1
|
Rocha GO, Scabini C, da Silva Oliveira JF, Neres Oliveira D, Carvalho Mota L, Novais Almeida Neves B, Menezes Dos Santos A, Mendes de Souza F, Santos de Araújo U, Moreira BO, Prates de Almeida M, Amaral JG, David JM, Ferraz Gomes A. Seasonal and Circadian Variation of Non-Volatile Metabolites in Lippia alba Leaves. Chem Biodivers 2024; 21:e202400594. [PMID: 38651347 DOI: 10.1002/cbdv.202400594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
The present study describes the seasonal and circadian variations of the major compounds from Lippia alba leaves. SPSS was used to identify, quantify, and associate the variations in the secondary metabolites of this species through HPLC/DAD analysis of the leaves hydroethanolic extracts of six selected L. alba specimens. For the circadian study, the samples were collected at four different daily hours in each year's season. For the seasonal study, the samples were collected monthly from the same individuals for two consecutive years (2018 and 2019). These samples were analyzed and quantified using a validated HPLC method for flavonoids, iridoids, and phenyl ethanoid glycoside. Mussaenoside, acteoside, and tricin-7-O-diglucuronide showed a moderate positive correlation between their biosynthesis and the precipitation index, while epi-loganin had a moderate negative correlation. Acteoside showed a moderate positive correlation between the minimum registered temperature and its production. Compared with previous studies, a drastic reduction (about 95 %) in the production of tricin-7-O-diglucuronide compared with previous study and this difference could be attributed to the plant's aging. Thus, the data demonstrated that lower temperatures and high rainfall could favor the production of the major L. alba active compounds (acteoside and tricin-7-O-diglucuronide) and that older plants harm their production.
Collapse
Affiliation(s)
- Girlane Oliveira Rocha
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, 45029-094, Vitória da Conquista - Bahia, Brazil
| | - Caroline Scabini
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, 45029-094, Vitória da Conquista - Bahia, Brazil
| | | | - Déborah Neres Oliveira
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, 45029-094, Vitória da Conquista - Bahia, Brazil
| | - Luise Carvalho Mota
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, 45029-094, Vitória da Conquista - Bahia, Brazil
| | - Brenda Novais Almeida Neves
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, 45029-094, Vitória da Conquista - Bahia, Brazil
| | - Amanda Menezes Dos Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, 45029-094, Vitória da Conquista - Bahia, Brazil
| | - Flávio Mendes de Souza
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, 45029-094, Vitória da Conquista - Bahia, Brazil
| | - Urias Santos de Araújo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, 45029-094, Vitória da Conquista - Bahia, Brazil
| | - Bruno Oliveira Moreira
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, 45029-094, Vitória da Conquista - Bahia, Brazil
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT E&A, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil
| | - Maiara Prates de Almeida
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, 45029-094, Vitória da Conquista - Bahia, Brazil
| | - Juliano Geraldo Amaral
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, 45029-094, Vitória da Conquista - Bahia, Brazil
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT E&A, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil
| | - Jorge Maurício David
- Instituto de Química, Universidade Federal da Bahia, 40170-280, Salvador, BA, Brazil
| | - Angélica Ferraz Gomes
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, 45029-094, Vitória da Conquista - Bahia, Brazil
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT E&A, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil
| |
Collapse
|
2
|
Cordell GA. The contemporary nexus of medicines security and bioprospecting: a future perspective for prioritizing the patient. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:11. [PMID: 38270809 PMCID: PMC10811317 DOI: 10.1007/s13659-024-00431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Reacting to the challenges presented by the evolving nexus of environmental change, defossilization, and diversified natural product bioprospecting is vitally important for advancing global healthcare and placing patient benefit as the most important consideration. This overview emphasizes the importance of natural and synthetic medicines security and proposes areas for global research action to enhance the quality, safety, and effectiveness of sustainable natural medicines. Following a discussion of some contemporary factors influencing natural products, a rethinking of the paradigms in natural products research is presented in the interwoven contexts of the Fourth and Fifth Industrial Revolutions and based on the optimization of the valuable assets of Earth. Following COP28, bioprospecting is necessary to seek new classes of bioactive metabolites and enzymes for chemoenzymatic synthesis. Focus is placed on those performance and practice modifications which, in a sustainable manner, establish the patient, and the maintenance of their prophylactic and treatment needs, as the priority. Forty initiatives for natural products in healthcare are offered for the patient and the practitioner promoting global action to address issues of sustainability, environmental change, defossilization, quality control, product consistency, and neglected diseases to assure that quality natural medicinal agents will be accessible for future generations.
Collapse
Affiliation(s)
- Geoffrey A Cordell
- Natural Products Inc., 1320 Ashland Avenue, Evanston, IL, 60201, USA.
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
3
|
Allophylus africanus Stem Bark Extract Modulates the Mitochondrial Apoptotic Pathway in Human Stomach Cancer Cells. Life (Basel) 2023; 13:life13020406. [PMID: 36836763 PMCID: PMC9964695 DOI: 10.3390/life13020406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/04/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
The present work aimed to detail the mechanisms elicited by Allophylus africanus P. Beauv. stem bark extract in human stomach cancer cells and to identify the bioactives underlying the cytotoxicity. MTT reduction and LDH leakage assays allowed characterizing the cytotoxic effects in AGS cells, which were further detailed by morphological analysis using phalloidin and Hoechst 33258. Proapoptotic mechanisms were elucidated through a mitochondrial membrane potential assay and by assessing the impact upon the activity of caspase-9 and -3. The extract displayed selective cytotoxicity against AGS cells. The absence of plasma membrane permeabilization, along with apoptotic body formation, suggested that pro-apoptotic effects triggered cell death. Intrinsic apoptosis pathway activation was verified, as mitochondrial membrane potential decrease and activation of caspase-9 and -3 were observed. HPLC-DAD profiling enabled the identification of two apigenin-di-C-glycosides, vicenin-2 (1) and apigenin-6-C-hexoside-8-C-pentoside (3), as well as three mono-C-glycosides-O-glycosylated derivatives, apigenin-7-O-hexoside-8-C-hexoside (2), apigenin-8-C-(2-rhamnosyl)hexoside (4) and apigenin-6-C-(2-rhamnosyl)hexoside (5). Isovitexin-2″-O-rhamnoside (5) is the main constituent, accounting for nearly 40% of the total quantifiable flavonoid content. Our results allowed us to establish the relationship between the presence of vicenin-2 and other apigenin derivatives with the contribution to the cytotoxic effects on the presented AGS cells. Our findings attest the anticancer potential of A. africanus stem bark against gastric adenocarcinoma, calling for studies to develop herbal-based products and/or the use of apigenin derivatives in chemotherapeutic drug development.
Collapse
|
4
|
Sugier D, Sugier P, Jakubowicz-Gil J, Gawlik-Dziki U, Zając A, Król B, Chmiel S, Kończak M, Pięt M, Paduch R. Nitrogen Fertilization and Solvents as Factors Modifying the Antioxidant and Anticancer Potential of Arnica montana L. Flower Head Extracts. PLANTS (BASEL, SWITZERLAND) 2022; 12:142. [PMID: 36616270 PMCID: PMC9824058 DOI: 10.3390/plants12010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Arnica montana L. is one of Europe's endemic endangered medicinal plants, with diverse biological activities commonly used in medicine, pharmacy, and cosmetics. Its flower heads are a rich source of raw material, with antibacterial, antifungal, antiseptic, anti-inflammatory, antiradical, antioxidant, and antitumor properties. The objective of the present study was (i) to characterize the chemical composition of flower heads of A. montana plants cultivated under nitrogen fertilization, (ii) to identify the impact of the nitrogen fertilization and extraction method (water, ethanol) on the antioxidant activity of extracts, and (iii) to determine the role of different nitrogen doses applied during plant cultivation and different extraction methods in the anticancer activity of the extracts through analysis of apoptosis and autophagy induction in HT29, HeLa, and SW620 cell lines. The present study shows that nitrogen is a crucial determinant of the chemical composition of arnica flower heads and the antioxidant and anticancer activity of the analyzed extracts. Nitrogen fertilization can modify the composition of pharmacologically active substances (sesquiterpene lactones, flavonoids, essential oil) in Arnicae flos. The content of sesquiterpene lactones, flavonoids, and essential oil increased with the increase in the nitrogen doses to 60 kg N ha-1 by 0.66%, 1.45%, and 0.27%, respectively. A further increase in the nitrogen dose resulted in a decrease in the content of the analyzed secondary metabolites. Varied levels of nitrogen application can be regarded as a relevant way to modify the chemical composition of arnica flower heads and to increase the anticancer activity, which was confirmed by the increase in the level of apoptosis with the increase in fertilization to a level of 60 kg N ha-1. The fertilization of arnica plants with low doses of nitrogen (30 and 60 kg N ha-1) significantly increased the LOX inhibition ability of the ethanol extracts. The present study is the first report on the anticancer activity of A. montana water extracts, with emphasis on the role of water as a solvent. In further studies of factors modifying the quality of Arnicae flos, attention should be paid to the simultaneous use of nitrogen and other microelements to achieve synergistic results and to the possibility of a more frequent use of water as a solvent in studies on the biological activity of A. montana extracts.
Collapse
Affiliation(s)
- Danuta Sugier
- Department of Industrial and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland
| | - Piotr Sugier
- Department of Botany, Mycology and Ecology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka Street, 20-033 Lublin, Poland
| | - Joanna Jakubowicz-Gil
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka Street, 20-033 Lublin, Poland
| | - Urszula Gawlik-Dziki
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland
| | - Adrian Zając
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka Street, 20-033 Lublin, Poland
| | - Beata Król
- Department of Industrial and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland
| | - Stanisław Chmiel
- Department of Hydrology and Climatology, Institute of Earth and Environmental Sciences, Maria Curie-Skłodowska University, Kraśnicka Av. 2d, 20-718 Lublin, Poland
| | - Magdalena Kończak
- Institute of Earth and Environmental Sciences, Maria Curie-Skłodowska University, Kraśnicka Av. 2d, 20-718 Lublin, Poland
| | - Mateusz Pięt
- Department of Virology and Immunology, Institute of Biological Sciences, 19 Akademicka Street, 20-033 Lublin, Poland
| | - Roman Paduch
- Department of Virology and Immunology, Institute of Biological Sciences, 19 Akademicka Street, 20-033 Lublin, Poland
- Department of General and Pediatric Ophthalmology, Medical University of Lublin, 1 Chmielna Street, 20-079 Lublin, Poland
| |
Collapse
|
5
|
Raskar S, Purkar V, Sardesai M, Mitra S. Assessing the Impact of Geographical Distribution and Genetic Diversity on Metabolic Profiles of a Medicinal Plant, Embelia ribes Burm. f. PLANTS (BASEL, SWITZERLAND) 2022; 11:2861. [PMID: 36365314 PMCID: PMC9653573 DOI: 10.3390/plants11212861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/08/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The extensive use of Embelia ribes Burm. f. (Embelia) in tribal medicine proclaimed global attention as a promising candidate in complementary and alternative medicine. The knowledge of chemical blends is a prerequisite for the selection of raw materials for herbal medicine formulations; however, the influence of geographical distance and genetic diversity on the metabolome of Embelia fruits is unknown. Therefore, we collected Embelia fruits from four locations across the Western Ghats of India and analyzed the metabolic profile and genotypic diversity of Embelia fruits by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and inter simple sequence repeats (ISSR), respectively. LC-MS/MS analysis yielded 583 compounds; however, the trimmed data resulted in 149 compounds. Further, MS/MS analysis identified 36 compounds, among which we reported 30 compounds for the first time from Embelia. These compounds belong to 11 compound classes that suggest location-specific chemical blends of Embelia fruits. Multivariate analysis showed 94% compound diversity across the accessions. ISSR analysis suggests 95% polymorphism across the accessions. A significant positive correlation (80%) between metabolomics and genotypic data matrices validates the genotype's influence in tuning Embelia's metabolic profiles. We conclude that the chemical profiles of Embelia are location-specific, which can be explored for the selection of herbal trade sustainably.
Collapse
|
6
|
Alchemilla monticola Opiz. Functional Traits Respond to Diverse Alpine Environmental Conditions in Karavanke, Slovenia. PLANTS 2022; 11:plants11192527. [PMID: 36235393 PMCID: PMC9571203 DOI: 10.3390/plants11192527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022]
Abstract
Alpine plants are exposed to demanding environmental conditions, such as high ultraviolet (UV) and photosynthetic radiation, extreme temperatures, drought, and nutrient deficiencies. Alpine plants adapt and acclimate to harsh conditions, developing several strategies, including biochemical, physiological, and optical responses. However, alpine plants’ survival strategies are hardly researched due to time-consuming and complex experimental conditions, which are supported by scarce studies. Our study focused on the functional traits of the alpine plant Alchemilla monticola Opiz (hairy lady’s mantle) growing at two different altitudes (1500, 2000 m a.s.l.) and two different UV exposures per altitude. Near-ambient (UV) and reduced (UV-) UV radiations were provided by using two sorts of UV absorbing filters; temperatures were monitored hourly. The experimental plots were located at Tegoška Gora, Karavanke, Slovenia. Functional traits: physiological, biochemical, and optical characteristics were recorded three times during the growing season. A. monticola showed high maximum photochemical efficiency at both altitudes throughout the season, which confirms good adaptation and acclimatization of the plant. Furthermore, significantly higher maximum photochemical efficiency at the subalpine altitude coincided with significantly higher UV absorbing compounds (UV AC) contents at the subalpine compared to the montane altitude in August. A. monticola manifested high UV AC contents throughout the season, with significantly increased synthesis of UV AC contents in the subalpine conditions in August and September. The stomatal conductance rate increased with altitude and was correlated mostly to a lower temperature. A. monticola leaves did not transmit any UV spectrum, which corresponded to high total UV AC contents. The leaf transmittance of the photosynthetic spectrum increased at the subalpine altitude, while the transmittance of the green and yellow spectra increased under the reduced UV radiation in the autumn. A. monticola’s high photosynthetic spectrum transmittance at the subalpine altitude in the autumn might therefore be due to subalpine harsh environmental conditions, as well as plant ontogenetical phase.
Collapse
|
7
|
Zhang H, Wang J, Tian S, Hao W, Du L. Two B-Box Proteins, MaBBX20 and MaBBX51, Coordinate Light-Induced Anthocyanin Biosynthesis in Grape Hyacinth. Int J Mol Sci 2022; 23:5678. [PMID: 35628488 PMCID: PMC9146254 DOI: 10.3390/ijms23105678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Floral colour is an important agronomic trait that influences the commercial value of ornamental plants. Anthocyanins are a class of flavonoids and confer diverse colours, and elucidating the molecular mechanisms that regulate their pigmentation could facilitate artificial manipulation of flower colour in ornamental plants. Here, we investigated the regulatory mechanism of light-induced anthocyanin biosynthesis during flower colouration in grape hyacinth (Muscari spp.). We studied the function of two B-box proteins, MaBBX20 and MaBBX51. The qPCR revealed that MaBBX20 and MaBBX51 were associated with light-induced anthocyanin biosynthesis. Both MaBBX20 and MaBBX51 are transcript factors and are specifically localised in the nucleus. Besides, overexpression of MaBBX20 in tobacco slightly increased the anthocyanin content of the petals, but reduced in MaBBX51 overexpression lines. The yeast one-hybrid assays indicated that MaBBX20 and MaBBX51 did not directly bind to the MaMybA or MaDFR promoters, but MaHY5 did. The BiFC assay revealed that MaBBX20 and MaBBX51 physically interact with MaHY5. A dual luciferase assay further confirmed that the MaBBX20-MaHY5 complex can strongly activate the MaMybA and MaDFR transcription in tobacco. Moreover, MaBBX51 hampered MaBBX20-MaHY5 complex formation and repressed MaMybA and MaDFR transcription by physically interacting with MaHY5 and MaBBX20. Overall, the results suggest that MaBBX20 positively regulates light-induced anthocyanin biosynthesis in grape hyacinth, whereas MaBBX51 is a negative regulator.
Collapse
Affiliation(s)
- Han Zhang
- College of Landscape Architecture and Arts, Northwest A & F University, Yangling 712100, China; (H.Z.); (J.W.); (S.T.); (W.H.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Jiangyu Wang
- College of Landscape Architecture and Arts, Northwest A & F University, Yangling 712100, China; (H.Z.); (J.W.); (S.T.); (W.H.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Shuting Tian
- College of Landscape Architecture and Arts, Northwest A & F University, Yangling 712100, China; (H.Z.); (J.W.); (S.T.); (W.H.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Wenhui Hao
- College of Landscape Architecture and Arts, Northwest A & F University, Yangling 712100, China; (H.Z.); (J.W.); (S.T.); (W.H.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Lingjuan Du
- College of Landscape Architecture and Arts, Northwest A & F University, Yangling 712100, China; (H.Z.); (J.W.); (S.T.); (W.H.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, China
| |
Collapse
|
8
|
Nataraj N, Hussain M, Ibrahim M, Hausmann AE, Rao S, Kaur S, Khazir J, Mir BA, Olsson SB. Effect of Altitude on Volatile Organic and Phenolic Compounds of Artemisia brevifolia Wall ex Dc. From the Western Himalayas. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.864728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adaptation to changing environmental conditions is a driver of plant diversification. Elevational gradients offer a unique opportunity for investigating adaptation to a range of climatic conditions. The use of specialized metabolites as volatile and phenolic compounds is a major adaptation in plants, affecting their reproductive success and survival by attracting pollinators and protecting themselves from herbivores and other stressors. The wormseed Artemisia brevifolia can be found across multiple elevations in the Western Himalayas, a region that is considered a biodiversity hotspot and is highly impacted by climate change. This study aims at understanding the volatile and phenolic compounds produced by A. brevifolia in the high elevation cold deserts of the Western Himalayas with the view to understanding the survival strategies employed by plants under harsh conditions. Across four sampling sites with different elevations, polydimethylsiloxane (PDMS) sampling and subsequent GCMS analyses showed that the total number of volatile compounds in the plant headspace increased with elevation and that this trend was largely driven by an increase in compounds with low volatility, which might improve the plant’s resilience to abiotic stress. HPLC analyses showed no effect of elevation on the total number of phenolic compounds detected in both young and mature leaves. However, the concentration of the majority of phenolic compounds decreased with elevation. As the production of phenolic defense compounds is a costly trait, plants at higher elevations might face a trade-off between energy expenditure and protecting themselves from herbivores. This study can therefore help us understand how plants adjust secondary metabolite production to cope with harsh environments and reveal the climate adaptability of such species in highly threatened regions of our planet such as the Himalayas.
Collapse
|
9
|
Reddy K, Stander MA, Stafford GI, Makunga NP. Mass Spectrometry Metabolomics and Feature-Based Molecular Networking Reveals Population-Specific Chemistry in Some Species of the Sceletium Genus. Front Nutr 2022; 9:819753. [PMID: 35425789 PMCID: PMC9001948 DOI: 10.3389/fnut.2022.819753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/02/2022] [Indexed: 11/21/2022] Open
Abstract
The Sceletium genus has been of medicinal importance in southern Africa for millennia and Sceletium tortuosum (Aizoaceae), one of eight species in the genus has gained pharmaceutical importance as an anxiolytic and anti-depressant due to the presence of mesembrine alkaloids. S. tortuosum is used for the manufacture of herbal teas, dietary supplements and other phytopharmaceutical products. This study aimed to provide a metabolomic characterization of S. tortuosum and its sister species as these are not easy to distinguish using morphology alone. Plant samples were thus collected from various locations in the succulent Karoo (South Africa) and analyzed through liquid chromatography-mass spectrometry (LC-MS), using MSE fragmentation as a putative tool for chemical identities. Metabolomics-based analyses in combination with molecular networking were able to distinguish between the four species of Sceletium based on the presence of 4-(3,4-dimethyoxyphenyl)-4-[2-acetylmethlamino)ethyl]cyclohexanone (m/z 334.2020; RT 6.60 min), mesembrine (m/z 290.1757; RT 5.10 min) and 4'-O-demethylmesembrenol (m/z 276.1597; RT 4.17 min). Metabolomic profiles varied according to the different localities and metabolites occurred at variable quantitative levels in Sceletium ecotypes. Molecular networking provided the added advantage of being able to observe mesembrine alkaloid isomers and coeluting metabolites (from the joubertiamine group) that were difficult to discern without this application. By combining high-throughput metabolomics together with global and feature based-molecular networking, a powerful metabolite profiling platform that is able to discern chemical patterns within and between populations was established. These techniques were able to reveal chemotaxonomic relationships and allowed for the discovery of chemical markers that may be used as part of monitoring protocols during the manufacture of phytopharmaceutical and dietary products based on Sceletium.
Collapse
Affiliation(s)
- Kaylan Reddy
- Department of Botany and Zoology, Faculty of Natural Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Marietjie A. Stander
- Department of Biochemistry, Faculty of Natural Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Gary I. Stafford
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Nokwanda P. Makunga
- Department of Botany and Zoology, Faculty of Natural Sciences, Stellenbosch University, Stellenbosch, South Africa
- *Correspondence: Nokwanda P. Makunga
| |
Collapse
|
10
|
Zheng T, Su KX, Chen XY, Zhang DL, Liu SM. Quality evaluation of wild germplasm of Chinese prickly ash (Zanthoxylum bungeanum Maxim) from Qinling mountains at different elevations based on HPLC-fingerprint. Chem Biodivers 2022; 19:e202100965. [PMID: 35112481 DOI: 10.1002/cbdv.202100965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/01/2022] [Indexed: 11/09/2022]
Abstract
Wild Chinese prickly ash resources provide a valuable genetic resource for Zanthoxylum bungeanum Maxim improvement and breeding. The Qinling Mountains was an abundant source for wild Chinese prickly ash. In this study, the phenolic and flavonoid compounds of wild germplasm resources from different altitudes and six cultivated varieties were analyzed by high performance liquid chromatography (HPLC). The chromatograms of them were essentially consistent, although their chemical composition contents were greatly different. The thirty samples were divided into three categories through the hierarchical clustering analysis. Catechin, hyperoside and quercitrin were considered to be key compounds for the quality evaluation, and by contrast, the wild samples with an altitude of 2300±50 m (Group IV) had the highest content of key compounds, and presented stronger antioxidant activity and antibacterial ability, indicating that these wild samples could be identified as the excellent breeding resources. This is the first time to evaluate the quality of wild Chinese prickly ash at different altitudes in Qinling Mountains. These excellent wild germplasm resources provided substantial potential accessions for use directly in Chinese prickly ash breeding programs.
Collapse
Affiliation(s)
- Tao Zheng
- Northwest A&F University: Northwest Agriculture and Forestry University, College of Science, yangling, 712100, xianyang, CHINA
| | - Ke-Xing Su
- Northwest A&F University: Northwest Agriculture and Forestry University, College of Science, yangling, 712100, xianyang, CHINA
| | - Xi-Yan Chen
- Northwest A&F University: Northwest Agriculture and Forestry University, College of Life Sciences, Yangling, 712100, Xianyang, CHINA
| | - Ding-Ling Zhang
- Northwest A&F University: Northwest Agriculture and Forestry University, College of Science, Yangling, 712100, Xianyang, CHINA
| | - Shu-Ming Liu
- Northwest A&F University: Northwest Agriculture and Forestry University, College of Science, Yangling, 712100, Xianyang, CHINA
| |
Collapse
|
11
|
Fusani P, Aiello N, Shachter A, Dudai N. Volatile Composition Variability of Arnica montana Wild Populations of Trentino-Alto Adige, Italy, Determined by Headspace-Solid Phase Microextraction. Chem Biodivers 2021; 19:e202100593. [PMID: 34755931 DOI: 10.1002/cbdv.202100593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/09/2021] [Indexed: 11/10/2022]
Abstract
Arnica montana is a plant distributed in most of Europe, including the Alpine arc and Apennines in Italy, and traditionally used worldwide for medicinal properties. Twelve natural populations of the species from Trentino-Alto Adige, Italy, were characterized using Headspace-Solid Phase Microextraction analysis for their volatile profile. Fifty-one compounds were detected in flower heads, the most abundant being (E)-Caryophyllene (23.4 %), 2,2,4,6,6-Pentamethylheptane (8.3 %), α- trans-Bergamotene (7.2 %), Germacrene D (5.7 %), and Hexanal (5.3 %). A multivariate analysis performed on the ten most abundant compounds grouped these investigated accessions into five main clusters. Three clusters, comprising together five accessions, were linked to the geographical origin of two collection sites. This work is a complete characterization of volatiles of the species by SPME analysis reported to date. Furthermore, results suggest that the species' volatile profile can be linked to the geographical origin of the natural populations and, therefore, represent a tool for evaluating biodiversity within the species.
Collapse
Affiliation(s)
- Pietro Fusani
- Council for Agricultural Research and Economics, Research Centre for Forestry and Wood, piazza Nicolini 6, 38123, Trento, Italy
| | - Nicola Aiello
- Council for Agricultural Research and Economics, Research Centre for Forestry and Wood, piazza Nicolini 6, 38123, Trento, Italy
| | - Alona Shachter
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat-Yishay, IL-30095, Israel
| | - Nativ Dudai
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat-Yishay, IL-30095, Israel
| |
Collapse
|
12
|
Zhou S, Yan X, Yang J, Qian C, Yin X, Fan X, Fang T, Gao Y, Chang Y, Liu W, Ma XF. Variations in Flavonoid Metabolites Along Altitudinal Gradient in a Desert Medicinal Plant Agriophyllum squarrosum. FRONTIERS IN PLANT SCIENCE 2021; 12:683265. [PMID: 34354722 PMCID: PMC8329721 DOI: 10.3389/fpls.2021.683265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/07/2021] [Indexed: 06/10/2023]
Abstract
Agriophyllum squarrosum (L.) Moq., a pioneer plant endemic to the temperate deserts of Asia, could be domesticated into an ideal crop with outstanding ecological and medicinal characteristics. A previous study showed differential flavonoid accumulation between two in situ altitudinal ecotypes. To verify whether this accumulation was determined by environmental or genetic factors, we conducted flavonoid-targeted metabolic profiling among 14 populations of A. squarrosum collected from regions with different altitudes based on a common garden experiment. Results showed that the most abundant flavonoid in A. squarrosum was isorhamnetin (48.40%, 557.45 μg/g), followed by quercetin (13.04%, 150.15 μg/g), tricin (11.17%, 128.70 μg/g), isoquercitrin (7.59%, 87.42 μg/g), isovitexin (7.20%, 82.94 μg/g), and rutin (7.00%, 80.62 μg/g). However, based on a common garden at middle-altitude environment, almost none of the flavonoids was enriched in the high-altitude populations, and even some flavonoids, such as quercetin, tricin, and rutin, were significantly enriched in low-altitude populations. This phenomenon indicated that the accumulation of flavonoids was not a result of local adaptation to high altitude. Furthermore, association analysis with in situ environmental variables showed that the contents of quercetin, tricin, and rutin were strongly positively correlated with latitude, longitude, and precipitation gradients and negatively correlated with temperature gradients. Thus, we could conclude that the accumulations of flavonoids in A. squarrosum were more likely as a result of local adaption to environmental heterogeneity combined with precipitation and temperature other than high altitude. This study not only provides an example to understand the molecular ecological basis of pharmacognosy, but also supplies methodologies for developing a new industrial crop with ecological and agricultural importance.
Collapse
Affiliation(s)
- Shanshan Zhou
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xia Yan
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- School of Life Sciences, Nantong University, Nantong, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chaoju Qian
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xiaoyue Yin
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xingke Fan
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Tingzhou Fang
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Gao
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, China
| | - Yuxiao Chang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Weimin Liu
- Zhongnong Haidao (Shenzhen) Biotech Co., Ltd., Shenzhen, China
| | - Xiao-Fei Ma
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
13
|
Chelghoum M, Guenane H, Tahri D, Laggoun I, Marfoua FZ, Rahmani FZ, Khenifer F, Yousfi M. Influence of altitude, precipitation, and temperature factors on the phytoconstituents, antioxidant, and α-amylase inhibitory activities of Pistacia atlantica. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01006-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Dudek B, Warskulat AC, Vogel H, Wielsch N, Menezes RC, Hupfer Y, Paetz C, Gebauer-Jung S, Svatoš A, Schneider B. An Integrated-Omics/Chemistry Approach Unravels Enzymatic and Spontaneous Steps to Form Flavoalkaloidal Nudicaulin Pigments in Flowers of Papaver nudicaule L. Int J Mol Sci 2021; 22:ijms22084129. [PMID: 33923591 PMCID: PMC8073789 DOI: 10.3390/ijms22084129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/26/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
Flower colour is an important trait for plants to attract pollinators and ensure their reproductive success. Among yellow flower pigments, the nudicaulins in Papaver nudicaule L. (Iceland poppy) are unique due to their rarity and unparalleled flavoalkaloid structure. Nudicaulins are derived from pelargonidin glycoside and indole, products of the flavonoid and indole/tryptophan biosynthetic pathway, respectively. To gain insight into the molecular and chemical basis of nudicaulin biosynthesis, we combined transcriptome, differential gel electrophoresis (DIGE)-based proteome, and ultra-performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS)-based metabolome data of P. nudicaule petals with chemical investigations. We identified candidate genes and proteins for all biosynthetic steps as well as some key metabolites across five stages of petal development. Candidate genes of amino acid biosynthesis showed a relatively stable expression throughout petal development, whereas most candidate genes of flavonoid biosynthesis showed increasing expression during development followed by downregulation in the final stage. Notably, gene candidates of indole-3-glycerol-phosphate lyase (IGL), sharing characteristic sequence motifs with known plant IGL genes, were co-expressed with flavonoid biosynthesis genes, and are probably providing free indole. The fusion of indole with pelargonidin glycosides was retraced synthetically and promoted by high precursor concentrations, an excess of indole, and a specific glycosylation pattern of pelargonidin. Thus, nudicaulin biosynthesis combines the enzymatic steps of two different pathways with a spontaneous fusion of indole and pelargonidin glycoside under precisely tuned reaction conditions.
Collapse
|
15
|
Epicormic bud protection traits vary along a latitudinal gradient in a neotropical savanna. Naturwissenschaften 2021; 108:11. [PMID: 33740167 DOI: 10.1007/s00114-021-01722-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/18/2021] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
Regrowth via production of epicormic shoots is an important strategy for many woody plants after environmental disturbances such as fire, drought, and herbivory. Populations spreading across a broad latitudinal gradient offer opportunities to investigate if essential traits vary with heterogenous environmental conditions, such as in savanna ecosystems. This information can help us predict plant responses to climate change. Here, we evaluated if epicormic bud protection traits varied among populations of three focal savanna species (Miconia albicans, Solanum lycocarpum, and Zeyheria montana) that have a wide distribution and grow under variable climatic conditions. We randomly sampled 225 individuals over five spatially independent sites (7°, 10°, 15°, 18°, and 24° S) in Brazil, totaling 15 individuals per species per area. We analyzed anatomical transverse sections of five buds per species per area to assess the relative area occupied by crystal and phenolic idioblasts, the thickness of the trichome boundary layer, and to test if these traits were associated with climatic conditions. The buds were protected by cataphylls and composed of a variable number of undeveloped leaves enveloping the shoot apex. For M. albicans, we found an association between maximum temperature and both phenolic idioblasts and trichome boundary layer, but no association with crystal idioblasts. In S. lycocarpum, only the trichome boundary layer was associated with maximum temperature plus high radiation. Z. montana showed no variation. Combination of two or more traits can lead to the development of adaptative strategies to different climatic conditions. We present for the first time an analysis of epicormic bud traits in plant populations occurring in an extensive latitudinal gradient and shed light on how maximum temperature is associated with these traits, contributing to a better understanding of plant resprouting capabilities in widespread savanna plant species.
Collapse
|
16
|
Dey A, Hazra AK, Mukherjee A, Nandy S, Pandey DK. Chemotaxonomy of the ethnic antidote Aristolochia indica for aristolochic acid content: Implications of anti-phospholipase activity and genotoxicity study. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113416. [PMID: 32980485 DOI: 10.1016/j.jep.2020.113416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/02/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aristolochia indica L. (Aristolochiaceae) is a common medicinal plant described in many traditional medicine as well as in Ayurveda used against snakebites. Besides, the plant has also been reported traditionally against fever, rheumatic arthritis, madness, liver ailments, dyspepsia, oedema, leishmaniasis, leprosy, dysmenorrhoea, sexual diseases etc. The plant is known to contain its major bioactive constituent aristolochic acid (AA) known for its anti-snake venom, abortifacient, antimicrobial and antioxidant properties. MATERIALS AND METHODS This present work describes a validated, fast and reproducible high performance thin layer chromatography (HPTLC) method to estimate AA from the roots of 20 chemotypes of A. indica procured from 20 diverse geographical locations from the state of West Bengal, India. Further, an evidence-based approach was adopted to investigate the reported anti-venom activity of the aqueous extracts of the A. indica roots by assessing its phospholipase A2 (PLA2) inhibitory properties since PLA2 is a major component of many snake-venoms. Finally, the cytotoxicity and genotoxicity of the aqueous root extract of the Purulia (AI 1) chemotype were assessed at various concentrations using Allium cepa root meristematic cells. RESULTS The highest amount of AA (7643.67 μg/g) was determined in the roots of A. indica chemotype collected from Purulia district followed by the chemotypes collected from Murshidabad, Jalpaiguri and Birbhum districts (7398.34, 7345.09 and 6809.97 μg/g respectively). This study not only determines AA in the plants to select pharmacologically elite chemotypes of A. indica, but it also identifies high AA producing A. indica for further domestication and propagation of the plants for pharmacological and industrial applications. The method was validated via analyzing inter-day and intra-day precision, repeatability, reproducibility, instrumental precision, limit of detection (LOD) and limit of quantification (LOQ) and specificity. Chemotypes with high AA content exhibited superior anti-PLA2 activity by selectively inhibiting human-group PLA2. Moreover, A. indica root extract significantly inhibited mitosis in Allium cepa root tips as a potent clastogen. CONCLUSIONS The present quick, reproducible and validated HPTLC method provides an easy tool to determine AA in natural A. indica plant populations as well as in food and dietary supplements, a potential antivenin at one hand and a possible cause of aristolochic acid nephropathy (AAN) at another. Besides, the cytotoxic and mitotoxic properties of the root extracts should be used with caution especially for oral administration.
Collapse
Affiliation(s)
- Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India.
| | - Alok Kumar Hazra
- IRDM Faculty Centre, Ramakrishna Mission Ashrama, Kolkata, India
| | | | - Samapika Nandy
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Devendra Kumar Pandey
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, India.
| |
Collapse
|
17
|
Variation in Phenolic Chemistry in Zostera marina Seagrass Along Environmental Gradients. PLANTS 2021; 10:plants10020334. [PMID: 33572371 PMCID: PMC7916139 DOI: 10.3390/plants10020334] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/26/2021] [Accepted: 02/03/2021] [Indexed: 11/17/2022]
Abstract
Chemical ecology has been suggested as a less time-consuming and more cost-efficient monitoring tool of seagrass ecosystems than traditional methods. Phenolic chemistry in Zostera marina samples was analyzed against latitude, sea depth, sample position within a seagrass meadow (periphery or center) and wave exposure. Multivariate data analysis showed that rosmarinic acid correlated moderately positively with depth, while the flavonoids had an overall strong negative correlation with increasing depth—possibly reflecting lack of stress-induced conditions with increasing depth, rather than a different response to light conditions. At a molecular level, the flavonoids were separated into two groups; one group is well described by the variables of depth and wave exposure, and the other group that was not well described by these variables—the latter may reflect biosynthetic dependencies or other unrevealed factors. A higher flavonoid/rosmarinic acid ratio was seen in the periphery of a seagrass meadow, while the contrary ratio was seen in the center. This may reflect higher plant stress in the periphery of a meadow, and the flavonoid/rosmarinic acid ratio may provide a possible molecular index of seagrass ecosystem health. Further studies are needed before the full potential of using variation in phenolic chemistry as a seagrass ecosystem monitoring tool is established.
Collapse
|
18
|
Pandey DK, Kaur P, Kumar V, Banik RM, Malik T, Dey A. Screening the elite chemotypes of Gloriosa superba L. in India for the production of anticancer colchicine: simultaneous microwave-assisted extraction and HPTLC studies. BMC PLANT BIOLOGY 2021; 21:77. [PMID: 33546591 PMCID: PMC7866646 DOI: 10.1186/s12870-021-02843-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Gloriosa superba L. (Colchicaceae) is a high-value medicinal plant indigenous to Africa and Southeast Asia. Its therapeutic benefits are well-established in traditional medicines including Ayurveda. It is well known for its natural bioactive compound colchicine which exhibits a wide range of pharmacological activities i.e. rheumatism, gout and was also introduced into clinical practices. The increasing demand as well as its illegal harvesting has brought this valuable plant under threatened category. METHODS The present investigation describes a microwave assisted extraction (MAE) strategy coupled with a densitometric-high performance thin layer chromatographic (HPTLC) methodology for the analysis of colchicine from 32 different populations of G. superba. A Box-Behnken statistical design (3 level factor) has been employed to optimize MAE, in which power of microwave, time of irradiation, aqueous ethanol and pH were used as independent variables whereas colchicine was used as the dependent variables. Chromatography was carried out on Silica gel 60 F254 TLC plates with toluene: methanol, 85:15 (v/v) being used as solvent system. Densitometric measurement was performed at λ=254 nm following post-derivatization (10% methanolic sulphuric acid). RESULTS Optimal conditions for extraction to obtain the maximum colchicine yield was found to be 7.51 mg g- 1 which was very close to be predicted response 7.48 mg g- 1 by maintaining microwave power (460 W), irradiation time (6.4 min), aqueous ethanol-30, pH -3. Colchicine content ranged between 2.12-7.58 mg g- 1 among 32 G. superba populations in which only three chemotypes viz. GS- 1, GS- 3, and GS- 2 collected from West Bengal and Sikkim, respectively exhibited maximum yield of colchicine. CONCLUSION Therefore, this newly developed optimized MAE coupled with HPTLC densitometry methodology not only quantifies colchicine in order to identify elite chemotypes of G. superba, but it also encourages in selecting high yielding populations of the plants for industrial use and economic boost for the farmers. This validated, simple and reproducible HPTLC protocol is being used for the first time to estimate colchicine from natural populations of G. superba obtained from 32 different geographical regions of India.
Collapse
Affiliation(s)
- Devendra Kumar Pandey
- Department of Biotechnology, School of Biotechnology and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Prabhjot Kaur
- Department of Biotechnology, School of Biotechnology and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Vijay Kumar
- Department of Biotechnology, School of Biotechnology and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - R M Banik
- School of Biochemical Engineering, Indian Institute of Technology BHU, Varanasi, India
| | - Tabarak Malik
- Department of Biochemistry, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India.
| |
Collapse
|
19
|
Dou L, Sun Y, Li S, Ge C, Shen Q, Li H, Wang W, Mao J, Xiao G, Pang C. Transcriptomic analyses show that 24-epibrassinolide (EBR) promotes cold tolerance in cotton seedlings. PLoS One 2021; 16:e0245070. [PMID: 33524020 PMCID: PMC7850480 DOI: 10.1371/journal.pone.0245070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/21/2020] [Indexed: 11/19/2022] Open
Abstract
In plants, brassinosteroids (BRs) are a class of steroidal hormones that are involved in numerous physiological responses. However, the function of BRs in cold tolerance in cotton has not been explored. In this study, cotton seedlings were treated with five concentrations (0, 0.05, 0.1, 0.2, 0.5 and 1.0 mg/L) of 24-Epibrassinolide (EBR) at 4°C. We measured the electrolyte leakage, malondialdehyde (MDA) content, proline content, and net photosynthesis rate (Pn) of the seedlings, which showed that EBR treatment increased cold tolerance in cotton in a dose-dependent manner, and that 0.2 mg/L is an optimum concentration for enhancing cold tolerance. The function of EBR in cotton cotyledons was investigated in the control 0 mg/L (Cold+water) and 0.2 mg/L (Cold+EBR) treatments using RNA-Seq. A total of 4,001 differentially expressed genes (DEGs), including 2,591 up-regulated genes and 1,409 down-regulated genes were identified. Gene Ontology (GO) and biochemical pathway enrichment analyses showed that EBR is involved in the genetic information process, secondary metabolism, and also inhibits abscisic acid (ABA) and ethylene (ETH) signal transduction. In this study, physiological experiments showed that EBR can increase cold tolerance in cotton seedlings, and the comprehensive RNA-seq data shed light on the mechanisms through which EBR increases cold tolerance in cotton seedlings.
Collapse
Affiliation(s)
- Lingling Dou
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, Shaanxi, China
| | - Yaru Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Shuye Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Changwei Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Qian Shen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Huaizhu Li
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, Shaanxi, China
| | - Wenbo Wang
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, Shaanxi, China
| | - Jiayi Mao
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
- * E-mail: (GX); (CP)
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- * E-mail: (GX); (CP)
| |
Collapse
|
20
|
Yu Y, Guo X, Li X, Dai D, Xu X, Ge X, Li Y, Yang T. Organ‐ and Age‐Specific Differences of
Dioscorea polystachya
Compounds Measured by UPLC‐QTOF/MS. Chem Biodivers 2021; 18:e2000856. [DOI: 10.1002/cbdv.202000856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/07/2020] [Indexed: 01/14/2023]
Affiliation(s)
- Yan‐Ge Yu
- Industrial Crops Research Institute Henan Academy of Agricultural Sciences Zhengzhou 450002 P. R. China
- Henan Provincial Center for Engineering and Technology Research of Traditional Chinese Medicine Zhengzhou 450002 P. R. China
| | - Xiao‐Yang Guo
- Industrial Crops Research Institute Henan Academy of Agricultural Sciences Zhengzhou 450002 P. R. China
- Henan Provincial Center for Engineering and Technology Research of Traditional Chinese Medicine Zhengzhou 450002 P. R. China
| | - Xiang‐Yang Li
- Industrial Crops Research Institute Henan Academy of Agricultural Sciences Zhengzhou 450002 P. R. China
- Henan Provincial Center for Engineering and Technology Research of Traditional Chinese Medicine Zhengzhou 450002 P. R. China
| | - Dan‐Dan Dai
- Industrial Crops Research Institute Henan Academy of Agricultural Sciences Zhengzhou 450002 P. R. China
- Henan Provincial Center for Engineering and Technology Research of Traditional Chinese Medicine Zhengzhou 450002 P. R. China
| | - Xin‐Ran Xu
- Industrial Crops Research Institute Henan Academy of Agricultural Sciences Zhengzhou 450002 P. R. China
| | - Xiao‐Jin Ge
- Industrial Crops Research Institute Henan Academy of Agricultural Sciences Zhengzhou 450002 P. R. China
- Henan Provincial Center for Engineering and Technology Research of Traditional Chinese Medicine Zhengzhou 450002 P. R. China
| | - Yan‐Jun Li
- Industrial Crops Research Institute Henan Academy of Agricultural Sciences Zhengzhou 450002 P. R. China
- Henan Provincial Center for Engineering and Technology Research of Traditional Chinese Medicine Zhengzhou 450002 P. R. China
| | - Tie‐Gang Yang
- Industrial Crops Research Institute Henan Academy of Agricultural Sciences Zhengzhou 450002 P. R. China
- Henan Provincial Center for Engineering and Technology Research of Traditional Chinese Medicine Zhengzhou 450002 P. R. China
| |
Collapse
|
21
|
Boyarskih IG, Syso AI, Siromlya TI. Variability of Chemical Elements and Biologically Active Polyphenols in Lonicera caerulea subsp. Altaica (Caprifoliaceae) Plant Organs Along an Altitudinal Gradient. CONTEMP PROBL ECOL+ 2020. [DOI: 10.1134/s1995425519060039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Dudek B, Schneider B, Hilger HH, Stavenga DG, Martínez-Harms J. Highly different flavonol content explains geographic variations in the UV reflecting properties of flowers of the corn poppy, Papaver rhoeas (Papaveraceae). PHYTOCHEMISTRY 2020; 178:112457. [PMID: 32692661 DOI: 10.1016/j.phytochem.2020.112457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/24/2020] [Accepted: 07/05/2020] [Indexed: 05/26/2023]
Abstract
Papaver rhoeas, the corn poppy, is a very common weed in cereal fields all over the world. Its flowers generally display a bright red coloration, but their reflectance in the ultraviolet (UV) wavelength range varies geographically. Whereas the UV reflectance of East Mediterranean flowers is minor, that of Central European ones is substantial. By comparing the pigmentation of the differently reflecting flowers, we found that only East Mediterranean flower petals contain high amounts of UV absorbing flavonol glycosides. The most abundant compounds were isolated by solid phase extraction and preparative HPLC, and their structures were elucidated by NMR and HRESI-MS, yielding seven kaempferol and quercetin glycosides, mostly unknown in P. rhoeas petals. Additionally, reflectance and transmittance measurements revealed that wavelength-selective scattering effects do not contribute to the flower color differences observed within this species. Possible abiotic and biotic factors influencing the UV reflecting properties of East Mediterranean and Central European poppies are discussed.
Collapse
Affiliation(s)
- Bettina Dudek
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
| | - Bernd Schneider
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Hartmut H Hilger
- Department of Biology, Chemistry, Pharmacy, Institute of Biology - Botany, Freie Universität Berlin, Altensteinstr 6, D-14195, Berlin, Germany
| | - Doekele G Stavenga
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747, AG Groningen, the Netherlands
| | - Jaime Martínez-Harms
- INIA La Cruz, Instituto de Investigaciones Agropecuarias, Chorrillos 86, 2280454, La Cruz, Chile.
| |
Collapse
|
23
|
Karimi A, Krähmer A, Herwig N, Hadian J, Schulz H, Meiners T. Metabolomics Approaches for Analyzing Effects of Geographic and Environmental Factors on the Variation of Root Essential Oils of Ferula assa-foetida L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9940-9952. [PMID: 32813520 DOI: 10.1021/acs.jafc.0c03681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Environmental factors shape the production and accumulation processes of plant secondary metabolites in medical and aromatic plants and thus their pharmacological and biological activity. Using an environmental metabolomics approach, we determined chemotypes and specific compounds on the basis of essential oils (EOs) from roots of 10 Iranian Ferula assa-foetida L. populations and related them to geographical, climate, and edaphic data. GC-MS revealed three distinct chemotypes characterized by (I) monoterpenes and Z-1-propenyl sec-butyl disulfide; (II) eudesmane sesquiterpenoids and α-agarofuran; and (III) Z- and E-1-propenyl sec-butyl disulfide. NIRS measurements indicated a similar but less distinct pattern. Structural equation models showed that EO constituents and content were directly influenced by edaphic factors (texture, pH, and iron, potassium, and aluminum content) and temperature and predominantly indirectly by latitude, longitude, and altitude. Predicting EO constituents or chemotypes by geographical, climate, and soil factors can be used in F. assa-foetida to select populations with specific EO characteristics.
Collapse
Affiliation(s)
- Ali Karimi
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn Institute, Königin-Luise-Straße 19, D-14195 Berlin, Germany
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2-4, D-14195 Berlin, Germany
| | - Andrea Krähmer
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn Institute, Königin-Luise-Straße 19, D-14195 Berlin, Germany
| | - Nadine Herwig
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn Institute, Königin-Luise-Straße 19, D-14195 Berlin, Germany
| | - Javad Hadian
- Department of Agriculture, Medicinal Plants and Drug Research Institute, Shahid Beheshti University, G.C., Evin, 1483963113 Tehran, Iran
| | - Hartwig Schulz
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn Institute, Königin-Luise-Straße 19, D-14195 Berlin, Germany
| | - Torsten Meiners
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn Institute, Königin-Luise-Straße 19, D-14195 Berlin, Germany
| |
Collapse
|
24
|
Salomé-Abarca LF, Mandrone M, Sanna C, Poli F, van der Hondel CAMJJ, Klinkhamer PGL, Choi YH. Metabolic variation in Cistus monspeliensis L. ecotypes correlated to their plant-fungal interactions. PHYTOCHEMISTRY 2020; 176:112402. [PMID: 32474264 DOI: 10.1016/j.phytochem.2020.112402] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
The effect of environmental factors on the chemical composition of plants eventually resulting in plant growth regulation is an age-old issue in plant biology. Nowadays, the acceleration in changes in environmental conditions (e.g. global warming) can act as an incentive to investigate their correlation with metabolic changes. In this study, Cistus monspeliensis plants grown on the island of Sardinia (Italy) were used to explore the geographical-mediated metabolic variation and its repercussion on plant-fungus interactions. Samples of different ecotypes of C. monspeliensis were collected and chemically profiled by 1H NMR and HPTLC-based metabolomics and the relationship between the variations of biological activity was examined by multivariate data analysis. The ecotypes, collected from different geographical zones and altitudes, exhibited clearly distinguishable chemical profiles, particularly in their terpene and phenolic contents. In particular, multivariate data analysis revealed several diterpenes of the labdane and clerodane series among the terpenes and methoxyflavonoids to be responsible for the differentiation. The antifungal activity of the plants was used to explore the correlation between chemical variation and biological activity. Results showed that there was a strong correlation between the metabolic profiles and the antifungal activity, revealing terpenes and methoxylated flavonoids as the main involved metabolites. This demonstrated that environmental factors can influence the chemical variation of plant ecotypes, resulting in the generation of chemotypes that are potentially adapted to their niche conditions including the plant-fungal interactions.
Collapse
Affiliation(s)
- Luis Francisco Salomé-Abarca
- Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333, BE Leiden, the Netherlands
| | - Manuela Mandrone
- Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333, BE Leiden, the Netherlands; Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Cinzia Sanna
- Department of Life and Environmental Sciences, University of Cagliari, Via Sant'Ignazio da Laconi 13, 09123, Cagliari, Italy
| | - Ferruccio Poli
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Cees A M J J van der Hondel
- Department of Molecular Microbiology and Biotechnology, Leiden University, Institute of Biology Leiden, Leiden, the Netherlands
| | - Peter G L Klinkhamer
- Plant Ecology and Phytochemistry, Institute of Biology, Leiden University, Sylviusweg 72, 2333, BE Leiden, the Netherlands
| | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333, BE Leiden, the Netherlands; College of Pharmacy, Kyung Hee University, 02447 Seoul, Republic of Korea.
| |
Collapse
|
25
|
Martínez-Harms J, Hadar R, Márquez N, Menzel R, Shmida A, Stavenga DG, Vorobyev M. Enhanced UV-Reflection Facilitated a Shift in the Pollination System of the Red Poppy, Papaver rhoeas (Papaveraceae). PLANTS 2020; 9:plants9080927. [PMID: 32708009 PMCID: PMC7464000 DOI: 10.3390/plants9080927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/06/2020] [Accepted: 07/15/2020] [Indexed: 11/16/2022]
Abstract
Evolutionary change is considered a major factor influencing the invasion of new habitats by plants. Yet, evidence on how such modifications promote range expansion remains rather limited. Here we investigated flower color modifications in the red poppy, Papaver rhoeas (Papaveraceae), as a result of its introduction into Central Europe and the impact of those modifications on its interactions with pollinators. We found that while flowers of Eastern Mediterranean poppies reflect exclusively in the red part of the spectrum, those of Central European poppies reflect both red and ultraviolet (UV) light. This change coincides with a shift from pollination by glaphyrid beetles (Glaphyridae) to bees. Glaphyrids have red-sensitive photoreceptors that are absent in bees, which therefore will not be attracted by colors of exclusively red-reflecting flowers. However, UV-reflecting flowers are easily detectable by bees, as revealed by visual modeling. In the North Mediterranean, flowers with low and high UV reflectance occur sympatrically. We hypothesize that Central European populations of P. rhoeas were initially polymorphic with respect to their flower color and that UV reflection drove a shift in the pollination system of P. rhoeas that facilitated its spread across Europe.
Collapse
Affiliation(s)
- Jaime Martínez-Harms
- Institut für Biologie-Neurobiologie, Freie Universität Berlin, Königin-Luise Str. 1–3, 14195 Berlin, Germany; (R.H.); (N.M.); (R.M.)
- INIA La Cruz, Instituto de Investigaciones Agropecuarias, Chorrillos 86, La Cruz 2280454, Chile
- Correspondence:
| | - Ravit Hadar
- Institut für Biologie-Neurobiologie, Freie Universität Berlin, Königin-Luise Str. 1–3, 14195 Berlin, Germany; (R.H.); (N.M.); (R.M.)
| | - Natalia Márquez
- Institut für Biologie-Neurobiologie, Freie Universität Berlin, Königin-Luise Str. 1–3, 14195 Berlin, Germany; (R.H.); (N.M.); (R.M.)
| | - Randolf Menzel
- Institut für Biologie-Neurobiologie, Freie Universität Berlin, Königin-Luise Str. 1–3, 14195 Berlin, Germany; (R.H.); (N.M.); (R.M.)
| | - Avi Shmida
- Department of Ecology, Evolution & Behaviour, Center for the Study of Rationality, The Hebrew University, Jerusalem 91904, Israel;
| | - Doekele G. Stavenga
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen, The Netherlands;
| | - Misha Vorobyev
- School of Optometry and Vision Science, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
| |
Collapse
|
26
|
Trošt Sedej T, ErznoŽnik T, Rovtar J. Effect of UV radiation and altitude characteristics on the functional traits and leaf optical properties in Saxifraga hostii at the alpine and montane sites in the Slovenian Alps. Photochem Photobiol Sci 2020; 19:180-192. [PMID: 31956889 DOI: 10.1039/c9pp00032a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UV radiation affects the biochemical, physiological and morphological responses of plants. The effect is most pronounced at high altitude, such as alpine regions, and low latitude environments. The effect of UV radiation is impacted by different environmental conditions including temperature. We examined the response of the alpine plant Saxifraga hostii Tausch subsp. hostii growing at two altitudes (montane, 1100 m a.s.l. and alpine, 1500 m a.s.l.) in the Slovenian Alps. Selected ecophysiological, anatomical and pigment analyses along with measurements of the leaf optical properties were carried out during the growing season from July to September. Plants were grown under two different UV levels, near-ambient UV (UV) and reduced UV (UV-) radiation, and temperature conditions were monitored at both altitudes. Saxifraga hostii exhibited high photochemical efficiency of photosystem II and stomatal conductance under near-ambient UV radiation in August, which indicates that it is a well-acclimated plant. In September, photochemical efficiency was higher under reduced UV at the alpine altitude which together with a lower photosynthetic pigment content indicate delayed senescence for plants growing under reduced UV. Most leaf tissue thicknesses were not affected by UV radiation and altitude difference. There was a trend of increased stomatal density and reduced stomatal length on both leaf surfaces under near-ambient UV in August. However, there was no effect of UV attenuation or location at the alpine or montane site on the content of UV-B absorbing compounds, which implies the plant's tolerance of UV-B radiation. Saxifraga hostii leaves showed high absorption in the UV spectrum at higher altitudes, as shown by their optical properties. This study shows that Saxifraga hostii is well-acclimated to ambient UV radiation and to the environmental conditions at both altitudes. The effect of UV radiation is impacted by site conditions and this produces diverse plant responses, which contribute to the specific functional traits of Saxifraga hostii in the high-altitude environment.
Collapse
Affiliation(s)
- Tadeja Trošt Sedej
- University of Ljubljana, BF, Dept. of Biology, Večna pot 111, Ljubljana, Slovenia.
| | | | | |
Collapse
|
27
|
Gołba M, Sokół-Łętowska A, Kucharska AZ. Health Properties and Composition of Honeysuckle Berry Lonicera caerulea L. An Update on Recent Studies. Molecules 2020; 25:E749. [PMID: 32050498 PMCID: PMC7037556 DOI: 10.3390/molecules25030749] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Lonicera caerulea L., also known as haskap or honeysuckle berry, is a fruit commonly planted in eastern Europe, Canada and Asia. The fruit was registered as a traditional food from a third country under European Union regulations only on December 2018. It is resistant to cold, pests, various soil acidities and diseases. However, its attractiveness is associated mostly with its health properties. The fruit shows anticancer, anti-inflammatory, and antioxidant activity-important factors in improving health. These features result from the diverse content of phytochemicals in honeysuckle berries with high concentrations of phytocompounds, mainly hydroxycinnamic acids, hydroxybenzoic acids, flavanols, flavones, isoflavones, flavonols, flavanones and anthocyanins but also iridoids, present in the fruit in exceptional amounts. The content and health properties of the fruit were identified to be dependent on cultivar, genotype and the place of harvesting. Great potential benefits of this nutritious food are its ability to minimize the negative effects of UV radiation, diabetes mellitus and neurodegenerative diseases, and to exert hepato- and cardioprotective activity.
Collapse
Affiliation(s)
- Marta Gołba
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland; (A.S.Ł.); (A.Z.K.)
| | | | | |
Collapse
|
28
|
A new software-assisted analytical workflow based on high-resolution mass spectrometry for the systematic study of phenolic compounds in complex matrices. Talanta 2019; 209:120573. [PMID: 31892002 DOI: 10.1016/j.talanta.2019.120573] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/25/2022]
Abstract
Polyphenols are a broad class of plant secondary metabolites which carry out several biological functions for plant growth and protection and are of great interest as nutraceuticals for their antioxidant properties. However, due to their structural variability and complexity, the mass-spectrometric analysis of polyphenol content in plant matrices is still an issue. In this work, a novel approach for the identification of several classes of polyphenol derivatives based on ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry was developed. First, mass-spectrometric parameters were optimized in order to obtain a large set of diagnostic product ions for their high-confidence identification. The software Compound Discoverer 3.0 was then implemented with a comprehensive database of 45,567 polyphenol derivatives and with mass-spectrometric data for their building blocks, resulting in a specific tool for the semi-automatic identification of flavonoids, anthocyanins, ellagitannins, proanthocyanidins and phenolic acids. The method was then applied to the identification of polyphenols in industrial hemp (Cannabis sativa), a matrix whose use is recently spreading for pharmaceutical and nutraceutical purposes, resulting in the identification of 147 compounds belonging to the classes of flavonoids, proanthocyanidins and phenolic acids. The proposed method is applicable to the polyphenol profiling of any plant matrix and it is not dependent on data in the literature for their identification, allowing the discovery of compounds which have been never identified before.
Collapse
|
29
|
Lee JH, Kwon MC, Jung ES, Lee CH, Oh MM. Physiological and Metabolomic Responses of Kale to Combined Chilling and UV-A Treatment. Int J Mol Sci 2019; 20:E4950. [PMID: 31597250 PMCID: PMC6801958 DOI: 10.3390/ijms20194950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/29/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023] Open
Abstract
Short-term abiotic stress treatment before harvest can enhance the quality of horticultural crops cultivated in controlled environments. Here, we investigated the effects of combined chilling and UV-A treatment on the accumulation of phenolic compounds in kale (Brassica oleracea var. acephala). Five-week-old plants were subjected to combined treatments (10 °C plus UV-A LED radiation at 30.3 W/m2) for 3-days, as well as single treatments (4 °C, 10 °C, or UV-A LED radiation). The growth parameters and photosynthetic rates of plants under the combined treatment were similar to those of the control, whereas UV-A treatment alone significantly increased these parameters. Maximum quantum yield (Fv/Fm) decreased and H2O2 increased in response to UV-A and combined treatments, implying that these treatments induced stress in kale. The total phenolic contents after 2- and 3-days of combined treatment and 1-day of recovery were 40%, 60%, and 50% higher than those of the control, respectively, and the phenylalanine ammonia-lyase activity also increased. Principal component analysis suggested that stress type and period determine the changes in secondary metabolites. Three days of combined stress treatment followed by 2-days of recovery increased the contents of quercetin derivatives. Therefore, combined chilling and UV-A treatment could improve the phenolic contents of leafy vegetables such as kale, without growth inhibition.
Collapse
Affiliation(s)
- Jin-Hui Lee
- Division of Animal, Horticultural and Food Science, Chungbuk National University, Cheongju 28644, Korea.
- Brain Korea 21 Center for Bio-Resource Development, Chungbuk National University, Cheongju 28644, Korea.
| | - Min Cheol Kwon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Eun Sung Jung
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea.
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Korea.
| | - Myung-Min Oh
- Division of Animal, Horticultural and Food Science, Chungbuk National University, Cheongju 28644, Korea.
- Brain Korea 21 Center for Bio-Resource Development, Chungbuk National University, Cheongju 28644, Korea.
| |
Collapse
|
30
|
Comparative analysis of phenolic compounds in four taxa of Erigeron acris s. l. (Asteraceae). Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00332-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AbstractThe aim of the present work was to investigate and compare the content of phenolic compounds in four taxa of Erigeron acris L. s. l.: E. acris (EAA), E. acris subsp. droebachiensis (O.F. Müll.) Arcang. (EAD), E. acris subsp. serotinus (Weihe) Greuter (EAS) and E. ×huelsenii Vatke (EH), a hybrid between E. acris and E. canadensis L. The total flavonoid content was determined by Christ-Müller method and the total phenolic acid content was determined by the method utilizing Arnov’s reagent. The method using ultra high performance liquid chromatography with photodiode array detection (UHPLC-PDA) was applied for the separation, identification and quantification of nine phenolic compounds (protocatechuic acid, chlorogenic acid, caffeic acid, 6′-O-caffeoylerigeroside, scutellarein-7-O-β-D-glucuronide, quercetin 3-O-glucoside, 4,5-dicaffeoylquinic acid, quercetin and luteolin) in the aerial parts of E. acris s. l. The chromatographic separation was carried out using a BEH C18 column packed with 1.7-μm particles and gradient elution with a mobile phase of water and methanol, both containing 0.02% (v/v) trifluoroacetic acid. The four investigated taxa of E. acris s. l. differed in the composition and the content of phenolic compounds. The main substances determined in the methanolic herbal extracts were: scutellarein-7-O-β-D-glucuronide (EAA, EAS, EAD and EH), 6′-O-caffeoylerigeroside (EAA, EAD and EH) and chlorogenic acid (EAS and EH). Moreover, the results indicated that five of the nine tested compounds were found in all investigated extracts from herbs of E. acris s. l. Two of them (6′-O-caffeoylerigeroside and scutellarein-7-O-β-D-glucuronide) could be selected as potential chemotaxonomic markers of the genus Erigeron L.
Collapse
|
31
|
Gentili R, Asero R, Caronni S, Guarino M, Montagnani C, Mistrello G, Citterio S. Ambrosia artemisiifolia L. temperature-responsive traits influencing the prevalence and severity of pollinosis: a study in controlled conditions. BMC PLANT BIOLOGY 2019; 19:155. [PMID: 31023241 PMCID: PMC6482493 DOI: 10.1186/s12870-019-1762-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Ambrosia artemisiifolia L. is one of the most important sources of allergenic pollen in many regions of the world. Its health impact increased over the last decades and is expected to further increase in consequence of climate change. However little information is available on the specific role played by temperature on allergy rising. The aim of this work was to evaluate the effect of temperature on A. artemisiifolia growth, flowering and pollen allergenicity, the major plant functional traits influencing the prevalence and severity of pollinosis. RESULTS Plants were grown in controlled conditions at three thermal regimes: "Low" (LT: 18-14 °C light-dark), "Intermediate" (IT: 24-20 °C light-dark) and "High" (HT: 30-26 °C light-dark). During plant development, plant vegetative and reproductive morpho-functional traits were measured and, at the end of plant life-cycle, mature pollen was collected and analyzed for its allergenic properties by slot blot, 1D- and 2D-western blot (by using a pool of sera from ragweed-allergic patients) and liquid chromatography-tandem mass spectrometry. A. artemisiifolia showed a great development plasticity leading to a broad temperature tolerance. Shoot architecture, growth rate, number of male inflorescence and pollen allergenicity were temperature-responsive traits. Pollen allergenicity increased in parallel with temperature and differences were related to allergen synthesis and Amb a 1-IgE-binding. Flavonoids whose concentration in pollen decreased with the increase of temperature, were recognized as the cause of the negligible Amb a 1-IgE binding in LT pollen. CONCLUSIONS Results show that temperature governs plant development and pollen allergenicity influencing the temporal and spatial magnitude of subject exposure to allergens.
Collapse
Affiliation(s)
- Rodolfo Gentili
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Riccardo Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, MI Italy
| | - Sarah Caronni
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Maria Guarino
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Chiara Montagnani
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | | | - Sandra Citterio
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| |
Collapse
|
32
|
Allevato DM, Kiyota E, Mazzafera P, Nixon KC. Ecometabolomic Analysis of Wild Populations of Pilocarpus pennatifolius (Rutaceae) Using Unimodal Analyses. FRONTIERS IN PLANT SCIENCE 2019; 10:258. [PMID: 30894869 PMCID: PMC6414451 DOI: 10.3389/fpls.2019.00258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Studies examining the diversity of plant specialized metabolites suggest that biotic and abiotic pressures greatly influence the qualitative and quantitative diversity found in a species. Large geographic distributions expose a species to a great variety of environmental pressures, thus providing an enormous opportunity for expression of environmental plasticity. Pilocarpus, a neotropical genus of Rutaceae, is rich in alkaloids, terpenoids, and coumarins, and is the only commercial source of the alkaloid pilocarpine for the treatment of glaucoma. Overharvesting of species in this genus for pilocarpine, has threatened natural populations of the species. The aim of this research was to understand how adaptation to environmental variation shapes the metabolome in multiple populations of the widespread species Pilocarpus pennatifolius. LCMS data from alkaloid and phenolic extracts of leaf tissue were analyzed with environmental predictors using unimodal unconstrained and constrained ordination methods for an untargeted metabolomics analysis. PLS-DA was used to further confirm the chemoecotypes of each site. The most important variables contributing to the alkaloid variation between the sites: mean temperature of wettest quarter, as well as the soil content of phosphorus, magnesium, and base saturation (V%). The most important contributing to the phenolic variation between the sites: mean temperature of the wettest quarter, temperature seasonality, calcium and soil electrical conductivity. This research will have broad implications in a variety of areas including biocontrol for pests, environmental and ecological plant physiology, and strategies for species conservation maximizing phytochemical diversity.
Collapse
Affiliation(s)
- Daniella M. Allevato
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Eduardo Kiyota
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Paulo Mazzafera
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Produção Vegetal, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Kevin C. Nixon
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
33
|
Schultze M, Bilger W. Acclimation of Arabidopsis thaliana to low temperature protects against damage of photosystem II caused by exposure to UV-B radiation at 9 °C. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 134:73-80. [PMID: 30366738 DOI: 10.1016/j.plaphy.2018.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 06/08/2023]
Abstract
Various environmental variables interact with UV-B radiation (280-315 nm), among them temperature. In many plants epidermal UV screening is induced by low temperature even in the absence of UV irradiation. On the other hand, low temperature can aggravate damage caused by UV-B radiation. We investigated the interaction of UV-B radiation and low temperature in Arabidopsis thaliana (L.) Heynh. Exposure of plants grown at moderate temperature (21 °C) to UV-B radiation at 9 °C resulted in significantly higher damage of photosystem II (PS II) as compared to exposure at 21 °C. The higher damage at low temperature was related to slower recovery of maximal PS II quantum efficiency at this temperature. Epidermal UV-B transmittance was measured using a method based on chlorophyll fluorescence measurements. Acclimation to low temperature enhanced epidermal UV-B screening and improved the UV-B resistance considerably. Differences in the apparent UV-B sensitivity of PS II between plants grown in moderate or acclimated to cool temperatures were strongly diminished when damage was related to the UV-B radiation reaching the mesophyll (UV-Bint) as calculated from incident UV-B irradiance and epidermal UV-B transmittance. Evidence is presented that the remaining differences in sensitivity are caused by an increased rate of repair in plants acclimated to 9 °C. The data suggest that enhanced epidermal UV-B screening at low temperature functions to compensate for slower repair of UV-B damage at these temperatures. It is proposed that the UV-B irradiance reaching the mesophyll should be considered as an important parameter in experiments on UV-B resistance of plants.
Collapse
Affiliation(s)
- Matthias Schultze
- Botanical Institute, Christian-Albrechts Universität zu Kiel, Am Botanischen Garten 1-9, D-24118, Kiel, Germany; BioConsult SH GmbH & Co KG, Schobüller Straße 36, D-25813, Husum, Germany
| | - Wolfgang Bilger
- Botanical Institute, Christian-Albrechts Universität zu Kiel, Am Botanischen Garten 1-9, D-24118, Kiel, Germany.
| |
Collapse
|
34
|
Bornman JF, Barnes PW, Robson TM, Robinson SA, Jansen MAK, Ballaré CL, Flint SD. Linkages between stratospheric ozone, UV radiation and climate change and their implications for terrestrial ecosystems. Photochem Photobiol Sci 2019; 18:681-716. [DOI: 10.1039/c8pp90061b] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Linkages between stratospheric ozone, UV radiation and climate change: terrestrial ecosystems.
Collapse
Affiliation(s)
- Janet F. Bornman
- College of Science
- Health
- Engineering and Education
- Murdoch University
- Perth
| | - Paul W. Barnes
- Department of Biological Sciences and Environment Program
- Loyola University
- USA
| | - T. Matthew Robson
- Research Programme in Organismal and Evolutionary Biology
- Viikki Plant Science Centre
- University of Helsinki
- Finland
| | - Sharon A. Robinson
- Centre for Sustainable Ecosystem Solutions
- School of Earth
- Atmosphere and Life Sciences and Global Challenges Program
- University of Wollongong
- Wollongong
| | - Marcel A. K. Jansen
- Plant Ecophysiology Group
- School of Biological
- Earth and Environmental Sciences
- UCC
- Cork
| | - Carlos L. Ballaré
- University of Buenos Aires
- Faculty of Agronomy and IFEVA-CONICET, and IIB
- National University of San Martin
- Buenos Aires
- Argentina
| | - Stephan D. Flint
- Department of Forest
- Rangeland and Fire Sciences
- University of Idaho
- Moscow
- USA
| |
Collapse
|
35
|
Quantitative Characterization of Arnicae flos by RP-HPLC-UV and NIR Spectroscopy. Foods 2018; 8:foods8010009. [PMID: 30586911 PMCID: PMC6352279 DOI: 10.3390/foods8010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 11/17/2022] Open
Abstract
The possibility of applying near-infrared (NIR) spectroscopy to monitor 13 active components (phenolic acids, flavonoids, and sesquiterpene lactones) in Arnicae flos was studied. The preprocessing of the spectra were performed by using the conventional Golay-Savitzky procedure and the newly developed step-by-step filter. The results obtained show that the step-by-step filter derivatives provide a better signal-to-noise ratio at a lower convolution window. Better calibration for the content of protocatechuic acid, chlorogenic acid, caffeic acid, p-cumaric acid, ferulic acid, isoquercitrin, and quercetin were obtained by step-by-step filter derivatives, compared to the direct raw spectra processing and the Golay-Savitzky approach. Although the step-by-step filter substantially reduces the spectral distortion, the convolution procedure leads to loss of spectral points in the red end of the spectral curve. Probably for this reason this approach shows better calibration only in seven of the monitored 13 active components.
Collapse
|
36
|
Senica M, Bavec M, Stampar F, Mikulic-Petkovsek M. Blue honeysuckle (Lonicera caerulea subsp. edulis (Turcz. ex Herder) Hultén.) berries and changes in their ingredients across different locations. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:3333-3342. [PMID: 29240233 DOI: 10.1002/jsfa.8837] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Interest in organic blue honeysuckle berries has increased in recent years. They are rich in various health-promoting compounds which are sensitive to different environmental factors and are modified during the growing season. RESULTS Honeysuckle berries from different locations differed significantly in their contents of primary and secondary metabolites. The location Ogulin, with the highest altitude and consequently high UV radiation, had the highest phenolic content (259.85 mg per 100 g). Additionally, Vukovski Vrh, with the lowest temperature, had the highest ascorbic acid content (36.83 mg per 100 g), while Šmartno pri Litiji and Višnja Gora, with the highest precipitation, had the highest organic acid contents (885.85 and 850.01 mg per 100 g respectively). A combination of stressful environmental conditions of temperature, water source and light intensity led to the highest saponin content in Višnja Gora (695 mg per 100 g), the highest tannin content in Dolnje Impolje (134 mg per 100 g) and the highest sugar content (2585.45 mg per 100 g) in Vučetinac. CONCLUSION The contents of bioactive substances were influenced by various environmental factors such as temperature, UV radiation, altitude, light intensity and fruit ripening stage. Different compounds respond distinctly to different environmental factors. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mateja Senica
- Chair for Fruit Growing, Viticulture and Vegetable Growing, Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Martina Bavec
- Chair for Organic Farming, Field Crops, Vegetables and Ornamentals, Faculty of Agriculture and Life Sciences, University of Maribor, Hoče, Maribor, Slovenia
| | - Franci Stampar
- Chair for Fruit Growing, Viticulture and Vegetable Growing, Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Mikulic-Petkovsek
- Chair for Fruit Growing, Viticulture and Vegetable Growing, Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
37
|
Characterization and optimization of phenolics extracts from Acacia species in relevance to their anti-inflammatory activity. BIOCHEM SYST ECOL 2018. [DOI: 10.1016/j.bse.2018.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Bais F, Luca RM, Bornman JF, Williamson CE, Sulzberger B, Austin AT, Wilson SR, Andrady AL, Bernhard G, McKenzie RL, Aucamp PJ, Madronich S, Neale RE, Yazar S, Young AR, de Gruijl FR, Norval M, Takizawa Y, Barnes PW, Robson TM, Robinson SA, Ballaré CL, Flint SD, Neale PJ, Hylander S, Rose KC, Wängberg SÅ, Häder DP, Worrest RC, Zepp RG, Paul ND, Cory RM, Solomon KR, Longstreth J, Pandey KK, Redhwi HH, Torikai A, Heikkilä AM. Environmental effects of ozone depletion, UV radiation and interactions with climate change: UNEP Environmental Effects Assessment Panel, update 2017. Photochem Photobiol Sci 2018; 17:127-179. [PMID: 29404558 PMCID: PMC6155474 DOI: 10.1039/c7pp90043k] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/11/2022]
Abstract
The Environmental Effects Assessment Panel (EEAP) is one of three Panels of experts that inform the Parties to the Montreal Protocol. The EEAP focuses on the effects of UV radiation on human health, terrestrial and aquatic ecosystems, air quality, and materials, as well as on the interactive effects of UV radiation and global climate change. When considering the effects of climate change, it has become clear that processes resulting in changes in stratospheric ozone are more complex than previously held. Because of the Montreal Protocol, there are now indications of the beginnings of a recovery of stratospheric ozone, although the time required to reach levels like those before the 1960s is still uncertain, particularly as the effects of stratospheric ozone on climate change and vice versa, are not yet fully understood. Some regions will likely receive enhanced levels of UV radiation, while other areas will likely experience a reduction in UV radiation as ozone- and climate-driven changes affect the amounts of UV radiation reaching the Earth's surface. Like the other Panels, the EEAP produces detailed Quadrennial Reports every four years; the most recent was published as a series of seven papers in 2015 (Photochem. Photobiol. Sci., 2015, 14, 1-184). In the years in between, the EEAP produces less detailed and shorter Update Reports of recent and relevant scientific findings. The most recent of these was for 2016 (Photochem. Photobiol. Sci., 2017, 16, 107-145). The present 2017 Update Report assesses some of the highlights and new insights about the interactive nature of the direct and indirect effects of UV radiation, atmospheric processes, and climate change. A full 2018 Quadrennial Assessment, will be made available in 2018/2019.
Collapse
Affiliation(s)
- F. Bais
- Aristotle Univ. of Thessaloniki, Laboratory of Atmospheric Physics, Thessaloniki, Greece
| | - R. M. Luca
- National Centre for Epidemiology and Population Health, Australian National Univ., Canberra, Australia
| | - J. F. Bornman
- Curtin Univ., Curtin Business School, Perth, Australia
| | | | - B. Sulzberger
- Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - A. T. Austin
- Univ. of Buenos Aires, Faculty of Agronomy and IFEVA-CONICET, Buenos Aires, Argentina
| | - S. R. Wilson
- School of Chemistry, Centre for Atmospheric Chemistry, Univ. of Wollongong, Wollongong, Australia
| | - A. L. Andrady
- Department of Chemical and Biomolecular Engineering, North Carolina State Univ., Raleigh, NC, USA
| | - G. Bernhard
- Biospherical Instruments Inc., San Diego, CA, USA
| | | | - P. J. Aucamp
- Ptersa Environmental Consultants, Faerie Glen, South Africa
| | - S. Madronich
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | - R. E. Neale
- Queensland Institute of Medical Research, Royal Brisbane Hospital, Brisbane, Australia
| | - S. Yazar
- Univ. of Western Australia, Centre for Ophthalmology and Visual Science, Lions Eye Institute, Perth, Australia
| | | | - F. R. de Gruijl
- Department of Dermatology, Leiden Univ. Medical Centre, Leiden, The Netherlands
| | - M. Norval
- Univ. of Edinburgh Medical School, UK
| | - Y. Takizawa
- Akita Univ. School of Medicine, National Institute for Minamata Disease, Nakadai, Itabashiku, Tokyo, Japan
| | - P. W. Barnes
- Department of Biological Sciences and Environment Program, Loyola Univ., New Orleans, USA
| | - T. M. Robson
- Research Programme in Organismal and Evolutionary Biology, Viikki Plant Science Centre, Univ. of Helsinki, Finland
| | - S. A. Robinson
- Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, Univ. of Wollongong, Wollongong, NSW 2522, Australia
| | - C. L. Ballaré
- Univ. of Buenos Aires, Faculty of Agronomy and IFEVA-CONICET, Buenos Aires, Argentina
| | - S. D. Flint
- Dept of Forest, Rangeland and Fire Sciences, Univ. of Idaho, Moscow, ID, USA
| | - P. J. Neale
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | - S. Hylander
- Centre for Ecology and Evolution in Microbial model Systems, Linnaeus Univ., Kalmar, Sweden
| | - K. C. Rose
- Dept of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - S.-Å. Wängberg
- Dept Marine Sciences, Univ. of Gothenburg, Göteborg, Sweden
| | - D.-P. Häder
- Friedrich-Alexander Univ. Erlangen-Nürnberg, Dept of Biology, Möhrendorf, Germany
| | - R. C. Worrest
- CIESIN, Columbia Univ., New Hartford, Connecticut, USA
| | - R. G. Zepp
- United States Environmental Protection Agency, Athens, Georgia, USA
| | - N. D. Paul
- Lanter Environment Centre, Lanter Univ., LA1 4YQ, UK
| | - R. M. Cory
- Earth and Environmental Sciences, Univ. of Michigan, Ann Arbor, MI, USA
| | - K. R. Solomon
- Centre for Toxicology, School of Environmental Sciences, Univ. of Guelph, Guelph, ON, Canada
| | - J. Longstreth
- The Institute for Global Risk Research, Bethesda, MD, USA
| | - K. K. Pandey
- Institute of Wood Science and Technology, Bengaluru, India
| | - H. H. Redhwi
- Chemical Engineering Dept, King Fahd Univ. of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - A. Torikai
- Materials Life Society of Japan, Kayabacho Chuo-ku, Tokyo, Japan
| | - A. M. Heikkilä
- Finnish Meteorological Institute R&D/Climate Research, Helsinki, Finland
| |
Collapse
|
39
|
Wan L, Xing Z, Chang X, Liu J, Zhang G. Research on Light Response Curve Fitting Model of Four Chamaenerion Plants on the Serzilla Mountains. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/ajps.2018.98118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Bruňáková K, Čellárová E. Modulation of anthraquinones and phloroglucinols biosynthesis in Hypericum spp. by cryogenic treatment. J Biotechnol 2017; 251:59-67. [DOI: 10.1016/j.jbiotec.2017.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/17/2017] [Accepted: 04/12/2017] [Indexed: 02/01/2023]
|
41
|
Senica M, Stampar F, Veberic R, Mikulic-Petkovsek M. The higher the better? Differences in phenolics and cyanogenic glycosides in Sambucus nigra leaves, flowers and berries from different altitudes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:2623-2632. [PMID: 27734518 DOI: 10.1002/jsfa.8085] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/06/2016] [Accepted: 10/06/2016] [Indexed: 05/24/2023]
Abstract
BACKGROUND Elderberry (Sambucus nigra L.) possesses high antioxidant activity and has been used to treat numerous medicinal disorders. In addition to their antioxidant properties, elderberry parts accumulate toxic cyanogenic glycosides (CGG). It has been proven that altitude influences the biosynthesis of many secondary metabolites. In the present study we investigated the change of phenolics and CGG in elder leaves, flowers, and berries induced by different altitudes and locations. RESULTS The data indicate that the accumulation of CGG and phenolics is affected by the altitude of the growing site. An increase of anthocyanin content was recorded in elder berries collected at higher elevations in both locations. Fruit collected at the foothills of location 2 contained 3343 µg g-1 anthocyanins as opposed to fruit from the hilltop, which contained 7729 µg g-1 . Elder berries contained the lowest levels of harmful CGG compared to other analysed plant parts. However, more cyanogenic glycosides were always present in plant parts collected at the hilltop. Accordingly, berries accumulated 0.11 µg g-1 CGG at the foothills and 0.59 µg g-1 CGG at the hilltop. CONCLUSION Elder berries and flowers collected at the foothill were characterised by the lowest levels of both beneficial (phenolics) and harmful compounds (CGG) and are suitable for moderate consumption. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mateja Senica
- Chair for Fruit Growing, Viticulture and Vegetable Growing, Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Franci Stampar
- Chair for Fruit Growing, Viticulture and Vegetable Growing, Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Robert Veberic
- Chair for Fruit Growing, Viticulture and Vegetable Growing, Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Maja Mikulic-Petkovsek
- Chair for Fruit Growing, Viticulture and Vegetable Growing, Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
42
|
Effects of latitude and weather conditions on proanthocyanidins in berries of Finnish wild and cultivated sea buckthorn (Hippophaë rhamnoides L. ssp. rhamnoides). Food Chem 2017; 216:87-96. [DOI: 10.1016/j.foodchem.2016.08.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 01/02/2023]
|
43
|
Altitudinal changes in secondary metabolite contents of Hypericum androsaemum and Hypericum polyphyllum. BIOCHEM SYST ECOL 2017. [DOI: 10.1016/j.bse.2016.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Barnes PW, Ryel RJ, Flint SD. UV Screening in Native and Non-native Plant Species in the Tropical Alpine: Implications for Climate Change-Driven Migration of Species to Higher Elevations. FRONTIERS IN PLANT SCIENCE 2017; 8:1451. [PMID: 28878792 PMCID: PMC5572244 DOI: 10.3389/fpls.2017.01451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/04/2017] [Indexed: 05/20/2023]
Abstract
Ongoing changes in Earth's climate are shifting the elevation ranges of many plant species with non-native species often experiencing greater expansion into higher elevations than native species. These climate change-induced shifts in distributions inevitably expose plants to novel biotic and abiotic environments, including altered solar ultraviolet (UV)-B (280-315 nm) radiation regimes. Do the greater migration potentials of non-native species into higher elevations imply that they have more effective UV-protective mechanisms than native species? In this study, we surveyed leaf epidermal UV-A transmittance (TUV A) in a diversity of plant species representing different growth forms to test whether native and non-native species growing above 2800 m elevation on Mauna Kea, Hawaii differed in their UV screening capabilities. We further compared the degree to which TUV A varied along an elevation gradient in the native shrub Vaccinium reticulatum and the introduced forb Verbascum thapsus to evaluate whether these species differed in their abilities to adjust their levels of UV screening in response to elevation changes in UV-B. For plants growing in the Mauna Kea alpine/upper subalpine, we found that adaxial TUV A, measured with a UVA-PAM fluorometer, varied significantly among species but did not differ between native (mean = 6.0%; n = 8) and non-native (mean = 5.8%; n = 11) species. When data were pooled across native and non-native taxa, we also found no significant effect of growth form on TUV A, though woody plants (shrubs and trees) were represented solely by native species whereas herbaceous growth forms (grasses and forbs) were dominated by non-native species. Along an elevation gradient spanning 2600-3800 m, TUV A was variable (mean range = 6.0-11.2%) and strongly correlated with elevation and relative biologically effective UV-B in the exotic V. thapsus; however, TUV A was consistently low (3%) and did not vary with elevation in the native V. reticulatum. Results indicate that high levels of UV protection occur in both native and non-native species in this high UV-B tropical alpine environment, and that flexibility in UV screening is a mechanism employed by some, but not all species to cope with varying solar UV-B exposures along elevation gradients.
Collapse
Affiliation(s)
- Paul W. Barnes
- Department of Biological Sciences and Environment Program, Loyola University New Orleans, New OrleansLA, United States
- *Correspondence: Paul W. Barnes,
| | - Ronald J. Ryel
- Department of Wildland Resources, Utah State University, LoganUT, United States
| | - Stephan D. Flint
- Department of Forest, Rangeland and Fire Sciences, University of Idaho, MoscowID, United States
| |
Collapse
|
45
|
Influence of Environmental Factors on the Active Substance Production and Antioxidant Activity in Potentilla fruticosa L. and Its Quality Assessment. Sci Rep 2016; 6:28591. [PMID: 27373366 PMCID: PMC4931507 DOI: 10.1038/srep28591] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/06/2016] [Indexed: 11/29/2022] Open
Abstract
Environmental factors may influence types and contents of active substances. This study investigated the influence of environmental factors on the active substance contents and antioxidant activity of Potentilla fruticosa L. from different regions of China. Also, HPLC fingerprint similarity analysis (SA) coupled with hierarchical cluster analysis (HCA) and discriminant analysis (DA) were further introduced for the accurate classification and quality assessment of P. fruticosa. The results showed that altitude was significantly and negatively correlated to the content of tannin (P < 0.05). Annual sunshine duration and altitude were significantly and positively correlated to the flavonoids content, rutin content and antioxidant activity (P < 0.05). Annual mean temperature was significantly and negatively correlated to the content of total phenolics, while altitude was significantly and positively correlated to the content of total phenolics (P < 0.05). Eight samples were unambiguously separated into three groups. Two types of discriminant functions with a 100% discrimination ratio were constructed. All data consistently supported the conclusion that P. fruticosa produced from Kangding, Sichuan Province had high quality among all samples, therefore, Kangding in Sichuan Province with favorable environmental conditions is recommended as a preferable production location.
Collapse
|
46
|
Zidorn C. Secondary metabolites of seagrasses (Alismatales and Potamogetonales; Alismatidae): Chemical diversity, bioactivity, and ecological function. PHYTOCHEMISTRY 2016; 124:5-28. [PMID: 26880288 DOI: 10.1016/j.phytochem.2016.02.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 12/30/2015] [Accepted: 02/07/2016] [Indexed: 05/06/2023]
Abstract
Seagrasses are the only higher plants living in fully marine environments; they play a significant role in coastal ecosystems. Seagrasses inhabit the coastal shelves of all continents except Antarctica and can grow in depths of up to 90 m. Because of their eminent ecological importance, innumerous studies have been dedicated to seagrasses and their ecology. However, the phytochemistry has not been equally well investigated yet and many of the existing studies in chemical ecology are only investigating the chemistry at the level of compound classes, e.g. phenolics, and not at the level of chemically defined metabolites. In the present review, the existing literature on secondary metabolites of seagrasses, their known source seagrasses, their bioactivity, and ecological function are compiled and critically assessed. Moreover, research gaps are highlighted and avenues for future research are discussed. Currently, a total of 154 chemically defined natural products have been reported from the about 70 seagrass species known worldwide. Compounds reported include simple phenols derivatives (four compounds), phenylmethane derivatives (14 compounds), phenylethane derivatives (four compounds), phenylpropane derivatives including their esters and dimers (20 compounds), chalkones (four compounds), flavonoids including catechins (57 compounds), phenylheptanoids (four compounds), one monoterpene derivative, one sesquiterpene, diterpenoids (13 compounds), steroids (31 compounds), and one alkaloid. Most of the existing bioactivity studies of seagrass metabolites and extracts have been directed to potential cytotoxic, antimicrobial, or antimacrofouling activity. Antimicrobial studies have been performed towards panels of both human pathogens and ecologically relevant pathogens. In the antimacrofouling studies, investigations of the potential of zosteric acid from the genus Zostera are the most numerous and have yielded so far the most interesting results. Studies on the chemical ecology of seagrasses often have been focused on variation in phenolic compounds and include but are not limited to studies on variation due to abiotic factors, seasonal variation, variation in response to grazing by fish or sea urchins, or following microbial attack.
Collapse
Affiliation(s)
- Christian Zidorn
- Institute of Pharmacy, Department of Pharmacognosy, University of Innsbruck, CCB, Innrain 80-82, Innsbruck, Austria.
| |
Collapse
|
47
|
Barnes PW, Flint SD, Tobler MA, Ryel RJ. Diurnal adjustment in ultraviolet sunscreen protection is widespread among higher plants. Oecologia 2016; 181:55-63. [PMID: 26809621 DOI: 10.1007/s00442-016-3558-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/12/2016] [Indexed: 01/26/2023]
Abstract
The accumulation of ultraviolet (UV)-absorbing compounds (flavonoids and related phenylpropanoids) in the epidermis of higher plants reduces the penetration of solar UV radiation to underlying tissues and is a primary mechanism of acclimation to changing UV conditions resulting from ozone depletion and climate change. Previously we reported that several herbaceous plant species were capable of rapid, diurnal adjustments in epidermal UV transmittance (T UV), but how widespread this phenomenon is among plants has been unknown. In the present study, we tested the generality of this response by screening 37 species of various cultivated and wild plants growing in four locations spanning a gradient of ambient solar UV and climate (Hawaii, Utah, Idaho and Louisiana). Non-destructive measurements of adaxial T UV indicated that statistically significant midday decreases in T UV occurred in 49 % of the species tested, including both herbaceous and woody growth forms, and there was substantial interspecific variation in the magnitude of these changes. In general, plants in Louisiana exhibited larger diurnal changes in T UV than those in the other locations. Moreover, across all taxa, the magnitude of these changes was positively correlated with minimum daily air temperatures but not daily UV irradiances. Results indicate that diurnal changes in UV shielding are widespread among higher plants, vary both within and among species and tend to be greatest in herbaceous plants growing in warm environments. These findings suggest that plant species differ in their UV protection "strategies" though the functional and ecological significance of this variation in UV sunscreen protection remains unclear at present.
Collapse
Affiliation(s)
- Paul W Barnes
- Department of Biological Sciences and Environment Program, Loyola University New Orleans, 6363 St. Charles Avenue, New Orleans, LA, 70118, USA.
| | - Stephan D Flint
- Department of Forest, Rangeland and Fire Sciences, UIPO 441135, University of Idaho, Moscow, ID, 83844-1135, USA
| | - Mark A Tobler
- Department of Biological Sciences and Environment Program, Loyola University New Orleans, 6363 St. Charles Avenue, New Orleans, LA, 70118, USA
| | - Ronald J Ryel
- Department of Wildland Resources, Utah State University, 5230 Old Main Hill, Logan, UT, 84322-5230, USA
| |
Collapse
|
48
|
Zheleva-Dimitrova DZ, Balabanova V, Gevrenova R, Doichinova I, Vitkova A. Chemometrics-based Approach in Analysis of Arnicae flos. Pharmacogn Mag 2015; 11:S538-44. [PMID: 27013791 PMCID: PMC4787085 DOI: 10.4103/0973-1296.172958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Arnica montana flowers have a long history as herbal medicines for external use on injuries and rheumatic complaints. OBJECTIVE To investigate Arnicae flos of cultivated accessions from Bulgaria, Poland, Germany, Finland, and Pharmacy store for phenolic derivatives and sesquiterpene lactones (STLs). MATERIALS AND METHODS Samples of Arnica from nine origins were prepared by ultrasound-assisted extraction with 80% methanol for phenolic compounds analysis. Subsequent reverse-phase high-performance liquid chromatography (HPLC) separation of the analytes was performed using gradient elution and ultraviolet detection at 280 and 310 nm (phenolic acids), and 360 nm (flavonoids). Total STLs were determined in chloroform extracts by solid-phase extraction-HPLC at 225 nm. The HPLC generated chromatographic data were analyzed using principal component analysis (PCA) and hierarchical clustering (HC). RESULTS The highest total amount of phenolic acids was found in the sample from Botanical Garden at Joensuu University, Finland (2.36 mg/g dw). Astragalin, isoquercitrin, and isorhamnetin 3-glucoside were the main flavonol glycosides being present up to 3.37 mg/g (astragalin). Three well-defined clusters were distinguished by PCA and HC. Cluster C1 comprised of the German and Finnish accessions characterized by the highest content of flavonols. Cluster C2 included the Bulgarian and Polish samples presenting a low content of flavonoids. Cluster C3 consisted only of one sample from a pharmacy store. CONCLUSION A validated HPLC method for simultaneous determination of phenolic acids, flavonoid glycosides, and aglycones in A. montana flowers was developed. The PCA loading plot showed that quercetin, kaempferol, and isorhamnetin can be used to distinguish different Arnica accessions. SUMMARY A principal component analysis (PCA) on 13 phenolic compounds and total amount of sesquiterpene lactones in Arnicae flos collection tended to cluster the studied 9 accessions into three main groups. The profiles obtained demonstrated that the samples from Germany and Finland are characterized by greater amounts of phenolic derivatives than the Bulgarian and Polish ones. The PCA loading plot showed that quercetin, kaemferol and isorhamnetin can be used to distinguish different arnica accessions.
Collapse
Affiliation(s)
| | - Vessela Balabanova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University, Sofia, 1000 Sofia, Bulgaria
| | - Reneta Gevrenova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University, Sofia, 1000 Sofia, Bulgaria
| | - Irini Doichinova
- Department of Chemistry, Faculty of Pharmacy, Medical University, Sofia, 1000 Sofia, Bulgaria
| | - Antonina Vitkova
- Department of Plant and Fungal Diversity and Resources, Institute of Biodiversity and Ecosystem Research Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
49
|
Wu L, Sun W, Wang B, Zhao H, Li Y, Cai S, Xiang L, Zhu Y, Yao H, Song J, Cheng YC, Chen S. An integrated system for identifying the hidden assassins in traditional medicines containing aristolochic acids. Sci Rep 2015; 5:11318. [PMID: 26270958 PMCID: PMC4535178 DOI: 10.1038/srep11318] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/24/2015] [Indexed: 01/08/2023] Open
Abstract
Traditional herbal medicines adulterated and contaminated with plant materials from the Aristolochiaceae family, which contain aristolochic acids (AAs), cause aristolochic acid nephropathy. Approximately 256 traditional Chinese patent medicines, containing Aristolochiaceous materials, are still being sold in Chinese markets today. In order to protect consumers from health risks due to AAs, the hidden assassins, efficient methods to differentiate Aristolochiaceous herbs from their putative substitutes need to be established. In this study, 158 Aristolochiaceous samples representing 46 species and four genera as well as 131 non-Aristolochiaceous samples representing 33 species, 20 genera and 12 families were analyzed using DNA barcodes based on the ITS2 and psbA-trnH sequences. Aristolochiaceous materials and their non-Aristolochiaceous substitutes were successfully identified using BLAST1, the nearest distance method and the neighbor-joining (NJ) tree. In addition, based on sequence information of ITS2, we developed a Real-Time PCR assay which successfully identified herbal material from the Aristolochiaceae family. Using Ultra High Performance Liquid Chromatography-Mass Spectrometer (UHPLC-HR-MS), we demonstrated that most representatives from the Aristolochiaceae family contain toxic AAs. Therefore, integrated DNA barcodes, Real-Time PCR assays using TaqMan probes and UHPLC-HR-MS system provides an efficient and reliable authentication system to protect consumers from health risks due to the hidden assassins (AAs).
Collapse
Affiliation(s)
- Lan Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Wei Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yaoli Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Centre, Beijing, China
| | - Shaoqing Cai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Centre, Beijing, China
| | - Li Xiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingjie Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Yao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jingyuan Song
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
50
|
De Long JR, Sundqvist MK, Gundale MJ, Giesler R, Wardle DA. Effects of elevation and nitrogen and phosphorus fertilization on plant defence compounds in subarctic tundra heath vegetation. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12493] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Jonathan R. De Long
- Department of Forest Ecology & Management Swedish University of Agricultural Sciences SE‐901 83 Umeå Sweden
| | - Maja K. Sundqvist
- Department of Ecology and Environmental Sciences Umeå University SE‐901 87 Umeå Sweden
- Center for Macroecology, Evolution and Climate The Natural History Museum of Denmark University of Copenhagen 2100 Copenhagen Denmark
| | - Michael J. Gundale
- Department of Forest Ecology & Management Swedish University of Agricultural Sciences SE‐901 83 Umeå Sweden
| | - Reiner Giesler
- Department of Ecology and Environmental Sciences Umeå University SE‐901 87 Umeå Sweden
- Climate Impacts Research Centre Department of Ecology and Environmental Sciences Umeå University SE‐981 07 Abisko Sweden
| | - David A. Wardle
- Department of Forest Ecology & Management Swedish University of Agricultural Sciences SE‐901 83 Umeå Sweden
| |
Collapse
|