 2021; 46:21-29. [PMID: 34465857 DOI: 10.1038/s41366-021-00955-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/03/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND/OBJECTIVES The weight loss following Semaglutide treatment, a GLP-1 receptor agonist, might be responsible for some effects observed on the nonalcoholic fatty liver disease of obese mice. SUBJECTS/METHODS Two groups of C57BL/6 male mice (n = 30/group) were fed the diets Control (C) or high-fat (HF) for 16 weeks. Then, separated into six new groups for an additional four weeks (n = 10/group) and treated with Semaglutide (S, 40 µg/kg) or paired feeding (PF) with S groups (C; C-S; C-PF; HF; HF-S; HF-PF). RESULTS Semaglutide reduced energy consumption leading to weight loss. Simultaneously it improved glucose intolerance, glycated hemoglobin, insulin resistance/sensitivity, plasma lipids, and gastric inhibitory polypeptide. Semaglutide and paired feeding mitigated liver steatosis and adipose differentiation-related protein (Plin2) expression. Semaglutide also improved hormones and adipokines, reduced lipogenesis and inflammation, and increased beta-oxidation. Semaglutide lessened liver glucose uptake and endoplasmic reticulum (ER) stress. Among the 14 genes analyzed, 13 were modified by Semaglutide (93 %, six genes were changed exclusively by Semaglutide, and seven other genes were affected by the combination of Semaglutide and paired feeding). In seven genes, the paired diet showed no effect (50% of the genes tested). No marker was affected exclusively by paired feeding. CONCLUSIONS Semaglutide and the consequent weight loss reduced obese mice liver inflammation, insulin resistance, and ER stress. However, weight loss alone did show few or no action on some significant study findings, like liver steatosis, leptin, insulin, resistin, and amylin. Furthermore, hepatic inflammation mediated by MCP-1 and partially by TNF-alpha and IL6 were also not reduced by weight loss. Furthermore, weight loss alone did not lessen hepatic lipogenesis as determined by the findings of SREBP-1c, CHREBP, PPAR-alpha, and SIRT1. Semaglutide was implicated in improving glucose uptake and lessening ER stress by reducing GADD45, independent of weight loss.
Collapse
|
21
|
Vasques-Monteiro IML, Silva-Veiga FM, Miranda CS, de Andrade Gonçalves ÉCB, Daleprane JB, Souza-Mello V. A rise in Proteobacteria is an indicator of gut-liver axis-mediated nonalcoholic fatty liver disease in high-fructose-fed adult mice. Nutr Res 2021; 91:26-35. [PMID: 34130208 DOI: 10.1016/j.nutres.2021.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 04/17/2021] [Accepted: 04/30/2021] [Indexed: 01/12/2023]
Abstract
Current evidence suggests that high fructose intake results in gut dysbiosis, leading to endotoxemia and NAFLD onset. Thus, the hypothesis of the study was that an enhanced Proteobacteria proportion in the cecal microbiota could be the most prominent trigger of NAFLD through enhanced endotoxin (LPS) in adult high-fructose-fed C57BL/6 mice. Male C57BL/6 mice received a control diet (n = 10, C: 76% of energy as carbohydrates, 0% as fructose) or high-fructose diet (n = 10, HFRU: 76% of energy as carbohydrate, 50% as fructose) for 12 weeks. Outcomes included biochemical analyses, 16S rDNA PCR amplification, hepatic stereology, and RT-qPCR. The groups showed similar body masses during the whole experiment. However, the HFRU group showed greater water intake and blood pressure than the C group. The HFRU group showed a significantly lower amount of Bacteroidetes and a predominant rise in Proteobacteria, implying increased LPS. The HFRU group also showed enhanced de novo lipogenesis (Chrebp expression), while beta-oxidation was decreased (Ppar-alpha expression). These results agree with the deposition of fat droplets within hepatocytes and the enhanced hepatic triacylglycerol concentrations, as observed in the photomicrographs, where the HFRU group had a higher volume density of steatosis than the C group. Thus, we confirmed that a rise in the Proteobacteria phylum proportion was the most prominent alteration in gut-liver axis-induced hepatic steatosis in HFRU-fed C57BL/6 mice. Gut dysbiosis and fatty liver were observed even in the absence of overweight in this dietary adult mouse model.
Collapse
Affiliation(s)
- Isabela Macedo Lopes Vasques-Monteiro
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil; Laboratory of bioactive compounds, LABBIO, School of Nutrition, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flávia Maria Silva-Veiga
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Carolline Santos Miranda
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Julio Beltrame Daleprane
- Laboratory for Studies of Interactions Between Nutrition and Genetics, LEING, Institute of Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
22
|
Tabernilla A, dos Santos Rodrigues B, Pieters A, Caufriez A, Leroy K, Van Campenhout R, Cooreman A, Gomes AR, Arnesdotter E, Gijbels E, Vinken M. In Vitro Liver Toxicity Testing of Chemicals: A Pragmatic Approach. Int J Mol Sci 2021; 22:5038. [PMID: 34068678 PMCID: PMC8126138 DOI: 10.3390/ijms22095038] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
The liver is among the most frequently targeted organs by noxious chemicals of diverse nature. Liver toxicity testing using laboratory animals not only raises serious ethical questions, but is also rather poorly predictive of human safety towards chemicals. Increasing attention is, therefore, being paid to the development of non-animal and human-based testing schemes, which rely to a great extent on in vitro methodology. The present paper proposes a rationalized tiered in vitro testing strategy to detect liver toxicity triggered by chemicals, in which the first tier is focused on assessing general cytotoxicity, while the second tier is aimed at identifying liver-specific toxicity as such. A state-of-the-art overview is provided of the most commonly used in vitro assays that can be used in both tiers. Advantages and disadvantages of each assay as well as overall practical considerations are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.T.); (B.d.S.R.); (A.P.); (A.C.); (K.L.); (R.V.C.); (A.C.); (A.R.G.); (E.A.); (E.G.)
| |
Collapse
|
23
|
Naidu ECS, Olojede SO, Lawal SK, Rennie CO, Azu OO. Nanoparticle delivery system, highly active antiretroviral therapy, and testicular morphology: The role of stereology. Pharmacol Res Perspect 2021; 9:e00776. [PMID: 34107163 PMCID: PMC8189564 DOI: 10.1002/prp2.776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022] Open
Abstract
The conjugation of nanoparticles (NPs) with antiretroviral drugs is a drug delivery approach with great potential for managing HIV infections. Despite their promise, recent studies have highlighted the toxic effects of nanoparticles on testicular tissue and their impact on sperm morphology. This review explores the role of stereological techniques in assessing the testicular morphology in highly active antiretroviral therapy (HAART) when a nanoparticle drug delivery system is used. Also, NPs penetration and pharmacokinetics concerning the testicular tissue and blood-testis barrier form the vital part of this review. More so, various classes of NPs employed in biomedical and clinical research to deliver antiretroviral drugs were thoroughly discussed. In addition, considerations for minimizing nanoparticle-drugs toxicity, ensuring enhanced permeability of nanoparticles, maximizing drug efficacy, ensuring adequate bioavailability, and formulation of HAART-NPs fabrication are well discussed.
Collapse
Affiliation(s)
- Edwin Coleridge S. Naidu
- Discipline of Clinical AnatomySchool of Laboratory Medicine & Medical SciencesNelson R Mandela School of MedicineUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Samuel Oluwaseun Olojede
- Discipline of Clinical AnatomySchool of Laboratory Medicine & Medical SciencesNelson R Mandela School of MedicineUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Sodiq Kolawole Lawal
- Discipline of Clinical AnatomySchool of Laboratory Medicine & Medical SciencesNelson R Mandela School of MedicineUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Carmen Olivia Rennie
- Discipline of Clinical AnatomySchool of Laboratory Medicine & Medical SciencesNelson R Mandela School of MedicineUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Onyemaechi Okpara Azu
- Discipline of Clinical AnatomySchool of Laboratory Medicine & Medical SciencesNelson R Mandela School of MedicineUniversity of KwaZulu‐NatalDurbanSouth Africa
- Department of AnatomySchool of MedicineUniversity of NamibiaWindhoekNamibia
| |
Collapse
|
24
|
Antraco VJ, Hirata BKS, de Jesus Simão J, Cruz MM, da Silva VS, da Cunha de Sá RDC, Abdala FM, Armelin-Correa L, Alonso-Vale MIC. Omega-3 Polyunsaturated Fatty Acids Prevent Nonalcoholic Steatohepatitis (NASH) and Stimulate Adipogenesis. Nutrients 2021; 13:nu13020622. [PMID: 33671850 PMCID: PMC7918199 DOI: 10.3390/nu13020622] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/01/2021] [Accepted: 02/06/2021] [Indexed: 12/18/2022] Open
Abstract
The increasing impact of obesity on global human health intensifies the importance of studies focusing on agents interfering with the metabolism and remodeling not only of the white adipose tissue (WAT) but also of the liver. In the present study, we have addressed the impact of n-3 PUFA in adipose cells' proliferation and adipogenesis, as well as in the hepatic lipid profile and morphology. Mice were induced to obesity by the consumption of a high-fat diet (HFD) for 16 weeks. At the 9th week, the treatment with fish oil (FO) was initiated and maintained until the end of the period. The FO treatment reduced the animals' body mass, plasma lipids, glucose, plasma transaminases, liver mass, triacylglycerol, and cholesterol liver content when compared to animals consuming only HFD. FO also decreased the inguinal (ing) WAT mass, reduced adipocyte volume, increased adipose cellularity (hyperplasia), and increased the proliferation of adipose-derived stromal cells (AdSCs) which corroborates the increment in the proliferation of 3T3-L1 pre-adipocytes or AdSCs treated in vitro with n-3 PUFA. After submitting the in vitro treated (n-3 PUFA) cells, 3T3-L1 and AdSCs, to an adipogenic cocktail, there was an increase in the mRNA expression of adipogenic transcriptional factors and other late adipocyte markers, as well as an increase in lipid accumulation when compared to not treated cells. Finally, the expression of browning-related genes was also higher in the n-3 PUFA treated group. We conclude that n-3 PUFA exerts an attenuating effect on body mass, dyslipidemia, and hepatic steatosis induced by HFD. FO treatment led to decreasing adiposity and adipocyte hypertrophy in ingWAT while increasing hyperplasia. Data suggest that FO treatment might induce recruitment (by increased proliferation and differentiation) of new adipocytes (white and/or beige) to the ingWAT, which is fundamental for the healthy expansion of WAT.
Collapse
|
25
|
Tarevnic R, Ornellas F, Mandarim-de-Lacerda CA, Aguila MB. Maternal swimming mitigates liver damage caused by paternal obesity. Nutrition 2021; 86:111168. [PMID: 33601122 DOI: 10.1016/j.nut.2021.111168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 01/06/2021] [Accepted: 01/16/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Parents' lifestyle and nutrition can program offspring obesity in adulthood. We hypothesized that maternal swimming has beneficial effects on the adversity caused by paternal obesity on offspring. METHODS Twelve-week-old male C57 BL/6 J mice (fed a high-fat diet, obese father [ObFa], or control diet, lean father [LFa]) were mated with female mice fed only the control diet. Mothers were trained (TMo) or untrained (UMo): swimming for 6 wk before and the first 2 wk of gestation. Pups were fed only the control diet. RESULTS Fathers showed different body mass (BM) at copulation, but not the mothers. The ObFa had 20% higher BM than the LFa. Twelve-week-old ObFa/UMo offspring showed a higher BM gain than the LFa/UMo and ObFa/TMo. There was BM sexual dimorphism in the LFa/UMo (female mice +24% than male mice). There was hyperglycemia and hyperinsulinemia in the ObFa/UMo, but low glycemia and insulin levels were seen in the ObFa/TMo. There was augmented liver steatosis in the ObFa/UMo compared with the LFa/UMo, and the ObFa/TMo compared with the LFa/TMo, but reduced steatosis in the ObFa/TMo compared with the ObFa/UMo. In addition, lipogenic markers were more expressed and beta-oxidation markers less expressed in the ObFa/UMo compared with the LFa/UMo, but the opposite was observed in the ObFa/TMo compared with the ObFa/UMo. Proinflammatory markers were higher in the liver of the ObFa/UMo compared with the LFa/UMo and lower in the ObFa/TMo compared with the ObFa/UMo. CONCLUSIONS Obese fathers produced offspring that were overweight and had altered fasting glycemia and insulin sensitivity, leading to higher liver lipogenesis and inflammation, as well as lower beta-oxidation. The swimming mother mitigated these adverse effects in mice offspring.
Collapse
Affiliation(s)
- Renata Tarevnic
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Ornellas
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Komatsu Y, Aoyama K, Yoneda M, Ashikawa S, Nakano S, Kawai Y, Cui X, Furukawa N, Ikeda K, Nagata K. The prebiotic fiber inulin ameliorates cardiac, adipose tissue, and hepatic pathology, but exacerbates hypertriglyceridemia in rats with metabolic syndrome. Am J Physiol Heart Circ Physiol 2021; 320:H281-H295. [PMID: 33216624 DOI: 10.1152/ajpheart.00657.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/18/2020] [Indexed: 01/17/2023]
Abstract
Prebiotics ameliorate dysbiosis and influence metabolism and the immune system, but their effects on cardiovascular complications in metabolic disorders remain largely unknown. We here investigated the effects of the soluble fiber inulin on cardiac, adipose tissue, and hepatic pathology as well as on metabolic disorders in DahlS.Z-Leprfa/Leprfa (DS/obese) rats, an animal model of metabolic syndrome (MetS). DS/obese rats and their homozygous lean (DahlS.Z-Lepr+/Lepr+, or DS/lean) littermate controls were fed a purified diet containing 5% or 20% inulin from 9 to 13 wk of age. The high-fiber diet ameliorated hypertension, left ventricular inflammation, fibrosis and diastolic dysfunction; attenuated adipose tissue inflammation and fibrosis; and alleviated the elevation of interleukin-6 levels, without affecting insulin resistance, in DS/obese rats. In addition, high fiber intake ameliorated lipid accumulation, inflammation, and fibrosis; attenuated the reduction in AMPK activity; upregulated sterol regulatory element-binding protein-1c gene expression; and increased the expression of microsomal triglyceride transfer protein gene in the liver of DS/obese rats. It also mitigated increases in total and non-high-density lipoprotein cholesterol levels but increased the triglyceride concentration in serum in these rats. None of these parameters were affected by high dietary fiber in DS/lean rats. The proportion of regulatory T cells in adipose tissue was influenced by dietary fiber but not by genotype. Our results indicate that inulin exacerbates hypertriglyceridemia but alleviates hypertension and cardiac injury as well as adipose tissue and hepatic pathology in MetS rats.NEW & NOTEWORTHY Prebiotics ameliorate dysbiosis and influence metabolism and the immune system, but their effects on cardiovascular complications in metabolic disorders remain largely unknown. Inulin ameliorated hypertension, cardiac injury, and diastolic dysfunction without affecting obesity or insulin resistance in a rat model of metabolic syndrome. The favorable cardiac effects of inulin may be related to inhibition of systemic inflammation associated with a reduction in circulating interleukin-6 levels. Additionally, inulin exacerbated hypertriglyceridemia but alleviates adipose tissue and hepatic pathology in these animals, as well as increased the number of regulatory T cells in adipose tissue.
Collapse
Affiliation(s)
- Yuki Komatsu
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kiyoshi Aoyama
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mamoru Yoneda
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sao Ashikawa
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shiho Nakano
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yumeno Kawai
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xixi Cui
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nozomi Furukawa
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Katsuhide Ikeda
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kohzo Nagata
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
27
|
Rodríguez MJ, Herrera F, Donoso W, Castillo I, Orrego R, González DR, Zúñiga-Hernández J. Pro-Resolving Lipid Mediator Resolvin E1 Mitigates the Progress of Diethylnitrosamine-Induced Liver Fibrosis in Sprague-Dawley Rats by Attenuating Fibrogenesis and Restricting Proliferation. Int J Mol Sci 2020; 21:ijms21228827. [PMID: 33266360 PMCID: PMC7700193 DOI: 10.3390/ijms21228827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022] Open
Abstract
Liver fibrosis is a complex process associated to most types of chronic liver disease, which is characterized by a disturbance of hepatic tissue architecture and the excessive accumulation of extracellular matrix. Resolvin E1 (RvE1) is a representative member of the eicosapentaenoic omega-3 lipid derivatives, and is a drug candidate of the growing family of endogenous resolvins. Considering the aforementioned, the main objective of this study was to analyze the hepatoprotective effect of RvE1 in a rat model of liver fibrosis. Male Sprague-Dawley rats received diethylnitrosamine (DEN, 70 mg/mg body weight intraperitoneally (i.p)) as an inductor of liver fibrosis once weekly and RvE1(100 ng/body weight i.p) twice weekly for four weeks. RvE1 suppressed the alterations induced by DEN, normalizing the levels of alanine aminotransferase (ALT), albumin, and lactate dehydrogenase (LDH), and ameliorated DEN injury by decreasing the architecture distortion, inflammatory infiltration, necrotic areas, and microsteatosis. RvE1 also limited DEN-induced proliferation through a decrease in Ki67-positive cells and cyclin D1 protein expression, which is related to an increase of the levels of cleaved caspase-3. Interestingly, we found that RvE1 promotes higher nuclear translocation of nuclear factor κB (NF-κB)p65 than DEN. RvE1 also increased the levels of nuclear the nuclear factor erythroid 2-related factor 2 (Nrf2), but with no antioxidant effect, measured as an increase in glutathione disulfide (GSSG) and a decrease in the ratio of glutathione (GSH)/GSSG. Taken together, these results suggest that RvE1 modulates the fibrogenesis, steatosis, and cell proliferation in a model of DEN induced fibrosis.
Collapse
Affiliation(s)
- Maria José Rodríguez
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.J.R.); (F.H.); (D.R.G.)
- Programa de Doctorado en Ciencias Mención Investigación y Desarrollo de Productos Bioactivos, Instituto de Química de los Recursos Naturales, Universidad de Talca, Talca 3460000, Chile
| | - Francisca Herrera
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.J.R.); (F.H.); (D.R.G.)
| | - Wendy Donoso
- Departamento de Estomatología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile;
| | - Iván Castillo
- Unidad de Anatomía Patológica, Hospital Regional de Talca, Talca 3460001, Chile;
- Centro Oncológico, Facultad de Medicina, Universidad Católica del Maule, Talca 3466706, Chile
| | - Roxana Orrego
- Departamento de Bioquímica Clínica e Inmunohematología, Facultad Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile;
| | - Daniel R. González
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.J.R.); (F.H.); (D.R.G.)
| | - Jessica Zúñiga-Hernández
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.J.R.); (F.H.); (D.R.G.)
- Correspondence: ; Tel.: +56-71-241-8855
| |
Collapse
|
28
|
Ahmad MI, Ijaz MU, Hussain M, Haq IU, Zhao D, Li C. High-Fat Proteins Drive Dynamic Changes in Gut Microbiota, Hepatic Metabolome, and Endotoxemia-TLR-4-NFκB-Mediated Inflammation in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11710-11725. [PMID: 33034193 DOI: 10.1021/acs.jafc.0c02570] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The responses of gut microbiota to dietary proteins have been studied previously. However, the effects of dietary proteins supplemented with a high-fat diet (HFD) on the metabolite biomarkers associated with non-alcoholic fatty liver disease (NAFLD) are not well understood. To understand the underlying mechanisms, C57BL/6J mice were fed with either a low-fat diet with casein (LFC) or an HFD with casein (HFC), fish (HFF), or mutton proteins (HFM), and their cecal microbiota and liver metabolites were analyzed. At the phylum level, the HFD group had a relatively higher abundance of Firmicutes compared to the LFC-diet group. At the genus level, the HFF-diet group had the highest abundance of Lactobacillus and Akkermansia compared to the HFC- and HFM-diet groups. Furthermore, mice fed with the HFF diet had significantly reduced levels of hepatic metabolites involved in oxidative stress and bile acid metabolism. Thus, meat proteins in HFD interact in the host to create distinct responses in the gut microbiota and its metabolites.
Collapse
Affiliation(s)
- Muhammad Ijaz Ahmad
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Muhammad Umair Ijaz
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Muzhair Hussain
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Ijaz Ul Haq
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| |
Collapse
|
29
|
Ahmad MI, Umair Ijaz M, Hussain M, Ali Khan I, Mehmood N, Siddiqi SM, Liu C, Zhao D, Xu X, Zhou G, Li C. High fat diet incorporated with meat proteins changes biomarkers of lipid metabolism, antioxidant activities, and the serum metabolomic profile in Glrx1 -/- mice. Food Funct 2020; 11:236-252. [PMID: 31956867 DOI: 10.1039/c9fo02207d] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Red and processed meat consumption has been associated with oxidative stress, diabetes and non-alcoholic fatty liver disease (NAFLD). This study was aimed at exploring the effects of high-fat meat protein diets on potential metabolite biomarkers in Glrx1-/- mice, a well-documented mouse model to study NAFLD. Male Glrx1-/- mice were fed a control diet with 12% energy (kcal) from fat, a high-fat diet supplemented with casein (HFC) with 60% energy (kcal) from fat, and a high-fat diet supplemented with fish (HFF) or mutton proteins (HFM) for 12 weeks. The results of biochemical and histological analyses indicated that the intake of HFM increased hepatic total cholesterol, triglycerides, serum alanine transaminase and aspartate transaminase, and macro- and micro-vesicular lipid droplet accumulation, which were accompanied by altered gene expression associated with the lipid and cholesterol metabolism. HFF diet fed Glrx1-/- mice significantly ameliorated diet-induced NAFLD biomarkers compared to HFC and HFM diets. In addition, serum metabolome profiling identified metabolites specifically associated with lipid metabolism bile acid metabolism, sphingolipid and amino acid metabolism pathways. A HFM diet increased the abundance of LysoPC(15:0), LysoPC(16:0), LysoPC(20:1), LysoPE(18:2), LysoPE(22:0), LysoPE(20:6), O-arachidonoylglycidol, 12-ketodeoxycholic acid and sphinganine that are associated with NAFLD. The KEGG metabolic pathway of identified metabolites of high fat diets showed that the differential metabolites were associated with lipid metabolism, linoleic acid metabolism, amino acid metabolism, bile acid metabolism, sphingolipid metabolism, and glutathione metabolism pathways whereas HFF diet ameliorated NAFLD by modifying these pathways. These results provide potential metabolite biomarkers for NAFLD induced by HFM diet.
Collapse
Affiliation(s)
- Muhammad Ijaz Ahmad
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, International Collaborative Laboratory of Animal Health and Food Safety, College of Food Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Jiang T, Wu H, Yang X, Li Y, Zhang Z, Chen F, Zhao L, Zhang C. Lactobacillus Mucosae Strain Promoted by a High-Fiber Diet in Genetic Obese Child Alleviates Lipid Metabolism and Modifies Gut Microbiota in ApoE-/- Mice on a Western Diet. Microorganisms 2020; 8:microorganisms8081225. [PMID: 32806628 PMCID: PMC7464838 DOI: 10.3390/microorganisms8081225] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022] Open
Abstract
Supplementation of probiotics is a promising gut microbiota-targeted therapeutic method for hyperlipidemia and atherosclerosis. However, the selection of probiotic candidate strains is still empirical. Here, we obtained a human-derived strain, Lactobacillus mucosae A1, which was shown by metagenomic analysis to be promoted by a high-fiber diet and associated with the amelioration of host hyperlipidemia, and validated its effect on treating hyperlipidemia and atherosclerosis as well as changing structure of gut microbiota in ApoE-/- mice on a Western diet. L. mucosae A1 attenuated the severe lipid accumulation in serum, liver and aortic sinus of ApoE-/- mice on a Western diet, while it also reduced the serum lipopolysaccharide-binding protein content of mice, reflecting the improved metabolic endotoxemia. In addition, L. mucosae A1 shifted the gut microbiota structure of ApoE-/- mice on a Western diet, including recovering a few members of gut microbiota enhanced by the Western diet. This study not only suggests the potential of L. mucosae A1 to be a probiotic in the treatment of hyperlipidemia and atherosclerosis, but also highlights the advantage of such function-based rather than taxonomy-based strategies for the selection of candidate strains for the next generation probiotics.
Collapse
Affiliation(s)
- Tianyi Jiang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (T.J.); (H.W.); (X.Y.); liyue-- (Y.L.); (Z.Z.); (F.C.); (L.Z.)
| | - Huan Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (T.J.); (H.W.); (X.Y.); liyue-- (Y.L.); (Z.Z.); (F.C.); (L.Z.)
| | - Xin Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (T.J.); (H.W.); (X.Y.); liyue-- (Y.L.); (Z.Z.); (F.C.); (L.Z.)
| | - Yue Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (T.J.); (H.W.); (X.Y.); liyue-- (Y.L.); (Z.Z.); (F.C.); (L.Z.)
| | - Ziyi Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (T.J.); (H.W.); (X.Y.); liyue-- (Y.L.); (Z.Z.); (F.C.); (L.Z.)
| | - Feng Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (T.J.); (H.W.); (X.Y.); liyue-- (Y.L.); (Z.Z.); (F.C.); (L.Z.)
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (T.J.); (H.W.); (X.Y.); liyue-- (Y.L.); (Z.Z.); (F.C.); (L.Z.)
- Department of Biochemistry and Microbiology and New Jersey Institute for Food, Nutrition and Health, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (T.J.); (H.W.); (X.Y.); liyue-- (Y.L.); (Z.Z.); (F.C.); (L.Z.)
- Correspondence:
| |
Collapse
|
31
|
Hepatic lipid metabolism in adult rats using early weaning models: sex-related differences. J Dev Orig Health Dis 2020; 11:499-508. [PMID: 32519629 DOI: 10.1017/s2040174420000495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Non-pharmacological early weaning (NPEW) induces liver damage in male progeny at adulthood; however, pharmacological early weaning (PEW) does not cause this dysfunction. To elucidate this difference in liver dysfunction between these two models and determine the phenotype of female offspring, de novo lipogenesis, β-oxidation, very low-density lipoprotein (VLDL) export, and gluconeogenesis in both sexes were investigated in the adult Wistar rats that were weaned after a normal period of lactation (control group) or early weaned either by restriction of access to the dams' teats (NPEW group) or by reduction of dams' milk production with bromocriptine (PEW group). The offspring received standard diet from weaning to euthanasia (PN180). NPEW males had higher plasma triglycerides and TyG index, liver triglycerides, and cholesterol by de novo lipogenesis, which leads to intracellular lipids accumulation. As expected, hepatic morphology was preserved in PEW males, but they showed increased liver triglycerides. The only molecular difference between PEW and NPEW males was in acetyl-CoA carboxylase-1 (ACC-1) and stearoyl-CoA desaturase-1 (SCD-1), which were lower in PEW animals. Both early weaning (EW) females had no changes in liver cholesterol and triglyceride contents, and the hepatic cytoarchitecture was preserved. The expression of microsomal triglyceride transfer protein was increased in both the female EW groups, which could constitute a protective factor. The changes in hepatic lipid metabolism in EW offspring were less marked in females. EW impacted in the hepatic cytoarchitecture only in NPEW males, which showed higher ACC-1 and SCD-1 when compared to the PEW group. As these enzymes are lipogenic, it could explain a worsened liver function in NPEW males.
Collapse
|
32
|
Santos FO, Correia BRO, Marinho TS, Barbosa-da-Silva S, Mandarim-de-Lacerda CA, Souza-Mello V. Anti-steatotic linagliptin pleiotropic effects encompasses suppression of de novo lipogenesis and ER stress in high-fat-fed mice. Mol Cell Endocrinol 2020; 509:110804. [PMID: 32259637 DOI: 10.1016/j.mce.2020.110804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/30/2022]
Abstract
AIM To investigate the effects of linagliptin treatment on hepatic energy metabolism and ER stress in high-fat-fed C57BL/6 mice. METHODS Forty male C57BL/6 mice, three months of age, received a control diet (C, 10% of lipids as energy, n = 20) or high-fat diet (HF, 50% of lipids as energy, n = 20) for 10 weeks. The groups were randomly subdivided into four groups to receive linagliptin, for five weeks, at a dose of 30 mg/kg/day added to the diets: C, C-L, HF, and HF-L groups. RESULTS The HF group showed higher body mass, total and hepatic cholesterol levels and total and hepatic triacylglycerol levels than the C group, all of which were significantly diminished by linagliptin in the HF-L group. The HF group had higher hepatic steatosis than the C group, whereas linagliptin markedly reduced the hepatic steatosis (less 52%, P < 0.001). The expression of Sirt1 and Pgc1a was more significant in the HF-L group than in the HF group. Linagliptin also elicited enhanced GLP-1 concentrations and a reduction in the expression of the lipogenic genes Fas and Srebp1c. Besides, HF-L showed a reduction in the genes related to endoplasmic reticulum stress Chop, Atf4, and Gadd45 coupled with reduced apoptotic nuclei immunostaining. CONCLUSION Linagliptin caused a marked reduction in hepatic steatosis as a secondary effect of its glucose-lowering property. NAFLD countering involved reduced lipogenesis, increased beta-oxidation, and relief in endoplasmic reticulum stress, leading to reduced apoptosis and better preservation of the hepatic structure. Therefore, linagliptin may be used, preferably in diabetic patients, to avoid the progression of hepatic steatosis.
Collapse
Affiliation(s)
- F O Santos
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - B R O Correia
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - T S Marinho
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sandra Barbosa-da-Silva
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
33
|
Salvi M, Molinaro L, Metovic J, Patrono D, Romagnoli R, Papotti M, Molinari F. Fully automated quantitative assessment of hepatic steatosis in liver transplants. Comput Biol Med 2020; 123:103836. [PMID: 32658781 DOI: 10.1016/j.compbiomed.2020.103836] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The presence of macro- and microvesicular steatosis is one of the major risk factors for liver transplantation. An accurate assessment of the steatosis percentage is crucial for determining liver graft transplantability, which is currently based on the pathologists' visual evaluations on liver histology specimens. METHOD The aim of this study was to develop and validate a fully automated algorithm, called HEPASS (HEPatic Adaptive Steatosis Segmentation), for both micro- and macro-steatosis detection in digital liver histological images. The proposed method employs a hybrid deep learning framework, combining the accuracy of an adaptive threshold with the semantic segmentation of a deep convolutional neural network. Starting from all white regions, the HEPASS algorithm was able to detect lipid droplets and classify them into micro- or macrosteatosis. RESULTS The proposed method was developed and tested on 385 hematoxylin and eosin (H&E) stained images coming from 77 liver donors. Automated results were compared with manual annotations and nine state-of-the-art techniques designed for steatosis segmentation. In the TEST set, the algorithm was characterized by 97.27% accuracy in steatosis quantification (average error 1.07%, maximum average error 5.62%) and outperformed all the compared methods. CONCLUSIONS To the best of our knowledge, the proposed algorithm is the first fully automated algorithm for the assessment of both micro- and macrosteatosis in H&E stained liver tissue images. Being very fast (average computational time 0.72 s), this algorithm paves the way for automated, quantitative and real-time liver graft assessments.
Collapse
Affiliation(s)
- Massimo Salvi
- Politobiomed Lab, Biolab, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy.
| | - Luca Molinaro
- Division of Pathology, AOU Città Della Salute e Della Scienza di Torino, Turin, Italy
| | - Jasna Metovic
- Division of Pathology, Department of Oncology, University of Turin, Turin, Italy
| | - Damiano Patrono
- General Surgery 2U, Liver Transplant Center, AOU Città Della Salute e Della Scienza di Torino, University of Turin, Turin, Italy
| | - Renato Romagnoli
- General Surgery 2U, Liver Transplant Center, AOU Città Della Salute e Della Scienza di Torino, University of Turin, Turin, Italy
| | - Mauro Papotti
- Division of Pathology, Department of Oncology, University of Turin, Turin, Italy
| | - Filippo Molinari
- Politobiomed Lab, Biolab, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| |
Collapse
|
34
|
da Silva Filomeno CE, Costa-Silva M, Corrêa CL, Neves RH, Mandarim-de-Lacerda CA, Machado-Silva JR. The acute schistosomiasis mansoni ameliorates metabolic syndrome in the C57BL/6 mouse model. Exp Parasitol 2020; 212:107889. [PMID: 32222527 DOI: 10.1016/j.exppara.2020.107889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/17/2020] [Accepted: 03/22/2020] [Indexed: 02/07/2023]
Abstract
Human and experimental studies have shown that chronic schistosomiasis mansoni protects against metabolic disorders through direct and indirect pathways. This study aims to investigate the co-morbidity between the acute schistosomiasis and nonalcoholic fatty liver. To address this, male C57BL/6 mice fed a high-fat chow (60% fat) or standard chow (10% fat) for 13 weeks and later infected with 80 Schistosoma mansoni cercariae. Mice were assigned into four groups: uninfected fed standard (USC), uninfected fed high-fat chow (UHFC), infected fed standard (ISC), and infected fed high-fat chow (IHFC). Blood sample and tissues were obtained at nine weeks post-infection (acute schistosomiasis) by necropsy. UHFC mice showed higher body mass, visceral adiposity, impaired glucose tolerance, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), triglyceride (TG), and liver steatosis compared to USC mice. IHFC mice showed lower blood lipid levels, blood glucose, improved glucose tolerance, body mass, and liver steatosis (macro and microvesicular) compared to UHFC mice. IHFC showed more massive histopathological changes (sinusoidal fibrosis, hepatocellular ballooning, and inflammatory infiltrates) compared to ISC. In conclusion, the co-morbidity results in both beneficial (friend) and detrimental (foe) for the host. While the acute schistosomiasis improves some metabolic features of metabolic syndrome, comorbidity worsens the liver injury.
Collapse
Affiliation(s)
- Carlos Eduardo da Silva Filomeno
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Biomedical Center, The University of the State of Rio de Janeiro, Brazil
| | - Michele Costa-Silva
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Biomedical Center, The University of the State of Rio de Janeiro, Brazil; Faculty of Medicine, Estácio de Sá University, Rio de Janeiro, Brazil
| | - Christiane Leal Corrêa
- Department of Pathology and Laboratories, Faculty of Medical Sciences, Biomedical Center, The University of the State of Rio de Janeiro, Brazil; Faculty of Medicine, Estácio de Sá University, Rio de Janeiro, Brazil
| | - Renata Heisler Neves
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Biomedical Center, The University of the State of Rio de Janeiro, Brazil
| | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Institute of Biology Roberto Alcantara Gomes, Biomedical Center, The University of the State of Rio de Janeiro, Brazil
| | - José Roberto Machado-Silva
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Biomedical Center, The University of the State of Rio de Janeiro, Brazil.
| |
Collapse
|
35
|
Bertasso IM, Pietrobon CB, Lopes BP, Peixoto TC, Soares PN, Oliveira E, Manhães AC, Bonfleur ML, Balbo SL, Cabral SS, Gabriel Kluck GE, Atella GC, Gaspar de Moura E, Lisboa PC. Programming of hepatic lipid metabolism in a rat model of postnatal nicotine exposure - Sex-related differences. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113781. [PMID: 31864076 DOI: 10.1016/j.envpol.2019.113781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/04/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Maternal nicotine exposure during lactation induces liver damage in adult male rats. However, the mechanism in males is unknown and females have not been tested. Here, we determined the liver lipid composition and lipogenic enzymes in male and female offspring at two ages in a model of postnatal nicotine exposure. Osmotic minipumps were implanted in lactating Wistar rat dams at postnatal day (PND) 2 to release 6 mg/kg/day of nicotine (NIC group) or saline (CON group) for 14 days. Offspring received a standard diet from weaning until euthanasia at PND120 (1 pup/litter/sex) or PND180 (2 pups/litter/sex). At PND120, NIC males showed lower plasma triglycerides (TG), steatosis degree 1, higher hepatic cholesterol (CHOL) ester, free fatty acids, monoacylglycerol content as well as acetyl-coa carboxylase-1 (ACC-1) and fatty acid synthase (FAS) protein expression in the liver compared to CON males. At this age, NIC females had preserved hepatocytes architecture, higher plasma CHOL, higher CHOL ester and lower total CHOL content in the liver compared to CON females. At PND180, NIC males showed steatosis degrees 1 and 2, higher TG, lower free fatty acids and total CHOL content in the liver and an increase in ACC-1 hepatic protein expression. NIC females had higher plasma TG and CHOL levels, no change in hepatic morphology, lower CHOL ester and free fatty acids in the liver, which also showed higher total ACC-1 and FAS protein expression. Maternal nicotine exposure induces long-term liver dysfunction, with an alteration in hepatic cytoarchitecture that was aggravated with age in males. Concerning females, despite unchanged hepatic cytoarchitecture, lipid metabolism was compromised, which deserves further attention.
Collapse
Affiliation(s)
- Iala Milene Bertasso
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Carla Bruna Pietrobon
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Bruna Pereira Lopes
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Thamara Cherem Peixoto
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Patrícia Novaes Soares
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Elaine Oliveira
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Alex Christian Manhães
- Laboratory of Neurophysiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Maria Lucia Bonfleur
- Laboratory of Endocrine Physiology and Metabolism, Center of Biological and Health Sciences, Western Paraná State University, Cascavel, PR, Brazil
| | - Sandra Lucinei Balbo
- Laboratory of Endocrine Physiology and Metabolism, Center of Biological and Health Sciences, Western Paraná State University, Cascavel, PR, Brazil
| | - Suellen Silva Cabral
- Laboratory of Lipids and Lipoprotein Biochemistry, Biochemistry Institute of Federal University of Rio de Janeiro, RJ, Brazil
| | - George Eduardo Gabriel Kluck
- Laboratory of Lipids and Lipoprotein Biochemistry, Biochemistry Institute of Federal University of Rio de Janeiro, RJ, Brazil
| | - Georgia Correa Atella
- Laboratory of Lipids and Lipoprotein Biochemistry, Biochemistry Institute of Federal University of Rio de Janeiro, RJ, Brazil
| | - Egberto Gaspar de Moura
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Patrícia Cristina Lisboa
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
36
|
Comparative Study on Beneficial Effects of Hydroxytyrosol- and Oleuropein-Rich Olive Leaf Extracts on High-Fat Diet-Induced Lipid Metabolism Disturbance and Liver Injury in Rats. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1315202. [PMID: 31998777 PMCID: PMC6970490 DOI: 10.1155/2020/1315202] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/27/2019] [Accepted: 12/06/2019] [Indexed: 12/31/2022]
Abstract
Oleuropein and hydroxytyrosol, as major compounds of olive leaves, have been reported to exert numerous pharmacological properties, including anticancer, antidiabetic, and anti-inflammatory activities. The purpose of this study is to evaluate and compare the protective effect of oleuropein- and hydroxytyrosol-rich extracts, derived from olive leaves, on high-fat diet-induced lipid metabolism disturbance and liver injury in rats. In this respect, four groups of male rats (8 per group) were used: control group (Control), group treated with high-fat diet (HFD), group treated with HFD and oleuropein (HFD + OLE), and group treated with HFD and hydroxytyrosol (HFD + HYD). The current research showed that the treatment with the HFD increased the body weight and adipose tissue mass in male rats. Moreover, the plasma levels of triglycerides, total cholesterol, LDL-cholesterol, AST, ALT, LDH, and TNF-α were also raised. The hepatic immunohistochemical analysis revealed a significant increase in the expression of inflammatory genes (COX-2, NF-κB, and TNF-α). Equally, it showed a rise of the apoptotic markers (a decrease in the expression of the Bcl-2 and an increase of the P53). In addition, the oral administration of oleuropein- and hydroxytyrosol-rich olive leaf extracts at 16 mg/kg similarly reduced the body weight and adipose tissue mass and improved the lipid profile. Moreover, these extracts, mainly the hydroxytyrosol-rich extract, reduced the elevated liver enzymes, enhanced the antioxidant status, and attenuated the liver inflammation and apoptosis. These findings suggest that the oleuropein- and hydroxytyrosol-rich olive leaf extracts possessed hypolipidemic and hepatoprotective effects against the HFD-induced metabolic disorders by enhancing the antioxidative defense system and blocking the expression of the proteins involved in inflammation and liver damage.
Collapse
|
37
|
Fromenty B. Letter to the Editor Regarding the Article Rotenone Increases Isoniazid Toxicity but Does Not Cause Significant Liver Injury: Implications for the Hypothesis that Inhibition of the Mitochondrial Electron Transport Chain Is a Common Mechanism of Idiosyncratic Drug-Induced Liver Injury by Cho and Co-Workers, 2019. Chem Res Toxicol 2019; 33:2-4. [DOI: 10.1021/acs.chemrestox.9b00416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Bernard Fromenty
- INSERM, Université de Rennes, INRAE, Nutrition, Metabolisms, and Cancer (NuMeCan) Institut, UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| |
Collapse
|
38
|
Petito-da-Silva TI, Souza-Mello V, Barbosa-da-Silva S. Empaglifozin mitigates NAFLD in high-fat-fed mice by alleviating insulin resistance, lipogenesis and ER stress. Mol Cell Endocrinol 2019; 498:110539. [PMID: 31419466 DOI: 10.1016/j.mce.2019.110539] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/09/2019] [Accepted: 08/11/2019] [Indexed: 12/14/2022]
Abstract
AIM To evaluate the pleiotropic effects of empagliflozin in the liver through lipogenesis, beta-oxidation, and endoplasmic reticulum stress pathways. METHODS Male C57Bl/6 mice, 3 months of age, received a control diet (C, 10% lipids, n = 20) or high-fat diet (HF, 50% lipids, n = 20) for 10 weeks, after that, the groups were subdivided to receive empagliflozin, during 5 weeks at a dose of 10 mg/kg/day added to the diets, totalizing four groups: C, C-EMPA, HF, and HF-EMPA. We performed biochemical analyzes, oral glucose tolerance test, homeostasis model assessment of insulin resistance (HOMA-IR), indirect calorimetry, liver stereology, western blotting, RT-qPCR for genes related to beta-oxidation, lipogenesis, and endoplasmic reticulum stress. RESULTS After the treatment with empagliflozin, there was a 4% increase in energy expenditure, a 5% reduction in body mass, improvement in glucose tolerance and insulin sensitivity and insulin resistance. The expression of Ppar alpha was greater in the HF-EMPA group with a concomitant reduction in the expression of the lipogenic genes Fas, Srebp1c and Ppar gamma, according to protein expression. In addition, HF-EMPA showed a reduction in the genes related to endoplasmic reticulum stress Chop, Atf4, and Gadd45. CONCLUSION Empagliflozin mitigates the development of NAFLD, confirmed through reduced expression of the genes involved in hepatic lipogenesis and genes involved in endoplasmic reticulum stress. Thus, empagliflozin may be an important tool to treat the progression of hepatic steatosis.
Collapse
Affiliation(s)
- Tamiris Ingrid Petito-da-Silva
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, State University of Rio de Janeiro, RJ, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, State University of Rio de Janeiro, RJ, Brazil
| | - Sandra Barbosa-da-Silva
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, State University of Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
39
|
dos Santos GF, Veras ASC, de Freitas MC, McCabe J, Seraphim PM, Teixeira GR. Strength training reduces lipid accumulation in liver of obese Wistar rats. Life Sci 2019; 235:116834. [DOI: 10.1016/j.lfs.2019.116834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 01/24/2023]
|
40
|
Maia-Ceciliano TC, Dutra RR, Aguila MB, Mandarim-De-Lacerda CA. The deficiency and the supplementation of vitamin D and liver: Lessons of chronic fructose-rich diet in mice. J Steroid Biochem Mol Biol 2019; 192:105399. [PMID: 31175967 DOI: 10.1016/j.jsbmb.2019.105399] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/25/2019] [Accepted: 06/05/2019] [Indexed: 01/01/2023]
Abstract
The fructose added to soft drinks and processed food, as well as frequent detection of vitamin D deficiency in the body, are two insults increasingly considered to cause lesions in target organs. We studied the liver after a chronic high-fructose diet deficient and supplemented with vitamin D. Sixty C57BL/6 mature male mice were allocated into six groups (n = 10) for ten weeks: control (C), control deficient in vitamin D (CDD), control supplemented with vitamin D (CDS), fructose (F), fructose deficient in vitamin D (FDD), and fructose supplemented with vitamin D (FDS). The gene expressions of vitamin D receptor and CYP27B1 and 25 hydroxyvitamin D plasma level ensured that the diets caused vitamin D deficiency or supplementation. Body mass did not change, but blood pressure (BP) increased in CDD, F, and FDD, whereas BP was controlled in FDS. Insulinemia, insulin tolerance and resistance were seen in both vitamin D deficiency and fructose groups but improved with vitamin D supplementation. The steatosis and fibrosis were observed in the CDD, F and FDD groups. Also, F and FDD showed activation of stellate cells (HSC). Lipogenesis and inflammation gene expressions were enhanced in the CDD, F and FDD groups, but diminished with vitamin D supplementation. In conclusion, we demonstrated the adverse effects of vitamin D deficiency on metabolism, liver steatosis and, combined with fructose intake, liver interstitial fibrosis with hepatic stellate cell activation, and alteration of the lipogenesis, beta-oxidation, and liver inflammation. All these data improved when vitamin D was supplemented in the animals.
Collapse
Affiliation(s)
- Thais C Maia-Ceciliano
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Rafaela R Dutra
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Marcia B Aguila
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Carlos A Mandarim-De-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
41
|
Ahmad MI, Zou X, Ijaz MU, Hussain M, Liu C, Xu X, Zhou G, Li C. Processed Meat Protein Promoted Inflammation and Hepatic Lipogenesis by Upregulating Nrf2/Keap1 Signaling Pathway in Glrx-Deficient Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8794-8809. [PMID: 31345023 DOI: 10.1021/acs.jafc.9b03136] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Oxidative stress may play a critical role in the progression of liver disorders. Increasing interest has been given to the associations among diet, oxidative stress, gut-liver axis, and nonalcoholic fatty liver disease. Here, we investigated the effects of processed meat proteins on biomarkers of lipid homeostasis, hepatic metabolism, antioxidant functions, and gut microbiota composition in glutaredoxin1 deficient (Glrx1-/-) mice. The wild-type (WT) and Glrx1-/- mice were fed a soy protein diet (SPD), a dry-cured pork protein diet (DPD), a braised pork protein diet (BPD), and a cooked pork protein diet (CPD) at a dose of 20% of protein for 3 months. Serum and hepatic total cholesterol, serum endotoxin, hepatic liver droplet %, and antioxidant capacity were significantly increased in the CPD fed WT mice. In addition, CPD fed Glrx1-/- mice significantly increased total cholesterol, triacylglycerol, and pro-inflammatory cytokines which are accompanied by higher steatosis scores, intrahepatic lipid accumulation, and altered gene expression associated with lipid metabolism. Furthermore, hepatic gene expression of Nrf2/keap1 signaling pathway and its downstream signaling targets were determined using RT-qPCR. Glrx1 deficiency increased Nrf2 activity and expression of its target genes (GPx, catalase, SOD1, G6pd, and Bbc3), which was exacerbated by intake of CPD. Metagenomic analyses revealed that Glrx1-/- mice fed meat protein diets had higher abundances of Mucispirillum, Oscillibacter, and Mollicutes but lower abundances of Bacteroidales S24-7 group_norank, Blautia, and Anaerotruncus than their wild-type counterparts. In summary, Glrx1 deficiency induced an increase in serum biomarkers for lipid homeostasis, gut microbiota imbalance, and upregulation of Nrf2/Keap1 and antioxidant defense genes, which was aggravated by cooked meat protein diet.
Collapse
Affiliation(s)
- Muhammad Ijaz Ahmad
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology , Nanjing Agricultural University , Nanjing , 210095 , China
| | - Xiaoyou Zou
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology , Nanjing Agricultural University , Nanjing , 210095 , China
| | - Muhammad Umair Ijaz
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology , Nanjing Agricultural University , Nanjing , 210095 , China
| | - Muzahir Hussain
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology , Nanjing Agricultural University , Nanjing , 210095 , China
| | - Congcong Liu
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology , Nanjing Agricultural University , Nanjing , 210095 , China
| | - Xinglian Xu
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology , Nanjing Agricultural University , Nanjing , 210095 , China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology , Nanjing Agricultural University , Nanjing , 210095 , China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology , Nanjing Agricultural University , Nanjing , 210095 , China
| |
Collapse
|
42
|
Layman JI, Pereira DL, Chellan N, Huisamen B, Kotzé SH. A histomorphometric study on the hepatoprotective effects of a green rooibos extract in a diet-induced obese rat model. Acta Histochem 2019; 121:646-656. [PMID: 31153588 DOI: 10.1016/j.acthis.2019.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/17/2022]
Abstract
Obesity, type two diabetes mellitus and insulin resistance are associated with increased oxidative stress and inflammation. Unfermented green rooibos is an aspalathin rich variant of traditional fermented rooibos (Aspalathus linearis) and has a high polyphenol content. The present study aimed to determine the histologically observable effects of a commercially produced, aspalathin-rich green rooibos extract, Afriplex GRT™ (GRE) in a diet-induced obese rat model. Male Wistar rats (N = 28) were randomly assigned to four study groups (n = 7): control (C), green rooibos (GRT), high-fat diet (HFD) and experimental (HFD-GRT) group. Body mass was determined prior to euthanasia and liver mass was determined after death. The left lateral lobe of the liver was processed to wax and stained using haematoxylin and eosin (H & E), Masson's trichrome stain, Gordons and Sweet's reticulin impregnation and periodic acid-Schiff stain. Frozen liver tissue sections were used for Oil red O staining. Morphometric quantification of steatosis, semiquantitative pathology grading and scoring were performed and verified by a veterinary histopathologist. A significant increase in body and liver mass was observed in the HFD groups while co-treatment with green rooibos significantly reduced both. The volume and area of steatosis were significantly increased in the HFD groups while the area of steatosis significantly reduced with green rooibos co-treatment. The percentage, location and type of steatosis as well as presence of inflammation and hepatocellular injury were reduced in the HFD group co-treated with GRE. These findings suggest that a GRE has potential as an anti-steatotic, anti-inflammatory and weight reducing agent in vivo.
Collapse
Affiliation(s)
- J I Layman
- Division of Clinical Anatomy, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - D L Pereira
- Division of Clinical Anatomy, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - N Chellan
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - B Huisamen
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa; Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - S H Kotzé
- Division of Clinical Anatomy, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa.
| |
Collapse
|
43
|
Graus-Nunes F, Santos FDO, Marinho TDS, Miranda CS, Barbosa-da-Silva S, Souza-Mello V. Beneficial effects of losartan or telmisartan on the local hepatic renin-angiotensin system to counter obesity in an experimental model. World J Hepatol 2019; 11:359-369. [PMID: 31114640 PMCID: PMC6504859 DOI: 10.4254/wjh.v11.i4.359] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/23/2019] [Accepted: 03/16/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Obesity has been associated with hepatic overexpression of the renin-angiotensin system (RAS).
AIM To evaluate the action of two angiotensin II (ANGII) receptor blockers (losartan or telmisartan) on the modulation of local hepatic RAS and the resulting metabolic effects in a diet-induced obesity murine model.
METHODS Twenty C57BL/6 mice were randomly divided into two nutritional groups for 10 wk: control group (C, n = 5, 10% of energy as fat) or high-fat group (HF, n = 15, 50% of energy as fat). After treatment started, the HF group was randomly divided into three groups: untreated HF group (n = 5), HF treated with losartan (HFL, n = 5) and HF treated with telmisartan (HFT, n = 5). The treatments lasted for 5 wk, and the dose was 10 mg/kg body mass.
RESULTS HF diet induced body mass gain (+28%, P < 0.0001), insulin resistance (+69%, P = 0.0079), high hepatic triacylglycerol (+127%, P = 0.0004), and overexpression of intrahepatic angiotensin-converting enzyme (ACE) 1/ ANGII type 1 receptor (AT1r) (+569.02% and +141.40%, respectively, P < 0.0001). The HFL and HFT groups showed higher ACE2/rMAS gene expression compared to the HF group (ACE2: +465.57%, P = 0.0002 for HFL and +345.17%, P = 0.0049 for HFT; rMAS: +711.39%, P < 0.0001 for HFL and +539.75%, P < 0.0001 for HFT), followed by reduced insulin/glucose ratio (-30% for HFL and -33% for HFT, P = 0.0181), hepatic triacylglycerol levels (-28%, P = 0.0381 for HFL; and -45%, P = 0.0010 for HFT, and Plin2 expression.
CONCLUSION Modulation of the intrahepatic RAS, with favored involvement of the ACE2/rMAS axis over the ACE1/AT1r axis after losartan or telmisartan treatments, caused hepatic and metabolic beneficial effects as demonstrated by reduced hepatic triacylglycerol levels coupled with reduced PLIN 2 expression and improved glycemic control.
Collapse
Affiliation(s)
- Francielle Graus-Nunes
- Laboratório de Morfometria, Metabolismo e Doenças Cardiovasculares, Departamento de Anatomia, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro 20551-030, Brazil
| | - Felipe de Oliveira Santos
- Laboratório de Morfometria, Metabolismo e Doenças Cardiovasculares, Departamento de Anatomia, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro 20551-030, Brazil
| | - Thatiany de Souza Marinho
- Laboratório de Morfometria, Metabolismo e Doenças Cardiovasculares, Departamento de Anatomia, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro 20551-030, Brazil
| | - Carolline Santos Miranda
- Laboratório de Morfometria, Metabolismo e Doenças Cardiovasculares, Departamento de Anatomia, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro 20551-030, Brazil
| | - Sandra Barbosa-da-Silva
- Laboratório de Morfometria, Metabolismo e Doenças Cardiovasculares, Departamento de Anatomia, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro 20551-030, Brazil
| | - Vanessa Souza-Mello
- Laboratório de Morfometria, Metabolismo e Doenças Cardiovasculares, Departamento de Anatomia, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro 20551-030, Brazil
| |
Collapse
|
44
|
Marinho TDS, Ornellas F, Barbosa-da-Silva S, Mandarim-de-Lacerda CA, Aguila MB. Beneficial effects of intermittent fasting on steatosis and inflammation of the liver in mice fed a high-fat or a high-fructose diet. Nutrition 2019; 65:103-112. [PMID: 31079017 DOI: 10.1016/j.nut.2019.02.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 01/29/2019] [Accepted: 02/23/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Intermittent fasting (IF) is a nutritional intervention with significant metabolic effects on the liver that are not yet fully understood. The aim of this study was to investigate the effects of IF on body mass, lipid profile, glucose metabolism, liver lipogenesis, β-oxidation, and inflammation. METHODS We used cellular and molecular techniques to investigate the effects of IF on 3-mo-old male C57 BL/6 mice that were fed control (10% kcal fat), high-fat (HF; 50% kcal fat), or high-fructose (HFr; 50% kcal fructose) diets for 8 wk. Half of the animals were submitted to IF (1 d fed, 1 d fast) for an additional 4 wk. RESULTS Although food intake on the fed day did not differ between the groups, mice in the HF and HFr groups showed diminished body mass, total cholesterol, and triacylglycerol levels. Also, plasma adiponectin increased in the HFr group and leptin decreased in the HF mice. Oral glucose tolerance test and insulin were ameliorated by IF, regardless of the diet consumed (HF or HFr), and decreased hepatic lipogenesis and increased β-oxidation markers, resulting in a reduction of the hepatic steatosis and inflammation. CONCLUSIONS There were beneficial effects of IF even with the continuity of the obesogenic diet and proinflammatory diet in mice. It is recommended that based on the beneficial effects of IF on glucose and liver metabolism and inflammation that IF be a coadjutant factor in the treatment of hepatic metabolic issues and steatosis.
Collapse
Affiliation(s)
- Thatiany de Souza Marinho
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Ornellas
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sandra Barbosa-da-Silva
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
45
|
Ding S, Yuan C, Si B, Wang M, Da S, Bai L, Wu W. Combined effects of ambient particulate matter exposure and a high-fat diet on oxidative stress and steatohepatitis in mice. PLoS One 2019; 14:e0214680. [PMID: 30921449 PMCID: PMC6438678 DOI: 10.1371/journal.pone.0214680] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/18/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Chronic exposure to ambient particulate matter with aerodynamic diameters < 2.5 (PM2.5) induces oxidative injury and liver pathogenesis. The present study assessed the effect and mechanism of long-term, real-world airborne particulate matter (PM) exposure on oxidative stress and hepatic steatosis in the context of a standard chow diet (STD) and a high-fat diet (HFD); the study further explored whether a combination of PM exposure and HFD treatment exacerbates the adverse effects in mice. METHODS C57BL/6J mice fed with STD or HFD (41.26% kcal fat) were exposed to PM or filtered air (FA) for 5 months. Lipid metabolism, oxidative stress and liver pathogenesis were evaluated. Real-time PCR and western blotting were performed to determine gene expression and molecular signal transduction in liver. RESULTS Chronic airborne PM exposure impaired oxidative homeostasis, caused inflammation and induced hepatic steatosis in mice. Further investigation found that exposure to real-world PM increased the expression of hepatic Nrf2 and Nrf2-regulated antioxidant enzyme gene. The increased protein expression of the sterol regulatory element binding protein-1c (SREBP-1c) and fatty acid synthase (FAS) in the liver were also observed in PM-exposed groups. Furthermore, the combination of PM exposure and HFD treatment caused a synergistic effect on the changes of lipid accumulation oxidative stress, inflammation in the mouse liver. CONCLUSIONS Through in vivo study, we reveal that the combination of real-world ambient PM exposure and HFD treatment aggravates hepatic lipid metabolism disorders, inflammation and oxidative stress. PM exposure may accelerate the progression to non-alcoholic steatohepatitis by regulating SREBP-1c/FAS regulatory axis.
Collapse
Affiliation(s)
- Shibin Ding
- Department of nutrition and food hygiene, school of public health, Xinxiang Medical University, Xinxiang, Henan Province, PR China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, PR China
- * E-mail:
| | - Chunyan Yuan
- Department of nutrition and food hygiene, school of public health, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Bingjie Si
- Department of nutrition and food hygiene, school of public health, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Mengruo Wang
- Department of nutrition and food hygiene, school of public health, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Shuyan Da
- Department of nutrition and food hygiene, school of public health, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Lanxin Bai
- Department of nutrition and food hygiene, school of public health, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Weidong Wu
- Department of nutrition and food hygiene, school of public health, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| |
Collapse
|
46
|
Neto JGO, Bento-Bernardes T, Pazos-Moura CC, Oliveira KJ. Maternal cinnamon intake during lactation led to visceral obesity and hepatic metabolic dysfunction in the adult male offspring. Endocrine 2019; 63:520-530. [PMID: 30276593 DOI: 10.1007/s12020-018-1775-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE Studies with foods, known to promote health benefits in addition to the nutritive value, show that their consumption by pregnant and/or lactating females could induce negative outcomes to the offspring. It is well characterized that cinnamon intake promotes benefits to energy homeostasis. The present study aimed to analyze the effects of the consumption of an aqueous extract of cinnamon by lactating female rats on the endocrine-metabolic outcomes in the adult offspring. METHODS Lactating dams (Wistar rats) were supplemented with cinnamon aqueous extract (400 mg/kg body weight/day) for the entire lactating period. The male adult offspring were evaluated at 180 days old (CinLac). RESULTS The offspring presented visceral obesity (P = 0.001), hyperleptinemia (P = 0.002), and hyperinsulinemia (P = 0.016). In the liver, CinLac exhibited reduced p-IRβ (P = 0.018) suggesting insulin resistance. However, phosphorylation of IRS1 (P = 0.041) and AKT (P = 0.050) were increased. JAK2 (P = 0.030) and p-STAT3 (P = 0.015) expressions were higher, suggesting that the activation of IRS1/AKT in the CinLac group could have resulted from the increased activation of leptin signaling. Although we observed no changes in the gluconeogenic pathway, the CinLac group exhibited lower hepatic glycogen content (P = 0.005) accompanied by increased p-GSK3β (P = 0.011). In addition, the CinLac group showed increased hepatic triacylglycerol content (P = 0.049) and a mild steatosis (P = 0.001), accompanied by reduced PPARα mRNA expression (P = 0.005). CONCLUSION We conclude that maternal intake of aqueous extract of cinnamon induces long-term molecular, metabolic, and hormonal changes in the adult progeny, including visceral obesity, higher lipid accumulation, and lower glycogen content in the liver.
Collapse
Affiliation(s)
| | - Thais Bento-Bernardes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21949-900, RJ, Brazil
| | - Carmen Cabanelas Pazos-Moura
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21949-900, RJ, Brazil
| | - Karen Jesus Oliveira
- Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, 24210-130, RJ, Brazil.
| |
Collapse
|
47
|
Rašković B, Cruzeiro C, Poleksić V, Rocha E. Estimating volumes from common carp hepatocytes using design-based stereology and examining correlations with profile areas: Revisiting a nutritional assay and unveiling guidelines to microscopists. Microsc Res Tech 2019; 82:861-871. [PMID: 30730589 DOI: 10.1002/jemt.23228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 12/13/2022]
Abstract
Assessing fish liver status is common in aquaculture nutrition assays. This often implies determining hepatocytes profile areas in routine thin (5-7 μm) histological sections. However, there are theoretical problems using planar morphometry in thin sections: inherent sampling cells biases, too small numbers of sampled cells, under/overestimation of size, measuring size as areas when cells are three-dimensional (3D) entities. The gold standard for assessing/validate cell size is stereology using thick sections (20-40 μm). Here, we estimated the volume of hepatocytes and their nuclei by the nucleator and optical disector stereological probes (in thick sections), and, innovatively, in thin sections too (using single-section disectors). The liver of common carp eating feed containing either low or high level of lipids was targeted. Results were compared with prior profile areas from planar morphometry using thin sections, and with profile areas estimated here with the two-dimensional (2D) nucleator. Ratios between nucleus and cell/cytoplasm (N/C) areas and volumes were calculated and compared. There was high positive correlation between volumes in thin and thick sections (r = .85 to .89; p < .001), empirically validating the single-section disector. Strong correlations existed between profile-derived versus 2D-nucleator areas (r = .74 to .83; p < .001). There was systematic underestimation of cells and nucleus size using planar morphometry. The N/C ratios derived from the 2D-nucleator data were higher than those from planar morphometry. Despite theoretical premises for using simple planar morphometry in thin sections are flawed, our results support that such morphometry on carp/fish hepatocytes may offer some valid biological conclusions. Anyway, we advanced guidelines for implementing proper methods.
Collapse
Affiliation(s)
- Božidar Rašković
- University of Belgrade - Faculty of Agriculture, Institute of Animal Sciences, Belgrade, Serbia
| | - Catarina Cruzeiro
- Laboratory of Histology and Embryology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U.Porto), Porto, Portugal.,Histomorphology, Physiopathology, and Applied Toxicology Group, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto (U.Porto), Matosinhos, Portugal
| | - Vesna Poleksić
- University of Belgrade - Faculty of Agriculture, Institute of Animal Sciences, Belgrade, Serbia
| | - Eduardo Rocha
- Laboratory of Histology and Embryology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U.Porto), Porto, Portugal.,Histomorphology, Physiopathology, and Applied Toxicology Group, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto (U.Porto), Matosinhos, Portugal
| |
Collapse
|
48
|
Borges CC, Bringhenti I, Mandarim-de-Lacerda CA, Aguila MB. Vitamin D deficiency aggravates the liver metabolism and inflammation in ovariectomized mice. Biomed Pharmacother 2018; 107:878-888. [DOI: 10.1016/j.biopha.2018.08.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/04/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023] Open
|
49
|
Latini JTP, Vicente GC, Velarde LGC, Benedicto HG, de Castro Resende Â, Teixeira MT, de Almeida KCL, Boaventura GT. Can the indicators of chronic ethanol consumption be minimized by a continuous flaxseed intake? Int J Exp Pathol 2018; 99:218-225. [PMID: 30338600 PMCID: PMC6302787 DOI: 10.1111/iep.12288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 07/17/2018] [Accepted: 08/05/2018] [Indexed: 10/28/2022] Open
Abstract
The aim of this study was to evaluate the use of flaxseed in animals subjected to ethanol-induced hepatotoxicity. Twenty-four male rats were divided into four groups (n = 6): control group (CG) which received a control diet and water ad libitum; flaxseed group (FG) which received control diet with an addition of 25% flaxseed flour and water ad libitum; ethanol control group (ECG) which received control diet and a solution of 10% ethanol (v/v) as the only liquid source; and ethanol flaxseed group (EFG) which received control diet with an addition of 25% flaxseed flour and a solution of 10% ethanol (v/v) as the only liquid source. The animals were euthanized at 60 days, when blood was collected for biochemical analysis and liver was collected for histomorphometric analysis. Rats fed with diets containing flaxseed showed lower values of alkaline phosphatase (P = 0.020) and lower concentration of total bilirubin (P = 0.006), direct bilirubin (P = 0.013) and indirect bilirubin (P = 0.018) compared to ECG and EFG. The groups receiving flaxseed diets demonstrated higher expression of superoxide dismutase (SOD) enzyme (P < 0.001) than CG and ECG but did not affect thiobarbituric acid (TBARS) expression (P = 0.055). Regarding liver analysis, the ECG and EFG showed larger hepatocyte nuclei and paler cytoplasm than the groups who had not received ethanol, and less in fluid accumulation (oedema) in the cytoplasm than was seen in the FG and EFG livers. These latter two groups showed fewer fatty cells than was seen in the groups that had not been given flaxseed, so that the diagnosis of hepatic steatosis was not justified. In conclusion, therefore, this study showed that the indicators of ethanol chronic consumption can be reduced by the introduction of continuous flaxseed dietary intake.
Collapse
Affiliation(s)
| | - Gabriela Câmara Vicente
- Laboratory of Experimental NutritionDepartment of Nutrition and DieteticsNutrition CollegeFederal Fluminense UniversityNiteróiRJBrazil
| | | | | | - Ângela de Castro Resende
- Department of Pharmacology and PsychobiologyUniversity of the State of Rio de JaneiroRio de JaneiroRJBrazil
| | - Michelle Teixeira Teixeira
- Department of Nutrition and Public Health ‐ School of NutritionFederal University of the State of Rio de JaneiroRio de JaneiroRJBrazil
| | | | - Gilson Teles Boaventura
- Laboratory of Experimental NutritionDepartment of Nutrition and DieteticsNutrition CollegeFederal Fluminense UniversityNiteróiRJBrazil
| |
Collapse
|
50
|
Homeyer A, Hammad S, Schwen LO, Dahmen U, Höfener H, Gao Y, Dooley S, Schenk A. Focused scores enable reliable discrimination of small differences in steatosis. Diagn Pathol 2018; 13:76. [PMID: 30231920 PMCID: PMC6146776 DOI: 10.1186/s13000-018-0753-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/12/2018] [Indexed: 01/01/2023] Open
Abstract
Background Automated image analysis enables quantitative measurement of steatosis in histological images. However, spatial heterogeneity of steatosis can make quantitative steatosis scores unreliable. To improve the reliability, we have developed novel scores that are “focused” on steatotic tissue areas. Methods Focused scores use concepts of tile-based hotspot analysis in order to compute statistics about steatotic tissue areas in an objective way. We evaluated focused scores on three data sets of images of rodent liver sections exhibiting different amounts of dietary-induced steatosis. The same evaluation was conducted with the standard steatosis score computed by most image analysis methods. Results The standard score reliably discriminated large differences in steatosis (intraclass correlation coefficient ICC = 0.86), but failed to discriminate small (ICC = 0.54) and very small (ICC = 0.14) differences. With an appropriate tile size, mean-based focused scores reliably discriminated large (ICC = 0.92), small (ICC = 0.86) and very small (ICC = 0.83) differences. Focused scores based on high percentiles showed promise in further improving the discrimination of very small differences (ICC = 0.93). Conclusions Focused scores enable reliable discrimination of small differences in steatosis in histological images. They are conceptually simple and straightforward to use in research studies.
Collapse
Affiliation(s)
- André Homeyer
- Fraunhofer MEVIS, Am Fallturm 1, 28359, Bremen, Germany.
| | - Seddik Hammad
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.,Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | | | - Uta Dahmen
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Drackendorfer Str. 1, 07747, Jena, Germany
| | | | - Yan Gao
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Steven Dooley
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Andrea Schenk
- Fraunhofer MEVIS, Am Fallturm 1, 28359, Bremen, Germany
| |
Collapse
|