1
|
Djerrad Z, Terfi S, Brakchi L. Variability in Chemical Composition and Biochemical Activities of Mentha x piperita L. Essential Oil, in Response to Mycorrhizal Symbiosis and Heavy Metal Stress. Chem Biodivers 2024; 21:e202301980. [PMID: 38285970 DOI: 10.1002/cbdv.202301980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 01/31/2024]
Abstract
The present paper highlights the effect of Pb/Cd-stress and/or mycorrhizal colonization by Glomus Intraradices on yield, chemical composition, cytotoxicity and antimicrobial activity of Mentha x piperita L. essential oil. Our findings showed that mycorrhizal colonization could be used to improve the essential oil yield of M. x piperita, either in non-stressed or Pb/Cd-stressed plants. GC-MS analysis revealed three chemotypes: linalool/pulegone (32.6/30.8 %) chemotype in essential oils of non-mycorrhizal Pb-stressed plants, menthone/menthyl acetate (30.3/25.1 %) chemotype in essential oils of non-mycorrhizal Cd-stressed plants and menthol (44.6 %) chemotype in essential oils of non-mycorrhizal non-stressed plants, mycorrhizal non-stressed plants and mycorrhizal Pb/Cd-stressed plants. The cytotoxicity of M. x piperita essential oil, evaluated by brine shrimp lethality bioassay, was increased in presence of Pb/Cd-stress (from 379.58 to 72.84 μm/mL) and decreased in mycorrhizal plants (from 379.58 to 482.32 μm/mL). The antimicrobial activity of M. x piperita essential oil, evaluated by disc diffusion method and determination of Minimum Inhibitory Concentration against ten microorganisms, was enhanced by the mycorrhizal colonization and deceased by the Pb/Cd-stress. In conclusion, the inoculation of medicinal plants with mycorrhizal fungi is a real avenue for alleviating abiotic stress and/or increasing the quantity and quality of secondary metabolites in terms of biological activities.
Collapse
Affiliation(s)
- Zineb Djerrad
- Department of Ecology and Environment, Laboratory of Vegetal Ecology and Environment, Faculty of Biological Sciences, Houari Boumediene University of Sciences and Technology (USTHB), El Alia, BP 32, Bab Ezzouar, 16111, Algiers, Algeria
| | - Souhila Terfi
- Department of Chemistry, Laboratory of Electrochemistry-Corrosion, Metallurgy and Mineral Chemistry, Faculty of Chemistry, Houari Boumediene University of Sciences and Technology (USTHB), El Alia, BP 32, Bab Ezzouar, 16111, Algiers, Algeria
| | - Lila Brakchi
- Department of Ecology and Environment, Laboratory of Vegetal Ecology and Environment, Faculty of Biological Sciences, Houari Boumediene University of Sciences and Technology (USTHB), El Alia, BP 32, Bab Ezzouar, 16111, Algiers, Algeria
| |
Collapse
|
2
|
Dady ER, Kleczewski N, Ugarte CM, Ngumbi E. Plant Variety, Mycorrhization, and Herbivory Influence Induced Volatile Emissions and Plant Growth Characteristics in Tomato. J Chem Ecol 2023; 49:710-724. [PMID: 37924424 DOI: 10.1007/s10886-023-01455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 11/06/2023]
Abstract
Plants produce a range of volatile organic compounds (VOCs) that mediate vital ecological interactions between herbivorous insects, their natural enemies, plants, and soil dwelling organisms including arbuscular mycorrhizal fungi (AMF). The composition, quantity, and quality of the emitted VOCs can vary and is influenced by numerous factors such as plant species, variety (cultivar), plant developmental stage, root colonization by soil microbes, as well as the insect developmental stage, and level of specialization of the attacking herbivore. Understanding factors shaping VOC emissions is important and can be leveraged to enhance plant health and pest resistance. In this greenhouse study, we evaluated the influence of plant variety, mycorrhizal colonization, herbivory, and their interactions on the composition of emitted volatiles in tomato plants (Solanum lycopersicum L.). Four tomato varieties from two breeding histories (two heirlooms and two hybrids), were used. Tomato plants were inoculated with a commercial inoculum blend consisting of four species of AMF. Plants were also subjected to herbivory by Manduca sexta (Lepidoptera: Sphingidae L.) five weeks after transplanting. Headspace volatiles were collected from inoculated and non-inoculated plants with and without herbivores using solid phase-microextraction. Volatile profiles consisted of 21 different volatiles in detectable quantities. These included monoterpenes, sesquiterpenes, and alkane hydrocarbons. We documented a strong plant variety effect on VOC emissions. AMF colonization and herbivory suppressed VOC emissions. Plant biomass was improved by colonization of AMF. Our results show that mycorrhization, herbivory and plant variety can alter tomato plant VOC emissions and further shape volatile-mediated insect and plant interactions.
Collapse
Affiliation(s)
- Erinn R Dady
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | | | - Carmen M Ugarte
- Department of Natural Resources and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Esther Ngumbi
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
3
|
Zhao Y, Cartabia A, Garcés-Ruiz M, Herent MF, Quetin-Leclercq J, Ortiz S, Declerck S, Lalaymia I. Arbuscular mycorrhizal fungi impact the production of alkannin/shikonin and their derivatives in Alkanna tinctoria Tausch. grown in semi-hydroponic and pot cultivation systems. Front Microbiol 2023; 14:1216029. [PMID: 37637105 PMCID: PMC10447974 DOI: 10.3389/fmicb.2023.1216029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Alkanna tinctoria Tausch. is a medicinal plant well-known to produce important therapeutic compounds, such as alkannin/shikonin and their derivatives (A/Sd). It associates with arbuscular mycorrhizal fungi (AMF), which are known, amongst others beneficial effects, to modulate the plant secondary metabolites (SMs) biosynthesis. However, to the best of our knowledge, no study on the effects of AMF strains on the growth and production of A/Sd in A. tinctoria has been reported in the literature. Methods Here, three experiments were conducted. In Experiment 1, plants were associated with the GINCO strain Rhizophagus irregularis MUCL 41833 and, in Experiment 2, with two strains of GINCO (R. irregularis MUCL 41833 and Rhizophagus aggregatus MUCL 49408) and two native strains isolated from wild growing A. tinctoria (R. irregularis and Septoglomus viscosum) and were grown in a semi-hydroponic (S-H) cultivation system. Plants were harvested after 9 and 37 days in Experiment 1 and 9 days in Experiment 2. In Experiment 3, plants were associated with the two native AMF strains and with R. irregularis MUCL 41833 and were grown for 85 days in pots under greenhouse conditions. Quantification and identification of A/Sd were performed by HPLC-PDA and by HPLC-HRMS/MS, respectively. LePGT1, LePGT2, and GHQH genes involved in the A/Sd biosynthesis were analyzed through RT-qPCR. Results In Experiment 1, no significant differences were noticed in the production of A/Sd. Conversely, in Experiments 2 and 3, plants associated with the native AMF R. irregularis had the highest content of total A/Sd expressed as shikonin equivalent. In Experiment 1, a significantly higher relative expression of both LePGT1 and LePGT2 was observed in plants inoculated with R. irregularis MUCL 41833 compared with control plants after 37 days in the S-H cultivation system. Similarly, a significantly higher relative expression of LePGT2 in plants inoculated with R. irregularis MUCL 41833 was noticed after 9 versus 37 days in the S-H cultivation system. In Experiment 2, a significant lower relative expression of LePGT2 was observed in native AMF R. irregularis inoculated plants compared to the control. Discussion Overall, our study showed that the native R. irregularis strain increased A/Sd production in A. tinctoria regardless of the growing system used, further suggesting that the inoculation of native/best performing AMF is a promising method to improve the production of important SMs.
Collapse
Affiliation(s)
- Yanyan Zhao
- Mycology, Earth and Life Institute, Université catholique de Louvain – UCLouvain, Louvain-la-Neuve, Belgium
| | - Annalisa Cartabia
- Mycology, Earth and Life Institute, Université catholique de Louvain – UCLouvain, Louvain-la-Neuve, Belgium
| | - Mónica Garcés-Ruiz
- Mycology, Earth and Life Institute, Université catholique de Louvain – UCLouvain, Louvain-la-Neuve, Belgium
| | - Marie-France Herent
- Pharmacognosy Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain – UCLouvain, Brussels, Belgium
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain – UCLouvain, Brussels, Belgium
| | - Sergio Ortiz
- Pharmacognosy Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain – UCLouvain, Brussels, Belgium
- UMR 7200, Laboratoire d’Innovation Thérapeutique, Université de Strasbourg, CNRS, Strasbourg Drug Discovery and Development Institute (IMS), Illkirch-Graffenstaden, France
| | - Stéphane Declerck
- Mycology, Earth and Life Institute, Université catholique de Louvain – UCLouvain, Louvain-la-Neuve, Belgium
| | - Ismahen Lalaymia
- Mycology, Earth and Life Institute, Université catholique de Louvain – UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
4
|
Sarkar AK, Sadhukhan S. Unearthing the alteration in plant volatiles induced by mycorrhizal fungi: A shield against plant pathogens. PHYSIOLOGIA PLANTARUM 2023; 175:e13845. [PMID: 36546667 DOI: 10.1111/ppl.13845] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Plants produce a large range of structurally varied low molecular weight secondary metabolites, which evaporate, known as volatile organic compounds (VOCs). Several of them are emitted in response to biotic stress as a defensive measure against pathogen attacks. Arbuscular Mycorrhizal Fungi (AMFs) can change the VOC pattern in parts of the plant and may promote plant defense via direct or indirect mechanisms. Mycorrhization of plants positively affects plant immunization along with growth and yield. The presence of AMF may raise the concentration of phenolic compounds and the activity of critical defense-related enzymes. AMF-induced changes in plant chemistry and associated volatile emissions lead to stronger immunity against pathogenic microorganisms. Despite substantial research into the origins of diversity in VOC-mediated plant communication, very little is known about the mechanism of influence of several AMFs on plant VOC emissions and modulation of plant immunization. Moreover, the molecular mechanism for VOC sensing in plants and mycorrhizal association is still unclear. In the present review, we have presented an up-to-date understanding of the cross-talk of AMF and VOC patterns in plants and the subsequent modulation of resistance against microbial pathogens.
Collapse
Affiliation(s)
- Anup Kumar Sarkar
- Department of Botany, Dukhulal Nibaran Chandra College, Murshidabad, West Bengal, India
- Plant Molecular Biology Laboratory, Department of Botany, Raiganj University, Uttar Dinajpur, West Bengal, India
| | - Sanjoy Sadhukhan
- Plant Molecular Biology Laboratory, Department of Botany, Raiganj University, Uttar Dinajpur, West Bengal, India
| |
Collapse
|
5
|
Xie L, Shu X, Kotze DJ, Kuoppamäki K, Timonen S, Lehvävirta S. Plant growth-promoting microbes improve stormwater retention of a newly-built vertical greenery system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116274. [PMID: 36261966 DOI: 10.1016/j.jenvman.2022.116274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
On-site decentralized urban stormwater management has gained significant momentum in urban planning. Recently, vegetated roofs have been recommended as a viable decentralized stormwater management system and nature-based solution to meet the challenge of urban floods. However, as another type of unconventional green infrastructure, vertical greenery systems (VGS), also known as vegetated facades, have received much less research attention. Even though some researchers suggest that stormwater management by VGS is comparable to that of vegetated roofs, empirical evidence to substantiate this claim is limited. In this study, we conducted rain simulations on newly-built vegetation containers with water storage compartments. These vegetation containers were designed to be incorporated into a VGS specifically for stormwater management. We tested variables that could influence water retention efficiency and evapotranspiration of the containers under field conditions, i.e., inoculation of plant growth-promoting microbes (PGPMs) (Rhizophagus irregularis and Bacillus amyloliquefaciens), different substrate types (sandy loam and reed-based substrate), simulated rain quantity, natural precipitation, substrate moisture, and air temperature. The inoculation of PGPMs significantly reduced runoff quantity from the vegetation containers. Meanwhile, the well-ventilated sandy-loam substrate significantly reduced the remaining water in the water storage compartments over 1-week periods between rain simulation events, achieving high water-use efficiency. The selected microbes were established successfully in the containers and promoted the growth of 2 out of 5 plant species. R. irregularis colonization responded to substrate type and host plant species, while B. amyloliquefaciens population density in the substrate did not respond to these factors. Environmental conditions, such as antecedent substrate moisture, air temperature, and natural precipitation also influenced the efficiency of stormwater retention and/or evapotranspiration. In conclusion, this study provides instructive and practical insights to reduce urban flood risk by using VGS.
Collapse
Affiliation(s)
- Long Xie
- Faculty of Agriculture and Forestry, Department of Microbiology, PO Box 56, FI-00014, University of Helsinki, Finland
| | - Xi Shu
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, PO Box 65, FI-00014, University of Helsinki, Finland.
| | - D Johan Kotze
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, FI-15140, University of Helsinki, Lahti, Finland
| | - Kirsi Kuoppamäki
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, FI-15140, University of Helsinki, Lahti, Finland
| | - Sari Timonen
- Faculty of Agriculture and Forestry, Department of Microbiology, PO Box 56, FI-00014, University of Helsinki, Finland
| | - Susanna Lehvävirta
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, PO Box 65, FI-00014, University of Helsinki, Finland
| |
Collapse
|
6
|
Sun RT, Zhang ZZ, Liu MY, Feng XC, Zhou N, Feng HD, Hashem A, Abd_Allah EF, Harsonowati W, Wu QS. Arbuscular mycorrhizal fungi and phosphorus supply accelerate main medicinal component production of Polygonum cuspidatum. Front Microbiol 2022; 13:1006140. [PMID: 36160193 PMCID: PMC9493279 DOI: 10.3389/fmicb.2022.1006140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
The medicinal plant Polygonum cuspidatum Sieb. Et Zucc is rich in stilbenes (e.g., polygonin and resveratrol) and anthraquinones (e.g., emodin) for the therapy of human diseases, while how to increase the growth and medicinal composition concentrations of P. cuspidatum has become an urgent issue. The aim of the present study was to evaluate the effects of inoculation with an arbuscular mycorrhizal (AM) fungus, Funneliformis mosseae, on plant growth, phosphorus (P) acquisition, medicinal component concentrations, and expressions of resveratrol synthesis-associated enzyme genes of P. cuspidatum at two P levels (0 M and 0.2 M). P supply (0.2 M) stimulated root AM fungal colonization rate. F. mosseae inoculation significantly improved growth performance (height, diameter, and biomass) and root morphology (diameter, length, and projected area), irrespectively of substrate P levels. P supply and F. mosseae distinctly increased soil acid and neutral phosphatase activities, as well as root P concentrations. P supply increased root physcion and resveratrol concentrations in inoculated and uninoculated plants, along with up-regulated expressions of PcCHS1, PcCRS1, PcRS11, and PcSTS. AM plants represented significantly higher root aloe-emodin, chrysophanol, emodin, physcion, polydatin, and resveratrol concentrations than non-AM plants irrespective of P levels, coupled with up-regulated expressions of PcCHS1, PcCHS2, PcRS11, PcRS, and PcSTS. It is concluded that 0.2 M P supply and F. mosseae inoculation promoted chrysophanol, physcion, polydatin, and resveratrol concentrations of P. cuspidatum, with the increase in resveratrol associated with up-regulated expressions of related genes.
Collapse
Affiliation(s)
- Rui-Ting Sun
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Ze-Zhi Zhang
- Shiyan Academy of Agricultural Sciences, Shiyan, China
| | - Ming-Yang Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Xiang-Cao Feng
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Nong Zhou
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Hai-Dong Feng
- Shiyan Academy of Agricultural Sciences, Shiyan, China
| | - Abeer Hashem
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Elsayed Fathi Abd_Allah
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Wiwiek Harsonowati
- Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, Japan
| | - Qiang-Sheng Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
- *Correspondence: Qiang-Sheng Wu,
| |
Collapse
|
7
|
Zhao Y, Cartabia A, Lalaymia I, Declerck S. Arbuscular mycorrhizal fungi and production of secondary metabolites in medicinal plants. MYCORRHIZA 2022; 32:221-256. [PMID: 35556179 PMCID: PMC9184413 DOI: 10.1007/s00572-022-01079-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/28/2022] [Indexed: 05/27/2023]
Abstract
Medicinal plants are an important source of therapeutic compounds used in the treatment of many diseases since ancient times. Interestingly, they form associations with numerous microorganisms developing as endophytes or symbionts in different parts of the plants. Within the soil, arbuscular mycorrhizal fungi (AMF) are the most prevalent symbiotic microorganisms forming associations with more than 70% of vascular plants. In the last decade, a number of studies have reported the positive effects of AMF on improving the production and accumulation of important active compounds in medicinal plants.In this work, we reviewed the literature on the effects of AMF on the production of secondary metabolites in medicinal plants. The major findings are as follows: AMF impact the production of secondary metabolites either directly by increasing plant biomass or indirectly by stimulating secondary metabolite biosynthetic pathways. The magnitude of the impact differs depending on the plant genotype, the AMF strain, and the environmental context (e.g., light, time of harvesting). Different methods of cultivation are used for the production of secondary metabolites by medicinal plants (e.g., greenhouse, aeroponics, hydroponics, in vitro and hairy root cultures) which also are compatible with AMF. In conclusion, the inoculation of medicinal plants with AMF is a real avenue for increasing the quantity and quality of secondary metabolites of pharmacological, medical, and cosmetic interest.
Collapse
Affiliation(s)
- YanYan Zhao
- Université catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud 2, box L7.05.06, 1348, Louvain-la-Neuve, Belgium
| | - Annalisa Cartabia
- Université catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud 2, box L7.05.06, 1348, Louvain-la-Neuve, Belgium
| | - Ismahen Lalaymia
- Université catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud 2, box L7.05.06, 1348, Louvain-la-Neuve, Belgium
| | - Stéphane Declerck
- Université catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud 2, box L7.05.06, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
8
|
Biofertilizer Application Enhances Drought Stress Tolerance and Alters the Antioxidant Enzymes in Medicinal Pumpkin (Cucurbita pepo convar. pepo var. Styriaca). HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7120588] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effects of mycorrhiza, Thiobacillus and Nitroxin (Azotobacter and Azospirillum sp.) biofertilizers under drought stress conditions with four levels of field capacity (FC) (control(100%), 85%, 70%, and 50%) on the antioxidant enzyme activities of medicinal pumpkin (Cucurbita pepo convar. pepo var. Styriaca) were evaluated during the years 2018–2019. Irrigation levels exhibited significant effects on all studied variables, except for the catalase (CAT) enzyme. A significant correlation was observed between the effects of irrigation levels and biofertilizers on antioxidant enzymes, soluble protein content, and grain yield. The highest activity of catalase and ascorbate peroxidase (APX) enzymes was achieved using mycorrhiza in 50% FC. Increasing drought intensity and mycorrhiza stimulated glutathione reductase (GR) and guaiacol peroxidase (GPX) activities by 32% and 66%, while Nitroxin increased them by 16% and 43%, respectively. Under severe drought stress conditions, only mycorrhiza exhibited a positive effect on GR and GPX enzymes. Under moderate and severe drought stress conditions, Nitroxin increased grain yield by 13% and 12.6%, respectively. The irrigation regimes and bio-fertilizers had a significant effect on β-sitosterol percentage. The highest amount was observed at the highest level of drought stress. Among the various bio-fertilizers treatments, the application of Thiobacillus yielded the highest percentage of β-sitosterol. The results of the present study demonstrate that the application of biofertilizers is beneficial in coping with drought stress.
Collapse
|
9
|
Noceto PA, Bettenfeld P, Boussageon R, Hériché M, Sportes A, van Tuinen D, Courty PE, Wipf D. Arbuscular mycorrhizal fungi, a key symbiosis in the development of quality traits in crop production, alone or combined with plant growth-promoting bacteria. MYCORRHIZA 2021; 31:655-669. [PMID: 34633544 DOI: 10.1007/s00572-021-01054-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/28/2021] [Indexed: 05/14/2023]
Abstract
Modern agriculture is currently undergoing rapid changes in the face of the continuing growth of world population and many ensuing environmental challenges. Crop quality is becoming as important as crop yield and can be characterised by several parameters. For fruits and vegetables, quality descriptors can concern production cycle (e.g. conventional or organic farming), organoleptic qualities (e.g. sweet taste, sugar content, acidity) and nutritional qualities (e.g. mineral content, vitamins). For other crops, however, the presence of secondary metabolites such as anthocyanins or certain terpenes in the targeted tissues is of interest as well, especially for their human health properties. All plants are constantly interacting with microorganisms. These microorganisms include arbuscular mycorrhizal fungi as well as certain soil bacteria that provide ecosystem services related to plant growth, nutrition and quality parameters. This review is an update of current research on the single and combined (co-inoculation) use of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria in crop production, with a focus on their positive impacts on crop quality traits (e.g. nutritional value, organoleptic properties). We also highlight the need to dissect mechanisms regulating plant-symbionts and symbiont-symbiont interactions, to develop farming practices and to study a broad range of interactions to optimize the symbiotic potential of root-associated microorganisms.
Collapse
Affiliation(s)
- Pierre-Antoine Noceto
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Pauline Bettenfeld
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
- Laboratoire Résistance Induite Et Bioprotection Des Plantes EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Raphael Boussageon
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Mathilde Hériché
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Antoine Sportes
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Diederik van Tuinen
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Pierre-Emmanuel Courty
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Daniel Wipf
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
10
|
Chemical Composition, Antioxidant and Anti-Inflammatory Activities of Clary Sage and Coriander Essential Oils Produced on Polluted and Amended Soils-Phytomanagement Approach. Molecules 2021; 26:molecules26175321. [PMID: 34500751 PMCID: PMC8434190 DOI: 10.3390/molecules26175321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/26/2021] [Accepted: 08/17/2021] [Indexed: 11/29/2022] Open
Abstract
The potential of essential oils (EO), distilled from two aromatic plants—clary sage (Salvia sclarea L.) and coriander (Coriandrum sativum L.)—in view of applications as natural therapeutic agents was evaluated in vitro. These two were cultivated on a trace element (TE)-polluted soil, as part of a phytomanagement approach, with the addition of a mycorrhizal inoculant, evaluated for its contribution regarding plant establishment, growth, and biomass production. The evaluation of EO as an antioxidant and anti-inflammatory, with considerations regarding the potential influence of the TE-pollution and of the mycorrhizal inoculation on the EO chemical compositions, were the key focuses. Besides, to overcome EO bioavailability and target accession issues, the encapsulation of EO in β-cyclodextrin (β-CD) was also assessed. Firstly, clary sage EO was characterized by high proportions of linalyl acetate (51–63%) and linalool (10–17%), coriander seeds EO by a high proportion of linalool (75–83%) and lesser relative amounts of γ-terpinene (6–9%) and α-pinene (3–5%) and coriander aerial parts EO by 2-decenal (38–51%) and linalool (22–39%). EO chemical compositions were unaffected by both soil pollution and mycorrhizal inoculation. Of the three tested EO, the one from aerial parts of coriander displayed the most significant biological effects, especially regarding anti-inflammatory potential. Furthermore, all tested EO exerted promising antioxidant effects (IC50 values ranging from 9 to 38 g L−1). However, EO encapsulation in β-CD did not show a significant improvement of EO biological properties in these experimental conditions. These findings suggest that marginal lands polluted by TE could be used for the production of EO displaying faithful chemical compositions and valuable biological activities, with a non-food perspective.
Collapse
|
11
|
Pathak MP, Patowary P, Goyary D, Das A, Chattopadhyay P. β-caryophyllene ameliorated obesity-associated airway hyperresponsiveness through some non-conventional targets. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 89:153610. [PMID: 34175589 DOI: 10.1016/j.phymed.2021.153610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Obesity worsens airway hyperresponsiveness (AHR) in asthmatic subjects by up-regulating macrophage polarization that leads to excessive secretion of pro-inflammatory adipokines from white adipose tissue followed by generation of oxidative stress in the respiratory system. Treatment through conventional signaling pathways proved to be inadequate in obese asthmatics, so a therapeutical approach through a non-conventional pathway may prove to be effective. PURPOSE This study aimed to investigate the efficacy of a FDA-approved food additive, β-caryophyllene (BCP) in obesity-associated AHR. METHOD A repertoire of protein expression, cytokine and adiponectin estimation, oxidative stress assays, histopathology, and fluorescence immune-histochemistry were performed to assess the efficacy of BCP in C57BL/6 mice model of obesity-associated AHR. Additionally, human adipocyte was utilized to study the effect of BCP on macrophage polarization in Boyden chamber cell culture inserts. RESULTS Obesity-associated AHR is ameliorated by administration of BCP by inhibition of the macrophage polarization by activation of AMPKα, Nrf2/HO-1 and AdipoR1 and AdipoR2 signaling pathway, up-regulation of adiponectin, GLP-1, IFN-γ, SOD, catalase and down-regulation of NF-κB, leptin, IL-4, TNF, and IL-1β. Browning of eWAT by induction of thermogenesis and activation of melanocortin pathway also contributed to the amelioration of obesity-associated AHR. We conclude that BCP ameliorated the obesity-associated AHR via inhibition of macrophage polarization, activation of AMPKα, Nrf2/HO-1, and up-regulation of AdipoR1 and AdipoR2 expression and down-regulation of NFκB expression in lung of animal. CONCLUSION Being an FDA-approved food additive, BCP may prove to be a safe and potential agent against obesity-associated AHR.
Collapse
Affiliation(s)
- Manash Pratim Pathak
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, 784001, India; Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, India
| | - Pompy Patowary
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, 784001, India; Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, India
| | - Danswrang Goyary
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, 784001, India
| | - Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, India
| | | |
Collapse
|
12
|
Bhantana P, Rana MS, Sun XC, Moussa MG, Saleem MH, Syaifudin M, Shah A, Poudel A, Pun AB, Bhat MA, Mandal DL, Shah S, Zhihao D, Tan Q, Hu CX. Arbuscular mycorrhizal fungi and its major role in plant growth, zinc nutrition, phosphorous regulation and phytoremediation. Symbiosis 2021. [DOI: 10.1007/s13199-021-00756-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Rahmani Samani M, D'Urso G, Montoro P, Ghasemi Pirbalouti A, Piacente S. Effects of bio-fertilizers on the production of specialized metabolites in Salvia officinalis L. leaves: An analytical approach based on LC-ESI/LTQ-Orbitrap/MS and multivariate data analysis. J Pharm Biomed Anal 2021; 197:113951. [PMID: 33601160 DOI: 10.1016/j.jpba.2021.113951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/21/2021] [Accepted: 01/30/2021] [Indexed: 11/24/2022]
Abstract
In recent years, the use of organic substances has been increased to improve the production of specialized metabolites in aromatic and medicinal plants. Salvia officinalis L., known as sage, is an important medicinal and aromatic plant, whose leaves are commonly used as a condiment in food but mainly as a raw material in pharmaceutical and perfumery industries. In this work to define the effects of bio-fertilizers and foliar applications of l-phenylalanine on specialized metabolites production and biochemical characteristics of S. officinalis leaves, an experimental field in 2 years (2016 and 2017) was developed in semiarid climate, South-western, Iran. Experimental treatments included foliar spraying of l-phenylalanine in diverse concentration (0-250 and 500 mg/mL) and different bio-fertilizers [Arbuscular mycorrhizal fungi (AMF), Pseudomonas fluorescens (Pf), both fungi and bacteria (AMF + Pf)]. A metabolomics approach was carried out on the ethanolic extracts of sage leaves obtained by different treatments using Liquid Chromatography coupled with High-Resolution Mass Spectrometry (LC-ESI/LTQ-Orbitrap/MS) followed by multivariate data analysis. A total of 41 specialized metabolites were detected, and 35 of them were identified based on their accurate mass and mass fragmentation, as belonging to organic acids, phenylpropanoids, flavonoids, diterpenes, salvianolic acids and oxylipins. This work highlighted that the foliar application of l-phenylalanine along with the inoculation of Arbuscular mycorrhizal fungi and P. fluorescens can improve the yields of specific metabolites of pharmaceutical interest.
Collapse
Affiliation(s)
- Marzieh Rahmani Samani
- Medicinal Plants Department, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran; Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, SA, Italy; PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II n. 132, 84084, Fisciano, SA, Italy
| | - Gilda D'Urso
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, SA, Italy
| | - Paola Montoro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, SA, Italy
| | | | - Sonia Piacente
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, SA, Italy.
| |
Collapse
|
14
|
Neoteric Trends in Medicinal Plant-AMF Association and Elicited Accumulation of Phytochemicals. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Saleh AM, Abdel-Mawgoud M, Hassan AR, Habeeb TH, Yehia RS, AbdElgawad H. Global metabolic changes induced by arbuscular mycorrhizal fungi in oregano plants grown under ambient and elevated levels of atmospheric CO 2. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:255-263. [PMID: 32244095 DOI: 10.1016/j.plaphy.2020.03.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 05/02/2023]
Abstract
Symbiotic plant-microorganisms interaction is a promising approach to avoid the environmental hazards of synthetic fertilizers and pesticides. Among these, arbuscular mycorrhizal fungi (AMF) are known to improve the growth and quality of many plant species; however the detailed metabolic mechanisms behind such beneficial effects are far from complete. Further, elevated levels of atmospheric CO2 (eCO2) could affect such AMF-plant association. Herein, we have investigated the individual and synchronous impact of AMF and eCO2 (620 ppm) on nutrient uptake, growth, photosynthesis, respiration, and levels of primary and secondary metabolites in oregano (Oreganum vulgare), an economically important herbal plant. Enhanced AMF colonization rate and a better mycelial growth were observed in roots of oregano grown under eCO2. Both AMF and eCO2 treatments significantly enhanced the growth and photosynthesis of oregano plants, however much improvements were observed by their synchronous application. eCO2 further increased the AMF-induced dark respiration and accumulation of macro and microelements. Hierarchical clustering analysis of individual primary and secondary metabolites revealed a metabolite-dependent response toward AMF and eCO2. The synchronous application of AMF and eCO2 resulted in promoted accumulation of the majority of the detected sugars, organic acids, amino acids, unsaturated fatty acids, phenolic acids and flavonoids, as compared with the sole treatments. Moreover, AMF and eCO2 acted synergistically in improving the antioxidant capacity and anti-lipid peroxidation activity of oregano. Therefore, this study suggests that AMF treatment induces a global metabolic change in oregano, the effect that is strengthened under eCO2.
Collapse
Affiliation(s)
- Ahmed M Saleh
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt; Biology Department, Faculty of Science at Yanbu, Taibah University, King Khalid Rd, Al Amoedi, 46423, Yanbu El-Bahr, Saudi Arabia.
| | | | - Ahmed R Hassan
- Department of Medicinal and Aromatic Plants, Desert Research Centre, Cairo, Egypt
| | - Talaat H Habeeb
- Biology Department, Faculty of Science at Yanbu, Taibah University, King Khalid Rd, Al Amoedi, 46423, Yanbu El-Bahr, Saudi Arabia
| | - Ramy S Yehia
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia; Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
16
|
Raveau R, Fontaine J, Lounès-Hadj Sahraoui A. Essential Oils as Potential Alternative Biocontrol Products against Plant Pathogens and Weeds: A Review. Foods 2020; 9:E365. [PMID: 32245234 PMCID: PMC7143296 DOI: 10.3390/foods9030365] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/14/2020] [Accepted: 03/17/2020] [Indexed: 12/22/2022] Open
Abstract
Naturally produced by aromatic plants, essential oils (EO) contain a wide range of volatile molecules, including mostly secondary metabolites, which possess several biological activities. Essential oils properties such as antioxidant, antimicrobial and anti-inflammatory activities are known for a long time and hence widely used in traditional medicines, cosmetics and food industries. However, despite their effects against many phytopathogenic fungi, oomycetes and bacteria as well as weeds, their use in agriculture remains surprisingly scarce. The purpose of the present review is to gather and discuss up-to-date biological activities of EO against weeds, plant pathogenic fungi, oomycetes and bacteria, reported in the scientific literature. Innovative methods, potentially valuable to improve the efficiency and reliability of EO, have been investigated. In particular, their use towards a more sustainable agriculture has been discussed, aiming at encouraging the use of alternative products to substitute synthetic pesticides to control weeds and plant diseases, without significantly affecting crop yields. An overview of the market and the recent advances on the regulation of these products as well as future challenges to promote their development and wider use in disease management programs is described. Because of several recent reviews on EO insecticidal properties, this topic is not covered in the present review.
Collapse
Affiliation(s)
| | | | - Anissa Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, UR 4492), Université du Littoral Côte d’Opale, SFR Condorcet FR CNRS 3417, 50 rue Ferdinand Buisson, 62228 Calais cedex, France; (R.R.); (J.F.)
| |
Collapse
|
17
|
Golubkina N, Logvinenko L, Novitsky M, Zamana S, Sokolov S, Molchanova A, Shevchuk O, Sekara A, Tallarita A, Caruso G. Yield, Essential Oil and Quality Performances of Artemisia dracunculus, Hyssopus officinalis and Lavandula angustifolia as Affected by Arbuscular Mycorrhizal Fungi under Organic Management. PLANTS 2020; 9:plants9030375. [PMID: 32197463 PMCID: PMC7154847 DOI: 10.3390/plants9030375] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 11/26/2022]
Abstract
Utilization of arbuscular mycorrhizal fungi (AMF) for enhancing growth and development as well as production of essential oil in aromatic plants has been increasingly drawing research interest. In order to assess the AMF effects on different aromatic species, an open-field experiment was carried out using Artemisia dracunculus (tarragon), Lavandula angustifolia (lavender) and Hyssopus officinalis (hyssop). AMF stimulated the growth of tarragon and lavender plants, whereas hyssop showed a slight developmental slowing; nonetheless, a significant increase in essential oil content in the three species was seen. AMF application increased the biomass of A. dracunculus and H. officinalis by 20–35%. No differences in antioxidant activity and phenolics content were recorded at harvest between the control and AMF-inoculated plants, but the latter showed a significant increase in antioxidant status upon storage at high temperature and humidity compared to the untreated control. The enhancement of abiotic stress resistance during storage in plants inoculated with AMF was the highest in A. dracunculus, and the lowest in H. officinalis, while the untreated control plants showed a significant decrease in phenolics, ascorbic acid and chlorophyll content, as well as antioxidant activity, upon the abiotic stress. AMF inoculation differentially affected the mineral composition, increasing the accumulation of Se, I and Zn in A. dracunculus, and decreasing the levels of heavy metals and Co, Fe, Li, Mn in H. officinalis. Based on the outcome of the present research, AMF inoculation resulted in a significant enhancement of the overall performances of A. dracunculus, L. angustifolia and H. officinalis, and also in the improvement of plant antioxidant status upon storage in stress conditions.
Collapse
Affiliation(s)
- Nadezhda Golubkina
- Agrochemical Research Center, Federal Scientific Center of Vegetable Production, 143072 Moscow, Russia;
- Correspondence: ; Tel.: +7-903-118-50-30
| | - Lidia Logvinenko
- Nikita Botanic Gardens, National Scientific Center of the RAS, 298648 Yalta, Russia; (L.L.); (M.N.); (O.S.)
| | - Maxim Novitsky
- Nikita Botanic Gardens, National Scientific Center of the RAS, 298648 Yalta, Russia; (L.L.); (M.N.); (O.S.)
| | - Svetlana Zamana
- Department of Agriculture and Crop Production, State University of Land Management, Kazakova str. 15, 10506 Moscow, Russia;
| | - Sergey Sokolov
- Scientific Technical Center ‘Sustainable Development of Agroecosystems’, 143072 Moscow, Russia;
| | - Anna Molchanova
- Agrochemical Research Center, Federal Scientific Center of Vegetable Production, 143072 Moscow, Russia;
| | - Oksana Shevchuk
- Nikita Botanic Gardens, National Scientific Center of the RAS, 298648 Yalta, Russia; (L.L.); (M.N.); (O.S.)
| | - Agneszka Sekara
- Department of Vegetable and Medicinal Plants, University of Agriculture, 31-120 Krakow, Poland;
| | - Alessio Tallarita
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Naples, Italy; (A.T.); (G.C.)
| | - Gianluca Caruso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Naples, Italy; (A.T.); (G.C.)
| |
Collapse
|
18
|
El-Alam I, Zgheib R, Iriti M, El Beyrouthy M, Hattouny P, Verdin A, Fontaine J, Chahine R, Lounès-Hadj Sahraoui A, Makhlouf H. Origanum syriacum Essential Oil Chemical Polymorphism According to Soil Type. Foods 2019; 8:foods8030090. [PMID: 30841518 PMCID: PMC6463040 DOI: 10.3390/foods8030090] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/23/2019] [Accepted: 02/27/2019] [Indexed: 11/23/2022] Open
Abstract
Background: Origanum syriacum L. is an aromatic plant growing wild in Lebanon. This species is highly used in Lebanese traditional medicine and is a staple food in Lebanese gastronomy. Due to the over-harvesting, this species has become a cultivated crop rather than being collected from the wild. This study aims to evaluate the chemical polymorphism according to soil type. Methods: Plant samples were cultivated in different soil types including manure, potting mix, professional agriculture mixture, vegetable compost, nursery soils, and natural agricultural soil inoculated with arbuscular mycorrhizal fungi. After 16 weeks of culture, fresh shoot biomass was measured. Root colonization rate was evaluated and foliar biomasses were used for essential oil (EO) extraction. EO yield was calculated and the identification of the main chemical compounds of EO samples was performed by gas chromatography (GC) and gas chromatography–mass spectrometry (GC/MS). Results: Our findings revealed that the soil type affects the O. syriacum chemotype. Indeed, the EO samples could be divided into two groups: thymol chemotype group including manure and vegetable compost soils and non-sterilized non-inoculated EO samples, and the thymol/carvacrol chemotype including potting mix, professional agriculture mixture, nursery mixture, sterilized non-inoculated, non-sterilized inoculated, and sterilized inoculated EO samples. These results showed that manure and vegetable compost soils promoted thymol synthesis, whereas potting mix, professional agriculture mixture, and nursery mixture soils were thymol/carvacrol chemotype. Moreover, mycorrhizal inoculation increased carvacrol and reduced thymol productions in comparison to non-inoculated conditions. Additionally, mycorrhizal inoculation showed significant enhancements in mycorrhizal rates and shoot biomass production with respect to the non-sterilized soil. Conclusions: These variations confirm the influence of the edaphic conditions on the chemical components biosynthesis pathways of oregano plants. The results of this investigation could be used for determining optimal soil type, leading to a good quality herb production.
Collapse
Affiliation(s)
- Imad El-Alam
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, F-62228 Calais CEDEX, France.
- Oxidative Stress and Antioxidants Group, Doctoral School of Sciences and Technologies, Lebanese University, Hadath B.P. 1500, Lebanon.
| | - Raviella Zgheib
- Institut Jean-Pierre Bourgin, Agro Paris Tech, INRA, Université Paris-Saclay, RD 10, Route de Saint-Cyr, 78026 Versailles, France.
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, via G. Celoria 2, 20133 Milan, Italy.
| | - Marc El Beyrouthy
- Department of Agricultural Sciences, Holy Spirit University of Kaslik, Kaslik, Jounieh B.P. 446, Lebanon.
| | - Paul Hattouny
- Department of Agricultural Sciences, Holy Spirit University of Kaslik, Kaslik, Jounieh B.P. 446, Lebanon.
| | - Anthony Verdin
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, F-62228 Calais CEDEX, France.
| | - Joël Fontaine
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, F-62228 Calais CEDEX, France.
| | - Ramez Chahine
- Oxidative Stress and Antioxidants Group, Doctoral School of Sciences and Technologies, Lebanese University, Hadath B.P. 1500, Lebanon.
- Faculté de Santé Publique, Université La Sagesse, Furn-El-Chebak, Beyrouth B.P. N° 50-501, Lebanon.
| | - Anissa Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, F-62228 Calais CEDEX, France.
| | - Hassane Makhlouf
- Oxidative Stress and Antioxidants Group, Doctoral School of Sciences and Technologies, Lebanese University, Hadath B.P. 1500, Lebanon.
- Laboratoire Géoressources, Géosciences et Environnement-Equipe Sedre: Sol, Eau, Déchets et Ressources, Faculté des Sciences, Université Libanaise, Fanar B.P. 1200, Lebanon.
| |
Collapse
|
19
|
Sabra M, Aboulnasr A, Franken P, Perreca E, Wright LP, Camehl I. Beneficial Root Endophytic Fungi Increase Growth and Quality Parameters of Sweet Basil in Heavy Metal Contaminated Soil. FRONTIERS IN PLANT SCIENCE 2018; 9:1726. [PMID: 30538713 PMCID: PMC6277477 DOI: 10.3389/fpls.2018.01726] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 11/06/2018] [Indexed: 05/18/2023]
Abstract
How interactions between plants, the rhizosphere, and contaminated soil affect environmental sustainability is still under research. We tested the effects of two root endophytic fungi, the arbuscular mycorrhiza fungus (AMF) Rhizophagus irregularis and the beneficial endophyte Serendipita indica, on sweet basil (Ocimum basilicum) growing on soil contaminated with lead and copper in a pot experiment under defined greenhouse conditions. Both fungi caused an increase in shoot and root dry weight of sweet basil plants under all conditions and decreased the amount of lead in shoots. The amount of copper was reduced by S. indica, while the AM fungus showed this effect only when the soil is contaminated with both copper and lead. Furthermore the AMF, but not the endophyte S. indica caused a strong increase on the concentrations of the essential oils linalool and eucalyptol even on sweet basil growing on contaminated soils. Hence, cultivating sweet basil in combination with beneficial fungi in case of difficult environmental conditions could be of interest for industry located in countries with widespread land pollution, because quantity and quality of plants are increased while the amount of heavy metals is generally reduced.
Collapse
Affiliation(s)
- Mayada Sabra
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
- Agriculture Botany Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Amal Aboulnasr
- Agriculture Botany Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Philipp Franken
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - Erica Perreca
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Iris Camehl
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| |
Collapse
|
20
|
Pankaj U, Verma RS, Yadav A, Verma RK. Effect of arbuscular mycorrhizae species on essential oil yield and chemical composition of palmarosa (Cymbopogon martinii) varieties grown under salinity stress soil. JOURNAL OF ESSENTIAL OIL RESEARCH 2018. [DOI: 10.1080/10412905.2018.1512533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Umesh Pankaj
- CSIR-CIMAP-JNU Ph. D. (UGC-RGNF) Fellow, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Department of Soil Science, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Ram Swaroop Verma
- Chemical Sciences Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Anju Yadav
- Chemical Sciences Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Rajesh Kumar Verma
- Department of Soil Science, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
21
|
Pedone-Bonfim MVL, Silva DKAD, Silva-Batista ARD, de Oliveira AP, Almeida JRGDS, Yano-Melo AM, Maia LC. Mycorrhizal inoculation as an alternative for the sustainable production of Mimosa tenuiflora seedlings with improved growth and secondary compounds content. Fungal Biol 2018; 122:918-927. [DOI: 10.1016/j.funbio.2018.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 05/21/2018] [Accepted: 05/28/2018] [Indexed: 01/01/2023]
|
22
|
Pawar PB, Khadilkar JP, Kulkarni MV, Melo JS. An approach to enhance nutritive quality of groundnut ( Arachis hypogaea L.) seed oil through endo mycorrhizal fertigation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Hassiotis CN. The role of aromatic Salvia officinalis L. on the development of two mycorrhizal fungi. BIOCHEM SYST ECOL 2018. [DOI: 10.1016/j.bse.2018.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Wicaksono WA, Sansom CE, Eirian Jones E, Perry NB, Monk J, Ridgway HJ. Arbuscular mycorrhizal fungi associated with Leptospermum scoparium (mānuka): effects on plant growth and essential oil content. Symbiosis 2017. [DOI: 10.1007/s13199-017-0506-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Pedone-Bonfim MVL, da Silva DKA, Maia LC, Yano-Melo AM. Mycorrhizal benefits on native plants of the Caatinga, a Brazilian dry tropical forest. Symbiosis 2017. [DOI: 10.1007/s13199-017-0510-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Zayova E, Stancheva I, Geneva M, Hristozkova M, Dimitrova L, Petrova M, Sichanova M, Salamon I, Mudroncekova S. Arbuscular mycorrhizal fungi enhance antioxidant capacity of in vitro propagated garden thyme (Thymus vulgaris L.). Symbiosis 2017. [DOI: 10.1007/s13199-017-0502-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Rozp¹dek P, Domka A, Turnau K. Chapter 29 Mycorrhizal Fungi and Accompanying Microorganisms in Improving Phytoremediation Techniques. Mycology 2017. [DOI: 10.1201/9781315119496-30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
28
|
Lazzara S, Militello M, Carrubba A, Napoli E, Saia S. Arbuscular mycorrhizal fungi altered the hypericin, pseudohypericin, and hyperforin content in flowers of Hypericum perforatum grown under contrasting P availability in a highly organic substrate. MYCORRHIZA 2017; 27:345-354. [PMID: 27999964 DOI: 10.1007/s00572-016-0756-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/30/2016] [Indexed: 05/14/2023]
Abstract
St. John's Wort (Hypericum perforatum) is a perennial herb able to produce water-soluble active ingredients (a.i.), mostly in flowers, with a wide range of medicinal and biotechnological uses. However, information about the ability of arbuscular mycorrhizal fungi (AMF) to affect its biomass accumulation, flower production, and concentration of a.i. under contrasting nutrient availability is still scarce. In the present experiment, we evaluated the role of AMF on growth, flower production, and concentration of bioactive secondary metabolites (hypericin, pseudohypericin, and hyperforin) of H. perforatum under contrasting P availability. AMF stimulated the production of aboveground biomass under low P conditions and increased the production of root biomass. AMF almost halved the number of flowers per plant by means of a reduction of the number of flower-bearing stems per plant under high P availability and through a lower number of flowers per stem in the low-P treatment. Flower hyperforin concentration was 17.5% lower in mycorrhizal than in non-mycorrhizal plants. On the contrary, pseudohypericin and hypericin concentrations increased by 166.8 and 279.2%, respectively, with AMF under low P availability, whereas no effect of AMF was found under high P availability. These results have implications for modulating the secondary metabolite production of H. perforatum. However, further studies are needed to evaluate the competition for photosynthates between AMF and flowers at different nutrient availabilities for both plant and AM fungus.
Collapse
Affiliation(s)
- Silvia Lazzara
- Agricultural Research Council, Research Unit for the Recovery and the Exploitation of Mediterranean Flower Species (CREA-SFM), s.s. 113-Km 245,500, 90011, Bagheria, PA, Italy
| | - Marcello Militello
- Agricultural Research Council, Research Unit for the Recovery and the Exploitation of Mediterranean Flower Species (CREA-SFM), s.s. 113-Km 245,500, 90011, Bagheria, PA, Italy
| | - Alessandra Carrubba
- Department of Agricultural and Forest Sciences, University of Palermo, viale delle scienze, Ed. 4, 90128, Palermo, Italy
| | - Edoardo Napoli
- National Research Council, Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, 95126, Catania, Italy
| | - Sergio Saia
- Agricultural Research Council, Research Unit for the Recovery and the Exploitation of Mediterranean Flower Species (CREA-SFM), s.s. 113-Km 245,500, 90011, Bagheria, PA, Italy.
- Agricultural Research Council, Cereal Research Centre (CREA-CER), S.S. 673, km 25.200, 71121, Foggia, FG, Italy.
| |
Collapse
|
29
|
Sharma E, Anand G, Kapoor R. Terpenoids in plant and arbuscular mycorrhiza-reinforced defence against herbivorous insects. ANNALS OF BOTANY 2017; 119:791-801. [PMID: 28087662 PMCID: PMC5378189 DOI: 10.1093/aob/mcw263] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/24/2016] [Accepted: 11/22/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plants, though sessile, employ various strategies to defend themselves against herbivorous insects and convey signals of an impending herbivore attack to other plant(s). Strategies include the production of volatiles that include terpenoids and the formation of symbiotic associations with fungi, such as arbuscular mycorrhiza (AM). This constitutes a two-pronged above-ground/below-ground attack-defence strategy against insect herbivores. SCOPE Terpenoids represent an important constituent of herbivore-induced plant volatiles that deter herbivores and/or attract their predators. Terpenoids serve as airborne signals that can induce defence responses in systemic undamaged parts of the plant and also prime defence responses in neighbouring plants. Colonization of roots by AM fungi is known to influence secondary metabolism in plants; this includes alteration of the concentration and composition of terpenoids, which can boost both direct and indirect plant defence against herbivorous insects. Enhanced nutrient uptake facilitated by AM, changes in plant morphology and physiology and increased transcription levels of certain genes involved in the terpenoid biosynthesis pathway result in alterations in plant terpenoid profiles. The common mycorrhizal networks of external hyphae have added a dimension to the two-pronged plant defence strategy. These act as conduits to transfer defence signals and terpenoids. CONCLUSION Improved understanding of the roles of terpenoids in plant and AM defences against herbivory and of interplant signalling in natural communities has significant implications for sustainable management of pests in agricultural ecosystems.
Collapse
Affiliation(s)
| | | | - Rupam Kapoor
- Department of Botany, University of Delhi, Delhi 110007, India
| |
Collapse
|
30
|
Mustafa G, Randoux B, Tisserant B, Fontaine J, Magnin-Robert M, Lounès-Hadj Sahraoui A, Reignault P. Phosphorus supply, arbuscular mycorrhizal fungal species, and plant genotype impact on the protective efficacy of mycorrhizal inoculation against wheat powdery mildew. MYCORRHIZA 2016; 26:685-697. [PMID: 27130314 DOI: 10.1007/s00572-016-0698-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/06/2016] [Indexed: 06/05/2023]
Abstract
A potential alternative strategy to chemical control of plant diseases could be the stimulation of plant defense by arbuscular mycorrhizal fungi (AMF). In the present study, the influence of three parameters (phosphorus supply, mycorrhizal inoculation, and wheat cultivar) on AMF protective efficiency against Blumeria graminis f. sp. tritici, responsible for powdery mildew, was investigated under controlled conditions. A 5-fold reduction (P/5) in the level of phosphorus supply commonly recommended for wheat in France improved Funneliformis mosseae colonization and promoted protection against B. graminis f. sp. tritici in a more susceptible wheat cultivar. However, a further decrease in P affected plant growth, even under mycorrhizal conditions. Two commercially available AMF inocula (F. mosseae, Solrize®) and one laboratory inoculum (Rhizophagus irregularis) were tested for mycorrhizal development and protection against B. graminis f. sp. tritici of two moderately susceptible and resistant wheat cultivars at P/5. Mycorrhizal levels were the highest with F. mosseae (38 %), followed by R. irregularis (19 %) and Solrize® (SZE, 8 %). On the other hand, the highest protection level against B. graminis f. sp. tritici was obtained with F. mosseae (74 %), followed by SZE (58 %) and R. irregularis (34 %), suggesting that inoculum type rather than mycorrhizal levels determines the protection level of wheat against B. graminis f. sp. tritici. The mycorrhizal protective effect was associated with a reduction in the number of conidia with haustorium and with an accumulation of polyphenolic compounds at B. graminis f. sp. tritici infection sites. Both the moderately susceptible and the most resistant wheat cultivar were protected against B. graminis f. sp. tritici infection by F. mosseae inoculation at P/5, although the underlying mechanisms appear rather different between the two cultivars. This study emphasizes the importance of taking into account the considered parameters when considering the use of AMF as biocontrol agents.
Collapse
Affiliation(s)
- G Mustafa
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, 50, Rue Ferdinand Buisson, 62228, Calais Cedex, France
| | - B Randoux
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, 50, Rue Ferdinand Buisson, 62228, Calais Cedex, France
| | - B Tisserant
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, 50, Rue Ferdinand Buisson, 62228, Calais Cedex, France
| | - J Fontaine
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, 50, Rue Ferdinand Buisson, 62228, Calais Cedex, France
| | - M Magnin-Robert
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, 50, Rue Ferdinand Buisson, 62228, Calais Cedex, France
| | - A Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, 50, Rue Ferdinand Buisson, 62228, Calais Cedex, France.
| | - Ph Reignault
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, 50, Rue Ferdinand Buisson, 62228, Calais Cedex, France
| |
Collapse
|
31
|
Weisany W, Sohrabi Y, Siosemardeh A, Ghassemi-Golezani K. Funneliformis mosseaefungi changed essential oil composition inTrigonella foenum graecumL.,Coriandrum sativumL. andNigella sativa L. JOURNAL OF ESSENTIAL OIL RESEARCH 2016. [DOI: 10.1080/10412905.2016.1216469] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Welling MT, Liu L, Rose TJ, Waters DLE, Benkendorff K. Arbuscular mycorrhizal fungi: effects on plant terpenoid accumulation. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:552-62. [PMID: 26499392 DOI: 10.1111/plb.12408] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/20/2015] [Indexed: 05/11/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are a diverse group of soil-dwelling fungi that form symbiotic associations with land plants. AMF-plant associations promote the accumulation of plant terpenoids beneficial to human health, although how AMF mediate terpenoid accumulation is not fully understood. A critical assessment and discussion of the literature relating to mechanisms by which AMF influence plant terpenoid accumulation, and whether this symbiosis can be harnessed in horticultural ecosystems was performed. Modification of plant morphology, phosphorus availability and gene transcription involved with terpenoid biosynthetic pathways were identified as key mechanisms associated with terpenoid accumulation in AMF-colonised plants. In order to exploit AMF-plant symbioses in horticultural ecosystems it is important to consider the specificity of the AMF-plant association, the predominant factor affecting terpenoid accumulation, as well as the end use application of the harvested plant material. Future research should focus on resolving the relationship between ecologically matched AMF genotypes and terpenoid accumulation in plants to establish if these associations are effective in promoting mechanisms favourable for plant terpenoid accumulation.
Collapse
Affiliation(s)
- M T Welling
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - L Liu
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - T J Rose
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
- Southern Cross GeoScience, Southern Cross University, Lismore, NSW, Australia
| | - D L E Waters
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - K Benkendorff
- School of Environment, Science & Engineering, Southern Cross University, Lismore, NSW, Australia
| |
Collapse
|
33
|
Rydlová J, Jelínková M, Dušek K, Dušková E, Vosátka M, Püschel D. Arbuscular mycorrhiza differentially affects synthesis of essential oils in coriander and dill. MYCORRHIZA 2016; 26:123-31. [PMID: 26070450 DOI: 10.1007/s00572-015-0652-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/03/2015] [Indexed: 05/14/2023]
Abstract
Research on the role of arbuscular mycorrhizal fungi (AMF) in the synthesis of essential oils (EOs) by aromatic plants has seldom been conducted in field-relevant conditions, and then, only limited spectra of EO constituents have been analyzed. The effect was investigated of inoculation with AMF on the synthesis of a wide range of EO in two aromatic species, coriander (Coriandrum sativum) and dill (Anethum graveolens), in a garden experiment under outdoor conditions. Plants were grown in 4-l pots filled with soil, which was either γ-irradiated (eliminating native AMF) or left non-sterile (containing native AMF), and inoculated or not with an isolate of Rhizophagus irregularis. AMF inoculation significantly stimulated EO synthesis in both plant species. EO synthesis (total EO and several individual constituents) was increased in dill in all mycorrhizal treatments (containing native and/or inoculated AMF) compared to non-mycorrhizal plants. In contrast, EO concentrations in coriander (total EO and most constituents) were increased only in the treatment combining both inoculated and native AMF. A clear positive effect of AMF on EO synthesis was found for both aromatic plants, which was, however, specific for each plant species and modified by the pool of AMF present in the soil.
Collapse
Affiliation(s)
- Jana Rydlová
- Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, 252 43, Průhonice, Czech Republic
| | - Marcela Jelínková
- Crop Research Institute, Šlechtitelů 11, 783 71, Olomouc - Holice, Czech Republic
| | - Karel Dušek
- Crop Research Institute, Šlechtitelů 11, 783 71, Olomouc - Holice, Czech Republic
| | - Elena Dušková
- Crop Research Institute, Šlechtitelů 11, 783 71, Olomouc - Holice, Czech Republic
| | - Miroslav Vosátka
- Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, 252 43, Průhonice, Czech Republic
| | - David Püschel
- Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, 252 43, Průhonice, Czech Republic.
| |
Collapse
|
34
|
Santoro MV, Cappellari LR, Giordano W, Banchio E. Plant growth-promoting effects of native Pseudomonas strains on Mentha piperita (peppermint): an in vitro study. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:1218-1226. [PMID: 26012535 DOI: 10.1111/plb.12351] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) affect growth of host plants through various direct and indirect mechanisms. Three native PGPR (Pseudomonas putida) strains isolated from rhizospheric soil of a Mentha piperita (peppermint) crop field near Córdoba, Argentina, were characterised and screened in vitro for plant growth-promoting characteristics, such as indole-3-acetic acid (IAA) production, phosphate solubilisation and siderophore production, effects of direct inoculation on plant growth parameters (shoot fresh weight, root dry weight, leaf number, node number) and accumulation and composition of essential oils. Each of the three native strains was capable of phosphate solubilisation and IAA production. Only strain SJ04 produced siderophores. Plants directly inoculated with the native PGPR strains showed increased shoot fresh weight, glandular trichome number, ramification number and root dry weight in comparison with controls. The inoculated plants had increased essential oil yield (without alteration of essential oil composition) and biosynthesis of major essential oil components. Native strains of P. putida and other PGPR have clear potential as bio-inoculants for improving productivity of aromatic crop plants. There have been no comparative studies on the role of inoculation with native strains on plant growth and secondary metabolite production (specially monoterpenes). Native bacterial isolates are generally preferable for inoculation of crop plants because they are already adapted to the environment and have a competitive advantage over non-native strains.
Collapse
Affiliation(s)
- M V Santoro
- Dpto. Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Rio Cuarto, Argentina
| | - L R Cappellari
- Dpto. Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Rio Cuarto, Argentina
| | - W Giordano
- Dpto. Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Rio Cuarto, Argentina
| | - E Banchio
- Dpto. Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Rio Cuarto, Argentina
| |
Collapse
|
35
|
Schweiger R, Müller C. Leaf metabolome in arbuscular mycorrhizal symbiosis. CURRENT OPINION IN PLANT BIOLOGY 2015; 26:120-126. [PMID: 26202872 DOI: 10.1016/j.pbi.2015.06.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 05/20/2023]
Abstract
Most land plants are associated with arbuscular mycorrhizal fungi, which colonise the plant roots and facilitate the uptake of water and nutrients. In turn, the fungi receive plant carbohydrates. Although the fungus is morphologically restricted to the roots, the exchange of substances and involvement of phytohormone signalling has consequences on systemic shoot tissues. Recent research provides growing insight in the species-specificity of leaf metabolic responses to arbuscular mycorrhiza, revealing that various metabolites can be affected. Such mycorrhiza-mediated changes in the chemical composition of leaf tissues can confer phytoprotection against different abiotic stresses. Moreover, they have consequences on numerous biotic interactions. In this review we highlight such findings and point out fields where more research is required.
Collapse
Affiliation(s)
- Rabea Schweiger
- Department of Chemical Ecology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| |
Collapse
|
36
|
Hart M, Ehret DL, Krumbein A, Leung C, Murch S, Turi C, Franken P. Inoculation with arbuscular mycorrhizal fungi improves the nutritional value of tomatoes. MYCORRHIZA 2015; 25:359-76. [PMID: 25391485 DOI: 10.1007/s00572-014-0617-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/30/2014] [Indexed: 05/07/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi can affect many different micronutrients and macronutrients in plants and also influence host volatile compound synthesis. Their effect on the edible portions of plants is less clear. Two separate studies were performed to investigate whether inoculation by AM fungi (Rhizophagus irregularis, Funneliformis mosseae, or both) can affect the food quality of tomato fruits, in particular common minerals, antioxidants, carotenoids, a suite of vitamins, and flavor compounds (sugars, titratable acids, volatile compounds). It was found that AM fungal inoculation increased the nutrient quality of tomato fruits for most nutrients except vitamins. Fruit mineral concentration increased with inoculation (particularly N, P, and Cu). Similarly, inoculated plants had fruit with higher antioxidant capacity and more carotenoids. Furthermore, five volatile compounds were significantly higher in AM plants compared with non-AM controls. Taken together, these results show that AM fungi represent a promising resource for improving both sustainable food production and human nutritional needs.
Collapse
Affiliation(s)
- Miranda Hart
- Biology, University of British Columbia Okanagan, Kelowna, BC, V1V 1 V7, Canada,
| | | | | | | | | | | | | |
Collapse
|
37
|
Mandal S, Upadhyay S, Wajid S, Ram M, Jain DC, Singh VP, Abdin MZ, Kapoor R. Arbuscular mycorrhiza increase artemisinin accumulation in Artemisia annua by higher expression of key biosynthesis genes via enhanced jasmonic acid levels. MYCORRHIZA 2015; 25:345-57. [PMID: 25366131 DOI: 10.1007/s00572-014-0614-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/17/2014] [Indexed: 05/03/2023]
Abstract
It is becoming increasingly evident that the formation of arbuscular mycorrhiza (AM) enhances secondary metabolite production in shoots. Despite mounting evidence, relatively little is known about the underlying mechanisms. This study suggests that increase in artemisinin concentration in Artemisia annua colonized by Rhizophagus intraradices is due to altered trichome density as well as transcriptional patterns that are mediated via enhanced jasmonic acid (JA) levels. Mycorrhizal (M) plants had higher JA levels in leaf tissue that may be due to induction of an allene oxidase synthase gene (AOS), encoding one of the key enzymes for JA production. Non-mycorrhizal (NM) plants were exogenously supplied with a range of methyl jasmonic acid concentrations. When leaves of NM and M plants with similar levels of endogenous JA were compared, these matched closely in terms of shoot trichome density, artemisinin concentration, and transcript profile of artemisinin biosynthesis genes. Mycorrhization increased artemisinin levels by increasing glandular trichome density and transcriptional activation of artemisinin biosynthesis genes. Transcriptional analysis of some rate-limiting enzymes of mevalonate and methyl erythritol phosphate (MEP) pathways revealed that AM increases isoprenoids by induction of the MEP pathway. A decline in artemisinin concentration in shoots of NM and M plants treated with ibuprofen (an inhibitor of JA biosynthesis) further confirmed the implication of JA in the mechanism of artemisinin production.
Collapse
Affiliation(s)
- Shantanu Mandal
- Department of Botany, University of Delhi, Delhi, 110007, India
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Criado MV, H Gutierrez Boem F, Roberts IN, Caputo C. Post-anthesis N and P dynamics and its impact on grain yield and quality in mycorrhizal barley plants. MYCORRHIZA 2015; 25:229-35. [PMID: 25242016 DOI: 10.1007/s00572-014-0604-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/10/2014] [Indexed: 05/16/2023]
Abstract
An essential goal for modern agriculture is the simultaneous improvement of productivity efficiency and nutrient use efficiency. One way to achieve this goal in crops is to enhance nitrogen (N) and phosphorus (P) acquisition through the mycorrhizal association. This study examined the effect of mycorrhization on post-anthesis N and P dynamics and its impact on grain yield and quality in barley. In addition, the efficiency of both N and P utilization and remobilization was evaluated. With those purposes, barley plants inoculated or not with Rhizophagus intraradices were grown in a soil poor in N and P under greenhouse conditions. Inoculation with R. intraradices in barley enhanced both N and P content in grain and vegetative tissue and reduced phloem amino acid export rate. On the other hand, both N and P vegetative tissue content and phloem amino acid and P export rates decreased during grain filling, whereas N and P grain content increased in both treatments according to the senescence process. However, whereas N grain concentration decreased during grain filling, P grain concentration did not vary, thus suggesting a differential regulation on grain filling. Inoculation with R. intraradices improved the yield and grain quality, thus demonstrating that inoculation with R. intraradices in barley is beneficial, but mycorrhization caused a diminution in nutrient utilization efficiency. As the phloem remobilization rate of amino acids and P did not decrease during grain filling in R. intraradices-inoculated plants compared to non-inoculated ones, these results suggest that nutrient utilization efficiency is most probably regulated by sink strength rather by a mycorrhizal effect.
Collapse
Affiliation(s)
- Maria V Criado
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA)-CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires, C1417DSE, Argentina,
| | | | | | | |
Collapse
|
39
|
del Rosario Cappellari L, Santoro MV, Reinoso H, Travaglia C, Giordano W, Banchio E. Anatomical, Morphological, and Phytochemical Effects of Inoculation with Plant Growth- Promoting Rhizobacteria on Peppermint (Mentha piperita). J Chem Ecol 2015; 41:149-58. [DOI: 10.1007/s10886-015-0549-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 12/04/2014] [Accepted: 01/07/2015] [Indexed: 01/02/2023]
|
40
|
Sbrana C, Avio L, Giovannetti M. Beneficial mycorrhizal symbionts affecting the production of health-promoting phytochemicals. Electrophoresis 2015; 35:1535-46. [PMID: 25025092 DOI: 10.1002/elps.201300568] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fresh fruits and vegetables are largely investigated for their content in vitamins, mineral nutrients, dietary fibers, and plant secondary metabolites, collectively called phytochemicals, which play a beneficial role in human health. Quantity and quality of phytochemicals may be detected by using different analytical techniques, providing accurate quantification and identification of single molecules, along with their molecular structures, and allowing metabolome analyses of plant-based foods. Phytochemicals concentration and profiles are affected by biotic and abiotic factors linked to plant genotype, crop management, harvest season, soil quality, available nutrients, light, and water. Soil health and biological fertility play a key role in the production of safe plant foods, as a result of the action of beneficial soil microorganisms, in particular of the root symbionts arbuscular mycorrhizal fungi. They improve plant nutrition and health and induce changes in secondary metabolism leading to enhanced biosynthesis of health-promoting phytochemicals, such as polyphenols, carotenoids, flavonoids, phytoestrogens, and to a higher activity of antioxidant enzymes. In this review we discuss reports on health-promoting phytochemicals and analytical methods used for their identification and quantification in plants, and on arbuscular mycorrhizal fungi impact on fruits and vegetables nutritional and nutraceutical value.
Collapse
|
41
|
Santoro MV, Cappellari L, Giordano W, Banchio E. Systemic Induction of Secondary Metabolite Biosynthesis in Medicinal Aromatic Plants Mediated by Rhizobacteria. SOIL BIOLOGY 2015. [DOI: 10.1007/978-3-319-13401-7_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
42
|
Pandey DK, Malik T, Dey A, Singh J, Banik RM. Improved growth and colchicine concentration in Gloriosa superba on mycorrhizal inoculation supplemented with phosphorus-fertilizer. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2014; 11:439-46. [PMID: 25435630 DOI: 10.4314/ajtcam.v11i2.30] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Gloriosa superba produces an array of alkaloids including colchicine, a compound of interest in the treatment of various diseases. The tuber of Gloriosa superba is a rich source of colchicine which has shown anti-gout, anti-inflammatory, and anti-tumor activity. However, this promising compound remains expensive and Gloriosa superba is such a good source in global scale. Increase in yield of naturally occurring colchicine is an important area of investigation. MATERIALS AND METHODS The effects of inoculation by four arbuscular mycorrhizal (AM), fungi, Glomus mossae, Glomus fasciculatum, Gigaspora margarita and Gigaspora gilmorei either alone or supplemented with P-fertilizer, on colchicine concentration in Gloriosa superba were studied. The concentration of colchicine was determined by high-performance thin layer chromatography. RESULTS The four fungi significantly increased concentration of colchicine in the herb. Although there was significant increase in concentration of colchicine in non-mycorrhizal P-fertilized plants as compared to control, the extent of the increase was less compared to mycorrhizal plants grown with or without P-fertilization. This suggests that the increase in colchicine concentration may not be entirely attributed to enhanced P-nutrition and improved growth. Among the four AM fungi Glomus mossae was found to be best. The total colchicine content of plant (mg / plant) was significantly high in plants inoculated with Glomus mossae and 25 mg kg(-1)phosphorus fertilizer (348.9 mg /plant) while the control contain least colchicine (177.87 mg / plant). CONCLUSION The study suggests a potential role of AM fungi in improving the concentration of colchicine in Gloriosa superba tuber.
Collapse
Affiliation(s)
- Devendra Kumar Pandey
- Department of Biotechnology, School of Biosciences and Biotechnology, Lovely Professional University.Phagwara144402, India
| | - Tabarak Malik
- Department of Biotechnology, School of Biosciences and Biotechnology, Lovely Professional University.Phagwara144402, India
| | - Abhijit Dey
- Department of Botany, Presidency University, Kolkata
| | - Joginder Singh
- Department of Biotechnology, School of Biosciences and Biotechnology, Lovely Professional University.Phagwara144402, India
| | - R M Banik
- School of Biochemical Engineering, Institute of Technology, Banaras Hindu University, Varanasi - 221005, India
| |
Collapse
|
43
|
Schweiger R, Baier MC, Müller C. Arbuscular mycorrhiza-induced shifts in foliar metabolism and photosynthesis mirror the developmental stage of the symbiosis and are only partly driven by improved phosphate uptake. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1403-1412. [PMID: 25162317 DOI: 10.1094/mpmi-05-14-0126-r] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In arbuscular mycorrhizal (AM) plants, the plant delivers photoassimilates to the arbuscular mycorrhizal fungus (AMF), whereas the mycosymbiont contributes, in addition to other beneficial effects, to phosphate (PO4(3-)) uptake from the soil. Thereby, the additional fungal carbon (C) sink strength in roots and improved plant PO4(3-) nutrition may influence aboveground traits. We investigated how the foliar metabolome of Plantago major is affected along with the development of root symbiosis, whether the photosynthetic performance is affected by AM, and whether these effects are mediated by improved PO4(3-) nutrition. Therefore, we studied PO4(3-)-limited and PO4(3-)-supplemented controls in comparison with mycorrhizal plants at 20, 30, and 62 days postinoculation with the AMF Rhizophagus irregularis. Foliar metabolome modifications were determined by the developmental stage of symbiosis, with changes becoming more pronounced over time. In a well-established stage of mature mutualism, about 60% of the metabolic changes and an increase in foliar CO2 assimilation were unrelated to the significantly increased foliar phosphorus (P) content. We propose a framework relating the time-dependent metabolic changes to the shifts in C costs and P benefits for the plant. Besides P-mediated effects, the strong fungal C sink activity may drive the changes in the leaf traits.
Collapse
|
44
|
Zeng Y, Guo LP, Chen BD, Hao ZP, Wang JY, Huang LQ, Yang G, Cui XM, Yang L, Wu ZX, Chen ML, Zhang Y. Arbuscular mycorrhizal symbiosis for sustainable cultivation of Chinese medicinal plants: a promising research direction. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2014; 41:1199-221. [PMID: 24228596 DOI: 10.1142/s0192415x1350081x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Arbuscular mycorrhizal (AM) are symbiotic systems in nature and have great significance in promoting the growth and stress resistance of medicinal plants. During our literature search from the Chinese Scientific Information Database (Chinese National Knowledge Infrastructure, CNKI) we obtained 65 articles with "AM fungi" and "medicinal plant" as the key words, which indicates that in China, research efforts on these topics have been increasing. The main purposes of this review are to discuss the effects of mycorrhiza on the active ingredients of Chinese medicinal plants in comparison with results obtained in other plants in studies conducted by the international research community, and to introduce works published in Chinese journals to international colleagues.
Collapse
Affiliation(s)
- Yan Zeng
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China , China National Corp. of Traditional and Herbal Medicine, Beijing 100195, People's Republic of China , State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lingua G, Bona E, Manassero P, Marsano F, Todeschini V, Cantamessa S, Copetta A, D’Agostino G, Gamalero E, Berta G. Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads increases anthocyanin concentration in strawberry fruits (Fragaria x ananassa var. Selva) in conditions of reduced fertilization. Int J Mol Sci 2013; 14:16207-25. [PMID: 23924942 PMCID: PMC3759907 DOI: 10.3390/ijms140816207] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/19/2013] [Accepted: 07/25/2013] [Indexed: 11/16/2022] Open
Abstract
Anthocyanins are a group of common phenolic compounds in plants. They are mainly detected in flowers and fruits, are believed to play different important roles such as in the attraction of animals and seed dispersal, and also in the increase of the antioxidant response in tissues directly or indirectly affected by biotic or abiotic stress factors. As a major group of secondary metabolites in plants commonly consumed as food, they are of importance in both the food industry and human nutrition. It is known that arbuscular mycorrhizal (AM) fungi can influence the plant secondary metabolic pathways such as the synthesis of essential oils in aromatic plants, of secondary metabolites in roots, and increase flavonoid concentration. Plant Growth-Promoting Bacteria (PGPB) are able to increase plant growth, improving plant nutrition and supporting plant development under natural or stressed conditions. Various studies confirmed that a number of bacterial species living on and inside the root system are beneficial for plant growth, yield and crop quality. In this work it is shown that inoculation with AM fungi and/or with selected and tested Pseudomonas strains, under conditions of reduced fertilization, increases anthocyanin concentration in the fruits of strawberry.
Collapse
Affiliation(s)
- Guido Lingua
- Department of Sciences and Innovative Technology, University of Piemonte Orientale, Viale T. Michel 11, Alessandria 15121, Italy; E-Mails: (G.L.); (P.M.); (F.M.); (V.T.); (S.C.); (A.C.); (E.G.); (G.B.)
| | - Elisa Bona
- Department of Sciences and Innovative Technology, University of Piemonte Orientale, Viale T. Michel 11, Alessandria 15121, Italy; E-Mails: (G.L.); (P.M.); (F.M.); (V.T.); (S.C.); (A.C.); (E.G.); (G.B.)
| | - Paola Manassero
- Department of Sciences and Innovative Technology, University of Piemonte Orientale, Viale T. Michel 11, Alessandria 15121, Italy; E-Mails: (G.L.); (P.M.); (F.M.); (V.T.); (S.C.); (A.C.); (E.G.); (G.B.)
| | - Francesco Marsano
- Department of Sciences and Innovative Technology, University of Piemonte Orientale, Viale T. Michel 11, Alessandria 15121, Italy; E-Mails: (G.L.); (P.M.); (F.M.); (V.T.); (S.C.); (A.C.); (E.G.); (G.B.)
| | - Valeria Todeschini
- Department of Sciences and Innovative Technology, University of Piemonte Orientale, Viale T. Michel 11, Alessandria 15121, Italy; E-Mails: (G.L.); (P.M.); (F.M.); (V.T.); (S.C.); (A.C.); (E.G.); (G.B.)
| | - Simone Cantamessa
- Department of Sciences and Innovative Technology, University of Piemonte Orientale, Viale T. Michel 11, Alessandria 15121, Italy; E-Mails: (G.L.); (P.M.); (F.M.); (V.T.); (S.C.); (A.C.); (E.G.); (G.B.)
- Mybasol srl, Via Gentilini, Alessandria 15121, Italy; E-Mail:
| | - Andrea Copetta
- Department of Sciences and Innovative Technology, University of Piemonte Orientale, Viale T. Michel 11, Alessandria 15121, Italy; E-Mails: (G.L.); (P.M.); (F.M.); (V.T.); (S.C.); (A.C.); (E.G.); (G.B.)
- Mybasol srl, Via Gentilini, Alessandria 15121, Italy; E-Mail:
| | | | - Elisa Gamalero
- Department of Sciences and Innovative Technology, University of Piemonte Orientale, Viale T. Michel 11, Alessandria 15121, Italy; E-Mails: (G.L.); (P.M.); (F.M.); (V.T.); (S.C.); (A.C.); (E.G.); (G.B.)
- Mybasol srl, Via Gentilini, Alessandria 15121, Italy; E-Mail:
| | - Graziella Berta
- Department of Sciences and Innovative Technology, University of Piemonte Orientale, Viale T. Michel 11, Alessandria 15121, Italy; E-Mails: (G.L.); (P.M.); (F.M.); (V.T.); (S.C.); (A.C.); (E.G.); (G.B.)
- Mybasol srl, Via Gentilini, Alessandria 15121, Italy; E-Mail:
| |
Collapse
|
46
|
Zeng Y, Guo LP, Chen BD, Hao ZP, Wang JY, Huang LQ, Yang G, Cui XM, Yang L, Wu ZX, Chen ML, Zhang Y. Arbuscular mycorrhizal symbiosis and active ingredients of medicinal plants: current research status and prospectives. MYCORRHIZA 2013; 23:253-65. [PMID: 23417725 DOI: 10.1007/s00572-013-0484-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 01/31/2013] [Indexed: 05/11/2023]
Abstract
Medicinal plants have been used world-wide for thousands of years and are widely recognized as having high healing but minor toxic side effects. The scarcity and increasing demand for medicinal plants and their products have promoted the development of artificial cultivation of medicinal plants. Currently, one of the prominent issues in medicinal cultivation systems is the unstable quality of the products. Arbuscular mycorrhiza (AM) affects secondary metabolism and the production of active ingredients of medicinal plants and thus influence the quality of herbal medicines. In this review, we have assembled, analyzed, and summarized the effects of AM symbioses on secondary metabolites of medicinal plants. We conclude that symbiosis of AM is conducive to favorable characteristics of medicinal plants, by improving the production and accumulation of important active ingredients of medicinal plants such as terpenes, phenols, and alkaloids, optimizing the composition of different active ingredients in medicinal plants and ultimately improving the quality of herbal materials. We are convinced that the AM symbiosis will benefit the cultivation of medicinal plants and improve the total yield and quality of herbal materials. Through this review, we hope to draw attention to the status and prospects of, and arouse more interest in, the research field of medicinal plants and mycorrhiza.
Collapse
Affiliation(s)
- Yan Zeng
- Chinese Materia Medica Resources Center, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Dongcheng District, Beijing 100700, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Pedone-Bonfim MVL, Lins MA, Coelho IR, Santana AS, Silva FSB, Maia LC. Mycorrhizal technology and phosphorus in the production of primary and secondary metabolites in cebil (Anadenanthera colubrina (Vell.) Brenan) seedlings. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:1479-1484. [PMID: 23108717 DOI: 10.1002/jsfa.5919] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 09/04/2012] [Accepted: 09/11/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND The application of arbuscular mycorrhizal fungi (AMF) can increase the growth and concentration of primary and secondary metabolites in several plant species. Cebil (Anadenanthera colubrina), a medicinal plant, benefits from mycorrhizal association, but the influence of the symbiosis on the production of its bioactive compounds is unknown. In this study the effect of mycorrhizal inoculation and phosphorus (P) supply on the production of primary and secondary metabolites in cebil seedlings was determined. RESULTS The production of proteins and carbohydrates in terms of both concentration and content was enhanced by inoculation with AMF, but this benefit was mitigated at higher levels of P (30 and 50 mg dm(-3) soil). The concentration of phenols, flavonoids and total tannins was favoured by mycorrhizal inoculation even at the highest levels of P (30 and 50 mg dm(-3) soil). CONCLUSION The production of primary and secondary metabolites in leaves of A. colubrina can be maximised by mycorrhization, with the benefit depending on supplementation of soil phosphate.
Collapse
Affiliation(s)
- Maria V L Pedone-Bonfim
- Departamento de Micologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | | | | | | | |
Collapse
|
48
|
Asensio D, Rapparini F, Peñuelas J. AM fungi root colonization increases the production of essential isoprenoids vs. nonessential isoprenoids especially under drought stress conditions or after jasmonic acid application. PHYTOCHEMISTRY 2012; 77:149-61. [PMID: 22296838 DOI: 10.1016/j.phytochem.2011.12.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 12/16/2011] [Accepted: 12/22/2011] [Indexed: 05/14/2023]
Abstract
Previous studies have shown that root colonization by arbuscular mycorrhiza (AM) fungi enhances plant resistance to abiotic and biotic stressors and finally plant growth. However, little is known about the effect of AM on isoprenoid foliar and root content. In this study we tested whether the AM symbiosis affects carbon resource allocation to different classes of isoprenoids such as the volatile nonessential isoprenoids (monoterpenes and sesquiterpenes) and the non-volatile essential isoprenoids (abscisic acid, chlorophylls and carotenoids). By subjecting the plants to stressors such as drought and to exogenous application of JA, we wanted to test their interaction with AM symbiosis in conditions where isoprenoids usually play a role in resistance to stress and in plant defence. Root colonization by AM fungi favoured the leaf production of essential isoprenoids rather than nonessential ones, especially under drought stress conditions or after JA application. The increased carbon demand brought on by AM fungi might thus influence not only the amount of carbon allocated to isoprenoids, but also the carbon partitioning between the different classes of isoprenoids, thus explaining the not previously shown decrease of root volatile isoprenoids in AM plants. We propose that since AM fungi are a nutrient source for the plant, other carbon sinks normally necessary to increase nutrient uptake can be avoided and therefore the plant can devote more resources to synthesize essential isoprenoids for plant growth.
Collapse
Affiliation(s)
- Dolores Asensio
- Global Ecology Unit CREAF-CEAB-CSIC, Center for Ecological Research and Forestry Applications, Edifici C, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | | | | |
Collapse
|
49
|
Zubek S, Mielcarek S, Turnau K. Hypericin and pseudohypericin concentrations of a valuable medicinal plant Hypericum perforatum L. are enhanced by arbuscular mycorrhizal fungi. MYCORRHIZA 2012; 22:149-56. [PMID: 21626142 PMCID: PMC3261393 DOI: 10.1007/s00572-011-0391-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 05/15/2011] [Indexed: 05/09/2023]
Abstract
Hypericum perforatum L. (St. John's-wort, Hypericaceae) is a valuable medicinal plant species cultivated for pharmaceutical purposes. Although the chemical composition and pharmacological activities of H. perforatum have been well studied, no data are available concerning the influence of arbuscular mycorrhizal fungi (AMF) on this important herb. A laboratory experiment was therefore conducted in order to test three AMF inocula on H. perforatum with a view to show whether AMF could influence plant vitality (biomass and photosynthetic activity) and the production of the most valuable secondary metabolites, namely anthraquinone derivatives (hypericin and pseudohypericin) as well as the prenylated phloroglucinol-hyperforin. The following treatments were prepared: (1) control-sterile soil without AMF inoculation, (2) Rhizophagus intraradices (syn. Glomus intraradices), (3) Funneliformis mosseae (syn. Glomus mosseae), and (4) an AMF Mix which contained: Funneliformis constrictum (syn. Glomus constrictum), Funneliformis geosporum (syn. Glomus geosporum), F. mosseae, and R. intraradices. The application of R. intraradices inoculum resulted in the highest mycorrhizal colonization, whereas the lowest values of mycorrhizal parameters were detected in the AMF Mix. There were no statistically significant differences in H. perforatum shoot mass in any of the treatments. However, we found AMF species specificity in the stimulation of H. perforatum photosynthetic activity and the production of secondary metabolites. Inoculation with the AMF Mix resulted in higher photosynthetic performance index (PI(total)) values in comparison to all the other treatments. The plants inoculated with R. intraradices and the AMF Mix were characterized by a higher concentration of hypericin and pseudohypericin in the shoots. However, no differences in the content of these metabolites were detected after the application of F. mosseae. In the case of hyperforin, no significant differences were found between the control plants and those inoculated with any of the AMF applied. The enhanced content of anthraquinone derivatives and, at the same time, better plant vitality suggest that the improved production of these metabolites was a result of the positive effect of the applied AMF strains on H. perforatum. This could be due to improved mineral nutrition or to AMF-induced changes in the phytohormonal balance. Our results are promising from the biotechnological point of view, i.e. the future inoculation of H. perforatum with AMF in order to improve the quality of medicinal plant raw material obtained from cultivation.
Collapse
Affiliation(s)
- Szymon Zubek
- Laboratory of Mycology, Institute of Botany, Jagiellonian University, Lubicz 46, Kraków, Poland.
| | | | | |
Collapse
|
50
|
Schroeder V, Gange AC, Stead AD. Underground networking: the potential for improving yield and quality of pot-grown herbs with mycorrhizas. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2012; 92:203-206. [PMID: 21987369 DOI: 10.1002/jsfa.4648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 06/14/2011] [Indexed: 05/31/2023]
Abstract
With constant pressure on herb growers to perform to a continuous high standard, finding new ways to improve herb quality and or quantity are gaining importance, with arbuscular mycorrhizal fungi (AMF) presenting one possible solution. Viviane Schroeder, Alan Gange and Anthony Stead discuss the introduction of AMF to the herb growth cycle and discuss the benefits and costs that their symbiosis with plants bring to modern agriculture.
Collapse
Affiliation(s)
- Viviane Schroeder
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK.
| | | | | |
Collapse
|