1
|
Matsuo T, Martínez-Ramos M, Onoda Y, Bongers F, Lohbeck M, Poorter L. Light competition drives species replacement during secondary tropical forest succession. Oecologia 2024; 205:1-11. [PMID: 38727828 PMCID: PMC11144147 DOI: 10.1007/s00442-024-05551-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 04/08/2024] [Indexed: 06/03/2024]
Abstract
Light competition is thought to drive successional shifts in species dominance in closed vegetations, but few studies have assessed this for species-rich and vertically structured tropical forests. We analyzed how light competition drives species replacement during succession, and how cross-species variation in light competition strategies is determined by underlying species traits. To do so, we used chronosequence approach in which we compared 14 Mexican tropical secondary rainforest stands that differ in age (8-32 year-old). For each tree, height and stem diameter were monitored for 2 years to calculate relative biomass growth rate (RGR, the aboveground biomass gain per unit aboveground tree biomass per year). For each stand, 3D light profiles were measured to estimate individuals' light interception to calculate light interception efficiency (LIE, intercepted light per unit biomass per year) and light use efficiency (LUE, biomass growth per intercepted light). Throughout succession, species with higher RGR attained higher changes in species dominance and thus increased their dominance over time. Both light competition strategies (LIE and LUE) increased RGR. In early succession, a high LIE and its associated traits (large crown leaf mass and low wood density) are more important for RGR. During succession, forest structure builds up, leading to lower understory light levels. In later succession, a high LUE and its associated traits (high wood density and leaf mass per area) become more important for RGR. Therefore, successional changes in relative importance of light competition strategies drive shifts in species dominance during tropical rainforest succession.
Collapse
Affiliation(s)
- Tomonari Matsuo
- Forest Ecology and Forest Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands.
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, CP 58190, Morelia, Michoacán, México.
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| | - Miguel Martínez-Ramos
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, CP 58190, Morelia, Michoacán, México
| | - Yusuke Onoda
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Frans Bongers
- Forest Ecology and Forest Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Madelon Lohbeck
- Forest Ecology and Forest Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Lourens Poorter
- Forest Ecology and Forest Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
2
|
Reyes-Ortiz M, Lira-Noriega A, Osorio-Olvera L, Luna-Vega I, Williams-Linera G. Leaf functional traits and ecological niche of Fagus grandifolia and Oreomunnea mexicana in natural forests and plantings as a proxy of climate change. AMERICAN JOURNAL OF BOTANY 2024; 111:e16322. [PMID: 38641895 DOI: 10.1002/ajb2.16322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 04/21/2024]
Abstract
PREMISE Functional traits reflect species' responses to environmental variation and the breadth of their ecological niches. Fagus grandifolia and Oreomunnea mexicana have restricted distribution in upper montane cloud forests (1700-2000 m a.s.l.) in Mexico. These species were introduced into plantings at lower elevations (1200-1600 m a.s.l.) that have climates predicted for montane forests in 2050 and 2070. The aim was to relate morphological leaf traits to the ecological niche structure of each species. METHODS Leaf functional traits (leaf area, specific leaf area [SLA], thickness, and toughness) were analyzed in forests and plantings. Atmospheric circulation models and representative concentration pathways (RCPs: 2.6, 4.5, 8.5) were used to assess future climate conditions. Trait-niche relationships were analyzed by measuring the Mahalanobis distance (MD) from the forests and the plantings to the ecological niche centroid (ENC). RESULTS For both species, leaf area and SLA were higher and toughness lower in plantings at lower elevation relative to those in higher-elevation forests, and thickness was similar. Leaf traits varied with distance from sites to the ENC. Forests and plantings have different environmental locations regarding the ENC, but forests are closer (MD 0.34-0.58) than plantings (MD 0.50-0.70) for both species. CONCLUSIONS Elevation as a proxy for expected future climate conditions influenced the functional traits of both species, and trait patterns related to the structure of their ecological niches were consistent. The use of distances to the ENC is a promising approach to explore variability in species' functional traits and phenotypic responses in optimal versus marginal environmental conditions.
Collapse
Affiliation(s)
- Miriam Reyes-Ortiz
- Red de Ecología Funcional, Instituto de Ecología, A.C., Carretera antigua a Coatepec No. 351, Xalapa, 91073, Veracruz, Mexico
- Departamento de Saúde Coletiva, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Rua Tessália Vieira de Camargo, 126 - Cidade Universitária Zeferino Vaz CEP 13083-887, Campinas, SP, Brazil
| | - Andrés Lira-Noriega
- Instituto de Ecología, A.C., Red de Estudios Moleculares Avanzados, Xalapa, 91073, Veracruz, Mexico
| | - Luis Osorio-Olvera
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, UNAM, Laboratorio de Ecoinformática de la Biodiversidad, Ciudad de México, Mexico
| | - Isolda Luna-Vega
- Departamento de Biología Evolutiva, Facultad de Ciencias, UNAM, Laboratorio de Biogeografía y Sistemática, Ciudad de México, Mexico
| | - Guadalupe Williams-Linera
- Red de Ecología Funcional, Instituto de Ecología, A.C., Carretera antigua a Coatepec No. 351, Xalapa, 91073, Veracruz, Mexico
| |
Collapse
|
3
|
Bondi L, de Paula LFA, Rosado BHP, Porembski S. Demystifying the convergent ecological specialization of desiccation-tolerant vascular plants for water deficit. ANNALS OF BOTANY 2023; 131:521-531. [PMID: 36655617 PMCID: PMC10072101 DOI: 10.1093/aob/mcad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND AIMS Desiccation-tolerant vascular plants (DT plants) are able to tolerate the desiccation of their vegetative tissues; as a result, two untested paradigms can be found in the literature, despite contradictions to theoretical premises and empirical findings. First, it is widely accepted that DT plants form a convergent group of specialist plants to water deficit conditions. A derived paradigm is that DT plants are placed at the extreme end of stress tolerance. Here, we tested the hypotheses that DT plants (1) are in fact convergent specialists for water deficit conditions and (2) exhibit ecological strategies related to stress tolerance, conservative resource-use and survival. METHODS We used biogeographical and functional-traits approaches to address the mentioned paradigms and assess the species' ecological strategies. For this, 27 DT plants were used and compared to 27 phylogenetically related desiccation-sensitive vascular plants (DS plants). KEY RESULTS We could not confirm either of the two hypotheses. We found that despite converging in desiccation tolerance, DT plants differ in relation to the conditions in which they occur and the ecological strategies they use to deal with water deficit. We found that some DT plants exhibit advantageous responses for higher growth and resource acquisition, which are suitable responses to cope with more productive conditions or with higher disturbance. We discuss that the ability to tolerate desiccation could compensate for a drought vulnerability promoted by higher investment in growth and bring advantages to deal with quick and pronounced variation of water, rather than to drought solely. CONCLUSIONS DT plants are not only selected by drought as an environmental constraint. The alternative functional designs could promote the diversity of ecological strategies, which preclude their convergence to the same resources and conditions. Thus, DT plants are a heterogeneous group of plants in how they deal with drought, despite their desiccation tolerance ability.
Collapse
Affiliation(s)
- Luiz Bondi
- Department of Botany, University of Rostock, Rostock, Germany
- Department of Ecology, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Luiza F A de Paula
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Bruno H P Rosado
- Department of Ecology, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | | |
Collapse
|
4
|
Asefa M, Worthy SJ, Cao M, Song X, Lozano YM, Yang J. Above- and below-ground plant traits are not consistent in response to drought and competition treatments. ANNALS OF BOTANY 2022; 130:939-950. [PMID: 36001733 PMCID: PMC9851322 DOI: 10.1093/aob/mcac108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Our understanding of plant responses to biotic and abiotic drivers is largely based on above-ground plant traits, with little focus on below-ground traits despite their key role in water and nutrient uptake. Here, we aimed to understand the extent to which above- and below-ground traits are co-ordinated, and how these traits respond to soil moisture gradients and plant intraspecific competition. METHODS We chose seedlings of five tropical tree species and grew them in a greenhouse for 16 weeks under a soil moisture gradient [low (drought), medium and high (well-watered) moisture levels] with and without intraspecific competition. At harvest, we measured nine above- and five below-ground traits of all seedlings based on standard protocols. KEY RESULTS In response to the soil moisture gradient, above-ground traits are found to be consistent with the leaf economics spectrum, whereas below-ground traits are inconsistent with the root economics spectrum. We found high specific leaf area and total leaf area in well-watered conditions, while high leaf dry matter content, leaf thickness and stem dry matter content were observed in drought conditions. However, below-ground traits showed contrasting patterns, with high specific root length but low root branching index in the low water treatment. The correlations between above- and below-ground traits across the soil moisture gradient were variable, i.e. specific leaf area was positively correlated with specific root length, while it was negatively correlated with root average diameter across moisture levels. However, leaf dry matter content was unexpectedly positively correlated with both specific root length and root branching index. Intraspecific competition has influenced both above- and below-ground traits, but interacted with soil moisture to affect only below-ground traits. Consistent with functional equilibrium theory, more biomass was allocated to roots under drought conditions, and to leaves under sufficient soil moisture conditions. CONCLUSIONS Our results indicate that the response of below-ground traits to plant intraspecific competition and soil moisture conditions may not be inferred using above-ground traits, suggesting that multiple resource use axes are needed to understand plant ecological strategies. Lack of consistent leaf-root trait correlations across the soil moisture gradient highlight the multidimensionality of plant trait relationships which needs more exploration.
Collapse
Affiliation(s)
- Mengesha Asefa
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, 666303, China
- Department of Biology, College of Natural and Computational Sciences, University of Gondar, Gondar, 196, Ethiopia
| | - Samantha J Worthy
- Department of Evolution and Ecology, University of California, Davis, CA, USA
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, China
| | - Xiaoyang Song
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, 666303, China
| | - Yudi M Lozano
- Freie Universität Berlin, Institute of Biology, Plant Ecology, D-14195 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195 Berlin, Germany
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, 666303, China
| |
Collapse
|
5
|
Rolhauser AG, Windfeld E, Hanson S, Wittman H, Thoreau C, Lyon A, Isaac ME. A trait-environment relationship approach to participatory plant breeding for organic agriculture. THE NEW PHYTOLOGIST 2022; 235:1018-1031. [PMID: 35510804 PMCID: PMC9322327 DOI: 10.1111/nph.18203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
The extent of intraspecific variation in trait-environment relationships is an open question with limited empirical support in crops. In organic agriculture, with high environmental heterogeneity, this knowledge could guide breeding programs to optimize crop attributes. We propose a three-dimensional framework involving crop performance, crop traits, and environmental axes to uncover the multidimensionality of trait-environment relationships within a crop. We modeled instantaneous photosynthesis (Asat ) and water-use efficiency (WUE) as functions of four phenotypic traits, three soil variables, five carrot (Daucus carota) varieties, and their interactions in a national participatory plant breeding program involving a suite of farms across Canada. We used these interactions to describe the resulting 12 trait-environment relationships across varieties. We found one significant trait-environment relationship for Asat (taproot tissue density-soil phosphorus), which was consistent across varieties. For WUE, we found that three relationships (petiole diameter-soil nitrogen, petiole diameter-soil phosphorus, and leaf area-soil phosphorus) varied significantly across varieties. As a result, WUE was maximized by different combinations of trait values and soil conditions depending on the variety. Our three-dimensional framework supports the identification of functional traits behind the differential responses of crop varieties to environmental variation and thus guides breeding programs to optimize crop attributes from an eco-evolutionary perspective.
Collapse
Affiliation(s)
- Andrés G. Rolhauser
- Department of Physical and Environmental SciencesUniversity of Toronto ScarboroughTorontoONM1C 1A4Canada
- Departamento de Métodos Cuantitativos y Sistemas de InformaciónFacultad de AgronomíaUniversidad de Buenos AiresBuenos AiresC1417DSEArgentina
- Facultad de AgronomíaIFEVAUniversidad de Buenos AiresCONICETBuenos AiresC1417DSEArgentina
| | - Emma Windfeld
- Department of GeographyUniversity of TorontoTorontoONM5S 3G3Canada
- School of Public PolicySimpson CentreUniversity of CalgaryCalgaryABT2P 1H9Canada
| | - Solveig Hanson
- Center for Sustainable Food SystemsUniversity of British ColumbiaVancouverBCV6T 1Z2Canada
| | - Hannah Wittman
- Center for Sustainable Food SystemsUniversity of British ColumbiaVancouverBCV6T 1Z2Canada
| | - Chris Thoreau
- Center for Sustainable Food SystemsUniversity of British ColumbiaVancouverBCV6T 1Z2Canada
| | - Alexandra Lyon
- Center for Sustainable Food SystemsUniversity of British ColumbiaVancouverBCV6T 1Z2Canada
- Department of Sustainable Agriculture and Food SystemsKwantlen Polytechnic UniversityRichmondBCV6X 3X7Canada
| | - Marney E. Isaac
- Department of Physical and Environmental SciencesUniversity of Toronto ScarboroughTorontoONM1C 1A4Canada
- Department of GeographyUniversity of TorontoTorontoONM5S 3G3Canada
| |
Collapse
|
6
|
Filartiga AL, Klimeš A, Altman J, Nobis MP, Crivellaro A, Schweingruber F, Doležal J. Comparative anatomy of leaf petioles in temperate trees and shrubs: the role of plant size, environment and phylogeny. ANNALS OF BOTANY 2022; 129:567-582. [PMID: 35136925 PMCID: PMC9007101 DOI: 10.1093/aob/mcac014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS Petioles are important plant organs connecting stems with leaf blades and affecting light-harvesting ability of the leaf as well as transport of water, nutrients and biochemical signals. Despite the high diversity in petiole size, shape and anatomy, little information is available regarding their structural adaptations across evolutionary lineages and environmental conditions. To fill this knowledge gap, we investigated the variation of petiole morphology and anatomy of mainly European woody species to better understand the drivers of internal and external constraints in an evolutionary context. METHODS We studied how petiole anatomical features differed according to whole-plant size, leaf traits, thermal and hydrological conditions, and taxonomic origin in 95 shrubs and trees using phylogenetic distance-based generalized least squares models. KEY RESULTS Two major axes of variation were related to leaf area and plant size. Larger and softer leaves are found in taller trees of more productive habitats. Their petioles are longer, with a circular outline and are anatomically characterized by the predominance of sclerenchyma, larger vessels, interfascicular areas with fibres and indistinct phloem rays. In contrast, smaller and tougher leaves are found in shorter trees and shrubs of colder or drier habitats. Their petioles have a terete outline, phloem composed of small cells and radially arranged vessels, fibreless xylem and lamellar collenchyma. Individual anatomical traits were linked to different internal and external drivers. Petiole length and vessel diameter increase with increasing leaf blade area. Collenchyma becomes absent with increasing temperature, and petiole outline becomes polygonal with increasing precipitation. CONCLUSIONS We conclude that species' temperature and precipitation optima, plant height, and leaf area and thickness exerted a significant control on petiole anatomical and morphological structures not confounded by phylogenetic inertia. Species with different evolutionary histories but similar thermal and hydrological requirements have converged to similar petiole anatomical structures.
Collapse
Affiliation(s)
| | - Adam Klimeš
- Institute of Botany, The Czech Academy of Sciences, Třeboň, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Altman
- Institute of Botany, The Czech Academy of Sciences, Třeboň, Czech Republic
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague 6 - Suchdol, Czech Republic
| | | | - Alan Crivellaro
- Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, UK
- Forest Biometrics Laboratory, Faculty of Forestry, ‘Stefan cel Mare’ University of Suceava, Str. Universitatii 13, 720229 Suceava, Romania
| | | | - Jiří Doležal
- Institute of Botany, The Czech Academy of Sciences, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
7
|
Li Y, Kang X, Zhou J, Zhao Z, Zhang S, Bu H, Qi W. Geographic Variation in the Petiole-Lamina Relationship of 325 Eastern Qinghai-Tibetan Woody Species: Analysis in Three Dimensions. FRONTIERS IN PLANT SCIENCE 2021; 12:748125. [PMID: 34777427 PMCID: PMC8583490 DOI: 10.3389/fpls.2021.748125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
The petiole-lamina relationship is central to the functional tradeoff between photosynthetic efficiency and the support/protection cost. Understanding environmental gradients in the relationship and its underlying mechanisms remains a critical challenge for ecologists. We investigated the possible scaling of the petiole-lamina relationships in three dimensions, i.e., petiole length (PL) vs. lamina length (LL), petiole cross sectional area (PCA) vs. lamina area (LA), and petiole mass (PM) vs. lamina mass (LM), for 325 Qinghai-Tibetan woody species, and examined their relation to leaf form, altitude, climate, and vegetation types. Both crossspecies analysis and meta-analysis showed significantly isometric, negatively allometric, and positively allometric scaling of the petiole-lamina relationships in the length, area, and mass dimensions, respectively, reflecting an equal, slower, and faster variation in the petiole than in the lamina in these trait dimensions. Along altitudinal gradients, the effect size of the petiole-lamina relationship decreased in the length and mass dimensions but increased in the area dimension, suggesting the importance of enhancing leaf light-interception and nutrient transport efficiency in the warm zones in petiole development, but enhancing leaf support/protection in the cold zones. The significant additional influences of LA, LM, and LA were observed on the PL-LL, PCA-LA, and PM-LM relationships, respectively, implying that the single-dimension petiole trait is affected simultaneously by multidimensional lamina traits. Relative to simple-leaved species, the presence of petiolule in compound-leaved species can increase both leaf light interception and static gravity loads or dynamic drag forces on the petiole, leading to lower dependence of PL variation on LL variation, but higher biomass allocation to the petiole. Our study highlights the need for multidimension analyses of the petiole-lamina relationships and illustrates the importance of plant functional tradeoffs and the change in the tradeoffs along environmental gradients in determining the relationships.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Qi
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
8
|
Didion‐Gency M, Bachofen C, Buchmann N, Gessler A, Morin X, Vicente E, Vollenweider P, Grossiord C. Interactive effects of tree species mixture and climate on foliar and woody trait variation in a widely distributed deciduous tree. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Margaux Didion‐Gency
- Forest Dynamics Unit Swiss Federal Institute for Forest, Snow and Landscape WSL Birmensdorf Switzerland
| | - Christoph Bachofen
- Plant Ecology Research Laboratory PERL School of Architecture Civil and Environmental Engineering EPFL Lausanne Switzerland
- Community Ecology Unit Swiss Federal Institute for Forest, Snow and Landscape WSL Lausanne Switzerland
| | - Nina Buchmann
- Institute of Agricultural Sciences ETH Zurich Zurich Switzerland
| | - Arthur Gessler
- Forest Dynamics Unit Swiss Federal Institute for Forest, Snow and Landscape WSL Birmensdorf Switzerland
- Institute of Terrestrial Ecosystems ETH Zurich Zurich Switzerland
| | - Xavier Morin
- CEFEUniversité de Montpellier—CNRSEPHEIRDUniv. Paul Valéry Montpellier 3 Montpellier France
| | - Eduardo Vicente
- Department of Ecology Joint Research Unit University of Alicante—CEAMUniversity of Alicante Alicante Spain
| | - Pierre Vollenweider
- Forest Dynamics Unit Swiss Federal Institute for Forest, Snow and Landscape WSL Birmensdorf Switzerland
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory PERL School of Architecture Civil and Environmental Engineering EPFL Lausanne Switzerland
- Community Ecology Unit Swiss Federal Institute for Forest, Snow and Landscape WSL Lausanne Switzerland
| |
Collapse
|
9
|
Zheng S, Webber BL, Didham RK, Chen C, Yu M. Disentangling biotic and abiotic drivers of intraspecific trait variation in woody plant seedlings at forest edges. Ecol Evol 2021; 11:9728-9740. [PMID: 34306658 PMCID: PMC8293732 DOI: 10.1002/ece3.7799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 11/08/2022] Open
Abstract
In fragmented forests, edge effects can drive intraspecific variation in seedling performance that influences forest regeneration and plant composition. However, few studies have attempted to disentangle the relative biotic and abiotic drivers of intraspecific variation in seedling performance. In this study, we carried out a seedling transplant experiment with a factorial experimental design on three land-bridge islands in the Thousand Island Lake, China, using four common native woody plant species. At different distances from the forest edge (2, 8, 32, 128 m), we transplanted four seedlings of each species into each of three cages: full-cage, for herbivore exclusion; half-cage, that allowed herbivore access but controlled for caging artifacts; and no-cage control. In the 576 cages, we recorded branch architecture, leaf traits, and seedling survival for each seedling before and after the experimental treatment. Overall, after one full growing season, edge-induced abiotic drivers and varied herbivory pressure led to intraspecific variation in seedling performance, including trade-offs in seedling architecture and resource-use strategies. However, responses varied across species with different life-history strategies and depended on the driver in question, such that the abiotic and biotic effects were additive across species, rather than interactive. Edge-induced abiotic variation modified seedling architecture of a shade-tolerant species, leading to more vertical rather than lateral growth at edges. Meanwhile, increased herbivory pressure resulted in a shift toward lower dry matter investment in leaves of a light-demanding species. Our results suggest that edge effects can drive rapid directional shifts in the performance and intraspecific traits of some woody plants from early ontogenetic stages, but most species in this study showed negligible phenotypic responses to edge effects. Moreover, species-specific responses suggest the importance of interspecific differences modulating the degree of trait plasticity, implying the need to incorporate individual-level responses when understanding the impact of forest fragmentation on plant communities.
Collapse
Affiliation(s)
- Shilu Zheng
- School of Biological SciencesThe University of Western AustraliaCrawleyWAAustralia
- Centre for Environment and Life SciencesCSIRO Health & BiosecurityFloreatWAAustralia
| | - Bruce L. Webber
- School of Biological SciencesThe University of Western AustraliaCrawleyWAAustralia
- Centre for Environment and Life SciencesCSIRO Health & BiosecurityFloreatWAAustralia
- Western Australian Biodiversity Science InstitutePerthWAAustralia
| | - Raphael K. Didham
- School of Biological SciencesThe University of Western AustraliaCrawleyWAAustralia
- Centre for Environment and Life SciencesCSIRO Health & BiosecurityFloreatWAAustralia
| | - Chun Chen
- College of Life SciencesZhejiang UniversityHangzhouChina
| | - Mingjian Yu
- College of Life SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
10
|
Umaña MN, Swenson NG, Marchand P, Cao M, Lin L, Zhang C. Relating leaf traits to seedling performance in a tropical forest: building a hierarchical functional framework. Ecology 2021; 102:e03385. [PMID: 33961283 DOI: 10.1002/ecy.3385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/07/2021] [Accepted: 03/15/2021] [Indexed: 11/10/2022]
Abstract
Trait-based approaches have been extensively used in community ecology to provide a mechanistic understanding of the drivers of community assembly. However, a foundational assumption of the trait framework, traits relate to performance, has been mainly examined through univariate relationships that simplify the complex phenotypic integration of organisms. We evaluate a conceptual framework in which traits are organized hierarchically combining trait information at the individual- and species-level from biomass allocation and organ-level traits. We focus on photosynthetic traits and predict that the positive effects of increasing plant leaf mass on growth depend on species-level leaf traits. We modeled growth data on more than 1,500 seedlings from 97 seedling species from a tropical forest in China. We found that seedling growth increases with allocation to leaves (high leaf area ratio and leaf mass fraction) and this effect is accentuated for species with high specific leaf area and leaf area. Also, we found that light has a significant effect on growth, and this effect is additive with leaf allocation traits. Our work offers an approach to gain further understanding of the effects of traits on the whole plant-level growth via a hierarchical framework including organ-level and biomass allocation traits at species and individual levels.
Collapse
Affiliation(s)
- María Natalia Umaña
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48019, USA
| | - Nathan G Swenson
- Department of Biological Sciences, University of Notre Dame, South Bend, Indiana, 46556, USA
| | - Philippe Marchand
- Institut de recherche sur les forêts, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Quebec, J9X 5E4, Canada
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Luxiang Lin
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Caicai Zhang
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
| |
Collapse
|
11
|
Jiang F, Cadotte MW, Jin G. Individual-level leaf trait variation and correlation across biological and spatial scales. Ecol Evol 2021; 11:5344-5354. [PMID: 34026011 PMCID: PMC8131770 DOI: 10.1002/ece3.7425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 11/11/2022] Open
Abstract
Even with increasing interest in the ecological importance of intraspecific trait variation (ITV) for better understanding ecological processes, few studies have quantified ITV in seedlings and assessed constraints imposed by trade-offs and correlations among individual-level leaf traits. Estimating the amount and role of ITV in seedlings is important to understand tree recruitment and long-term forest dynamics. We measured ten different size, economics, and whole leaf traits (lamina and petiole) for more than 2,800 seedlings (height ≥ 10 cm and diameter at breast height < 1 cm) in 283 seedling plots and then quantified the amount of ITV and trait correlations across two biological (intraspecific and interspecific) and spatial (within and among plots) scales. Finally, we explored the effects of trait variance and sample size on the strength of trait correlations. We found about 40% (6%-63%) variation in leaf-level traits was explained by ITV across all traits. Lamina and petiole traits were correlated across biological and spatial scales, whereas leaf size traits (e.g., lamina area) were weakly correlated with economics traits (e.g., specific lamina area); lamina mass ratio was strongly related to the petiole length. Trait correlations varied among species, plots, and different scales but there was no evidence that the strength of trait relationships was stronger at broader than finer biological and spatial scales. While larger trait variance increased the strength of correlations, the sample size was the most important factor that was negatively related to the strength of trait correlations. Our results showed that a large amount of trait variation was explained by ITV, which highlighted the importance of considering ITV when using trait-based approaches in seedling ecology. In addition, sample size was an important factor that influenced the strength of trait correlations, which suggests that comparing trait correlations across studies should consider the differences in sample size.
Collapse
Affiliation(s)
- Feng Jiang
- Center for Ecological ResearchNortheast Forestry UniversityHarbinChina
- Department of Biological SciencesUniversity of Toronto ScarboroughTorontoONCanada
| | - Marc W. Cadotte
- Department of Biological SciencesUniversity of Toronto ScarboroughTorontoONCanada
- Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
| | - Guangze Jin
- Center for Ecological ResearchNortheast Forestry UniversityHarbinChina
- Key Laboratory of Sustainable Forest Ecosystem Management‐Ministry of EducationNortheast Forestry UniversityHarbinChina
| |
Collapse
|
12
|
Singh S, Pandey B, Roy LB, Shekhar S, Singh RK. Tree responses to foliar dust deposition and gradient of air pollution around opencast coal mines of Jharia coalfield, India: gas exchange, antioxidative potential and tolerance level. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8637-8651. [PMID: 33067782 DOI: 10.1007/s11356-020-11088-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Atmospheric pollution by opencast mining activities affects tree species around the mining area. The present study evaluated the responses of five native tree species to air pollution in Jharia coalfield. Sites were selected as closest to farthest from the mining area. Foliar dust deposition and foliar sulphate content affected stomatal conductance, superoxide dismutase activity and ascorbic acid and, thus, increased the susceptibility of sensitive species. Ficus benghalensis and Butea monosperma showed maximum dust deposition, while Adina cordifolia showed minimum deposition. Maximum dust deposition in Ficus benghalensis lowered stomatal conductance and, thus, checked the flux of other acidic gaseous pollutants which led to minimum variation in leaf extract pH. Higher stomatal conductance in Adina cordifolia and Aegle marmelos, on the other hand, facilitated the entry of acidic pollutants and disrupted many biological functions by altering photosynthesis and inducing membrane damage. Low variations in Ficus religiosa, Ficus benghalensis and Butea monosperma with sites and seasons suggest better physiological and morphological adaptations towards pollution load near coal mining areas. Tree species with better adaptation resisted variation in leaf extract pH by effectively metabolising sulphate and, thus, had higher chlorophyll content and relative water content.
Collapse
Affiliation(s)
- Siddharth Singh
- CSIR-Central Institute of Mining & Fuel Research, Dhanbad, Jharkhand, 826001, India.
| | - Bhanu Pandey
- CSIR-Central Institute of Mining & Fuel Research, Dhanbad, Jharkhand, 826001, India
| | - Lal Babu Roy
- CSIR-Central Institute of Mining & Fuel Research, Dhanbad, Jharkhand, 826001, India
| | - Sameer Shekhar
- CSIR-Central Institute of Mining & Fuel Research, Dhanbad, Jharkhand, 826001, India
| | - Ranjeet Kumar Singh
- CSIR-Central Institute of Mining & Fuel Research, Dhanbad, Jharkhand, 826001, India
| |
Collapse
|
13
|
Umaña MN, Arellano G, Swenson NG, Zambrano J. Tree seedling trait optimization and growth in response to local-scale soil and light variability. Ecology 2021; 102:e03252. [PMID: 33219522 DOI: 10.1002/ecy.3252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/31/2020] [Accepted: 09/14/2020] [Indexed: 11/09/2022]
Abstract
At local scales, it has been suggested that high levels of resources lead to increased tree growth via trait optimization (highly peaked trait distribution). However, this contrasts with (1) theories that suggest that trait optimization and high growth occur in the most common resource level and (2) empirical evidence showing that high trait optimization can be also found at low resource levels. This raises the question of how are traits and growth optimized in highly diverse plant communities. Here, we propose a series of hypotheses about how traits and growth are expected to be maximized under different resource levels (low, the most common, and high) in tree seedling communities from a subtropical forest in Puerto Rico, USA. We studied the variation in the distribution of biomass allocation and leaf traits and seedlings growth rate along four resource gradients: light availability (canopy openness) and soil K, Mg, and N content. Our analyses consisted of comparing trait kurtosis (a measurement of trait optimization), community trait means, and relative growth rates at three resource levels (low, common, and high). Trait optimization varied across the three resource levels depending on the type of resource and trait, with leaf traits being optimized under high N and in the most common K and Mg conditions, but not at any of the light levels. Also, seedling growth increased at high-light conditions and high N and K but was not related to trait kurtosis. Our results indicate that local-scale variability of soil fertility and understory light conditions result in shifts in species ecological strategies that increase growth despite a weak trait optimization, suggesting the existence of alternative phenotypes that achieve similar high performance. Uncovering the links between abiotic factors, functional trait diversity and performance is necessary to better predict tree responses to future changes in abiotic conditions.
Collapse
Affiliation(s)
- María Natalia Umaña
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Gabriel Arellano
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Nathan G Swenson
- Department of Biology, University of Maryland, College Park, Maryland, 20742, USA
| | - Jenny Zambrano
- The School of Biological Sciences, Washington State University, Pullman, Washington, 99164, USA
| |
Collapse
|
14
|
Puglielli G, Laanisto L, Poorter H, Niinemets Ü. Global patterns of biomass allocation in woody species with different tolerances of shade and drought: evidence for multiple strategies. THE NEW PHYTOLOGIST 2021; 229:308-322. [PMID: 33411342 DOI: 10.1111/nph.16879] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/07/2020] [Indexed: 06/12/2023]
Abstract
The optimal partitioning theory predicts that plants of a given species acclimate to different environments by allocating a larger proportion of biomass to the organs acquiring the most limiting resource. Are similar patterns found across species adapted to environments with contrasting levels of abiotic stress? We tested the optimal partitioning theory by analysing how fractional biomass allocation to leaves, stems and roots differed between woody species with different tolerances of shade and drought in plants of different age and size (seedlings to mature trees) using a global dataset including 604 species. No overarching biomass allocation patterns at different tolerance values across species were found. Biomass allocation varied among functional types as a result of phenological (deciduous vs evergreen broad-leaved species) and broad phylogenetical (angiosperms vs gymnosperms) differences. Furthermore, the direction of biomass allocation responses between tolerant and intolerant species was often opposite to that predicted by the optimal partitioning theory. We conclude that plant functional type is the major determinant of biomass allocation in woody species. We propose that interactions between plant functional type, ontogeny and species-specific stress tolerance adaptations allow woody species with different shade and drought tolerances to display multiple biomass partitioning strategies.
Collapse
Affiliation(s)
- Giacomo Puglielli
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, 51006, Estonia
| | - Lauri Laanisto
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, 51006, Estonia
| | - Hendrik Poorter
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, D-52425, Germany
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, 51006, Estonia
- Estonian Academy of Sciences, Tallinn, 10130, Estonia
| |
Collapse
|
15
|
Sun J, Chen X, Wang M, Li J, Zhong Q, Cheng D. Application of leaf size and leafing intensity scaling across subtropical trees. Ecol Evol 2020; 10:13395-13402. [PMID: 33304546 PMCID: PMC7713914 DOI: 10.1002/ece3.6943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 11/27/2022] Open
Abstract
Understanding the scaling between leaf size and leafing intensity (leaf number per stem size) is crucial for comprehending theories about the leaf costs and benefits in the leaf size-twig size spectrum. However, the scaling scope of leaf size versus leafing intensity changes along the twig leaf size variation in different leaf habit species remains elusive. Here, we hypothesize that the numerical value of scaling exponent for leaf mass versus leafing intensity in twig is governed by the minimum leaf mass versus maximum leaf mass (M min versus M max) and constrained to be ≤-1.0. We tested this hypothesis by analyzing the twigs of 123 species datasets compiled in the subtropical mountain forest. The standardized major axis regression (SMA) analyses showed the M min scaled as the 1.19 power of M max and the -α (-1.19) were not statistically different from the exponents of M min versus leafing intensity in whole data. Across leaf habit groups, the M max scaled negatively and isometrically with respect to leafing intensity. The pooled data's scaling exponents ranged from -1.14 to -0.96 for M min and M max versus the leafing intensity based on stem volume (LIV). In the case of M min and M max versus the leafing intensity based on stem mass (LIM), the scaling exponents ranged from -1.24 to -1.04. Our hypothesis successfully predicts that the scaling relationship between leaf mass and leafing intensity is constrained to be ≤-1.0. More importantly, the lower limit to scaling of leaf mass and leafing intensity may be closely correlated with M min versus M max. Besides, constrained by the maximum leaf mass expansion, the broad scope range between leaf size and number may be insensitive to leaf habit groups in subtropical mountain forest.
Collapse
Affiliation(s)
- Jun Sun
- Fujian Provincial Key Laboratory of Plant EcophysiologyFujian Normal UniversityFuzhouChina
| | - Xiaoping Chen
- Fujian Provincial Key Laboratory of Plant EcophysiologyFujian Normal UniversityFuzhouChina
| | - Mantang Wang
- Fujian Provincial Key Laboratory of Plant EcophysiologyFujian Normal UniversityFuzhouChina
- School of City and Civil EngineeringZaozhuang UniversityZaozhuangChina
| | - Jinlong Li
- Fujian Provincial Key Laboratory of Plant EcophysiologyFujian Normal UniversityFuzhouChina
| | - Quanlin Zhong
- Fujian Provincial Key Laboratory of Plant EcophysiologyFujian Normal UniversityFuzhouChina
- Institute of GeographyFujian Normal UniversityFuzhouChina
| | - Dongliang Cheng
- Fujian Provincial Key Laboratory of Plant EcophysiologyFujian Normal UniversityFuzhouChina
- Institute of GeographyFujian Normal UniversityFuzhouChina
| |
Collapse
|
16
|
Variation in Leaf Size and Fluctuating Asymmetry of Mountain Birch (Betula pubescens var. pumila) in Space and Time: Implications for Global Change Research. Symmetry (Basel) 2020. [DOI: 10.3390/sym12101703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Experimental, latitudinal, and historical approaches have been used to explore and/or predict the effects of global change on biota, and each approach has its own advantages and disadvantages. The weaknesses of these individual approaches can, potentially, be avoided by applying them simultaneously, but this is rarely done in global change research. Here, we explored the temporal and spatial variations in the leaf size and fluctuating asymmetry (FA) of mountain birch (Betula pubescens var. pumila) in the Murmansk region of Russia, with the aim of verifying the predictions derived from the responses of these traits to experimental manipulations of abiotic drivers of global change. The examination of herbarium specimens revealed that leaf length increased during the 20th century, whereas the FA in the number of leaf teeth decreased, presumably reflecting an increase in the carbon and nitrogen availability to plants in that century. Along a northward latitudinal gradient, leaf length decreased whereas FA increased, presumably due to the poleward decreases in air temperature. The study site, collection year, and latitude explained a larger part of the leaf length variation in mountain birch relative to the variation in FA. Leaf length is likely a better indicator than FA in studies addressing global environmental change impacts on plant performance.
Collapse
|
17
|
Levionnois S, Coste S, Nicolini E, Stahl C, Morel H, Heuret P. Scaling of petiole anatomies, mechanics and vasculatures with leaf size in the widespread Neotropical pioneer tree species Cecropia obtusa Trécul (Urticaceae). TREE PHYSIOLOGY 2020; 40:245-258. [PMID: 31976541 DOI: 10.1093/treephys/tpz136] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 11/28/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Although the leaf economic spectrum has deepened our understanding of leaf trait variability, little is known about how leaf traits scale with leaf area. This uncertainty has resulted in the assumption that leaf traits should vary by keeping the same pace of variation with increases in leaf area across the leaf size range. We evaluated the scaling of morphological, tissue-surface and vascular traits with overall leaf area, and the functional significance of such scaling. We examined 1,271 leaves for morphological traits, and 124 leaves for anatomical and hydraulic traits, from 38 trees of Cecropia obtusa Trécul (Urticaceae) in French Guiana. Cecropia is a Neotropical genus of pioneer trees that can exhibit large laminas (0.4 m2 for C. obtusa), with leaf size ranging by two orders of magnitude. We measured (i) tissue fractions within petioles and their second moment of area, (ii) theoretical xylem hydraulic efficiency of petioles and (iii) the extent of leaf vessel widening within the hydraulic path. We found that different scaling of morphological trait variability allows for optimisation of lamina display among larger leaves, especially the positive allometric relationship between lamina area and petiole cross-sectional area. Increasing the fraction of pith is a key factor that increases the geometrical effect of supportive tissues on mechanical rigidity and thereby increases carbon-use efficiency. We found that increasing xylem hydraulic efficiency with vessel size results in lower leaf lamina area: xylem ratios, which also results in potential carbon savings for large leaves. We found that the vessel widening is consistent with hydraulic optimisation models. Leaf size variability modifies scaling of leaf traits in this large-leaved species.
Collapse
Affiliation(s)
- Sébastien Levionnois
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, UA, UG, 97379 Kourou Cedex, France
| | - Sabrina Coste
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, UA, UG, 97379 Kourou Cedex, France
| | - Eric Nicolini
- UMR AMAP, CIRAD, CNRS, INRAE, IRD, Université de Montpellier, 34398 Montpellier, France
| | - Clément Stahl
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, UA, UG, 97379 Kourou Cedex, France
| | - Hélène Morel
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, UA, UG, 97379 Kourou Cedex, France
| | - Patrick Heuret
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, UA, UG, 97379 Kourou Cedex, France
- UMR AMAP, CIRAD, CNRS, INRAE, IRD, Université de Montpellier, 34398 Montpellier, France
| |
Collapse
|
18
|
Martin RE, Asner GP, Bentley LP, Shenkin A, Salinas N, Huaypar KQ, Pillco MM, Ccori Álvarez FD, Enquist BJ, Diaz S, Malhi Y. Covariance of Sun and Shade Leaf Traits Along a Tropical Forest Elevation Gradient. FRONTIERS IN PLANT SCIENCE 2020; 10:1810. [PMID: 32076427 PMCID: PMC7006543 DOI: 10.3389/fpls.2019.01810] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Foliar trait adaptation to sun and shade has been extensively studied in the context of photosynthetic performance of plants, focusing on nitrogen allocation, light capture and use via chlorophyll pigments and leaf morphology; however, less is known about the potential sun-shade dichotomy of other functionally important foliar traits. In this study, we measured 19 traits in paired sun and shade leaves along a 3,500-m elevation gradient in southern Peru to test whether the traits differ with canopy position, and to assess if relative differences vary with species composition and/or environmental filters. We found significant sun-shade differences in leaf mass per area (LMA), photosynthetic pigments (Chl ab and Car), and δ13C. Sun-shade offsets among these traits remained constant with elevation, soil substrates, and species compositional changes. However, other foliar traits related to structure and chemical defense, and those defining general metabolic processes, did not differ with canopy position. Our results suggest that whole-canopy function is captured in many traits of sun leaves; however, photosynthesis-related traits must be scaled based on canopy light extinction. These findings show that top-of-canopy measurements of foliar chemistry from spectral remote sensing approaches map directly to whole-canopy foliar traits including shaded leaves that cannot be directly observed from above.
Collapse
Affiliation(s)
- Roberta E. Martin
- School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ, United States
- Center for Global Discovery and Conservation Science, Arizona State University, Tempe, AZ, United States
| | - Gregory P. Asner
- School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ, United States
- Center for Global Discovery and Conservation Science, Arizona State University, Tempe, AZ, United States
| | | | - Alexander Shenkin
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, United Kingdom
| | - Norma Salinas
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, United Kingdom
- Sección Química, Pontificia Universidad Católica del Perú, Lima, Perú
| | - Katherine Quispe Huaypar
- Departamento Académico de Biología, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Perú
| | - Milenka Montoya Pillco
- Departamento Académico de Biología, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Perú
| | - Flor Delis Ccori Álvarez
- Departamento Académico de Biología, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Perú
| | - Brian J. Enquist
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, United States
- The Santa Fe Institute, Santa Fe, NM, United States
| | - Sandra Diaz
- Instituto Interdisciplinario de Biología Vegetal (CONICET-UNC) y FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
19
|
Umaña MN, Arellano G, Forero‐Montaña J, Nytch CJ, Swenson NG, Thompson J, Uriarte M, Zimmerman JK. Large‐ and small‐seeded species have contrasting functional neighborhoods in a subtropical forest. Ecosphere 2020. [DOI: 10.1002/ecs2.3016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- María Natalia Umaña
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan 48109 USA
| | - Gabriel Arellano
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan 48109 USA
- ForestGEO Smithsonian Tropical Research Institute Washington D.C. 20013 USA
| | | | - Christopher J. Nytch
- Department of Biology University of Puerto Rico Río Piedras Puerto Rico 00931 USA
| | - Nathan G. Swenson
- Department of Biology University of Maryland College Park Maryland 20742 USA
| | - Jill Thompson
- Centre for Ecology & Hydrology Bush Estate Penicuik Midlothian EH26 0QB UK
| | - María Uriarte
- Department of Ecology, Evolution& Environmental Biology Columbia University New York New York 10027 USA
| | - Jess K. Zimmerman
- Department of Biology University of Puerto Rico Río Piedras Puerto Rico 00931 USA
- Department of Environmental Science University of Puerto Rico Río Piedras Puerto Rico 00936 USA
| |
Collapse
|
20
|
Variability and Plasticity in Cuticular Transpiration and Leaf Permeability Allow Differentiation of Eucalyptus Clones at an Early Age. FORESTS 2019. [DOI: 10.3390/f11010009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background and Objectives. Water stress is a major constraining factor of Eucalyptus plantations’ growth. Within a genetic improvement program, the selection of genotypes that improve drought resistance would help to improve productivity and to expand plantations. Leaf characteristics, among others, are important factors to consider when evaluating drought resistance evaluation, as well as the clone’s ability to modify leaf properties (e.g., stomatal density (d) and size, relative water content at the time of stomatal closure (RWCc), cuticular transpiration (Ec), specific leaf area (SLA)) according to growing conditions. Therefore, this study aimed at analyzing these properties in nursery plants of nine high-productivity Eucalyptus clones. Material and Methods: Five Eucalyptus globulus Labill. clones and four hybrids clones (Eucalyptus urophylla S.T. Blake × Eucalyptus grandis W. Hill ex Maiden, 12€; Eucalyptus urograndis × E. globulus, HE; Eucalyptus dunnii Maiden–E. grandis × E. globulus, HG; Eucalyptus saligna Sm. × Eucalyptus maidenii F. Muell., HI) were studied. Several parameters relating to the aforementioned leaf traits were evaluated for 2.5 years. Results: Significant differences in stomatal d and size, RWCc, Ec, and SLA among clones (p < 0.001) and according to the dates (p < 0.001) were obtained. Each clone varied seasonally the characteristics of its new developing leaves to acclimatize to the growth conditions. The pore opening surface potential (i.e., the stomatal d × size) did not affect transpiration rates with full open stomata, so the water transpired under these conditions might depend on other leaf factors. The clones HE, HG, and 12€ were the ones that differed the most from the drought resistant E. globulus control clone (C14). Those three clones showed lower leaf epidermis impermeability (HE, HG, 12€), higher SLA (12€, HG), and lower stomatal control under moderate water stress (HE, HG) not being, therefore, good candidates to be selected for drought resistance, at least for these measured traits. Conclusions: These parameters can be incorporated into genetic selection and breeding programs, especially Ec, SLA, RWCc, and stomatal control under moderate water stress.
Collapse
|
21
|
Adaptations in Imperata cylindrica (L.) Raeusch. and Cenchrus ciliaris L. for altitude tolerance. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00380-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Buzatti RSDO, Pfeilsticker TR, Muniz AC, Ellis VA, de Souza RP, Lemos-Filho JP, Lovato MB. Disentangling the Environmental Factors That Shape Genetic and Phenotypic Leaf Trait Variation in the Tree Qualea grandiflora Across the Brazilian Savanna. FRONTIERS IN PLANT SCIENCE 2019; 10:1580. [PMID: 31850045 PMCID: PMC6900740 DOI: 10.3389/fpls.2019.01580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Identifying the environmental factors that shape intraspecific genetic and phenotypic diversity of species can provide insights into the processes that generate and maintain divergence in highly diverse biomes such as the savannas of the Neotropics. Here, we sampled Qualea grandiflora, the most widely distributed tree species in the Cerrado, a large Neotropical savanna. We analyzed genetic variation with microsatellite markers in 23 populations (418 individuals) and phenotypic variation of 10 metamer traits (internode, petiole and corresponding leaf lamina) in 36 populations (744 individuals). To evaluate the role of geography, soil, climate, and wind speed in shaping the divergence of genetic and phenotypic traits among populations, we used Generalized Dissimilarity Modelling. We also used multiple regressions to further investigate the contributions of those environmental factors on leaf trait diversity. We found high genetic diversity, which was geographically structured. Geographic distance was the main factor shaping genetic divergence in Qualea grandiflora, reflecting isolation by distance. Genetic structure was more related to past climatic changes than to the current climate. We also found high metamer trait variation, which seemed largely influenced by precipitation, soil bulk density and wind speed during the period of metamer development. The high degree of metamer trait variation seems to be due to both, phenotypic plasticity and local adaptation to different environmental conditions, and may explain the success of the species in occupying all the Cerrado biome.
Collapse
Affiliation(s)
- Renata Santiago de Oliveira Buzatti
- Laboratório de Genética de Populações, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thais Ribeiro Pfeilsticker
- Laboratório de Genética de Populações, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - André Carneiro Muniz
- Laboratório de Genética de Populações, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vincenzo A. Ellis
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE, United States
| | - Renan Pedra de Souza
- Grupo de Pesquisa em Bioestatística e Epidemiologia Molecular, Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - José Pires Lemos-Filho
- Laboratório de Fisiologia Vegetal, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Bernadete Lovato
- Laboratório de Genética de Populações, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
23
|
Conesa MÀ, Mus M, Galmés J. Leaf size as a key determinant of contrasting growth patterns in closely related Limonium (Plumbaginaceae) species. JOURNAL OF PLANT PHYSIOLOGY 2019; 240:152984. [PMID: 31207461 DOI: 10.1016/j.jplph.2019.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
This study aims to analyze the importance of leaf size on plant growth capacity among an array of closely related Limonium species, and its impact on the underlying determinants of growth reduction under extreme water deficit conditions. To do so, thirteen Balearic Limonium species with contrasting leaf size were grown under long-term well-watered (WW) and severe water-deficit (WD) conditions in a common garden experiment. Fundamental growth traits were measured, including relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR), leaf mass area (LMA) and leaf mass ratio (LMR). WD promoted small changes in leaf size, and species with larger leaves had higher RGR than species with smaller leaves, irrespective of the water treatment. Most RGR variation across species and treatments was explained by NAR, with comparatively much lower importance of LAR. The factorization of LAR underlying components denoted the importance of LMA in explaining RGR, whereas the impact of LMR on RGR was negligible in Limonium. Further, species with larger leaves had higher water consumption but also higher water use efficiency, especially under WD. Therefore, contrary to general trends in species from dry environments, increased leaf size is linked to increased growth capacity and also increased water use efficiency across closely related Limonium species.
Collapse
Affiliation(s)
- Miquel À Conesa
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Departament de Biologia - INAGEA, Universitat de les Illes Balears, Carretera de Valldemossa km 7.5, E-07122, Palma, Balearic Islands, Spain.
| | - Maurici Mus
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Departament de Biologia - INAGEA, Universitat de les Illes Balears, Carretera de Valldemossa km 7.5, E-07122, Palma, Balearic Islands, Spain
| | - Jeroni Galmés
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Departament de Biologia - INAGEA, Universitat de les Illes Balears, Carretera de Valldemossa km 7.5, E-07122, Palma, Balearic Islands, Spain
| |
Collapse
|
24
|
Abstract
Leaf shape can reflect the survival and development of plants in different environments. In particular, leaf area, showing a scaling relationship with other leaf-shape indices, has been used to evaluate the extent of salt stress on plants. Based on the scaling relationships between leaf area and other leaf-shape indices in experiments at different levels of salt stress, we could examine which leaf-shape indices are also related to salt stress. In the present study, we explored the effects of different salt concentration treatments on leaf dry mass per unit area (LMA), the quotient of leaf perimeter and leaf area (QPA), the quotient of leaf width and length (QWL), the areal quotient (AQ) of left and right sides of a leaf and the standardized index (SI) for bilateral symmetry. We treated Pyrus betulifolia Bunge under NaCl salt solution of 2‰, 4‰ and 6‰, respectively, with fresh water with no salt as the control. The reduced major axis (RMA) was used to fit a linear relationship of the log-transformed data between any leaf trait measures and leaf area. We found that leaf fresh weight and dry weight decrease with salt concentration increasing, whereas the exponents of leaf dry weight versus leaf area exhibit an increasing trend, which implies that the leaves expanding in higher salt environments are prone to have a higher cost of dry mass investment to increase per unit leaf area than those in lower salt environments. Salt concentration has a significant influence on leaf shape especially QWL, and QWL under 6‰ concentration treatment is significantly greater than the other treatments. However, there is no a single increasing or decreasing trend for the extent of leaf bilateral symmetry with salt concentration increasing. In addition, we found that the scaling exponents of QPA versus leaf area for four treatments have no significant difference. It indicates that the scaling relationship of leaf perimeter versus leaf area did not change with salt concentration increasing. The present study suggests that salt stress can change leaf functional traits especially the scaling relationship of leaf dry weight versus leaf area and QWL, however, it does not significantly affect the scaling relationships between leaf morphological measures (including QPA and the extent of leaf bilateral symmetry) and leaf area.
Collapse
|
25
|
Umaña MN, Swenson NG. Intraspecific variation in traits and tree growth along an elevational gradient in a subtropical forest. Oecologia 2019; 191:153-164. [PMID: 31367911 DOI: 10.1007/s00442-019-04453-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 06/28/2019] [Indexed: 10/26/2022]
Abstract
A conspicuous feature of natural communities is that individuals within species exhibit broad variation in their phenotype. While the phenotypic differences among species are prominent and have received considerable attention in earlier studies, recent findings suggest that about 40% of the trait variation is found within species. How this intraspecific variation is related to underlying environmental gradients and ultimately linked to performance is an outstanding question in ecology and evolution. Here, we study six broadly distributed species across an elevational gradient in a subtropical forest. We focused on five functional traits reflecting plant functional differentiation in stem transport, leaf architecture, and leaf resource acquisition. We found that leaf thickness, leaf toughness, and specific leaf area generally varied with elevation, while wood density and leaf area exhibited constrained variation. Results on multivariate trait axes also showed mixed evidence with the PC1 values (positively related to leaf toughness and negatively related to specific leaf area) shifting with elevation, while PC2 values (negatively related to wood density) did not change with elevation. We also found that, despite the important variation in some traits along the gradient, growth performance did not follow this same trend. This suggests that strong directional changes in traits along the gradient may result in similar levels of demographic performance. The results, therefore, challenge the simple expectation that a trait will correlate with a demographic rate. More nuanced approaches and additional mechanisms must be considered to advance understanding of the performance-trait relationships.
Collapse
Affiliation(s)
- María Natalia Umaña
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, 48109, USA.
| | - Nathan G Swenson
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
26
|
Hirano I, Iida H, Ito Y, Park HD, Takahashi K. Effects of light conditions on growth and defense compound contents of Datura inoxia and D. stramonium. JOURNAL OF PLANT RESEARCH 2019; 132:473-480. [PMID: 31020486 DOI: 10.1007/s10265-019-01111-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
We examined the effects of light conditions on plant growth and production of defense compounds in the toxic species Datura inoxia and D. stramonium. Specifically, we investigated morphological and physiological traits, including the contents of nitrogen-based tropane alkaloids (atropine and scopolamine) as defense compounds, under three light conditions: 100%, 80%, and 50% of full sunlight. Both species showed similar morphological and physiological responses to exposure to different intensities of light. Although the total plant mass decreased under lower light conditions, the total leaf area per plant increased. The reason being that the leaf mass per plant did not decrease, while the leaf mass per unit area decreased. Leaf nitrogen and chlorophyll concentrations and the chlorophyll/nitrogen ratio increased under lower light conditions, whereas the chlorophyll a/b ratio decreased. These morphological and physiological changes may be seen as ways to increase light acquisition under low light conditions. Leaf atropine and scopolamine concentrations did not differ among the three light conditions for both species. In conclusion, both Datura species underwent morphological and physiological changes under low light conditions, enabling them to use carbon and nitrogen to increase light acquisition while maintaining their chemical defense capability.
Collapse
Affiliation(s)
- Itsuka Hirano
- Department of Biology, Faculty of Science, Shinshu University, Asahi 3-1-1, Matsumoto, 390-8621, Japan
| | - Hitomi Iida
- Department of Biology, Faculty of Science, Shinshu University, Asahi 3-1-1, Matsumoto, 390-8621, Japan
| | - Yasuaki Ito
- Department of Biology, Faculty of Science, Shinshu University, Asahi 3-1-1, Matsumoto, 390-8621, Japan
| | - Ho-Dong Park
- Department of Environmental Sciences, Faculty of Science, Shinshu University, Asahi 3-1-1, Matsumoto, 390-8621, Japan
| | - Koichi Takahashi
- Department of Biology, Faculty of Science, Shinshu University, Asahi 3-1-1, Matsumoto, 390-8621, Japan.
- Institute of Mountain Science, Shinshu University, Asahi 3-1-1, Matsumoto, 390-8621, Japan.
| |
Collapse
|
27
|
Umaña MN, Swenson NG. Does trait variation within broadly distributed species mirror patterns across species? A case study in Puerto Rico. Ecology 2019; 100:e02745. [PMID: 31032887 DOI: 10.1002/ecy.2745] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 02/19/2019] [Accepted: 04/01/2019] [Indexed: 11/08/2022]
Abstract
Although populations are phenotypically diverse, the majority of trait-based studies have focused on examining differences among species. The justification for this broadly applied approach is based on the assumption that differences among species are always greater than within species. This is likely true for local communities, but species are often broadly distributed across a wide range of environments and patterns of intraspecific variation might surpass differences among species. Therefore, an appropriate interpretation of the functional diversity requires an assessment of patterns of trait variation across different ecological scales. In this study, we examine and characterize patterns of leaf trait variation for species that are broadly distributed along an elevational gradient. We focus on seven leaf traits that represent a main axis of functional differentiation in plants reflecting the balance between photosynthetic efficiency, display, and stomatal conductance. We evaluated patterns of trait variance across ecological scales (elevation, species, populations, and individuals) and examined trait covariance at both within species and across species levels, along the elevation gradient. Our results show three key patterns: (1) intraspecific leaf trait variation for broadly distributed species is comparable to the interspecific trait variation, (2) the trait variance structure is highly variable across species, and (3) trait coordination between pairs of leaf traits is evident across species along the gradient, but not always within species. Combined, our results show that trait coordination and covariance are highly idiosyncratic across broadly distributed and co-occurring species, indicating that species may achieve similar functional roles even when exhibiting different phenotypes. This result challenges the traditional paradigm of functional ecology that assumes single trait values as optimal solutions for environments. In conclusion, patterns of trait variation both across and within species should be considered in future studies that assess trade-offs among traits over environmental gradients.
Collapse
Affiliation(s)
- María N Umaña
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48019, USA
| | - Nathan G Swenson
- Department of Biology, University of Maryland, College Park, Maryland, 20742, USA
| |
Collapse
|
28
|
Souza ML, Duarte AA, Lovato MB, Fagundes M, Valladares F, Lemos-Filho JP. Climatic factors shaping intraspecific leaf trait variation of a neotropical tree along a rainfall gradient. PLoS One 2018; 13:e0208512. [PMID: 30521598 PMCID: PMC6283565 DOI: 10.1371/journal.pone.0208512] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/18/2018] [Indexed: 11/17/2022] Open
Abstract
Intraspecific trait variation has been singled out as an important mechanism by which individuals can cope with environmental variations and avoid local extinctions. Here we evaluate variation in metamer traits (i.e., traits associated with internodes, petioles and their corresponding leaves) and parameters of chlorophyll fluorescence within and among populations of a neotropical tree, Copaifera langsdorffii. We also evaluated phenotypic plasticity in natural settings comparing traits between shade and sun-exposed metamers. We selected six populations along a climatic gradient ranging from semi-arid to humid and representing three different biomes (Caatinga, Cerrado, and Atlantic Forest). Local climatic conditions significantly affected the morphological and physiological traits of populations. Trait variation among populations was explained mainly by aridity index and evapotranspiration. Individuals from drier regions had lower specific leaf area (SLA), lower investment in leaf area per total dry mass of metamer (LARm), lower specific petiole length (SPL) and lower potential quantum yield (Fv/Fm, only for sun-exposed metamers). Populations from locations with greater environmental heterogeneity (interannual variation) had greater plasticity in response to light for Fv/Fm and electron transport rate (ETR) and morphological traits related to the hydraulic and biomechanical aspects of the leaves (petiole length, internode length and SPL). High intraspecific variation in metamer traits in C. langsdorffii coupled with its ability to modify these traits in response to different climate conditions can explain the success of the species over a range of different habitats and represent important factors for the persistence of this species in the face of climate change.
Collapse
Affiliation(s)
- Matheus L Souza
- Departamento de Botânica, Universidade Federal de Minas Gerais, ICB-UFMG, Belo Horizonte, Brazil
| | - Alexandre A Duarte
- Departamento de Botânica, Universidade Federal de Minas Gerais, ICB-UFMG, Belo Horizonte, Brazil
| | - Maria B Lovato
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, ICB-UFMG, Belo Horizonte, Brazil
| | - Marcilio Fagundes
- Departamento de Biologia Geral, Universidade Estadual de Montes Claros, CCBS-UNIMONTES, Montes Claros, Brazil
| | - Fernando Valladares
- LINCGlobal Departamento de Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales, MNCN-CSIC, Madrid, Spain.,Departamento de Biología y Geología ESCET, Universidad Rey Juan Carlos, Móstoles, Spain
| | - Jose P Lemos-Filho
- Departamento de Botânica, Universidade Federal de Minas Gerais, ICB-UFMG, Belo Horizonte, Brazil
| |
Collapse
|
29
|
Lin S, Shao L, Hui C, Song Y, Reddy GVP, Gielis J, Li F, Ding Y, Wei Q, Shi P. Why Does Not the Leaf Weight-Area Allometry of Bamboos Follow the 3/2-Power Law? FRONTIERS IN PLANT SCIENCE 2018; 9:583. [PMID: 29780397 PMCID: PMC5945892 DOI: 10.3389/fpls.2018.00583] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/13/2018] [Indexed: 05/26/2023]
Abstract
The principle of similarity (Thompson, 1917) states that the weight of an organism follows the 3/2-power law of its surface area and is proportional to its volume on the condition that the density is constant. However, the allometric relationship between leaf weight and leaf area has been reported to greatly deviate from the 3/2-power law, with the irregularity of leaf density largely ignored for explaining this deviation. Here, we choose 11 bamboo species to explore the allometric relationships among leaf area (A), density (ρ), length (L), thickness (T), and weight (W). Because the edge of a bamboo leaf follows a simplified two-parameter Gielis equation, we could show that A ∝ L2 and that A ∝ T2. This then allowed us to derive the density-thickness allometry ρ ∝ Tb and the weight-area allometry W ∝ A(b+3)/2 ≈ A9/8, where b approximates -3/4. Leaf density is strikingly negatively associated with leaf thickness, and it is this inverse relationship that results in the weight-area allometry to deviate from the 3/2-power law. In conclusion, although plants are prone to invest less dry mass and thus produce thinner leaves when the leaf area is sufficient for photosynthesis, such leaf thinning needs to be accompanied with elevated density to ensure structural stability. The findings provide the insights on the evolutionary clue about the biomass investment and output of photosynthetic organs of plants. Because of the importance of leaves, plants could have enhanced the ratio of dry material per unit area of leaf in order to increase the efficiency of photosynthesis, relative the other parts of plants. Although the conclusion is drawn only based on 11 bamboo species, it should also be applicable to the other plants, especially considering previous works on the exponent of the weight-area relationship being less than 3/2 in plants.
Collapse
Affiliation(s)
- Shuyan Lin
- Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
| | - Lijuan Shao
- Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
| | - Cang Hui
- Department of Mathematical Sciences, Centre for Invasion Biology, African Institute for Mathematical Sciences, Stellenbosch University, Matieland, South Africa
| | - Yu Song
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Gadi V. P. Reddy
- Western Triangle Agricultural Research Centre, Montana State University, Conrad, MT, United States
| | - Johan Gielis
- Department of Biosciences Engineering, University of Antwerp, Antwerp, Belgium
| | - Fang Li
- Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
| | - Yulong Ding
- Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
| | - Qiang Wei
- Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
| | - Peijian Shi
- Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
30
|
Higham TE, Russell AP, Niklas KJ. Leaping lizards landing on leaves: escape-induced jumps in the rainforest canopy challenge the adhesive limits of geckos. J R Soc Interface 2018; 14:rsif.2017.0156. [PMID: 28659411 DOI: 10.1098/rsif.2017.0156] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/02/2017] [Indexed: 11/12/2022] Open
Abstract
The remarkable adhesive capabilities of geckos have garnered attention from scientists and the public for centuries. Geckos are known to have an adhesive load-bearing capacity far in excess (by 100-fold or more) of that required to support their body mass or accommodate the loading imparted during maximal locomotor acceleration. Few studies, however, have investigated the ecological contexts in which geckos use their adhesive system and how this may influence its properties. Here we develop a modelling framework to assess whether their prodigious adhesive capacity ever comes under selective challenge. Our investigation is based upon observations of escape-induced aerial descents of canopy-dwelling arboreal geckos that are rapidly arrested by clinging to leaf surfaces in mid-fall. We integrate ecological observations, adhesive force measurements, and body size and shape measurements of museum specimens to conduct simulations. Using predicted bending mechanics of petioles and leaf midribs, we find that the drag coefficient of the gecko, the size of the gecko and the size of the leaf determine impact forces. Regardless of the landing surface, safety factors for geckos range from a maximum of just over 10 to a minimum of well under one, which would be the point at which the adhesive system fails. In contrast to previous research that intimates that gecko frictional adhesive capacity is excessive relative to body mass, we demonstrate that realistic conditions in nature may result in frictional capacity being pushed to its limit. The rapid arrest of the lizard from its falling velocity likely results in the maximal loading to which the adhesive system is exposed during normal activities. We suggest that such activities might be primary determinants in driving their high frictional adhesive capacity.
Collapse
Affiliation(s)
- Timothy E Higham
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Anthony P Russell
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Karl J Niklas
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
31
|
Contrasting patterns of leaf trait variation among and within species during tropical dry forest succession in Costa Rica. Sci Rep 2018; 8:285. [PMID: 29321479 PMCID: PMC5762662 DOI: 10.1038/s41598-017-18525-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/11/2017] [Indexed: 01/09/2023] Open
Abstract
A coordinated response to environmental drivers amongst individual functional traits is central to the plant strategy concept. However, whether the trait co-ordination observed at the global scale occurs at other ecological scales (especially within species) remains an open question. Here, for sapling communities of two tropical dry forest types in Costa Rica, we show large differences amongst traits in the relative contribution of species turnover and intraspecific variation to their directional changes in response to environmental changes along a successional gradient. We studied the response of functional traits associated with the leaf economics spectrum and drought tolerance using intensive sampling to analyse inter- and intra-specific responses to environmental changes and ontogeny. Although the overall functional composition of the sapling communities changed during succession more through species turnover than through intraspecific trait variation, their relative contributions differed greatly amongst traits. For instance, community mean specific leaf area changed mostly due to intraspecific variation. Traits of the leaf economics spectrum showed decoupled responses to environmental drivers and ontogeny. These findings emphasise how divergent ecological mechanisms combine to cause great differences in changes of individual functional traits over environmental gradients and ecological scales.
Collapse
|
32
|
Goud EM, Moore TR, Roulet NT. Predicting peatland carbon fluxes from non‐destructive plant traits. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12891] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ellie M. Goud
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY14850 USA
- Department of Geography and Global Environmental Montreal QCH3A 0B9 Canada
- Climate Change Centre McGill University Montreal QCH3A 0B9 Canada
| | - Tim R. Moore
- Department of Geography and Global Environmental Montreal QCH3A 0B9 Canada
- Climate Change Centre McGill University Montreal QCH3A 0B9 Canada
| | - Nigel T. Roulet
- Department of Geography and Global Environmental Montreal QCH3A 0B9 Canada
- Climate Change Centre McGill University Montreal QCH3A 0B9 Canada
| |
Collapse
|
33
|
Fan ZX, Sterck F, Zhang SB, Fu PL, Hao GY. Tradeoff between Stem Hydraulic Efficiency and Mechanical Strength Affects Leaf-Stem Allometry in 28 Ficus Tree Species. FRONTIERS IN PLANT SCIENCE 2017; 8:1619. [PMID: 28979282 PMCID: PMC5611361 DOI: 10.3389/fpls.2017.01619] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 09/04/2017] [Indexed: 05/09/2023]
Abstract
Leaf-stem allometry is an important spectrum that linked to biomass allocation and life history strategy in plants, although the determinants and evolutionary significance of leaf-stem allometry remain poorly understood. Leaf and stem architectures - including stem area/mass, petiole area/mass, lamina area/mass, leaf number, specific leaf area (LA), and mass-based leafing intensity (LI) - were measured on the current-year branches for 28 Ficus species growing in a common garden in SW China. The leaf anatomical traits, stem wood density (WD), and stem anatomical and mechanical properties of these species were also measured. We analyzed leaf-stem allometric relationships and their associations with stem hydraulic ad mechanical properties using species-level data and phylogenetically independent contrasts. We found isometric relationship between leaf lamina area/mass and stem area/mass, suggesting that the biomass allocation to leaf was independent to stem size. However, allometric relationship between LA/mass and petiole mass was found, indicating large leaves invest a higher fractional of biomass in petiole than small ones. LI, i.e., leaf numbers per unit of stem mass, was negatively related with leaf and stem size. Species with larger terminal branches tend to have larger vessels and theoretical hydraulic conductivity, but lower WD and mechanical strength. The size of leaf lamina, petiole, and stem was correlated positively with stem theoretical hydraulic conductivity, but negatively with stem WD and mechanical strength. Our results suggest that leaf-stem allometry in Ficus species was shaped by the trade-off between stem hydraulic efficiency and mechanical stability, supporting a functional interpretation of the relationship between leaf and stem dimensions.
Collapse
Affiliation(s)
- Ze-Xin Fan
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesMengla, China
- *Correspondence: Ze-Xin Fan,
| | - Frank Sterck
- Forest Ecology and Forest Management Group, Department of Forestry, Wageningen UniversityWageningen, Netherlands
| | - Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
| | - Pei-Li Fu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesMengla, China
| | - Guang-You Hao
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of SciencesShenyang, China
| |
Collapse
|
34
|
Ahmad KS, Hameed M, Deng J, Ashraf M, Hamid A, Ahmad F, Fatima S, Akhtar N. Ecotypic adaptations in Bermuda grass (Cynodon dactylon) for altitudinal stress tolerance. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
van der Sande MT, Arets EJMM, Peña-Claros M, de Avila AL, Roopsind A, Mazzei L, Ascarrunz N, Finegan B, Alarcón A, Cáceres-Siani Y, Licona JC, Ruschel A, Toledo M, Poorter L. Old-growth Neotropical forests are shifting in species and trait composition. ECOL MONOGR 2016. [DOI: 10.1890/15-1815.1] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Masha T. van der Sande
- Forest Ecology and Forest Management Group; Wageningen University; PO Box 47 6700 AA Wageningen The Netherlands
- Alterra; Wageningen University and Research Centre; PO Box 47 6700 AA Wageningen The Netherlands
- Instituto Boliviano de Investigación Forestal; Km 9 al Norte, El Vallecito Santa Cruz de la Sierra Bolivia
- Embrapa Amazônia Oriental; Travessa Enéas Pinheiro, S/N° 100 Belém CEP 66095 Pará Brazil
| | - Eric J. M. M. Arets
- Alterra; Wageningen University and Research Centre; PO Box 47 6700 AA Wageningen The Netherlands
| | - Marielos Peña-Claros
- Forest Ecology and Forest Management Group; Wageningen University; PO Box 47 6700 AA Wageningen The Netherlands
| | - Angela Luciana de Avila
- Faculty of Environment and Natural Resources; Chair of Silviculture; University of Freiburg; Tennenbacher Strasse 4 79085 Freiburg Germany
| | - Anand Roopsind
- Department of Biology; University of Florida; P.O. 118526, 511 Bartram Hall Gainesville Florida 32611-8526 USA
| | - Lucas Mazzei
- Embrapa Amazônia Oriental; Travessa Enéas Pinheiro, S/N° 100 Belém CEP 66095 Pará Brazil
| | - Nataly Ascarrunz
- Instituto Boliviano de Investigación Forestal; Km 9 al Norte, El Vallecito Santa Cruz de la Sierra Bolivia
| | - Bryan Finegan
- Production and Conservation in Forests Programme CATIE; Turrialba Costa Rica
| | - Alfredo Alarcón
- Instituto Boliviano de Investigación Forestal; Km 9 al Norte, El Vallecito Santa Cruz de la Sierra Bolivia
| | | | - Juan Carlos Licona
- Instituto Boliviano de Investigación Forestal; Km 9 al Norte, El Vallecito Santa Cruz de la Sierra Bolivia
| | - Ademir Ruschel
- Embrapa Amazônia Oriental; Travessa Enéas Pinheiro, S/N° 100 Belém CEP 66095 Pará Brazil
| | - Marisol Toledo
- Instituto Boliviano de Investigación Forestal; Km 9 al Norte, El Vallecito Santa Cruz de la Sierra Bolivia
| | - Lourens Poorter
- Forest Ecology and Forest Management Group; Wageningen University; PO Box 47 6700 AA Wageningen The Netherlands
| |
Collapse
|
36
|
Evaluating general allometric models: interspecific and intraspecific data tell different stories due to interspecific variation in stem tissue density and leaf size. Oecologia 2015; 180:671-84. [PMID: 26572635 DOI: 10.1007/s00442-015-3497-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
Abstract
The ability of general scaling models to capture the central tendency or dispersion in biological data has been questioned. In fact, the appropriate domain of such models has never been clearly articulated and they have been supported and challenged using both interspecific and/or intraspecific data. Here, we evaluate several simplifying assumptions and predictions of two prominent scaling models: West, Brown and Enquist's fractal model (WBE) and a null model of geometric similarity (GEOM). Using data for 53 herbaceous angiosperm species from the Songnen Grasslands of Northern China, we compared both the interspecific and intraspecific scaling relationships for plant geometry and biomass partitioning. Specifically, we considered biomass investment in shoots and leaves as well as related several traits not commonly collected in plant allometric analyses: shoot volume, leaf number, and mean leaf mass. At the interspecific level, we find substantial variation in regression slopes, and the simplifying assumptions of WBE and predictions of both the WBE and GEOM models do not hold. In contrast, we find substantial support for the WBE model at the intraspecific level, and to a lesser extent for GEOM. The differences between our results at interspecific and intraspecific levels are due to the fact that leaf size and stem tissue density vary considerably across species in contrast to the simplifying assumptions of WBE. These results highlight the domain within which simplifying model assumptions might be most appropriate, and suggest allometric models may be useful points of departure within some species, growth forms or taxonomic groups.
Collapse
|
37
|
Huang Y, Lechowicz MJ, Price CA, Li L, Wang Y, Zhou D. The underlying basis for the trade‐off between leaf size and leafing intensity. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yingxin Huang
- Northeast Institute of Geography and Agroecology Chinese Academy of Sciences Changchun 130012 China
| | - Martin J. Lechowicz
- Biology Department McGill University 1205 Dr. Penfield Avenue Montreal H3A 1B1 Canada
| | - Charles A. Price
- School of Plant Biology University of Western Australia Crawley Perth 6009 Australia
| | - Lei Li
- Center for Watershed Ecology Institute of Life Science Nanchang University Nanchang 330031 China
| | - Ying Wang
- Key Laboratory of Songliao Aquatic Environment Ministry of Education Jilin Jianzhu University Changchun 130118 China
| | - Daowei Zhou
- Northeast Institute of Geography and Agroecology Chinese Academy of Sciences Changchun 130012 China
| |
Collapse
|
38
|
Craven D, Hall JS, Berlyn GP, Ashton MS, van Breugel M. Changing gears during succession: shifting functional strategies in young tropical secondary forests. Oecologia 2015; 179:293-305. [PMID: 25990298 DOI: 10.1007/s00442-015-3339-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 05/01/2015] [Indexed: 11/28/2022]
Abstract
Adaptations to resource availability strongly shape patterns of community composition along successional gradients in environmental conditions. In the present study, we examined the extent to which variation in functional composition explains shifts in trait-based functional strategies in young tropical secondary forests during the most dynamic stage of succession (0-20 years). Functional composition of two size classes in 51 secondary forest plots was determined using community-weighted means of seven functional traits, which were intensively measured on 55 woody plant species (n = 875-1,761 individuals). Along the successional gradient in forest structure, there was a significant and consistent shift in functional strategies from resource acquisition to resource conservation. Leaf toughness and adult plant size increased significantly, while net photosynthetic capacity (A(mass)) decreased significantly during succession. Shifts in functional strategies within size classes for A(mass) and wood density also support the hypothesis that changes in functional composition are shaped by environmental conditions along successional gradients. In general, 'hard' functional traits, e.g., A(mass) and leaf toughness, linked to different facets of plant performance exhibited greater sensitivity to successional changes in forest structure than 'soft' traits, such as leaf mass area and leaf dry matter content. Our results also suggested that stochastic processes related to previous land-use history, dispersal limitation, and abiotic factors explained variation in functional composition beyond that attributed to deterministic shifts in functional strategies. Further data on seed dispersal vectors and distance and landscape configuration are needed to improve current mechanistic models of succession in tropical secondary forests.
Collapse
Affiliation(s)
- Dylan Craven
- School of Forestry and Environmental Studies, Yale University, 370 Prospect Street, New Haven, CT, 06511, USA,
| | | | | | | | | |
Collapse
|
39
|
Arbuscular mycorrhizas increase survival, precocity and flowering of herbaceous and shrubby species of early stages of tropical succession in pot cultivation. JOURNAL OF TROPICAL ECOLOGY 2014. [DOI: 10.1017/s0266467414000509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract:Arbuscular mycorrhizal fungi (AMF) are an important biotic factor that influences tropical ecological succession and differently affect the woody species belonging to different successional stages. However, little is known about the influence of AMF on growth and reproduction of herbaceous and shrubby species of early phases of tropical succession. Thus, we assessed the effect of AMF on the development of 27 heliophilous herbaceous and shrubby tropical species. Plants were grown in greenhouse, in low- and high-fertility soils, with or without AMF, for 100 d. Most species grown with AMF exhibited high root infection intensity (≈80%), irrespective of soil fertility. In the low-fertility soil, non-mycorrhizal plants exhibited about 88% less shoot dry mass (SDM) than mycorrhizal plants, and AMF were crucial for the survival of most species. Non-mycorrhizal plants also had lower relative growth rate (RGR), total leaf area (TLA), leaf area expansion (LAE) and total root length (TRL). Six species flowered in the low-fertility soil, and flowering increased with AMF in one plant species and four species only flowered when mycorrhizal. In the high-fertility soil, non-mycorrhizal plants exhibited about 13% less SDM than mycorrhizal plants and also exhibited lower TLA, LAE, and nutrient concentrations in shoots. On the other hand, no major changes were observed for RGR, TRL and root dry mass for most of the species. Sixteen plant species flowered in the high-fertility soil, but most had earlier (11) and more abundant (10) flowering when mycorrhizal. Thus, AMF have different influences on the survival, growth and flowering of herbaceous and shrubby tropical species, depending on soil fertility: in low-fertility soil, AMF especially affect the survival, growth and flowering, whereas in high-fertility soil, AMF mainly influence the shoot nutrient concentrations and flowering.
Collapse
|
40
|
The scaling relationships between leaf mass and leaf area of vascular plant species change with altitude. PLoS One 2013; 8:e76872. [PMID: 24146938 PMCID: PMC3795618 DOI: 10.1371/journal.pone.0076872] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/29/2013] [Indexed: 11/23/2022] Open
Abstract
The scaling relationship between leaf dry mass and leaf surface area has important implications for understanding the ability of plants to harvest sunlight and grow. Whether and how the scaling relationships vary across environmental gradients are poorly understood. We analyzed the scaling relationships between leaf mass and leaf area of 121 vascular plant species along an altitudinal gradient in a subtropical monsoon forest. The slopes increased significantly with altitude, it varied from less than 1 at low altitude to more than 1 at high altitude. This means that plants growing at high altitude allocate proportionately more biomass to support tissues in larger leaves and less in smaller leaves, whereas the reverse is true at low altitude. This pattern can be explained by different leaf strategies in response to environmental pressure and constrains.
Collapse
|
41
|
Leaf decomposition and fine fuels in floodplain forests of the Rio Negro in the Brazilian Amazon. JOURNAL OF TROPICAL ECOLOGY 2013. [DOI: 10.1017/s0266467413000485] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract:Despite being inundated for up to 9 mo of the year, black-water floodplain forests in the Brazilian Amazon are susceptible to fire. Post-fire tree mortality is higher and fire spreads further in the floodplain, compared with adjacent upland forest. To understand these differences between the two forest types, we compared how leaf decomposition and fine-fuel loads change with inundation and soil texture. Litterbags containing leaves of Clitoria fairchildiana were placed on upland forest floor and submerged at two depths in a backwater of the Rio Negro. We used 80 bags per treatment and retrieved subsets every ~16 d from which the contents were cleaned, dried, weighed and discarded. Over the 81-d experiment, upland leaves decomposed two to three times faster than submerged leaves. Fine-fuel biomass (litter + root mat) was measured at 28 upland forest sites and 29 floodplain forest sites of the middle Rio Negro. Floodplain forests held about twice the fine fuel (25.9 ± 10.6 Mg ha−1) of uplands (10.9 ± 2.3 Mg ha−1). Upland soils had more sand but a carpet of fine apogeotropic tree roots was more common and thicker in floodplains. We infer that slow decomposition of submerged leaves leads to high tree mortality from fire in black-water floodplains by (1) increasing fire intensity due to high fine-litter fuel load and (2) making tree roots more vulnerable to burning because they form a peat-like mat to absorb nutrients from the thick litter.
Collapse
|
42
|
Zangaro W, Rostirola LV, de Souza PB, de Almeida Alves R, Lescano LEAM, Rondina ABL, Nogueira MA, Carrenho R. Root colonization and spore abundance of arbuscular mycorrhizal fungi in distinct successional stages from an Atlantic rainforest biome in southern Brazil. MYCORRHIZA 2013; 23:221-233. [PMID: 23053578 DOI: 10.1007/s00572-012-0464-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 10/01/2012] [Indexed: 06/01/2023]
Abstract
The influence of plant functional groups and moderate seasonality on arbuscular mycorrhizal (AM) fungal status (root colonization and spore density) was investigated during 13 consecutive months in a chronosequence of succession in southern Brazil, consisting of grassland field, scrub vegetation, secondary forest and mature forest, in a region of transition from tropical to subtropical zones. AM root colonization and spore density decreased with advancing succession and were highest in early successional sites with grassland and scrub vegetation, intermediary in the secondary forest and lowest in the mature forest. They were little influenced by soil properties, but were sufficiently influenced by the fine root nutrient status and fine root traits among different functional plant groups. AM root colonization and spore density were higher during the favourable plant growth season (spring and summer) than during the less favourable plant growth season (autumn and winter). Spore density displayed significant seasonal variation at all sites, whilst root colonization displayed significant seasonal variation in grassland, scrub and secondary forest, but not in mature forest. The data suggest that (1) different plant functional groups display different relationships with AM fungi, influencing their abundance differentially; (2) plant species from early successional phases are more susceptible to AM root colonization and maintain higher AM sporulation than late successional species; (3) fine root traits and nutrient status influence these AM fungal attributes; and (4) higher AM spore production and root colonization is associated with the season of higher light incidence and temperature, abundant water in soil and higher plant metabolic activity.
Collapse
Affiliation(s)
- Waldemar Zangaro
- Centro de Ciências Biológicas, Departamento de Biologia Animal e Vegetal, Universidade Estadual de Londrina, 86051-990, Londrina, Paraná, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Silveira AP, Martins FR, Araújo FS. Are tree ontogenetic structure and allometric relationship independent of vegetation formation type? A case study with Cordia oncocalyx in the Brazilian caatinga. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2012. [DOI: 10.1016/j.actao.2012.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
44
|
Coste S, Roggy JC, Schimann H, Epron D, Dreyer E. A cost-benefit analysis of acclimation to low irradiance in tropical rainforest tree seedlings: leaf life span and payback time for leaf deployment. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3941-55. [PMID: 21511904 PMCID: PMC3134351 DOI: 10.1093/jxb/err092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 03/03/2011] [Accepted: 03/09/2011] [Indexed: 05/12/2023]
Abstract
The maintenance in the long run of a positive carbon balance under very low irradiance is a prerequisite for survival of tree seedlings below the canopy or in small gaps in a tropical rainforest. To provide a quantitative basis for this assumption, experiments were carried out to determine whether construction cost (CC) and payback time for leaves and support structures, as well as leaf life span (i) differ among species and (ii) display an irradiance-elicited plasticity. Experiments were also conducted to determine whether leaf life span correlates to CC and payback time and is close to the optimal longevity derived from an optimization model. Saplings from 13 tropical tree species were grown under three levels of irradiance. Specific-CC was computed, as well as CC scaled to leaf area at the metamer level. Photosynthesis was recorded over the leaf life span. Payback time was derived from CC and a simple photosynthesis model. Specific-CC displayed only little interspecific variability and irradiance-elicited plasticity, in contrast to CC scaled to leaf area. Leaf life span ranged from 4 months to >26 months among species, and was longest in seedlings grown under lowest irradiance. It was always much longer than payback time, even under the lowest irradiance. Leaves were shed when their photosynthesis had reached very low values, in contrast to what was predicted by an optimality model. The species ranking for the different traits was stable across irradiance treatments. The two pioneer species always displayed the smallest CC, leaf life span, and payback time. All species displayed a similar large irradiance-elicited plasticity.
Collapse
Affiliation(s)
- Sabrina Coste
- AgroParisTech-ENGREF, INRA, UMR CIRAD-ENGREF-INRA-CNRS, ‘Ecologie des Forêts de Guyane’, Campus Agronomique de Kourou, 97387 Kourou, Guyane Française
- INRA, UMR1137, ‘Ecologie et Ecophysiologie Forestières’, Centre INRA de Nancy, F-54280 Champenoux, France
| | - Jean-Christophe Roggy
- AgroParisTech-ENGREF, INRA, UMR CIRAD-ENGREF-INRA-CNRS, ‘Ecologie des Forêts de Guyane’, Campus Agronomique de Kourou, 97387 Kourou, Guyane Française
| | - Heidy Schimann
- AgroParisTech-ENGREF, INRA, UMR CIRAD-ENGREF-INRA-CNRS, ‘Ecologie des Forêts de Guyane’, Campus Agronomique de Kourou, 97387 Kourou, Guyane Française
| | - Daniel Epron
- INRA, UMR1137, ‘Ecologie et Ecophysiologie Forestières’, Centre INRA de Nancy, F-54280 Champenoux, France
- Nancy-Université, Université Henri Poincaré, UMR1137, ‘Ecologie et Ecophysiologie Forestières’, Faculté des Sciences, F-54500 Vandoeuvre les Nancy, France
| | - Erwin Dreyer
- INRA, UMR1137, ‘Ecologie et Ecophysiologie Forestières’, Centre INRA de Nancy, F-54280 Champenoux, France
- Nancy-Université, Université Henri Poincaré, UMR1137, ‘Ecologie et Ecophysiologie Forestières’, Faculté des Sciences, F-54500 Vandoeuvre les Nancy, France
| |
Collapse
|
45
|
Zangaro W, Alves RA, Lescano LE, Ansanelo AP, Nogueira MA. Investment in Fine Roots and Arbuscular Mycorrhizal Fungi Decrease During Succession in Three Brazilian Ecosystems. Biotropica 2011. [DOI: 10.1111/j.1744-7429.2011.00781.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Milla R, Reich PB. Multi-trait interactions, not phylogeny, fine-tune leaf size reduction with increasing altitude. ANNALS OF BOTANY 2011; 107:455-65. [PMID: 21199835 PMCID: PMC3043936 DOI: 10.1093/aob/mcq261] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 11/19/2010] [Accepted: 11/24/2010] [Indexed: 05/26/2023]
Abstract
BACKGROUND AND AIMS Despite long-held interest, knowledge on why leaf size varies widely among species is still incomplete. This study was conducted to assess whether abiotic factors, phylogenetic histories and multi-trait interactions act together to shape leaf size. METHODS Fifty-seven pairs of altitudinal vicariant species were selected in northern Spain, and leaf area and a number of functionally related leaf, shoot and whole plant traits were measured for each pair. Structural equation modelling helped unravel trait interactions affecting leaf size, and Mantel tests weighed the relative relevance of phylogeny, environment and trait interactions to explain leaf size reduction with altitude. KEY RESULTS Leaves of highland vicariants were generally smaller than those of lowlands. However, the extent of leaf size reduction with increasing altitude was widely variable among genera: from approx. 700 cm(2) reduction (96 % in Polystichum) to approx. 30 cm(2) increase (37 % in Sorbus). This was partially explained by shifts in leaf, shoot and whole plant traits (35-64 % of explained variance, depending on models), with size/number trade-offs more influential than shifts in leaf form and leaf economics. Shifts in traits were more important than phylogenetic distances or site-specific environmental variation in explaining the degree of leaf size reduction with altitude. CONCLUSIONS Ecological filters, constraints due to phylogenetic history (albeit modest in the study system), and phenotypic integration contribute jointly to shape single-trait evolution. Here, it was found that phenotypic change was far more important than shared ancestry to explain leaf size differences of closely related species segregated along altitudes.
Collapse
Affiliation(s)
- Rubén Milla
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, c/Tulipán s/n, Móstoles, Madrid, Spain.
| | | |
Collapse
|
47
|
Poorter L, Kitajima K, Mercado P, Chubiña J, Melgar I, Prins HHT. Resprouting as a persistence strategy of tropical forest trees: relations with carbohydrate storage and shade tolerance. Ecology 2010; 91:2613-27. [DOI: 10.1890/09-0862.1] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
48
|
Kitajima K, Poorter L. Tissue-level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species. THE NEW PHYTOLOGIST 2010; 186:708-21. [PMID: 20298481 DOI: 10.1111/j.1469-8137.2010.03212.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Leaf toughness is thought to enhance physical defense and leaf lifespan. Here, we evaluated the relative importance of tissue-level leaf traits vs lamina thickness, as well as their ontogenetic changes, for structure-level leaf toughness and regeneration ecology of 19 tropical tree species. We measured the fracture toughness of the laminas and veins of sapling leaves with shearing tests, and used principal component analysis and structural equation modeling to evaluate the multivariate relationships among traits that contribute to leaf toughness and their links to ecological performance traits. Tissue traits (density and fracture toughness of lamina and vein) were correlated positively with each other, but independent of lamina thickness. The tissue traits and lamina thickness contributed additively to the structure-level toughness (leaf mass per area and work-to-shear). Species with dense and tough leaves as saplings also had dense and tough leaves as seedlings and adults. The patterns of ontogenetic change in trait values differed between the seedling-to-sapling and sapling-to-adult transitions. The fracture toughness and tissue density of laminas and veins, but not the lamina thickness, were correlated positively with leaf lifespan and sapling survival, and negatively with herbivory rate and sapling regeneration light requirements, indicating the importance of tissue-level leaf traits.
Collapse
Affiliation(s)
- Kaoru Kitajima
- Department of Biology, University of Florida, Gainesville, FL 32611, USA.
| | | |
Collapse
|
49
|
Meng TT, Ni J, Harrison SP. Plant morphometric traits and climate gradients in northern China: a meta-analysis using quadrat and flora data. ANNALS OF BOTANY 2009; 104:1217-29. [PMID: 19805404 PMCID: PMC2766212 DOI: 10.1093/aob/mcp230] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2009] [Revised: 06/29/2009] [Accepted: 07/24/2009] [Indexed: 05/26/2023]
Abstract
BACKGROUND AND AIMS The collection of field data on plant traits is time consuming and this makes it difficult to examine changing patterns of traits along large-scale climate gradients. The present study tests whether trait information derived from regional floras can be used in conjunction with pre-existing quadrat data on species presence to derive meaningful relationships between specific morphometric traits and climate. METHODS Quadrat records were obtained for 867 species in 404 sites from northern China (38-49 degrees N, 82-132 degrees E) together with information on the presence/absence of key traits from floras. Bioclimate parameters for each site were calculated using the BIOME3 model. Principal component analysis and correlation analysis were conducted to determine the most important climate factors. The Akaike Information Criterion was used to select the best relationship between each trait and climate. Canonical correspondence analysis was used to explore the relationships between climate and trait occurrence. KEY RESULTS The changing abundance of life form, leaf type, phenology, photosynthetic pathway, leaf size and several other morphometric traits are determined by gradients in plant-available moisture (as measured by the ratio of actual to potential evapotranspiration: alpha), growing-season temperature (as measured by growing degree-days on a 0 degrees base: GDD(0)) or a combination of these. Different plant functional types (PFTs, as defined by life form, leaf type and phenology) reach maximum abundance in distinct areas of this climate space: for example, evergreen trees occur in the coldest, wettest environments (GDD(0) < 2500 degrees Cd, alpha > 0.38), and deciduous scale-leaved trees occur in drier, warmer environments than deciduous broad-leaved trees. Most leaf-level traits show similar relationships with climate independently of PFT: for example, leaf size in all PFTs increases as the environment becomes wetter and cooler. However, some traits (e.g. petiole length) display different relationships with climate in different PFTs. CONCLUSIONS Based on presence/absence species data and flora-based trait assignments, the present study demonstrates ecologically plausible trends in the occurrence of key plant traits along climate gradients in northern China. Life form, leaf type, phenology, photosynthetic pathway, leaf size and other key traits reflect climate. The success of these analyses opens the possibility of using quadrat- and flora-based trait analyses to examine climate-trait relationships in other regions of the world.
Collapse
Affiliation(s)
- Ting-Ting Meng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan Nanxincun 20, 100093 Beijing, China
- Graduate University of Chinese Academy of Sciences, Yuquan Road 19 Jia, 100049 Beijing, China
- School of Geographical Sciences, University of Bristol, Bristol BS8 1SS, UK
| | - Jian Ni
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan Nanxincun 20, 100093 Beijing, China
- Alfred Wegener Institute for Polar and Marine Research, Telegrafenberg A43, D-14473 Potsdam, Germany
| | - Sandy P. Harrison
- School of Geographical Sciences, University of Bristol, Bristol BS8 1SS, UK
| |
Collapse
|
50
|
Leroy C, Corbara B, Dejean A, Céréghino R. Ants mediate foliar structure and nitrogen acquisition in a tank-bromeliad. THE NEW PHYTOLOGIST 2009; 183:1124-1133. [PMID: 19500265 DOI: 10.1111/j.1469-8137.2009.02891.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Aechmea mertensii is a tank-bromeliad that roots on ant-gardens initiated by the ants Camponotus femoratus and Pachycondyla goeldii. Its leaves form compartments acting as phytotelmata that hold rainwater and provide habitats for invertebrates. In this article, we aimed to determine whether the association with either C. femoratus or P. goeldii influenced the vegetative traits of A. mertensii, invertebrate diversity and nutrient assimilation by the leaves. Transmitted light, vegetative traits and phytotelmata contents were compared between the two A. mertensii ant-gardens. Camponotus femoratus colonized partially shaded areas, whereas P. goeldii colonized exposed areas. The bromeliads' rosettes had a large canopy (C. femoratus ant-gardens), or were smaller and amphora shaped (P. goeldii ant-gardens). There were significant differences in leaf anatomy, as shaded leaves were thicker than exposed leaves. The mean volumes of water, fine particulate organic matter and detritus in C. femoratus-associated bromeliads were three to five times higher than in P. goeldii-associated bromeliads. Moreover, the highest invertebrate diversity and leaf delta(15)N values were found in C. femoratus-associated bromeliads. This study enhances our understanding of the dynamics of biodiversity, and shows how ant-plant interactions can have trophic consequences and thus influence the architecture of the interacting plant via a complex feedback loop.
Collapse
Affiliation(s)
- Céline Leroy
- EcoFoG, Ecologie des Forêts de Guyane, UMR-CNRS 8172, Campus Agronomique, 97379 Kourou Cedex, France
- EDB, Laboratoire Evolution et Diversité Biologique, UMR-CNRS 5174, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Bruno Corbara
- Laboratoire Microorganismes: Génome & Environnement, Université Blaise Pascal, Clermont II, UMR-CNRS 6023, Campus des Cézeaux, 63177 Aubière Cedex, France
| | - Alain Dejean
- EcoFoG, Ecologie des Forêts de Guyane, UMR-CNRS 8172, Campus Agronomique, 97379 Kourou Cedex, France
| | - Régis Céréghino
- Ecolab, Laboratoire d'Ecologie Fonctionnelle, UMR-CNRS 5245, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| |
Collapse
|