1
|
Groschupp S, Kampen H, Werner D. Winter activity of Culicoides (Diptera: Ceratopogonidae) inside and outside stables in Germany. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:552-565. [PMID: 39187966 DOI: 10.1111/mve.12756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Culicoides biting midge species (Diptera: Ceratopogonidae) of the Obsoletus Group and the Pulicaris Complex are considered the major vectors of bluetongue and Schmallenberg viruses in Europe. Overwintering strategies of these arboviruses are controversially discussed, with the ongoing activity of vector species and a non-disrupted transmission cycle during winter being a plausible explanation. Although data on Culicoides winter activity are relatively scant, a seasonal vector-free period (SVFP), during which adult Culicoides are not or hardly active, is questionable. To determine winter activity and define SVFPs according to the EU Commission Regulation No 1266/2007, adult Culicoides were trapped weekly with UV-light traps from October to April 2019/2020 and 2020/2021 inside and outside stables on 16 farms throughout Germany. Temperature measurements were taken regularly at each trapping site since the temperature is a known driver of biting midge activity. In 960 indoor and outdoor catches, 32,377 Culicoides were trapped, with 90.9% of them belonging to the Obsoletus Group, 6.1% to the Pulicaris Complex and 3.0% to 'other Culicoides' according to morphological identification. The majority (61.3%) of Culicoides were trapped indoors, with substantial numbers of specimens collected from October to December, in March and in April, and only a few or no specimens in January and February. Obsoletus Group biting midges were active indoors for almost the entire winter. Outdoors, Culicoides numbers decreased from October to December, few or no specimens were caught from January to March, and high numbers were captured in April. Of the collected Culicoides, 2028 were blood-fed, of which 94.6% were trapped in the stables. The indoor SVFP, although calculated for blood-fed instead of parous females, lasted for almost 4 months (late November until mid-March) in winter 2019/2020 and 2 months (January and February) in winter 2020/2021. The outdoor SVFPs covered almost the entire study period in both winters, with slight differences between the onsets and the ends. The Culicoides activity significantly depended on temperature. Specimens of the Obsoletus Group were caught at an average temperature of 7.4°C (minimum 0.3°C) and of the Pulicaris Complex at an average temperature of 10.3°C (minimum 1.2°C). These temperatures were reached inside the stables over more extended periods than outside. The average indoor temperatures were 1.2 K higher than the average outdoor temperatures, although absolute temperature differences of up to 9.0 K were recorded. Based on Culicoides activity, the results of the present study indicate an almost continuous potential for virus transmission in winter within livestock houses.
Collapse
Affiliation(s)
- Sarah Groschupp
- Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
| | - Helge Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Infectology, Greifswald, Germany
| | - Doreen Werner
- Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
| |
Collapse
|
2
|
Holwerda M, Santman-Berends IM, Harders F, Engelsma M, Vloet RP, Dijkstra E, van Gennip RG, Mars MH, Spierenburg M, Roos L, van den Brom R, van Rijn PA. Emergence of Bluetongue Virus Serotype 3, the Netherlands, September 2023. Emerg Infect Dis 2024; 30:1552-1561. [PMID: 38941965 PMCID: PMC11286052 DOI: 10.3201/eid3008.231331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024] Open
Abstract
Since 1998, notifiable bluetongue virus (BTV) serotypes 1-4, 6, 8, 9, 11, and 16 have been reported in Europe. In August 2006, a bluetongue (BT) outbreak caused by BTV serotype 8 began in northwestern Europe. The Netherlands was declared BT-free in February 2012, and annual monitoring continued. On September 3, 2023, typical BT clinical manifestations in sheep were notified to the Netherlands Food and Product Safety Consumer Authority. On September 6, we confirmed BTV infection through laboratory diagnosis; notifications of clinical signs in cattle were also reported. We determined the virus was serotype 3 by whole-genome sequencing. Retrospective analysis did not reveal BTV circulation earlier than September. The virus source and introduction route into the Netherlands remains unknown. Continuous monitoring and molecular diagnostic testing of livestock will be needed to determine virus spread, and new prevention strategies will be required to prevent BTV circulation within the Netherlands and Europe.
Collapse
Affiliation(s)
| | | | - Frank Harders
- Wageningen Bioveterinary Research, Lelystad, the Netherlands (M. Holwerda, F. Harders, M. Engelsma, R.P.M. Vloet, R.G.P. van Gennip, P.A. van Rijn)
- Royal GD, Deventer, the Netherlands (I.M.G.A. Santman-Berends, E. Dijkstra, M.H. Mars, L. Roos, R. van den Brom)
- Netherlands Food and Consumer Product Safety Authority, Utrecht, the Netherlands (M. Spierenburg)
- North-West University, Potchefstroom, South Africa (P.A. van Rijn)
| | - Marc Engelsma
- Wageningen Bioveterinary Research, Lelystad, the Netherlands (M. Holwerda, F. Harders, M. Engelsma, R.P.M. Vloet, R.G.P. van Gennip, P.A. van Rijn)
- Royal GD, Deventer, the Netherlands (I.M.G.A. Santman-Berends, E. Dijkstra, M.H. Mars, L. Roos, R. van den Brom)
- Netherlands Food and Consumer Product Safety Authority, Utrecht, the Netherlands (M. Spierenburg)
- North-West University, Potchefstroom, South Africa (P.A. van Rijn)
| | - Rianka P.M. Vloet
- Wageningen Bioveterinary Research, Lelystad, the Netherlands (M. Holwerda, F. Harders, M. Engelsma, R.P.M. Vloet, R.G.P. van Gennip, P.A. van Rijn)
- Royal GD, Deventer, the Netherlands (I.M.G.A. Santman-Berends, E. Dijkstra, M.H. Mars, L. Roos, R. van den Brom)
- Netherlands Food and Consumer Product Safety Authority, Utrecht, the Netherlands (M. Spierenburg)
- North-West University, Potchefstroom, South Africa (P.A. van Rijn)
| | - Eveline Dijkstra
- Wageningen Bioveterinary Research, Lelystad, the Netherlands (M. Holwerda, F. Harders, M. Engelsma, R.P.M. Vloet, R.G.P. van Gennip, P.A. van Rijn)
- Royal GD, Deventer, the Netherlands (I.M.G.A. Santman-Berends, E. Dijkstra, M.H. Mars, L. Roos, R. van den Brom)
- Netherlands Food and Consumer Product Safety Authority, Utrecht, the Netherlands (M. Spierenburg)
- North-West University, Potchefstroom, South Africa (P.A. van Rijn)
| | - Rene G.P. van Gennip
- Wageningen Bioveterinary Research, Lelystad, the Netherlands (M. Holwerda, F. Harders, M. Engelsma, R.P.M. Vloet, R.G.P. van Gennip, P.A. van Rijn)
- Royal GD, Deventer, the Netherlands (I.M.G.A. Santman-Berends, E. Dijkstra, M.H. Mars, L. Roos, R. van den Brom)
- Netherlands Food and Consumer Product Safety Authority, Utrecht, the Netherlands (M. Spierenburg)
- North-West University, Potchefstroom, South Africa (P.A. van Rijn)
| | - Maria H. Mars
- Wageningen Bioveterinary Research, Lelystad, the Netherlands (M. Holwerda, F. Harders, M. Engelsma, R.P.M. Vloet, R.G.P. van Gennip, P.A. van Rijn)
- Royal GD, Deventer, the Netherlands (I.M.G.A. Santman-Berends, E. Dijkstra, M.H. Mars, L. Roos, R. van den Brom)
- Netherlands Food and Consumer Product Safety Authority, Utrecht, the Netherlands (M. Spierenburg)
- North-West University, Potchefstroom, South Africa (P.A. van Rijn)
| | - Marcel Spierenburg
- Wageningen Bioveterinary Research, Lelystad, the Netherlands (M. Holwerda, F. Harders, M. Engelsma, R.P.M. Vloet, R.G.P. van Gennip, P.A. van Rijn)
- Royal GD, Deventer, the Netherlands (I.M.G.A. Santman-Berends, E. Dijkstra, M.H. Mars, L. Roos, R. van den Brom)
- Netherlands Food and Consumer Product Safety Authority, Utrecht, the Netherlands (M. Spierenburg)
- North-West University, Potchefstroom, South Africa (P.A. van Rijn)
| | - Lotte Roos
- Wageningen Bioveterinary Research, Lelystad, the Netherlands (M. Holwerda, F. Harders, M. Engelsma, R.P.M. Vloet, R.G.P. van Gennip, P.A. van Rijn)
- Royal GD, Deventer, the Netherlands (I.M.G.A. Santman-Berends, E. Dijkstra, M.H. Mars, L. Roos, R. van den Brom)
- Netherlands Food and Consumer Product Safety Authority, Utrecht, the Netherlands (M. Spierenburg)
- North-West University, Potchefstroom, South Africa (P.A. van Rijn)
| | | | | |
Collapse
|
3
|
Dähn O, Werner D, Mathieu B, Kampen H. Large-Scale Cytochrome C Oxidase Subunit I Gene Data Analysis for the Development of a Multiplex Polymerase Chain Reaction Test Capable of Identifying Biting Midge Vector Species and Haplotypes (Diptera: Ceratopogonidae) of the Culicoides Subgenus Avaritia Fox, 1955. Genes (Basel) 2024; 15:323. [PMID: 38540382 PMCID: PMC10969821 DOI: 10.3390/genes15030323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 06/14/2024] Open
Abstract
The emergence of culicoid-transmitted bluetongue and Schmallenberg viruses in several European countries demonstrated the ability of indigenous biting midge species to transmit pathogens. Entomologic research programs identified members of the Obsoletus Group (Culicoides subgenus Avaritia) as keyplayers in disease epidemiology in Europe. However, morphological identification of potential vectors is challenging due to the recent discovery of new genetic variants (haplotypes) of C. obsoletus sensu stricto (s.s.), forming distinct clades. In this study, 4422 GenBank entries of the mitochondrial cytochrome c oxidase subunit I (COI) gene of subgenus Avaritia members of the genus Culicoides were analyzed to develop a conventional multiplex PCR, capable of detecting all vector species and clades of the Western Palearctic in this subgenus. Numerous GenBank entries incorrectly assigned to a species were identified, analyzed and reassigned. The results suggest that the three C. obsoletus clades represent independent species, whereas C. montanus should rather be regarded as a genetic variant of C. obsoletus s.s. Based on these findings, specific primers were designed and validated with DNA material from field-caught biting midges which achieved very high diagnostic sensitivity (100%) when compared to an established reference PCR (82.6%).
Collapse
Affiliation(s)
- Oliver Dähn
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany
| | - Doreen Werner
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
| | - Bruno Mathieu
- Institutes of Bacteriology and Parasitology, Medical Faculty, University of Strasbourg, UR 3073 PHAVI, 67000 Strasbourg, France
| | - Helge Kampen
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany
| |
Collapse
|
4
|
A Qualitative Risk Assessment for Bluetongue Disease and African Horse Sickness: The Risk of Entry and Exposure at a UK Zoo. Viruses 2022; 14:v14030502. [PMID: 35336912 PMCID: PMC8950286 DOI: 10.3390/v14030502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/10/2022] Open
Abstract
Bluetongue virus (BTV) and African horse sickness virus (AHSV) cause economically important diseases that are currently exotic to the United Kingdom (UK), but have significant potential for introduction and onward transmission. Given the susceptibility of animals kept in zoo collections to vector-borne diseases, a qualitative risk assessment for the introduction of BTV and AHSV to ZSL London Zoo was performed. Risk pathways for each virus were identified and assessed using published literature, animal import data and outputs from epidemiological models. Direct imports of infected animals, as well as wind-borne infected Culicoides, were considered as routes of incursion. The proximity of ongoing disease events in mainland Europe and proven capability of transmission to the UK places ZSL London Zoo at higher risk of BTV release and exposure (estimated as low to medium) than AHSV (estimated as very low to low). The recent long-range expansion of AHSV into Thailand from southern Africa highlights the need for vector competence studies of Palearctic Culicoides for AHSV to assess the risk of transmission in this region.
Collapse
|
5
|
A Review of the Vector Status of North American Culicoides (Diptera: Ceratopogonidae) for Bluetongue Virus, Epizootic Hemorrhagic Disease Virus, and Other Arboviruses of Concern. CURRENT TROPICAL MEDICINE REPORTS 2022; 9:130-139. [PMID: 36105115 PMCID: PMC9463510 DOI: 10.1007/s40475-022-00263-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 01/11/2023]
Abstract
Purpose of Review Culicoides biting midges transmit several pathogens of veterinary importance in North America, but the vector status of many midge species is unresolved. Additionally, the available evidence of vector competence in these species is scattered and variable. The purpose of this review is to summarize current knowledge on confirmed and putative North American Culicoides arbovirus vectors. Recent Findings While the vector status of Culicoides sonorensis (EHDV, BTV, VSV) and Culicoides insignis (BTV) are well established, several other potential vector species have been recently identified. Frequently, these species are implicated based primarily on host-feeding, abundance, and/or detection of arboviruses from field-collected insects, and often lack laboratory infection and transmission data necessary to fully confirm their vector status. Recent genetic studies have also indicated that some wide-ranging species likely represent several cryptic species, further complicating our understanding of their vector status. Summary In most cases, laboratory evidence needed to fully understand the vector status of the putative Culicoides vectors is absent; however, it appears that several species are likely contributing to the transmission of arboviruses in North America.
Collapse
|
6
|
Ramilo DW, Filipe AM, Lucientes J, Rebelo MT, Cardoso L, da Fonseca IP. Morphological anomalies found in female Culicoides midges (Diptera: Ceratopogonidae). Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00822-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
de Beer CJ, Boikanyo SNB, Venter GJ. Assessment of the Hemotek® system for the in vitro feeding of field-collected Culicoides imicola (Diptera: Ceratopogonidae) in South Africa. MEDICAL AND VETERINARY ENTOMOLOGY 2021; 35:177-186. [PMID: 32990991 DOI: 10.1111/mve.12484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
The optimising and standardisation of in vitro blood feeding protocols for field-collected Culicoides species (Diptera: Ceratopogonidae) will be of essence for the comparison of the vector competencies of various populations of viruses of veterinary importance and the establishment of laboratory colonies of putative vector species. A custom-made feeding chamber to accommodate the small size of Culicoides imicola Kieffer was designed for the commercially available Hemotek® system and compared to existing membrane and cotton pledge feeding methods. High feeding rates coupled to higher mean blood meal volume than that of the existing OVI device indicated that the Hemotek system will be suitable for the feeding of field-collected Culicoides. The Hemotek system was subsequently used to identify factors that may affect feeding success in the laboratory. Evaluated factors were the source (host) and temperature of the blood meal, time of the day of feeding, the position of the blood reservoir in relation to the midges and exposure time to the blood. While only feeding orientation and the temperature of the blood source seems to significantly affect the feeding rate, all the factors did influence the volume of blood consumed.
Collapse
Affiliation(s)
- C J de Beer
- Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Insect Pest Control Laboratory, Vienna, Austria
- Epidemiology, Vectors and Parasites, Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria, South Africa
| | - S N B Boikanyo
- Epidemiology, Vectors and Parasites, Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria, South Africa
| | - G J Venter
- Epidemiology, Vectors and Parasites, Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria, South Africa
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
8
|
Saroya Y, Gottlieb Y, Klement E. The effect of ambient temperature fluctuations on Culicoides biting midges population dynamics and activity in dairy farms: a longitudinal study. MEDICAL AND VETERINARY ENTOMOLOGY 2021; 35:68-78. [PMID: 32815188 DOI: 10.1111/mve.12470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 07/10/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
The effect of climatic factors on the presence of Culicoides Latreille (Diptera: Ceratopogonidae) was previously studied. Nevertheless, lack of laboratory rearing data hampers species-specific prediction of weather fluctuations effect on population size. To determine fluctuations in population size in the field, we recorded Culicoides and other Nematocerans in seven Israeli dairy farms over two-years (2011-2012) and analysed the association of their dynamics with fluctuations in ambient temperature and total rainfall. In six farms, the most abundant species were Culicoides imicola Kieffer and Culicoides schultzei (Enderlein) gp., primarily composed of parous females, and in one farm Culicoides obsoletus (Meigen) gp., mostly nulliparous females, were dominant. While the total number of insects was similar in both years, Culicoides numbers were significantly higher in 2012, but appeared later in the season and reached a higher peak. A multi-variable linear regression model demonstrated positive association of C. imicola and C. schultzei numbers with the monthly multi-annual ambient temperature and its specific deviation, but not with monthly rainfall. C. obsoletus populations peaked at spring and sharply decreased when temperature exceeded 20 °C, and were best modelled by adding quadratic terms. Weather-specific estimation of population size under field conditions may enable to predict outbreaks intensity of Culicoides-borne viruses.
Collapse
Affiliation(s)
- Y Saroya
- Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Y Gottlieb
- Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - E Klement
- Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
9
|
Mignotte A, Garros C, Dellicour S, Jacquot M, Gilbert M, Gardès L, Balenghien T, Duhayon M, Rakotoarivony I, de Wavrechin M, Huber K. High dispersal capacity of Culicoides obsoletus (Diptera: Ceratopogonidae), vector of bluetongue and Schmallenberg viruses, revealed by landscape genetic analyses. Parasit Vectors 2021; 14:93. [PMID: 33536057 PMCID: PMC7860033 DOI: 10.1186/s13071-020-04522-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/04/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND In the last two decades, recurrent epizootics of bluetongue virus and Schmallenberg virus have been reported in the western Palearctic region. These viruses affect domestic cattle, sheep, goats and wild ruminants and are transmitted by native hematophagous midges of the genus Culicoides (Diptera: Ceratopogonidae). Culicoides dispersal is known to be stratified, i.e. due to a combination of dispersal processes occurring actively at short distances and passively or semi-actively at long distances, allowing individuals to jump hundreds of kilometers. METHODS Here, we aim to identify the environmental factors that promote or limit gene flow of Culicoides obsoletus, an abundant and widespread vector species in Europe, using an innovative framework integrating spatial, population genetics and statistical approaches. A total of 348 individuals were sampled in 46 sites in France and were genotyped using 13 newly designed microsatellite markers. RESULTS We found low genetic differentiation and a weak population structure for C. obsoletus across the country. Using three complementary inter-individual genetic distances, we did not detect any significant isolation by distance, but did detect significant anisotropic isolation by distance on a north-south axis. We employed a multiple regression on distance matrices approach to investigate the correlation between genetic and environmental distances. Among all the environmental factors that were tested, only cattle density seems to have an impact on C. obsoletus gene flow. CONCLUSIONS The high dispersal capacity of C. obsoletus over land found in the present study calls for a re-evaluation of the impact of Culicoides on virus dispersal, and highlights the urgent need to better integrate molecular, spatial and statistical information to guide vector-borne disease control.
Collapse
Affiliation(s)
- Antoine Mignotte
- ASTRE, Univ Montpellier, Cirad, INRAE, Montpellier, France
- Cirad, UMR ASTRE, 34398 Montpellier, France
| | - Claire Garros
- ASTRE, Univ Montpellier, Cirad, INRAE, Montpellier, France
- Cirad, UMR ASTRE, 34398 Montpellier, France
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, CP160/12, 50, av. FD Roosevelt, 1050 Bruxelles, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Maude Jacquot
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, CP160/12, 50, av. FD Roosevelt, 1050 Bruxelles, Belgium
- UMR EPIA, Université Clermont Auvergne, INRAE, VetAgro Sup, 63122 Saint-Genès-Champanelle, France
| | - Marius Gilbert
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, CP160/12, 50, av. FD Roosevelt, 1050 Bruxelles, Belgium
| | - Laetitia Gardès
- ASTRE, Univ Montpellier, Cirad, INRAE, Montpellier, France
- Cirad, UMR ASTRE, 97170 Petit-Bourg, Guadeloupe France
| | - Thomas Balenghien
- ASTRE, Univ Montpellier, Cirad, INRAE, Montpellier, France
- Cirad, UMR ASTRE, 10100 Rabat, Morocco
- Unité Microbiologie, immunologie et maladies contagieuses, Institut Agronomique et Vétérinaire Hassan II, 10100 Rabat-Instituts, Morocco
| | - Maxime Duhayon
- ASTRE, Univ Montpellier, Cirad, INRAE, Montpellier, France
- Cirad, UMR ASTRE, 34398 Montpellier, France
| | - Ignace Rakotoarivony
- ASTRE, Univ Montpellier, Cirad, INRAE, Montpellier, France
- Cirad, UMR ASTRE, 34398 Montpellier, France
| | - Maïa de Wavrechin
- ASTRE, Univ Montpellier, Cirad, INRAE, Montpellier, France
- Cirad, UMR ASTRE, 34398 Montpellier, France
| | - Karine Huber
- ASTRE, Univ Montpellier, Cirad, INRAE, Montpellier, France
| |
Collapse
|
10
|
Aguilar-Vega C, Bosch J, Fernández-Carrión E, Lucientes J, Sánchez-Vizcaíno JM. Identifying Spanish Areas at More Risk of Monthly BTV Transmission with a Basic Reproduction Number Approach. Viruses 2020; 12:E1158. [PMID: 33066209 PMCID: PMC7602074 DOI: 10.3390/v12101158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 01/24/2023] Open
Abstract
Bluetongue virus (BTV) causes a disease that is endemic in Spain and its two major biological vector species, C. imicola and the Obsoletus complex species, differ greatly in their ecology and distribution. Understanding the seasonality of BTV transmission in risk areas is key to improving surveillance and control programs, as well as to better understand the pathogen transmission networks between wildlife and livestock. Here, monthly risk transmission maps were generated using risk categories based on well-known BTV R0 equations and predicted abundances of the two most relevant vectors in Spain. Previously, Culicoides spp. predicted abundances in mainland Spain and the Balearic Islands were obtained using remote sensing data and random forest machine learning algorithm. Risk transmission maps were externally assessed with the estimated date of infection of BTV-1 and BTV-4 historical outbreaks. Our results highlight the differences in risk transmission during April-October, June-August being the period with higher R0 values. Likewise, a natural barrier has been identified between northern and central-southern areas at risk that may hamper BTV spread between them. Our results can be relevant to implement risk-based interventions for the prevention, control and surveillance of BTV and other diseases shared between livestock and wildlife host populations.
Collapse
Affiliation(s)
- Cecilia Aguilar-Vega
- VISAVET Health Surveillance Centre, Animal Health Department, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (J.B.); (E.F.-C.); (J.M.S.-V.)
| | - Jaime Bosch
- VISAVET Health Surveillance Centre, Animal Health Department, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (J.B.); (E.F.-C.); (J.M.S.-V.)
| | - Eduardo Fernández-Carrión
- VISAVET Health Surveillance Centre, Animal Health Department, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (J.B.); (E.F.-C.); (J.M.S.-V.)
| | - Javier Lucientes
- Department of Animal Pathology (Animal Health), AgriFood Institute of Aragón IA2, Faculty of Veterinary Medicine, University of Zaragoza, 50013 Zaragoza, Spain;
| | - José Manuel Sánchez-Vizcaíno
- VISAVET Health Surveillance Centre, Animal Health Department, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (J.B.); (E.F.-C.); (J.M.S.-V.)
| |
Collapse
|
11
|
van Rijn PA, Maris-Veldhuis MA, Grobler M, Wright IM, Erasmus BJ, Maartens LH, Potgieter CA. Safety and efficacy of inactivated African horse sickness (AHS) vaccine formulated with different adjuvants. Vaccine 2020; 38:7108-7117. [PMID: 32921506 DOI: 10.1016/j.vaccine.2020.08.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 12/11/2022]
Abstract
African horse sickness virus (AHSV) is a virus species in the genus Orbivirus of the family Reoviridae causing African Horse Sickness (AHS) in equids with a mortality of about 95% in naïve horses. AHS causes serious losses in developing countries where horses play a central role in draft power and transportation. There are nine AHSV serotypes inducing no or low cross-neutralizing antibodies. AHSV is spread by biting Culicoides midges. AHS is endemic in sub-Saharan Africa, and a serious threat outside Africa, since Culicoides species in moderate climate conditions are spreading the closely related bluetongue virus. AHS outbreaks will be devastating for the equestrian industry in developed countries. Live-attenuated vaccines (LAVs) are licensed, marketed and in use in Africa. Their application is controversial with regard to safety issues. LAVs are not allowed in AHS-free countries. We here studied inactivated AHSV with different adjuvants in guinea pigs and horses. Subcutaneous and intramuscular vaccination were studied in horses. Local reactions were observed after prime and boost vaccination. In general, neutralizing antibodies (nAbs) titres were very low after prime vaccination, whereas boost vaccination resulted in high nAb titres for some adjuvants. Vaccinated horses were selected based on local reactions and nAb titres to study efficacy. Unfortunately, not all vaccinated horses survived virulent AHSV infection. Further, most survivors temporarily developed clinical signs and viremia. Further, the current prototype inactivated AHS vaccine is not suitable as emergency vaccine, because onset of protection is slow and requires boost vaccinations. On the other hand, inactivated AHS vaccine is completely safe with respect to virus spread, and incorporation of the DIVA principle based on NS3/NS3a serology and exploring a vaccine production platform for other serotypes is feasible. A superior adjuvant increasing the protective response without causing local reactions will be required to develop payable and acceptable inactivated AHS vaccines.
Collapse
Affiliation(s)
- Piet A van Rijn
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands; Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa.
| | - Mieke A Maris-Veldhuis
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands
| | - Miemie Grobler
- Department of Production Animal Studies, University of Pretoria, South Africa
| | - Isabel M Wright
- Deltamune (Pty) Ltd, Moraine house - The Braes, 193 Bryanston Drive, Bryanston, Gauteng 2191, South Africa
| | - Baltus J Erasmus
- Deltamune (Pty) Ltd, Moraine house - The Braes, 193 Bryanston Drive, Bryanston, Gauteng 2191, South Africa
| | - Louis H Maartens
- Deltamune (Pty) Ltd, Moraine house - The Braes, 193 Bryanston Drive, Bryanston, Gauteng 2191, South Africa
| | - Christiaan A Potgieter
- Deltamune (Pty) Ltd, Moraine house - The Braes, 193 Bryanston Drive, Bryanston, Gauteng 2191, South Africa; Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
12
|
Abstract
The UK has never experienced an outbreak of African horse sickness but, as Matthew Robin of the Fyrnwy Equine Clinic explains, there is still a risk of a case occurring.
Collapse
|
13
|
Mignotte A, Garros C, Gardès L, Balenghien T, Duhayon M, Rakotoarivony I, Tabourin L, Poujol L, Mathieu B, Ibañez-Justicia A, Deniz A, Cvetkovikj A, Purse BV, Ramilo DW, Stougiou D, Werner D, Pudar D, Petrić D, Veronesi E, Jacobs F, Kampen H, Pereira da Fonseca I, Lucientes J, Navarro J, de la Puente JM, Stefanovska J, Searle KR, Khallaayoune K, Culverwell CL, Larska M, Bourquia M, Goffredo M, Bisia M, England M, Robin M, Quaglia M, Miranda-Chueca MÁ, Bødker R, Estrada-Peña R, Carpenter S, Tchakarova S, Boutsini S, Sviland S, Schäfer SM, Ozoliņa Z, Segliņa Z, Vatansever Z, Huber K. The tree that hides the forest: cryptic diversity and phylogenetic relationships in the Palaearctic vector Obsoletus/Scoticus Complex (Diptera: Ceratopogonidae) at the European level. Parasit Vectors 2020; 13:265. [PMID: 32434592 PMCID: PMC7238629 DOI: 10.1186/s13071-020-04114-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/29/2020] [Indexed: 11/27/2022] Open
Abstract
Background Culicoides obsoletus is an abundant and widely distributed Holarctic biting midge species, involved in the transmission of bluetongue virus (BTV) and Schmallenberg virus (SBV) to wild and domestic ruminants. Females of this vector species are often reported jointly with two morphologically very close species, C. scoticus and C. montanus, forming the Obsoletus/Scoticus Complex. Recently, cryptic diversity within C. obsoletus was reported in geographically distant sites. Clear delineation of species and characterization of genetic variability is mandatory to revise their taxonomic status and assess the vector role of each taxonomic entity. Our objectives were to characterize and map the cryptic diversity within the Obsoletus/Scoticus Complex. Methods Portion of the cox1 mitochondrial gene of 3763 individuals belonging to the Obsoletus/Scoticus Complex was sequenced. Populations from 20 countries along a Palaearctic Mediterranean transect covering Scandinavia to Canary islands (North to South) and Canary islands to Turkey (West to East) were included. Genetic diversity based on cox1 barcoding was supported by 16S rDNA mitochondrial gene sequences and a gene coding for ribosomal 28S rDNA. Species delimitation using a multi-marker methodology was used to revise the current taxonomic scheme of the Obsoletus/Scoticus Complex. Results Our analysis showed the existence of three phylogenetic clades (C. obsoletus clade O2, C. obsoletus clade dark and one not yet named and identified) within C. obsoletus. These analyses also revealed two intra-specific clades within C. scoticus and raised questions about the taxonomic status of C. montanus. Conclusions To our knowledge, our study provides the first genetic characterization of the Obsoletus/Scoticus Complex on a large geographical scale and allows a revision of the current taxonomic classification for an important group of vector species of livestock viruses in the Palaearctic region.![]()
Collapse
Affiliation(s)
- Antoine Mignotte
- ASTRE, Univ Montpellier, Cirad, INRAE, Montpellier, France. .,Cirad, UMR ASTRE, 34398, Montpellier, France.
| | - Claire Garros
- ASTRE, Univ Montpellier, Cirad, INRAE, Montpellier, France. .,Cirad, UMR ASTRE, 34398, Montpellier, France.
| | - Laetitia Gardès
- ASTRE, Univ Montpellier, Cirad, INRAE, Montpellier, France.,Cirad, UMR ASTRE, 97170, Petit-Bourg, Guadeloupe, France
| | - Thomas Balenghien
- ASTRE, Univ Montpellier, Cirad, INRAE, Montpellier, France.,Cirad, UMR ASTRE, 34398, Montpellier, France.,Institut Agronomique et Vétérinaire Hassan II, Unité Parasitologie et Maladies Parasitaires, 10100, Rabat, Morocco
| | - Maxime Duhayon
- ASTRE, Univ Montpellier, Cirad, INRAE, Montpellier, France.,Cirad, UMR ASTRE, 34398, Montpellier, France
| | - Ignace Rakotoarivony
- ASTRE, Univ Montpellier, Cirad, INRAE, Montpellier, France.,Cirad, UMR ASTRE, 34398, Montpellier, France
| | - Laura Tabourin
- ASTRE, Univ Montpellier, Cirad, INRAE, Montpellier, France.,Cirad, UMR ASTRE, 34398, Montpellier, France
| | - Léa Poujol
- ASTRE, Univ Montpellier, Cirad, INRAE, Montpellier, France.,Cirad, UMR ASTRE, 34398, Montpellier, France
| | - Bruno Mathieu
- Institute of Parasitology and Tropical Pathology of Strasbourg, Université de Strasbourg, DIHP UR 7292, 67000, Strasbourg, France
| | - Adolfo Ibañez-Justicia
- Centre for Monitoring of Vectors, National Reference Centre, Netherlands Food and Consumer Product Safety Authority, Wageningen, The Netherlands
| | - Ahmet Deniz
- Veterinary Control Central Research Institute, Ankara, Turkey
| | - Aleksandar Cvetkovikj
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, Republic of North Macedonia
| | - Bethan V Purse
- Centre for Ecology, Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
| | - David W Ramilo
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Despoina Stougiou
- Department of Parasitology-Parasitic Diseases, Entomology & Bee Health, Veterinary Centre of Athens, Athens, Greece
| | - Doreen Werner
- Leibniz-Centre for Agricultural Landscape Research, Müncheberg, Germany
| | - Dubravka Pudar
- Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Dušan Petrić
- Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Eva Veronesi
- National Centre for Vector Entomology, Institute of Parasitology, University of Zürich, Zürich, Switzerland
| | - Frans Jacobs
- Centre for Monitoring of Vectors, National Reference Centre, Netherlands Food and Consumer Product Safety Authority, Wageningen, The Netherlands
| | - Helge Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Isabel Pereira da Fonseca
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Javier Lucientes
- Department of Animal Pathology, AgriFood Institute of Aragón (IA2) Veterinary Faculty, 50013, Zaragoza, Spain
| | - Javier Navarro
- Departamento de Microbiología, Laboratorio de Producción y Sanidad Animal de Granada, Junta de Andalucía, Granada, Spain
| | - Josue Martinez de la Puente
- Doñana Biological Station, CSIC, Sevilla, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jovana Stefanovska
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, Republic of North Macedonia
| | - Kate R Searle
- Centre for Ecology & Hydrology, Edinburgh, OX10 8BB, UK
| | - Khalid Khallaayoune
- Institut Agronomique et Vétérinaire Hassan II, Unité Parasitologie et Maladies Parasitaires, 10100, Rabat, Morocco
| | - C Lorna Culverwell
- Department of Virology, University of Helsinki, Medicum, Haartmaninkatu 3, Helsinki, 00014, Finland
| | | | - Maria Bourquia
- Cirad, UMR ASTRE, 34398, Montpellier, France.,Institut Agronomique et Vétérinaire Hassan II, Unité Parasitologie et Maladies Parasitaires, 10100, Rabat, Morocco
| | - Maria Goffredo
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G. Caporale', Campo Boario, 64100, Teramo, Italy
| | - Marina Bisia
- Department of Parasitology-Parasitic Diseases, Entomology & Bee Health, Veterinary Centre of Athens, Athens, Greece
| | | | - Matthew Robin
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Leahurst, Chester High Road, Neston, Cheshire, CH64 7TE, UK
| | - Michela Quaglia
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G. Caporale', Campo Boario, 64100, Teramo, Italy
| | - Miguel Ángel Miranda-Chueca
- Applied Zoology and Animal Conservation Research Group, University of the Balearic Islands UIB, Palma, Spain
| | - René Bødker
- University of Copenhagen, Copenhagen, Denmark
| | - Rosa Estrada-Peña
- Department of Animal Pathology, AgriFood Institute of Aragón (IA2) Veterinary Faculty, 50013, Zaragoza, Spain
| | | | - Simona Tchakarova
- National Diagnostic and Research Veterinary Medical Institute, Sofia, Bulgaria
| | - Sofia Boutsini
- Department of Parasitology-Parasitic Diseases, Entomology & Bee Health, Veterinary Centre of Athens, Athens, Greece
| | | | - Stefanie M Schäfer
- Centre for Ecology, Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
| | - Zanda Ozoliņa
- Institute of Food safety, Animal Health and Environment 'BIOR', Riga, Latvia
| | - Zanda Segliņa
- Institute of Food safety, Animal Health and Environment 'BIOR', Riga, Latvia
| | - Zati Vatansever
- Veterinary Control Central Research Institute, Ankara, Turkey
| | - Karine Huber
- ASTRE, Univ Montpellier, Cirad, INRAE, Montpellier, France
| |
Collapse
|
14
|
Yao X, Fan Q, Yao B, Lu P, Rahman SU, Chen D, Tao S. Codon Usage Bias Analysis of Bluetongue Virus Causing Livestock Infection. Front Microbiol 2020; 11:655. [PMID: 32508755 PMCID: PMC7248248 DOI: 10.3389/fmicb.2020.00655] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/23/2020] [Indexed: 12/22/2022] Open
Abstract
Bluetongue virus (BTV) is a double-stranded RNA virus with multiple segments and belongs to the genus Orbivirus within the family Reoviridae. BTV is spread to livestock through its dominant vector, biting midges of genus Culicoides. Although great progress has been made in genomic analyses, it is not fully understood how BTVs adapt to their hosts and evade the host's immune systems. In this study, we retrieved BTV genome sequences from the National Center for Biotechnology Information (NCBI) database and performed a comprehensive research to explore the codon usage patterns in 50 BTV strains. We used bioinformatic approaches to calculate the relative synonymous codon usage (RSCU), codon adaptation index (CAI), effective number of codons (ENC), and other indices. The results indicated that most of the overpreferred codons had A-endings, which revealed that mutational pressure was the major force shaping codon usage patterns in BTV. However, the influence of natural selection and geographical factors cannot be ignored on viral codon usage bias. Based on the RSCU values, we performed a comparative analysis between BTVs and their hosts, suggesting that BTVs were inclined to evolve their codon usage patterns that were comparable to those of their hosts. Such findings will be conducive to understanding the elements that contribute to viral evolution and adaptation to hosts.
Collapse
Affiliation(s)
- Xiaoting Yao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qinlei Fan
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Bo Yao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Ping Lu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Siddiq Ur Rahman
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China.,Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Pakistan
| | - Dekun Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Shiheng Tao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
15
|
Cuéllar AC, Kjær LJ, Baum A, Stockmarr A, Skovgard H, Nielsen SA, Andersson MG, Lindström A, Chirico J, Lühken R, Steinke S, Kiel E, Gethmann J, Conraths FJ, Larska M, Smreczak M, Orłowska A, Hamnes I, Sviland S, Hopp P, Brugger K, Rubel F, Balenghien T, Garros C, Rakotoarivony I, Allène X, Lhoir J, Chavernac D, Delécolle JC, Mathieu B, Delécolle D, Setier-Rio ML, Scheid B, Chueca MÁM, Barceló C, Lucientes J, Estrada R, Mathis A, Venail R, Tack W, Bødker R. Modelling the monthly abundance of Culicoides biting midges in nine European countries using Random Forests machine learning. Parasit Vectors 2020; 13:194. [PMID: 32295627 PMCID: PMC7161244 DOI: 10.1186/s13071-020-04053-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 03/30/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Culicoides biting midges transmit viruses resulting in disease in ruminants and equids such as bluetongue, Schmallenberg disease and African horse sickness. In the past decades, these diseases have led to important economic losses for farmers in Europe. Vector abundance is a key factor in determining the risk of vector-borne disease spread and it is, therefore, important to predict the abundance of Culicoides species involved in the transmission of these pathogens. The objectives of this study were to model and map the monthly abundances of Culicoides in Europe. METHODS We obtained entomological data from 904 farms in nine European countries (Spain, France, Germany, Switzerland, Austria, Poland, Denmark, Sweden and Norway) from 2007 to 2013. Using environmental and climatic predictors from satellite imagery and the machine learning technique Random Forests, we predicted the monthly average abundance at a 1 km2 resolution. We used independent test sets for validation and to assess model performance. RESULTS The predictive power of the resulting models varied according to month and the Culicoides species/ensembles predicted. Model performance was lower for winter months. Performance was higher for the Obsoletus ensemble, followed by the Pulicaris ensemble, while the model for Culicoides imicola showed a poor performance. Distribution and abundance patterns corresponded well with the known distributions in Europe. The Random Forests model approach was able to distinguish differences in abundance between countries but was not able to predict vector abundance at individual farm level. CONCLUSIONS The models and maps presented here represent an initial attempt to capture large scale geographical and temporal variations in Culicoides abundance. The models are a first step towards producing abundance inputs for R0 modelling of Culicoides-borne infections at a continental scale.
Collapse
Affiliation(s)
- Ana Carolina Cuéllar
- Division for Diagnostics and Scientific Advice, National Veterinary Institute, Technical University of Denmark (DTU), Lyngby, Denmark
| | - Lene Jung Kjær
- Division for Diagnostics and Scientific Advice, National Veterinary Institute, Technical University of Denmark (DTU), Lyngby, Denmark
| | - Andreas Baum
- Department of Applied Mathematics and Computer Science, Technical University of Denmark (DTU), Lyngby, Denmark
| | - Anders Stockmarr
- Department of Applied Mathematics and Computer Science, Technical University of Denmark (DTU), Lyngby, Denmark
| | - Henrik Skovgard
- Department of Agroecology - Entomology and Plant Pathology, Aarhus University, Aarhus, Denmark
| | - Søren Achim Nielsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | | | | | - Jan Chirico
- National Veterinary Institute (SVA), Uppsala, Sweden
| | - Renke Lühken
- Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Sonja Steinke
- Department of Biology and Environmental Sciences, Carl von Ossietzky University, Oldenburg, Germany
| | - Ellen Kiel
- Department of Biology and Environmental Sciences, Carl von Ossietzky University, Oldenburg, Germany
| | - Jörn Gethmann
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Franz J. Conraths
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Magdalena Larska
- Department of Virology, National Veterinary Research Institute, Pulawy, Poland
| | - Marcin Smreczak
- Department of Virology, National Veterinary Research Institute, Pulawy, Poland
| | - Anna Orłowska
- Department of Virology, National Veterinary Research Institute, Pulawy, Poland
| | | | | | - Petter Hopp
- Norwegian Veterinary Institute, Oslo, Norway
| | - Katharina Brugger
- Unit of Veterinary Public Health and Epidemiology, University of Veterinary Medicine, Vienna, Austria
| | - Franz Rubel
- Unit of Veterinary Public Health and Epidemiology, University of Veterinary Medicine, Vienna, Austria
| | - Thomas Balenghien
- CIRAD, UMR ASTRE, 34398 Montpellier, France
- IAV Hassan II, Unité MIMC, 10 100 Rabat-Instituts, Morocco
| | - Claire Garros
- IAV Hassan II, Unité MIMC, 10 100 Rabat-Instituts, Morocco
| | | | - Xavier Allène
- IAV Hassan II, Unité MIMC, 10 100 Rabat-Instituts, Morocco
| | | | | | - Jean-Claude Delécolle
- Institute of Parasitology and Tropical Pathology of Strasbourg, UR7292, Université de Strasbourg, Strasbourg, France
| | - Bruno Mathieu
- Institute of Parasitology and Tropical Pathology of Strasbourg, UR7292, Université de Strasbourg, Strasbourg, France
| | - Delphine Delécolle
- Institute of Parasitology and Tropical Pathology of Strasbourg, UR7292, Université de Strasbourg, Strasbourg, France
| | | | | | | | - Carlos Barceló
- Applied Zoology and Animal Conservation Research Group, University of the Balearic Islands, Palma, Spain
| | - Javier Lucientes
- Department of Animal Pathology, University of Zaragoza, Zaragoza, Spain
| | - Rosa Estrada
- Department of Animal Pathology, University of Zaragoza, Zaragoza, Spain
| | - Alexander Mathis
- Institute of Parasitology, National Centre for Vector Entomology, Vetsuisse FacultyInstitute of Parasitology, National Centre for Vector Entomology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | | | | | - Rene Bødker
- Division for Diagnostics and Scientific Advice, National Veterinary Institute, Technical University of Denmark (DTU), Lyngby, Denmark
| |
Collapse
|
16
|
Pascall DJ, Nomikou K, Bréard E, Zientara S, Filipe ADS, Hoffmann B, Jacquot M, Singer JB, De Clercq K, Bøtner A, Sailleau C, Viarouge C, Batten C, Puggioni G, Ligios C, Savini G, van Rijn PA, Mertens PPC, Biek R, Palmarini M. "Frozen evolution" of an RNA virus suggests accidental release as a potential cause of arbovirus re-emergence. PLoS Biol 2020; 18:e3000673. [PMID: 32343693 PMCID: PMC7188197 DOI: 10.1371/journal.pbio.3000673] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
The mechanisms underlying virus emergence are rarely well understood, making the appearance of outbreaks largely unpredictable. Bluetongue virus serotype 8 (BTV-8), an arthropod-borne virus of ruminants, emerged in livestock in northern Europe in 2006, spreading to most European countries by 2009 and causing losses of billions of euros. Although the outbreak was successfully controlled through vaccination by early 2010, puzzlingly, a closely related BTV-8 strain re-emerged in France in 2015, triggering a second outbreak that is still ongoing. The origin of this virus and the mechanisms underlying its re-emergence are unknown. Here, we performed phylogenetic analyses of 164 whole BTV-8 genomes sampled throughout the two outbreaks. We demonstrate consistent clock-like virus evolution during both epizootics but found negligible evolutionary change between them. We estimate that the ancestor of the second outbreak dates from the height of the first outbreak in 2008. This implies that the virus had not been replicating for multiple years prior to its re-emergence in 2015. Given the absence of any known natural mechanism that could explain BTV-8 persistence over this long period without replication, we hypothesise that the second outbreak could have been initiated by accidental exposure of livestock to frozen material contaminated with virus from approximately 2008. Our work highlights new targets for pathogen surveillance programmes in livestock and illustrates the power of genomic epidemiology to identify pathways of infectious disease emergence.
Collapse
Affiliation(s)
- David J. Pascall
- Institute of Biodiversity, Animal Health and Comparative Medicine, Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, United Kingdom
| | - Kyriaki Nomikou
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- The School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, United Kingdom
| | - Emmanuel Bréard
- UMR Virologie, INRA, École Nationale Vétérinaire d’Alfort, Laboratoire de Santé Animale d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Stephan Zientara
- UMR Virologie, INRA, École Nationale Vétérinaire d’Alfort, Laboratoire de Santé Animale d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Ana da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Maude Jacquot
- Spatial Epidemiology Lab (SpELL), University of Brussels, Brussels, Belgium
- INRAE-VetAgro Sup, UMR Epidemiology of Animal and Zoonotic Diseases, Saint Genès-Champanelle, France
| | - Joshua B. Singer
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Kris De Clercq
- Infectious Diseases in Animals, Exotic and Particular Diseases, Sciensano, Brussels, Belgium
| | - Anette Bøtner
- Section for Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Corinne Sailleau
- UMR Virologie, INRA, École Nationale Vétérinaire d’Alfort, Laboratoire de Santé Animale d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Cyril Viarouge
- UMR Virologie, INRA, École Nationale Vétérinaire d’Alfort, Laboratoire de Santé Animale d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Carrie Batten
- The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | - Giantonella Puggioni
- Istituto Zooprofilattico Sperimentale della Sardegna, Via Duca degli Abruzzi, Sassari, Italy
| | - Ciriaco Ligios
- Istituto Zooprofilattico Sperimentale della Sardegna, Via Duca degli Abruzzi, Sassari, Italy
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise (IZSAM), Teramo, Italy
| | - Piet A. van Rijn
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands
- Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Peter P. C. Mertens
- The School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, United Kingdom
- The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine, Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, United Kingdom
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
17
|
Villard P, Muñoz F, Balenghien T, Baldet T, Lancelot R, Hénaux V. Modeling Culicoides abundance in mainland France: implications for surveillance. Parasit Vectors 2019; 12:391. [PMID: 31387649 PMCID: PMC6683357 DOI: 10.1186/s13071-019-3642-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/25/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biting midges of the genus Culicoides Latreille (Diptera: Ceratopogonidae) are involved in the transmission of several viruses affecting humans and livestock, particularly bluetongue (BTV). Over the last decade, Culicoides surveillance has been conducted discontinuously and at various temporal and spatial scales in mainland France following the BTV epizootics in 2008-2009 and its reemergence and continuous circulation since 2015. The ability to predict seasonal dynamics and spatial abundance of Culicoides spp. is a key element in identifying periods and areas at high risk of transmission in order to strengthen surveillance for early detection and to establish seasonally disease-free zones. The objective of this study was to model the abundance of Culicoides spp. using surveillance data. METHODS A mixed-effect Poisson model, adjusted for overdispersion and taking into account temperature data at each trap location, was used to model the weekly relative abundance of Culicoides spp. over a year in 24 vector zones, based on surveillance data collected during 2009-2012. Vector zones are the spatial units used for Culicoides surveillance since 2016 in mainland France. RESULTS The curves of the predicted annual abundance of Culicoides spp. in vector zones showed three different shapes: unimodal, bimodal or plateau, reflecting the temporal variability of the observed counts between zones. For each vector zone, the model enabled to identify periods of vector activity ranging from 25 to 51 weeks. CONCLUSIONS Although the data were collected for surveillance purposes, our modeling approach integrating vector data with daily temperatures, which are known to be major drivers of Culicoides spp. activity, provided areas-specific predictions of Culicoides spp. abundance. Our findings provide decisions makers with essential information to identify risk periods in each vector zone and guide the allocation of resources for surveillance and control. Knowledge of Culicoides spp. dynamics is also of primary importance for modeling the risk of establishment and spread of midge-borne diseases in mainland France.
Collapse
Affiliation(s)
- Pierre Villard
- CIRAD, UMR ASTRE, 34398 Montpellier, France
- ASTRE, CIRAD, INRA, Université de Montpellier, Montpellier, France
- Unité Epidémiologie et Appui à la Surveillance, Laboratoire de Lyon, Université de Lyon - ANSES, 31 Avenue Tony Garnier, 69007 Lyon, France
| | - Facundo Muñoz
- CIRAD, UMR ASTRE, 34398 Montpellier, France
- ASTRE, CIRAD, INRA, Université de Montpellier, Montpellier, France
| | - Thomas Balenghien
- ASTRE, CIRAD, INRA, Université de Montpellier, Montpellier, France
- Unité Microbiologie, Immunologie et Maladies Contagieuses, Institut Agronomique et Vétérinaire Hassan II, 10100 Rabat, Morocco
- CIRAD, UMR ASTRE, 10101 Rabat, Morocco
| | - Thierry Baldet
- CIRAD, UMR ASTRE, 34398 Montpellier, France
- ASTRE, CIRAD, INRA, Université de Montpellier, Montpellier, France
| | - Renaud Lancelot
- CIRAD, UMR ASTRE, 34398 Montpellier, France
- ASTRE, CIRAD, INRA, Université de Montpellier, Montpellier, France
| | - Viviane Hénaux
- Unité Epidémiologie et Appui à la Surveillance, Laboratoire de Lyon, Université de Lyon - ANSES, 31 Avenue Tony Garnier, 69007 Lyon, France
| |
Collapse
|
18
|
Rojas JM, Rodríguez-Martín D, Martín V, Sevilla N. Diagnosing bluetongue virus in domestic ruminants: current perspectives. VETERINARY MEDICINE-RESEARCH AND REPORTS 2019; 10:17-27. [PMID: 30859085 PMCID: PMC6385761 DOI: 10.2147/vmrr.s163804] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
This review provides an overview of current and potential new diagnostic techniques against bluetongue virus (BTV), an Orbivirus transmitted by arthropods that affects ruminants. Bluetongue is a disease currently notifiable to the World Organization for Animal Health (OIE), causing great economic losses due to decreased trade associated with bluetongue outbreaks and high mortality and morbidity. BTV cross-reacts with many antigenically related viruses including viruses that causes African Horse sickness and epizootic haemorrhagic disease of deer. Therefore, reliable diagnostic approaches to detect BTV among these other antigenically related viruses are used or being developed. The antigenic determinant for differentiation of virus species/serogroups among orbiviruses is the VP7 protein, meanwhile VP2 is serotype specific. Serologically, assays are established in many laboratories, based mainly on competitive ELISA or serum neutralization assay (virus neutralization assay [VNT]) although new techniques are being developed. Virus isolation from blood or semen is, additionally, another means of BTV diagnosis. Nevertheless, most of these techniques for viral isolation are time-consuming and expensive. Currently, reverse-transcription polymerase chain reaction (RT-PCR) panels or real-time RT-PCR are widely used methods although next-generation sequencing remains of interest for future virus diagnosis.
Collapse
Affiliation(s)
- José M Rojas
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid, Spain,
| | - Daniel Rodríguez-Martín
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid, Spain,
| | - Verónica Martín
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid, Spain,
| | - Noemí Sevilla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid, Spain,
| |
Collapse
|
19
|
Cuéllar AC, Jung Kjær L, Baum A, Stockmarr A, Skovgard H, Nielsen SA, Andersson MG, Lindström A, Chirico J, Lühken R, Steinke S, Kiel E, Gethmann J, Conraths FJ, Larska M, Smreczak M, Orłowska A, Hamnes I, Sviland S, Hopp P, Brugger K, Rubel F, Balenghien T, Garros C, Rakotoarivony I, Allène X, Lhoir J, Chavernac D, Delécolle JC, Mathieu B, Delécolle D, Setier-Rio ML, Venail R, Scheid B, Chueca MÁM, Barceló C, Lucientes J, Estrada R, Mathis A, Tack W, Bødker R. Monthly variation in the probability of presence of adult Culicoides populations in nine European countries and the implications for targeted surveillance. Parasit Vectors 2018; 11:608. [PMID: 30497537 PMCID: PMC6267925 DOI: 10.1186/s13071-018-3182-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/05/2018] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Biting midges of the genus Culicoides (Diptera: Ceratopogonidae) are small hematophagous insects responsible for the transmission of bluetongue virus, Schmallenberg virus and African horse sickness virus to wild and domestic ruminants and equids. Outbreaks of these viruses have caused economic damage within the European Union. The spatio-temporal distribution of biting midges is a key factor in identifying areas with the potential for disease spread. The aim of this study was to identify and map areas of neglectable adult activity for each month in an average year. Average monthly risk maps can be used as a tool when allocating resources for surveillance and control programs within Europe. METHODS We modelled the occurrence of C. imicola and the Obsoletus and Pulicaris ensembles using existing entomological surveillance data from Spain, France, Germany, Switzerland, Austria, Denmark, Sweden, Norway and Poland. The monthly probability of each vector species and ensembles being present in Europe based on climatic and environmental input variables was estimated with the machine learning technique Random Forest. Subsequently, the monthly probability was classified into three classes: Absence, Presence and Uncertain status. These three classes are useful for mapping areas of no risk, areas of high-risk targeted for animal movement restrictions, and areas with an uncertain status that need active entomological surveillance to determine whether or not vectors are present. RESULTS The distribution of Culicoides species ensembles were in agreement with their previously reported distribution in Europe. The Random Forest models were very accurate in predicting the probability of presence for C. imicola (mean AUC = 0.95), less accurate for the Obsoletus ensemble (mean AUC = 0.84), while the lowest accuracy was found for the Pulicaris ensemble (mean AUC = 0.71). The most important environmental variables in the models were related to temperature and precipitation for all three groups. CONCLUSIONS The duration periods with low or null adult activity can be derived from the associated monthly distribution maps, and it was also possible to identify and map areas with uncertain predictions. In the absence of ongoing vector surveillance, these maps can be used by veterinary authorities to classify areas as likely vector-free or as likely risk areas from southern Spain to northern Sweden with acceptable precision. The maps can also focus costly entomological surveillance to seasons and areas where the predictions and vector-free status remain uncertain.
Collapse
Affiliation(s)
- Ana Carolina Cuéllar
- Division for Diagnostics and Scientific Advice, National Veterinary Institute, Technical University of Denmark (DTU), Lyngby, Denmark
| | - Lene Jung Kjær
- Division for Diagnostics and Scientific Advice, National Veterinary Institute, Technical University of Denmark (DTU), Lyngby, Denmark
| | - Andreas Baum
- Department of Applied Mathematics and Computer Science, Technical University of Denmark (DTU), Lyngby, Denmark
| | - Anders Stockmarr
- Department of Applied Mathematics and Computer Science, Technical University of Denmark (DTU), Lyngby, Denmark
| | - Henrik Skovgard
- Department of Agroecology - Entomology and Plant Pathology, Aarhus University, Aarhus, Denmark
| | - Søren Achim Nielsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | | | | | - Jan Chirico
- National Veterinary Institute (SVA), Uppsala, Sweden
| | - Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research National Reference Centre for Tropical Infectious Diseases, Hamburg, Germany
| | - Sonja Steinke
- Department of Biology and Environmental Sciences, Carl von Ossietzky University, Oldenburg, Germany
| | - Ellen Kiel
- Department of Biology and Environmental Sciences, Carl von Ossietzky University, Oldenburg, Germany
| | - Jörn Gethmann
- Institute of Epidemiology, Friedrich Loeffler Institute, Greifswald, Germany
| | - Franz J. Conraths
- Institute of Epidemiology, Friedrich Loeffler Institute, Greifswald, Germany
| | - Magdalena Larska
- Department of Virology, National Veterinary Research Institute, Pulawy, Poland
| | - Marcin Smreczak
- Department of Virology, National Veterinary Research Institute, Pulawy, Poland
| | - Anna Orłowska
- Department of Virology, National Veterinary Research Institute, Pulawy, Poland
| | | | | | - Petter Hopp
- Norwegian Veterinary Institute, Oslo, Norway
| | | | - Franz Rubel
- Institute for Veterinary Public Health, Vetmeduni, Vienna, Austria
| | | | | | | | | | | | | | - Jean-Claude Delécolle
- Institute of Parasitology and Tropical Pathology of Strasbourg, EA7292, Université de Strasbourg, Strasbourg, France
| | - Bruno Mathieu
- Institute of Parasitology and Tropical Pathology of Strasbourg, EA7292, Université de Strasbourg, Strasbourg, France
| | - Delphine Delécolle
- Institute of Parasitology and Tropical Pathology of Strasbourg, EA7292, Université de Strasbourg, Strasbourg, France
| | | | - Roger Venail
- EID Méditerranée, Montpellier, France
- Avia-GIS NV, Zoersel, Belgium
| | | | | | - Carlos Barceló
- Laboratory of Zoology, University of the Balearic Islands, Palma, Spain
| | - Javier Lucientes
- Department of Animal Pathology, University of Zaragoza, Zaragoza, Spain
| | - Rosa Estrada
- Department of Animal Pathology, University of Zaragoza, Zaragoza, Spain
| | - Alexander Mathis
- Institute of Parasitology, University of Zürich, Zürich, Switzerland
| | | | - René Bødker
- Division for Diagnostics and Scientific Advice, National Veterinary Institute, Technical University of Denmark (DTU), Lyngby, Denmark
| |
Collapse
|
20
|
Optimising cost-effectiveness of freedom from disease surveillance—Bluetongue Virus Serotype 8 as an example. Prev Vet Med 2018. [DOI: 10.1016/j.prevetmed.2018.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Paslaru AI, Mathis A, Torgerson P, Veronesi E. Vector competence of pre-alpine Culicoides (Diptera: Ceratopogonidae) for bluetongue virus serotypes 1, 4 and 8. Parasit Vectors 2018; 11:466. [PMID: 30103803 PMCID: PMC6090685 DOI: 10.1186/s13071-018-3050-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/03/2018] [Indexed: 12/02/2022] Open
Abstract
Background Bluetongue disease, caused by bluetongue virus serotype 8 (BTV-8), appeared for the first time in the northern part of Europe in 2006, and subsequently rapidly spread causing severe economic losses to the farming industry. The implicated vectors of BTV in Europe are Culicoides species within the subgenus Avaritia (C. chiopterus, C. dewulfi, C. obsoletus and C. scoticus). Epidemiological data from Switzerland have shown that BTV, whose spread was eliminated at an early stage by vaccination campaigns, had not been circulating among livestock at higher altitudes where other species dominate the Culicoides fauna. In this study, we investigated the extent that Culicoides spp. prevailing at higher altitudes (mainly C. grisescens) can act as vectors for BTV. Methods Culicoides were collected at farms in the pre-alpine region (two sites at 1550 m above sea level, masl, referred to as pre-alpine I; one site at 2030 masl, pre-alpine II) and, for comparative purposes, from the Swiss Plateau (one site, 650 masl). They were fed on bovine blood/BTV suspensions (BTV-1, 4 or 8) and incubated for eight days under a fluctuating temperature regime (13–25 °C, mean 19 °C), reflecting a mid-summer warm spell in the pre-alpine region. Susceptibility to BTV transmission was assessed from head homogenates by RT-qPCR and virus isolation. Results Overall, 9196 female Culicoides were exposed to the three BTV strains through an artificial membrane, with feeding rates of 14–27%. Survival rates of blood-engorged Culicoides females at eight days post-infection depended on both virus serotype and altitude of origin. Virus dissemination (Cq ≤ the cut-off value as determined by serial virus dilutions) was confirmed only for BTV-1 in C. scoticus (dissemination efficiency 22.5%; 9/40) and C. obsoletus (5.6%; 1/18) from the Swiss Plateau area. There was no strong evidence of susceptibility to infection for Culicoides from the pre-alpine area when fed with all BTV strains (BTV-1, 4 and 8). Conclusions This study confirms the susceptibility of C. scoticus and C. obsoletus to BTV-1 infection, including under cooler temperatures. Culicoides grisescens, which is highly abundant at higher altitudes, cannot be considered a potential vector under these temperature conditions. Electronic supplementary material The online version of this article (10.1186/s13071-018-3050-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anca Ioana Paslaru
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Alexander Mathis
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Paul Torgerson
- Section of Epidemiology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Eva Veronesi
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
22
|
van Rijn PA, Maris-Veldhuis MA, Boonstra J, van Gennip RGP. Diagnostic DIVA tests accompanying the Disabled Infectious Single Animal (DISA) vaccine platform for African horse sickness. Vaccine 2018; 36:3584-3592. [PMID: 29759377 DOI: 10.1016/j.vaccine.2018.05.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 01/09/2023]
Abstract
African Horse Sickness Virus (AHSV) (Orbivirus genus, Reoviridae family) causes high mortality in naïve domestic horses with enormous economic and socio-emotional impact. There are nine AHSV serotypes showing limited cross neutralization. AHSV is transmitted by competent species of Culicoides biting midges. AHS is a serious threat beyond the African continent as endemic Culicoides species in moderate climates transmit the closely related prototype bluetongue virus. There is a desperate need for safe and efficacious vaccines, while DIVA (Differentiating Infected from Vaccinated) vaccines would accelerate control of AHS. Previously, we have shown that highly virulent AHSV with an in-frame deletion of 77 amino acids (aa) in NS3/NS3a is completely safe, does not cause viremia and shows protective capacity. This deletion mutant is a promising DISA (Disabled Infectious Single Animal) vaccine platform, since exchange of serotype specific virus proteins has been shown for all nine serotypes. Here, we show that a prototype NS3 competitive ELISA is DIVA compliant to AHS DISA vaccine platforms. Epitope mapping of NS3/NS3a shows that more research is needed to evaluate this prototype serological DIVA assay regarding sensitivity and specificity, in particular for AHSVs expressing antigenically different NS3/NS3a proteins. Further, an experimental panAHSV PCR test targeting genome segment 10 is developed that detects reference AHSV strains, whereas AHS DISA vaccine platforms were not detected. This DIVA PCR test completely guarantees genetic DIVA based on in silico and in vitro validation, although test validation regarding diagnostic sensitivity and specificity has not been performed yet. In conclusion, the prototype NS3 cELISA and the PCR test described here enable serological and genetic DIVA accompanying AHS DISA vaccine platforms.
Collapse
Affiliation(s)
- Piet A van Rijn
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands; Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa.
| | - Mieke A Maris-Veldhuis
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands
| | - Jan Boonstra
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands
| | - René G P van Gennip
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands
| |
Collapse
|
23
|
van Rijn PA, Maris-Veldhuis MA, Potgieter CA, van Gennip RG. African horse sickness virus (AHSV) with a deletion of 77 amino acids in NS3/NS3a protein is not virulent and a safe promising AHS Disabled Infectious Single Animal (DISA) vaccine platform. Vaccine 2018. [DOI: 10.1016/j.vaccine.2018.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
Community analysis of the abundance and diversity of biting midge species (Diptera: Ceratopogonidae) in three European countries at different latitudes. Parasit Vectors 2018; 11:217. [PMID: 29587832 PMCID: PMC5872509 DOI: 10.1186/s13071-018-2792-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 03/11/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The outbreaks of bluetongue and Schmallenberg disease in Europe have increased efforts to understand the ecology of Culicoides biting midges and their role in pathogen transmission. However, most studies have focused on a specific habitat, region, or country. To facilitate wider comparisons, and to obtain a better understanding of the spread of disease through Europe, the present study focused on monitoring biting midge species diversity in three different habitat types and three countries across Europe. METHODS Biting midges were trapped using Onderstepoort Veterinary Institute light traps at a total of 27 locations in Sweden, the Netherlands and Italy, comprising farm, peri-urban and wetland habitats. From July 2014 to June 2015 all locations were sampled monthly, except for during the winter months. Trapped midges were counted and identified morphologically. Indices on species richness, evenness and diversity were calculated. Community compositions were analysed using non-metric multidimensional scaling (NMDS) techniques. RESULTS A total of 50,085 female midges were trapped during 442 collection nights. More than 88% of these belonged to the Obsoletus group. The highest midge diversity was found in Sweden, while species richness was highest in the Netherlands, and most specimens were trapped in Italy. For habitats within countries, diversity of the trapped midges was lowest for farms in all countries. Differences in biting midge species communities were more distinct across the three countries than the three habitat types. CONCLUSIONS A core midge community could be identified, in which the Obsoletus group was the most abundant. Variations in vector communities across countries imply different patterns of disease spread throughout Europe. How specific species and their associated communities affect disease risk is still unclear. Our results emphasize the importance of midge diversity data at community level, how this differs across large geographic range within Europe, and its implications on assessing risks of midge-borne disease outbreaks.
Collapse
|
25
|
Antonovics J, Wilson AJ, Forbes MR, Hauffe HC, Kallio ER, Leggett HC, Longdon B, Okamura B, Sait SM, Webster JP. The evolution of transmission mode. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0083. [PMID: 28289251 PMCID: PMC5352810 DOI: 10.1098/rstb.2016.0083] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2016] [Indexed: 12/31/2022] Open
Abstract
This article reviews research on the evolutionary mechanisms leading to different transmission modes. Such modes are often under genetic control of the host or the pathogen, and often in conflict with each other via trade-offs. Transmission modes may vary among pathogen strains and among host populations. Evolutionary changes in transmission mode have been inferred through experimental and phylogenetic studies, including changes in transmission associated with host shifts and with evolution of the unusually complex life cycles of many parasites. Understanding the forces that determine the evolution of particular transmission modes presents a fascinating medley of problems for which there is a lack of good data and often a lack of conceptual understanding or appropriate methodologies. Our best information comes from studies that have been focused on the vertical versus horizontal transmission dichotomy. With other kinds of transitions, theoretical approaches combining epidemiology and population genetics are providing guidelines for determining when and how rapidly new transmission modes may evolve, but these are still in need of empirical investigation and application to particular cases. Obtaining such knowledge is a matter of urgency in relation to extant disease threats.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'.
Collapse
Affiliation(s)
- Janis Antonovics
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Anthony J Wilson
- Integrative Entomology group, Vector-borne Viral Diseases programme, The Pirbright Institute, Pirbright GU24 0NF, UK
| | - Mark R Forbes
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B7
| | - Heidi C Hauffe
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trentino, Italy
| | - Eva R Kallio
- Department of Biological and Environmental Science, University of Jyvaskyla, PO Box 35, 40014 Jyvaskyla, Finland.,Department of Ecology, University of Oulu, PO Box 3000, 90014 Oulu, Finland
| | - Helen C Leggett
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Ben Longdon
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| | - Beth Okamura
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW5 7BD, UK
| | - Steven M Sait
- School of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Joanne P Webster
- Department of Pathology and Pathogen Biology, Centre for Emerging, Endemic and Exotic Diseases, Royal Veterinary College, University of London, London AL9 7TA, UK
| |
Collapse
|
26
|
Augot D, Mathieu B, Hadj-Henni L, Barriel V, Zapata Mena S, Smolis S, Slama D, Randrianambinintsoa FJ, Trueba G, Kaltenbach M, Rahola N, Depaquit J. Molecular phylogeny of 42 species of Culicoides (Diptera, Ceratopogonidae) from three continents. ACTA ACUST UNITED AC 2017. [PMID: 28643630 PMCID: PMC5482051 DOI: 10.1051/parasite/2017020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The genus Culicoides includes vectors of important animal diseases such as bluetongue and Schmallenberg virus (BTV and SBV). This genus includes 1300 species classified in 32 subgenera and 38 unclassified species. However, the phylogenetic relationships between different subgenera of Culicoides have never been studied. Phylogenetic analyses of 42 species belonging to 12 subgenera and 8 ungrouped species of genus Culicoides from Ecuador, France, Gabon, Madagascar and Tunisia were carried out using two molecular markers (28S rDNA D1 and D2 domains and COI mtDNA). Sequences were subjected to non-probabilistic (maximum parsimony) and probabilistic (Bayesian inference (BI)) approaches. The subgenera Monoculicoides, Culicoides, Haematomyidium, Hoffmania, Remmia and Avaritia (including the main vectors of bluetongue disease) were monophyletic, whereas the subgenus Oecacta was paraphyletic. Our study validates the subgenus Remmia (= Schultzei group) as a valid subgenus, outside of the subgenus Oecacta. In Europe, Culicoides obsoletus, Culicoides scoticus and Culicoides chiopterus should be part of the Obsoletus complex whereas Culicoides dewulfi should be excluded from this complex. Our study suggests that the current Culicoides classification needs to be revisited with modern tools.
Collapse
Affiliation(s)
- Denis Augot
- USC Vecpar, ANSES-LSA, Université de Reims Champagne-Ardenne, SFR Cap Santé, Faculté de Pharmacie, 51 rue Cognacq-Jay, EA 4688, Reims 51096, France
| | - Bruno Mathieu
- Institut de Parasitologie et de Pathologie Tropicale de Strasbourg, Université de Strasbourg, Faculté de Médecine, 3 rue Koeberlé, EA7292, Strasbourg 67000, France
| | - Leila Hadj-Henni
- USC Vecpar, ANSES-LSA, Université de Reims Champagne-Ardenne, SFR Cap Santé, Faculté de Pharmacie, 51 rue Cognacq-Jay, EA 4688, Reims 51096, France
| | - Véronique Barriel
- Muséum National d'Histoire Naturelle, CR2P-UMR 7207 CNRS, MNHN, UPMC, 8 rue Buffon, CP 38, 75005 Paris, France
| | - Sonia Zapata Mena
- Instituto de Microbiologia, Colegio de Ciencias Biologicas y Ambientales, Universidad San Francisco de Quito, Cumbayá, EC170157 Quito, Pichincha, Ecuador
| | - Sylvia Smolis
- USC Vecpar, ANSES-LSA, Université de Reims Champagne-Ardenne, SFR Cap Santé, Faculté de Pharmacie, 51 rue Cognacq-Jay, EA 4688, Reims 51096, France
| | - Darine Slama
- Laboratory of Medical and Molecular Parasitology-Mycology, Faculty of Pharmacy, University of Monastir, 99UR/08-05, 5000 Monastir, Tunisia
| | | | - Gabriel Trueba
- Instituto de Microbiologia, Colegio de Ciencias Biologicas y Ambientales, Universidad San Francisco de Quito, Cumbayá, EC170157 Quito, Pichincha, Ecuador
| | - Matthieu Kaltenbach
- Laboratoire de Pharmacologie, Université de Reims Champagne-Ardenne, UFR Pharmacie, 51 rue Cognacq-Jay, 51100 Reims, France
| | - Nil Rahola
- Unité MIVEGEC, UMR 224-5290 IRD-CNRS-UM, Centre IRD de Montpellier, BP 64501, 911 avenue Agropolis, 34394 Montpellier, France - Centre International de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon
| | - Jérôme Depaquit
- USC Vecpar, ANSES-LSA, Université de Reims Champagne-Ardenne, SFR Cap Santé, Faculté de Pharmacie, 51 rue Cognacq-Jay, EA 4688, Reims 51096, France
| |
Collapse
|
27
|
Affiliation(s)
- Nick De Regge
- Operational Direction Viral Diseases, CODA-CERVA, Groeselenberg 99, 1180 Ukkel, Belgium. e-mail:
| |
Collapse
|
28
|
McDermott EG, Mayo CE, Mullens BA. Low Temperature Tolerance of Culicoides sonorensis (Diptera: Ceratopogonidae) Eggs, Larvae, and Pupae From Temperate and Subtropical Climates. JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:264-274. [PMID: 28011723 DOI: 10.1093/jme/tjw190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/13/2016] [Indexed: 06/06/2023]
Abstract
Culicoides sonorensis Wirth and Jones biting midges are the primary North American vectors of bluetongue virus (BTV), which infects domestic ruminant livestock and can cause high morbidity and mortality. Both virus and vector exhibit highly seasonal activity patterns, even in subtropical climates like southern California. However, the exact mechanism of BTV and Culicoides overwintering has been debated. In this study, we examined the supercooling point (SCP) and lower lethal temperature of a laboratory colony of C. sonorensis eggs, larvae, and pupae, as well as of field-collected larvae and pupae from subtropical (California) and temperate (Colorado) climates. Larvae and pupae succumbed to temperatures higher than their respective SCPs, indicating death from prefreezing cold injury. Eggs were the most cold-tolerant life stage, and were able to tolerate 1-h exposures to temperatures as low as -20 °C without suffering complete mortality. Larvae were the least cold-tolerant life stage and suffered complete mortality at < -4 °C, while temperatures of -9 to -10 °C were required to kill all pupae. Larvae and embryos suffered chronic cold injury after exposure to subzero temperatures, which increased mortality. Field-collected larvae succumbed to slightly higher temperatures ( > -3 °C) than colony larvae, but did not differ significantly in their survival. Culicoides sonorensis immatures did not cold harden when exposed to 4 °C for 24 h before freezing. Results of this study indicate that C. sonorensis eggs are more tolerant of environmental stress than previously thought. Further work is needed on C. sonorensis winter survival in the field to corroborate laboratory studies.
Collapse
Affiliation(s)
- Emily G McDermott
- Department of Entomology, University of California-Riverside, Riverside, CA 92521 (; )
| | - Christie E Mayo
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO 80523
| | - Bradley A Mullens
- Department of Entomology, University of California-Riverside, Riverside, CA 92521 (; )
| |
Collapse
|
29
|
Erster O, Stram R, Menasherow S, Rubistein-Giuni M, Sharir B, Kchinich E, Stram Y. High-resolution melting (HRM) for genotyping bovine ephemeral fever virus (BEFV). Virus Res 2017; 229:1-8. [DOI: 10.1016/j.virusres.2016.11.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/06/2016] [Accepted: 11/24/2016] [Indexed: 12/17/2022]
|
30
|
Kameke D, Kampen H, Walther D. Activity of Culicoides spp. (Diptera: Ceratopogonidae) inside and outside of livestock stables in late winter and spring. Parasitol Res 2017; 116:881-889. [PMID: 28054179 PMCID: PMC5313592 DOI: 10.1007/s00436-016-5361-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/20/2016] [Indexed: 11/29/2022]
Abstract
Culicoides Latreille, 1809 midge species are the putative vectors of Bluetongue virus (BTV) and Schmallenberg virus (SBV) in Europe. To gain a better understanding of the epidemiology of the diseases, basic knowledge about the overwintering of the vectors is needed. Therefore, we investigated culicoid activity in relation to air temperature at livestock stables during late winter and spring season. Ceratopogonids were captured weekly indoors and outdoors on three cattle farms, three horse farms and one sheep farm in the federal state of Brandenburg, Germany between January and May, 2015 by BG-Sentinel UV-light suction traps. First seasonal activity was measured inside a sheep barn and cattle stables in mid-March, suggesting the existence of a preceding vector-free period. The first species at all trapping sites were members of the Obsoletus Complex followed by Culicoides punctatus (Meigen), 1804 and Culicoides pulicaris (Linnaeus), 1758 simultaneously. In total, 160 collections were made, including 3465 Culicoides specimens with 2790 (80.6%) of them being members of the Obsoletus Complex. The remaining 675 individuals belonged to six other culicoid species. 59.8% of all Culicoides were collected indoors, and almost five times as many midges were sampled on cattle farms as on horse farms. Cattle farms harboured seven species while only two species were found on the horse and the sheep farms, respectively. Temperatures, husbandry practises and the presence/quality of potential breeding sites might be responsible for the difference in species and numbers of caught specimens between livestock holdings.
Collapse
Affiliation(s)
- Daniela Kameke
- Institute of Land Use Systems, Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374, Müncheberg, Germany.
| | - Helge Kampen
- Institute of Infectology, Friedrich-Loeffler-Institute (FLI), Südufer 10, 17493, Greifswald, Germany
| | - Doreen Walther
- Institute of Land Use Systems, Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374, Müncheberg, Germany
| |
Collapse
|
31
|
Sarvašová A, Kočišová A, Liptáková E, Hiavatá H, Mathieu B. First insights into indoor and outdoor Culicoides activity related to the risk period for Bluetongue virus transmission in Eastern Slovakia. Acta Parasitol 2016; 61:743-755. [PMID: 27787226 DOI: 10.1515/ap-2016-0103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/21/2016] [Indexed: 11/15/2022]
Abstract
The epizootic of Bluetongue virus (BTV) throughout Europe in 2006 revealed insufficient knowledge regarding seasonal activities, endo/exophilic and endo/exophagic behaviour of the species of the Culicoides genus (Diptera: Ceratopogonidae). Although several studies have been carried out in Western Europe, bringing new knowledge of the above mentioned topics, there was still a gap to fill in Central Europe. Therefore, this study investigated seasonal variations in the indoor/outdoor Culicoides activity observed in the south-eastern Slovakia from 2012 to 2014, using a light-trapping method. In total, 52,741 Culicoides were collected and identified; majority of them were caught outdoors (82.6%), with the highest activity period being mid-June. The C. obsoletus/C. scoticus and C.punctatus species predominated, altogether representing 88.8 and 94.1% of the total indoor and outdoor collections, respectively. Positive correlation was observed between the temperature and the abundance, whereas no correlation with other studied factors was detected. In autumn, Culicoides activity was observed outdoors at temperatures ranging between-1.5°C and 9.3°C, whereas the indoor activity was detected at temperatures ranging between-3.9°C and 0°C. This demonstrated that the most significant BTV vectors in the studied area are C. obsoletus/C. scoticus. The C. dewulfi and C. chiopterus vectors appeared to be of lower significance. The period with the highest risk of the BTV transmission in Eastern Slovakia appeared to be mid-June. The autumnal Culicoides activity inside the cowsheds may be important for the assessment of virus overwintering. This study is the first to provide the data on indoor/outdoor behaviour of biting midges in Slovakia.
Collapse
|
32
|
Wakefield A, Broyles M, Stone EL, Jones G, Harris S. Experimentally comparing the attractiveness of domestic lights to insects: Do LEDs attract fewer insects than conventional light types? Ecol Evol 2016; 6:8028-8036. [PMID: 27878075 PMCID: PMC5108255 DOI: 10.1002/ece3.2527] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/31/2016] [Accepted: 09/06/2016] [Indexed: 11/08/2022] Open
Abstract
LED lighting is predicted to constitute 70% of the outdoor and residential lighting markets by 2020. While the use of LEDs promotes energy and cost savings relative to traditional lighting technologies, little is known about the effects these broad-spectrum "white" lights will have on wildlife, human health, animal welfare, and disease transmission. We conducted field experiments to compare the relative attractiveness of four commercially available "domestic" lights, one traditional (tungsten filament) and three modern (compact fluorescent, "cool-white" LED and "warm-white" LED), to aerial insects, particularly Diptera. We found that LEDs attracted significantly fewer insects than other light sources, but found no significant difference in attraction between the "cool-" and "warm-white" LEDs. Fewer flies were attracted to LEDs than alternate light sources, including fewer Culicoides midges (Diptera: Ceratopogonidae). Use of LEDs has the potential to mitigate disturbances to wildlife and occurrences of insect-borne diseases relative to competing lighting technologies. However, we discuss the risks associated with broad-spectrum lighting and net increases in lighting resulting from reduced costs of LED technology.
Collapse
Affiliation(s)
- Andrew Wakefield
- School of Biological Sciences, Life Sciences Building University of Bristol Bristol UK
| | - Moth Broyles
- School of Biological Sciences, Life Sciences Building University of Bristol Bristol UK
| | - Emma L Stone
- School of Biological Sciences, Life Sciences Building University of Bristol Bristol UK
| | - Gareth Jones
- School of Biological Sciences, Life Sciences Building University of Bristol Bristol UK
| | - Stephen Harris
- School of Biological Sciences, Life Sciences Building University of Bristol Bristol UK
| |
Collapse
|
33
|
Kampen H, Schäfer M, Zielke DE, Walther D. The Anopheles maculipennis complex (Diptera: Culicidae) in Germany: an update following recent monitoring activities. Parasitol Res 2016; 115:3281-94. [DOI: 10.1007/s00436-016-5189-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 06/28/2016] [Indexed: 11/29/2022]
|
34
|
Robin M, Page P, Archer D, Baylis M. African horse sickness: The potential for an outbreak in disease-free regions and current disease control and elimination techniques. Equine Vet J 2016; 48:659-69. [PMID: 27292229 DOI: 10.1111/evj.12600] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/09/2016] [Indexed: 11/26/2022]
Abstract
African horse sickness (AHS) is an arboviral disease of equids transmitted by Culicoides biting midges. The virus is endemic in parts of sub-Saharan Africa and official AHS disease-free status can be obtained from the World Organization for Animal Health on fulfilment of a number of criteria. AHS is associated with case fatality rates of up to 95%, making an outbreak among naïve horses both a welfare and economic disaster. The worldwide distributions of similar vector-borne diseases (particularly bluetongue disease of ruminants) are changing rapidly, probably due to a combination of globalisation and climate change. There is extensive evidence that the requisite conditions for an AHS epizootic currently exist in disease-free countries. In particular, although the stringent regulations enforced upon competition horses make them extremely unlikely to redistribute the virus, there are great concerns over the effects of illegal equid movement. An outbreak of AHS in a disease free region would have catastrophic effects on equine welfare and industry, particularly for international events such as the Olympic Games. While many regions have contingency plans in place to manage an outbreak of AHS, further research is urgently required if the equine industry is to avoid or effectively contain an AHS epizootic in disease-free regions. This review describes the key aspects of AHS as a global issue and discusses the evidence supporting concerns that an epizootic may occur in AHS free countries, the planned government responses, and the roles and responsibilities of equine veterinarians.
Collapse
Affiliation(s)
- M Robin
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Leahurst, Neston, Cheshire, UK
| | - P Page
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - D Archer
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Leahurst, Neston, Cheshire, UK
| | - M Baylis
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Leahurst, Neston, Cheshire, UK.,NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, UK
| |
Collapse
|
35
|
van Rijn PA, van de Water SGP, Feenstra F, van Gennip RGP. Requirements and comparative analysis of reverse genetics for bluetongue virus (BTV) and African horse sickness virus (AHSV). Virol J 2016; 13:119. [PMID: 27368544 PMCID: PMC4930614 DOI: 10.1186/s12985-016-0574-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/27/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Bluetongue virus (BTV) and African horse sickness virus (AHSV) are distinct arthropod borne virus species in the genus Orbivirus (Reoviridae family), causing the notifiable diseases Bluetongue and African horse sickness of ruminants and equids, respectively. Reverse genetics systems for these orbiviruses with their ten-segmented genome of double stranded RNA have been developed. Initially, two subsequent transfections of in vitro synthesized capped run-off RNA transcripts resulted in the recovery of BTV. Reverse genetics has been improved by transfection of expression plasmids followed by transfection of ten RNA transcripts. Recovery of AHSV was further improved by use of expression plasmids containing optimized open reading frames. RESULTS Plasmids containing full length cDNA of the 10 genome segments for T7 promoter-driven production of full length run-off RNA transcripts and expression plasmids with optimized open reading frames (ORFs) were used. BTV and AHSV were rescued using reverse genetics. The requirement of each expression plasmid and capping of RNA transcripts for reverse genetics were studied and compared for BTV and AHSV. BTV was recovered by transfection of VP1 and NS2 expression plasmids followed by transfection of a set of ten capped RNAs. VP3 expression plasmid was also required if uncapped RNAs were transfected. Recovery of AHSV required transfection of VP1, VP3 and NS2 expression plasmids followed by transfection of capped RNA transcripts. Plasmid-driven expression of VP4, 6 and 7 was also needed when uncapped RNA transcripts were used. Irrespective of capping of RNA transcripts, NS1 expression plasmid was not needed for recovery, although NS1 protein is essential for virus propagation. Improvement of reverse genetics for AHSV was clearly demonstrated by rescue of several mutants and reassortants that were not rescued with previous methods. CONCLUSIONS A limited number of expression plasmids is required for rescue of BTV or AHSV using reverse genetics, making the system much more versatile and generally applicable. Optimization of reverse genetics enlarge the possibilities to rescue virus mutants and reassortants, and will greatly benefit the control of these important diseases of livestock and companion animals.
Collapse
Affiliation(s)
- Piet A van Rijn
- Department of Virology, Central Veterinary Institute of Wageningen UR (CVI), P.O. Box 65, Lelystad, 8200 AB, The Netherlands. .,Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa.
| | - Sandra G P van de Water
- Department of Virology, Central Veterinary Institute of Wageningen UR (CVI), P.O. Box 65, Lelystad, 8200 AB, The Netherlands
| | - Femke Feenstra
- Department of Virology, Central Veterinary Institute of Wageningen UR (CVI), P.O. Box 65, Lelystad, 8200 AB, The Netherlands.,Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - René G P van Gennip
- Department of Virology, Central Veterinary Institute of Wageningen UR (CVI), P.O. Box 65, Lelystad, 8200 AB, The Netherlands
| |
Collapse
|
36
|
Makoschey B, van Kilsdonk E, Hubers WR, Vrijenhoek MP, Smit M, Wichgers Schreur PJ, Kortekaas J, Moulin V. Rift Valley Fever Vaccine Virus Clone 13 Is Able to Cross the Ovine Placental Barrier Associated with Foetal Infections, Malformations, and Stillbirths. PLoS Negl Trop Dis 2016; 10:e0004550. [PMID: 27031621 PMCID: PMC4816553 DOI: 10.1371/journal.pntd.0004550] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/24/2016] [Indexed: 11/18/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne pathogen that affects domesticated ruminants and occasionally humans. Classical RVF vaccines are based on formalin-inactivated virus or the live-attenuated Smithburn strain. The inactivated vaccine is highly safe but requires multiple administrations and yearly re-vaccinations. Although the Smithburn vaccine provides solid protection after a single vaccination, this vaccine is not safe for pregnant animals. An alternative live-attenuated vaccine, named Clone 13, carries a large natural deletion in the NSs gene which encodes the major virulence factor of the virus. The Clone 13 vaccine was previously shown to be safe for young lambs and calves. Moreover, a study in pregnant ewes suggested that the vaccine could also be applied safely during gestation. To anticipate on a possible future incursion of RVFV in Europe, we have evaluated the safety of Clone 13 for young lambs and pregnant ewes. In line with the guidelines from the World Organisation for Animal health (Office International des Epizooties, OIE) and regulations of the European Pharmacopeia (EP), these studies were performed with an overdose. Our studies with lambs showed that Clone 13 dissemination within vaccinated animals is very limited. Moreover, the Clone 13 vaccine virus was not shed nor spread to in-contact sentinels and did not revert to virulence upon animal-to-animal passage. Importantly, a large experiment with pregnant ewes demonstrated that the Clone 13 virus is able to spread to the fetus, resulting in malformations and stillbirths. Altogether, our results suggest that Clone 13 can be applied safely in lambs, but that caution should be taken when Clone 13 is used in pregnant animals, particularly during the first trimester of gestation.
Collapse
Affiliation(s)
- Birgit Makoschey
- Intervet International BV/Merck Sharp and Dohme (MSD) Animal Health, Boxmeer, The Netherlands
- * E-mail:
| | - Emma van Kilsdonk
- Intervet International BV/Merck Sharp and Dohme (MSD) Animal Health, Boxmeer, The Netherlands
| | - Willem R. Hubers
- Intervet International BV/Merck Sharp and Dohme (MSD) Animal Health, Boxmeer, The Netherlands
| | - Mieke P. Vrijenhoek
- Intervet International BV/Merck Sharp and Dohme (MSD) Animal Health, Boxmeer, The Netherlands
| | - Marianne Smit
- Intervet International BV/Merck Sharp and Dohme (MSD) Animal Health, Boxmeer, The Netherlands
| | - Paul J. Wichgers Schreur
- Department of Virology, Central Veterinary Institute, Wageningen University and Research Centre, Lelystad, The Netherlands
| | - Jeroen Kortekaas
- Department of Virology, Central Veterinary Institute, Wageningen University and Research Centre, Lelystad, The Netherlands
| | - Véronique Moulin
- Intervet International BV/Merck Sharp and Dohme (MSD) Animal Health, Boxmeer, The Netherlands
| |
Collapse
|
37
|
Rádrová J, Mračková M, Galková Z, Lamka J, Račka K, Barták P, Votýpka J. Seasonal Dynamics, Parity Rate, and Composition of Culicoides (Diptera: Ceratopogonidae) Occurring in the Vicinity of Wild and Domestic Ruminants in the Czech Republic. JOURNAL OF MEDICAL ENTOMOLOGY 2016; 53:416-424. [PMID: 26701798 DOI: 10.1093/jme/tjv197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In the light of the emergence of bluetongue and Schmallenberg viruses in northern and central Europe, an extensive entomological survey within the framework of a bluetongue control program was undertaken from 2008 to 2013 in the Czech Republic to investigate Culicoides biting midges (Diptera: Ceratopogonidae) collected in close proximity of domestic livestock and semiwild ruminants. Insects were sampled using CDC black-light suction traps placed overnight near ruminants in farms or in forest game preserves to provide data on Culicoides fauna collected near these two groups of hosts inhabiting different environments. From almost a half million biting midge specimens collected at 41 sampling sites, 34 species were identified including three species newly recorded for the Czech Republic: Culicoides (Oecacta) clastrieri Callot, Kremer & Deduit, Culicoides (Oecacta) odiatus Austen, and Culicoides (Pontoculicoides) saevus Kieffer. The Culicoides obsoletus species group, incriminated as a bluetongue virus vector, was predominant in both domestic livestock (91%) and semiwild game (52%). A relatively high proportion (around 30%) of C. obsoletus Meigen females with pigmented abdomen (= more likely parous) was observed from spring till autumn. In contrast, adult biting midges were found to be largely absent during at least three winter months, approximately December till March, which could be considered as the biting midge vector-free period.
Collapse
|
38
|
Schulz C, Ziller M, Kampen H, Gauly M, Beer M, Grevelding CG, Hoffmann B, Bauer C, Werner D. Culicoides vector species on three South American camelid farms seropositive for bluetongue virus serotype 8 in Germany 2008/2009. Vet Parasitol 2015; 214:272-81. [PMID: 26489592 DOI: 10.1016/j.vetpar.2015.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 09/07/2015] [Accepted: 09/21/2015] [Indexed: 11/16/2022]
Abstract
Palearctic species of Culicoides (Diptera, Ceratopogonidae), in particular of the Obsoletus and Pulicaris complexes, were identified as putative vectors of bluetongue virus serotype 8 (BTV-8) on ruminant farms during the epizootic in Germany from 2006 to 2009. BTV may cause severe morbidity and mortality in ruminants and sporadically in South American camelids (SAC). However, the fauna of Culicoides spp. on SAC farms has not been investigated. Therefore, the ceratopogonid fauna was monitored on three farms with BTV-seropositive SAC in Germany. Black-light traps were set up on pastures and in stables from summer 2008 to autumn 2009. Additionally, ceratopogonids were caught in emergence traps mounted on llama dung and dung-free pasture from spring to autumn 2009. After morphological identification, selected Culicoides samples were analysed for BTV-RNA by real-time RT-PCR. The effects of the variables 'location', 'temperature' and 'humidity' on the number of Culicoides caught in black-light traps were modelled using multivariable Poisson regression. In total, 26 species of Culicoides and six other genera of biting midges were identified. The most abundant Culicoides spp. collected both outdoors and indoors with black-light traps belonged to the Obsoletus (77.4%) and Pulicaris (16.0%) complexes. The number of Culicoides peaked in summer, while no biting midges were caught during the winter months. Daily collections of Culicoides were mainly influenced by the location and depended on the interaction of temperature and humidity. In the emergence traps, species of the Obsoletus complex predominated the collections. In summary, the absence of BTV-RNA in any of the analysed Culicoides midges and in the BTV-seropositive SAC on the three farms together with the differences in the pathogenesis of BTV-8 in SAC compared to ruminants suggests a negligible role of SAC in the spread of the virus. Although SAC farms may provide similar suitable habitats for putative Culicoides vectors than ruminant farms, the results suggest that geographic and meteorological factors had a stronger influence on Culicoides abundance than the animal species.
Collapse
Affiliation(s)
- Claudia Schulz
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany; BFS, Institute of Parasitology, Justus Liebig University Giessen, Schubertstr. 81, 35392 Giessen, Germany
| | - Mario Ziller
- Workgroup Biomathematics, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Helge Kampen
- Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Matthias Gauly
- Department of Animal Science, Livestock Production Group, Georg August University Göttingen, Albrecht-Thaer-Weg 3, 37075 Göttingen, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Christoph G Grevelding
- BFS, Institute of Parasitology, Justus Liebig University Giessen, Schubertstr. 81, 35392 Giessen, Germany
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Christian Bauer
- BFS, Institute of Parasitology, Justus Liebig University Giessen, Schubertstr. 81, 35392 Giessen, Germany
| | - Doreen Werner
- Leibniz Centre for Agricultural Landscape Research, Eberswalder Str. 84, 15374 Müncheberg, Germany.
| |
Collapse
|
39
|
Elbers ARW, Meiswinkel R. Culicoides (Diptera: Ceratopogonidae) and livestock in the Netherlands: comparing host preference and attack rates on a Shetland pony, a dairy cow, and a sheep. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2015; 40:308-317. [PMID: 26611966 DOI: 10.1111/jvec.12169] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/25/2015] [Indexed: 06/05/2023]
Abstract
Culicoides (Diptera: Ceratopogonidae) host preferences and attack rates were quantified in early summer at a dairy farm in the Netherlands using livestock tethered at pasture. Midges were aspirated hourly over seven consecutive hours (17:00-23:00) from a dairy cow, a Shetland pony, and a sheep and correspondingly yielded seventeen, thirteen, and nine species. Of the 14,181 midges obtained, approximately 95% belonged to the C. obsoletus complex, C. dewulfi, C. chiopterus, and C. punctatus that together include all proven or potential vectors for arboviral diseases in livestock in northwestern Europe. On average, 7.6 and 3.5 times more Culicoides were collected, respectively, from the cow and the Shetland pony than from the sheep. In descending order of abundance, the C. obsoletus complex, C. dewulfi, and C. chiopterus dominated attacks on all three hosts, whereas C. punctatus and C. pulicaris favored only the two larger hosts. Irrespective of the host species involved, the three body regions attracted the same component species, C. chiopterus favoring the legs, C. punctatus and C. achrayi the belly, and the C. obsoletus complex, C. dewulfi, and C. pulicaris the head, back, and flanks. That known and potential vectors for animal diseases feed indiscriminately on a broad range of mammal hosts means that all major livestock species, including equines, are rendered susceptible to one or more Culicoides-borne pathogens.
Collapse
Affiliation(s)
- A R W Elbers
- Department of Epidemiology, Crisis Organization and Diagnostics, Central Veterinary Institute (CVI) part of Wageningen UR, P.O. Box 65, NL-8200AB Lelystad, the Netherlands.
| | - R Meiswinkel
- Via Pratarone 14, Rocca di Cave, Roma 00030, Italy
| |
Collapse
|
40
|
Tacken MGJ, Daus FJ, Feenstra F, van Gennip RGP, van Rijn PA. Development of a competitive ELISA for NS3 antibodies as DIVA test accompanying the novel Disabled Infectious Single Animal (DISA) vaccine for Bluetongue. Vaccine 2015; 33:5539-5545. [PMID: 26387435 DOI: 10.1016/j.vaccine.2015.09.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 09/04/2015] [Accepted: 09/05/2015] [Indexed: 10/23/2022]
Abstract
Recently, we have developed a novel vaccine for Bluetongue named BT Disabled Infectious Single Animal (DISA) vaccine. Due to the lack of non-essential NS3/NS3a protein, BT DISA vaccine is a replicating vaccine, but without the inherent risks of live-attenuated vaccines, such as residual virulence or reversion to virulence by mutations, reassortment with field virus, horizontal spread by vectors and vertical transmission. The immune response induced by BT DISA vaccines is rapidly induced, highly protective and serotype specific which is dependent on the immunodominant and serotype determining VP2 protein. The BT DISA vaccine platform provides the replacement of exclusively VP2 from different serotypes in order to safely formulate multivalent cocktail vaccines. The lack of NS3/NS3a directed antibodies by BT DISA vaccination enables differentiation of infected from vaccinated animals (DIVA principle). A highly conserved immunogenic site corresponding to the late domain was mapped in the N-terminal region of NS3. We here established an NS3-specific competitive ELISA (NS3 cELISA) as serological DIVA test accompanying BT DISA vaccines. To this end, NS3 protein missing putative transmembrane regions was produced in large amounts in bacteria and used as antigen in the NS3 cELISA which was investigated with a variety of sera. The NS3 cELISA displayed a high sensitivity and specificity similar to the commercially available VP7-specific cELISA. Results of previously performed vaccination-challenge trials with BT DISA vaccines clearly demonstrate the DIVA system based on the NS3 cELISA and BT vaccine free of NS3 protein.
Collapse
Affiliation(s)
- Mirriam G J Tacken
- Department of Virology, Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands
| | - Franz J Daus
- Department of Virology, Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands
| | - Femke Feenstra
- Department of Virology, Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands; Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - René G P van Gennip
- Department of Virology, Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands
| | - Piet A van Rijn
- Department of Virology, Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands; Department of Biochemistry, Centre for Human Metabonomics, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
41
|
Feenstra F, Drolet BS, Boonstra J, van Rijn PA. Non-structural protein NS3/NS3a is required for propagation of bluetongue virus in Culicoides sonorensis. Parasit Vectors 2015; 8:476. [PMID: 26383094 PMCID: PMC4573936 DOI: 10.1186/s13071-015-1063-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/01/2015] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Bluetongue virus (BTV) causes non-contagious haemorrhagic disease in ruminants and is transmitted by Culicoides spp. biting midges. BTV encodes four non-structural proteins of which NS3/NS3a is functional in virus release. NS3/NS3a is not essential for in vitro virus replication. However, deletion of NS3/NS3a leads to delayed virus release from mammalian cells and largely reduces virus release from insect cells. NS3/NS3a knockout BTV in sheep causes no viremia, but induces sterile immunity and is therefore proposed to be a Disabled Infectious Single Animal (DISA) vaccine candidate. In the absence of viremia, uptake of this vaccine strain by blood-feeding midges would be highly unlikely. Nevertheless, unintended replication of vaccine strains within vectors, and subsequent recombination or re-assortment resulting in virulent phenotypes and transmission is a safety concern of modified-live vaccines. METHODS The role of NS3/NS3a in replication and dissemination of BTV1, expressing VP2 of serotype 2 within colonized Culicoides sonorensis midges was investigated. Virus strains were generated using reverse genetics and their growth was examined in vitro. A laboratory colony of C. sonorensis, a known competent BTV vector, was fed or injected with BTV with or without expressing NS3/NS3a and replication in the midge was examined using RT PCR. Crossing of the midgut infection barrier was examined by separate testing of midge heads and bodies. RESULTS Although the parental NS3/NS3a expressing strain was not able to replicate and disseminate within C. sonorensis after oral feeding, this virus was able to replicate efficiently when the midgut infection barrier was bypassed by intrathoracic injection, whereas the NS3/NS3a knockout mutant was unable to replicate. This demonstrates that NS3/NS3a is required for viral replication within Culicoides. CONCLUSION The lack of viremia and the inability to replicate within the vector, clearly demonstrate the inability of NS3/NS3a knockout DISA vaccine strains to be transmitted by midges.
Collapse
Affiliation(s)
- Femke Feenstra
- Department of Virology, Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands.,Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Barbara S Drolet
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, U. S. Department of Agriculture, Manhattan, KS, USA
| | - Jan Boonstra
- Department of Virology, Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands
| | - Piet A van Rijn
- Department of Virology, Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands. .,Department of Biochemistry, Centre for Human Metabonomics, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
42
|
DE Regge N, DE Deken R, Fassotte C, Losson B, Deblauwe I, Madder M, Vantieghem P, Tomme M, Smeets F, Cay AB. Culicoides monitoring in Belgium in 2011: analysis of spatiotemporal abundance, species diversity and Schmallenberg virus detection. MEDICAL AND VETERINARY ENTOMOLOGY 2015; 29:263-275. [PMID: 25761054 DOI: 10.1111/mve.12109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 11/27/2014] [Accepted: 12/04/2014] [Indexed: 06/04/2023]
Abstract
In 2011, Culicoides (Diptera: Ceratopogonidae) were collected at 16 locations covering four regions of Belgium with Onderstepoort Veterinary Institute (OVI) traps and at two locations with Rothamsted suction traps (RSTs). Quantification of the collections and morphological identification showed important variations in abundance and species diversity between individual collection sites, even for sites located in the same region. However, consistently higher numbers of Culicoides midges were collected at some sites compared with others. When species abundance and diversity were analysed at regional level, between-site variation disappeared. Overall, species belonging to the subgenus Avaritia together with Culicoides pulicaris (subgenus Culicoides) were the most abundant, accounting for 80% and 96% of all midges collected with RSTs and OVI traps, respectively. Culicoides were present during most of the year, with Culicoides obsoletus complex midges found from 9 February until 27 December. Real-time reverse-transcription polymerase chain reaction screening for Schmallenberg virus in the heads of collected midges resulted in the first detection of the virus in August 2011 and identified C. obsoletus complex, Culicoides chiopterus and Culicoides dewulfi midges as putative vector species. At Libramont in the south of Belgium, no positive pools were identified.
Collapse
Affiliation(s)
- N DE Regge
- Operational Direction Viral Diseases, Veterinary and Agrochemical Research Centre (CODA-CERVA), Brussels, Belgium
| | - R DE Deken
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - C Fassotte
- Plant Protection and Ecotoxicology, Life Science Department, Walloon Agricultural Research Centre (CRA-W), Gembloux, Belgium
| | - B Losson
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - I Deblauwe
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - M Madder
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - P Vantieghem
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - M Tomme
- Plant Protection and Ecotoxicology, Life Science Department, Walloon Agricultural Research Centre (CRA-W), Gembloux, Belgium
| | - F Smeets
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - A B Cay
- Operational Direction Viral Diseases, Veterinary and Agrochemical Research Centre (CODA-CERVA), Brussels, Belgium
| |
Collapse
|
43
|
Kyriakis CS, Billinis C, Papadopoulos E, Vasileiou NGC, Athanasiou LV, Fthenakis GC. Bluetongue in small ruminants: An opinionated review, with a brief appraisal of the 2014 outbreak of the disease in Greece and the south-east Europe. Vet Microbiol 2015; 181:66-74. [PMID: 26304745 DOI: 10.1016/j.vetmic.2015.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bluetongue is an arthropod-borne viral disease of ruminants, especially of sheep, caused by Bluetongue virus, which belongs to the genus Orbivirus of the family Reoviridae and is classified into 26 antigenically distinct serotypes. Once thought to be restricted in Africa and parts of the Middle East, bluetongue has now become a concern in sheep-rearing countries around the world. In the past 10 years, severe outbreaks have occurred in Europe with important economic consequences; of these, the 2006-20008 outbreak in Europe was caused by a serotype 8 strain and the 2014 outbreak in Greece and the other countries of south-east Europe was caused by a serotype 4 strain, suggested to be a reassortant strain with genome segments from lineages of serotype 1, 2 and 4. Immunisation campaigns can be implemented for successful control and limiting of the disease. Nevertheless, in both of the above outbreaks, late application of vaccinations led to a wide spread of the disease, which subsequently resulted in significant losses in livestock in the affected regions. In view of that, standardisation of control measures in the future will be beneficial for efficiently limiting outbreaks of the disease.
Collapse
Affiliation(s)
- C S Kyriakis
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| | - C Billinis
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece
| | - E Papadopoulos
- School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - N G C Vasileiou
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece
| | - L V Athanasiou
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece
| | - G C Fthenakis
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece
| |
Collapse
|
44
|
Orientation behaviour of Culicoides obsoletus (Diptera: Ceratopogonidae), a relevant virus vector in northern Europe, toward host-associated odorant cues. Vet Parasitol 2015; 211:274-82. [DOI: 10.1016/j.vetpar.2015.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 11/15/2022]
|
45
|
VP2 Exchange and NS3/NS3a Deletion in African Horse Sickness Virus (AHSV) in Development of Disabled Infectious Single Animal Vaccine Candidates for AHSV. J Virol 2015; 89:8764-72. [PMID: 26063433 PMCID: PMC4524073 DOI: 10.1128/jvi.01052-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/04/2015] [Indexed: 01/07/2023] Open
Abstract
African horse sickness virus (AHSV) is a virus species in the genus Orbivirus of the family Reoviridae. There are nine serotypes of AHSV showing different levels of cross neutralization. AHSV is transmitted by species of Culicoides biting midges and causes African horse sickness (AHS) in equids, with a mortality rate of up to 95% in naive horses. AHS has become a serious threat for countries outside Africa, since endemic Culicoides species in moderate climates appear to be competent vectors for the related bluetongue virus (BTV). To control AHS, live-attenuated vaccines (LAVs) are used in Africa. We used reverse genetics to generate “synthetic” reassortants of AHSV for all nine serotypes by exchange of genome segment 2 (Seg-2). This segment encodes VP2, which is the serotype-determining protein and the dominant target for neutralizing antibodies. Single Seg-2 AHSV reassortants showed similar cytopathogenic effects in mammalian cells but displayed different growth kinetics. Reverse genetics for AHSV was also used to study Seg-10 expressing NS3/NS3a proteins. We demonstrated that NS3/NS3a proteins are not essential for AHSV replication in vitro. NS3/NS3a of AHSV is, however, involved in the cytopathogenic effect in mammalian cells and is very important for virus release from cultured insect cells in particular. Similar to the concept of the bluetongue disabled infectious single animal (BT DISA) vaccine platform, an AHS DISA vaccine platform lacking NS3/NS3a expression was developed. Using exchange of genome segment 2 encoding VP2 protein (Seg-2[VP2]), we will be able to develop AHS DISA vaccine candidates for all current AHSV serotypes. IMPORTANCE African horse sickness virus is transmitted by species of Culicoides biting midges and causes African horse sickness in equids, with a mortality rate of up to 95% in naive horses. African horse sickness has become a serious threat for countries outside Africa, since endemic Culicoides species in moderate climates are supposed to be competent vectors. By using reverse genetics, viruses of all nine serotypes were constructed by the exchange of Seg-2 expressing the serotype-determining VP2 protein. Furthermore, we demonstrated that the nonstructural protein NS3/NS3a is not essential for virus replication in vitro. However, the potential spread of the virus by biting midges is supposed to be blocked, since the in vitro release of the virus was strongly reduced due to this deletion. VP2 exchange and NS3/NS3a deletion in African horse sickness virus were combined in the concept of a disabled infectious single animal vaccine for all nine serotypes.
Collapse
|
46
|
Fall M, Fall AG, Seck MT, Bouyer J, Diarra M, Balenghien T, Garros C, Bakhoum MT, Faye O, Baldet T, Gimonneau G. Circadian activity of Culicoides oxystoma (Diptera: Ceratopogonidae), potential vector of bluetongue and African horse sickness viruses in the Niayes area, Senegal. Parasitol Res 2015; 114:3151-8. [PMID: 26002826 PMCID: PMC4513201 DOI: 10.1007/s00436-015-4534-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/06/2015] [Indexed: 10/31/2022]
Abstract
Culicoides biting midges (Diptera: Ceratopogonidae) are important vectors of arboviruses in Africa. Culicoides oxystoma has been recently recorded in the Niayes region of Senegal (West Africa) and its high abundance on horses suggests a potential implication in the transmission of the African horse sickness virus in this region. This species is also suspected to transmit bluetongue virus to imported breeds of sheep. Little information is available on the biology and ecology of Culicoides in Africa. Therefore, understanding the circadian host-seeking activity of this putative vector is of primary importance to assess the risk of the transmission of Culicoides-borne pathogens. To achieve this objective, midges were collected using a sheep-baited trap over two consecutive 24-h periods during four seasons in 2012. A total of 441 Culicoides, belonging to nine species including 418 (94.8%) specimens of C. oxystoma, were collected. C. oxystoma presented a bimodal circadian host-seeking activity at sunrise and sunset in July and was active 3 h after sunrise in April. Daily activity appeared mainly related to time periods. Morning activity increased with the increasing temperature up to about 27 °C and then decreased with the decreasing humidity, suggesting thermal limits for C. oxystoma activity. Evening activity increased with the increasing humidity and the decreasing temperature, comprised between 20 and 27 °C according to seasons. Interestingly, males were more abundant in our sampling sessions, with similar activity periods than females, suggesting potential animal host implication in the facilitation of reproduction. Finally, the low number of C. oxystoma collected render practical vector-control recommendations difficult to provide and highlight the lack of knowledge on the bio-ecology of this species of veterinary interest.
Collapse
Affiliation(s)
- Moussa Fall
- Institut Sénégalais de Recherches Agricoles, Laboratoire National de l'Elevage et de Recherches Vétérinaires, Route du Front de Terre, BP 2057, Dakar, Senegal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Robin M, Archer D, McGowan C, Garros C, Gardès L, Baylis M. Repellent effect of topical deltamethrin on blood feeding by Culicoides on horses. Vet Rec 2015; 176:574. [PMID: 25948630 DOI: 10.1136/vr.102800] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2015] [Indexed: 11/04/2022]
Abstract
African horse sickness (AHS) is a vectorborne disease spread by Culicoides biting midges. The UK's Department for Environment, Food and Rural Affairs currently suggests using topical deltamethrin for AHS control; however, no data are available regarding its efficacy in the horse. The aims of this study were to investigate the effect of topical deltamethrin on blood feeding by Culicoides on horses and to investigate which Culicoides species blood fed on horses. Three pairs of horses were placed in partially enclosed cages that allowed samples representing the Culicoides interacting with individual horses to be sampled. Four data collection sessions were completed before one horse from each pair was topically treated with 10 ml of 1 per cent deltamethrin solution and another four sessions were then carried out. Collected Culicoides were identified and each biting midge examined to see if it had blood fed. The most abundant species collected were C. chiopterus, C. dewulfi, C. obsoletus and C. scoticus (44.3 per cent) and either C. pulicaris or C. punctatus (34.7 per cent). These species were also more likely to have blood fed than other species, supporting their potential role as AHS vectors if the virus were to reach the UK. There was no significant effect of treatment on blood feeding by Culicoides. The results do not support the use of topical deltamethrin to prevent blood feeding by Culicoides on individual horses; however, the study does not investigate the effect that the widespread use of topical deltamethrin might have on vector numbers or disease transmission from viraemic individuals during an outbreak of AHS.
Collapse
Affiliation(s)
- M Robin
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Leahurst, Chester High Road, Neston, Cheshire CH64 7TE, UK
| | - D Archer
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Leahurst, Chester High Road, Neston, Cheshire CH64 7TE, UK
| | - C McGowan
- Faculty of Health and Life Sciences, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst, Chester High Road, Neston, Cheshire CH64 7TE, UK
| | - C Garros
- Cirad, UMR15 CMAEE, INRA UMR1309 CMAEE, Montpellier, France
| | - L Gardès
- Cirad, UMR15 CMAEE, INRA UMR1309 CMAEE, Montpellier, France
| | - M Baylis
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Leahurst, Chester High Road, Neston, Cheshire CH64 7TE, UK NIHR Health Protection Research Unit, Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
| |
Collapse
|
48
|
Pinior B, Brugger K, Köfer J, Schwermer H, Stockreiter S, Loitsch A, Rubel F. Economic comparison of the monitoring programmes for bluetongue vectors in Austria and Switzerland. Vet Rec 2015; 176:464. [PMID: 25841165 PMCID: PMC4431321 DOI: 10.1136/vr.102979] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2015] [Indexed: 11/09/2022]
Abstract
With the bluetongue virus serotype 8 (BTV-8) outbreak in 2006, vector monitoring programmes (according to EU regulation 1266/2007) were implemented by European countries to obtain information on the spatial distribution of vectors and the vector-free period. This study investigates the vector monitoring programmes in Austria and Switzerland by performing a retrospective cost analysis for the period 2006–2010. Two types of costs were distinguished: costs financed directly via the national bluetongue programmes and costs contributed in-kind by the responsible institutions and agricultural holdings. The total net costs of the monitoring programme in Austria amounted to €1,415,000, whereby in Switzerland the costs were valued at €94,000. Both countries followed the legislation complying with requirements, but differed in regard to sampling frequency, number of trap sites and sampling strategy. Furthermore, the surface area of Austria is twice the area of Switzerland although the number of ruminants is almost the same in both countries. Thus, for comparison, the costs were normalised with regard to the sampling frequency and the number of trap sites. Resulting costs per trap sample comprised €164 for Austria and €48 for Switzerland. In both countries, around 50 per cent of the total costs can be attributed to payments in-kind. The benefit of this study is twofold: first, veterinary authorities may use the results to improve the economic efficiency of future vector monitoring programmes. Second, the analysis of the payment in-kind contribution is of great importance to public authorities as it makes the available resources visible and demonstrates how they have been used.
Collapse
Affiliation(s)
- B Pinior
- University of Veterinary Medicine Vienna, Institute for Veterinary Public Health, Veterinärplatz 1, Vienna 1210, Austria
| | - K Brugger
- University of Veterinary Medicine Vienna, Institute for Veterinary Public Health, Veterinärplatz 1, Vienna 1210, Austria
| | - J Köfer
- University of Veterinary Medicine Vienna, Institute for Veterinary Public Health, Veterinärplatz 1, Vienna 1210, Austria
| | - H Schwermer
- Federal Food Safety and Veterinary Office, Schwarzenburgstrasse 155, Bern 3003, Switzerland
| | - S Stockreiter
- Federal Ministry of Health, Radetzkystraße 2, Vienna 1030, Austria
| | - A Loitsch
- Institute for Veterinary Disease Control Mödling, Austrian Agency for Health and Food Safety, Robert Koch-Gasse 17, Mödling 2340, Austria
| | - F Rubel
- University of Veterinary Medicine Vienna, Institute for Veterinary Public Health, Veterinärplatz 1, Vienna 1210, Austria
| |
Collapse
|
49
|
Slama D, Haouas N, Mezhoud H, Babba H, Chaker E. Blood meal analysis of culicoides (Diptera: ceratopogonidae) in central Tunisia. PLoS One 2015; 10:e0120528. [PMID: 25793285 PMCID: PMC4368833 DOI: 10.1371/journal.pone.0120528] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/23/2015] [Indexed: 11/27/2022] Open
Abstract
To evaluate the host preferences of Culicoides species (Diptera: Ceratopogonidae) in Central Tunisia, we identified the source of blood meals of field collected specimens by sequencing of the cytochrome b (cyt b) mitochondrial locus and Prepronociceptine single copy nuclear gene. The study includes the most common and abundant livestock associated species of biting midges in Tunisia: C. imicola, C. jumineri, C. newsteadi, C. paolae, C. cataneii, C. circumscriptus, C. kingi, C. pseudojumineri, C. submaritimus, C. langeroni, C. jumineri var and some unidentified C. species. Analysis of cyt b PCR products from 182 field collected blood-engorged females' midges revealed that 92% of them fed solely on mammalian species, 1.6% on birds, 2.4% on insects and 0.8% on reptiles. The blast results identified the blood origin of biting midges to the species level with exact or nearly exact matches (≥98%). The results confirm the presence of several Culicoides species, including proven vectors in Central Tunisia. Blood meal analyses show that these species will indeed feed on bigger mammals, thereby highlighting the risk that these viruses will be able to spread in Tunisia.
Collapse
Affiliation(s)
- Darine Slama
- Department of Clinical Biology B, Laboratory of Parasitology-Mycology Medical and Molecular, University of Monastir, Monastir, Tunisia
| | - Najoua Haouas
- Department of Clinical Biology B, Laboratory of Parasitology-Mycology Medical and Molecular, University of Monastir, Monastir, Tunisia
| | - Habib Mezhoud
- Department of Clinical Biology B, Laboratory of Parasitology-Mycology Medical and Molecular, University of Monastir, Monastir, Tunisia
| | - Hamouda Babba
- Department of Clinical Biology B, Laboratory of Parasitology-Mycology Medical and Molecular, University of Monastir, Monastir, Tunisia
- Laboratory of the Maternity and Neonatology centre of Monastir, Monastir, Tunisia
| | - Emna Chaker
- Department of Clinical Biology B, Laboratory of Parasitology-Mycology Medical and Molecular, University of Monastir, Monastir, Tunisia
| |
Collapse
|
50
|
Meiswinkel R, De Bree F, Bossers-De Vries R, Elbers ARW. An unrecognized species of the Culicoides obsoletus complex feeding on livestock in The Netherlands. Vet Parasitol 2014; 207:324-8. [PMID: 25583356 DOI: 10.1016/j.vetpar.2014.12.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/17/2014] [Accepted: 12/22/2014] [Indexed: 01/14/2023]
Abstract
In studies on Culicoides attacking livestock in the Netherlands, we chanced upon a species of the Obsoletus complex that we do not recognize, but whose dark wing pattern is distinctive. Nine cytochrome c oxidase (CO1) sequences of our so-called 'dark obsoletus' support its status as a separate species, the sequences differing significantly from those representing Culicoides obsoletus (Meigen) (90-91% homology) and Culicoides scoticus Downes & Kettle (87-88% homology). In the last decade, several research groups in Europe have encountered 'mystery species' related to C. obsoletus and in some instances have made their sequences for various genetic loci available in GenBank. These include a CO1 series submitted from Sweden in 2012 (annotated as 'obsoletus 01, 02, or 03 MA-2012') and of which some share a 99% identity with our sequences for 'dark obsoletus'. Without doubt, the series from the Netherlands, along with a portion of the Swedish submissions, together represent a single species ('dark obsoletus'). Whether this species is referable to the Russian Culicoides gornostaevae Mirzaeva recorded recently from Norway, Sweden and Poland, and based solely upon the external morphology of the male, is not clear. The presence in Western Europe of multiple undescribed species related to C. obsoletus means that the taxonomy of this important vector complex is not fully resolved; consequently, we know little about these cryptic species with regard to seasonality, geographic range and host preference. This is undesirable given that Culicoides-borne arboviruses causing disease in livestock are moving more regularly out of the tropics and spreading north into temperate latitudes.
Collapse
Affiliation(s)
- R Meiswinkel
- Santa Maria del Monte, Via Pratarone 14, Rocca di Cave, 00030 Roma, Italy
| | - F De Bree
- Applied Bioinformatics, Central Veterinary Institute, part of Wageningen UR, P.O. Box 65, 8200 AB, Lelystad, the Netherlands
| | - R Bossers-De Vries
- Infection Biology, Central Veterinary Institute, part of Wageningen UR, P.O. Box 65, 8200 AB, Lelystad, the Netherlands
| | - A R W Elbers
- Dept Epidemiology, Crisis Organization and Diagnostics, Central Veterinary Institute, part of Wageningen UR, P.O. Box 65, 8200 AB, Lelystad, the Netherlands.
| |
Collapse
|