1
|
Zhu L, Guo M, Li K, Guo C, He K. The Association and Prognostic Implications of Long Non-Coding RNAs in Major Psychiatric Disorders, Alzheimer's Diseases and Parkinson's Diseases: A Systematic Review. Int J Mol Sci 2024; 25:10995. [PMID: 39456775 PMCID: PMC11507000 DOI: 10.3390/ijms252010995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The prevalence of psychiatric disorders and neurodegenerative diseases is steadily increasing, placing a significant burden on both society and individuals. Given the intricate and multifaceted nature of these diseases, the precise underlying mechanisms remain elusive. Consequently, there is an increasing imperative to investigate the mechanisms, identify specific target sites for effective treatment, and provide for accurate diagnosis of patients with these diseases. Numerous studies have revealed significant alterations in the expression of long non-coding RNAs (lncRNAs) in psychiatric disorders and neurodegenerative diseases, suggesting their potential to increase the probability of these diseases. Moreover, these findings propose that lncRNAs could be used as highly valuable biomarkers in diagnosing and treating these diseases, thereby offering novel insights for future clinical interventions. The review presents a comprehensive summary of the origin, biological functions, and action mechanisms of lncRNAs, while exploring their implications in the pathogenesis of psychiatric disorders and neurodegenerative diseases and their potential utility as biomarkers.
Collapse
Affiliation(s)
- Lin Zhu
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao 028000, China; (L.Z.); (K.L.); (C.G.)
| | - Meng Guo
- Finance Office, Inner Mongolia Minzu University, Tongliao 028000, China;
| | - Ke Li
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao 028000, China; (L.Z.); (K.L.); (C.G.)
| | - Chuang Guo
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao 028000, China; (L.Z.); (K.L.); (C.G.)
| | - Kuanjun He
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao 028000, China; (L.Z.); (K.L.); (C.G.)
| |
Collapse
|
2
|
Hostalet N, González A, Salgado-Pineda P, Gonzàlez-Colom R, Canales-Rodríguez EJ, Aguirre C, Guerrero-Pedraza A, Llanos-Torres M, Salvador R, Pomarol-Clotet E, Sevillano X, Martínez-Abadías N, Fatjó-Vilas M. Face-brain correlates as potential sex-specific biomarkers for schizophrenia and bipolar disorder. Psychiatry Res 2024; 339:116027. [PMID: 38954892 DOI: 10.1016/j.psychres.2024.116027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/13/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024]
Abstract
Given the shared ectodermal origin and integrated development of the face and the brain, facial biomarkers emerge as potential candidates to assess vulnerability for disorders in which neurodevelopment is compromised, such as schizophrenia (SZ) and bipolar disorder (BD). The sample comprised 188 individuals (67 SZ patients, 46 BD patients and 75 healthy controls (HC)). Using a landmark-based approach on 3D facial reconstructions, we quantified global and local facial shape differences between SZ/BD patients and HC using geometric morphometrics. We also assessed correlations between facial and brain cortical measures. All analyses were performed separately by sex. Diagnosis explained 4.1 % - 5.9 % of global facial shape variance in males and females with SZ, and 4.5 % - 4.1 % in BD. Regarding local facial shape, we detected 43.2 % of significantly different distances in males and 47.4 % in females with SZ as compared to HC, whereas in BD the percentages decreased to 35.8 % and 26.8 %, respectively. We detected that brain area and volume significantly explained 2.2 % and 2 % of facial shape variance in the male SZ - HC sample. Our results support facial shape as a neurodevelopmental marker for SZ and BD and reveal sex-specific pathophysiological mechanisms modulating the interplay between the brain and the face.
Collapse
Affiliation(s)
- Noemí Hostalet
- FIDMAG, Germanes Hospitalàries Research Foundation, Barcelona, Spain; Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona (UB), Spain; CIBERSAM, Biomedical Research Network in Mental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandro González
- HER - Human-Environment Research Group, La Salle, Universitat Ramon Llull, Spain
| | - Pilar Salgado-Pineda
- FIDMAG, Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM, Biomedical Research Network in Mental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Rubèn Gonzàlez-Colom
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona (UB), Spain
| | - Erick J Canales-Rodríguez
- FIDMAG, Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM, Biomedical Research Network in Mental Health, Instituto de Salud Carlos III, Madrid, Spain; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Candibel Aguirre
- FIDMAG, Germanes Hospitalàries Research Foundation, Barcelona, Spain; Consorci Sanitari de Terrassa (CST). Hospital de Dia de Salut Mental de Terrassa, Spain
| | - Amalia Guerrero-Pedraza
- FIDMAG, Germanes Hospitalàries Research Foundation, Barcelona, Spain; Hospital Benito Menni CASM, Germanes Hospitalàries, Sant Boi de Llobregat, Barcelona, Spain
| | - María Llanos-Torres
- FIDMAG, Germanes Hospitalàries Research Foundation, Barcelona, Spain; Hospital Mare de Déu de la Mercè, Germanes Hospitalàries, Barcelona, Spain
| | - Raymond Salvador
- FIDMAG, Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM, Biomedical Research Network in Mental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Edith Pomarol-Clotet
- FIDMAG, Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM, Biomedical Research Network in Mental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Xavier Sevillano
- HER - Human-Environment Research Group, La Salle, Universitat Ramon Llull, Spain
| | - Neus Martínez-Abadías
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona (UB), Spain.
| | - Mar Fatjó-Vilas
- FIDMAG, Germanes Hospitalàries Research Foundation, Barcelona, Spain; Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona (UB), Spain; CIBERSAM, Biomedical Research Network in Mental Health, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
3
|
Garro-Núñez D, Picado-Martínez MJ, Espinoza-Campos E, Ugalde-Araya D, Macaya G, Raventós H, Chavarría-Soley G. Systematic exploration of a decade of publications on psychiatric genetics in Latin America. Am J Med Genet B Neuropsychiatr Genet 2024; 195:e32960. [PMID: 37860990 DOI: 10.1002/ajmg.b.32960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 08/08/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023]
Abstract
Psychiatric disorders have a great impact in terms of mortality, morbidity, and disability across the lifespan. Considerable effort has been devoted to understanding their complex and heterogeneous genetic architecture, including diverse ancestry populations. Our aim was to review the psychiatric genetics research published with Latin American populations from 2010 to 2019, and classify it according to country of origin, type of analysis, source of funding, and other variables. We found that most publications came from Brazil, Mexico, and Colombia. Also, local funds are generally not large enough for genome-wide studies in Latin America, with the exception of Brazil and Mexico; larger studies are often done in collaboration with international partners, mostly funded by US agencies. In most of the larger studies, the participants are individuals of Latin American ancestry living in the United States, which limits the potential for exploring the complex gene-environment interaction. Family studies, traditionally strong in Latin America, represent about 30% of the total research publications. Scarce local resources for research in Latin America have probably been an important limitation for conducting bigger and more complex studies, contributing to the reduced representation of these populations in global psychiatric genetics studies. Increasing diversity must be a goal to improve generalizability and applicability in clinical settings.
Collapse
Affiliation(s)
| | | | | | - Daniela Ugalde-Araya
- Center for Research in Cellular and Molecular Biology, Universidad de Costa Rica, San José, Costa Rica
| | - Gabriel Macaya
- Center for Research in Cellular and Molecular Biology, Universidad de Costa Rica, San José, Costa Rica
| | - Henriette Raventós
- Biology School, Universidad de Costa Rica, San José, Costa Rica
- Center for Research in Cellular and Molecular Biology, Universidad de Costa Rica, San José, Costa Rica
| | - Gabriela Chavarría-Soley
- Biology School, Universidad de Costa Rica, San José, Costa Rica
- Center for Research in Cellular and Molecular Biology, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
4
|
Baranova A, Zhao Q, Cao H, Chandhoke V, Zhang F. Causal influences of neuropsychiatric disorders on Alzheimer's disease. Transl Psychiatry 2024; 14:114. [PMID: 38395927 PMCID: PMC10891165 DOI: 10.1038/s41398-024-02822-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Previous studies have observed a significant comorbidity between Alzheimer's disease (AD) and some other neuropsychiatric disorders. However, the mechanistic connections between neuropsychiatric disorders and AD are not well understood. We conducted a Mendelian randomization analysis to appraise the potential influences of 18 neurodegenerative and neuropsychiatric disorders on AD. We found that four disorders are causally associated with increased risk for AD, including bipolar disorder (BD) (OR: 1.09), migraine (OR: 1.09), schizophrenia (OR: 1.05), and Parkinson's disease (PD) (OR: 1.07), while attention-deficit/hyperactivity disorder (ADHD) was associated with a decreased risk for AD (OR: 0.80). In case of amyotrophic lateral sclerosis (OR: 1.04) and Tourette's syndrome (OR: 1.05), there was suggestive evidence of their causal effects of on AD. Our study shows that genetic components predisposing to BD, migraine, schizophrenia, and PD may promote the development of AD, while ADHD may be associated with a reduced risk of AD. The treatments aimed at alleviating neuropsychiatric diseases with earlier onset may also influence the risk of AD-related cognitive decline, which is typically observed later in life.
Collapse
Affiliation(s)
- Ancha Baranova
- School of Systems Biology, George Mason University, Manassas, USA
- Research Centre for Medical Genetics, Moscow, Russia
| | - Qian Zhao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hongbao Cao
- School of Systems Biology, George Mason University, Manassas, USA
| | - Vikas Chandhoke
- School of Systems Biology, George Mason University, Manassas, USA
| | - Fuquan Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Babajide O, Kjaergaard AD, Deng W, Kuś A, Sterenborg RBTM, Åsvold BO, Burgess S, Teumer A, Medici M, Ellervik C, Nick B, Deloukas P, Marouli E. The role of thyroid function in borderline personality disorder and schizophrenia: a Mendelian Randomisation study. Borderline Personal Disord Emot Dysregul 2024; 11:2. [PMID: 38355654 PMCID: PMC10868101 DOI: 10.1186/s40479-024-00246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/20/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Genome-wide association studies have reported a genetic overlap between borderline personality disorder (BPD) and schizophrenia (SCZ). Epidemiologically, the direction and causality of the association between thyroid function and risk of BPD and SCZ are unclear. We aim to test whether genetically predicted variations in TSH and FT4 levels or hypothyroidism are associated with the risk of BPD and SCZ. METHODS We employed Mendelian Randomisation (MR) analyses using genetic instruments associated with TSH and FT4 levels as well as hypothyroidism to examine the effects of genetically predicted thyroid function on BPD and SCZ risk. Bidirectional MR analyses were employed to investigate a potential reverse causal association. RESULTS Genetically predicted higher FT4 was not associated with the risk of BPD (OR: 1.18; P = 0.60, IVW) or the risk of SCZ (OR: 0.93; P = 0.19, IVW). Genetically predicted higher TSH was not associated with the risk of BPD (OR: 1.11; P = 0.51, IVW) or SCZ (OR: 0.98, P = 0.55, IVW). Genetically predicted hypothyroidism was not associated with BPD or SCZ. We found no evidence for a reverse causal effect between BPD or SCZ on thyroid function. CONCLUSIONS We report evidence for a null association between genetically predicted FT4, TSH or hypothyroidism with BPD or SCZ risk. There was no evidence for reverse causality.
Collapse
Affiliation(s)
- Oladapo Babajide
- Queen Mary University of London, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, UK
| | - Alisa D Kjaergaard
- Aarhus University Hospital, Steno Diabetes Center, Hedeager Aarhus, Denmark
| | - Weichen Deng
- Queen Mary University of London, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, UK
| | - Aleksander Kuś
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Warsaw, Poland
| | - Rosalie B T M Sterenborg
- Erasmus Medical Center, Academic Center for Thyroid Diseases, Department of Internal Medicine, Rotterdam, Netherlands
- Erasmus Medical Center, Department of Epidemiology, Rotterdam, Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bjørn Olav Åsvold
- Department of Public Health and Nursing, Department of Endocrinology, Clinic of Medicine, NTNU, Norwegian University of Science and Technology &, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Stephen Burgess
- University of Cambridge, MRC Biostatistics Unit, Cambridge Institute of Public Health, Cambridge, UK
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Alexander Teumer
- Institute of Community Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK German Center for Cardiovascular Research, Berlin, Germany
| | - Marco Medici
- Erasmus Medical Center, Academic Center for Thyroid Diseases, Department of Internal Medicine, Rotterdam, Netherlands
| | - Christina Ellervik
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Bass Nick
- Division of Psychiatry, University College London, Mental Health Neuroscience, London, UK
| | - Panos Deloukas
- Queen Mary University of London, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, UK
| | - Eirini Marouli
- Queen Mary University of London, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, UK.
| |
Collapse
|
6
|
Noort RJ, Zhu H, Flemmer RT, Moore CS, Belbin TJ, Esseltine JL. Apically localized PANX1 impacts neuroepithelial expansion in human cerebral organoids. Cell Death Discov 2024; 10:22. [PMID: 38212304 PMCID: PMC10784521 DOI: 10.1038/s41420-023-01774-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024] Open
Abstract
Dysfunctional paracrine signaling through Pannexin 1 (PANX1) channels is linked to several adult neurological pathologies and emerging evidence suggests that PANX1 plays an important role in human brain development. It remains unclear how early PANX1 influences brain development, or how loss of PANX1 alters the developing human brain. Using a cerebral organoid model of early human brain development, we find that PANX1 is expressed at all stages of organoid development from neural induction through to neuroepithelial expansion and maturation. Interestingly, PANX1 cellular distribution and subcellular localization changes dramatically throughout cerebral organoid development. During neural induction, PANX1 becomes concentrated at the apical membrane domain of neural rosettes where it co-localizes with several apical membrane adhesion molecules. During neuroepithelial expansion, PANX1-/- organoids are significantly smaller than control and exhibit significant gene expression changes related to cell adhesion, WNT signaling and non-coding RNAs. As cerebral organoids mature, PANX1 expression is significantly upregulated and is primarily localized to neuronal populations outside of the ventricular-like zones. Ultimately, PANX1 protein can be detected in all layers of a 21-22 post conception week human fetal cerebral cortex. Together, these results show that PANX1 is dynamically expressed by numerous cell types throughout embryonic and early fetal stages of human corticogenesis and loss of PANX1 compromises neuroepithelial expansion due to dysregulation of cell-cell and cell-matrix adhesion, perturbed intracellular signaling, and changes to gene regulation.
Collapse
Affiliation(s)
- Rebecca J Noort
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6, NL, Canada
| | - Hanrui Zhu
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6, NL, Canada
| | - Robert T Flemmer
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6, NL, Canada
| | - Craig S Moore
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6, NL, Canada
| | - Thomas J Belbin
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6, NL, Canada
- Discipline of Oncology, Faculty of sp. Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6, NL, Canada
| | - Jessica L Esseltine
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6, NL, Canada.
| |
Collapse
|
7
|
Li Y, Wang YX, Tang XM, Liang P, Chen JJ, Jiang F, Yang Q, Liang YD. Haplotype analysis of long-chain non-coding RNA NONHSAT102891 promoter polymorphisms and depression in Chinese individuals: A case-control association study. World J Psychiatry 2023; 13:1005-1015. [PMID: 38186730 PMCID: PMC10768487 DOI: 10.5498/wjp.v13.i12.1005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/13/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Our previous study reported that the single-nucleotide polymorphism (SNP) rs155979 GC in the promoter region of long-chain non-coding RNA (lncRNA) NONHSAT102891 affects depression susceptibility in a Chinese population. AIM To explored associations of two SNPs and haplotypes in the lncRNA NONHSAT102891 promoter region with depression susceptibility in Chinese population. METHODS This this case-control association study was approved by the Ethics Committee of Chengdu Medical College (approval number: 201815). Patient diagnosis was based on DSM-IV criteria. We selected a total of 480 patients with depression and 329 healthy controls with no history of psychopathology, and performed genotyping of two SNPs by extracting peripheral venous blood samples from the subjects. The function of the two lncRNA NONHSAT102891 promoter G/C and A/T haplotypes was detected by dual-luciferase reporter assays of human embryonic kidney 293T transfected cells. RESULTS Stratified analysis of clinical and genotypic characteristics of our cohort showed that the degree of mild depressive episodes associated with the rs6230 TC/CC genotype increased by 1.59 times [TC/CC vs TT: odds ratio (OR) = 1.59, 95% confidence interval (CI): 1.08-2.35, P = 0.019]. The haploid analysis revealed linkage disequilibrium between rs3792747 and rs6230, and the double SNP CG haplotype was more common in the control group compared to case group, indicating that this haplotype significantly reduced the risk of depression (C/G vs T/A: OR = 0.42, 95%CI: 0.21-0.83, P = 0.01). There was no significant difference in the dual-luciferase reporter activity of the G/C and A/T haplotypes compared with the control group (P > 0.05), indicating that the double SNP haplotype has no transcriptional activity. CONCLUSION The rs3792747 and rs6230 CG haplotypes of the lncRNA NONHSA T102891 promoter may be related to a reduced risk of depression in the Han Chinese population.
Collapse
Affiliation(s)
- Yue Li
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Yi-Xi Wang
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Xing-Ming Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Peng Liang
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Jing-Jie Chen
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Feng Jiang
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Qiang Yang
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Yun-Dan Liang
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| |
Collapse
|
8
|
Chen F, Cao H, Baranova A, Zhao Q, Zhang F. Causal associations between COVID-19 and childhood mental disorders. BMC Psychiatry 2023; 23:922. [PMID: 38066446 PMCID: PMC10704772 DOI: 10.1186/s12888-023-05433-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can invade both the peripheral and central nervous systems and impact the function of the brain. Therefore, it is necessary to evaluate the mutual influences between COVID-19 outcomes and childhood mental disorders. METHODS We examined genetic correlations and potential causalities between three childhood mental disorders and three COVID-19 phenotypes by genetically proxied analyses. The three mental disorders included attention-deficit/hyperactivity disorder (ADHD, N = 292,548), Tourette's syndrome (TS, N = 14,307), and autism spectrum disorder (ASD, N = 46,350). The three COVID-19 traits included SARS-CoV-2 infection (N = 2,597,856), hospitalized COVID-19 (N = 2,095,324), and critical COVID-19 (N = 1,086,211). Literature-based analysis was used to build gene-based pathways connecting ADHD and COVID-19. RESULTS ADHD was positively correlated with the three COVID-19 outcomes (Rg: 0.22 ~ 0.30). Our Mendelian randomization (MR) analyses found that ADHD confers a causal effect on hospitalized COVID-19 (odds ratio (OR): 1.36, 95% confidence interval (CI): 1.10-1.69). TS confers a causal effect on critical COVID-19 (OR: 1.14, 95% CI: 1.04-1.25). Genetic liability to the COVID-19 outcomes may not increase the risk for the childhood mental disorders. Pathway analysis identified several immunity-related genes that may link ADHD to COVID-19, including CRP, OXT, IL6, PON1, AR, TNFSF12, and IL10. CONCLUSIONS Our study suggests that both ADHD and TS may augment the severity of COVID-19 through immunity-related pathways. However, our results did not support a causal role of COVID-19 in the risk for the childhood mental disorders.
Collapse
Affiliation(s)
- Fei Chen
- Department of Clinical Laboratory, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hongbao Cao
- School of Systems Biology, George Mason University, Manassas, 20110, USA
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Manassas, 20110, USA
- Research Centre for Medical Genetics, Moscow, 115478, Russia
| | - Qian Zhao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Fuquan Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
9
|
Fu X, Baranova A, Cao H, Liu Y, Sun J, Zhang F. miR-9-5p deficiency contributes to schizophrenia. Schizophr Res 2023; 262:168-174. [PMID: 37992560 DOI: 10.1016/j.schres.2023.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/05/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
MicroRNA-9-5p (miR-9-5p) is highly expressed in the brain and has been implicated in the risk of schizophrenia. We compared the expression levels of miR-9-5p in schizophrenia cases and healthy controls and evaluated whether regulatory targets of miR-9-5p are enriched in schizophrenia genome-wide risk genes. Literature-based analysis was conducted to construct molecular pathways connecting miR-9-5p and schizophrenia. We found that the expression levels of miR-9-5p were down-regulated in the peripheral blood of schizophrenia patients compared with those in healthy controls. miR-9-5p can regulate 24 out of the 1136 genome-wide risk genes of schizophrenia, which was higher than by chance (hypergeometric test P = 4.09E-06). The literature-based analysis showed that quantitative genetic changes driven by miR-9 exert more inhibitory (the IL1B, ABCB1, FGFR1 genes) than promoting (the INS gene) effects on schizophrenia, suggesting that miR-9 may protect against schizophrenia. Our results suggest that miR-9-5p deficiency may contribute to the development of schizophrenia.
Collapse
Affiliation(s)
- Xiaoqian Fu
- Medical College of Soochow University, Suzhou 215137, China; Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, China
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Manassas 20110, USA; Research Centre for Medical Genetics, Moscow 115478, Russia
| | - Hongbao Cao
- School of Systems Biology, George Mason University, Manassas 20110, USA
| | - Yansong Liu
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, China
| | - Jing Sun
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Fuquan Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
10
|
Kwak MJ, Kim SH, Kim HH, Tanpure R, Kim JI, Jeon BH, Park HK. Psychobiotics and fecal microbial transplantation for autism and attention-deficit/hyperactivity disorder: microbiome modulation and therapeutic mechanisms. Front Cell Infect Microbiol 2023; 13:1238005. [PMID: 37554355 PMCID: PMC10405178 DOI: 10.3389/fcimb.2023.1238005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 06/30/2023] [Indexed: 08/10/2023] Open
Abstract
Dysbiosis of the gut microbiome is thought to be the developmental origins of the host's health and disease through the microbiota-gut-brain (MGB) axis: such as immune-mediated, metabolic, neurodegenerative, and neurodevelopmental diseases. Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) are common neurodevelopmental disorders, and growing evidence indicates the contribution of the gut microbiome changes and imbalances to these conditions, pointing to the importance of considering the MGB axis in their treatment. This review summarizes the general knowledge of gut microbial colonization and development in early life and its role in the pathogenesis of ASD/ADHD, highlighting a promising therapeutic approach for ASD/ADHD through modulation of the gut microbiome using psychobiotics (probiotics that positively affect neurological function and can be applied for the treatment of psychiatric diseases) and fecal microbial transplantation (FMT).
Collapse
Affiliation(s)
- Min-jin Kwak
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Seung Hyun Kim
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Hoo Hugo Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Rahul Tanpure
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University Medical Center, Seoul, Republic of Korea
- Clinical Research Institute of Developmental Medicine, Hanyang University Hospital, Seoul, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hyun-Kyung Park
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
- Clinical Research Institute of Developmental Medicine, Hanyang University Hospital, Seoul, Republic of Korea
| |
Collapse
|
11
|
Fan HC, Chiang KL, Chang KH, Chen CM, Tsai JD. Epilepsy and Attention Deficit Hyperactivity Disorder: Connection, Chance, and Challenges. Int J Mol Sci 2023; 24:ijms24065270. [PMID: 36982345 PMCID: PMC10049646 DOI: 10.3390/ijms24065270] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Comorbidities are common in children with epilepsy, with nearly half of the patients having at least one comorbidity. Attention deficit hyperactivity disorder (ADHD) is a psychiatric disorder characterized by hyperactivity and inattentiveness level disproportional to the child’s developmental stage. The burden of ADHD in children with epilepsy is high and can adversely affect the patients’ clinical outcomes, psychosocial aspects, and quality of life. Several hypotheses were proposed to explain the high burden of ADHD in childhood epilepsy; the well-established bidirectional connection and shared genetic/non-genetic factors between epilepsy and comorbid ADHD largely rule out the possibility of a chance in this association. Stimulants are effective in children with comorbid ADHD, and the current body of evidence supports their safety within the approved dose. Nonetheless, safety data should be further studied in randomized, double-blinded, placebo-controlled trials. Comorbid ADHD is still under-recognized in clinical practice. Early identification and management of comorbid ADHD are crucial to optimize the prognosis and reduce the risk of adverse long-term neurodevelopmental outcomes. The identification of the shared genetic background of epilepsy and ADHD can open the gate for tailoring treatment options for these patients through precision medicine.
Collapse
Affiliation(s)
- Hueng-Chuen Fan
- Department of Pediatrics, Tungs’ Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan
- Department of Rehabilitation, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Kuo-Liang Chiang
- Department of Pediatric Neurology, Kuang-Tien General Hospital, Taichung 433, Taiwan
- Department of Nutrition, Hungkuang University, Taichung 433, Taiwan
| | - Kuang-Hsi Chang
- Department of Medical Research, Tungs’ Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- The iEGG and Animal Biotechnology Center, and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (C.-M.C.); (J.-D.T.); Tel.: +886-4-22840319-701 (C.-M.C.); +886-4-24730022-21731 (J.-D.T.)
| | - Jeng-Dau Tsai
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Correspondence: (C.-M.C.); (J.-D.T.); Tel.: +886-4-22840319-701 (C.-M.C.); +886-4-24730022-21731 (J.-D.T.)
| |
Collapse
|
12
|
Zhou A, Cao X, Mahaganapathy V, Azaro M, Gwin C, Wilson S, Buyske S, Bartlett CW, Flax JF, Brzustowicz LM, Xing J. Common genetic risk factors in ASD and ADHD co-occurring families. Hum Genet 2023; 142:217-230. [PMID: 36251081 PMCID: PMC10177627 DOI: 10.1007/s00439-022-02496-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/10/2022] [Indexed: 12/01/2022]
Abstract
Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) are two major neurodevelopmental disorders that frequently co-occur. However, the genetic mechanism of the co-occurrence remains unclear. The New Jersey Language and Autism Genetics Study (NJLAGS) collected more than 100 families with at least one member affected by ASD. NJLAGS families show a high prevalence of ADHD and provide a good opportunity to study shared genetic risk factors for ASD and ADHD. The linkage study of the NJLAGS families revealed regions on chromosomes 12 and 17 that are significantly associated with ADHD. Using whole-genome sequencing data on 272 samples from 73 NJLAGS families, we identified potential risk genes for ASD and ADHD. Within the linkage regions, we identified 36 genes that are associated with ADHD using a pedigree-based gene prioritization approach. KDM6B (Lysine Demethylase 6B) is the highest-ranking gene, which is a known risk gene for neurodevelopmental disorders, including ASD and ADHD. At the whole-genome level, we identified 207 candidate genes from the analysis of both small variants and structure variants, including both known and novel genes. Using enrichment and protein-protein interaction network analyses, we identified gene ontology terms and pathways enriched for ASD and ADHD candidate genes, such as cilia function and cation channel activity. Candidate genes and pathways identified in our study improve the understanding of the genetic etiology of ASD and ADHD and will lead to new diagnostic or therapeutic interventions for ASD and ADHD in the future.
Collapse
Affiliation(s)
- Anbo Zhou
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Xiaolong Cao
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | | | - Marco Azaro
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Christine Gwin
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Sherri Wilson
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Steven Buyske
- Department of Statistics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Christopher W Bartlett
- The Steve Cindy Rasmussen Institute for Genomic Medicine, Battelle Center for Computational Biology, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Judy F Flax
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Linda M Brzustowicz
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,The Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, 145 Bevier Road, Piscataway, NJ, 08854, USA
| | - Jinchuan Xing
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA. .,The Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, 145 Bevier Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
13
|
Baranova A, Chandhoke V, Cao H, Zhang F. Shared genetics and bidirectional causal relationships between type 2 diabetes and attention-deficit/hyperactivity disorder. Gen Psychiatr 2023; 36:e100996. [PMID: 36937092 PMCID: PMC10016243 DOI: 10.1136/gpsych-2022-100996] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/22/2023] [Indexed: 03/17/2023] Open
Abstract
Background Type 2 diabetes (T2D) is a chronic metabolic disorder with high comorbidity with mental disorders. The genetic links between attention-deficit/hyperactivity disorder (ADHD) and T2D have yet to be elucidated. Aims We aim to assess shared genetics and potential associations between ADHD and T2D. Methods We performed genetic correlation, two-sample Mendelian randomisation and polygenic overlap analyses between ADHD and T2D. The genome-wide association study (GWAS) summary results of T2D (80 154 cases and 853 816 controls), ADHD2019 (20 183 cases and 35 191 controls from the 2019 GWAS ADHD dataset) and ADHD2022 (38 691 cases and 275 986 controls from the 2022 GWAS ADHD dataset) were used for the analyses. The T2D dataset was obtained from the DIAGRAM Consortium. The ADHD datasets were obtained from the Psychiatric Genomics Consortium. We compared genome-wide association signals to reveal shared genetic variation between T2D and ADHD using the larger ADHD2022 dataset. Moreover, molecular pathways were constructed based on large-scale literature data to understand the connection between ADHD and T2D. Results T2D has positive genetic correlations with ADHD2019 (rg=0.33) and ADHD2022 (rg=0.31). Genetic liability to ADHD2019 was associated with an increased risk for T2D (odds ratio (OR): 1.30, p<0.001), while genetic liability to ADHD2022 had a suggestive causal effect on T2D (OR: 1.30, p=0.086). Genetic liability to T2D was associated with a higher risk for ADHD2019 (OR: 1.05, p=0.001) and ADHD2022 (OR: 1.03, p<0.001). The polygenic overlap analysis showed that most causal variants of T2D are shared with ADHD2022. T2D and ADHD2022 have three overlapping loci. Molecular pathway analysis suggests that ADHD and T2D could promote the risk of each other through inflammatory pathways. Conclusions Our study demonstrates substantial shared genetics and bidirectional causal associations between ADHD and T2D.
Collapse
Affiliation(s)
- Ancha Baranova
- School of Systems Biology, George Mason University, Fairfax, Virginia, USA
- Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Vikas Chandhoke
- School of Systems Biology, George Mason University, Fairfax, Virginia, USA
| | - Hongbao Cao
- School of Systems Biology, George Mason University, Fairfax, Virginia, USA
| | - Fuquan Zhang
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
14
|
Ding X, Wen Y, Ma X, Zhang Y, Cheng Y, Liu Z, Hu W, Xia Y. Pyridoxal 5'-phosphate alleviates prenatal pyridaben exposure-induced anxiety-like behaviors in offspring. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 13:100224. [PMID: 36437888 PMCID: PMC9691908 DOI: 10.1016/j.ese.2022.100224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Pyridaben (PY) is a widely used organochlorine acaricide, which can be detected in the peripheral blood of pregnant women. Available evidence suggests that PY has reproductive toxicity. However, it remains uncertain whether prenatal PY exposure impacts neurobehavioral development in offspring. Here, we administered PY to pregnant mice at a dose of 0.5 and 5 mg kg-1 day-1 via gavage and observed anxiety-like behaviors in PY offspring aged five weeks. We then integrated the metabolome and transcriptome of the offspring's brain to explore the underlying mechanism. Metabolome data indicated that the vitamin B6 metabolism pathway was significantly affected, and the pyridoxal 5'-phosphate (PLP) concentration and the active form of vitamin B6 was significantly reduced. Moreover, the transcriptome data showed that both PLP generation-related Pdxk and anxiety-related Gad1 were significantly down-regulated. Meanwhile, there was a decreasing trend in the concentration of GABA in the hippocampal DG region. Next, we supplemented PLP at a dose of 20 mg kg-1 day-1 to the PY offspring via intraperitoneal injection at three weeks. We found up-regulated expression of Pdxk and Gad1 and restored anxiety-like behaviors. This study suggests that prenatal exposure to PY can disrupt vitamin B6 metabolism, reduce the concentration of PLP, down-regulate the expression levels of Pdxk and Gad1, inhibit the production of GABA, and ultimately lead to anxiety-like behaviors in offspring.
Collapse
Affiliation(s)
- Xingwang Ding
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Ya Wen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
- Department of Chronic Non-Communicable Disease Control, Wuxi Liangxi District Center for Disease Control and Prevention, Wuxi, 214011, China
| | - Xuan Ma
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Yuepei Zhang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Yuting Cheng
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Zhaofeng Liu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Weiyue Hu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| |
Collapse
|
15
|
Rao S, Baranova A, Yao Y, Wang J, Zhang F. Genetic Relationships between Attention-Deficit/Hyperactivity Disorder, Autism Spectrum Disorder, and Intelligence. Neuropsychobiology 2022; 81:484-496. [PMID: 35764056 DOI: 10.1159/000525411] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) commonly co-occur; both traits exert an influence on intelligence scores. Genetic relationships between these three traits are far from being clear. METHODS The summary results of genome-wide association studies of ADHD (20,183 cases and 35,191 controls), ASD (18,381 cases and 27,969 controls), and intelligence (269,867 participants) were used for the analyses. Local genetic correlation analysis and polygenic overlap analysis were used to explore the shared genetic components between ADHD, ASD, and intelligence. Mendelian randomization (MR) analysis was used to examine the causal associations between ADHD, ASD, and intelligence. A cross-trait meta-analysis was performed to identify pleiotropic genetic variants across the three traits. RESULTS Our results showed that intelligence has a positive and negative genetic correlation with ASD and ADHD, respectively, including three hub genomic regions showing correlated genetic effects across the three traits. Polygenic overlap analysis indicated that all the risk variants contributing to ADHD are overlapped with half of those for intelligence, and the majority of the shared variants have opposite effect directions between them. The majority of risk variants (80%) of ASD are overlapped with almost all the risk variants of intelligence (97%). Notably, some ASD/intelligence overlapping variants displayed opposing effects on these two conditions. MR analysis showed that the genetic liability to higher intelligence was associated with an increased risk for ASD (OR = 1.12) and a decreased risk for ADHD (OR = 0.78). Cross-trait meta-analyses identified 170 pleiotropic genomic loci across the three traits, including 12 novel loci. Functional analyses of the novel genes support their potential involvement in neurodevelopment. CONCLUSION Our results suggest that ADHD is associated with inheriting a reduced set of low-intelligence alleles, whereas ASD results from incongruous effects from a mixture of high-intelligence and low-intelligence contributing alleles summed up with additional, ASD-specific risk variants not associated with intelligence.
Collapse
Affiliation(s)
- Shuquan Rao
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Manassas, Virginia, USA.,Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Yao Yao
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jun Wang
- Department of Psychiatry, Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Fuquan Zhang
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Identifying pleiotropic genes for major psychiatric disorders with GWAS summary statistics using multivariate adaptive association tests. J Psychiatr Res 2022; 155:471-482. [PMID: 36183601 DOI: 10.1016/j.jpsychires.2022.09.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/17/2022] [Accepted: 09/16/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Genome wide association studies (GWAS) have discovered a few of single nucleotide polymorphisms (SNPs) related to major psychiatric disorders. However, it is not completely clear which genes play a pleiotropic role in multiple disorders. The study aimed to identify the pleiotropic genes across five psychiatric disorders using multivariate adaptive association tests. METHODS Summary statistics of five psychiatric disorders were downloaded from Psychiatric Genomics Consortium. We applied linkage disequilibrium score regression (LDSC) to estimate genetic correlation and conducted tissue and cell type specificity analyses based on Multi-marker Analysis of GenoMic Annotation (MAGMA). Then, we identified the pleiotropic genes using MTaSPUsSet and aSPUs tests. We ultimately performed the functional analysis for pleiotropic genes. RESULTS We confirmed the significant genetic correlation and brain tissue and neuron specificity among five disorders. 100 pleiotropic genes were detected to be significantly associated with five psychiatric disorders, of which 55 were novel genes. These genes were functionally enriched in neuron differentiation and synaptic transmission. LIMITATIONS The effect direction of pleiotropic genes couldn't be distinguished due to without individual-level data. CONCLUSION We identified pleiotropic genes using multivariate adaptive association tests and explored their biological function. The findings may provide novel insight into the development and implementation of prevention and treatment as well as targeted drug discovery in practice.
Collapse
|
17
|
Zhang Q, Zhong C, Shen J, Chen S, Jia Y, Duan S. Emerging role of LINC00461 in cancer. Biomed Pharmacother 2022; 152:113239. [PMID: 35679722 DOI: 10.1016/j.biopha.2022.113239] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 11/25/2022] Open
Abstract
LINC00461 is located in the intergenic region between the protein-coding genes MEF2C and TMEM161B. LINC00461 upregulation was associated with the risk of 13 tumors and was strongly associated with clinicopathologic features and poor prognosis in 11 tumors. LINC00461 is involved in resistance to four anticancer drugs, including sunitinib for renal cell carcinoma, cisplatin for head and neck squamous cell carcinoma and rectal cancer, temozolomide for glioma, and docetaxel for breast cancer. LINC00461 can sponge 18 miRNAs to form a complex ceRNA network that regulates the expression of a large number of downstream genes. LINC00461 is involved in the MAPK/ERK signaling pathway and PI3K/AKT signaling pathway, thereby promoting tumorigenesis. Notably, knockdown of LINC00461 in exosomes antagonizes tumor cell proliferation in multiple myeloma. This article summarizes the diagnostic, prognostic, and therapeutic value of LINC00461 in various tumors, and systematically describes the ceRNA network and signaling pathways associated with LINC00461, providing potential directions for future LINC00461 research.
Collapse
Affiliation(s)
- Qiudan Zhang
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, China; Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chenming Zhong
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jinze Shen
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, China
| | - Sang Chen
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yunhua Jia
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, China.
| | - Shiwei Duan
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, China.
| |
Collapse
|
18
|
Baranova A, Wang J, Cao H, Chen JH, Chen J, Chen M, Ni S, Xu X, Ke X, Xie S, Sun J, Zhang F. Shared genetics between autism spectrum disorder and attention-deficit/hyperactivity disorder and their association with extraversion. Psychiatry Res 2022; 314:114679. [PMID: 35717853 DOI: 10.1016/j.psychres.2022.114679] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/31/2022] [Accepted: 06/10/2022] [Indexed: 12/22/2022]
Abstract
BACKGROUND Deciphering the genetic relationships between autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) may uncover underlining shared pathophysiology as well as inform treatment. METHODS The summary results of genome-wide association studies on ADHD, ASD, and extraversion were utilized for the analyzes. Genetic correlations between ADHD, ASD, and extraversion were tested using linkage disequilibrium score regression. Causal relationships between ADHD, ASD, and extraversion were investigated using Mendelian randomization (MR) analysis. Novel pleiotropic genomic loci shared by ADHD and ASD were identified using a cross-trait meta-analysis. RESULTS Extraversion was positively correlated with ADHD (rg = 0.205) and negatively correlated with ASD (rg = -0.193). The MR analysis showed that ADHD confers a causal effect on ASD (OR: 1.35, 95% confidence interval (CI):1.20-1.52) and vice versa (1.46, 1.38-1.55). Extraversion exerts a causal effect on ADHD only (1.19, 1.05-1.33). The cross-trait meta-analysis identified three novel pleiotropic genomic loci for ADHD and ASD, involving two pleiotropic genes, LINC00461 and KIZ. CONCLUSIONS Our study provides new insights into the shared genetics of ADHD and ASD and their connections with extraversion.
Collapse
Affiliation(s)
- Ancha Baranova
- School of Systems Biology, George Mason University, Manassas 20110, USA; Research Centre for Medical Genetics, Moscow 115478, Russia
| | - Jun Wang
- Department of Psychiatry, Wuxi Mental Health Center of Nanjing Medical University, Wuxi 214151, China
| | - Hongbao Cao
- School of Systems Biology, George Mason University, Manassas 20110, USA
| | - Jiang-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Jiu Chen
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China
| | - Miao Chen
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Sulin Ni
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xijia Xu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaoyan Ke
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shiping Xie
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jing Sun
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Fuquan Zhang
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China; Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
19
|
D’Aurizio R, Catona O, Pitasi M, Li YE, Ren B, Nicolis SK. Bridging between Mouse and Human Enhancer-Promoter Long-Range Interactions in Neural Stem Cells, to Understand Enhancer Function in Neurodevelopmental Disease. Int J Mol Sci 2022; 23:ijms23147964. [PMID: 35887306 PMCID: PMC9322198 DOI: 10.3390/ijms23147964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Non-coding variation in complex human disease has been well established by genome-wide association studies, and is thought to involve regulatory elements, such as enhancers, whose variation affects the expression of the gene responsible for the disease. The regulatory elements often lie far from the gene they regulate, or within introns of genes differing from the regulated gene, making it difficult to identify the gene whose function is affected by a given enhancer variation. Enhancers are connected to their target gene promoters via long-range physical interactions (loops). In our study, we re-mapped, onto the human genome, more than 10,000 enhancers connected to promoters via long-range interactions, that we had previously identified in mouse brain-derived neural stem cells by RNApolII-ChIA-PET analysis, coupled to ChIP-seq mapping of DNA/chromatin regions carrying epigenetic enhancer marks. These interactions are thought to be functionally relevant. We discovered, in the human genome, thousands of DNA regions syntenic with the interacting mouse DNA regions (enhancers and connected promoters). We further annotated these human regions regarding their overlap with sequence variants (single nucleotide polymorphisms, SNPs; copy number variants, CNVs), that were previously associated with neurodevelopmental disease in humans. We document various cases in which the genetic variant, associated in humans to neurodevelopmental disease, affects an enhancer involved in long-range interactions: SNPs, previously identified by genome-wide association studies to be associated with schizophrenia, bipolar disorder, and intelligence, are located within our human syntenic enhancers, and alter transcription factor recognition sites. Similarly, CNVs associated to autism spectrum disease and other neurodevelopmental disorders overlap with our human syntenic enhancers. Some of these enhancers are connected (in mice) to homologs of genes already associated to the human disease, strengthening the hypothesis that the gene is indeed involved in the disease. Other enhancers are connected to genes not previously associated with the disease, pointing to their possible pathogenetic involvement. Our observations provide a resource for further exploration of neural disease, in parallel with the now widespread genome-wide identification of DNA variants in patients with neural disease.
Collapse
Affiliation(s)
- Romina D’Aurizio
- Institute of Informatics and Telematics (IIT), National Research Council (CNR), 56124 Pisa, Italy;
- Correspondence:
| | - Orazio Catona
- Institute of Informatics and Telematics (IIT), National Research Council (CNR), 56124 Pisa, Italy;
| | - Mattia Pitasi
- Dipartimento di Biotecnologie e Bioscienze, University of Milano-Bicocca, 20126 Milano, Italy; (M.P.); (S.K.N.)
| | - Yang Eric Li
- University of California San Diego, La Jolla, CA 92093, USA; (Y.E.L.); (B.R.)
| | - Bing Ren
- University of California San Diego, La Jolla, CA 92093, USA; (Y.E.L.); (B.R.)
| | - Silvia Kirsten Nicolis
- Dipartimento di Biotecnologie e Bioscienze, University of Milano-Bicocca, 20126 Milano, Italy; (M.P.); (S.K.N.)
| |
Collapse
|
20
|
Yellapragada V, Eskici N, Wang Y, Madhusudan S, Vaaralahti K, Tuuri T, Raivio T. Time and dose-dependent effects of FGF8-FGFR1 signaling in GnRH neurons derived from human pluripotent stem cells. Dis Model Mech 2022; 15:276003. [PMID: 35833364 PMCID: PMC9403748 DOI: 10.1242/dmm.049436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/24/2022] [Indexed: 11/25/2022] Open
Abstract
Fibroblast growth factor 8 (FGF8), acting through the fibroblast growth factor receptor 1 (FGFR1), has an important role in the development of gonadotropin-releasing hormone-expressing neurons (GnRH neurons). We hypothesized that FGF8 regulates differentiation of human GnRH neurons in a time- and dose-dependent manner via FGFR1. To investigate this further, human pluripotent stem cells were differentiated during 10 days of dual-SMAD inhibition into neural progenitor cells, followed either by treatment with FGF8 at different concentrations (25 ng/ml, 50 ng/ml or 100 ng/ml) for 10 days or by treatment with 100 ng/ml FGF8 for different durations (2, 4, 6 or 10 days); cells were then matured through DAPT-induced inhibition of Notch signaling for 5 days into GnRH neurons. FGF8 induced expression of GNRH1 in a dose-dependent fashion and the duration of FGF8 exposure correlated positively with gene expression of GNRH1 (P<0.05, Rs=0.49). However, cells treated with 100 ng/ml FGF8 for 2 days induced the expression of genes, such as FOXG1, ETV5 and SPRY2, and continued FGF8 treatment induced the dynamic expression of several other genes. Moreover, during exposure to FGF8, FGFR1 localized to the cell surface and its specific inhibition with the FGFR1 inhibitor PD166866 reduced expression of GNRH1 (P<0.05). In neurons, FGFR1 also localized to the nucleus. Our results suggest that dose- and time-dependent FGF8 signaling via FGFR1 is indispensable for human GnRH neuron ontogeny. This article has an associated First Person interview with the first author of the paper. Summary: This article demonstrates the essential role FGF8–FGFR1 signaling has in the development of gonadotropin-releasing hormone (GnRH)-expressing neurons by using a human stem cell model.
Collapse
Affiliation(s)
- Venkatram Yellapragada
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Nazli Eskici
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Yafei Wang
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Shrinidhi Madhusudan
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Kirsi Vaaralahti
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, 00029 Helsinki University Hospital, Helsinki, Finland
| | - Taneli Raivio
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,New Children's Hospital, Pediatric Research Center, 00029 Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
21
|
Hao WZ, Chen Q, Wang L, Tao G, Gan H, Deng LJ, Huang JQ, Chen JX. Emerging roles of long non-coding RNA in depression. Prog Neuropsychopharmacol Biol Psychiatry 2022; 115:110515. [PMID: 35077841 DOI: 10.1016/j.pnpbp.2022.110515] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 12/31/2022]
Abstract
Depression is the second most common psychiatric disorder, affecting more than 340 million people of all ages worldwide. However, the mechanisms underlying the development of depression remain unclear, and existing antidepressants may cause clinical dependence and toxic side effects. Recently, emerging evidence from the fields of neuroscience, genetics, and genomics supports the modulatory role of long non-coding RNA (lncRNA) in depression. LncRNAs may mediate the pathogenesis of depression through multiple pathways, including regulating neurotransmitters and neurotrophic factors, affecting synaptic conduction, and regulating the ventriculo-olfactory neurogenic system. In addition, relying on genome-wide association study and molecular biological experiment, the possibility of lncRNA as a potential biomarker for the differential diagnosis of depression and other mental illnesses, including schizophrenia and anxiety disorders, is gradually being revealed. Thus, it is important to explore whether lncRNAs are potential therapeutic targets and diagnostic biomarkers for depression. Here, we summarize the genesis and function of lncRNAs and discuss the aberrant expression and functional roles of lncRNAs in the development, diagnosis, and therapy of depression, as well as the deficiencies and limitations of these studies. Moreover, we established a lncRNA-miRNA-mRNA-pathway-drug network of depression through bioinformatics analysis methods to deepen our understanding of the relationship between lncRNA and depression, promoting the clinical application of epigenetic research.
Collapse
Affiliation(s)
- Wen-Zhi Hao
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Qian Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Lu Wang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Gabriel Tao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, United States
| | - Hua Gan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Li-Juan Deng
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jun-Qing Huang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Jia-Xu Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
22
|
Fu X, Liu Y, Baranova A, Zhang F. Deregulatory miRNA-BDNF Network Inferred from Dynamic Expression Changes in Schizophrenia. Brain Sci 2022; 12:brainsci12020167. [PMID: 35203931 PMCID: PMC8870107 DOI: 10.3390/brainsci12020167] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
(1) Background: Brain-derived neurotrophic factor (BDNF) is one of the promising risk genes for schizophrenia (SZ), a disease with prominent dysregulation of miRNA networks. Here, we present a study of miRNA-BDNF co-expression changes in peripheral blood of SZ patients. (2) Methods: The expression levels of the BDNF mRNA and three validated binding miRNAs—miR-124-3p, miR-132-3p, and miR-206—were quantified in the blood of 48 healthy controls and 32 SZ patients before and after 12 weeks of treatment. The co-expression patterns were evaluated in the three groups. (3) Results: The expression levels of BDNF were significantly downregulated in SZ patients compared to the controls. After the treatment, the expression levels of BDNF were upregulated, while the expression levels of the three miRNAs were downregulated. Co-expression analyses showed positive correlations of this network in the SZ patients, while weak negative correlations were observed in the healthy controls. After the 12-week treatment, the overall correlation between BDNF and the three miRNAs reached the levels comparable to the healthy controls. (4) Conclusions: Our findings suggest the involvement of the miRNA-BDNF network in the onset and treatment of SZ.
Collapse
Affiliation(s)
- Xiaoqian Fu
- Department of Clinical Psychology, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, China; (X.F.); (Y.L.)
| | - Yansong Liu
- Department of Clinical Psychology, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, China; (X.F.); (Y.L.)
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Manassas, VA 20110, USA;
- Research Centre for Medical Genetics, 115478 Moscow, Russia
| | - Fuquan Zhang
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
- Correspondence:
| |
Collapse
|
23
|
Rao S, Tian L, Cao H, Baranova A, Zhang F. Involvement of the long intergenic non-coding RNA LINC00461 in schizophrenia. BMC Psychiatry 2022; 22:59. [PMID: 35081922 PMCID: PMC8790831 DOI: 10.1186/s12888-022-03718-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/18/2022] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE LINC00461 is a highly conserved intergenic non-protein coding RNA that was implicated in schizophrenia at the genome-wide level. We aim to explore potential mechanisms underlying the involvement of LINC00461 in schizophrenia. METHODS We performed a meta-analysis to investigate the association of LINC00461 rs410216 with schizophrenia, and evaluate the effects of the rs410216 on hippocampal volume and function using the functional magnetic resonance imaging (fMRI) analysis. We utilized the GTEx dataset to profile the expression distribution of LINC00461 across different brain regions, and to investigate the potential impact of the risk SNPs on the expression of LINC00461 and other nearby genes. We compared blood expression levels of LINC00461 between schizophrenia patients and controls. RESULTS Here we show that single-nucleotide polymorphisms (SNPs) located in regulatory elements spanning the LINC00461 region are significantly associated with schizophrenia (index SNP rs410216, Pmeta = 1.43E-05); subjects carrying the risk allele of rs410216 showed decreased hippocampal volume. However, no significant association of the rs410216 variant with hippocampal activation was observed. Moreover, the expression level of LINC00461 mRNA was significantly lower in first-onset schizophrenia patients, and the risk allele also predicts a lower transcriptional level of LINC00461 in the hippocampus. CONCLUSION Together, these convergent lines of evidence implicate inadequate LINC00461 expression in the hippocampus in the development of schizophrenia, providing novel insight into the genetic architecture and biological etiology of schizophrenia.
Collapse
Affiliation(s)
- Shuquan Rao
- grid.461843.cState Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Lin Tian
- grid.89957.3a0000 0000 9255 8984Department of Psychiatry, Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Hongbao Cao
- grid.22448.380000 0004 1936 8032School of Systems Biology, George Mason University (GMU), Fairfax, VA USA
| | - Ancha Baranova
- grid.22448.380000 0004 1936 8032School of Systems Biology, George Mason University (GMU), Fairfax, VA USA ,grid.415876.9Research Centre for Medical Genetics, Moscow, 115478 Russia
| | - Fuquan Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
24
|
Wu G, Du X, Li Z, Du Y, Lv J, Li X, Xu Y, Liu S. The emerging role of long non-coding RNAs in schizophrenia. Front Psychiatry 2022; 13:995956. [PMID: 36226104 PMCID: PMC9548578 DOI: 10.3389/fpsyt.2022.995956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia (SZ) is a severe psychiatric disorder which is contributed by both genetic and environmental factors. However, at present, its specific pathogenesis is still not very clear, and there is a lack of objective and reliable biomarkers. Accumulating evidence indicates that long non-coding RNAs (lncRNAs) are involved in the pathophysiology of several psychiatric disorders, including SZ, and hold promise as potential biomarkers and therapeutic targets for psychiatric disorders. In this review, we summarize and discuss the role of lncRNAs in the pathogenesis of SZ and their potential value as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Guangxian Wu
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Physiology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xinzhe Du
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Zexuan Li
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Yanhong Du
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Jinzhi Lv
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Physiology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xinrong Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Yong Xu
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Mental Health, Shanxi Medical University, Taiyuan, China
| | - Sha Liu
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
25
|
Xu Y, Lin S, Tao J, Liu X, Zhou R, Chen S, Vyas P, Yang C, Chen B, Qian A, Wang M. Correlation research of susceptibility single nucleotide polymorphisms and the severity of clinical symptoms in attention deficit hyperactivity disorder. Front Psychiatry 2022; 13:1003542. [PMID: 36213906 PMCID: PMC9538111 DOI: 10.3389/fpsyt.2022.1003542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/01/2022] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE To analyze the correlation between susceptibility single nucleotide polymorphisms (SNPs) and the severity of clinical symptoms in children with attention deficit hyperactivity disorder (ADHD), so as to supplement the clinical significance of gene polymorphism and increase our understanding of the association between genetic mutations and ADHD phenotypes. METHODS 193 children with ADHD were included in our study from February 2017 to February 2020 in the Children's ADHD Clinic of the author's medical institution. 23 ADHD susceptibility SNPs were selected based on the literature, and multiple polymerase chain reaction (PCR) targeted capture sequencing technology was used for gene analysis. A series of ADHD-related questionnaires were used to reflect the severity of the disease, and the correlation between the SNPs of specific sites and the severity of clinical symptoms was evaluated. R software was used to search for independent risk factors by multivariate logistic regression and the "corplot" package was used for correlation analysis. RESULTS Among the 23 SNP loci of ADHD children, no mutation was detected in 6 loci, and 2 loci did not conform to Hardy-Weinberg equilibrium. Of the remaining 15 loci, there were 9 SNPs, rs2652511 (SLC6A3 locus), rs1410739 (OBI1-AS1 locus), rs3768046 (TIE1 locus), rs223508 (MANBA locus), rs2906457 (ST3GAL3 locus), rs4916723 (LINC00461 locus), rs9677504 (SPAG16 locus), rs1427829 (intron) and rs11210892 (intron), correlated with the severity of clinical symptoms of ADHD. Specifically, rs1410739 (OBI1-AS1 locus) was found to simultaneously affect conduct problems, control ability and abstract thinking ability of children with ADHD. CONCLUSION There were 9 SNPs significantly correlated with the severity of clinical symptoms in children with ADHD, and the rs1410739 (OBI1-AS1 locus) may provide a new direction for ADHD research. Our study builds on previous susceptibility research and further investigates the impact of a single SNP on the severity of clinical symptoms of ADHD. This can help improve the diagnosis, prognosis and treatment of ADHD.
Collapse
Affiliation(s)
- Yunyu Xu
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuangxiang Lin
- Department of Radiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Jiejie Tao
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinmiao Liu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ronghui Zhou
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuangli Chen
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Punit Vyas
- School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Chuang Yang
- Department of Psychiatry, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bicheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Andan Qian
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Meihao Wang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
26
|
Yang Z, Wu H, Lee PH, Tsetsos F, Davis LK, Yu D, Lee SH, Dalsgaard S, Haavik J, Barta C, Zayats T, Eapen V, Wray NR, Devlin B, Daly M, Neale B, Børglum AD, Crowley JJ, Scharf J, Mathews CA, Faraone SV, Franke B, Mattheisen M, Smoller JW, Paschou P. Investigating Shared Genetic Basis Across Tourette Syndrome and Comorbid Neurodevelopmental Disorders Along the Impulsivity-Compulsivity Spectrum. Biol Psychiatry 2021; 90:317-327. [PMID: 33714545 PMCID: PMC9152955 DOI: 10.1016/j.biopsych.2020.12.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Tourette syndrome (TS) is often found comorbid with other neurodevelopmental disorders across the impulsivity-compulsivity spectrum, with attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and obsessive-compulsive disorder (OCD) as most prevalent. This points to the possibility of a common etiological thread along an impulsivity-compulsivity continuum. METHODS Investigating the shared genetic basis across TS, ADHD, ASD, and OCD, we undertook an evaluation of cross-disorder genetic architecture and systematic meta-analysis, integrating summary statistics from the latest genome-wide association studies (93,294 individuals, 6,788,510 markers). RESULTS As previously identified, a common unifying factor connects TS, ADHD, and ASD, while TS and OCD show the highest genetic correlation in pairwise testing among these disorders. Thanks to a more homogeneous set of disorders and a targeted approach that is guided by genetic correlations, we were able to identify multiple novel hits and regions that seem to play a pleiotropic role for the specific disorders analyzed here and could not be identified through previous studies. In the TS-ADHD-ASD genome-wide association study single nucleotide polymorphism-based and gene-based meta-analysis, we uncovered 13 genome-wide significant regions that host single nucleotide polymorphisms with a high posterior probability for association with all three studied disorders (m-value > 0.9), 11 of which were not identified in previous cross-disorder analysis. In contrast, we also identified two additional pleiotropic regions in the TS-OCD meta-analysis. Through conditional analysis, we highlighted genes and genetic regions that play a specific role in a TS-ADHD-ASD genetic factor versus TS-OCD. Cross-disorder tissue specificity analysis implicated the hypothalamus-pituitary-adrenal gland axis in TS-ADHD-ASD. CONCLUSIONS Our work underlines the value of redefining the framework for research across traditional diagnostic categories.
Collapse
Affiliation(s)
- Zhiyu Yang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - Hanrui Wu
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - Phil H Lee
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Fotis Tsetsos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupoli, Greece
| | - Lea K Davis
- Division of Genetic Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Dongmei Yu
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Sang Hong Lee
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland; Australian Centre for Precision Health, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, South Australia
| | - Søren Dalsgaard
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; National Centre for Register-based Research, Aarhus University, Aarhus, Denmark; Department of Child and Adolescent Psychiatry, Hospital of Telemark, Kragerø, Norway
| | - Jan Haavik
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Csaba Barta
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Tetyana Zayats
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Valsamma Eapen
- Academic Unit of Child Psychiatry South West Sydney, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Naomi R Wray
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland; Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Mark Daly
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts
| | - Benjamin Neale
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts; Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
| | - Anders D Børglum
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark; Center for Integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark; Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - James J Crowley
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jeremiah Scharf
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Carol A Mathews
- Department of Psychiatry, University of Florida, Gainesville, Florida; Department of Genetics Institute, University of Florida, Gainesville, Florida
| | - Stephen V Faraone
- Departmentof Psychiatry, SUNY Upstate Medical University, Syracuse, New York; Departmentof Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Radboud University, Nijmegen, The Netherlands; Department of Psychiatry, Radboud University Medical Center, Radboud University, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Manuel Mattheisen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Wuerzburg, Wuerzburg, Germany; Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts
| | - Peristera Paschou
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana.
| |
Collapse
|
27
|
Kverno K. Genetic and Environmental Contributions to Mental Illness With Implications for Evaluation and Treatment. J Psychosoc Nurs Ment Health Serv 2021; 59:9-13. [PMID: 33382435 DOI: 10.3928/02793695-20201210-03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
From the outside looking in, it may appear that nurse practitioner practice in mental health care is relatively easy compared to other nurse practitioner population care. The current article presents a brief overview of recent theories on the etiology of mental disorders, specifically major depressive disorder, bipolar disorder, and schizophrenia, with implications for practice. Pharmacological treatments targeting important stress response and immune and inflammatory targets lag behind the science. A practical framework for psychiatric evaluation, formulation, and treatment planning that combines four distinctive ways of viewing patients' concerns is presented as a useful method for providing person-centered mental health care. [Journal of Psychosocial Nursing and Mental Health Services, 59(1), 9-13.].
Collapse
|
28
|
Neuroepigenetics of psychiatric disorders: Focus on lncRNA. Neurochem Int 2021; 149:105140. [PMID: 34298078 DOI: 10.1016/j.neuint.2021.105140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 01/01/2023]
Abstract
Understanding the pathology of psychiatric disorders is challenging due to their complexity and multifactorial origin. However, development of high-throughput technologies has allowed for better insight into their molecular signatures. Advancement of sequencing methodologies have made it possible to study not only the protein-coding but also the noncoding genome. It is now clear that besides the genetic component, different epigenetic mechanisms play major roles in the onset and development of psychiatric disorders. Among them, examining the role of long noncoding RNAs (lncRNAs) is a relatively new field. Here, we present an overview of what is currently known about the involvement of lncRNAs in schizophrenia, major depressive and bipolar disorders, as well as suicide. The diagnosis of psychiatric disorders mainly relies on clinical evaluation without using measurable biomarkers. In this regard, lncRNA may open new opportunities for development of molecular tests. However, so far only a small set of known lncRNAs have been characterized at molecular level, which means they have a long way to go before clinical implementation. Understanding how changes in lncRNAs affect the appearance and development of psychiatric disorders may lead to a more classified and objective diagnostic system, but also open up new therapeutic targets for these patients.
Collapse
|
29
|
Yang D, Chen J, Cheng X, Cao B, Chang H, Li X, Yang C, Wu Q, Sun J, Manry D, Pan Y, Dong Y, Li J, Xu T, Cao L. SERINC2 increases the risk of bipolar disorder in the Chinese population. Depress Anxiety 2021; 38:985-995. [PMID: 34288243 DOI: 10.1002/da.23186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/28/2021] [Accepted: 05/22/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Although common variants in a large collection of patients are associated with increased risk for bipolar disorder (BD), studies have only been able to predict 25%-45% of risks, suggesting that lots of variants that contribute to the risk for BD haven't been identified. Our study aims to identify novel BD risk genes. METHODS We performed whole-exome sequencing of 27 individuals from 6 BD multi-affected Chinese families to identify candidate variants. Targeted sequencing of one of the novel risk genes, SERINC2, in additional sporadic 717 BD patients and 312 healthy controls (HC) validated the association. Magnetic resonance imaging (MRI) were performed to evaluate the effect of the variant to brain structures from 213 subjects (4 BD subjects from a multi-affected family, 130 sporadic BD subjects and 79 HC control). RESULTS BD pedigrees had an increased burden of uncommon variants in extracellular matrix (ECM) and calcium ion binding. By large-scale sequencing we identified a novel recessive BD risk gene, SERINC2, which plays a role in synthesis of sphingolipid and phosphatidylserine (PS). MRI image results show the homozygous nonsense variant in SERINC2 affects the volume of white matter in cerebellum. CONCLUSIONS Our study identified SERINC2 as a risk gene of BD in the Chinese population.
Collapse
Affiliation(s)
- Dong Yang
- Team for Growth Control and Size Innovative Research, Westlake University, Hangzhou, Zhejiang, China.,Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jianshan Chen
- Guangzhou Huiai Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiongchao Cheng
- Department of Clinical Psychology, Nanning Fifth People's Hospital, Nanning, Guangxi, China
| | - Bo Cao
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Hao Chang
- Howard Hughes Medical Institute, Department of Genetics, Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xuan Li
- Guangzhou Huiai Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chanjuan Yang
- Guangzhou Huiai Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiuxia Wu
- Guangzhou Huiai Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiaqi Sun
- Guangzhou Huiai Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Diane Manry
- Howard Hughes Medical Institute, Department of Genetics, Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yukun Pan
- Howard Hughes Medical Institute, Department of Genetics, Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA.,Yeda Research Institute of Gene and Cell Therapy, Taizhou, Zhejiang, China
| | - Yongli Dong
- Howard Hughes Medical Institute, Department of Genetics, Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jiaojiao Li
- Team for Growth Control and Size Innovative Research, Westlake University, Hangzhou, Zhejiang, China.,Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Tian Xu
- Team for Growth Control and Size Innovative Research, Westlake University, Hangzhou, Zhejiang, China.,Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.,Howard Hughes Medical Institute, Department of Genetics, Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Liping Cao
- Guangzhou Huiai Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
30
|
Fu G, Chen W, Li H, Wang Y, Liu L, Qian Q. A potential association of RNF219-AS1 with ADHD: Evidence from categorical analysis of clinical phenotypes and from quantitative exploration of executive function and white matter microstructure endophenotypes. CNS Neurosci Ther 2021; 27:603-616. [PMID: 33644999 PMCID: PMC8025624 DOI: 10.1111/cns.13629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/25/2021] [Accepted: 02/07/2021] [Indexed: 01/01/2023] Open
Abstract
AIMS Attention-deficit/hyperactivity disorder (ADHD) is a neuropsychiatric disorder of substantial heritability, yet emerging evidence suggests that key risk variants might reside in the noncoding regions of the genome. Our study explored the association of lncRNAs (long noncoding RNAs) with ADHD as represented at three different phenotypic levels guided by the Research Domain Criteria (RDoC) framework: (i) ADHD caseness and symptom dimension, (ii) executive functions as functional endophenotype, and (iii) potential genetic influence on white matter architecture as brain structural endophenotype. METHODS Genotype data of 107 tag single nucleotide polymorphisms (SNP) from 10 candidate lncRNAs were analyzed in 1040 children with ADHD and 630 controls of Chinese Han descent. Executive functions including inhibition and set-shifting were assessed by STROOP and trail making tests, respectively. Imaging genetic analyses were performed in a subgroup of 33 children with ADHD and 55 controls using fractional anisotropy (FA). RESULTS One SNP rs3908461 polymorphism in RNF219-AS1 was found to be significantly associated with ADHD caseness: with C-allele detected as the risk genotype in the allelic model (P = 8.607E-05) and dominant genotypic model (P = 9.628E-05). Nominal genotypic effects on inhibition (p = 0.020) and set-shifting (p = 0.046) were detected. While no direct effect on ADHD core symptoms was detected, mediation analysis suggested that SNP rs3908461 potentially exerted an indirect effect through inhibition function [B = 0.21 (SE = 0.12), 95% CI = 0.02-0.49]. Imaging genetic analyses detected significant associations between rs3908461 genotypes and FA values in corpus callosum, left superior longitudinal fasciculus, left posterior limb of internal capsule, left posterior thalamic radiate (include optic radiation), and the left anterior corona radiate (P FWE corrected < 0.05). CONCLUSION Our present study examined the potential roles of lncRNA in genetic etiological of ADHD and provided preliminary evidence in support of the potential RNF219-AS1 involvement in the pathophysiology of ADHD in line with the RDoC framework.
Collapse
Affiliation(s)
- Guang‐Hui Fu
- Peking University Sixth Hospital/Institute of Mental HealthBeijingChina
- National Clinical Research Center for Mental Disorders & The Key Laboratory of Mental HealthMinistry of Health (Peking UniversityBeijingChina
| | - Wai Chen
- Mental Health ServiceFiona Stanley HospitalPerthAustralia
- Graduate School of EducationThe University of Western AustraliaPerthAustralia
- School of MedicineThe University of Notre Dame AustraliaFremantleAustralia
- School of PsychologyMurdoch UniversityPerthAustralia
| | - Hai‐Mei Li
- Peking University Sixth Hospital/Institute of Mental HealthBeijingChina
- National Clinical Research Center for Mental Disorders & The Key Laboratory of Mental HealthMinistry of Health (Peking UniversityBeijingChina
| | - Yu‐Feng Wang
- Peking University Sixth Hospital/Institute of Mental HealthBeijingChina
- National Clinical Research Center for Mental Disorders & The Key Laboratory of Mental HealthMinistry of Health (Peking UniversityBeijingChina
| | - Lu Liu
- Peking University Sixth Hospital/Institute of Mental HealthBeijingChina
- National Clinical Research Center for Mental Disorders & The Key Laboratory of Mental HealthMinistry of Health (Peking UniversityBeijingChina
| | - Qiu‐Jin Qian
- Peking University Sixth Hospital/Institute of Mental HealthBeijingChina
- National Clinical Research Center for Mental Disorders & The Key Laboratory of Mental HealthMinistry of Health (Peking UniversityBeijingChina
| |
Collapse
|
31
|
Zhang F, Rao S, Cao H, Zhang X, Wang Q, Xu Y, Sun J, Wang C, Chen J, Xu X, Zhang N, Tian L, Yuan J, Wang G, Cai L, Xu M, Baranova A. Genetic evidence suggests posttraumatic stress disorder as a subtype of major depressive disorder. J Clin Invest 2021; 132:145942. [PMID: 33905376 PMCID: PMC8803333 DOI: 10.1172/jci145942] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/22/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Major depressive disorder (MDD) and posttraumatic stress disorder (PTSD) are highly comorbid and exhibit strong correlations with one another. We aimed to investigate mechanisms of underlying relationships between PTSD and three kinds of depressive phenotypes, namely, MDD, depressed affect (DAF), and depression (DEP, including both MDD and the broad definition of depression). METHODS Genetic correlations between PTSD and the depressive phenotypes were tested using linkage disequilibrium score regression. Polygenic overlap analysis was used to estimate shared and trait-specific causal variants across a pair of traits. Causal relationships between PTSD and the depressive phenotypes were investigated using Mendelian randomization. Shared genomic loci between PTSD and MDD were identified using cross-trait meta-analysis. RESULTS Genetic correlations of PTSD with the depressive phenotypes were in the range of 0.71~0.80. The estimated numbers of causal variants were 14,565, 12,965, 10,565, and 4,986 for MDD, DEP, DAF, and PTSD, respectively. In each case, causal variants contributing to PTSD were completely or largely covered by causal variants defining each of the depressive phenotypes. Mendelian randomization analysis indicates that the genetically determined depressive phenotypes confer a causal effect on PTSD (b = 0.21~0.31). Notably, genetically determined PTSD confers a causal effect on DEP (b = 0.14) and DAF (b = 0.15), but not MDD. Cross-trait meta-analysis of MDD and PTSD identifies 47 genomic loci, including 29 loci shared between PTSD and MDD. CONCLUSION Evidence from shared genetics suggests that PTSD is a subtype of MDD. This study provides support to the efforts in reducing diagnostic heterogeneity in psychiatric nosology. FUNDING The National Key Research and Development Program of China (2018YFC1314300) and the National Natural Science Foundation of China (81471364 and 81971255).
Collapse
Affiliation(s)
- Fuquan Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shuquan Rao
- State Key Laboratory of Experimental Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hongbao Cao
- School of Systems Biology, George Mason University, Fairfax, United States of America
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Wang
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Jing Sun
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chun Wang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiu Chen
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xijia Xu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Ning Zhang
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Lin Tian
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Jianmin Yuan
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Guoqiang Wang
- Department of Psychiatry, Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Lei Cai
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disor, Shanghai Jiao Tong University, Shanghai, China
| | - Mingqing Xu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disor, Shanghai Jiao Tong University, Shanghai, China
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Fairfax, United States of America
| |
Collapse
|
32
|
Olson A, Zhang F, Cao H, Baranova A, Slavin M. In silico Gene Set and Pathway Enrichment Analyses Highlight Involvement of Ion Transport in Cholinergic Pathways in Autism: Rationale for Nutritional Intervention. Front Neurosci 2021; 15:648410. [PMID: 33958984 PMCID: PMC8093449 DOI: 10.3389/fnins.2021.648410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Food is the primary human source of choline, an essential precursor to the neurotransmitter acetylcholine, which has a central role in signaling pathways that govern sensorimotor functions. Most Americans do not consume their recommended amount of dietary choline, and populations with neurodevelopmental conditions like autism spectrum disorder (ASD) may be particularly vulnerable to consequences of choline deficiency. This study aimed to identify a relationship between ASD and cholinergic signaling through gene set enrichment analysis and interrogation of existing database evidence to produce a systems biology model. In gene set enrichment analysis, two gene ontologies were identified as overlapping for autism-related and for cholinergic pathways-related functions, both involving ion transport regulation. Subsequent modeling of ion transport intensive cholinergic signaling pathways highlighted the importance of two genes with autism-associated variants: GABBR1, which codes for the gamma aminobutyric acid receptor (GABAB 1), and KCNN2, which codes for calcium-activated, potassium ion transporting SK2 channels responsible for membrane repolarization after cholinergic binding/signal transmission events. Cholinergic signal transmission pathways related to these proteins were examined in the Pathway Studio environment. The ion transport ontological associations indicated feasibility of a dietary choline support as a low-risk therapeutic intervention capable of modulating cholinergic sensory signaling in autism. Further research at the intersection of dietary status and sensory function in autism is warranted.
Collapse
Affiliation(s)
- Audrey Olson
- Department of Nutrition and Food Studies, College of Health and Human Services, George Mason University, Fairfax, VA, United States
- School of Systems Biology, College of Science, George Mason University, Manassas, VA, United States
| | - Fuquan Zhang
- Department of Psychiatry, Nanjing Medical University, Nanjing, China
| | - Hongbao Cao
- School of Systems Biology, College of Science, George Mason University, Manassas, VA, United States
- Department of Psychiatry, Shanxi Medical University, Taiyuan, China
| | - Ancha Baranova
- School of Systems Biology, College of Science, George Mason University, Manassas, VA, United States
- Research Centre for Medical Genetics, Moscow, Russia
| | - Margaret Slavin
- Department of Nutrition and Food Studies, College of Health and Human Services, George Mason University, Fairfax, VA, United States
| |
Collapse
|
33
|
Constable PA, Lee IO, Marmolejo-Ramos F, Skuse DH, Thompson DA. The photopic negative response in autism spectrum disorder. Clin Exp Optom 2021; 104:841-847. [PMID: 33826873 DOI: 10.1080/08164622.2021.1903808] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
CLINICAL RELEVANCE To ascertain if the photopic negative response of the electroretinogram is different in autism spectrum disorder as a potential clinical marker. BACKGROUND Visual function can be atypical in autism spectrum disorder and structural imaging of the ganglion cell layers has been reported to differ in these individuals. Therefore, we sought to investigate if the photopic negative response of the full field electroretinograms, a measure of ganglion cell function, could help explain the visual perceptual differences in autism spectrum disorder and support the structural changes observed. METHODS Participants (n = 55 autism spectrum disorder, aged 5.4-26.7 years) and control (n = 87, aged 5.4-27.3 years) were recruited for the study. Full-field light-adapted electroretinograms using a Troland protocol with 10 flash strengths from -0.367 to 1.204 log photopic cd.s.m-2 were recorded in each eye. The photopic negative response amplitudes at Tmin and at t = 72 ms were compared between groups along with the a- and b-wave values. RESULTS There were no significant interactions between groups for the Photopic Negative Response measures of amplitude or time (p > 0.30). There was a group interaction between groups and flash strengths for the b-wave amplitude as previously reported (p < 0.001). CONCLUSION The photopic negative response results suggest that there are no significant differences in the summed retinal ganglion cell responses produced by a full-field stimulus.
Collapse
Affiliation(s)
- Paul A Constable
- Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Adelaide, Australia
| | - Irene O Lee
- Behavioural and Brain Sciences Unit, Population Policy and Practice Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Fernando Marmolejo-Ramos
- Centre for Change and Complexity in Learning, The University of South Australia, Adelaide, Australia
| | - David H Skuse
- Behavioural and Brain Sciences Unit, Population Policy and Practice Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Dorothy A Thompson
- The Tony Kriss Visual Electrophysiology Unit, Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Trust, London, UK.,UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
34
|
Raviglione F, Douzgou S, Scala M, Mingarelli A, D'Arrigo S, Freri E, Darra F, Giglio S, Bonaglia MC, Pantaleoni C, Mastrangelo M, Epifanio R, Elia M, Saletti V, Morlino S, Vari MS, De Liso P, Pavaine J, Spaccini L, Cattaneo E, Gardella E, Møller RS, Marchese F, Colonna C, Gandioli C, Gobbi G, Ram D, Palumbo O, Carella M, Germano M, Tonduti D, De Angelis D, Caputo D, Bergonzini P, Novara F, Zuffardi O, Verrotti A, Orsini A, Bonuccelli A, De Muto MC, Trivisano M, Vigevano F, Granata T, Bernardina BD, Tranchina A, Striano P. Electroclinical features of MEF2C haploinsufficiency-related epilepsy: A multicenter European study. Seizure 2021; 88:60-72. [PMID: 33831796 DOI: 10.1016/j.seizure.2021.03.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Epilepsy is a main manifestation in the autosomal dominant mental retardation syndrome caused by heterozygous variants in MEF2C. We aimed to delineate the electro-clinical features and refine the genotype-phenotype correlations in patients with MEF2C haploinsufficiency. METHODS We thoroughly investigated 25 patients with genetically confirmed MEF2C-syndrome across 12 different European Genetics and Epilepsy Centers, focusing on the epileptic phenotype. Clinical features (seizure types, onset, evolution, and response to therapy), EEG recordings during waking/sleep, and neuroimaging findings were analyzed. We also performed a detailed literature review using the terms "MEF2C", "seizures", and "epilepsy". RESULTS Epilepsy was diagnosed in 19 out of 25 (~80%) subjects, with age at onset <30 months. Ten individuals (40%) presented with febrile seizures and myoclonic seizures occurred in ~50% of patients. Epileptiform abnormalities were observed in 20/25 patients (80%) and hypoplasia/partial agenesis of the corpus callosum was detected in 12/25 patients (~50%). Nine patients harbored a 5q14.3 deletion encompassing MEF2C and at least one other gene. In 7 out of 10 patients with myoclonic seizures, MIR9-2 and LINC00461 were also deleted, whereas ADGRV1 was involved in 3/4 patients with spasms. CONCLUSION The epileptic phenotype of MEF2C-syndrome is variable. Febrile and myoclonic seizures are the most frequent, usually associated with a slowing of the background activity and irregular diffuse discharges of frontally dominant, symmetric or asymmetric, slow theta waves with interposed spike-and-waves complexes. The haploinsufficiency of ADGRV1, MIR9-2, and LINC00461 likely contributes to myoclonic seizures and spasms in patients with MEF2C syndrome.
Collapse
Affiliation(s)
| | - Sofia Douzgou
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicines and Health, University of Manchester, Manchester, UK; Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK; Member of ERN-ITHACA
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Stefano D'Arrigo
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elena Freri
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; Member of ERN EpiCARE
| | - Francesca Darra
- Child Neuropsychiatry Unit, Department of Life and Reproduction Sciences, University of Verona, Verona, Italy
| | - Sabrina Giglio
- Department of Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Maria C Bonaglia
- Cytogenetics Laboratory, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Chiara Pantaleoni
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Massimo Mastrangelo
- Paediatric Neurology Unit, Department of Pediatrics, Children's Hospital Vittore Buzzi, Milan, Italy
| | - Roberta Epifanio
- Clinical Neurophysiology Unit, IRCCS, E Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | | | - Veronica Saletti
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silvia Morlino
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, Poliambulatorio "Giovanni Paolo II", Viale Padre Pio, snc, San Giovanni Rotondo 71013, Italy
| | - Maria Stella Vari
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paola De Liso
- Department of Neuroscience, Bambino Gesù Children's Hospital, IRRCS, Rome, Italy; Member of ERN EpiCARE
| | - Julija Pavaine
- Academic Unit of Paediatric Radiology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Luigina Spaccini
- Clinical Genetics Service, Department of Pediatrics, Vittore Buzzi Hospital, Milan, Italy
| | - Elisa Cattaneo
- Clinical Genetics Service, Department of Pediatrics, Vittore Buzzi Hospital, Milan, Italy
| | - Elena Gardella
- The Danish Epilepsy Centre Filadelfia, Dianalund, Denmark; Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark; Member of ERN EpiCARE
| | - Rikke S Møller
- The Danish Epilepsy Centre Filadelfia, Dianalund, Denmark; Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark; Member of ERN EpiCARE
| | - Francesca Marchese
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Clara Colonna
- Hospital Neuropsychiatry Service, ASST Rhodense, Rho, Milan, Italy
| | - Claudia Gandioli
- Hospital Neuropsychiatry Service, ASST Rhodense, Rho, Milan, Italy
| | - Giuseppe Gobbi
- Child Neurology Unit, IRCCS Istituto delle Scienze Neurologiche, Bologna, Italy
| | - Dipak Ram
- Department of Paediatric Neurology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Orazio Palumbo
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, Poliambulatorio "Giovanni Paolo II", Viale Padre Pio, snc, San Giovanni Rotondo 71013, Italy
| | - Massimo Carella
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, Poliambulatorio "Giovanni Paolo II", Viale Padre Pio, snc, San Giovanni Rotondo 71013, Italy
| | - Michele Germano
- Maternal and Pediatric Department, Fondazione IRCCS Casa Sollievo della Sofferenza, Poliambulatorio "Giovanni Paolo II", Viale Padre Pio, snc, San Giovanni Rotondo (FG) 71013, Italy
| | - Davide Tonduti
- Paediatric Neurology Unit, Department of Pediatrics, Children's Hospital Vittore Buzzi, Milan, Italy
| | - Diego De Angelis
- Pediatric Department, "Sapienza" University of Rome, Rome 00185, Italy
| | - Davide Caputo
- Department of Health Sciences, Child Neuropsychiatry Unit - Epilepsy Center, San Paolo Hospital, University of Medicine, Milan, Italy; Member of ERN EpiCARE
| | | | - Francesca Novara
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Orsetta Zuffardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Alberto Verrotti
- Department of Pediatrics, San Salvatore Hospital, University of L'Aquila, L'Aquila, Italy
| | - Alessandro Orsini
- Pediatric Neurology Santa Chiara Hospital, University of Pisa, Pisa, Italy
| | - Alice Bonuccelli
- Pediatric Neurology Santa Chiara Hospital, University of Pisa, Pisa, Italy
| | | | - Marina Trivisano
- Department of Neuroscience, Bambino Gesù Children's Hospital, IRRCS, Rome, Italy; Member of ERN EpiCARE
| | - Federico Vigevano
- Department of Neuroscience, Bambino Gesù Children's Hospital, IRRCS, Rome, Italy; Member of ERN EpiCARE
| | - Tiziana Granata
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; Member of ERN EpiCARE
| | - Bernardo Dalla Bernardina
- Child Neuropsychiatry Unit, Department of Life and Reproduction Sciences, University of Verona, Verona, Italy
| | - Antonia Tranchina
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
35
|
Identifying Shared Risk Genes between Nonalcoholic Fatty Liver Disease and Metabolic Traits by Cross-Trait Association Analysis. Processes (Basel) 2021. [DOI: 10.3390/pr9010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) generally co-occurs with metabolic disorders, but it is unclear which genes have a pleiotripic effect on NAFLD and metabolic traits. We performed a large-scale cross-trait association analysis to identify the overlapping genes between NAFLD and nine metabolic traits. Among all the metabolic traits, we found that obesity and type II diabetes are associated with NAFLD. Then, a multitrait association analysis among NAFLD, obesity and type II diabetes was conducted to improve the overall statistical power. We identified 792 significant variants by a cross-trait meta-analysis involving 100 pleiotripic genes. Moreover, we detected another two common genes by a genome-wide gene test. The results from the pathway enrichment analysis show that the 102 shared risk genes are enriched in cancer, diabetes, insulin secretion, and other related pathways. This study can help us understand the molecular mechanisms underlying comorbid NAFLD and metabolic disorders.
Collapse
|
36
|
Li Z, Liu S, Li X, Zhao W, Li J, Xu Y. Circular RNA in Schizophrenia and Depression. Front Psychiatry 2020; 11:392. [PMID: 32457667 PMCID: PMC7221196 DOI: 10.3389/fpsyt.2020.00392] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia (SZ) and depression (DEP) are two common major psychiatric disorders that are associated with high risk of suicide. These disorders affect not only physical and mental health, but they also affect the social function of the individual. However, diagnoses of SZ and DEP are mainly based on symptomatic changes and the clinical experience of psychiatrists. These rather subjective measures can induce misdiagnoses and missed diagnoses. Therefore, it is necessary to further explore objective indexes for improving the early diagnoses and prognoses of SZ and DEP. Current research indicates that non-coding RNA (ncRNA) may play a role in the occurrence and development of SZ and DEP. Circular RNA (circRNA), as an important component of ncRNA, is associated with many biological functions, especially post-transcriptional regulation. Since circRNA is easily detected in peripheral blood and has a high degree of spatiotemporal tissue specificity and stability, these attributes provide us with a new idea to further explore the potential value for the diagnosis and treatment of SZ and DEP. Here, we summarize the classification, characteristics, and biological functions of circRNA and the most significant results of experimental studies, aiming to highlight the involvement of circRNA in SZ and DEP.
Collapse
Affiliation(s)
- Zexuan Li
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Sha Liu
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Xinrong Li
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Wentao Zhao
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Jing Li
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Yong Xu
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,National Key Disciplines, Key Laboratory for Cellular Physiology of Ministry of Education, Department of Neurobiology, Shanxi Medical University, Taiyuan, China.,Department of Humanities and Social Science, Shanxi Medical University, Taiyuan, China
| |
Collapse
|