1
|
Rath S, Das S. Stress response proteins within biofilm matrixome protect the cell membrane against heavy metals-induced oxidative damage in a marine bacterium Bacillus stercoris GST-03. Int J Biol Macromol 2025; 293:139397. [PMID: 39743066 DOI: 10.1016/j.ijbiomac.2024.139397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/26/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Biofilm formation is a key adaptive response of marine bacteria towards stress conditions. The protective mechanisms of biofilm matrixome proteins against heavy metals (Pb and Cd) induced oxidative damage in the marine bacterium Bacillus stercoris GST-03 was investigated. Exposure to heavy metals resulted in significant changes in cell morphology, biofilm formation, and matrixome composition. Biofilm-encased cells showed lower oxidative damage. Biofilm matrixome protein exhibited major conformational changes, with 100 % α-helix turned to 62.33 % and 69.64 % of random coil under Pb and Cd stress, respectively. Fluorescence quenching kinetics revealed slow interactions between biofilm matrixome proteins and heavy metals (Kq values < 2.0 × 1010). Thermodynamic analysis showed negative ∆G (-16.02 kJ/mol for Pb and -17.45 kJ/mol for Cd) and binding dissociation constant (KD) (1530 ± 157 μM for Pb and 875 ± 97.4 μM for Cd), indicating a stronger binding affinity of biofilm matrixome to heavy metals. Pb stress led to overproduction of detoxification proteins (YnaI, KhtS, Bacillopeptidase F), competence and sporulation proteins (RapF, CSSF, XkdP), while Cd exposure leads to overproduction of proteins involved in protein misfolding repair (YlxX, cysteine-tRNA ligase, YacP), DNA repair (YfkN), and redox balance (cysteine synthase, YdiK). The findings highlight the resilience of B. stercoris GST-03 to heavy metal stress in biofilm mode.
Collapse
Affiliation(s)
- Sonalin Rath
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
2
|
Wang F, Jia X, Zhao Y, Yang X, Feng X. Two strains of cadmium (Cd)-resistant bacteria isolated from soils and their ability to promote oilseed rape (Brassica juncea L.) to grow and absorb Cd in soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125549. [PMID: 39694310 DOI: 10.1016/j.envpol.2024.125549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/29/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024]
Abstract
As a highly toxic, mobile, and persistent heavy metal, cadmium (Cd) in soils is becoming a crucial environmental problem. Most of classical physical and chemical remediation measures for Cd-contaminated soils possibly cause some dangers to soil structure and characteristics and potential secondary pollution, however, Cd-resistant microbial which can sequestrate Cd by releasing extracellular polymeric substances (EPS) capable of ion exchange, coordination, and adsorption and improve plant growth should be favorable for remediation of Cd-contaminated soils due to being environmentally friendly and cost-effective. Therefore, the plant-microbe combination is becoming a priority option in the remediation of Cd-contaminated soils. Here, we isolated two strains of Cd-resistant bacteria from soils and investigated the ability of the two strains to promote growth of oilseed rape (Brassica juncea L.) and Cd uptake by the plants. Citrobacter farmeri and Cupriavidus gilardii were isolated from soils via culture media containing 30 and 50 mg/L Cd, respectively, which could release EPS including proteins, polysaccharide, and DNA. The EPS from C. gilardii was significantly higher than that from C. farmeri, and the proportion of protein in EPS was the highest for two strains. Additionally, two strains secreted indole-3-acetic acid (IAA) and could solubilize phosphorus, and the ability of C. gilardii to secret IAA was significantly higher than that of C. farmeri. The pot experiment indicated that C. farmeri and C. gilardii significantly enhanced oilseed rape biomass (by 81.99% and 76.57%, respectively), C and N contents, Cd accumulation in plants by 229.03% and 264.63%, respectively, and remediation efficiency at 40 days after emergence (flowering stage). However, the difference in promoting plant growth and Cd uptake and phytoremediation efficiency of Cd-contaminated soils between the two strains was not significant. Overall, C. farmeri and C. gilardii isolated from soils might be promising strains in enhancing phytoremediation of Cd-contaminated soils.
Collapse
Affiliation(s)
- Fang Wang
- Shaanxi Key Laboratory of Land Consolidation, School of Land Engineering, Chang'an University, Xi'an, 710054, PR China
| | - Xia Jia
- Key laboratory of Degraded and Unused Land Consolidation Engineering, the Ministry of Land and Resources, Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, Xi'an, 710054, PR China.
| | - Yonghua Zhao
- Shaanxi Key Laboratory of Land Consolidation, School of Land Engineering, Chang'an University, Xi'an, 710054, PR China
| | - Xuelian Yang
- Key laboratory of Degraded and Unused Land Consolidation Engineering, the Ministry of Land and Resources, Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, Xi'an, 710054, PR China
| | - Xiaojuan Feng
- Key laboratory of Degraded and Unused Land Consolidation Engineering, the Ministry of Land and Resources, Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, Xi'an, 710054, PR China
| |
Collapse
|
3
|
Al-Tameemi AI, Masarudin MJ, Rahim RA, Mizzi R, Timms VJ, Isa NM, Neilan BA. Eco-friendly zinc oxide nanoparticle biosynthesis powered by probiotic bacteria. Appl Microbiol Biotechnol 2025; 109:32. [PMID: 39878901 PMCID: PMC11779794 DOI: 10.1007/s00253-024-13355-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 01/31/2025]
Abstract
The rapid advancement of nanotechnology, particularly in the realm of pharmaceutical sciences, has significantly transformed the potential for treating life-threatening diseases. A pivotal aspect of this evolution is the emergence of "green nanotechnology," which emphasizes the environmentally sustainable synthesis of raw materials through biological processes. This review focuses on the biological synthesis and application of zinc oxide (ZnO) nanoparticles (NPs) from probiotic bacteria, particularly those sourced from wastewater. Microorganisms from wastewater tolerate harmful elements and enzymatically convert toxic heavy metals into eco-friendly materials. These probiotic bacteria are instrumental in the synthesis of ZnO NPs and exhibit remarkable antimicrobial properties with diverse industrial applications. As the challenge of drug-resistant pathogens escalates, innovative strategies for combating microbial infections are essential. This review explores the intersection of nanotechnology, microbiology, and antibacterial resistance, highlighting the importance of selecting suitable probiotic bacteria for synthesizing ZnO NPs with potent antibacterial activity. Additionally, the review addresses the biofunctionalization of NPs and their applications in environmental remediation and therapeutic innovations, including wound healing, antibacterial, and anticancer treatments. Eco-friendly NP synthesis relies on the identification of these suitable microbial "nano-factories." Targeting probiotic bacteria from wastewater can uncover new microbial NP synthesis capabilities, advancing environmentally friendly NP production methods. KEY POINTS: • Innovative strategies are needed to combat drug-resistant pathogens like MRSA. • Wastewater-derived probiotic bacteria are an eco-friendly method for ZnO synthesis. • ZnO NPs show significant antimicrobial activity against various pathogens.
Collapse
Affiliation(s)
- Ahmed Issa Al-Tameemi
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- College of Dentistry, Al-Iraqia University, 10053 Al Adhamiya, Baghdad, Iraq
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Rachel Mizzi
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Verlaine J Timms
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Nurulfiza Mat Isa
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Brett A Neilan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
4
|
Hao L, Fu B, Shi J, Zhou H, Shi C, Hao X. Synchronous bioremediation of vanadium(V) and chromium(VI) using straw in a continuous-flow reactor. ENVIRONMENTAL RESEARCH 2025; 264:120312. [PMID: 39521263 DOI: 10.1016/j.envres.2024.120312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Vanadium (V) and chromium (Cr) are key resources widely used in industrial production. However, mining causes V(V) and Cr(VI) contamination in groundwater, posing health and environmental risks. Straw is an important byproduct and considered waste, however, it could be a solid carbon source. Therefore, the feasibility of V(V) and Cr(VI) bioremediation in groundwater was determined using straw as the carbon source in this study. A continuous-flow reactor able to resist fluctuations in pollutant concentrations in groundwater was constructed. V(V) and Cr(VI) were completely removed (100%, 10-34 d) in the reactor, and the maximum Cr(VI) removal rate from effluent was 1.19 mg/(L·h) (34-64 d). After long-term reactor operation (114 d), the V(V) and Cr(VI) removal rates reached almost 100%. Moreover, the formation of humus and tryptophan contributed to V(V) and Cr(VI) bioremediation. The extracellular polymeric substance content increased from 108.28 to 113.98 mg/g VSS, and combined with V(V) and Cr(VI) to reduce their concentrations. Moreover, functional microbes associated with heavy metal removal (Bacillus and Pseudobacteroides) and straw decomposition (Paludibacter) were found. The findings of this study offer empirical evidence that support the utilization of straw for mitigating composite heavy metal pollution, thereby laying a foundation for its practical engineering applications.
Collapse
Affiliation(s)
- Liting Hao
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education/Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Bowei Fu
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education/Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Jinkai Shi
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education/Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Hongliang Zhou
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education/Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Chen Shi
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education/Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xiaodi Hao
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education/Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| |
Collapse
|
5
|
Cui L, Chen S, Cao X, Zhang X, Huang X, Shibata T, Yang Y, Shi L, Zhao C, Wang S, Yang S. Simultaneous removal of heavy metals and inorganic nitrogen by using the biofilm of Marichromatium gracile YL28. World J Microbiol Biotechnol 2024; 41:14. [PMID: 39704863 DOI: 10.1007/s11274-024-04193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/06/2024] [Indexed: 12/21/2024]
Abstract
Heavy metal and nitrogen contaminations are serious concerns in aquatic environments. Marichromatium gracile YL28, a marine purple sulfur bacterium, has shown great potential as a bioremediation agent for removing inorganic nitrogen from marine water. This study further investigated its ability to simultaneously absorb heavy metals, including Pb(II), Cu(II), Cd(II) and Cr(VI), and remove inorganic nitrogen. The contributions of photopigment and extracellular polymeric substances (EPS) in the YL28 biofilm to heavy metal adsorption and tolerance were also evaluated. The YL28 biofilm demonstrated higher adsorption efficiencies for heavy metal ions than planktonic cells. A high level of EPS was detected in the biofilm. The effects of four heavy metal on the inhibition of photopigment synthesis showed that high concentrations of Cu(II) greatly inhibited the production of BChl a and Car. The adsorption efficiencies of Pb(II), Cu(II), Cd(II), and Cr(VI) in the YL28 biofilm reactor reached 86.59%, 72.94%, 80.06%, and 95.95%, respectively. Elevated concentrations of heavy metal ions only marginally impeded ammonia nitrogen removal; they impacted neither nitrite and nitrate removals nor hindered the simultaneous elimination of three inorganic nitrogen compounds. Coupled with their ability to remove inorganic nitrogen, the high adsorption capacity and tolerance of YL28 biofilms toward heavy metal suggest a promising solution for mitigating metal pollutants.
Collapse
Affiliation(s)
- Liang Cui
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, 361021, China
| | - Shicheng Chen
- Medical Laboratory Sciences Program, College of Health and Human Sciences, Northern Illinois University, De Kalb, USA
| | - Xiaxing Cao
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Xiaobo Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, 361021, China
- The Second Hospital & Clinical Medicine School, Lanzhou University, Cuiying Gate in Chengguan District, Lanzhou, China
| | - Xiaoping Huang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, 361021, China
| | - Tomoyuki Shibata
- Institute for the Study of the Environment, Sustainability, and Energy, Northern Illinois University, De Kalb, USA
| | - Yi Yang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, 361021, China
| | - Luyao Shi
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, 361021, China
| | - Chungui Zhao
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, 361021, China
| | - Shasha Wang
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, 361021, China
| | - Suping Yang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, 361021, China.
| |
Collapse
|
6
|
Zhu Y, Zhang X, Zhou W, Qi L, Yang J, Chen F, Li Z, Guan C. Synergistic contributions of plant growth-promoting rhizobacteria and exogenous fulvic acid to enhance phytoremediation efficiency of perfluorooctanoic acid (PFOA)-contaminated soils: Boosting PFOA bioavailability and elevating pak choi tolerance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176862. [PMID: 39414053 DOI: 10.1016/j.scitotenv.2024.176862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/13/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
Perfluorooctanoic acid (PFOA), a synthetic perfluoroalkyl compound, has caused extensive soil contamination over several decades, posing serious health risks to humans through bioaccumulation in plants and subsequent transfer via the food chain. Due to the durability of PFOA in soil and its propensity to migrate and accumulate in plants, phytoremediation has been recognized as an effective remediation method. However, the phytotoxicity of PFOA and the adsorption of PFOA by soil hindered the efficiency of traditional phytoremediation. Therefore, this research employed plant growth-promoting rhizobacteria (PGPR)-assisted phytoremediation, augmented with the bio-stimulant fulvic acid (FA), to devise an effective soil remediation strategy tailored for PFOA contamination removal. The results indicated that Rhizobium sp. strain ZY2, endowed with PGP traits, significantly increased the root weight and shoot weight of pak choi by 194.67 % and 37.38 %, respectively, versus the non-inoculation treatment. Furthermore, inoculation with strain ZY2 enhanced soil alkaline phosphatase, protease, and cellulase activities, bolstering soil nutrient cycling and resource availability. On the other hand, compared to treatment with strain ZY2 alone, additional exogenous FA drastically reduced the residual fraction of PFOA in soil from 34.1 % to 1.9 %, likely mediated by complex electrostatic and hydrophobic interactions between FA and soil components. Ultimately, FA addition increased PFOA concentration in pak choi by 8.1-fold. Furthermore, FA could increase the relative abundance of beneficial rhizosphere bacteria (Actinobacterota and Methylotener, etc.), thereby creating a more favorable microenvironment for plant growth. In conclusion, the combined use of strain ZY2 and FA in phytoremediation notably strengthened plant resilience to PFOA, minimized soil sorption, and achieved high remediation efficacy, offering an effective system to mitigate PFOA-soil pollution's environmental and health risks.
Collapse
Affiliation(s)
- Yalan Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaoge Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Wenqing Zhou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Lihua Qi
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jingjing Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Fenyan Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zhiman Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
7
|
Lee SY, Cho KS. Isolation of Heavy Metal-Tolerant and Anti-Phytopathogenic Plant Growth-Promoting Bacteria from Soils. J Microbiol Biotechnol 2024; 34:2252-2265. [PMID: 39468992 PMCID: PMC11637846 DOI: 10.4014/jmb.2407.07013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
In this study, multifunctional soil bacteria, which can promote plant development, resist heavy metals, exhibit anti-phytopathogenic action against plant diseaes, and produce extracellular enzymes, were isolated to improve the effectiveness of phytoremediation techniques. In order to isolate multifunctional soil bacteria, a variety of soil samples with diverse characteristics were used as sources for isolation. To look into the diversity and structural traits of the bacterial communities, we conducted amplicon sequencing of the 16S rRNA gene on five types of soils and predicted functional genes using Tax4Fun2. The isolated bacteria were evaluated for their multifunctional capabilities, including heavy metal tolerance, plant growth promotion, anti-phytopathogenic activity, and extracellular enzyme activity. The genes related to plant growth promotion and anti-phytopathogenic activity were most abundant in forest and paddy soils. Burkholderia sp. FZ3 and FZ5 demonstrated excellent heavy metal resistance (≤ 1 mM Cd and ≤ 10 mM Zn), Pantoea sp. FC24 exhibited the highest protease activity (24.90 μmol tyrosine·g-DCW-1·h-1), and Enterobacter sp. PC20 showed superior plant growth promotion, especially in siderophore production. The multifunctional bacteria isolated using traditional methods included three strains (FC24, FZ3, and FZ5) from the forest and one strain (PC20) from paddy field soil. These results indicate that, for the isolation of beneficial soil microorganisms, utilizing target gene information obtained from isolation sources and subsequently exploring target microorganisms is a valuable strategy.
Collapse
Affiliation(s)
- Soo Yeon Lee
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
8
|
Monga A, Fulke AB, Sonker S, Dasgupta D. Unveiling the chromate stress response in the marine bacterium Bacillus enclensis AGM_Cr8: a multifaceted investigation. World J Microbiol Biotechnol 2024; 40:394. [PMID: 39586856 DOI: 10.1007/s11274-024-04206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
In this study, we introduce Bacillus enclensis AGM_Cr8, a gram-positive marine bacterium isolated from the chronically polluted Versova Creek in Mumbai, India. AGM_Cr8 exhibits robust tolerance to chromate stress, thriving in marine agar media containing up to 3200 mg/l of hexavalent chromium [Cr(VI)], with the Minimum Inhibitory Concentration (MIC) established at 5000 mg/l. Notably, AGM_Cr8 also displays tolerance to other heavy metals, including Lead [Pb (II)] (1200 mg/l), Arsenic [As (III)] (400 mg/l), Cadmium [Cd(II)] (100 mg/l), and Nickel [Ni(II)] (100 mg/l). Scanning Electron Microscopy (SEM) reveals the presence of Cr(VI) on the bacterial surface, accompanied by the secretion of extracellular polymeric substances (EPSs) facilitating Cr(VI) sequestration. This observation is validated through Energy Dispersive Spectroscopy (EDS). Transmission Electron Microscopy (TEM) and Scanning Transmission Electron Microscopy-Energy Dispersive Spectroscopy (STEM-EDS) confirm internal bioaccumulation of Cr(VI). X-ray photoelectron spectroscopy (XPS) identifies distinct peaks around 579 and 576 eV, indicating the coexistence of Cr(VI) and Cr(III), implying a bioreduction mechanism. De novo genome sequencing identifies twenty-two chromate-responsive genes, including putative chromate transporters (srpC1 and srpC2), suggesting an efflux mechanism. Other identified genes encode NAD(P)H-dependent FMN-containing oxidoreductase, NADH quinone reductase, ornithine aminotransferase, transporter genes (natA, natB, ytrB), and genes related to DNA replication and repair (recF), DNA mismatch repair (mutH), and superoxide dismutase. We therefore, propose a chromate detoxification pathway that involves an interplay of chromate transporters, enzymatic reduction of Cr(VI) to Cr(III), DNA repair and role of antioxidants in response to chromate stress. We have highlighted the potential of AGM_Cr8 for bioremediation in chromium-contaminated environments, given its robust tolerance and elucidated molecular mechanisms for detoxification.
Collapse
Affiliation(s)
- Aashna Monga
- Microbiology Division CSIR- National Institute of Oceanography (NIO), Regional Centre, Four Bungalows, Andheri (West), Mumbai, Maharashtra, 400053, India
- School of Biotechnology and Bioinformatics, D.Y. Patil University, Navi Mumbai, India
| | - Abhay B Fulke
- Microbiology Division CSIR- National Institute of Oceanography (NIO), Regional Centre, Four Bungalows, Andheri (West), Mumbai, Maharashtra, 400053, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Swati Sonker
- Microbiology Division CSIR- National Institute of Oceanography (NIO), Regional Centre, Four Bungalows, Andheri (West), Mumbai, Maharashtra, 400053, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debjani Dasgupta
- School of Biotechnology and Bioinformatics, D.Y. Patil University, Navi Mumbai, India
| |
Collapse
|
9
|
Xiao S, Wang M, Amanze C, Anaman R, Ssekimpi D, Zeng W. Mechanisms of adaptive resistance in Phytobacter sp. X4 to antimony stress under anaerobic conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135628. [PMID: 39208624 DOI: 10.1016/j.jhazmat.2024.135628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/05/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Sb(III) oxidation by microorganisms plays a key role in the geochemical cycling of antimony and is effective for bioremediation. A previously discovered novel Sb(III)-oxidizing bacteria, Phytobacter sp. X4, was used to elucidate the response patterns of extracellular polypeptides (EPS), antioxidant system, electron transfer and functional genes to Sb(III) under anaerobic conditions. The toxicity of Sb(III) was mitigated by increasing Sb(III) oxidation capacity, and the EPS regulated the content of each component by sensing the concentration of Sb(III). High Sb(III) concentrations induced significant secretion of proteins and polysaccharides of EPS, and polysaccharides were more important. Functional groups including hydroxyl, carboxyl and amino groups on the cell surface adsorbed Sb(III) to block its entry. Hydroxyl radicals and hydrogen peroxide were involved in anaerobic Sb(III) oxidation, as revealed by changes in the antioxidant system and electron spin resonance (EPR) techniques. qPCR confirmed that proteins concerning nitrate and antimony transfer, antimony resistance and antioxidant system were regulated by Sb(III) concentration, and the synergistic cooperation of multiple proteins conferred high antimony resistance to X4. The adaptive antimony resistance mechanism of Phytobacter sp. X4 under anaerobic conditions was revealed, which also provides a reference value for bioremediation method of antimony contamination in anaerobic environment.
Collapse
Affiliation(s)
- Shanshan Xiao
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083 China
| | - Mingwei Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083 China
| | - Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083 China
| | - Richmond Anaman
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Dennis Ssekimpi
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, United States
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083 China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China.
| |
Collapse
|
10
|
Zhang H, Wang K, Liu X, Yao L, Chen Z, Han H. Exopolysaccharide-Producing Bacteria Regulate Soil Aggregates and Bacterial Communities to Inhibit the Uptake of Cadmium and Lead by Lettuce. Microorganisms 2024; 12:2112. [PMID: 39597502 PMCID: PMC11596253 DOI: 10.3390/microorganisms12112112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 11/29/2024] Open
Abstract
The accumulation of heavy metals in the soil not only causes serious damage to the soil ecosystem, but also threatens human health through the food chain. Exopolysaccharides have the functions of adsorbing and chelating heavy metals and reducing their bioavailability in the soil. In our study, exopolysaccharide-producing bacteria with a high efficiency in adsorbing cadmium (Cd) and lead (Pb) were screened from heavy metal-contaminated farmland. Through pot experiments, the influence of functional strains on the size distribution, heavy metal content, and bacterial community structure of soil aggregates in lettuce was studied using high-throughput sequencing technology. The results show that 11 strains secreting exopolysaccharides were initially screened from heavy metal-contaminated soil. Among them, strain Z23 had a removal rate of 88.6% for Cd and 93.2% for Pb. The rate at which Cd was removed by strain Z39 was 92.3%, and the rate at which Pb was removed was 94.4%. Both strains belong to Bacillus sp. Strains Z23 and Z39 induced the formation of Fe2Pb(PO4)2, Cd2(PO4)2, and Pb2O3 in the solution. The pot experiments showed that strains Z23 and Z39 increased (19.1~23.9%) the dry weight and antioxidant enzyme activity of lettuce roots and leaves, while reducing (40.1~61.7%) the content of Cd and Pb. Strains Z23 and Z39 increased the proportion of microaggregates (<0.25 mm) and the content of exopolysaccharides in rhizosphere soil and reduced (38.4-59.7%) the contents of available Cd and Pb in microaggregates, thus inhibiting the absorption of heavy metals by lettuce. In addition, the exopolysaccharide content and the bacterial community associated with heavy metal resistance and nitrogen (N) cycling (Patescibacteria, Saccharimonadales, Microvirga, and Pseudomonas) in microaggregates were key factors affecting the available heavy metal content in soil. These results show that the exopolysaccharide-producing bacteria Z23 and Z39 reduced the absorption of Cd and Pb by lettuce tissues, thus providing strain resources for the safe utilization of soils that exceed heavy metal standards for farmland and for reducing the heavy metal content in vegetables.
Collapse
Affiliation(s)
- Heyun Zhang
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-route Project of South-North Water Diversion of Henan Province, Nanyang Normal University, Nanyang 473061, China; (H.Z.); (K.W.); (X.L.)
| | - Ke Wang
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-route Project of South-North Water Diversion of Henan Province, Nanyang Normal University, Nanyang 473061, China; (H.Z.); (K.W.); (X.L.)
| | - Xinru Liu
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-route Project of South-North Water Diversion of Henan Province, Nanyang Normal University, Nanyang 473061, China; (H.Z.); (K.W.); (X.L.)
| | - Lunguang Yao
- Henan Field Observation and Research Station of Headwork Wetland Ecosystem of the Central Route of South-to-North Water Diversion Project, Nanyang Normal University, Nanyang 473061, China;
| | - Zhaojin Chen
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-route Project of South-North Water Diversion of Henan Province, Nanyang Normal University, Nanyang 473061, China; (H.Z.); (K.W.); (X.L.)
| | - Hui Han
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-route Project of South-North Water Diversion of Henan Province, Nanyang Normal University, Nanyang 473061, China; (H.Z.); (K.W.); (X.L.)
- Henan Field Observation and Research Station of Headwork Wetland Ecosystem of the Central Route of South-to-North Water Diversion Project, Nanyang Normal University, Nanyang 473061, China;
| |
Collapse
|
11
|
Tan A, Wang H, Zhang H, Zhang L, Yao H, Chen Z. Reduction of Cr(VI) by Bacillus toyonensis LBA36 and its effect on radish seedlings under Cr(VI) stress. PeerJ 2024; 12:e18001. [PMID: 39346031 PMCID: PMC11430171 DOI: 10.7717/peerj.18001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/07/2024] [Indexed: 10/01/2024] Open
Abstract
Chromium, being among the most toxic heavy metals, continues to demand immediate attention in the remediation of Cr-contaminated environments. In this study, a strain of LBA36 (Bacillus toyonensis) was isolated from heavy metal contaminated soil in Luanchuan County, Luoyang City, China. The reduction and adsorption rates of LBA36 in 30 mg·L-1 Cr-containing medium were 97.95% and 8.8%, respectively. The reduction mechanism was confirmed by Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy (XPS). Cr(VI) reduction by this strain predominantly occurred outside the cell, with hydroxyl, amide, carboxyl, C-N group, carbonyl, and sulfur carbonyl as the main reaction sites. XPS analysis revealed the presence of Cr2p1/2 and Cr2p3/2. Furthermore, the hydroponic experiment showed that the fresh weight and plant height of radish seedlings increased by 87.87% and 37.07%, respectively, after inoculation with LBA36 strain under 7 mg·L-1 Cr(VI) stress. The levels of chlorophyll, total protein, malondialdehyde, superoxide dismutase and catalase were also affected to different degrees. In conclusion, this study demonstrated the potential of microbial and phytoremediation in the treatment of heavy metal toxicity, and laid the foundation for the development of effective bioremediation methods for Cr(VI) pollution.
Collapse
Affiliation(s)
- Aobo Tan
- Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Hui Wang
- Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Hehe Zhang
- Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Longfei Zhang
- Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Hanyue Yao
- Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Zhi Chen
- Department of Civil and Environmental Engineering, Concordia University, Montreal, Canada
| |
Collapse
|
12
|
Arshad R, Al-Huqail AA, Alghanem SMS, Alsudays IM, Farid M, Sarfraz W, Abbas M, Asam ZUZ, Khalid N, Yong JWH, Abeed AHA. Phyto-treatment of tannery industry effluents under combined application of citric acid and chromium-reducing bacterial strain through Lemna minor L.: A lab scale study. Heliyon 2024; 10:e36309. [PMID: 39253192 PMCID: PMC11382062 DOI: 10.1016/j.heliyon.2024.e36309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Contamination of agricultural soils with heavy metals (HMs) poses a significant environmental threat, especially because industrial discharges often irrigate agricultural lands. A prominent source of HM(s) pollution occurs from tannery effluents containing high concentrations of chromium (Cr) in both Cr3+ and Cr6+ forms along with other toxic materials. Cr is known for its carcinogenic and mutagenic properties in biological systems. Microbe-assisted phytoremediation has emerged as a promising and environmentally friendly approach for detoxifying Cr-contaminated environments. This study aimed to evaluate the performance of citric acid (CA) and a Cr-reducing bacterial strain (Staphylococcus aureus) on the phytoextraction potential of Lemna minor within a Constructed Wetland System treated with tannery wastewater. Various combinations of tannery wastewater (0, 50, and 100 %), CA (0, 5 and 10 mM), and microbial inoculants were applied to the test plants. The mitigative effects of Staphylococcus aureus strain K1 were examined in combination with different concentrations of CA (0, 5, 10 mM). Data on growth and yield attributes highlighted the beneficial effects of bacterial inoculation and CA in ameliorating Cr toxicity in L. minor, as evidenced by increased foliar chlorophyll and carotenoid contents, enhanced antioxidant enzyme activities (SOD, POD, APX, CAT), and improved nutrient uptake. Specifically, CA application resulted in an enhancement of Cr ranging from 12% to 15% and 23%-31% in concentration, and 134%-141% and 322%-337% in Cr accumulation, respectively. When combined with the S. aureus inoculation treatment, CA application (5 and 10 mM) further increased the concentration and accumulation of Cr in L. minor. The enhancement in Cr ranged from 12% to 23% and 27%-41% in concentration, 68%-75%, and 179%-185% in accumulation, respectively. These results demonstrated that L. minor is an effective choice for environmentally friendly Cr remediation due to its continued ability to grow in polluted wastewater. This study suggested that microbial-assisted phytoextraction combined with chelating agents such as CA could be a practical and effective approach for remediating tannery effluents.
Collapse
Affiliation(s)
- Rahat Arshad
- Department of Environmental Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan
| | - Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia
| | | | | | - Mujahid Farid
- Department of Environmental Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan
| | - Wajiha Sarfraz
- Australia Rivers Institute and School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
- Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Mohsin Abbas
- Department of Environmental Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan
| | - Zaki Ul Zaman Asam
- Department of Environmental Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan
| | - Noreen Khalid
- Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, 23456, Alnarp, Sweden
| | - Amany H A Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
13
|
Song X, Wang N, Zhou J, Tao J, He X, Guo N. High cadmium-accumulating Salix ecotype shapes rhizosphere microbiome to facilitate cadmium extraction. ENVIRONMENT INTERNATIONAL 2024; 190:108904. [PMID: 39059023 DOI: 10.1016/j.envint.2024.108904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
Cadmium (Cd) contamination poses a significant threat to agricultural soils and food safety, necessitating effective remediation strategies. Salix species, with their high coverage and Cd accumulating capacity, hold promise for remediation efforts. The rhizosphere microbiome is crucial for enhancing Cd accumulating capacity for Salix. However, the mechanisms by how Salix interacts with its rhizosphere microbiome to enhance Cd extraction remains poorly understood. In this study, we compared the remediation performance of two Salix ecotypes: 51-3 (High Cd-accumulating Ecotype, HAE) and P646 (Low Cd-accumulating Ecotype, LAE). HAE exhibited notable advantages over LAE, with 10.80 % higher plant height, 43.80 % higher biomass, 20.26 % higher Cd accumulation in aboveground tissues (93.09 μg on average), and a superior Cd translocation factor (1.97 on average). Analysis of the rhizosphere bacterial community via 16S rRNA amplicon sequencing revealed that HAE harbored a more diverse bacterial community with a distinct composition compared to LAE. Indicator analysis identified 84 genera specifically enriched in HAE, predominantly belonging to Proteobacteria, Actinobacteria, and Firmicutes, including beneficial microbes such as Streptomyces, Bacillus, and Pseudomonas. Network analysis further elucidated three taxa groups specifically recruited by HAE, which were highly correlated with functional genes that associated with biosynthesis of secondary metabolites, glycan biosynthesis and metabolism, and metabolism of cofactors and vitamins. These functions contribute to enhancing plant growth, Cd uptake, and resistance to Cd in Salix. Overall, our findings highlight the importance of the rhizosphere microbiome in facilitating Cd extraction and provide insights into microbiome-based strategies for sustainable agricultural practices.
Collapse
Affiliation(s)
- Xiaomei Song
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, China; College of Art Design, Yangzhou Polytechnic Institute, Yangzhou, 225107, Jiangsu, China
| | - Ningqi Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Zhou
- National Willow Engineering Technology Research Center, Jiangsu Academy of Forestry, Nanjing, 211153, China
| | - Jun Tao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xudong He
- National Willow Engineering Technology Research Center, Jiangsu Academy of Forestry, Nanjing, 211153, China.
| | - Nan Guo
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
14
|
Sujiritha PB, Vikash VL, Ponesakki G, Ayyadurai N, Kamini NR. Microbially induced carbonate precipitation with Arthrobacter creatinolyticus: An eco-friendly strategy for mitigation of chromium contamination. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121300. [PMID: 38955041 DOI: 10.1016/j.jenvman.2024.121300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/14/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
Chromium contamination from abandoned industrial sites and inadequately managed waste disposal areas poses substantial environmental threat. Microbially induced carbonate precipitation (MICP) has shown promising, eco-friendly solution to remediate Cr(VI) and divalent heavy metals. In this study, MICP was carried out for chromium immobilization by an ureolytic bacterium Arthrobacter creatinolyticus which is capable of reducing Cr(VI) to less toxic Cr(III) via extracellular polymeric substances (EPS) production. The efficacy of EPS driven reduction was confirmed by cellular fraction analysis. MICP carried out in aqueous solution with 100 ppm of Cr(VI) co-precipitated 82.21% of chromium with CaCO3 and the co-precipitation is positively correlated with reduction of Cr(VI). The organism was utilized to remediate chromium spiked sand and found that MICP treatment decreased the exchangeable fraction of chromium to 0.54 ± 0.11% and increased the carbonate bound fraction to 26.1 ± 1.15% compared to control. XRD and SEM analysis revealed that Cr(III) produced during reduction, influenced the polymorph selection of vaterite during precipitation. Evaluation of MICP to remediate Cr polluted soil sample collected from Ranipet, Tamil Nadu also showed effective immobilization of chromium. Thus, A. creatinolyticus proves to be viable option for encapsulating chromium contaminated soil via MICP process, and effectively mitigating the infiltration of Cr(VI) into groundwater and adjacent water bodies.
Collapse
Affiliation(s)
- Parthasarathy Baskaran Sujiritha
- Department of Biochemistry and Biotechnology, CSIR - Central Leather Research Institute, Chennai, 600020, Tamil Nadu, India; University of Madras, Chennai, 600005, Tamil Nadu, India
| | - Vijan Lal Vikash
- Department of Biochemistry and Biotechnology, CSIR - Central Leather Research Institute, Chennai, 600020, Tamil Nadu, India
| | - Ganesan Ponesakki
- Department of Biochemistry and Biotechnology, CSIR - Central Leather Research Institute, Chennai, 600020, Tamil Nadu, India
| | - Niraikulam Ayyadurai
- Department of Biochemistry and Biotechnology, CSIR - Central Leather Research Institute, Chennai, 600020, Tamil Nadu, India
| | - Numbi Ramudu Kamini
- Department of Biochemistry and Biotechnology, CSIR - Central Leather Research Institute, Chennai, 600020, Tamil Nadu, India.
| |
Collapse
|
15
|
Jia J, Xiao B, Yao L, Zhang B, Ma Y, Wang W, Han Y, Lei Q, Zhao R, Dong J, Wei N, Zhang H. The dominant role of extracellular polymeric substances produced by Achromobacter xylosoxidans BP1 in Cr(VI) microbial reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174464. [PMID: 38964391 DOI: 10.1016/j.scitotenv.2024.174464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/12/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Extracellular polymeric substances (EPS) have demonstrated significant benefits for reducing multivalent metal contamination. Using Achromobacter xylosoxidans BP1 isolated from a coal chemical site in China, this study elucidated the contribution of EPS production to Cr (VI) reduction and revealed its biological removal mechanism. BP1 grew at an optimum pH of 8 and the lowest inhibitory concentration of Cr(VI) was 300 mg/L. The spent medium completely removed Cr(VI), whereas resting cells were only able to remove 10.47 % and inactivated cells were nearly incapable of Cr(VI) removal. S-EPS and B-EPS reduced Cr(VI) by 98.59 % and 11.64 %, respectively. SEM-EDS analysis showed that the BP1 cells were stimulated to produce EPS under Cr stress. The XPS results showed that 29.63 % of Cr(VI) was enriched by intracellular bioaccumulation or biosorption and 70.37 % of Cr(VI) was reduced by extracellular enzymes to produce Cr(OH)3 and organic Cr(III) complexes. According to FTIR, EPS with -OH, COO-, and amide groups supplied binding sites and electrons for the reductive adsorption of Cr(VI). Genomic studies showed that BP1 primarily produces extracellular polysaccharides, metabolises sulphur and nitrogen, and reduces reactive oxygen species damage as a result of DNA repair proteases.
Collapse
Affiliation(s)
- Jianli Jia
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, People's Republic of China.
| | - Bing Xiao
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, People's Republic of China.
| | - Linying Yao
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, People's Republic of China.
| | - Ben Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, People's Republic of China.
| | - Yichi Ma
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, People's Republic of China.
| | - Weiran Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, People's Republic of China.
| | - Yuxin Han
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, People's Republic of China.
| | - Qiushuang Lei
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, People's Republic of China; Center for Soil Protection and Landscape Design, Chinese Academy of Environmental Planning, Beijing 100041, People's Republic of China.
| | - Ruofan Zhao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China.
| | - Jingqi Dong
- Center for Soil Protection and Landscape Design, Chinese Academy of Environmental Planning, Beijing 100041, People's Republic of China.
| | - Nan Wei
- Center for Soil Protection and Landscape Design, Chinese Academy of Environmental Planning, Beijing 100041, People's Republic of China.
| | - Hongzhen Zhang
- Center for Soil Protection and Landscape Design, Chinese Academy of Environmental Planning, Beijing 100041, People's Republic of China.
| |
Collapse
|
16
|
Linda TM, Aliska J, Feronika N, Melisa I, Juliantari E. Production of Exopolysaccharides and İndole Acetic Acid (IAA) by Rhizobacteria and Their Potential against Drought Stress in Upland Rice. J Microbiol Biotechnol 2024; 34:1239-1248. [PMID: 38783698 PMCID: PMC11239409 DOI: 10.4014/jmb.2401.01035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Peatlands are marginal agricultural lands due to highly acidic soil conditions and poor drainage systems. Drought stress is a big problem in peatlands as it can affect plants through poor root development, so technological innovations are needed to increase the productivity and sustainability of upland rice on peatlands. Rhizobacteria can overcome the effects of drought stress by altering root morphology, regulating stress-responsive genes, and producing exopolysaccharides and indole acetic acid (IAA). This study aimed to determine the ability of rhizobacteria in upland rice to produce exopolysaccharides and IAA, identify potential isolates using molecular markers, and prove the effect of rhizobacteria on viability and vigor index in upland rice. Rhizobacterial isolates were grown on yeast extract mannitol broth (YEMB) medium for exopolysaccharides production testing and Nutrient Broth (NB)+L-tryptophan medium for IAA production testing. The selected isolates identify using sequence 16S rRNA. The variables observed in testing the effect of rhizobacteria were germination ability, vigour index, and growth uniformity. EPS-1 isolate is the best production of exopolysaccharides (41.6 mg/ml) and IAA (60.83 ppm). The isolate EPS-1 was identified as Klebsiella variicola using 16S rRNA sequencing and phylogenetic analysis. The isolate EPS-1 can increase the viability and vigor of upland rice seeds. K. variicola is more adaptive and has several functional properties that can be developed as a potential bioagent or biofertilizer to improve soil nutrition, moisture and enhance plant growth. The use of rhizobacteria can reduce dependence on the use of synthetic materials with sustainable agriculture.
Collapse
Affiliation(s)
- Tetty Marta Linda
- Department of Biology, Faculty of Mathematics and Natural Sciences, Riau University. Kampus Bina Widya Km. 12, 5 Simpang Baru Pekanbaru, Riau Province 28293, Indonesia
| | - Jusinta Aliska
- Department of Biology, Faculty of Mathematics and Natural Sciences, Riau University. Kampus Bina Widya Km. 12, 5 Simpang Baru Pekanbaru, Riau Province 28293, Indonesia
| | - Nita Feronika
- Department of Biology, Faculty of Mathematics and Natural Sciences, Riau University. Kampus Bina Widya Km. 12, 5 Simpang Baru Pekanbaru, Riau Province 28293, Indonesia
| | - Ineiga Melisa
- Department of Biology, Faculty of Mathematics and Natural Sciences, Riau University. Kampus Bina Widya Km. 12, 5 Simpang Baru Pekanbaru, Riau Province 28293, Indonesia
| | - Erwina Juliantari
- Department of Biology, Faculty of Mathematics and Natural Sciences, Riau University. Kampus Bina Widya Km. 12, 5 Simpang Baru Pekanbaru, Riau Province 28293, Indonesia
| |
Collapse
|
17
|
Minari GD, Piazza RD, Sass DC, Contiero J. EPS Production by Lacticaseibacillus casei Using Glycerol, Glucose, and Molasses as Carbon Sources. Microorganisms 2024; 12:1159. [PMID: 38930541 PMCID: PMC11205391 DOI: 10.3390/microorganisms12061159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
This study demonstrates that Lactobacillus can produce exopolysaccharides (EPSs) using alternative carbon sources, such as sugarcane molasses and glycerol. After screening 22 strains of Lactobacillus to determine which achieved the highest production of EPS based on dry weight at 37 °C, the strain Ke8 (L. casei) was selected for new experiments. The EPS obtained using glycerol and glucose as carbon sources was classified as a heteropolysaccharide composed of glucose and mannose, containing 1730 g.mol-1, consisting of 39.4% carbohydrates and 18% proteins. The EPS obtained using molasses as the carbon source was characterized as a heteropolysaccharide composed of glucose, galactose, and arabinose, containing 1182 g.mol-1, consisting of 52.9% carbohydrates and 11.69% proteins. This molecule was characterized using Size Exclusion Chromatography (HPLC), Gas chromatography-mass spectrometry (GC-MS), Fourier-transform infrared spectroscopy (FTIR), and proton nuclear magnetic resonance spectroscopy (1H-NMR). The existence of polysaccharides was confirmed via FT-IR and NMR analyses. The results obtained suggest that Lacticaseibacillus casei can grow in media that use alternative carbon sources such as glycerol and molasses. These agro-industry residues are inexpensive, and their use contributes to sustainability. The lack of studies regarding the use of Lacticaseibacillus casei for the production of EPS using renewable carbon sources from agroindustry should be noted.
Collapse
Affiliation(s)
- Guilherme Deomedesse Minari
- Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 13506-900, Brazil; (G.D.M.); (D.C.S.)
| | - Rodolfo Debone Piazza
- Institute of Chemistry, São Paulo State University (Unesp), Araraquara 14800-903, Brazil;
| | - Daiane Cristina Sass
- Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 13506-900, Brazil; (G.D.M.); (D.C.S.)
| | - Jonas Contiero
- Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 13506-900, Brazil; (G.D.M.); (D.C.S.)
- Institute on Research in Bioenergy, São Paulo State University (Unesp), Rio Claro 13500-230, Brazil
| |
Collapse
|
18
|
Wang X, Zhang Y, Sun X, Jia X, Liu Y, Xiao X, Gao H, Li L. Efficient removal of hexavalent chromium from water by Bacillus sp. Y2-7 with production of extracellular polymeric substances. ENVIRONMENTAL TECHNOLOGY 2024; 45:2698-2708. [PMID: 36847602 DOI: 10.1080/09593330.2023.2185817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Bioremediation is an environmentally friendly technology for the treatment of chromium-contaminated sites. Here, a hexavalent chromium [Cr(VI)]-resistant strain was isolated from oil-contaminated soil and designated as Bacillus sp. Y2-7 based on 16S rDNA sequence characterization. The effects of various factors including inoculation dose, pH value, glucose concentration, and temperature on Cr(VI) removal rates were then evaluated. Based on the response surface methodology, optimal Cr(VI) removal efficiency (above 90%) could be achieved at an initial Cr(VI) concentration of 155.0 mg·L-1, glucose concentration of 11.479 g·L-1, and pH of 7.1. The potential removal mechanisms of Cr(VI) by strain Y2-7 were also supposed. The contents of polysaccharide and protein in extracellular polymer (EPS) of strain Y2-7 decreased slowly after cultured with Cr(VI) of 15 mg·L-1 from 1 to 7 days. We thus inferred that EPS bonded with Cr(VI) and underwent morphological changes in water. Molecular operating environment (MOE) analysis suggested that macromolecular protein complexes in Bacillus sp. Y2-7 and hexavalent chromium could establish hydrogen bonds. Collectively, our findings indicate that Bacillus sp. Y2-7 is an excellent bacterial candidate for chromium bioremediation.
Collapse
Affiliation(s)
- Xuehan Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Ying Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Xiaojie Sun
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Xianchao Jia
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Yin Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Xinfeng Xiao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Hongge Gao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Lin Li
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
19
|
Wu J, Jiao Y, Ran M, Li J. The role of an Sb-oxidizing bacterium in modulating antimony speciation and iron plaque formation to reduce the accumulation and toxicity of Sb in rice (Oryza sativa L.). JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133897. [PMID: 38442599 DOI: 10.1016/j.jhazmat.2024.133897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/04/2024] [Accepted: 02/24/2024] [Indexed: 03/07/2024]
Abstract
Microbial antimony (Sb) oxidation in the root rhizosphere and the formation of iron plaque (IP) on the root surface are considered as two separate strategies to mitigate Sb(III) phytotoxicity. Here, the effect of an Sb-oxidizing bacterium Bacillus sp. S3 on IP characteristics of rice exposed to Sb(III) and its alleviating effects on plant growth were investigated. The results revealed that Fe(II) supply promoted IP formation under Sb(III) stress. However, the formed IP facilitated rather than hindered the uptake of Sb by rice roots. In contrast, the combined application of Fe(II) and Bacillus sp. S3 effectively alleviated Sb(III) toxicity in rice, resulting in improved rice growth and photosynthesis, reduced oxidative stress levels, enhanced antioxidant systems, and restricted Sb uptake and translocation. Despite the ability of Bacillus sp. S3 to oxidize Fe(II), bacterial inoculation inhibited the formation of IP, resulting in a reduction in Sb absorption on IP and uptake into the roots. Additionally, the bacterial inoculum enhanced the transformation of Sb(III) to less toxic Sb(V) in the culture solution, further influencing the adsorption of Sb onto IP. These findings highlight the potential of combining microbial Sb oxidation and IP as an effective strategy for minimizing Sb toxicity in sustainable rice production systems.
Collapse
Affiliation(s)
- Jiaxing Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Ying Jiao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Maodi Ran
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
20
|
Loni PC, Wang W, Qiu X, Man B, Wu M, Qiu D, Wang H. Antimony precipitation and removal by antimony hyper resistant strain Achromobacter sp. 25-M. ENVIRONMENTAL RESEARCH 2024; 245:118011. [PMID: 38141916 DOI: 10.1016/j.envres.2023.118011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/13/2023] [Accepted: 12/21/2023] [Indexed: 12/25/2023]
Abstract
Microbes have been confirmed to play key role in biogeochemistry of antimony. However, the impact of indigenous bacteria (from active mines) on the behavior of dissolved antimony remained poorly understood. In current study, the hyper antimony-resistant strain, Achromobacter sp. 25-M, isolated from the world largest antimony deposit, Xikuangshan antimony deposit, was evaluated for its role in dissolved Sb(V) and Sb(III) precipitation and removal. Despite of the high resistance to Sb(III) (up to 50 mM), the facultative alkaliphile, 25-M was not capable of Sb(III) oxidation. Meanwhile 25-M can produce high amount of exopolymeric substance (EPS) with the presence of Sb, which prompted us to investigate the potential role of EPS in the precipitation and removal of Sb. To this end, 2 mM of Sb(III) and Sb(V) were added into the experimental systems with and without 25-M to discern the interaction mechanism between microbe and antimony. After 96 hrs' incubation, 88% [1.73 mM (210 mg/L)] of dissolved Sb(V) and 80% [1.57 mM (190 mg/L)] of dissolved Sb(III) were removed. X-ray diffraction and energy dispersive spectroscopy analysis confirmed the formation of valentinite (Sb2O3) in Sb(III) amended system and a solitary Sb(V) mineral mopungite [NaSb(OH)6] in Sb(V) amended group with microbes. Conversely, no precipitate was detected in abiotic systems. Morphologically valentinite was bowtie and mopungite was pseudo-cubic as indicated by scanning electronic microscopy. EPS was subjected to fourier transform infrared (FT-IR) analysis. FT-IR analysis suggested that -OH and -COO groups were responsible for the complexation and ligand exchange with Sb(III) and Sb(V), respectively. Additionally, the C-H group and N-H group could be involved in π-π interaction and chelation with Sb species. All these interactions between Sb and functional groups in EPS may subsequently favore the formation of valentinite and mopungite. Collectively, current results suggested that EPS play fundamental role in bioprecipitation of Sb, which offered a new strategy in Sb bioremediation.
Collapse
Affiliation(s)
- Prakash C Loni
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China; Department of Earth Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Weiqi Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Xuan Qiu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Baiying Man
- College of Life Science, Shangrao Normal University, Shangrao, 334001, China
| | - Mengxiaojun Wu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China; Zhejiang Economic and Information Center, Hangzhou, 310006, China
| | - Dongru Qiu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China.
| |
Collapse
|
21
|
Priyadarshanee M, Das S. Spectra metrology for interaction of heavy metals with extracellular polymeric substances (EPS) of Pseudomonas aeruginosa OMCS-1 reveals static quenching and complexation dynamics of EPS with heavy metals. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133617. [PMID: 38306836 DOI: 10.1016/j.jhazmat.2024.133617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
The adsorption behavior and interaction mechanisms of extracellular polymeric substances (EPS) of Pseudomonas aeruginosa OMCS-1 towards chromium (Cr), lead (Pb), and cadmium (Cd) were investigated. EPS-covered (EPS-C) cells exhibited significantly higher (p < 0.0001; two-way ANOVA) removal of Cr (85.58 ± 0.39%), Pb (81.98 ± 1.02%), and Cd (73.88 ± 1%) than EPS-removed (EPS-R) cells. Interactions between EPS-heavy metals were spontaneous (ΔG<0). EPS-Cr(VI) and EPS-Pb(II) binding were exothermic (ΔH<0), while EPS-Cd(II) binding was endothermic (ΔH>0) process. EPS bonded to Pb(II) via inner-sphere complexation by displacement of surrounding water molecules, while EPS-Cr(VI) and EPS-Cd(II) binding occurred through outer-sphere complexation via electrostatic interactions. Increased zeta potential of Cr (29.75%), Pb (41.46%), and Cd (46.83%) treated EPS and unchanged crystallinity (CIXRD=0.13), inferred EPS-metal binding via both electrostatic interactions and complexation mechanism. EPS-metal interaction was predominantly promoted through hydroxyl, amide, carboxyl, and phosphate groups. Metal adsorption deviated EPS protein secondary structures. Strong static quenching mechanism between tryptophan protein-like substances in EPS and heavy metals was evidenced. EPS sequestered heavy metals via complexation with C-O, C-OH, CO/O-C-O, and NH/NH2 groups and ion exchange with -COOH group. This study unveils the fate of Cr, Pb, and Cd on EPS surface and provides insight into the interactions among EPS and metal ions for metal sequestration.
Collapse
Affiliation(s)
- Monika Priyadarshanee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India.
| |
Collapse
|
22
|
Saha BK, Roy V, Saha J, Chatterjee A, Pal A. Study of mercury resistance and Fourier transform infrared spectroscopy-based metabolic profiling of a potent Bacillus tropicus strain from forest soil. J Basic Microbiol 2024; 64:e2300351. [PMID: 37847888 DOI: 10.1002/jobm.202300351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/01/2023] [Accepted: 10/07/2023] [Indexed: 10/19/2023]
Abstract
Mercury (Hg) is a highly toxic heavy metal and Hg-resistant indigenous bacterial isolates may offer a green and cost-effective bioremediation strategy to counter Hg contamination. In this study, a potent Hg-resistant bacterium was isolated from the forest soil of a bird sanctuary. Identification using matrix-assisted laser desorption ionization-time of flight mass spectrometry depicted the isolate as a strain of Bacillus tropicus, validated by morphological, biochemical, and molecular studies. The isolate demonstrated biological Hg removal efficiency and capacity of 50.67% and 19.76 mg g-1 , respectively. The plasmid borne resistance determinant, merA, encoding mercuric reductase, was detected in the bacterium endowing it with effective Hg volatilization and resistance capability. A Fourier-transform infrared spectroscopic comparative metabolic profiling revealed the involvement of various functional groups like -COOH, -CH2 , -OH, PO4 - and so on, resulting in differential spectral patterns of the bacterium both in control and Hg-exposed situations. A temporal variance in metabolic signature was also observed during the early and mid-log phase of growth in the presence of Hg. The bacterium described in this study is the first indigenous Hg-resistant strain isolated from the Uttar Dinajpur region, which could be further explored and exploited as a potent bioresource for Hg remediation.
Collapse
Affiliation(s)
- Barnan K Saha
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal, India
| | - Vivek Roy
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal, India
| | - Jayanti Saha
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal, India
- Department of Botany, Acharya Prafulla Chandra Roy Government College, Himachal Bihar, Matigara, Siliguri, West Bengal, India
| | - Abhik Chatterjee
- Design, Synthesis & Simulation Laboratory, Department of Chemistry, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal, India
| | - Ayon Pal
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal, India
| |
Collapse
|
23
|
Akhzari F, Naseri T, Mousavi SM, Khosravi-Darani K. A sustainable solution for alleviating hexavalent chromium from water streams using Lactococcus lactis AM99 as a novel Cr(VI)-reducing bacterium. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120190. [PMID: 38306859 DOI: 10.1016/j.jenvman.2024.120190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/03/2024] [Accepted: 01/20/2024] [Indexed: 02/04/2024]
Abstract
Chromium, extensively used in various industries, poses significant challenges due to its environmental impact. The threat of Cr(VI) causes critical concerns in aquatic ecosystems as a consequence of the fluidity of water. The conventional approach for the treatment of effluents containing Cr(VI) is reducing Cr(VI) to low-noxious Cr(III). This research is related to a Gram positive bacterium newly isolated from tannery effluent under aerobic conditions. To characterize functional groups on the isolate, Fourier transform infrared spectroscopy was utilized. The effect of different factors on Cr(VI) bioreduction was investigated, including temperature, initial Cr(VI) concentration, acetate concentration, and Tween 80 surfactant. Under optimal conditions (37 °C and 0.90 g/L sodium acetate), the bioreduction rate of the isolate, identified as Lactococcus lactis AM99, achieved 88.0 % at 300 mg/L Cr(VI) during 72 h (p < 0.05). It was observed that Cr(VI) bioreduction was enhanced by the acetate in both the quantity and intensity, while Tween 80 had no impact on the reaction. The strain AM99 exhibited remarkable characteristics, notably a marginal decrease in growth at elevated concentrations of hexavalent chromium and an exceptional potential to reduce Cr(VI) even at very low biomass levels, surpassing any prior findings in the associated research. Furthermore, The isolate could tolerate 1400 mg/L Cr(VI) in a solid medium. These distinctive features make the isolate a promising and well-suited candidate for remediating Cr(VI)-polluted environments. Additionally, the impact of biogenic extracellular polymer produced by the strain AM99 on reduction was examined at different temperatures.
Collapse
Affiliation(s)
- Farid Akhzari
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran
| | - Tannaz Naseri
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran
| | - Seyyed Mohammad Mousavi
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran; Modares Environmental Research Institute, Tarbiat Modares University, Tehran, Iran.
| | - Kianoush Khosravi-Darani
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Liu F, Zhang K, Zhao Y, Li D, Sun X, Lin L, Feng H, Huang Q, Zhu Z. Screening of cadmium-chromium-tolerant strains and synergistic remediation of heavy metal-contaminated soil using king grass combined with highly efficient microbial strains. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168990. [PMID: 38043805 DOI: 10.1016/j.scitotenv.2023.168990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
The present study involved the isolation of two cadmium (Cd) and chromium (Cr) resistant strains, identified as Staphylococcus cohnii L1-N1 and Bacillus cereus CKN12, from heavy metal contaminated soils. S. cohnii L1-N1 exhibited a reduction of 24.4 % in Cr6+ and an adsorption rate of 6.43 % for Cd over a period of 5 days. These results were achieved under optimal conditions of pH (7.0), temperature (35 °C), shaking speed (200 rpm), and inoculum volume (8 %). B. cereus strain CKN12 exhibited complete reduction of Cr6+ within a span of 48 h, while it demonstrated a 57.3 % adsorption capacity for Cd over a period of 120 h. These results were achieved under conditions of optimal pH (8.0), temperature (40 °C), shaking speed (150 rpm), and inoculum volume (2-3 %). Additionally, microcharacterization and ICP-MS analysis revealed that Cr and Cd were accumulated on the cell surface, whereas Cr6+ was mainly reduced extracellularly. Subsequently, a series of pot experiments were conducted to provide evidence that the inclusion of S. cohnii L1-N1 or B. cereus CKN12 into the system resulted in a notable enhancement in both the plant height and biomass of king grass. In particular, it was observed that the presence of S. cohnii L1-N1 or B. cereus CKN12 in king grass led to a significant reduction in the levels of Cd and Cr in the soils (36.0 % and 27.8 %, or 72.9 % and 47.4 %, respectively). Thus, the results of this study indicate that the combined use of two bacterial strains can effectively aid in the remediation of tropical soils contaminated with moderate to light levels of Cd and Cr.
Collapse
Affiliation(s)
- Fan Liu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Kailu Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yang Zhao
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Dong Li
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiaoyan Sun
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Li Lin
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture and Rural Affairs, Nanning 530007, China
| | - Huiping Feng
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Qing Huang
- Key Laboratory for Environmental Toxicology of Haikou, Center for Eco-Environmental Restoration Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Zhiqiang Zhu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
25
|
Khan MJ, Wibowo A, Karim Z, Posoknistakul P, Matsagar BM, Wu KCW, Sakdaronnarong C. Wastewater Treatment Using Membrane Bioreactor Technologies: Removal of Phenolic Contaminants from Oil and Coal Refineries and Pharmaceutical Industries. Polymers (Basel) 2024; 16:443. [PMID: 38337332 DOI: 10.3390/polym16030443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/22/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Huge amounts of noxious chemicals from coal and petrochemical refineries and pharmaceutical industries are released into water bodies. These chemicals are highly toxic and cause adverse effects on both aquatic and terrestrial life. The removal of hazardous contaminants from industrial effluents is expensive and environmentally driven. The majority of the technologies applied nowadays for the removal of phenols and other contaminants are based on physio-chemical processes such as solvent extraction, chemical precipitation, and adsorption. The removal efficiency of toxic chemicals, especially phenols, is low with these technologies when the concentrations are very low. Furthermore, the major drawbacks of these technologies are the high operation costs and inadequate selectivity. To overcome these limitations, researchers are applying biological and membrane technologies together, which are gaining more attention because of their ease of use, high selectivity, and effectiveness. In the present review, the microbial degradation of phenolics in combination with intensified membrane bioreactors (MBRs) has been discussed. Important factors, including the origin and mode of phenols' biodegradation as well as the characteristics of the membrane bioreactors for the optimal removal of phenolic contaminants from industrial effluents are considered. The modifications of MBRs for the removal of phenols from various wastewater sources have also been addressed in this review article. The economic analysis on the cost and benefits of MBR technology compared with conventional wastewater treatments is discussed extensively.
Collapse
Affiliation(s)
- Mohd Jahir Khan
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand
| | - Agung Wibowo
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand
| | - Zoheb Karim
- MoRe Research Örnsköldsvik AB, SE-89122 Örnsköldsvik, Sweden
| | - Pattaraporn Posoknistakul
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand
| | - Babasaheb M Matsagar
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan 32003, Taiwan
| | - Chularat Sakdaronnarong
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand
| |
Collapse
|
26
|
Ran M, Wu T, Jiao Y, Wu J, Li J. Selenium bio-nanocomposite based on extracellular polymeric substances (EPS): Synthesis, characterization and application in alleviating cadmium toxicity in rice (Oryza sativa L.). Int J Biol Macromol 2024; 258:129089. [PMID: 38161017 DOI: 10.1016/j.ijbiomac.2023.129089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Selenium nanoparticles (SeNPs) have gained significant attention owing to their favorable bioavailability and low toxicity, making them widely applications in the fields of medicine, food and agriculture. In this study, bacterial extracellular polymeric substances (EPS) were used as a novel stabilizer and capping agent to prepare dispersed SeNPs. Results show that EPS-SeNPs presented negative potential (-38 mV), spherical morphologies with average particle size about 100-200 nm and kept stable at room temperature for a long time. X-ray diffraction (XRD) analysis demonstrated that the synthesized nanoparticles were pure amorphous nanoparticles, and X-ray photoelectron spectroscopy (XPS) spectrum showed a spike at 55.6 eV, indicating the presence of zero-valent nano‑selenium. Fourier-transform infrared spectroscopy (FTIR) and three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy analysis confirmed proteins and polysaccharides in EPS played a crucial role in the synthesis of EPS-SeNPs. Compared to EPS or sodium selenite (Na2SeO3), EPS-SeNPs showed a relatively moderate result in terms of scavenging free radicals in vitro. In contrast, EPS-SeNPs demonstrated lower toxicity to rice seeds than Na2SeO3. Notably, the exogenous application of EPS-SeNPs effectively alleviated the growth inhibition and oxidative damaged caused by cadmium (Cd), and significantly reduced Cd accumulation in rice plants.
Collapse
Affiliation(s)
- Maodi Ran
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Tingting Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Ying Jiao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Jiaxing Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
27
|
Lv Y, Kuang J, Ding Z, Li R, Shi Z. Soil moisture dynamics regulates the release rates and lability of copper in contaminated paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168525. [PMID: 37967635 DOI: 10.1016/j.scitotenv.2023.168525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
The climate changes have caused more extreme precipitation and drought events in the field and have exacerbated the severity of wet-dry events in soils, which will inevitably lead to severe fluctuations in soil moisture content. Soil moisture content has been recognized to influence the distribution of heavy metals, but how temporal changes of soil moisture dynamics affect the release rates and lability of heavy metals is still poorly understood, which precludes accurate prediction of environmental behavior and environmental risk of heavy metals in the field. In this study, we combined experimental and modeling approaches to quantify copper release rates and labile copper fractions in two paddy soils from southern China under different moisture conditions. Our kinetic data and models showed that the release rates and lability of copper were highly associated with the soil moisture contents, in which, surprisingly, high soil moisture contents effectively reduced the release rates of copper even with little changes in the reactive portions of copper in soils. A suite of comprehensive characterization on soil solid and solution components along the incubation suggested that soil microbes may regulate soil copper lability through forming microbially derived organic matter that sequestered copper and by increasing soil particle aggregation for protecting copper from release. This study highlights the importance of incorporating soil moisture dynamics into future environmental models. The experimental and modeling approaches in this study have provided basis for further developing predictive models applicable to paddy soils with varying soil moisture under the impact of climate change.
Collapse
Affiliation(s)
- Yijin Lv
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Jialiang Kuang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Zecong Ding
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Rong Li
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Zhenqing Shi
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China.
| |
Collapse
|
28
|
Weng X, Fu HM, Mao Z, Yan P, Xu XW, Shen Y, Chen YP. Fate of iron nanoparticles in anammox system: Dissolution, migration and transformation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119323. [PMID: 37852083 DOI: 10.1016/j.jenvman.2023.119323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Iron nanoparticles (FeNPs) are commonly used in various industrial processes, leading to their release into the environment and eventual entrance into wastewater treatment plants (WWTPs). FeNPs undergo dissolution, migration, and transformation in WWTPs, which can potentially affect the stable operation of anaerobic ammonia oxidation (anammox) systems and may be discharged with wastewater or biomass. To better understand the fate of FeNPs in anammox systems, exposure experiments were conducted using anammox granular sludges (AnGS) and FeNPs. Results demonstrated that FeNPs released Fe2+ upon contact with water, with a portion being bound to functional groups in extracellular polymeric substances (EPS) and the rest entering the bacteria to form highly absorbable substances. A significant amount of FeNPs was observed to cover the surface of AnGS or aggregate and deposit at the bottom of the reactor, eventually converting into Fe3O4 and stably existing within the anammox system. The findings of this study clarify the fate of FeNPs in anammox systems and provide important insights into the stable operation of anammox systems under FeNPs exposure.
Collapse
Affiliation(s)
- Xun Weng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Hui-Min Fu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China; National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Zheng Mao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China; Chongqing Institute of Geology and Mineral Resources, Chongqing, 401120, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Xiao-Wei Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
29
|
Yang G, Pan H, Lei H, Tong W, Shi L, Chen H. Dissolved organic matter evolution and straw decomposition rate characterization under different water and fertilizer conditions based on three-dimensional fluorescence spectrum and deep learning. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118537. [PMID: 37406492 DOI: 10.1016/j.jenvman.2023.118537] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
Straw returning is a sustainable way to utilize agricultural solid waste resources. However, incomplete decomposition of straw will cause harm to crop growth and soil quality. Currently, there is a lack of technology to timely monitor the rate of straw decomposition. Dissolved organic matter (DOM) is the most active organic matter in soil and straw is mainly immersed in the soil in the form of DOM. In order to formulate reasonable straw returning management measures , a timely monitoring method of straw decomposition rate was developed in the study. Three water treatment (60%-65%, 70%-75% and 80%-85% maximum field capacity) and two fertilizer (organic fertilizer and chemical fertilizer) were set up in the management of straw returning to the field. Litterbag method was used to monitor the weight loss rate of straw decomposition under different water and fertilizer conditions in strawberry growth stage. The changes of DOM components were determined by three-dimensional fluorescence spectroscopy (3D-EEM). From the faster decomposition period to the slower decomposition period, the main components of DOM changed from protein-like components to humus-like components. At the end of the experiment, the relative content of humus-like components under the treatment of organic fertilizer and moderate water was the highest. Convolutional neural network (CNN) combined with 3D-EEM was used to identify the decomposition speed of straw. The classification precision of neural network validation set and test are 85.7% and 81.2%, respectively. In order to predict the decomposition rate of straw under different water and fertilizer conditions, 3D-EEM data of DOM were used as the input of CNN, parallel factor analysis (PARAFAC) and fluorescence region integral (FRI), and dissolved organic carbon data were used as the input of dissolved organic carbon linear prediction. The prediction model based on CNN had the best effect (R2 = 0.987). The results show that this method can effectively identify the spectral characteristics and predict the decomposition rate of straw under different conditions of water and fertilizer, which is helpful to promote the efficient decomposition of straw.
Collapse
Affiliation(s)
- Guang Yang
- College of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou, Henan, 450011, PR China
| | - Hongwei Pan
- College of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou, Henan, 450011, PR China.
| | - Hongjun Lei
- College of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou, Henan, 450011, PR China.
| | - Wenbin Tong
- College of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou, Henan, 450011, PR China
| | - Lili Shi
- College of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou, Henan, 450011, PR China
| | - Huiru Chen
- College of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou, Henan, 450011, PR China
| |
Collapse
|
30
|
Li Y, Zhang Y, Chen X, Liu Y, Li S, Liu H, Xu H. Enhanced cadmium phytoextraction efficiency of ryegrass (Lolium perenne L.) by porous media immobilized Enterobacter sp. TY-1. CHEMOSPHERE 2023; 337:139409. [PMID: 37406938 DOI: 10.1016/j.chemosphere.2023.139409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/06/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Although studies on immobilized microorganisms have been conducted, their performance remains unclear for enhancing plants to remediate cadmium (Cd)-contaminated soil. In this study, a Cd-resistant strain TY-1 with good plant growth promotion traits was immobilized by biochar (BC) or oyster shell (OS) power to strengthen ryegrass to remediate Cd-contaminated soil. SEM-EDS combined with FTIR showed that TY-1 could tolerate Cd toxicity by surface precipitation, and functional groups such as hydroxyl and carbonyl groups might be involved. In the biocomposite treatments, soil pH increased, and the activity of fertility-related enzymes such as dehydrogenase increased by 109.01%-128.01%. The relative abundance of genus Saccharimonadales decreased from 7.97% to 3.35% in BS-TY and 2.61% in OS-TY, respectively. Thus, a suitable environment for ryegrass growth was created. The fresh weight, dry weight, plant height and Cd accumulation of ryegrass in TY treatment increased by 122.92%, 114.81%, 42.08% and 8.05%, respectively, compared to the control. Cd concentration in ryegrass was further increased in BC-TY and OS-TY by 24.14% and 40.23%, respectively. The improvement in soil microcosm and plant biomass forms an ongoing virtuous cycle, demonstrating that using carrier materials to improve the efficiency of microbial-assisted phytoremediation is realistic and feasible.
Collapse
Affiliation(s)
- Yongyun Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Yumei Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Xianghan Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Yikai Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Shiyao Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Huakang Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu, 610065, Sichuan, PR China.
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu, 610065, Sichuan, PR China.
| |
Collapse
|
31
|
Zhou B, Zhang T, Wang F. Unravelling the molecular and biochemical responses in cotton plants to biochar and biofertilizer amendments for Pb toxicity mitigation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100799-100813. [PMID: 37644262 DOI: 10.1007/s11356-023-29382-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
Over the past few years, there has been a rising interest in employing biochar (BC) and biofertilizers (BF) as a means of restoring soils that have been polluted by heavy metals. The primary objective of this study was to examine how the application of BC and BF affects the ability of cotton plants to withstand Pb toxicity at varying concentrations (0, 500, and 1000 mg/kg soil). The findings revealed that exposure to Pb stress, particularly at the 1000 mg/kg level, led to a decline in the growth and biomass of cotton plants. Pb toxicity triggered oxidative damage, impaired the photosynthetic apparatus, and diminished the levels of photosynthetic pigments. By increasing the expression of Rubisco-S, Rubisco-L, P5CR, and PRP5 genes and regulating proline metabolism, BC and BF increased the levels of proline and photosynthetic pigments and protected the photosynthetic apparatus. The application of BC and BF resulted in an upregulation of genes such as CuZnSOD, FeSOD, and APX1, as well as an increase in the activity of the glyoxalase system and antioxidant enzymes. These changes enhanced the antioxidant capacity of the plants and provided protection to membrane lipids from oxidative stress caused by Pb. The inclusion of BC and BF offered protection to photosynthesis and other essential intracellular processes in leaves by minimizing the transfer of Pb to leaves and promoting the accumulation of thiol compounds. This protective effect helped mitigate the negative impact of the toxic metal Pb on leaf function. By improving plant tolerance, reducing metal transfer, strengthening the antioxidant defense system, and enhancing the level of protective substances, these amendments show promise as valuable tools in tackling heavy metal pollution.
Collapse
Affiliation(s)
- Biao Zhou
- Urban and Rural Construction Institute, Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Tiejian Zhang
- Urban and Rural Construction Institute, Hebei Agricultural University, Baoding, 071000, Hebei, China.
| | - Fei Wang
- College of Modern Science and Technology, Hebei Agricultural University, Baoding, 071000, Hebei, China
| |
Collapse
|
32
|
Mathivanan K, Uthaya Chandirika J, Srinivasan R, Emmanuel Charles P, Rajaram R, Zhang R. Exopolymeric substances production by Bacillus cereus KMS3-1 enhanced its biosorption efficiency in removing Cd 2+ and Pb 2+ in single and binary metal mixtures. ENVIRONMENTAL RESEARCH 2023; 228:115917. [PMID: 37062474 DOI: 10.1016/j.envres.2023.115917] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023]
Abstract
The present study investigated the growth, exopolymeric substance (EPS) production, and biosorption efficiency of strain Bacillus cereus KMS3-1 in the Cd2+ and Pb2+ ions containing single and binary metal-treated broth (50 mg/L). In addition, the interaction of the KMS3-1 strain with Cd2+ and Pb2+ ions in single and binary metal-treated broths was investigated using SEM-EDS, FTIR, and XRD analyses. The results showed that the biosorption efficiency (%) and EPS production of KMS3-1 biomass in both single and binary metal-treated broths had increased with increasing incubation time and were higher for Pb2+ ions than for Cd2+ ions. In the single and binary metal-treated broths, the maximum biosorption efficiency of KMS3-1 for Pb2+ ions were 70.8% and 46.3%, respectively, while for Cd2+ ions, they were 29.3% and 16.8%, respectively, after 72 h. Moreover, the biosorption efficiency of strain KMS3-1 for both metal ions was dependent on its EPS production and peaked at the maximum EPS production. The copious EPS production by KMS3-1 was observed in metal-treated media (50 mg/L), in the following order: Pb2+ ions (1925.7 μg/mL) > binary metal mixtures (1286.8 μg/mL) > Cd2+ ions (1185.5 μg/mL), > control (1099 μg/mL) after 72 h of incubation. This result indicates that the metal biosorption efficiency of the KMS3-1 strain was enhanced by the increased EPS production in the surrounding metal-treated broth. SEM-EDS and FTIR characterization studies revealed that the KMS3-1 biomass effectively adsorbed Cd2+ and Pb2+ ions from the medium by interacting with their surface functional groups (hydroxyl, carbonyl, carboxyl, amide, and phosphate). Moreover, the biosorbed Cd2+ and Pb2+ ions were transformed into CdS and PbS, respectively, by the KMS3-1 biomass. This study suggests that the Bacillus cereus KMS3-1 strain may be a promising candidate for the treatment of metal contamination.
Collapse
Affiliation(s)
| | - Jayaraman Uthaya Chandirika
- Environmental Nanotechnology Division, Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tamil Nadu, 627 412, India
| | - Rajendran Srinivasan
- Department of Fisheries Science, School of Marine Science, Alagappa University, Karaikudi, 630003, Tamil Nadu, India
| | | | - Rajendran Rajaram
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Ruiyong Zhang
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.
| |
Collapse
|
33
|
Leng F, Zhang K, Hu S, Li S, Yu C, Wang Y. Exopolysaccharides of Serratia fonticola CPSE11 can alleviate the toxic effect of Cd 2+ on Codonopsis pilosula. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80378-80392. [PMID: 37296251 DOI: 10.1007/s11356-023-28145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
In order to study the detoxification effect of microbial exopolysaccharides (EPS) on the heavy metal cadmium (Cd2+), this study took an EPS-producing Serratia fonticola CPSE11 (NZ_CP050171.1) isolated from Codonopsis pilosula root as the research object. The whole genome and EPS synthesis gene clusters of this strain were predicted and analyzed, the adsorption kinetics of EPS on Cd2+ were studied by using pseudo-first-order and second-order kinetic equations, the isothermal adsorption curves were simulated and analyzed by using the Langmuir isothermal adsorption equation, and the effects of Cd2+ and EPS on the growth of C. pilosula were explored by seed germination experiment and hydroponic experiment. The analysis revealed that this strain contained three gene clusters related to EPS synthesis, and the metabolic pathway for EPS synthesis was obtained on the basis of the whole genome analysis and microbial physiological metabolism. The molecular weight and monosaccharide composition of EPS were determined by HPLC analysis, which showed that EPS consisted of mannose, glucosamine, rhamnose, galactosamine, glucose, and galactose with a molar ratio of 1:1.74:4.57:3.96:14.04:10.28, with the molecular weight of 366,316.09 kDa. The adsorption process of EPS on Cd2+ was in accordance with the second-order kinetic model, and the results of seed germination experiments showed that EPS could promote seed germination and improve seed activity. In the hydroponic experiment, high concentration of Cd2+ (15 mg/L) caused toxic symptoms in C. pilosula, while the addition of EPS reduced the toxic effect of Cd2+ on C. pilosula, and the plant growth was significantly improved.
Collapse
Affiliation(s)
- Feifan Leng
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Kexin Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Shu Hu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Shaowei Li
- National Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chengqun Yu
- National Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China.
| |
Collapse
|
34
|
Liu H, Huang H, Liang K, Lin K, Shangguan Y, Xu H. Characterization of a cadmium-resistant functional bacteria (Burkholderia sp. SRB-1) and mechanism analysis at physiochemical and genetic level. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27824-2. [PMID: 37269515 DOI: 10.1007/s11356-023-27824-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 05/18/2023] [Indexed: 06/05/2023]
Abstract
In this study, the capacity of cadmium (Cd)-resistant plant growth-promoting bacteria (PGPB) Burkholderia sp. SRB-1 (SRB-1) and its mechanisms were explored through morphological characterizations, biochemical response, plant growth-promoting traits, and functional gene expression patterns. The results showed that SRB-1 was an excellent Cd-resistant bacteria (MIC was 420 mg L-1), and its maximum Cd removal rate reached 72.25%. Biosorption was the main removal method of Cd for SRB-1, preventing intracellular Cd accumulation and maintaining cellular metabolism. Various functional groups on the cell wall were involved in Cd binding, which deposited as CdS and CdCO3 on the cell surface according to XPS analysis and might be critical for reducing Cd physiochemical toxicity. Furthermore, metals exporting (zntA, czcA, czcB, czcC), detoxification (dsbA, cysM), and antioxidation (katE, katG, SOD1) related genes were annotated in the SRB-1 genome. The results of Cd distribution and antioxidative enzyme activity in SRB-1 also illustrated that Cd2+ efflux and antioxidative response were the main intracellular Cd-resistant mechanisms. These conclusions were further verified by qRT-PCR analysis. Overall, the strategies of extracellular biosorption, cation efflux, and intracellular detoxification jointly build the Cd-resistant system, which invested Burkholderia sp. SRB-1 with potential for bioremediation in heavily Cd-contaminated environmental sites.
Collapse
Affiliation(s)
- Huakang Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, Sichuan, People's Republic of China
| | - Huayan Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, Sichuan, People's Republic of China
| | - Ke Liang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, Sichuan, People's Republic of China
| | - Kangkai Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, Sichuan, People's Republic of China
| | - Yuxian Shangguan
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, Sichuan, People's Republic of China.
- Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu, 610065, Sichuan, People's Republic of China.
| |
Collapse
|
35
|
Peng L, Wang N, Xiao T, Wang J, Quan H, Fu C, Kong Q, Zhang X. A critical review on adsorptive removal of antimony from waters: Adsorbent species, interface behavior and interaction mechanism. CHEMOSPHERE 2023; 327:138529. [PMID: 36990360 DOI: 10.1016/j.chemosphere.2023.138529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/11/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Antimony (Sb) has raised widespread concern because of its negative effects on ecology and human health. The extensive use of antimony-containing products and corresponding Sb mining activities have discharged considerable amounts of anthropogenic Sb into the environment, especially the water environment. Adsorption has been employed as the most effective strategy for Sb sequestration from water; thus, a comprehensive understanding of the adsorption performance, behavior and mechanisms of adsorbents benefits to develop the optimal adsorbent to remove Sb and even drive its practical application. This review presents a holistic analysis of adsorbent species with the ability to remove Sb from water, with a special emphasis on the Sb adsorption behavior of various adsorption materials and their Sb-adsorbent interaction mechanisms. Herein, we summarize research results based on the characteristic properties and Sb affinities of reported adsorbents. Various interactions, including electrostatic interactions, ion exchange, complexation and redox reactions, are fully reviewed. Relevant environmental factors and adsorption models are also discussed to clarify the relevant adsorption processes. Overall, iron-based adsorbents and corresponding composite adsorbents show relatively excellent Sb adsorption performance and have received widespread attention. Sb removal mainly depends on chemical properties of the adsorbent and Sb itself, and complexation is the main driving force for Sb removal, assisted by electrostatic attraction. The future directions of Sb removal by adsorption focus on the shortcomings of current adsorbents; more attention should be given to the practicability of adsorbents and their disposal after use. This review contributes to the development of effective adsorbents for removing Sb and provides an understanding of Sb interfacial processes during Sb transport and the fate of Sb in the water environment.
Collapse
Affiliation(s)
- Linfeng Peng
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Nana Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Jianqiao Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Huabang Quan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Chuanbin Fu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Qingnan Kong
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xiangting Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
36
|
Gu T, Lu Y, Li F, Zeng W, Shen L, Yu R, Li J. Microbial extracellular polymeric substances alleviate cadmium toxicity in rice (Oryza sativa L.) by regulating cadmium uptake, subcellular distribution and triggering the expression of stress-related genes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114958. [PMID: 37116453 DOI: 10.1016/j.ecoenv.2023.114958] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/11/2023] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
Cadmium (Cd) accumulation in crops causes potential risks to human health. Microbial extracellular polymeric substances (EPS) are a complex mixture of biopolymers that can bind various heavy metals. The present work examined the alleviating effects of EPS on Cd toxicity in rice and its detoxification mechanism. The 100 μM Cd stress hampered the overall plant growth and development, damaged the ultrastructures of both leaf and root cells, and caused severe lipid peroxidation in rice plants. However, applying EPS at a concentration of 100 mg/L during Cd stress resulted in increased biomass, reduced Cd accumulation and transport, and minimized the oxidative damage. EPS application also enhanced Cd retention in the shoot cell walls and root vacuoles, and actively altered the expression of genes involved in cell wall formation, antioxidant defense systems, transcription factors, and hormone metabolism. These findings provide new insights into EPS-mediated mitigation of Cd stress in plants and help us to develop strategies to improve crop yield in Cd-contaminated soils in the future.
Collapse
Affiliation(s)
- Tianyuan Gu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei 430072, China
| | - Yongqing Lu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Fang Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Runlan Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
37
|
Shi X, Ling Q, Jiang Z, Pei F, Xin M, Tan W, Chen X, Liu K, Ma J, Yu F, Li Y. Insight into the roles of soluble, loosely bound and tightly bound extracellular polymeric substances produced by Enterobacter sp. in the Cd 2+ and Pb 2+ biosorption process: Characterization and mechanism. Colloids Surf B Biointerfaces 2023; 227:113348. [PMID: 37201449 DOI: 10.1016/j.colsurfb.2023.113348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/29/2022] [Accepted: 05/12/2023] [Indexed: 05/20/2023]
Abstract
Extracellular polymeric substances (EPSs) are macromolecular polymers formed by metabolic secretion, and they have great potential for removing heavy metal (HM) ions from the aquatic phase. In this study, the contributions of soluble EPSs (S-EPSs), loosely bound EPSs (LB-EPSs) and tightly bound EPSs (TB-EPSs) secreted by Enterobacter sp. to Cd2+ and Pb2+ adsorption were analyzed. The results indicated that in a solution containing both Cd2+ and Pb2+, pH= 6.0 was best suited for the adsorption process, and adsorption equilibrium was reached in approximately 120 min. Moreover, the mechanism for adsorption of Cd2+ and Pb2+ by the different layers of EPSs involved spontaneous chemical processes. However, Cd2+ adsorption by the three layers of the EPSs was an exothermic process (∆H0 <0), but Pb2+ adsorption by the three layers of the EPSs was an endothermic process (∆H0 >0). The variations in zeta potentials indicated that ion exchange occurred during Cd2+ and Pb2+ adsorption. FT-IR, XPS and 3D-EEM analyses indicated that the functional groups of the EPSs involved in adsorption were mainly the CO, C-O and C-O-C groups of the polysaccharides; furthermore, fulvic acid-like substances, humic-like substances and tyrosine-like proteins played important roles in the adsorption of Cd2+ and Pb2+ by the different EPS layers.
Collapse
Affiliation(s)
- Xinwei Shi
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004 Guilin, China
| | - Qiujie Ling
- College of Environment and Resources, Guangxi Normal University, 541004 Guilin, China
| | - Zhiling Jiang
- College of Environment and Resources, Guangxi Normal University, 541004 Guilin, China
| | - Fengmei Pei
- College of Environment and Resources, Guangxi Normal University, 541004 Guilin, China
| | - Meifen Xin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004 Guilin, China
| | - Weilan Tan
- College of Environment and Resources, Guangxi Normal University, 541004 Guilin, China
| | - Xuan Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004 Guilin, China
| | - Kehui Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, 541004 Guilin, China; College of Life Science, Guangxi Normal University, 541004 Guilin, China
| | - Jiangming Ma
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, 541004 Guilin, China; College of Life Science, Guangxi Normal University, 541004 Guilin, China
| | - Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004 Guilin, China.
| | - Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004 Guilin, China.
| |
Collapse
|
38
|
Priyadarshanee M, Das S. Bacterial extracellular polymeric substances: Biosynthesis and interaction with environmental pollutants. CHEMOSPHERE 2023; 332:138876. [PMID: 37164199 DOI: 10.1016/j.chemosphere.2023.138876] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/12/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
Extracellular polymeric substances (EPS) are highly hydrated matrices produced by bacteria, containing various polymers such as polysaccharides, proteins, lipids, and DNA. Extracellular polymer concentrations, ions, and functional groups provide physical stability to the EPS. Constituents of EPS form the three-dimensional architecture and help acquire nutrition for the bacteria. Structural and functional diversity of the extracellular polymer depends on the specific glycosyltransferases, polymerase and transporter proteins. These enzymes are encoded by specific genes present in operons such as crd, alg, wca, and gum reported in Agrobacterium, Pseudomonas, Enterobacteriaceae, and Xanthomonas. The operons regulate the biosynthesis of extracellular polymers such as curdlan, alginate, colonic acid, and xanthan, respectively. Various functional groups in the EPS, such as carbonyl, hydroxyl, phosphoryl, and amide, provide the sorption site for interaction with environmental pollutants. Hydrophobic interactions and coordinate bonds mainly dominate the binding of EPS with environmental pollutants. EPS binds, emulsifies, and solubilizes the organic compounds, enhancing the degradation process. EPS binds with heavy metals through complexation, surface adsorption, precipitation, and ion exchange mechanisms. The biodegradability efficiency and nontoxicity properties of EPS make it an excellent biopolymer for decontaminating environmental pollutants. This review summarizes an overview of the biosynthetic mechanisms and interaction of the bacterial extracellular polymer with environmental pollutants. Interaction mechanisms of pollutants with EPS and EPS-mediated bioremediation will help develop removal applications. Moreover, understanding the genes responsible for EPS production, and implementation of new genetic methodology can be helpful for the enhanced biosynthesis of EPS to control pollution by sequestrating more environmental pollutants.
Collapse
Affiliation(s)
- Monika Priyadarshanee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| |
Collapse
|
39
|
Hasani Zadeh P, Fermoso FG, Collins G, Serrano A, Mills S, Abram F. Impacts of metal stress on extracellular microbial products, and potential for selective metal recovery. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114604. [PMID: 36758509 DOI: 10.1016/j.ecoenv.2023.114604] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Harnessing microbial capabilities for metal recovery from secondary waste sources is an eco-friendly and sustainable approach for the management of metal-containing wastes. Soluble microbial products (SMP) and extracellular polymeric substances (EPS) are the two main groups of extracellular compounds produced by microorganisms in response to metal stress that are of great importance for remediation and recovery of metals. These include various high-, and low, molecular weight components, which serve various functional and structural roles. These compounds often contain functional groups with metal binding potential that can attenuate metal stress by sequestering metal ions, making them less bioavailable. Microorganisms can regulate the content and composition of EPS and SMP in response to metal stress in order to increase the compounds specificity and capacity for metal binding. Thus, EPS and SMP represent ideal candidates for developing technologies for selective metal recovery from complex wastes. To discover highly metal-sorptive compounds with specific metal binding affinity for metal recovery applications, it is necessary to investigate the metal binding affinity of these compounds, especially under metal stressed conditions. In this review we critically reviewed microbial EPS and SMP production as a response to metal stress with a particular emphasis on the metal binding properties of these compounds and their role in altering metal bioavailability. Furthermore, for the first time, we compiled the available data on potential application of these compounds for selective metal recovery from waste streams.
Collapse
Affiliation(s)
- Parvin Hasani Zadeh
- Bioprocesses for the Circular Economy Group, Instituto de la Grasa, Spanish National Research Council (CSIC), Seville, Spain; Microbiology, School of Biological and Chemical Sciences, National University of Ireland Galway, Galway, Ireland.
| | - Fernando G Fermoso
- Bioprocesses for the Circular Economy Group, Instituto de la Grasa, Spanish National Research Council (CSIC), Seville, Spain
| | - Gavin Collins
- Microbiology, School of Biological and Chemical Sciences, National University of Ireland Galway, Galway, Ireland
| | - Antonio Serrano
- Institute of Water Research, University of Granada, Granada 18071, Spain; Department of Microbiology, Pharmacy Faculty, University of Granada, Campus de Cartuja s/n, Granada 18071, Spain
| | - Simon Mills
- Microbiology, School of Biological and Chemical Sciences, National University of Ireland Galway, Galway, Ireland
| | - Florence Abram
- Microbiology, School of Biological and Chemical Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
40
|
Ramakrishnan S, Muruganraj T, Majumdar R, Sugumar S. Study of Cadmium Metal Resistance in Stenotrophomonas maltophilia. Indian J Microbiol 2023; 63:91-99. [PMID: 37188241 PMCID: PMC10172442 DOI: 10.1007/s12088-023-01066-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/18/2023] [Indexed: 05/17/2023] Open
Abstract
Metal-resistant bacteria are recommended for metal removal applications due to their rapid multiplication and growth rates. To ensure safety replenishment in contaminated areas frequently hampered by heavy metal toxicity, it is crucial to comprehend their coping mechanisms under heavy metal stress. This study primarily examines the role of EPS (exopolysaccharide) in Stenotrophomonas maltophilia, a Gram-negative, aerobic, and rod-shaped bacteria, in response to Cd, as well as the binding behavior and biosorption mechanism between EPS and Cd, using SEM and FTIR. The studies showed that Stenotrophomonas maltophilia, can resist up to 150 μM of Cd due to the binding of Cd to EPS. SEM analysis showed significant morphological changes and FTIR was to identify main structural groups like carboxyl and hydroxyl which confirms the presence of EPS. The study will also describe the mechanism of cross-reactivity between exopolysaccharide and siderophore production in metal-tolerant Stenotrophomonas maltophilia. This study proved that siderophore-mediated metal detoxification and effective absorption have been linked to metal chelation.
Collapse
Affiliation(s)
- Sadhna Ramakrishnan
- Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603203 India
| | - Tharani Muruganraj
- Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603203 India
| | - Rikhia Majumdar
- Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603203 India
| | - Shobana Sugumar
- Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603203 India
| |
Collapse
|
41
|
Liu X, Ju Y, Mandzhieva S, Pinskii D, Minkina T, Rajput VD, Roane T, Huang S, Li Y, Ma LQ, Clemens S, Rensing C. Sporadic Pb accumulation by plants: Influence of soil biogeochemistry, microbial community and physiological mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130391. [PMID: 36410245 DOI: 10.1016/j.jhazmat.2022.130391] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/23/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Recent results revealed that considerable Pb accumulation in plants is possible under specific soil conditions that make Pb phytoavailable. In this review, the sources and transformations of Pb in soils, the interaction of Pb with bacteria and specifically the microbiota in the soil, factors and mechanisms of Pb uptake, translocation and accumulation in plants and Pb toxicity in living organisms are comprehensively elaborated. Specific adsorption and post-adsorption transformations of Pb in soil are the main mechanisms affecting the mobility, bioavailability, and toxicity of Pb. The adsorption ability of Pb largely depends on the composition and properties of soils and environmental conditions. Microbial impact on Pb mobility in soil and bioavailability as well as bacterial resistance to Pb are considered. Specific mechanisms conferring Pb-resistance, including Pb-efflux, siderophores, and EPS, have been identified. Pathways of Pb entry into plants as well as mechanisms of in planta Pb transport are poorly understood. Available evidence suggests the involvement of Ca transporters, organic acids and the phytochelatin pathway in Pb transport, mobility and detoxification, respectively.
Collapse
Affiliation(s)
- Xue Liu
- Institute of Environmental Remediation and Human Health, College of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Yongwang Ju
- Institute of Environmental Remediation and Human Health, College of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Saglara Mandzhieva
- Southern Federal University, 105, Bolshaya Sadovaya Street, Rostov-on-Don 344006, Russia
| | - David Pinskii
- Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Tatiana Minkina
- Southern Federal University, 105, Bolshaya Sadovaya Street, Rostov-on-Don 344006, Russia
| | - Vishnu D Rajput
- Southern Federal University, 105, Bolshaya Sadovaya Street, Rostov-on-Don 344006, Russia
| | - Timberley Roane
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Shuangqin Huang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanping Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Stephan Clemens
- Department of Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany.
| | - Christopher Rensing
- Institute of Environmental Remediation and Human Health, College of Ecology and Environment, Southwest Forestry University, Kunming 650224, China; Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
42
|
Kalsoom A, Jamil N, Hassan SMU, Khan JA, Batool R. Chromate Removal by Enterobacter cloacae Strain UT25 from Tannery Effluent and Its Potential Role in Cr (VI) Remediation. Curr Microbiol 2023; 80:99. [PMID: 36745203 DOI: 10.1007/s00284-023-03194-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/13/2023] [Indexed: 02/07/2023]
Abstract
An indigenous chromate-resistant bacterial strain isolated from tannery effluent was identified based on morphological, biochemical, and 16S rRNA gene sequencing, as Enterobacter cloacae UT25. It was found to resist heavy metal ions such as Cr (VI), Pb (II), Cu (II), Co (II), Ni (II), Hg (II), and Zn (II) and antibiotics. The strain was able to remove 89 and 86% chromate, after 24 h of incubation in a Luria-Bertani (LB) medium at an initial Cr (VI) concentration of 1000 and 1500 µg/ml, respectively. Minimum inhibitory concentration (MIC) was observed for chromate to be 80,000 and 1850 µg/ml, after 48 h of incubation in LB and acetate minimal media (AMM), respectively. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) analysis showed discrete cells with intact and smooth cell walls and homogenous cytoplasm in the absence of metal stress, whereas chromate stress caused cell lysis and reduction in size, which was a characteristic response to Cr (VI) toxicity. Energy Dispersive X-Ray Spectroscopy (EDX) confirmed the adsorption of oxyanions to the cell wall which was one of the Cr (VI) removal mechanisms by the bacterium. Atomic Force Microscopy (AFM) micrographs of chromate-untreated and treated cells revealed Root Mean Square roughness (Rq) values of 16.25 and 11.26 nm, respectively, indicating less roughness in the presence of stress. The partial gene sequence of class 1 integrons (intI1) of strain UT25 showed 94% homology with intI1 gene of strain Enterobacter hormaechei strain ECC59 plasmid pECC59-1. The present analysis highlighted the potential of E. cloacae UT25 as a promissory bacterium that could be applied in removing chromate from polluted environments.
Collapse
Affiliation(s)
- Asma Kalsoom
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Nazia Jamil
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | | | - Junaid Ahmed Khan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Rida Batool
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan.
| |
Collapse
|
43
|
Li R, Tao J, Huang D, Zhou W, Gao L, Wang X, Chen H, Huang H. Investigating the effects of biodegradable microplastics and copper ions on probiotic (Bacillus amyloliquefaciens): Toxicity and application. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130081. [PMID: 36367472 DOI: 10.1016/j.jhazmat.2022.130081] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/13/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Currently, microplastic pollution is more serious and complicates the toxic effects of other co-existing pollutants in the environment. However, the effect and mechanism of biodegradable plastics on the growth and metabolism of probiotic remain unclear. This work selected Bacillus amyloliquefaciens as model bacterium for a three-day exposure experiment to probe the issues. The results showed that 100 mg/L polylactic acid microplastics (PLA MPs) (3-4 mm, flake shape) caused oxidative damage to cell membranes, disrupted cell wall composition and inhibited cell growth by 21.2-27.5 %. The toxicity was not simply additive or synergistic effects when PLA MPs (100 mg/L) and copper ions (10 mg/L) coexisted. PLA MPs did not significantly increase the toxicity of copper to bacteria, instead triggered some mechanisms to resist the toxicity of copper. The bacteria formed spores to resist PLA MPs, while the copper ions toxicity was weaken by chelation and efflux. It is worth noting that copper ions instead increased the expression of genes related fengycin and iturin then improving the bacteriostatic activity of the probiotic. This paper deeply analyzes the toxicity mechanism of combined pollution on Bacillus amyloliquefacien, and also provides new perspective for helping to inhibit pathogenic bacteria under biodegradable microplastics and metal stress.
Collapse
Affiliation(s)
- Ruijin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Jiaxi Tao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Wei Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Lan Gao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Xinya Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Haojie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Hai Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
44
|
Feng W, Xiao X, Li J, Xiao Q, Ma L, Gao Q, Wan Y, Huang Y, Liu T, Luo X, Luo S, Zeng G, Yu K. Bioleaching and immobilizing of copper and zinc using endophytes coupled with biochar-hydroxyapatite: Bipolar remediation for heavy metals contaminated mining soils. CHEMOSPHERE 2023; 315:137730. [PMID: 36603675 DOI: 10.1016/j.chemosphere.2022.137730] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/26/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Copper and zinc are toxic heavy metals in soils that require development of feasible strategies for remediation of contaminated soils around the mine areas. In this study, the processing conditions and mechanisms of immobilization and bioleaching for remediation of highly contaminated soils with heavy metals are investigated. Soil remediation is carried out using a bioleaching-immobilization bipolar method. The results show that LSE03 bacteria provide efficient leaching result and immobilization on Cu2+ and Zn2+. Among the bacterial metabolites, cis, cis-muconic acid and isovaleric acid play major roles in the bioleaching process. The bacterial extracellular polymeric substances are rich in a variety of organic acids that show a significant decrease in content after the adsorption process, indicating that all of these substances are involved in the binding of heavy metals. Characterization of the endophytes and immobilizing agents with FTIR, TEM-mapping, and XPS techniques reveal the ability of both bacteria and composites to adsorb Cu-Zn as well as the main functional groups of -OH, -COOH, -PO43-, and -NH. According to the heavy metals species analyses, competitive adsorption experiments, and bioleaching desorption experiments, it is planned to carry out the bipolar remediation of contaminated soil through immobilization followed by bioleaching process. After bipolar remediation processing, 97.923% and 96.387% of available Cu and Zn are respectively removed. Soils fertility significantly increases in all cases. Our study provides a green, practical, and environmentally friendly treatment method for soils contaminated with high concentrations of heavy metals.
Collapse
Affiliation(s)
- Weiran Feng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Xiao Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, China.
| | - Junjie Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Qicheng Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Li Ma
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Qifeng Gao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Yuke Wan
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Yutian Huang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Ting Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, China; Key Laboratory of Jiangxi Province for Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region, School of Life Sciences, Jinggangshan University, Ji'an, 343009, China
| | - Shenglian Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Guisheng Zeng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Kai Yu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| |
Collapse
|
45
|
Zhou D, Liang M, Xia Y, Li C, Huang M, Peng S, Huang Y. Reduction mechanisms of V 5+ by vanadium-reducing bacteria in aqueous environments: Role of different molecular weight fractionated extracellular polymeric substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158394. [PMID: 36058324 DOI: 10.1016/j.scitotenv.2022.158394] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Extracellular polymeric substances (EPS) are high-molecular polymers secreted by microbes and play essential roles in metallic biogeochemical cycling. Previous studies demonstrated the reducing capacity of the functional groups on EPS for metal reduction. However, the roles of different EPS components in vanadium speciation and their responsible reducing substances for vanadium reduction are still unknown. In this study, the EPS of Bacillus sp. PFYN01 was fractionated via ultrafiltration into six components with different kDa (EPS>100, EPS100-50, EPS50-30, EPS30-10, EPS10-3, and EPS<3). Batch reduction experiments of the intact cells, EPS-free cells, the pristine and fractionated EPS with V5+ were conducted and characterized. The results demonstrated that the extracellular reduction of V5+ into V4+ by EPS was the major reduction process. Among the functional groups in EPS, C=O/C-N of amide in protein/polypeptide and CO of carboxyl in fulvic acid-like substances might act as the reductants for V5+, while CO in polysaccharide molecules and PO in phosphodiester played a key role in the adsorption process. The intracellular reduction was via translocating V5+ into the cells and releasing V4+ by the intracellular reductases. The reducing capacity of the fractionated EPS followed a sequence of EPS<3 > EPS10-3 > EPS50-30 > EPS100-50 > EPS30-10 > EPS>100. The small molecules of fulvic acid-like substances and amino acids were responsible for the high reducing capacity of EPS<3. EPS>100 had the lowest reducing capacity due to its macromolecular structure decreasing the exposure of the reactive sites. In addition to reduction, those intermediate EPS components may also have supporting functions, such as connecting protein skeletons and increasing the specific surface area of EPS. Therefore, the diverse effects of the EPS components cannot be neglected in vanadium biogeochemical cycling.
Collapse
Affiliation(s)
- Dan Zhou
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Mengmeng Liang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Yonglian Xia
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Chao Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Mingzheng Huang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Shuming Peng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Yi Huang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.
| |
Collapse
|
46
|
Du M, Wang J, Jin Y, Fan J, Zan S, Li Z. Response mechanism of microbial community during anaerobic biotransformation of marine toxin domoic acid. ENVIRONMENTAL RESEARCH 2022; 215:114410. [PMID: 36154856 DOI: 10.1016/j.envres.2022.114410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Domoic acid (DA) is a potent neurotoxin produced by toxigenic Pseudo-nitzschia blooms and quickly transfers to the benthic anaerobic environment by marine snow particles. DA anaerobic biotransformation is driven by microbial interactions, in which trace amounts of DA can cause physiological stress in marine microorganisms. However, the underlying response mechanisms of microbial community to DA stress remain unclear. In this study, we utilized an anaerobic marine DA-degrading consortium GLY (using glycine as co-substrate) to systematically investigate the global response mechanisms of microbial community during DA anaerobic biotransformation.16S rRNA gene sequencing and metatranscriptomic analyses were applied to measure microbial community structure, function and metabolic responses. Results showed that DA stress markedly changed the composition of main species, with increased levels of Firmicutes and decreased levels of Proteobacteria, Cyanobacteria, Bacteroidetes and Actinobacteria. Several genera of tolerated bacteria (Bacillus and Solibacillus) were increased, while, Stenotrophomonas, Sphingomonas and Acinetobacter were decreased. Metatranscriptomic analyses indicated that DA stimulated the expression of quorum sensing, extracellular polymeric substance (EPS) production, sporulation, membrane transporters, bacterial chemotaxis, flagellar assembly and ribosome protection in community, promoting bacterial adaptation ability under DA stress. Moreover, amino acid metabolism, carbohydrate metabolism and lipid metabolism were modulated during DA anaerobic biotransformation to reduce metabolic burden, increase metabolic demands for EPS production and DA degradation. This study provides the new insights into response of microbial community to DA stress and its potential impact on benthic microorganisms in marine environments.
Collapse
Affiliation(s)
- Miaomiao Du
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China.
| | - Yuan Jin
- Marine Ecology Department, National Marine Environmental Monitoring Center, Dalian, 116023, PR China
| | - Jingfeng Fan
- Marine Ecology Department, National Marine Environmental Monitoring Center, Dalian, 116023, PR China
| | - Shuaijun Zan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Zelong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| |
Collapse
|
47
|
Simultaneous removal of ternary heavy metal ions by a newly isolated Microbacterium paraoxydans strain VSVM IIT(BHU) from coal washery effluent. Biometals 2022:10.1007/s10534-022-00476-4. [PMID: 36454510 DOI: 10.1007/s10534-022-00476-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022]
Abstract
In the present work, the removal of Cr (VI), Cd (II) and Pb (II) at 50 mg/L of each metal ion concentration was investigated by Microbacterium paraoxydans strain VSVM IIT(BHU). The heavy metal binding on the bacterial cell surface was confirmed through X-ray photoelectron spectroscopy and energy dispersive X-ray. X-ray photoelectron spectroscopy analysis also confirmed the reduction of Cr (VI) to Cr (III). Heavy metal removal dynamics was investigated by evaluating dimensionless, and the value of Nk (9.49 × 10-3, 9.92 × 10-3 and 1.23 × 10-2 for Cr (VI), Cd (II) and Pb (II) ions) indicated that the removal of heavy metals by bacterial isolate was mixed diffusion and transfer controlled. It was found that both the experimental and predicted values for isolated bacterial strain coincided with each other with a good R2 value in the L-M Algorithm range of 0.94-0.98 for the ternary metal ion system. The bacterial isolate presented a maximum heavy metal ion removal efficiency of 91.62% Cr (VI), 89.29% Pb (II), and 83.29% Cd (II) at 50 mg/L.
Collapse
|
48
|
Pseudomonas stutzeri Immobilized Sawdust Biochar for Nickel Ion Removal. Catalysts 2022. [DOI: 10.3390/catal12121495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Nickel ions generated from the electroplating industry and stainless steel and battery manufacturing industries contribute to water pollution, harm human health, and pose environmental risks. A long-term, sustainable, and efficient treatment method should be developed to address this issue. Bioremediation in the presence of biochar and microorganisms is a potential approach for metal ion abatement. This study evaluates the feasibility of Pseudomonas stutzeri immobilized sawdust biochar (PSDB) for Ni2+ removal. Sawdust biochar was prepared by pyrolyzing in a muffle furnace and was characterized using SEM, FTIR, and BET. The influence of biochar preparation parameters such as pyrolysis temperature, time on biochar yield, and impact on cell immobilization was investigated. The effect of various parameters, such as incubation time, pH, temperature, and biocatalyst dosage, was studied. The total Ni2+ in solution was analyzed using inductively coupled plasma optical emission spectrometry. PSDB showed an 83% Ni2+ removal efficiency and reusability up to three cycles. FT-IR analysis revealed that the mechanism of Ni2+ removal by PSDB was the synergistic effect of adsorption by biochar and bioaccumulation by P. stutzeri. This study presents a novel approach for environmental application by utilizing waste biomass-derived biochar as a carrier support for bacteria and an adsorbent for pollutants.
Collapse
|
49
|
Lin H, Tang Y, Dong Y. Construction and carbon source optimization of a microbial-plant coupled reactor for treating acid mine drainage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:78862-78873. [PMID: 35701696 DOI: 10.1007/s11356-022-21329-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Acid mine drainage (AMD) is recognized as one of the most serious contamination sources in the nonferrous metal mining industry. In this study, aerobic strains VCZ02 and VCZ09, which were identified as Leclercia adecarboxylata and Klebsiella aerogenes, were screened from 11 strains of copper-zinc-resistant bacteria in the soil of the Dexing copper mine with Cu2+/Zn2+ removal rates of 46.32%/41.03% and 57.96%/67.05%, respectively. The composition of extracellular polymers plays an important role in the removal of heavy metals by these two strains. A mixed community consisting of VCZ02 and VCZ09 was coupled with Sagittaria trifolia L.var.sinensis (Sims) Mak to construct a microbial-plant coupled reactor to remediate AMD. Under the optimal condition of sodium acetate as carbon source, the pH of AMD increased from less than 5 to above 6.5, showing Cu2+/Zn2+ removal rates of 70-80% and above 30%, respectively. SEM-EDS results showed that VZC02 and VZC09 in the coupled reactor also helped with resisting the toxicity of heavy metals to plants by forming biofilms on the root surface and increasing the content of heavy metals on the surface of roots, thus improving the treatment effect of plants. This study provides a theoretical basis for the bioremediation of AMD and its application.
Collapse
Affiliation(s)
- Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory On Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Yalu Tang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory On Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| |
Collapse
|
50
|
Baria DM, Patel NY, Yagnik SM, Panchal RR, Rajput KN, Raval VH. Exopolysaccharides from marine microbes with prowess for environment cleanup. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76611-76625. [PMID: 36166130 DOI: 10.1007/s11356-022-23198-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
A variety of both small and large biologically intriguing compounds can be found abundantly in the marine environment. Researchers are particularly interested in marine bacteria because they can produce classes of bioactive secondary metabolites that are structurally diverse. The main secondary metabolites produced by marine bacteria are regarded as steroids, alkaloids, peptides, terpenoids, biopolymers, and polyketides. The global urbanization leads to the increased use of organic pollutants that are both persistent and toxic for humans, other life forms and tend to biomagnified in environment. The issue can be addressed, by using marine microbial biopolymers with ability for increased bioremediation. Amongst biopolymers, the exopolysaccharides (EPS) are the most prominent under adverse environmental stress conditions. The present review emphasizes the use of EPS as a bio-flocculent for wastewater treatment, as an adsorbent for the removal of textile dye and heavy metals from industrial effluents. The biofilm-forming ability of EPS helps with soil reclamation and reduces soil erosion. EPS are an obvious choice being environmentally friendly and cost-effective in processes for developing sustainable technology. However, a better understanding of EPS biosynthetic pathways and further developing novel sustainable technologies is desirable and certainly will pave the way for efficient usage of EPS for environment cleanup.
Collapse
Affiliation(s)
- Dhritiksha Mansukhlal Baria
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, 380 009, Ahmedabad, Gujarat, India
| | - Nidhi Yogeshbhai Patel
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, 380 009, Ahmedabad, Gujarat, India
| | | | - Rakeshkumar Ramanlal Panchal
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, 380 009, Ahmedabad, Gujarat, India
| | - Kiransinh Narendrasinh Rajput
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, 380 009, Ahmedabad, Gujarat, India
| | - Vikram Hiren Raval
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, 380 009, Ahmedabad, Gujarat, India.
| |
Collapse
|