1
|
Buenger EW, Bodi A, Burgos-Paci MA, Mayer PM. Cyclopentene and cyclopentadiene formation in isoprene pyrolysis. Phys Chem Chem Phys 2024; 26:23971-23978. [PMID: 39239967 DOI: 10.1039/d4cp02798a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Photoion mass-selected threshold photoelectron spectroscopy (ms-TPES) was used to identify the isoprene pyrolysis products in a SiC microreactor at 1400 °C with the help of literature and Franck-Condon simulated reference spectra for molecular species at the detected m/z ratios. The key observation is the presence of equimolar amounts of isoprene and cyclopentene at the pyrolysis temperature based on the m/z 68 ms-TPES, indicating kinetically allowed isoprene isomerization concurrently with fragmentation reactions. This isomerization was computationally explored and was found to take place via a short-lived vinylcyclopropane intermediate, which was previously proposed to isomerize into isoprene and cyclopentene, with the latter product being dominant. Cyclopentene then decomposes by loss of H2 to form m/z 66, cyclopentadiene (also observed). Previously postulated products of dimethylallene, methylallene, and allene were not observed. Of the possible C2-C4-products, the extracted ms-TPES confirmed only 1,3-butadiene and 2-butyne (m/z 54), 1-buten-3-yne (m/z 52), propene (m/z 42), propyne (m/z 40), propargyl radical (m/z 39), as well as C2H4, C2H2, CH4, and CH3. A trace amount of benzene was also observed at m/z 78, indicative of bimolecular chemistry. The results draw into question a number of the suggested unimolecular reaction products in the recent literature and thus the kinetic models for isoprene pyrolysis.
Collapse
Affiliation(s)
- Edgar White Buenger
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada, K1N 6N5.
| | - Andras Bodi
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Maxi A Burgos-Paci
- INFIQC - CONICET, Departamento fisicoquímica, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Paul M Mayer
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada, K1N 6N5.
| |
Collapse
|
2
|
Silva IP, Costa MGC, Costa-Pinto MFF, Silva MAA, Coelho Filho MA, Fancelli M. Volatile compounds in citrus in adaptation to water deficit and to herbivory by Diaphorina citri: How the secondary metabolism of the plant is modulated under concurrent stresses. A review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112157. [PMID: 38871029 DOI: 10.1016/j.plantsci.2024.112157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Citrus plants are grown in diverse regions of the world, from subtropical to semi-arid and humid tropical areas. Through mechanisms essential for their survival, they adapt to the environmental conditions to which they are subjected. Although there is vast literature on adaptation of citrus plants to individual stresses, plant responses to interaction among different types of stresses have not been clearly examined. Abiotic or biotic stresses, or a combination of these stresses, result in reorganization of plant energy resources for defense, whether it be for resistance, tolerance, or prevention of stress. Plants generally respond to these stress factors through production of secondary metabolites, such as volatile compounds, derived from different biosynthesis and degradation pathways, which are released through distinct routes. Volatile compounds vary among plant species, meeting the specific needs of the plant. Simultaneous exposure to the stress factors of water deficit and herbivory leads to responses such as qualitative and quantitative changes in the emission of secondary metabolites, and compounds may accumulate within the leaves or predispose the plant to more quickly respond to the stress brought about by the herbivore. The genetic makeup of citrus plants can contribute to a better response to stress factors; however, studies on the emission of volatile compounds in different citrus genotypes under simultaneous stresses are limited. This review examines the effects of abiotic stress due to water deficit and biotic stress due to herbivory by Diaphorina citri in citrus plants and examines their connection with volatile compounds. A summary is made of advances in knowledge regarding the performance of volatile compounds in plant defense against both stress factors, as well as the interaction between them and possible findings in citrus plants. In addition, throughout this review, we focus on how genetic variation of the citrus species is correlated with production of volatile compounds to improve stress tolerance.
Collapse
Affiliation(s)
- Indiara Pereira Silva
- Departamento de Biologia, Centro de Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Márcio Gilberto Cardoso Costa
- Departamento de Biologia, Centro de Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | | | - Monique Ayala Araújo Silva
- Departamento de Biologia, Centro de Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | | | | |
Collapse
|
3
|
Wang H, Welch AM, Nagalingam S, Leong C, Czimczik CI, Tang J, Seco R, Rinnan R, Vettikkat L, Schobesberger S, Holst T, Brijesh S, Sheesley RJ, Barsanti KC, Guenther AB. High temperature sensitivity of Arctic isoprene emissions explained by sedges. Nat Commun 2024; 15:6144. [PMID: 39034371 PMCID: PMC11271288 DOI: 10.1038/s41467-024-49960-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024] Open
Abstract
It has been widely reported that isoprene emissions from the Arctic ecosystem have a strong temperature response. Here we identify sedges (Carex spp. and Eriophorum spp.) as key contributors to this high sensitivity using plant chamber experiments. We observe that sedges exhibit a markedly stronger temperature response compared to that of other isoprene emitters and predictions by the widely accepted isoprene emission model, the Model of Emissions of Gases and Aerosols from Nature (MEGAN). MEGAN is able to reproduce eddy-covariance flux observations at three high-latitude sites by integrating our findings. Furthermore, the omission of the strong temperature responses of Arctic isoprene emitters causes a 20% underestimation of isoprene emissions for the high-latitude regions of the Northern Hemisphere during 2000-2009 in the Community Land Model with the MEGAN scheme. We also find that the existing model had underestimated the long-term trend of isoprene emissions from 1960 to 2009 by 55% for the high-latitude regions.
Collapse
Affiliation(s)
- Hui Wang
- Department of Earth System Science, University of California, Irvine, California, USA.
| | - Allison M Welch
- Department of Earth System Science, University of California, Irvine, California, USA
| | - Sanjeevi Nagalingam
- Department of Earth System Science, University of California, Irvine, California, USA
| | - Christopher Leong
- Department of Earth System Science, University of California, Irvine, California, USA
| | - Claudia I Czimczik
- Department of Earth System Science, University of California, Irvine, California, USA
| | - Jing Tang
- Center of Volatile Interactions (VOLT), Department of Biology, University of Copenhagen, København, Denmark
| | - Roger Seco
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain
| | - Riikka Rinnan
- Center of Volatile Interactions (VOLT), Department of Biology, University of Copenhagen, København, Denmark.
| | - Lejish Vettikkat
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | | | - Thomas Holst
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Shobhit Brijesh
- Department of Earth System Science, University of California, Irvine, California, USA
| | - Rebecca J Sheesley
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| | - Kelley C Barsanti
- Department of Chemical & Environmental Engineering, Center for Environmental Research & Technology, University of California Riverside, Riverside, California, USA
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA
| | - Alex B Guenther
- Department of Earth System Science, University of California, Irvine, California, USA.
| |
Collapse
|
4
|
Bellucci M, Mostofa MG, Weraduwage SM, Xu Y, Abdelrahman M, De Gara L, Loreto F, Sharkey TD. The effect of constitutive root isoprene emission on root phenotype and physiology under control and salt stress conditions. PLANT DIRECT 2024; 8:e617. [PMID: 38973810 PMCID: PMC11227114 DOI: 10.1002/pld3.617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/13/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024]
Abstract
Isoprene, a volatile hydrocarbon, is typically emitted from the leaves of many plant species. Given its well-known function in plant growth and defense aboveground, we examined its effects on root physiology. We used isoprene-emitting (IE) lines and a non-emitting (NE) line of Arabidopsis and investigated their performance by analyzing root phenotype, hormone levels, transcriptome, and metabolite profiles under both normal and salt stress conditions. We show that IE lines emitted tiny amounts of isoprene from roots and showed an increased root/shoot ratio compared with NE line. Isoprene emission exerted a noteworthy influence on hormone profiles related to plant growth and stress response, promoting root development and salt-stress resistance. Methyl erythritol 4-phosphate pathway metabolites, precursors of isoprene and hormones, were higher in the roots of IE lines than in the NE line. Transcriptome data indicated that the presence of isoprene increased the expression of key genes involved in hormone metabolism/signaling. Our findings reveal that constitutive root isoprene emission sustains root growth under saline conditions by regulating and/or priming hormone biosynthesis and signaling mechanisms and expression of key genes relevant to salt stress defense.
Collapse
Affiliation(s)
- Manuel Bellucci
- Department of Energy Plant Research LaboratoryMichigan State UniversityEast LansingMichiganUSA
- Department of Science and Technology for Humans and the EnvironmentUniversità Campus Bio‐Medico di RomaRomeItaly
- Plant Resilience InstituteMichigan State UniversityEast LansingMichiganUSA
| | - Mohammad Golam Mostofa
- Department of Energy Plant Research LaboratoryMichigan State UniversityEast LansingMichiganUSA
- Plant Resilience InstituteMichigan State UniversityEast LansingMichiganUSA
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| | | | - Yuan Xu
- Department of Energy Plant Research LaboratoryMichigan State UniversityEast LansingMichiganUSA
| | - Mostafa Abdelrahman
- Institute of Genomics for Crop Abiotic Stress ToleranceTexas Tech UniversityLubbockTexasUSA
| | - Laura De Gara
- Department of Science and Technology for Humans and the EnvironmentUniversità Campus Bio‐Medico di RomaRomeItaly
| | - Francesco Loreto
- Department of BiologyUniversity of Naples Federico IINaplesItaly
- Institute for Sustainable Plant ProtectionThe National Research Council of Italy (CNR‐IPSP)Sesto Fiorentino (Florence)Italy
| | - Thomas D. Sharkey
- Department of Energy Plant Research LaboratoryMichigan State UniversityEast LansingMichiganUSA
- Plant Resilience InstituteMichigan State UniversityEast LansingMichiganUSA
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
5
|
Iwasa Y, Hayashi R, Satake A. Optimal seasonal schedule for the production of isoprene, a highly volatile biogenic VOC. Sci Rep 2024; 14:12311. [PMID: 38811652 PMCID: PMC11137007 DOI: 10.1038/s41598-024-62975-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
The leaves of many trees emit volatile organic compounds (abbreviated as BVOCs), which protect them from various damages, such as herbivory, pathogens, and heat stress. For example, isoprene is highly volatile and is known to enhance the resistance to heat stress. In this study, we analyze the optimal seasonal schedule for producing isoprene in leaves to mitigate damage. We assume that photosynthetic rate, heat stress, and the stress-suppressing effect of isoprene may vary throughout the season. We seek the seasonal schedule of isoprene production that maximizes the total net photosynthesis using Pontryagin's maximum principle. The isoprene production rate is determined by the changing balance between the cost and benefit of enhanced leaf protection over time. If heat stress peaks in midsummer, isoprene production can reach its highest levels during the summer. However, if a large portion of leaves is lost due to heat stress in a short period, the optimal schedule involves peaking isoprene production after the peak of heat stress. Both high photosynthetic rate and high isoprene volatility in midsummer make the peak of isoprene production in spring. These results can be clearly understood by distinguishing immediate impacts and the impacts of future expectations.
Collapse
Affiliation(s)
- Yoh Iwasa
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan.
| | - Rena Hayashi
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Akiko Satake
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
6
|
Oku H, Iqbal A, Oogai S, Inafuku M, Mutanda I. Relationship between Cumulative Temperature and Light Intensity and G93 Parameters of Isoprene Emission for the Tropical Tree Ficus septica. PLANTS (BASEL, SWITZERLAND) 2024; 13:243. [PMID: 38256797 PMCID: PMC10820733 DOI: 10.3390/plants13020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
The most widely used isoprene emission algorithm, G93 formula, estimates instantaneous leaf-level isoprene emission using the basal emission factor and light and temperature dependency parameters. The G93 parameters have been suggested to show variation depending on past weather conditions, but no study has closely examined the relationship between past meteorological data and the algorithm parameters. Here, to examine the influence of the past weather on these parameters, we monitored weather conditions, G93 parameters, isoprene synthase transcripts and protein levels, and MEP pathway metabolites in the tropical tree Ficus septica for 12 days and analyzed their relationship with cumulative temperature and light intensity. Plants were illuminated with varying (ascending and descending) light regimes, and our previously developed Ping-Pong optimization method was used to parameterize G93. The cumulative temperature of the past 5 and 7 days positively correlated with CT2 and α, respectively, while the cumulative light intensity of the past 10 days showed the highest negative correlation with α. Concentrations of MEP pathway metabolites and IspS gene expression increased with increasing cumulative temperature. At best, the cumulative temperature of the past 2 days positively correlated with the MEP pathway metabolites and IspS gene expression, while these factors showed a biphasic positive and negative correlation with cumulative light intensity. Optimized G93 captured well the temperature and light dependency of isoprene emission at the beginning of the experiment; however, its performance significantly decreased for the latter stages of the experimental duration, especially for the descending phase. This was successfully improved through separate optimization of the ascending and descending phases, emphasizing the importance of the optimization of formula parameters and model improvement. These results have important implications for the improvement of isoprene emission algorithms, particularly under the predicted increase in future global temperatures.
Collapse
Affiliation(s)
- Hirosuke Oku
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan; (H.O.); (S.O.)
| | - Asif Iqbal
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan;
| | - Shigeki Oogai
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan; (H.O.); (S.O.)
| | - Masashi Inafuku
- Faculty of Agriculture, University of the Ryukyus, Okinawa 903-0213, Japan;
| | - Ishmael Mutanda
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan; (H.O.); (S.O.)
| |
Collapse
|
7
|
Yu J, Khomenko I, Biasioli F, Li M, Varotto C. A Novel Isoprene Synthase from the Monocot Tree Copernicia prunifera (Arecaceae) Confers Enhanced Drought Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2023; 24:15329. [PMID: 37895009 PMCID: PMC10607627 DOI: 10.3390/ijms242015329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/18/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The capacity to emit isoprene, among other stresses, protects plants from drought, but the molecular mechanisms underlying this trait are only partly understood. The Arecaceae (palms) constitute a very interesting model system to test the involvement of isoprene in enhancing drought tolerance, as their high isoprene emissions may have contributed to make them hyperdominant in neotropical dry forests, characterized by recurrent and extended periods of drought stress. In this study we isolated and functionally characterized a novel isoprene synthase, the gene responsible for isoprene biosynthesis, from Copernicia prunifera, a palm from seasonally dry tropical forests. When overexpressed in the non-emitter Arabidopsis thaliana, CprISPS conferred significant levels of isoprene emission, together with enhanced tolerance to water limitation throughout plant growth and development, from germination to maturity. CprISPS overexpressors displayed higher germination, cotyledon/leaf greening, water usage efficiency, and survival than WT Arabidopsis under various types of water limitation. This increased drought tolerance was accompanied by a marked transcriptional up-regulation of both ABA-dependent and ABA-independent key drought response genes. Taken together, these results demonstrate the capacity of CprISPS to enhance drought tolerance in Arabidopsis and suggest that isoprene emission could have evolved in Arecaceae as an adaptive mechanism against drought.
Collapse
Affiliation(s)
- Jiamei Yu
- Biodiversity, Ecology and Environment Area, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, 38098 Trento, Italy;
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Iuliia Khomenko
- Food and Nutrition Area, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, 38098 Trento, Italy; (I.K.); (F.B.)
| | - Franco Biasioli
- Food and Nutrition Area, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, 38098 Trento, Italy; (I.K.); (F.B.)
| | - Mingai Li
- Biodiversity, Ecology and Environment Area, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, 38098 Trento, Italy;
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Claudio Varotto
- Biodiversity, Ecology and Environment Area, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, 38098 Trento, Italy;
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
8
|
Bertić M, Zimmer I, Andrés-Montaner D, Rosenkranz M, Kangasjärvi J, Schnitzler JP, Ghirardo A. Automatization of metabolite extraction for high-throughput metabolomics: case study on transgenic isoprene-emitting birch. TREE PHYSIOLOGY 2023; 43:1855-1869. [PMID: 37418159 DOI: 10.1093/treephys/tpad087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
Metabolomics studies are becoming increasingly common for understanding how plant metabolism responds to changes in environmental conditions, genetic manipulations and treatments. Despite the recent advances in metabolomics workflow, the sample preparation process still limits the high-throughput analysis in large-scale studies. Here, we present a highly flexible robotic system that integrates liquid handling, sonication, centrifugation, solvent evaporation and sample transfer processed in 96-well plates to automatize the metabolite extraction from leaf samples. We transferred an established manual extraction protocol performed to a robotic system, and with this, we show the optimization steps required to improve reproducibility and obtain comparable results in terms of extraction efficiency and accuracy. We then tested the robotic system to analyze the metabolomes of wild-type and four transgenic silver birch (Betula pendula Roth) lines under unstressed conditions. Birch trees were engineered to overexpress the poplar (Populus × canescens) isoprene synthase and to emit various amounts of isoprene. By fitting the different isoprene emission capacities of the transgenic trees with their leaf metabolomes, we observed an isoprene-dependent upregulation of some flavonoids and other secondary metabolites as well as carbohydrates, amino acid and lipid metabolites. By contrast, the disaccharide sucrose was found to be strongly negatively correlated to isoprene emission. The presented study illustrates the power of integrating robotics to increase the sample throughput, reduce human errors and labor time, and to ensure a fully controlled, monitored and standardized sample preparation procedure. Due to its modular and flexible structure, the robotic system can be easily adapted to other extraction protocols for the analysis of various tissues or plant species to achieve high-throughput metabolomics in plant research.
Collapse
Affiliation(s)
- Marko Bertić
- Research Unit Environmental Simulation (EUS), Environmental Health Center (EHC), Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Ina Zimmer
- Research Unit Environmental Simulation (EUS), Environmental Health Center (EHC), Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - David Andrés-Montaner
- Atmospheric Environmental Research, Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Kreuzeckbahnstr. 19, Garmisch-Partenkirchen 82467, Germany
- Corteva Agriscience Spain S.L.U, Carreño, Spain
| | - Maaria Rosenkranz
- Research Unit Environmental Simulation (EUS), Environmental Health Center (EHC), Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
- Institute of Plant Sciences, Ecology and Conservation Biology, University of Regensburg, Regensburg 93053, Germany
| | - Jaakko Kangasjärvi
- Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Viikinkaari 1, P.O Box 65, FI-00014, Finland
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation (EUS), Environmental Health Center (EHC), Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation (EUS), Environmental Health Center (EHC), Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| |
Collapse
|
9
|
Zhou H, Ashworth K, Dodd IC. Exogenous monoterpenes mitigate H2O2-induced lipid damage but do not attenuate photosynthetic decline during water deficit in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5327-5340. [PMID: 37279582 PMCID: PMC10498030 DOI: 10.1093/jxb/erad219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/02/2023] [Indexed: 06/08/2023]
Abstract
Although monoterpenes are suggested to mediate oxidative status, their role in abiotic stress responses is currently unclear. Here, a foliar spray of monoterpenes increased antioxidant capacity and decreased oxidative stress of Solanum lycopersicum under water deficit stress. The foliar content of monoterpenes increased with spray concentration indicating foliar uptake of exogenous monoterpenes. Exogenous monoterpene application substantially decreased foliar accumulation of hydrogen peroxide (H2O2) and lipid peroxidation (malondialdehyde). However, it appears that monoterpenes prevent the accumulation of reactive oxygen species rather than mitigating subsequent reactive oxygen species-induced damage. Low spray concentration (1.25 mM) proved most effective in decreasing oxidative stress but did not up-regulate the activity of key antioxidant enzymes (superoxide dismutase and ascorbate peroxidase) even though higher (2.5 and 5 mM) spray concentrations did, suggesting a complex role for monoterpenes in mediating antioxidant processes. Furthermore, soil drying caused similar photosynthetic limitations in all plants irrespective of monoterpene treatments, apparently driven by strong reductions in stomatal conductance as photosystem II efficiency only decreased in very dry soil. We suggest that exogenous monoterpenes may mitigate drought-induced oxidative stress by direct quenching and/or up-regulating endogenous antioxidative processes. The protective properties of specific monoterpenes and endogenous antioxidants require further investigation.
Collapse
Affiliation(s)
- Hao Zhou
- Lancaster Environment Centre, Lancaster University, Library Avenue, Lancaster LA1 4YQ, UK
| | - Kirsti Ashworth
- Lancaster Environment Centre, Lancaster University, Library Avenue, Lancaster LA1 4YQ, UK
| | - Ian C Dodd
- Lancaster Environment Centre, Lancaster University, Library Avenue, Lancaster LA1 4YQ, UK
| |
Collapse
|
10
|
Malone SC, Simonpietri A, Knighton WB, Trowbridge AM. Drought impairs herbivore-induced volatile terpene emissions by ponderosa pine but not through constraints on newly assimilated carbon. TREE PHYSIOLOGY 2023; 43:938-951. [PMID: 36762917 DOI: 10.1093/treephys/tpad016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/02/2023] [Indexed: 06/11/2023]
Abstract
Volatile terpenes serve multiple biological roles including tree resistance against herbivores. The increased frequency and severity of drought stress observed in forests across the globe may hinder trees from producing defense-related volatiles in response to biotic stress. To assess how drought-induced physiological stress alters volatile emissions alone and in combination with a biotic challenge, we monitored pre-dawn water potential, gas-exchange, needle terpene concentrations and terpene volatile emissions of ponderosa pine (Pinus ponderosa) saplings during three periods of drought and in response to simulated herbivory via methyl jasmonate application. Although 3-, 6- and 7-week drought treatments reduced net photosynthetic rates by 20, 89 and 105%, respectively, the magnitude of volatile fluxes remained generally resistant to drought. Herbivore-induced emissions, however, exhibited threshold-like behavior; saplings were unable to induce emissions above constitutive levels when pre-dawn water potentials were below the approximate zero-assimilation point. By comparing compositional shifts in emissions to needle terpene concentrations, we found evidence that drought effects on constitutive and herbivore-induced volatile flux and composition are primarily via constraints on the de novo fraction, suggesting that reduced photosynthesis during drought limits the carbon substrate available for de novo volatile synthesis. However, results from a subsequent 13CO2 pulse-chase labeling experiment then confirmed that both constitutive (<3% labeled) and herbivore-induced (<8% labeled) de novo emissions from ponderosa pine are synthesized predominantly from older carbon sources with little contribution from new photosynthates. Taken together, we provide evidence that in ponderosa pine, drought does not constrain herbivore-induced de novo emissions through substrate limitation via reduced photosynthesis, but rather through more sophisticated molecular and/or biophysical mechanisms that manifest as saplings reach the zero-assimilation point. These results highlight the importance of considering drought severity when assessing impacts on the herbivore-induced response and suggest that drought-altered volatile metabolism constrains induced emissions once a physiological threshold is surpassed.
Collapse
Affiliation(s)
- Shealyn C Malone
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI 53711, USA
- Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, MT 59717, USA
| | - Austin Simonpietri
- Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, MT 59717, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Walter B Knighton
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Amy M Trowbridge
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI 53711, USA
- Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
11
|
Song Y, Peng C, Wu Q, Tao S, Mei T, Sun Z, Zuo Z, Pan C, Zhou Y, Zhou G. Age effects of Moso bamboo on leaf isoprene emission characteristics. FRONTIERS IN PLANT SCIENCE 2023; 14:1132717. [PMID: 36959949 PMCID: PMC10028176 DOI: 10.3389/fpls.2023.1132717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Isoprene is a highly reactive volatile organic compound that significantly affects atmospheric oxidant capacity, regional air quality, and climate change. Moso bamboo (Phyllostachys edulis), a species widely distributed in tropical and subtropical regions, particularly in China, is a strong isoprene emitter with great potential for carbon sequestration. Carbon sequestration is negatively correlated with culm age; however, the effect of this correlation on isoprene emissions remains unknown. In this study, we investigated the photosynthetic and isoprene emission characteristics of Moso bamboo at different culm ages. The results showed that the age effect on isoprene emission was different from that on photosynthesis; the net photosynthesis rate (Pn) was the highest in young, followed by mature, and then old bamboo, whereas the isoprene emission rate (Iso) was the highest in young, followed by old, and then mature bamboo. Moreover, the percentage of carbon loss as isoprene emission (C-loss) during photosynthesis of old bamboo was 35% higher than that of mature bamboo under standard conditions (leaf temperature: 30°C; light intensity: 1000 µmol m-2 s-1). Therefore, we strongly recommend considering the culm age when establishing an isoprene emission model of Moso bamboo. Additionally, because the Iso and C-loss of old bamboo were higher than those of mature bamboo, we suggest that attention should be paid to the management of bamboo age structure and timely felling of aged bamboo to reduce environmental risk.
Collapse
Affiliation(s)
- Yandong Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Lishui Academy of Agricultural and Forestry Sciences, Lishui, China
| | - Chunju Peng
- Wenzhou Vocational College of Science and Technology, Wenzhou, China
| | - Qinjiao Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| | - Shijie Tao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| | - Tingting Mei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| | - Zhihong Sun
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Zhaojiang Zuo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Chunyu Pan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - Yufeng Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| | - Guomo Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
12
|
Weraduwage SM, Sahu A, Kulke M, Vermaas JV, Sharkey TD. Characterization of promoter elements of isoprene-responsive genes and the ability of isoprene to bind START domain transcription factors. PLANT DIRECT 2023; 7:e483. [PMID: 36742092 PMCID: PMC9889695 DOI: 10.1002/pld3.483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Isoprene has recently been proposed to be a signaling molecule that can enhance tolerance of both biotic and abiotic stress. Not all plants make isoprene, but all plants tested to date respond to isoprene. We hypothesized that isoprene interacts with existing signaling pathways rather than requiring novel mechanisms for its effect on plants. We analyzed the cis-regulatory elements (CREs) in promoters of isoprene-responsive genes and the corresponding transcription factors binding these promoter elements to obtain clues about the transcription factors and other proteins involved in isoprene signaling. Promoter regions of isoprene-responsive genes were characterized using the Arabidopsis cis-regulatory element database. CREs bind ARR1, Dof, DPBF, bHLH112, GATA factors, GT-1, MYB, and WRKY transcription factors, and light-responsive elements were overrepresented in promoters of isoprene-responsive genes; CBF-, HSF-, WUS-binding motifs were underrepresented. Transcription factors corresponding to CREs overrepresented in promoters of isoprene-responsive genes were mainly those important for stress responses: drought-, salt/osmotic-, oxidative-, herbivory/wounding and pathogen-stress. More than half of the isoprene-responsive genes contained at least one binding site for TFs of the class IV (homeodomain leucine zipper) HD-ZIP family, such as GL2, ATML1, PDF2, HDG11, ATHB17. While the HD-zipper-loop-zipper (ZLZ) domain binds to the L1 box of the promoter region, a special domain called the steroidogenic acute regulatory protein-related lipid transfer, or START domain, can bind ligands such as fatty acids (e.g., linolenic and linoleic acid). We tested whether isoprene might bind in such a START domain. Molecular simulations and modeling to test interactions between isoprene and a class IV HD-ZIP family START-domain-containing protein were carried out. Without membrane penetration by the HDG11 START domain, isoprene within the lipid bilayer was inaccessible to this domain, preventing protein interactions with membrane bound isoprene. The cross-talk between isoprene-mediated signaling and other growth regulator and stress signaling pathways, in terms of common CREs and transcription factors could enhance the stability of the isoprene emission trait when it evolves in a plant but so far it has not been possible to say what how isoprene is sensed to initiate signaling responses.
Collapse
Affiliation(s)
- Sarathi M Weraduwage
- MSU-DOE Plant Research Laboratory Michigan State University East Lansing Michigan USA
- Department of Biochemistry and Molecular Biology Michigan State University East Lansing Michigan USA
- Great Lakes Bioenergy Research Center Michigan State University East Lansing Michigan USA
| | - Abira Sahu
- MSU-DOE Plant Research Laboratory Michigan State University East Lansing Michigan USA
| | - Martin Kulke
- MSU-DOE Plant Research Laboratory Michigan State University East Lansing Michigan USA
- Department of Biochemistry and Molecular Biology Michigan State University East Lansing Michigan USA
| | - Josh V Vermaas
- MSU-DOE Plant Research Laboratory Michigan State University East Lansing Michigan USA
- Department of Biochemistry and Molecular Biology Michigan State University East Lansing Michigan USA
| | - Thomas D Sharkey
- MSU-DOE Plant Research Laboratory Michigan State University East Lansing Michigan USA
- Department of Biochemistry and Molecular Biology Michigan State University East Lansing Michigan USA
- Great Lakes Bioenergy Research Center Michigan State University East Lansing Michigan USA
- Plant Resilience Institute Michigan State University East Lansing Michigan USA
| |
Collapse
|
13
|
Pollastri S, Velikova V, Castaldini M, Fineschi S, Ghirardo A, Renaut J, Schnitzler JP, Sergeant K, Winkler JB, Zorzan S, Loreto F. Isoprene-Emitting Tobacco Plants Are Less Affected by Moderate Water Deficit under Future Climate Change Scenario and Show Adjustments of Stress-Related Proteins in Actual Climate. PLANTS (BASEL, SWITZERLAND) 2023; 12:333. [PMID: 36679046 PMCID: PMC9862500 DOI: 10.3390/plants12020333] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Isoprene-emitting plants are better protected against thermal and oxidative stresses, which is a desirable trait in a climate-changing (drier and warmer) world. Here we compared the ecophysiological performances of transgenic isoprene-emitting and wild-type non-emitting tobacco plants during water stress and after re-watering in actual environmental conditions (400 ppm of CO2 and 28 °C of average daily temperature) and in a future climate scenario (600 ppm of CO2 and 32 °C of average daily temperature). Furthermore, we intended to complement the present knowledge on the mechanisms involved in isoprene-induced resistance to water deficit stress by examining the proteome of transgenic isoprene-emitting and wild-type non-emitting tobacco plants during water stress and after re-watering in actual climate. Isoprene emitters maintained higher photosynthesis and electron transport rates under moderate stress in future climate conditions. However, physiological resistance to water stress in the isoprene-emitting plants was not as marked as expected in actual climate conditions, perhaps because the stress developed rapidly. In actual climate, isoprene emission capacity affected the tobacco proteomic profile, in particular by upregulating proteins associated with stress protection. Our results strengthen the hypothesis that isoprene biosynthesis is related to metabolic changes at the gene and protein levels involved in the activation of general stress defensive mechanisms of plants.
Collapse
Affiliation(s)
- Susanna Pollastri
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Violeta Velikova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria
| | - Maurizio Castaldini
- Council for Agricultural Research and Economics, Research Center for Agriculture and Environment, Via di Lanciola 12/A, 50125 Cascine del Riccio, Florence, Italy
| | - Silvia Fineschi
- Institute of Heritage Science-CNR (ISPC), National Research Council of Italy (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Andrea Ghirardo
- Research Unit Environmental Simulation (EUS), Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, D-85764 Neuherberg, Germany
| | - Jenny Renaut
- GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Scienceand Technology (LIST), L-4362 Esch-sur-Alzette, Luxembourg
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation (EUS), Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, D-85764 Neuherberg, Germany
| | - Kjell Sergeant
- GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Scienceand Technology (LIST), L-4362 Esch-sur-Alzette, Luxembourg
| | - Jana Barbro Winkler
- Research Unit Environmental Simulation (EUS), Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, D-85764 Neuherberg, Germany
| | - Simone Zorzan
- GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Scienceand Technology (LIST), L-4362 Esch-sur-Alzette, Luxembourg
| | - Francesco Loreto
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Naples, Italy
| |
Collapse
|
14
|
Vinod N, Slot M, McGregor IR, Ordway EM, Smith MN, Taylor TC, Sack L, Buckley TN, Anderson-Teixeira KJ. Thermal sensitivity across forest vertical profiles: patterns, mechanisms, and ecological implications. THE NEW PHYTOLOGIST 2023; 237:22-47. [PMID: 36239086 DOI: 10.1111/nph.18539] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 07/31/2022] [Indexed: 06/16/2023]
Abstract
Rising temperatures are influencing forests on many scales, with potentially strong variation vertically across forest strata. Using published research and new analyses, we evaluate how microclimate and leaf temperatures, traits, and gas exchange vary vertically in forests, shaping tree, and ecosystem ecology. In closed-canopy forests, upper canopy leaves are exposed to the highest solar radiation and evaporative demand, which can elevate leaf temperature (Tleaf ), particularly when transpirational cooling is curtailed by limited stomatal conductance. However, foliar traits also vary across height or light gradients, partially mitigating and protecting against the elevation of upper canopy Tleaf . Leaf metabolism generally increases with height across the vertical gradient, yet differences in thermal sensitivity across the gradient appear modest. Scaling from leaves to trees, canopy trees have higher absolute metabolic capacity and growth, yet are more vulnerable to drought and damaging Tleaf than their smaller counterparts, particularly under climate change. By contrast, understory trees experience fewer extreme high Tleaf 's but have fewer cooling mechanisms and thus may be strongly impacted by warming under some conditions, particularly when exposed to a harsher microenvironment through canopy disturbance. As the climate changes, integrating the patterns and mechanisms reviewed here into models will be critical to forecasting forest-climate feedback.
Collapse
Affiliation(s)
- Nidhi Vinod
- Conservation Ecology Center, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, 22630, USA
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, 90039, USA
| | - Martijn Slot
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama City, Panama
| | - Ian R McGregor
- Center for Geospatial Analytics, North Carolina State University, Raleigh, NC, 27607, USA
| | - Elsa M Ordway
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, 90039, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Marielle N Smith
- Department of Forestry, Michigan State University, East Lansing, MI, 48824, USA
- School of Natural Sciences, College of Environmental Sciences and Engineering, Bangor University, Bangor, LL57 2DG, UK
| | - Tyeen C Taylor
- Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, 90039, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Kristina J Anderson-Teixeira
- Conservation Ecology Center, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, 22630, USA
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama City, Panama
| |
Collapse
|
15
|
Oku H, Mutanda I, Inafuku M. Molecular characteristics of isoprene synthase and its control effects on isoprene emissions from tropical trees. JOURNAL OF PLANT RESEARCH 2023; 136:63-82. [PMID: 36367585 DOI: 10.1007/s10265-022-01418-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
The isoprene emission rate from plants is simulated by a function of light intensity and leaf temperature, and the G-93 formula is the most extensively applied algorithm for this purpose. Isoprene is biosynthesized by the enzyme isoprene synthase (IspS), and instantly emitted from the leaf. Enzyme kinetics of IspS and substrate availability are important factors involved in the short-term leaf-level control of isoprene emissions. It is thus assumed that the parameters of G-93 may correlate with the kinetics of IspSs, however, at present there is no data available on the relationship between these two parameters. In this investigation, six IspS genes from tropical trees were cloned, their properties characterized, and the relationship between the enzyme kinetics of IspSs and the parameters of G-93 examined. There was a negative correlation between the enzyme kinetics of IspS Km and parameter CT1 of G93, which is used to define the temperature dependency of isoprene emissions. However, performance constant of IspS (kcat/Km) only showed slight positive correlation with CT1.suggesting that the enzyme kinetics of IspS has limited significance in controlling the temperature response of isoprene emissions. The molecular structure of IspS was further elucidated using a molecular dynamics simulation with a focus on the active site in the 6 α-helices bundle. The simulation of the enzyme-substrate complex of IspS from B. variegata predicted a new metal binding domain in helix F (E383) and catalytic motif FXRDRLXE in the A-C loop that could involve the deprotonation of dimethylallyl diphosphate (DMADP) to form a carbocation. Notably, after the binding of a metal ion and DMADP, the active-site closure mechanism was found to involve conformational alterations in the helix H-α1 and transition from a loose to tight enclosure of the 6 α-helices bundles to tune the active pocket size. The characteristics identified for the IspSs from tropical trees could help to explain regional isoprene emissions in tropical areas.
Collapse
Affiliation(s)
- Hirosuke Oku
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan.
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan.
| | - Ishmael Mutanda
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Masashi Inafuku
- Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
16
|
Strong isoprene emission response to temperature in tundra vegetation. Proc Natl Acad Sci U S A 2022; 119:e2118014119. [PMID: 36095176 PMCID: PMC9499559 DOI: 10.1073/pnas.2118014119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Emissions of biogenic volatile organic compounds (BVOCs) are a crucial component of biosphere-atmosphere interactions. In northern latitudes, climate change is amplified by feedback processes in which BVOCs have a recognized, yet poorly quantified role, mainly due to a lack of measurements and concomitant modeling gaps. Hence, current Earth system models mostly rely on temperature responses measured on vegetation from lower latitudes, rendering their predictions highly uncertain. Here, we show how tundra isoprene emissions respond vigorously to temperature increases, compared to model results. Our unique dataset of direct eddy covariance ecosystem-level isoprene measurements in two contrasting ecosystems exhibited Q10 (the factor by which the emission rate increases with a 10 °C rise in temperature) temperature coefficients of up to 20.8, that is, 3.5 times the Q10 of 5.9 derived from the equivalent model calculations. Crude estimates using the observed temperature responses indicate that tundra vegetation could enhance their isoprene emissions by up to 41% (87%)-that is, 46% (55%) more than estimated by models-with a 2 °C (4 °C) warming. Our results demonstrate that tundra vegetation possesses the potential to substantially boost its isoprene emissions in response to future rising temperatures, at rates that exceed the current Earth system model predictions.
Collapse
|
17
|
Dong Y, Li J, Zhang W, Bai H, Li H, Shi L. Exogenous application of methyl jasmonate affects the emissions of volatile compounds in lavender (Lavandula angustifolia). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:25-34. [PMID: 35649290 DOI: 10.1016/j.plaphy.2022.05.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The plant hormone, methyl jasmonate (MeJA), is an orthodox elicitor of secondary metabolites, including terpenoids. Lavandula angustifolia is an important aromatic plant generating, yet few studies have been performed to evaluate the function of MeJA on the biosynthesis of terpenoids in lavender. Five treatments (with concentrations of 0, 0.4, 4, 8, and 16 mM) were set, and the physiological indicators of each group were determined after 0, 6, 12, 24, 48, and 72 h. The results illustrate that (1) MeJA could affect the diurnal rhythm of the emission of volatiles and MeJA acted in a dose-dependent and time-dependent manner; (2) 8 mM MeJA treatment increased the total content of the volatiles, and the contents of monoterpenoids and sesquiterpenoids were up-regulated 0.46- and 0.74- fold than the control at 24 h and 12 h, respectively; (3) after MeJA treatment, all the genes expression analyzed changed to varying degrees, of which 3-carene synthase (La3CARS) gene changed most significantly (7.66- to 38.02- fold than the control); (4) MeJA application was associated with a rise in glandular trichome density. The positive effects of MeJA indicate that the exogenous application of MeJA could be a beneficial mean for studies on the biosynthesis of terpenoids in lavender.
Collapse
Affiliation(s)
- Yanmei Dong
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingrui Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wenying Zhang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongtong Bai
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hui Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Lei Shi
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
18
|
Kivimäenpää M, Riikonen J, Valolahti H, Elina H, Holopainen JK, Holopainen T. Effects of elevated ozone and warming on terpenoid emissions and concentrations of Norway spruce depend on needle phenology and age. TREE PHYSIOLOGY 2022; 42:1570-1586. [PMID: 35183060 PMCID: PMC9366870 DOI: 10.1093/treephys/tpac019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Norway spruce (Picea abies (L.) Karst) trees are affected by ongoing climate change, including warming and exposure to phytotoxic levels of ozone. Non-volatile terpenoids and volatile terpenoids (biogenic organic volatile compounds, BVOCs) protect spruce against biotic and abiotic stresses. BVOCs also affect the atmosphere's oxidative capacity. Four-year-old Norway spruce were exposed to elevated ozone (EO) (1.4 × ambient) and warming (1.1 °C + ambient air) alone and in combination on an open-field exposure site in Central Finland. Net photosynthesis, needle terpenoid concentrations and BVOC emissions were measured four times during the experiment's second growing season: after bud opening in May, during the mid-growing season in June, and after needle maturation in August and September. Warming increased terpene concentrations in May due to advanced phenology and decreased them at the end of the growing season in matured current-year needles. Ozone enhanced these effects of warming on several compounds. Warming decreased concentrations of oxygenated sesquiterpenes in previous-year needles. Decreased emissions of oxygenated monoterpenes by warming and ozone alone in May were less prominent when ozone and warming were combined. A similar interactive treatment response in isoprene, camphene, tricyclene and α-pinene was observed in August when the temperature and ozone concentration was high. The results suggest long-term warming may reduce the terpenoid-based defence capacity of young spruce, but the defence capacity can be increased during the most sensitive growth phase (after bud break), and when high temperatures or ozone concentrations co-occur. Reduced BVOC emissions from young spruce may decrease the atmosphere's oxidative capacity in the warmer future, but the effect of EO may be marginal because less reactive minor compounds are affected.
Collapse
Affiliation(s)
| | | | - Hanna Valolahti
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, Kuopio 70211, Finland
- Ramboll, Niemenkatu 73, Lahti 15140, Finland
| | - Häikiö Elina
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, Kuopio 70211, Finland
- South Savo Centre for Economic Development, Transport and the Environment, PO Box 164, Mikkeli 50101, Finland
| | - Jarmo K Holopainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, Kuopio 70211, Finland
| | - Toini Holopainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, Kuopio 70211, Finland
| |
Collapse
|
19
|
Kebert M, Vuksanović V, Stefels J, Bojović M, Horák R, Kostić S, Kovačević B, Orlović S, Neri L, Magli M, Rapparini F. Species-Level Differences in Osmoprotectants and Antioxidants Contribute to Stress Tolerance of Quercus robur L., and Q. cerris L. Seedlings under Water Deficit and High Temperatures. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11131744. [PMID: 35807695 PMCID: PMC9269681 DOI: 10.3390/plants11131744] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 05/13/2023]
Abstract
The general aim of this work was to compare the leaf-level responses of different protective components to water deficit and high temperatures in Quercus cerris L. and Quercus robur L. Several biochemical components of the osmotic adjustment and antioxidant system were investigated together with changes in hormones. Q. cerris and Q. robur seedlings responded to water deficit and high temperatures by: (1) activating a different pattern of osmoregulation and antioxidant mechanisms depending on the species and on the nature of the stress; (2) upregulating the synthesis of a newly-explored osmoprotectant, dimethylsulphoniopropionate (DMSP); (3) trading-off between metabolites; and (4) modulating hormone levels. Under water deficit, Q. cerris had a higher antioxidant capacity compared to Q. robur, which showed a lower investment in the antioxidant system. In both species, exposure to high temperatures induced a strong osmoregulation capacity that appeared largely conferred by DMSP in Q. cerris and by glycine betaine in Q. robur. Collectively, the more stress-responsive compounds in each species were those present at a significant basal level in non-stress conditions. Our results were discussed in terms of pre-adaptation and stress-induced metabolic patterns as related to species-specific stress tolerance features.
Collapse
Affiliation(s)
- Marko Kebert
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13d, 21000 Novi Sad, Serbia; (M.K.); (S.K.); (B.K.); (S.O.)
| | - Vanja Vuksanović
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia;
| | - Jacqueline Stefels
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, 9700 CC Groningen, The Netherlands;
| | - Mirjana Bojović
- Faculty of Ecological Agriculture, Educons University, Vojvode Putnika 87, 21208 Sremska Kamenica, Serbia;
| | - Rita Horák
- Teacher Training Faculty in the Hungarian Language, University of Novi Sad, Subotica, Štrosmajerova 11, 24000 Subotica, Serbia;
| | - Saša Kostić
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13d, 21000 Novi Sad, Serbia; (M.K.); (S.K.); (B.K.); (S.O.)
| | - Branislav Kovačević
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13d, 21000 Novi Sad, Serbia; (M.K.); (S.K.); (B.K.); (S.O.)
| | - Saša Orlović
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13d, 21000 Novi Sad, Serbia; (M.K.); (S.K.); (B.K.); (S.O.)
| | - Luisa Neri
- Institute of BioEconomy (IBE), Department of Bio-Agrifood Science (DiSBA), National Research Council (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy; (L.N.); (M.M.)
| | - Massimiliano Magli
- Institute of BioEconomy (IBE), Department of Bio-Agrifood Science (DiSBA), National Research Council (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy; (L.N.); (M.M.)
| | - Francesca Rapparini
- Institute of BioEconomy (IBE), Department of Bio-Agrifood Science (DiSBA), National Research Council (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy; (L.N.); (M.M.)
- Correspondence:
| |
Collapse
|
20
|
Dong Y, Zhang W, Li J, Wang D, Bai H, Li H, Shi L. The transcription factor LaMYC4 from lavender regulates volatile Terpenoid biosynthesis. BMC PLANT BIOLOGY 2022; 22:289. [PMID: 35698036 PMCID: PMC9190104 DOI: 10.1186/s12870-022-03660-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The basic helix-loop-helix (bHLH) transcription factors (TFs), as one of the largest families of TFs, are essential regulators of plant terpenoid biosynthesis and response to stresses. Lavender has more than 75 volatile terpenoids, yet few TFs have been identified to be involved in the terpenoid biosynthesis. RESULTS Based on RNA-Seq, reverse transcription-quantitative polymerase chain reaction, and transgenic technology, this study characterized the stress-responsive transcription factor LaMYC4 regulates terpenoid biosynthesis. Methyl jasmonate (MeJA) treatment increased volatile terpenoid emission, and the differentially expressed gene LaMYC4 was isolated. LaMYC4 expression level was higher in leaf than in other tissues. The expression of LaMYC4 decreased during flower development. The promoter of LaMYC4 contained hormone and stress-responsive regulatory elements and was responsive to various treatments, including UV, MeJA treatment, drought, low temperature, Pseudomonas syringae infection, and NaCl treatment. LaMYC4 overexpression increased the levels of sesquiterpenoids, including caryophyllenes, in Arabidopsis and tobacco plants. Furthermore, the expression of crucial node genes involved in terpenoid biosynthesis and glandular trichome number and size increased in transgenic tobacco. CONCLUSIONS We have shown that the stress-responsive MYC TF LaMYC4 from 'Jingxun 2' lavender regulates volatile terpenoid synthesis. This study is the first to describe the cloning of LaMYC4, and the results help understand the role of LaMYC4 in terpenoid biosynthesis.
Collapse
Affiliation(s)
- Yanmei Dong
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100015 China
| | - Wenying Zhang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100015 China
| | - Jingrui Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093 China
| | - Di Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093 China
| | - Hongtong Bai
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093 China
| | - Hui Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093 China
| | - Lei Shi
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093 China
| |
Collapse
|
21
|
Liu B, Kaurilind E, Zhang L, Okereke CN, Remmel T, Niinemets Ü. Improved plant heat shock resistance is introduced differently by heat and insect infestation: the role of volatile emission traits. Oecologia 2022; 199:53-68. [PMID: 35471619 DOI: 10.1007/s00442-022-05168-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 04/07/2022] [Indexed: 11/30/2022]
Abstract
Heat stress is one of the most important abiotic stresses confronted by plants under global climate change. Plant exposure to abiotic or biotic stress can improve its tolerance to subsequent severe episodes of the same or different stress (stress priming), but so far there is limited comparative information about how pre-exposures to different abiotic and biotic elicitors alter plant resistance to severe heat stress. We exposed the perennial herb Melilotus albus Medik., a species rich in secondary metabolites, to moderate heat stress (35 °C) and greenhouse whitefly (Trialeurodes vaporariorum West.) infestation to comparatively determine whether both pre-treatments could enhance plant tolerance to the subsequent heat shock (45 °C) stress. Plant physiological responses to stress were characterized by photosynthetic traits and volatile organic compound emissions through 72 h recovery. Heat shock treatment reduced net assimilation rate (A) and stomatal conductance in all plants, but heat-primed plants had significantly faster rates of recovery of A than other plants. By the end of the recovery period, A in none of the three heat shock-stressed groups recovered to the control level, but in whitefly-infested plants it reached the pre-heat shock level. In heat-primed plants, the heat shock treatment was associated with a fast rise of monoterpene emissions, and in whitefly-infested plants with benzenoid emissions and an increase in total phenolic content.
Collapse
Affiliation(s)
- Bin Liu
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia.
| | - Eve Kaurilind
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia
| | - Lu Zhang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Chikodinaka N Okereke
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia
| | - Triinu Remmel
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia.,Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia
| |
Collapse
|
22
|
Bao XY, Wang ZX, He ZS, He WM. Enhanced precipitation offsets climate warming inhibition on Solidago canadensis growth and sustains its high tolerance. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
23
|
Iqbal MA, Miyamoto K, Yumoto E, Parveen S, Mutanda I, Inafuku M, Oku H. Plant hormone profile and control over isoprene biosynthesis in a tropical tree Ficus septica. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:492-501. [PMID: 35050526 DOI: 10.1111/plb.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Plant hormone signalling and the circadian clock have been implicated in the transcriptional control of isoprene biosynthesis. To gain more insight into the hormonal control of isoprene biosynthesis, the present study measured plant hormone concentrations in jasmonic acid (JA)-treated leaves of our previous model study, examined their relationship with gene expression of isoprene synthase (IspS) and hormone signalling transcription factors. Of the plant hormones, IAA and JA-Ile and their related transcription factors (MYC2 and SAUR21) were significantly correlated with IspS gene expression. Concentrations of cytokinins, isopentenyladenine (iP), trans-zeatin riboside (tZR) and cis-zeatin riboside (cZR), were similarly significantly correlated with IspS expression. However, there was no significant correlation between their related transcription factor (ARR-B) and IspS expression. The circadian clock-related gene PRR7, but not the transcription factor LHY, was highly correlated with IspS expression. These results suggest that the hormonal balance between JA-Ile and IAA plays a central role in transcriptional regulation of IspS through the transcription factors MYC2 and SAUR21, the early auxin responsive genes. The putative cis-acting elements for SAUR on the IspS promoter (TGTCNN and CATATG), in addition to the G-box for MYC2, support the above proposal. These results provide insightful information on the core components of plant hormone-related regulation of IspS under coordination with the circadian clock genes.
Collapse
Affiliation(s)
- Md A Iqbal
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - K Miyamoto
- Department of Biosciences, Teikyo University, Utsunomiya, Tochigi, Japan
| | - E Yumoto
- Advanced Instrumental Analysis Center, Teikyo University, Tochigi, Japan
| | - S Parveen
- Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - I Mutanda
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, Jiangsu, China
| | - M Inafuku
- Faculty of Agriculture, University of the Ryukyus, Okinawa, Japan
| | - H Oku
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
24
|
Isoprene Emission Influences the Proteomic Profile of Arabidopsis Plants under Well-Watered and Drought-Stress Conditions. Int J Mol Sci 2022; 23:ijms23073836. [PMID: 35409196 PMCID: PMC8998555 DOI: 10.3390/ijms23073836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Isoprene is a small lipophilic molecule synthesized in plastids and abundantly released into the atmosphere. Isoprene-emitting plants are better protected against abiotic stresses, but the mechanism of action of isoprene is still under debate. In this study, we compared the physiological responses and proteomic profiles of Arabidopsis which express the isoprene synthase (ISPS) gene and emit isoprene with those of non-emitting plants under both drought-stress (DS) and well-watered (WW) conditions. We aimed to investigate whether isoprene-emitting plants displayed a different proteomic profile that is consistent with the metabolic changes already reported. Only ISPS DS plants were able to maintain the same photosynthesis and fresh weight of WW plants. LC-MS/MS-based proteomic analysis revealed changes in protein abundance that were dependent on the capacity for emitting isoprene in addition to those caused by the DS. The majority of the proteins changed in response to the interaction between DS and isoprene emission. These include proteins that are associated with the activation of secondary metabolisms leading to ABA, trehalose, and proline accumulations. Overall, our proteomic data suggest that isoprene exerts its protective mechanism at different levels: under drought stress, isoprene affects the abundance of chloroplast proteins, confirming a strong direct or indirect antioxidant action and also modulates signaling and hormone pathways, especially those controlling ABA synthesis. Unexpectedly, isoprene also alters membrane trafficking.
Collapse
|
25
|
Monson RK, Trowbridge AM, Lindroth RL, Lerdau MT. Coordinated resource allocation to plant growth-defense tradeoffs. THE NEW PHYTOLOGIST 2022; 233:1051-1066. [PMID: 34614214 DOI: 10.1111/nph.17773] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Plant resource allocation patterns often reveal tradeoffs that favor growth (G) over defense (D), or vice versa. Ecologists most often explain G-D tradeoffs through principles of economic optimality, in which negative trait correlations are attributed to the reconciliation of fitness costs. Recently, researchers in molecular biology have developed 'big data' resources including multi-omic (e.g. transcriptomic, proteomic and metabolomic) studies that describe the cellular processes controlling gene expression in model species. In this synthesis, we bridge ecological theory with discoveries in multi-omics biology to better understand how selection has shaped the mechanisms of G-D tradeoffs. Multi-omic studies reveal strategically coordinated patterns in resource allocation that are enabled by phytohormone crosstalk and transcriptional signal cascades. Coordinated resource allocation justifies the framework of optimality theory, while providing mechanistic insight into the feedbacks and control hubs that calibrate G-D tradeoff commitments. We use the existing literature to describe the coordinated resource allocation hypothesis (CoRAH) that accounts for balanced cellular controls during the expression of G-D tradeoffs, while sustaining stored resource pools to buffer the impacts of future stresses. The integrative mechanisms of the CoRAH unify the supply- and demand-side perspectives of previous G-D tradeoff theories.
Collapse
Affiliation(s)
- Russell K Monson
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Amy M Trowbridge
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Richard L Lindroth
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Manuel T Lerdau
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, 22904, USA
| |
Collapse
|
26
|
Radiative Transfer Image Simulation Using L-System Modeled Strawberry Canopies. REMOTE SENSING 2022. [DOI: 10.3390/rs14030548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The image-based modeling and simulation of plant growth have numerous and diverse applications. In this study, we used image-based and manual field measurements to develop and validate a methodology to simulate strawberry (Fragaria × ananassa Duch.) plant canopies throughout the Florida strawberry growing season. The simulated plants were used to create a synthetic image using radiative transfer modeling. Observed canopy properties were incorporated into an L-system simulator, and a series of strawberry canopies corresponding to specific weekly observation dates were created. The simulated canopies were compared visually with actual plant images and quantitatively with in-situ leaf area throughout the strawberry season. A simple regression model with L-system-derived and in-situ total leaf areas had an Adj R2 value of 0.78. The L-system simulated canopies were used to derive information needed for image simulation, such as leaf area and leaf angle distribution. Spectral and plant canopy information were used to create synthetic high spatial resolution multispectral images using the Discrete Anisotropic Radiative Transfer (DART) software. Vegetation spectral indices were extracted from the simulated image and used to develop multiple regression models of in-situ biophysical parameters (leaf area and dry biomass), achieving Adj R2 values of 0.63 and 0.50, respectively. The Normalized Difference Vegetation Index (NDVI) and the Red Edge Simple Ratio (SRre) vegetation indices, which utilize the red, red edge, and near infrared bands of the spectrum, were identified as statistically significant variables (p < 0.10). This study showed that both geometric (canopy seize metrics) and spectral variables were successful in modeling in-situ biomass and leaf area. Combining the geometric and spectral variables, however, only slightly improved the prediction model. These results show the feasibility of simulating strawberry canopies and images with inherent geometrical, topological, and spectral properties of real strawberry plants. The simulated canopies and images can be used in applications beyond creating realistic computer graphics for quantitative applications requiring the depiction of vegetation biological processes, such as stress modeling and remote sensing mission planning.
Collapse
|
27
|
Lazazzara V, Avesani S, Robatscher P, Oberhuber M, Pertot I, Schuhmacher R, Perazzolli M. Biogenic volatile organic compounds in the grapevine response to pathogens, beneficial microorganisms, resistance inducers, and abiotic factors. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:529-554. [PMID: 34409450 DOI: 10.1093/jxb/erab367] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
The synthesis of volatile organic compounds (VOCs) in plants is triggered in response to external stimuli, and these compounds can migrate to distal tissues and neighbouring receivers. Although grapevine VOCs responsible for wine aroma and plant-insect communications are well characterized, functional properties of VOCs produced in response to phytopathogens, beneficial microorganisms, resistance inducers, and abiotic factors have been less studied. In this review, we focused on the emission patterns and potential biological functions of VOCs produced by grapevines in response to stimuli. Specific grapevine VOCs are emitted in response to the exogenous stimulus, suggesting their precise involvement in plant defence response. VOCs with inhibitory activities against pathogens and responsible for plant resistance induction are reported, and some of them can also be used as biomarkers of grapevine resistance. Likewise, VOCs produced in response to beneficial microorganisms and environmental factors are possible mediators of grapevine-microbe communications and abiotic stress tolerance. Although further functional studies may improve our knowledge, the existing literature suggests that VOCs have an underestimated potential application as pathogen inhibitors, resistance inducers against biotic or abiotic stresses, signalling molecules, membrane stabilizers, and modulators of reactive oxygen species. VOC patterns could also be used to screen for resistant traits or to monitor the plant physiological status.
Collapse
Affiliation(s)
- Valentina Lazazzara
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Sara Avesani
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, Italy
- Center for Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele all'Adige, Italy
- Laboratory for Flavours and Metabolites, Laimburg Research Centre, Laimburg 6, Pfatten (Vadena), 39040 Auer (Ora), Italy
| | - Peter Robatscher
- Laboratory for Flavours and Metabolites, Laimburg Research Centre, Laimburg 6, Pfatten (Vadena), 39040 Auer (Ora), Italy
| | - Michael Oberhuber
- Laboratory for Flavours and Metabolites, Laimburg Research Centre, Laimburg 6, Pfatten (Vadena), 39040 Auer (Ora), Italy
| | - Ilaria Pertot
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, Italy
- Center for Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Rainer Schuhmacher
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| | - Michele Perazzolli
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, Italy
- Center for Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele all'Adige, Italy
| |
Collapse
|
28
|
Werner C, Meredith LK, Ladd SN, Ingrisch J, Kübert A, van Haren J, Bahn M, Bailey K, Bamberger I, Beyer M, Blomdahl D, Byron J, Daber E, Deleeuw J, Dippold MA, Fudyma J, Gil-Loaiza J, Honeker LK, Hu J, Huang J, Klüpfel T, Krechmer J, Kreuzwieser J, Kühnhammer K, Lehmann MM, Meeran K, Misztal PK, Ng WR, Pfannerstill E, Pugliese G, Purser G, Roscioli J, Shi L, Tfaily M, Williams J. Ecosystem fluxes during drought and recovery in an experimental forest. Science 2021; 374:1514-1518. [PMID: 34914503 DOI: 10.1126/science.abj6789] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Christiane Werner
- Ecosystem Physiology, Faculty of Environment and Natural Resources, Albert-Ludwig-University of Freiburg, Freiburg, Germany
| | - Laura K Meredith
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA.,Biosphere 2, University of Arizona, Oracle, AZ, USA.,BIO5 Institute, The University of Arizona, Tucson, AZ, USA
| | - S Nemiah Ladd
- Ecosystem Physiology, Faculty of Environment and Natural Resources, Albert-Ludwig-University of Freiburg, Freiburg, Germany
| | - Johannes Ingrisch
- Ecosystem Physiology, Faculty of Environment and Natural Resources, Albert-Ludwig-University of Freiburg, Freiburg, Germany.,Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Angelika Kübert
- Ecosystem Physiology, Faculty of Environment and Natural Resources, Albert-Ludwig-University of Freiburg, Freiburg, Germany
| | - Joost van Haren
- Biosphere 2, University of Arizona, Oracle, AZ, USA.,Honors College, University of Arizona, Tucson, AZ, USA
| | - Michael Bahn
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Kinzie Bailey
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
| | - Ines Bamberger
- Ecosystem Physiology, Faculty of Environment and Natural Resources, Albert-Ludwig-University of Freiburg, Freiburg, Germany
| | - Matthias Beyer
- Institute of Geoecology - Environmental Geochemistry, Technical University Braunschweig, Braunschweig, Germany
| | - Daniel Blomdahl
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX, USA
| | - Joseph Byron
- Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Mainz, Germany
| | - Erik Daber
- Ecosystem Physiology, Faculty of Environment and Natural Resources, Albert-Ludwig-University of Freiburg, Freiburg, Germany
| | | | - Michaela A Dippold
- Biogeochemistry of Agroecosystems, University of Göttingen, Göttingen, Germany.,Geo-Biosphere Interactions, University of Tuebingen, Tuebingen, Germany
| | - Jane Fudyma
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| | - Juliana Gil-Loaiza
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
| | | | - Jia Hu
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
| | - Jianbei Huang
- Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Thomas Klüpfel
- Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Mainz, Germany
| | | | - Jürgen Kreuzwieser
- Ecosystem Physiology, Faculty of Environment and Natural Resources, Albert-Ludwig-University of Freiburg, Freiburg, Germany
| | - Kathrin Kühnhammer
- Ecosystem Physiology, Faculty of Environment and Natural Resources, Albert-Ludwig-University of Freiburg, Freiburg, Germany.,Institute of Geoecology - Environmental Geochemistry, Technical University Braunschweig, Braunschweig, Germany
| | - Marco M Lehmann
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | | | - Pawel K Misztal
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX, USA
| | - Wei-Ren Ng
- Biosphere 2, University of Arizona, Oracle, AZ, USA
| | - Eva Pfannerstill
- Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Mainz, Germany
| | - Giovanni Pugliese
- Ecosystem Physiology, Faculty of Environment and Natural Resources, Albert-Ludwig-University of Freiburg, Freiburg, Germany.,Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Mainz, Germany
| | - Gemma Purser
- Centre for Ecology and Hydrology, University of Edinburgh, Edinburgh, UK
| | | | - Lingling Shi
- Biogeochemistry of Agroecosystems, University of Göttingen, Göttingen, Germany.,Geo-Biosphere Interactions, University of Tuebingen, Tuebingen, Germany
| | - Malak Tfaily
- BIO5 Institute, The University of Arizona, Tucson, AZ, USA.,Geo-Biosphere Interactions, University of Tuebingen, Tuebingen, Germany.,Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jonathan Williams
- Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Mainz, Germany.,Energy, Environment and Water Research Center, The Cyprus Institute, Nicosia, Cyprus
| |
Collapse
|
29
|
Rosenkranz M, Chen Y, Zhu P, Vlot AC. Volatile terpenes - mediators of plant-to-plant communication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:617-631. [PMID: 34369010 DOI: 10.1111/tpj.15453] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Plants interact with other organisms employing volatile organic compounds (VOCs). The largest group of plant-released VOCs are terpenes, comprised of isoprene, monoterpenes, and sesquiterpenes. Mono- and sesquiterpenes are well-known communication compounds in plant-insect interactions, whereas the smallest, most commonly emitted terpene, isoprene, is rather assigned a function in combating abiotic stresses. Recently, it has become evident that different volatile terpenes also act as plant-to-plant signaling cues. Upon being perceived, specific volatile terpenes can sensitize distinct signaling pathways in receiver plant cells, which in turn trigger plant innate immune responses. This vastly extends the range of action of volatile terpenes, which not only protect plants from various biotic and abiotic stresses, but also convey information about environmental constraints within and between plants. As a result, plant-insect and plant-pathogen interactions, which are believed to influence each other through phytohormone crosstalk, are likely equally sensitive to reciprocal regulation via volatile terpene cues. Here, we review the current knowledge of terpenes as volatile semiochemicals and discuss why and how volatile terpenes make good signaling cues. We discuss how volatile terpenes may be perceived by plants, what are possible downstream signaling events in receiver plants, and how responses to different terpene cues might interact to orchestrate the net plant response to multiple stresses. Finally, we discuss how the signal can be further transmitted to the community level leading to a mutually beneficial community-scale response or distinct signaling with near kin.
Collapse
Affiliation(s)
- Maaria Rosenkranz
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, 85764, Neuherberg, Germany
| | - Yuanyuan Chen
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, 85764, Neuherberg, Germany
| | - Peiyuan Zhu
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, 85764, Neuherberg, Germany
| | - A Corina Vlot
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, 85764, Neuherberg, Germany
| |
Collapse
|
30
|
Trowbridge AM, Moore DJP, Stoy PC. Preface: honoring the career of Russell K. Monson. Oecologia 2021; 197:817-822. [PMID: 34708288 DOI: 10.1007/s00442-021-05060-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Amy M Trowbridge
- Department of Entomology, University of Wisconsin, Madison, USA.
| | - David J P Moore
- School of Natural Resources and the Environment, University of Arizona, Tucson, USA
| | - Paul C Stoy
- Department of Biological Systems Engineering, University of Wisconsin, Madison, USA
| |
Collapse
|
31
|
Inouye BD, Brosi BJ, Le Sage EH, Lerdau MT. Trade-offs Among Resilience, Robustness, Stability, and Performance and How We Might Study Them. Integr Comp Biol 2021; 61:2180-2189. [PMID: 34355756 DOI: 10.1093/icb/icab178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/14/2021] [Indexed: 11/14/2022] Open
Abstract
Biological systems are likely to be constrained by trade-offs among robustness, resilience, and performance. A better understanding of these trade-offs is important for basic biology, as well as applications where biological systems can be designed for different goals. We focus on redundancy and plasticity as mechanisms governing some types of trade-offs, but mention others as well. Whether trade-offs are due to resource constraints or "design" constraints (i.e., structure of nodes and links within a network) will also affect the types of trade-offs that are important. Identifying common themes across scales of biological organization will require that researchers use similar approaches to quantifying robustness, resilience, and performance, using units that can be compared across systems.
Collapse
Affiliation(s)
- Brian D Inouye
- Biological Science, Florida State University, Tallahassee FL 32306
| | - Berry J Brosi
- Biology, University of Washington, Seattle, WA 98105
| | - Emily H Le Sage
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Manuel T Lerdau
- Environmental Sciences and Biology, University of Virginia, Charlottesville, VA 22904
| |
Collapse
|
32
|
Giordano D, Facchiano A, D'Auria S, Loreto F. A hypothesis on the capacity of plant odorant-binding proteins to bind volatile isoprenoids based on in silico evidences. eLife 2021; 10:e66741. [PMID: 34161230 PMCID: PMC8221805 DOI: 10.7554/elife.66741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/07/2021] [Indexed: 12/27/2022] Open
Abstract
Volatile organic compounds (VOCs) from 'emitting' plants inform the 'receiving' (listening) plants of impending stresses or simply of their presence. However, the receptors that allow receivers to detect the volatile cue are elusive. Most likely, plants (as animals) have odorant-binding proteins (OBPs), and in fact, a few OBPs are known to bind 'stress-induced' plant VOCs. We investigated whether these and other putative OBPs may bind volatile constitutive and stress-induced isoprenoids, the most emitted plant VOCs, with well-established roles in plant communication and defense. Molecular docking simulation experiments suggest that structural features of a few plant proteins screened in databases could allow VOC binding. In particular, our results show that monoterpenes may bind the same plant proteins that were described to bind other stress-induced VOCs, while the constitutive hemiterpene isoprene is unlikely to bind any investigated putative OBP and may not have an info-chemical role. We conclude that, as for animal, there may be plant OBPs that bind multiple VOCs. Plant OBPs may play an important role in allowing plants to eavesdrop messages by neighboring plants, triggering defensive responses and communication with other organisms.
Collapse
Affiliation(s)
| | | | - Sabato D'Auria
- Institute of Food Science, CNRAvellinoItaly
- Department of Biology, Agriculture and Food Sciences, CNRRomeItaly
| | - Francesco Loreto
- Department of Biology, University of Naples Federico IINaplesItaly
- Institute for Sustainable Plant Protection, CNRFlorenceItaly
| |
Collapse
|
33
|
Isoprene: An Antioxidant Itself or a Molecule with Multiple Regulatory Functions in Plants? Antioxidants (Basel) 2021; 10:antiox10050684. [PMID: 33925614 PMCID: PMC8146742 DOI: 10.3390/antiox10050684] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 12/25/2022] Open
Abstract
Isoprene (C5H8) is a small lipophilic, volatile organic compound (VOC), synthesized in chloroplasts of plants through the photosynthesis-dependent 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. Isoprene-emitting plants are better protected against thermal and oxidative stresses but only about 20% of the terrestrial plants are able to synthesize isoprene. Many studies have been performed to understand the still elusive isoprene protective mechanism. Isoprene reacts with, and quenches, many harmful reactive oxygen species (ROS) like singlet oxygen (1O2). A role for isoprene as antioxidant, made possible by its reduced state and conjugated double bonds, has been often suggested, and sometimes demonstrated. However, as isoprene is present at very low concentrations compared to other molecules, its antioxidant role is still controversial. Here we review updated evidences on the function(s) of isoprene, and outline contrasting indications on whether isoprene is an antioxidant directly scavenging ROS, or a membrane strengthener, or a modulator of genomic, proteomic and metabolomic profiles (perhaps as a secondary effect of ROS removal) eventually leading to priming of antioxidant plant defenses, or a signal of stress for neighbor plants alike other VOCs, or a hormone-like molecule, controlling the metabolic flux of other hormones made by the MEP pathway, or acting itself as a growth and development hormone.
Collapse
|
34
|
Protein expression plasticity contributes to heat and drought tolerance of date palm. Oecologia 2021; 197:903-919. [PMID: 33880635 PMCID: PMC8591023 DOI: 10.1007/s00442-021-04907-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/23/2021] [Indexed: 11/04/2022]
Abstract
Climate change is increasing the frequency and intensity of warming and drought periods around the globe, currently representing a threat to many plant species. Understanding the resistance and resilience of plants to climate change is, therefore, urgently needed. As date palm (Phoenix dactylifera) evolved adaptation mechanisms to a xeric environment and can tolerate large diurnal and seasonal temperature fluctuations, we studied the protein expression changes in leaves, volatile organic compound emissions, and photosynthesis in response to variable growth temperatures and soil water deprivation. Plants were grown under controlled environmental conditions of simulated Saudi Arabian summer and winter climates challenged with drought stress. We show that date palm is able to counteract the harsh conditions of the Arabian Peninsula by adjusting the abundances of proteins related to the photosynthetic machinery, abiotic stress and secondary metabolism. Under summer climate and water deprivation, these adjustments included efficient protein expression response mediated by heat shock proteins and the antioxidant system to counteract reactive oxygen species formation. Proteins related to secondary metabolism were downregulated, except for the P. dactylifera isoprene synthase (PdIspS), which was strongly upregulated in response to summer climate and drought. This study reports, for the first time, the identification and functional characterization of the gene encoding for PdIspS, allowing future analysis of isoprene functions in date palm under extreme environments. Overall, the current study shows that reprogramming of the leaf protein profiles confers the date palm heat- and drought tolerance. We conclude that the protein plasticity of date palm is an important mechanism of molecular adaptation to environmental fluctuations.
Collapse
|
35
|
Frank L, Wenig M, Ghirardo A, van der Krol A, Vlot AC, Schnitzler JP, Rosenkranz M. Isoprene and β-caryophyllene confer plant resistance via different plant internal signalling pathways. PLANT, CELL & ENVIRONMENT 2021; 44:1151-1164. [PMID: 33522606 DOI: 10.1111/pce.14010] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 05/12/2023]
Abstract
Isoprene and other terpenoids are important biogenic volatile organic compounds in terms of atmospheric chemistry. Isoprene can aid plant performance under abiotic stresses, but the fundamental biological reasons for the high emissions are not completely understood. Here, we provide evidence of a previously unrecognized ecological function for isoprene and for the sesquiterpene, ß-caryophyllene. We show that isoprene and ß-caryophyllene act as core components of plant signalling networks, inducing resistance against microbial pathogens in neighbouring plants. We challenged Arabidopsis thaliana with Pseudomonas syringae, after exposure to pure volatile terpenoids or to volatile emissions of transformed poplar or Arabidopsis plants. The data suggest that isoprene induces a defence response in receiver plants that is similar to that elicited by monoterpenes and depended on salicylic acid (SA) signalling. In contrast, the sesquiterpene, ß-caryophyllene, induced resistance via jasmonic acid (JA)-signalling. The experiments in an open environment show that natural biological emissions are enough to induce resistance in neighbouring Arabidopsis. Our results show that both isoprene and ß-caryophyllene function as allelochemical components in complex plant signalling networks. Knowledge of this system may be used to boost plant immunity against microbial pathogens in various crop management schemes.
Collapse
Affiliation(s)
- Lena Frank
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Neuherberg, Germany
| | - Marion Wenig
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Andrea Ghirardo
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Neuherberg, Germany
| | | | - A Corina Vlot
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Jörg-Peter Schnitzler
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Neuherberg, Germany
| | - Maaria Rosenkranz
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Neuherberg, Germany
| |
Collapse
|