1
|
Sharma K, Singh M, Srivastava DK, Singh PK. Exploring the Diversity, Root Colonization, and Morphology of Arbuscular Mycorrhizal Fungi in Lamiaceae. J Basic Microbiol 2024:e2400379. [PMID: 39428672 DOI: 10.1002/jobm.202400379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/22/2024] [Accepted: 09/29/2024] [Indexed: 10/22/2024]
Abstract
This study aimed to explore the diversity, root morphology, and colonization of arbuscular mycorrhizal fungi (AMF) associated with eight medicinal plants of the Lamiaceae family. Rhizospheric soil and root samples were collected from eight species of Lamiaceae plants for AMF analysis. The results indicate that root colonization was not directly related to the number of AMF spores in the rhizosphere. However, a significant correlation was found between the percentage of root colonization and the number of AMF species present in the individual plants. The highest percentage of colonization (86.67 ± 1.92%) and the greatest number of AMF species were observed in Micromeria fructicosa, while the lowest colonization (27.67 ± 6.22%) was recorded in Mentha arvensis. The highest spore count was recorded in Thymus vulgaris (120 ± 27.01), whereas the lowest was found in Melissa officinalis (84 ± 17.20). Among the identified AMF species, Glomus was the most dominant, representing 35.7% of all AMF species across the eight medicinal plants. The maximum AMF spore density was observed in M. fructicosa and lowest in M. arvensis. The study suggests that AMF can significantly enhance medicinal plant growth by ensuring a consistent supply of nutrients and water, thereby supporting the sustainable cultivation of medicinal plants to meet the growing demand.
Collapse
Affiliation(s)
- Kalpana Sharma
- Department of Botany, Akal College of Basic Sciences, Eternal University, Baru Sahib, India
| | - Meenakshi Singh
- Department of Environmental Studies, Faculty of Science, Panjab University, Chandigarh, India
| | | | - Pradeep Kumar Singh
- Department of Botany, Akal College of Basic Sciences, Eternal University, Baru Sahib, India
| |
Collapse
|
2
|
Fiorilli V, Martínez-Medina A, Pozo MJ, Lanfranco L. Plant Immunity Modulation in Arbuscular Mycorrhizal Symbiosis and Its Impact on Pathogens and Pests. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:127-156. [PMID: 39251211 DOI: 10.1146/annurev-phyto-121423-042014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Arbuscular mycorrhizal (AM) symbiosis is the oldest and most widespread mutualistic association on Earth and involves plants and soil fungi belonging to Glomeromycotina. A complex molecular, cellular, and genetic developmental program enables partner recognition, fungal accommodation in plant tissues, and activation of symbiotic functions such as transfer of phosphorus in exchange for carbohydrates and lipids. AM fungi, as ancient obligate biotrophs, have evolved strategies to circumvent plant defense responses to guarantee an intimate and long-lasting mutualism. They are among those root-associated microorganisms able to boost plants' ability to cope with biotic stresses leading to mycorrhiza-induced resistance (MIR), which can be effective across diverse hosts and against different attackers. Here, we examine the molecular mechanisms underlying the modulation of plant immunity during colonization by AM fungi and at the onset and display of MIR against belowground and aboveground pests and pathogens. Understanding the MIR efficiency spectrum and its regulation is of great importance to optimizing the biotechnological application of these beneficial microbes for sustainable crop protection.
Collapse
Affiliation(s)
- V Fiorilli
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy;
| | - A Martínez-Medina
- Department of Plant-Microbe Interactions, Institute of Natural Resources and Agrobiology of Salamanca, CSIC, Salamanca, Spain
| | - Maria J Pozo
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain;
| | - L Lanfranco
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy;
| |
Collapse
|
3
|
Lin YM, Li MH, Dai CY, Liu Y, Zhang WP, Yang Q, Cui XM, Yang Y. Dazomet fumigation modification of the soil microorganism community and promotion of Panax notoginseng growth. Front Microbiol 2024; 15:1443526. [PMID: 39132142 PMCID: PMC11309993 DOI: 10.3389/fmicb.2024.1443526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Introduction Panax notoginseng, a medicinal herb in China, is attacked by several pathogens during its cultivation. Dazomet (DZ) is a soil fumigant that is effective in controlling soil-borne pathogens, but its long-term effects on P. notoginseng growth and soil properties are unknown. Methods We conducted field experiments over two consecutive years to assess the impact of three concentrations of DZ fumigation (35 kg/666.7 m2, 40 kg/666.7 m2, and 45 kg/666.7 m2) on soil physicochemical properties, microbial diversity, and P. notoginseng growth. Correlation analyses were performed between microbial community changes and soil properties, and functional predictions for soil microorganisms were conducted. Results DZ fumigation increased total nitrogen, total phosphorus, total potassium, available phosphorus, available potassium, and ammonia nitrogen levels in the soil. DZ fumigation promoted the nutrient accumulation and improvement of agronomic traits of P. notoginseng, resulted in a 2.83-3.81X yield increase, with the highest total saponin content increasing by 24.06%. And the 40 kg/666.7 m2 treatment had the most favorable impact on P. notoginseng growth and saponin accumulation. After DZ fumigation, there was a decrease in the relative abundance of pathogenic fungi such as Fusarium, Plectosphaerella, and Ilyonectria, while beneficial bacteria such as Ramlibacter, Burkholderia, and Rhodanobacteria increased. The effects of fumigation on soil microorganisms and soil physicochemical properties persisted for 18 months post-fumigation. DZ fumigation enhanced the relative abundance of bacteria involved in the biosynthesis of secondary metabolites and arbuscular mycorrhizal fungi, reduced the relative abundance of plant-animal pathogenic fungi, reduced the occurrence of soil-borne diseases. Conclusion In conclusion, DZ fumigation enhanced soil physicochemical properties, increased the proportion of beneficial bacteria in the soil, and rebalanced soil microorganism populations, consequently improving the growth environment of P. notoginseng and enhancing its growth, yield, and quality. This study offers a theoretical foundation for DZ fumigation as a potential solution to the continuous cropping issue in perennial medicinal plants such as P. notoginseng.
Collapse
Affiliation(s)
- Ya-meng Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
| | - Ming-hua Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
| | - Chun-yan Dai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
| | - Yuan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
| | - Wen-ping Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
| | - Qian Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
| | - Xiu-ming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
| | - Ye Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
| |
Collapse
|
4
|
Duan S, Feng G, Limpens E, Bonfante P, Xie X, Zhang L. Cross-kingdom nutrient exchange in the plant-arbuscular mycorrhizal fungus-bacterium continuum. Nat Rev Microbiol 2024:10.1038/s41579-024-01073-7. [PMID: 39014094 DOI: 10.1038/s41579-024-01073-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2024] [Indexed: 07/18/2024]
Abstract
The association between plants and arbuscular mycorrhizal fungi (AMF) affects plant performance and ecosystem functioning. Recent studies have identified AMF-associated bacteria as cooperative partners that participate in AMF-plant symbiosis: specific endobacteria live inside AMF, and hyphospheric bacteria colonize the soil that surrounds the extraradical hyphae. In this Review, we describe the concept of a plant-AMF-bacterium continuum, summarize current advances and provide perspectives on soil microbiology. First, we review the top-down carbon flow and the bottom-up mineral flow (especially phosphorus and nitrogen) in this continuum, as well as how AMF-bacteria interactions influence the biogeochemical cycling of nutrients (for example, carbon, phosphorus and nitrogen). Second, we discuss how AMF interact with hyphospheric bacteria or endobacteria to regulate nutrient exchange between plants and AMF, and the possible molecular mechanisms that underpin this continuum. Finally, we explore future prospects for studies on the hyphosphere to facilitate the utilization of AMF and hyphospheric bacteria in sustainable agriculture.
Collapse
Affiliation(s)
- Shilong Duan
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Gu Feng
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Erik Limpens
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.
| | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China.
| | - Lin Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China.
| |
Collapse
|
5
|
Tapwal A, Kumar A, Sharma S, Sharma YP. Unveiling the potential of native arbuscular mycorrhizal fungi for growth promotion and phytochemical enrichment in Valeriana jatamansi Jones. Int Microbiol 2024:10.1007/s10123-024-00548-0. [PMID: 38951390 DOI: 10.1007/s10123-024-00548-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 07/03/2024]
Abstract
Medicinal plants are rich sources of pharmaceutically important compounds and have been utilized for the treatment of various diseases since ancient times. Valeriana jatamansi Jones, also known as Indian valerian, holds a special place among temperate Himalayan medicinal plants and is renowned for its therapeutic properties in addressing a variety of ailments. The therapeutic potential of V. jatamansi is attributed to the presence of valuable compounds such as valepotriates, sesquiterpenoids, valeriananoids, jatamanins, lignans, cryptomeridiol, maaliol, xanthorrhizzol, and patchouli alcohol found in its rhizome and roots. This study employed various treatments, including the cultivation of V. jatamansi with the inoculation of Funneliformis mosseae, F. constrictus, and a consortium of arbuscular mycorrhizal fungi (AMF), to investigate their influence on biomass production, chlorophyll content, and the accumulation of bioactive compounds in V. jatamansi. The results revealed significant improvement in these parameters in the inoculated plants. The parameters of plants inoculated with F. mosseae were the highest, followed by those of plants inoculated with F. constrictus and a mixture of AMFs. This study not only underscores the potential of native AMF for promoting the growth of V. jatamansi but also elucidates their role in influencing the synthesis of bioactive compounds. The cultivation of V. jatamansi with native AMF has emerged as a sustainable and eco-friendly approach, providing the dual benefit of enhancing both the medicinal and economic value of this valuable plant. This research contributes valuable insights into the practical application of mycorrhizal associations for the cultivation of medicinal plants, bridging the realms of agriculture and pharmaceuticals.
Collapse
Affiliation(s)
- Ashwani Tapwal
- ICFRE-Himalayan Forest Research Institute, Shimla, 171013, India.
| | - Ajay Kumar
- ICFRE-Himalayan Forest Research Institute, Shimla, 171013, India
- Present Address: M.C.M. D.A.V College Kangra, 176001, Himachal Pradesh, Kangra, India
| | - Sandeep Sharma
- ICFRE-Himalayan Forest Research Institute, Shimla, 171013, India
| | - Yash Pal Sharma
- Dr. Y.S, Parmar University of Horticulture and Forestry, Solan, 173230, India
| |
Collapse
|
6
|
Xu H, Shi Y, Chen C, Pang Z, Zhang G, Zhang W, Kan H. Arbuscular Mycorrhizal Fungi Selectively Promoted the Growth of Three Ecological Restoration Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:1678. [PMID: 38931110 PMCID: PMC11207293 DOI: 10.3390/plants13121678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Arbuscular mycorrhizal inoculation can promote plant growth, but specific research on the difference in the symbiosis effect of arbuscular mycorrhizal fungi and plant combination is not yet in-depth. Therefore, this study selected Medicago sativa L., Bromus inermis Leyss, and Festuca arundinacea Schreb., which were commonly used for restoring degraded land in China to inoculate with three AMF separately, to explore the effects of different AMF inoculation on the growth performance and nutrient absorption of different plants and to provide a scientific basis for the research and development of the combination of mycorrhiza and plants. We set up four treatments with inoculation Entrophospora etunicata (EE), Funneliformis mosseae (FM), Rhizophagus intraradices (RI), and non-inoculation. The main research findings are as follows: the three AMF formed a good symbiotic relationship with the three grassland plants, with RI and FM having more significant inoculation effects on plant height, biomass, and tiller number. Compared with C, the aboveground biomass of Medicago sativa L., Bromus inermis Leyss, and Festuca arundinacea Schreb. inoculated with AMF increased by 101.30-174.29%, 51.67-74.14%, and 110.67-174.67%. AMF inoculation enhanced the plant uptake of N, P, and K, and plant P and K contents were significantly correlated with plant biomass. PLS-PM analyses of three plants all showed that AMF inoculation increased plant nutrient uptake and then increased aboveground biomass and underground biomass by increasing plant height and root tillering. This study showed that RI was a more suitable AMF for combination with grassland degradation restoration grass species and proposed the potential mechanism of AMF-plant symbiosis to increase yield.
Collapse
Affiliation(s)
- Hengkang Xu
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), No. 9 Shuguang Garden Middle Road, Haidian District, Beijing 100097, China; (H.X.); (C.C.); (Z.P.); (G.Z.); (W.Z.)
| | - Yuchuan Shi
- College of Grassland Science and Technology, China Agricultural University, Beijing 100107, China;
| | - Chao Chen
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), No. 9 Shuguang Garden Middle Road, Haidian District, Beijing 100097, China; (H.X.); (C.C.); (Z.P.); (G.Z.); (W.Z.)
| | - Zhuo Pang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), No. 9 Shuguang Garden Middle Road, Haidian District, Beijing 100097, China; (H.X.); (C.C.); (Z.P.); (G.Z.); (W.Z.)
| | - Guofang Zhang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), No. 9 Shuguang Garden Middle Road, Haidian District, Beijing 100097, China; (H.X.); (C.C.); (Z.P.); (G.Z.); (W.Z.)
| | - Weiwei Zhang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), No. 9 Shuguang Garden Middle Road, Haidian District, Beijing 100097, China; (H.X.); (C.C.); (Z.P.); (G.Z.); (W.Z.)
| | - Haiming Kan
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), No. 9 Shuguang Garden Middle Road, Haidian District, Beijing 100097, China; (H.X.); (C.C.); (Z.P.); (G.Z.); (W.Z.)
| |
Collapse
|
7
|
Lv J, Yang S, Zhou W, Liu Z, Tan J, Wei M. Microbial regulation of plant secondary metabolites: Impact, mechanisms and prospects. Microbiol Res 2024; 283:127688. [PMID: 38479233 DOI: 10.1016/j.micres.2024.127688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/17/2024]
Abstract
Plant secondary metabolites possess a wide range of pharmacological activities and play crucial biological roles. They serve as both a defense response during pathogen attack and a valuable drug resource. The role of microorganisms in the regulation of plant secondary metabolism has been widely recognized. The addition of specific microorganisms can increase the synthesis of secondary metabolites, and their beneficial effects depend on environmental factors and plant-related microorganisms. This article summarizes the impact and regulatory mechanisms of different microorganisms on the main secondary metabolic products of plants. We emphasize the mechanisms by which microorganisms regulate hormone levels, nutrient absorption, the supply of precursor substances, and enzyme and gene expression to promote the accumulation of plant secondary metabolites. In addition, the possible negative feedback regulation of microorganisms is discussed. The identification of additional unknown microbes and other driving factors affecting plant secondary metabolism is essential. The prospects for further analysis of medicinal plant genomes and the establishment of a genetic operation system for plant secondary metabolism research are proposed. This study provides new ideas for the use of microbial resources for biological synthesis research and the improvement of crop anti-inverse traits for the use of microbial resources.
Collapse
Affiliation(s)
- Jiayan Lv
- School of Agriculture, Shenzhen Campus, Sun Yat-sen University, Guangdong, Shenzhen 518107, China
| | - Shuangyu Yang
- School of Agriculture, Shenzhen Campus, Sun Yat-sen University, Guangdong, Shenzhen 518107, China
| | - Wei Zhou
- School of Agriculture, Shenzhen Campus, Sun Yat-sen University, Guangdong, Shenzhen 518107, China
| | - Zhongwang Liu
- School of Agriculture, Shenzhen Campus, Sun Yat-sen University, Guangdong, Shenzhen 518107, China
| | - Jinfang Tan
- School of Agriculture, Shenzhen Campus, Sun Yat-sen University, Guangdong, Shenzhen 518107, China
| | - Mi Wei
- School of Agriculture, Shenzhen Campus, Sun Yat-sen University, Guangdong, Shenzhen 518107, China; Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China.
| |
Collapse
|
8
|
Ghorui M, Chowdhury S, Balu P, Burla S. Arbuscular Mycorrhizal inoculants and its regulatory landscape. Heliyon 2024; 10:e30359. [PMID: 38711654 PMCID: PMC11070868 DOI: 10.1016/j.heliyon.2024.e30359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024] Open
Abstract
One of the most prominent means for sustainable agriculture and ecosystem management are Arbuscular Mycorrhizal (AM) inoculants. These inoculants establish beneficial symbiotic relationships with land plant roots, offering a wide range of benefits, from enhanced nutrient absorption to improved resilience against environmental stressors. However, several currently available commercial AM inoculants face challenges such as inconsistency in field applications, ecological risks associated with non-native strains, and the absence of universal regulations. Currently, regulations for AM inoculants vary globally, with some regions leading efforts to standardize and ensure quality control. Proposed regulatory frameworks aim to establish parameters for composition, safety, and efficacy. Nevertheless, challenges persist in terms of scientific data, standardization, testing under real conditions, and the ecological impact of these inoculants. To address these challenges and unlock the full potential of AM inoculants, increased research funding, public-private partnerships, monitoring, awareness, and ecosystem impact studies are recommended. Future regulations have the potential to improve product quality, soil health, and crop productivity while reducing reliance on chemical inputs and benefiting the environment. However, addressing issues related to compliance, standardization, education, certification, monitoring, and cost is essential for realizing these benefits. Global harmonization and collaborative efforts are vital to maximize their impact on agriculture and ecosystem management, leading to healthier soils, increased crop yields, and a more sustainable agricultural industry.
Collapse
Affiliation(s)
- Maunata Ghorui
- Symbiotic Sciences Pvt. Ltd., Plot no 575, Pace City-II, Sector 37, Gurugram, Haryana, 122001, India
| | - Shouvik Chowdhury
- Symbiotic Sciences Pvt. Ltd., Plot no 575, Pace City-II, Sector 37, Gurugram, Haryana, 122001, India
| | - Prakash Balu
- Department of Biotechnology, School of Life Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Pallavaram, Chennai, 600 117, India
| | - Sashidhar Burla
- ATGC Biotech Pvt. Ltd., Sy. No. 494, 495 & 496, ATGC Agri Biotech Innovation Square, TSIC Kolthur Biotech Park, Genome Valley, Shamirpet Mandal, Hyderabad, Telangana 500078, India
| |
Collapse
|
9
|
Fotovvat M, Najafi F, Khavari-Nejad RA, Talei D, Rejali F. Investigating the simultaneous effect of chitosan and arbuscular mycorrhizal fungi on growth, phenolic compounds, PAL enzyme activity and lipid peroxidation in Salvia nemorosa L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108617. [PMID: 38608504 DOI: 10.1016/j.plaphy.2024.108617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Considering the importance of Salvia nemorosa L. in the pharmaceutical and food industries, and also beneficial approaches of arbuscular mycorrhizal fungi (AMF) symbiosis and the use of bioelicitors such as chitosan to improve secondary metabolites, the aim of this study was to evaluate the performance of chitosan on the symbiosis of AMF and the effect of both on the biochemical and phytochemical performance of this plant and finally introduced the best treatment. Two factors were considered for the factorial experiment: AMF with four levels (non-inoculated plants, Funneliformis mosseae, Rhizophagus intraradices and the combination of both), and chitosan with six levels (0, 50, 100, 200, 400 mg L-1 and 1% acetic acid). Four months after treatments, the aerial part and root length, the levels of lipid peroxidation, H2O2, phenylalanine ammonia lyase (PAL) activity, total phenol and flavonoid contents and the main secondary metabolites (rosmarinic acid and quercetin) in the leaves and roots were determined. The flowering stage was observed in R. intraradices treatments and the highest percentage of colonization (78.87%) was observed in the treatment of F. mosseae × 400 mg L-1 chitosan. Furthermore, simultaneous application of chitosan and AMF were more effective than their separate application to induce phenolic compounds accumulation, PAL activity and reduce oxidative compounds. The cluster and principal component analysis based on the measured variables indicated that the treatments could be classified into three clusters. It seems that different treatments in different tissues have different effects. However, in an overview, it can be concluded that 400 mg L-1 chitosan and F. mosseae × R. intraradices showed better results in single and simultaneous applications. The results of this research can be considered in the optimization of this medicinal plant under normal conditions and experiments related to abiotic stresses in the future.
Collapse
Affiliation(s)
- Marzieh Fotovvat
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, 15719-14911, Tehran, Iran.
| | - Farzaneh Najafi
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, 15719-14911, Tehran, Iran.
| | - Ramazan Ali Khavari-Nejad
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, 15719-14911, Tehran, Iran
| | - Daryush Talei
- Medicinal Plants Research Center, Shahed University, 3319118651, Tehran, Iran
| | - Farhad Rejali
- Soil and Water Research Institute, Agricultural Research Education and Extension Organization (AREEO), 3177993545, Karaj, Iran
| |
Collapse
|
10
|
Leng C, Hou M, Xing Y, Chen J. Perspective and challenges of mycorrhizal symbiosis in orchid medicinal plants. CHINESE HERBAL MEDICINES 2024; 16:172-179. [PMID: 38706832 PMCID: PMC11064572 DOI: 10.1016/j.chmed.2024.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 05/07/2024] Open
Abstract
The family Orchidaceae is of the most diverse taxon in the plant kingdom, and most of its members are highly valuable herbal medicines. Orchids have a unique mycorrhizal symbiotic relationship with specific fungi for carbohydrate and nutrient supplies in their whole lifecycle. The large-scale cultivation of the medicinal plant Gastodia elata is a successful example of using mycorrhizal symbiotic technology. In this review, we adopted G. elata and Dendrobium officinale as examples to describe the characteristics of orchid mycorrhiza and mycorrhizal benefits for host plants' growth and health (e.g. biotic and abiotic stress and secondary metabolite accumulation). The challenges in applying mycorrhizal technology to the cultivation of orchid medicinal plants in the future were also discussed. This review aims to serve as a theoretical guide for the cultivation of mycorrhizal technology in medicinal orchid plants.
Collapse
Affiliation(s)
- Chunyan Leng
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Mengyan Hou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yongmei Xing
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Juan Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
11
|
Metwally RA, Taha MA, El-Moaty NMA, Abdelhameed RE. Attenuation of Zucchini mosaic virus disease in cucumber plants by mycorrhizal symbiosis. PLANT CELL REPORTS 2024; 43:54. [PMID: 38315215 PMCID: PMC10844420 DOI: 10.1007/s00299-023-03138-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024]
Abstract
KEY MESSAGE Arbuscular mycorrhizal fungi generated systemic acquired resistance in cucumber to Zucchini yellow mosaic virus, indicating their prospective application in the soil as a sustainable, environmentally friendly approach to inhibit the spread of pathogens. The wide spread of plant pathogens affects the whole world, causing several plant diseases and threatening national food security as it disrupts the quantity and quality of economically important crops. Recently, environmentally acceptable mitigating practices have been required for sustainable agriculture, restricting the use of chemical fertilizers in agricultural areas. Herein, the biological control of Zucchini yellow mosaic virus (ZYMV) in cucumber (Cucumis sativus L.) plants using arbuscular mycorrhizal (AM) fungi was investigated. Compared to control plants, ZYMV-infected plants displayed high disease incidence (DI) and severity (DS) with various symptoms, including severe yellow mosaic, mottling and green blisters of leaves. However, AM fungal inoculation exhibited 50% inhibition for these symptoms and limited DS to 26% as compared to non-colonized ones. The detection of ZYMV by the Enzyme-Linked Immunosorbent Assay technique exhibited a significant reduction in AM-inoculated plants (5.23-fold) compared with non-colonized ones. Besides, mycorrhizal root colonization (F%) was slightly reduced by ZYMV infection. ZYMV infection decreased all growth parameters and pigment fractions and increased the malondialdehyde (MDA) content, however, these parameters were significantly enhanced and the MDA content was decreased by AM fungal colonization. Also, the protein, proline and antioxidant enzymes (POX and CAT) were increased with ZYMV infection with more enhancements due to AM root colonization. Remarkably, defence pathogenesis-related (PR) genes such as PR-a, PR-b, and PR-10 were quickly expressed in response to AM treatment. Our findings demonstrated the beneficial function of AM fungi in triggering the plant defence against ZYMV as they caused systemic acquired resistance in cucumber plants and supported their potential use in the soil as an environment-friendly method of hindering the spread of pathogenic microorganisms sustainably.
Collapse
Affiliation(s)
- Rabab A Metwally
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Mohamed A Taha
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Nada M Abd El-Moaty
- Microbiology Department, Soil, Water and Environment Research Institute (SWERI), Agricultural Research Center, Giza, Egypt
| | - Reda E Abdelhameed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
12
|
Mahajan S, Chakraborty A, Bisht MS, Sil T, Sharma VK. Genome sequencing and functional analysis of a multipurpose medicinal herb Tinospora cordifolia (Giloy). Sci Rep 2024; 14:2799. [PMID: 38307917 PMCID: PMC10837142 DOI: 10.1038/s41598-024-53176-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/29/2024] [Indexed: 02/04/2024] Open
Abstract
Tinospora cordifolia (Willd.) Hook.f. & Thomson, also known as Giloy, is among the most important medicinal plants that have numerous therapeutic applications in human health due to the production of a diverse array of secondary metabolites. To gain genomic insights into the medicinal properties of T. cordifolia, the genome sequencing was carried out using 10× Genomics linked read and Nanopore long-read technologies. The draft genome assembly of T. cordifolia was comprised of 1.01 Gbp, which is the genome sequenced from the plant family Menispermaceae. We also performed the genome size estimation for T. cordifolia, which was found to be 1.13 Gbp. The deep sequencing of transcriptome from the leaf tissue was also performed. The genome and transcriptome assemblies were used to construct the gene set, resulting in 17,245 coding gene sequences. Further, the phylogenetic position of T. cordifolia was also positioned as basal eudicot by constructing a genome-wide phylogenetic tree using multiple species. Further, a comprehensive comparative evolutionary analysis of gene families contraction/expansion and multiple signatures of adaptive evolution was performed. The genes involved in benzyl iso-quinoline alkaloid, terpenoid, lignin and flavonoid biosynthesis pathways were found with signatures of adaptive evolution. These evolutionary adaptations in genes provide genomic insights into the presence of diverse medicinal properties of this plant. The genes involved in the common symbiosis signalling pathway associated with endosymbiosis (Arbuscular Mycorrhiza) were found to be adaptively evolved. The genes involved in adventitious root formation, peroxisome biogenesis, biosynthesis of phytohormones, and tolerance against abiotic and biotic stresses were also found to be adaptively evolved in T. cordifolia.
Collapse
Affiliation(s)
- Shruti Mahajan
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Abhisek Chakraborty
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Manohar S Bisht
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Titas Sil
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Vineet K Sharma
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India.
| |
Collapse
|
13
|
Zhao Y, Rodić N, Liaskos M, Assimopoulou AN, Lalaymia I, Declerck S. Effects of fungal endophytes and arbuscular mycorrhizal fungi on growth of Echium vulgare and alkannin/shikonin and their derivatives production in roots. Fungal Biol 2024; 128:1607-1615. [PMID: 38341266 DOI: 10.1016/j.funbio.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/27/2023] [Accepted: 12/18/2023] [Indexed: 02/12/2024]
Abstract
Endophytic fungi as well as arbuscular mycorrhizal fungi (AMF) are known to stimulate plant growth and production of secondary metabolites in medicinal plants. Here, 10 endophytic fungi isolated from roots of wild Alkanna tinctoria plants and 5 AMF purchased from the Glomeromycota in vitro collection were evaluated, during two successive three-month greenhouse experiments, on the growth of Echium vulgare and alkannin/shikonin and their derivatives (A/Sd) production in the roots. Some of the endophytic fungi tested significantly increased plant growth parameters as compared to the control: Cladosporium allicinum, Cadophora sp., Clonostachys sp., Trichoderma hispanicum and Leptosphaeria ladina increased root volume, Plectosphaerella sp. And T. hispanicum root fresh weight and root water retention and T. hispanicum plant water retention. However, none of these fungi impacted A/Sd production. Conversely, none of the AMF strains tested impacted plant growth parameters, but those inoculated with Rhizophagus intraradices MUCL 49410 had a significantly higher concentration of alkannin/shikonin (A/S), acetyl-A/S, β,β- dimethylacryl-A/S, isovaleryl-A/S and total A/Sd, compared to the control plants. Further studies are needed to investigate the mechanisms involved in the production of A/Sd in plants associated to specific endophytic fungi/AMF and on the cultivation conditions required for optimal production of these compounds.
Collapse
Affiliation(s)
- Yanyan Zhao
- Université Catholique de Louvain, Earth and Life Institute, Mycology, Croix Du Sud 2, Box L7.05.06, 1348, Louvain-la-Neuve, Belgium
| | - Nebojša Rodić
- Aristotle University of Thessaloniki, School of Chemical Engineering, Laboratory of Organic Chemistry, Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation of AUTh, Natural Products Research Centre of Excellence (NatPro-AUTh), Thessaloniki, Greece
| | - Marios Liaskos
- Aristotle University of Thessaloniki, School of Chemical Engineering, Laboratory of Organic Chemistry, Thessaloniki, Greece
| | - Andreana N Assimopoulou
- Aristotle University of Thessaloniki, School of Chemical Engineering, Laboratory of Organic Chemistry, Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation of AUTh, Natural Products Research Centre of Excellence (NatPro-AUTh), Thessaloniki, Greece
| | - Ismahen Lalaymia
- Université Catholique de Louvain, Earth and Life Institute, Mycology, Croix Du Sud 2, Box L7.05.06, 1348, Louvain-la-Neuve, Belgium
| | - Stéphane Declerck
- Université Catholique de Louvain, Earth and Life Institute, Mycology, Croix Du Sud 2, Box L7.05.06, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
14
|
Alrajhi K, Bibi S, Abu-Dieyeh M. Diversity, Distribution, and applications of arbuscular mycorrhizal fungi in the Arabian Peninsula. Saudi J Biol Sci 2024; 31:103911. [PMID: 38268781 PMCID: PMC10805673 DOI: 10.1016/j.sjbs.2023.103911] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Investigations of arbuscular mycorrhizal fungi (AMF) received extreme interests among scientist including agronomists and environmental scientists. This interest is linked to advantages provided by AMF in enhancing the nutrients of their hosts via improving photosynthetic pigments and antioxidant production. Further, it also positively alters the production of plant hormones. AMF through its associations with plants obtain carbon while in exchange, provide nutrients. AMF have been reported to improve the growth of Tageteserecta, Zea mays, Panicum turgidum, Arachis hypogaea, Triticum aestivum and others. This review further documented the occurrence, diversity, distribution, and agricultural applications of AMF species reported in the Arabian Peninsula. Overall, we documented 20 genera and 61 species of Glomeromycota in the Arabian Peninsula representing 46.51 % of genera and 17.88 % of species of AMF known so far. Funneliformis mosseae has found to be the most widely distributed species followed by Claroideoglomus etuicatum. There are 35 research articles focused on Arabian Peninsula where the stress conditions like drought, salinity and pollutants are prevailed. Only one group studied the influence of AMF on disease resistance, while salinity, drought, and cadmium stresses were investigated in 18, 6, and 4 investigations, respectively. The genus Glomus was the focus of most studies. The conducted research in the Arabian Peninsula is not enough to understand AMF taxonomy and their functional role in plant growth. Expanding the scope of detection of AMF, especially in coastal areas is essential. Future studies on biodiversity of AMF are essential.
Collapse
Affiliation(s)
- Khazna Alrajhi
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Shazia Bibi
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mohammed Abu-Dieyeh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
15
|
Sang Z, Zhang Y, Qiu K, Zheng Y, Chen C, Xu L, Lai J, Zou Z, Tan H. Chemical Constituents and Bioactivities of the Plant-Derived Fungus Aspergillus fumigatus. Molecules 2024; 29:649. [PMID: 38338395 PMCID: PMC10856792 DOI: 10.3390/molecules29030649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/11/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
A new bergamotane sesquiterpenoid, named xylariterpenoid H (1), along with fourteen known compounds (2-15), were isolated from the crude extract of Aspergillus fumigatus, an endophytic fungus isolated from Delphinium grandiflorum L. Their structures were elucidated mainly by extensive analyses of NMR and MS spectroscopic data. In addition, the screening results of antibacterial and cytotoxic activities of compounds 1-15 showed that compound 4 displayed antibacterial activities against Staphylococcus aureus and MRSA (methicillin-resistant S. aureus) with an MIC value of 3.12 µg/mL.
Collapse
Affiliation(s)
- Zihuan Sang
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Rsearch for Chronic Diseases, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (Z.S.); (Y.Z.); (C.C.); (L.X.)
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.Z.); (K.Q.); (J.L.)
| | - Yanjiang Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.Z.); (K.Q.); (J.L.)
| | - Kaidi Qiu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.Z.); (K.Q.); (J.L.)
| | - Yuting Zheng
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Rsearch for Chronic Diseases, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (Z.S.); (Y.Z.); (C.C.); (L.X.)
| | - Chen Chen
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Rsearch for Chronic Diseases, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (Z.S.); (Y.Z.); (C.C.); (L.X.)
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.Z.); (K.Q.); (J.L.)
| | - Li Xu
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Rsearch for Chronic Diseases, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (Z.S.); (Y.Z.); (C.C.); (L.X.)
| | - Jiaying Lai
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.Z.); (K.Q.); (J.L.)
| | - Zhenxing Zou
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Rsearch for Chronic Diseases, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (Z.S.); (Y.Z.); (C.C.); (L.X.)
| | - Haibo Tan
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Rsearch for Chronic Diseases, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (Z.S.); (Y.Z.); (C.C.); (L.X.)
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.Z.); (K.Q.); (J.L.)
| |
Collapse
|
16
|
Kalousi FD, Tsakos M, Nikolaou CN, Georgantopoulos A, Psarra AMG, Tsikou D. Chemical Analysis and Biological Activities of Extracts Isolated from Symbiotic L. japonicus Plants. Life (Basel) 2024; 14:189. [PMID: 38398697 PMCID: PMC10889931 DOI: 10.3390/life14020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Plants produce a wide variety of secondary metabolites, including compounds with biological activities that could be used for the treatment of human diseases. In the present study, we examined the putative production of bioactive molecules in the legume plant Lotus japonicus, which engages into symbiotic relationships with beneficial soil microorganisms. To monitor the production of secondary metabolites when the plant develops beneficial symbiotic relationships, we performed single and double inoculations with arbuscular mycorrhizal fungi (AMF) and nitrogen-fixing Rhizobium bacteria. Plant extracts from non-inoculated and inoculated plants were chemically characterized and tested for anti-proliferative, apoptotic, and anti-inflammatory effects on human HEK-293 cells. Both shoot and root extracts from non-inoculated and inoculated plants significantly reduced the HEK-293 cell viability; however, a stronger effect was observed when the root extracts were tested. Shoot and root extracts from Rhizobium-inoculated plants and shoot extracts from AMF-inoculated plants showed apoptotic effects on human cells. Moreover, both shoot and root extracts from AMF-inoculated plants significantly reduced TNFα-induced NF-κB transcriptional activity, denoting anti-inflammatory activity. These results suggest that symbiotic L. japonicus plants are enriched with metabolites that have interesting biological activities and could be further explored for putative future use in the pharmaceutical sector.
Collapse
Affiliation(s)
- Foteini D. Kalousi
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Michail Tsakos
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - Christina N. Nikolaou
- Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece
| | - Achilleas Georgantopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Anna-Maria G. Psarra
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Daniela Tsikou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| |
Collapse
|
17
|
Nacoon S, Seemakram W, Gateta T, Theerakulpisut P, Sanitchon J, Kuyper TW, Boonlue S. Accumulation of Health-Promoting Compounds in Upland Black Rice by Interacting Mycorrhizal and Endophytic Fungi. J Fungi (Basel) 2023; 9:1152. [PMID: 38132753 PMCID: PMC10744396 DOI: 10.3390/jof9121152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
There is an increasing interest in finding eco-friendly and safe approaches to increase agricultural productivity and deliver healthy foods. Arbuscular mycorrhizal fungi (AMF) and endophytic fungi (EPF) are important components of sustainable agriculture in view of their ability to increase productivity and various plant secondary metabolites with health-promoting effects. In a pot experiment, our main research question was to evaluate the additive and synergistic effects of an AMF and four root-endophytic fungi on plant performance and on the accumulation of health-promoting secondary compounds. Plant growth varied between the treatments with both single inoculants and co-inoculation of an AMF and four EPF strains. We found that inoculation with a single EPF positively affected the growth and biomass production of most of the plant-endophyte consortia examined. The introduction of AMF into this experiment (dual inoculation) had a beneficial effect on plant growth and yield. AMF, Rhizophagus variabilis KS-02 co-inoculated with EPF, Trichoderma zelobreve PBMP16 increased the highest biomass, exceeding the growth rate of non-inoculated plants. Co-inoculated R. variabilis KS-02 and T. zelobreve PBMP16 had significantly greater beneficial effects on almost all aspects of plant growth, photosynthesis-related parameters, and yield. It also promoted root growth quality and plant nutrient uptake. The phenolic compounds, anthocyanin, and antioxidant capacity in rice seeds harvested from plants co-inoculated with AMF and EPF were dramatically increased compared with those from non-inoculated plants. In conclusion, our results indicated that EPF and AMF contributed to symbiosis in Maled Phai cultivar and were coordinately involved in promoting plant growth performance under a pot trial.
Collapse
Affiliation(s)
- Sabaiporn Nacoon
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.N.); (W.S.); (T.G.)
| | - Wasan Seemakram
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.N.); (W.S.); (T.G.)
| | - Thanawan Gateta
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.N.); (W.S.); (T.G.)
| | - Piyada Theerakulpisut
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
- Salt-Tolerant Rice Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jirawat Sanitchon
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Thomas W. Kuyper
- Soil Biology Group, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands;
| | - Sophon Boonlue
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.N.); (W.S.); (T.G.)
- Salt-Tolerant Rice Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
18
|
Wu YH, Qin Y, Cai QQ, Liu M, He DM, Chen X, Wang H, Yan ZY. Effect the accumulation of bioactive constituents of a medicinal plant (Salvia Miltiorrhiza Bge.) by arbuscular mycorrhizal fungi community. BMC PLANT BIOLOGY 2023; 23:597. [PMID: 38017446 PMCID: PMC10683245 DOI: 10.1186/s12870-023-04608-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Arbuscular mycorrhizal fungi (AMF) form symbiotic relationships with various terrestrial plants and have attracted considerable interest as biofertilizers for improving the quality and yield of medicinal plants. Despite the widespread distribution of AMFs in Salvia miltiorrhiza Bunge's roots, research on the impact of multiple AMFs on biomass and active ingredient accumulations has not been conducted. In this study, the effects of five native AMFs (Glomus formosanum, Septoglomus constrictum, Rhizophagus manihotis, Acaulospora laevis, and Ambispora gerdemannii) and twenty-six communities on the root biomass and active ingredient concentrations of S. miltiorrhiza were assessed using the total factor design method. RESULTS Thirty-one treatment groups formed symbiotic relationships with S. miltiorrhiza based on the pot culture results, and the colonization rate ranged from 54.83% to 89.97%. AMF communities had higher colonization rates and total phenolic acid concentration than single AMF, and communities also appeared to have higher root fresh weight, dry weight, and total phenolic acid concentration than single inoculations. As AMF richness increased, there was a rising trend in root biomass and total tanshinone accumulations (ATTS), while total phenolic acid accumulations (ATP) showed a decreasing trend. This suggests that plant productivity was influenced by the AMF richness, with higher inoculation benefits observed when the communities contained three or four AMFs. Additionally, the affinities of AMF members were also connected to plant productivity. The inoculation effect of closely related AMFs within the same family, such as G. formosanum, S. constrictum, and R. manihotis, consistently yielded lower than that of mono-inoculation when any combinations were applied. The co-inoculation of S. miltiorrhiza with nearby or distant AMFs from two families, such as G. formosanum, R. manihotis, and Ac. laevis or Am. gerdemannii resulted in an increase of ATP and ATTS by more than 50%. AMF communities appear to be more beneficial to the yield of bioactive constituents than the single AMF, but overall community inoculation effects are related to the composition of AMFs and the relationship between members. CONCLUSION This study reveals that the AMF community has great potential to improve the productivity and the accumulation of bioactive constituents in S. miltiorrhiza, indicating that it is an effective way to achieve sustainable agricultural development through using the AMF community.
Collapse
Affiliation(s)
- Yan-Hong Wu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Qin
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing-Qing Cai
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Liu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong-Mei He
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Chen
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai Wang
- School of Medical Technology, Chengdu University of Chinese Medicine, Chengdu, China.
| | - Zhu-Yun Yan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
19
|
Yuan ML, Zhang MH, Shi ZY, Yang S, Zhang MG, Wang Z, Wu SW, Gao JK. Arbuscular mycorrhizal fungi enhance active ingredients of medicinal plants: a quantitative analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1276918. [PMID: 37929165 PMCID: PMC10623335 DOI: 10.3389/fpls.2023.1276918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/22/2023] [Indexed: 11/07/2023]
Abstract
Medicinal plants are invaluable resources for mankind and play a crucial role in combating diseases. Arbuscular mycorrhizal fungi (AMF) are widely recognized for enhancing the production of medicinal active ingredients in medicinal plants. However, there is still a lack of comprehensive understanding regarding the quantitative effects of AMF on the accumulation of medicinal active ingredients. Here we conducted a comprehensive global analysis using 233 paired observations to investigate the impact of AMF inoculation on the accumulation of medicinal active ingredients. This study revealed that AMF inoculation significantly increased the contents of medicinal active ingredients by 27%, with a particularly notable enhancement observed in flavonoids (68%) and terpenoids (53%). Furthermore, the response of medicinal active ingredients in belowground organs (32%) to AMF was more pronounced than that in aboveground organs (18%). Notably, the AMF genus Rhizophagus exhibited the strongest effect in improving the contents of medicinal active ingredients, resulting in an increase of over 50% in both aboveground and belowground organs. Additionally, the promotion of medicinal active ingredients by AMF was attributed to improvements in physiological factors, such as chlorophyll, stomatal conductance and net photosynthetic rate. Collectively, this research substantially advanced our comprehension of the pivotal role of AMF in improving the medicinal active ingredients of plants and provided valuable insights into the potential mechanisms driving these enhancements.
Collapse
Affiliation(s)
- Ming-Li Yuan
- College of Agriculture, Henan University of Science and Technology, Luoyang, Henan, China
- School of Agriculture and Animal Husbandry Engineering, Zhoukou Vocational and Technical College, Henan, China
| | - Meng-Han Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Engineering Research Center for Rural Human Settlement, Luoyang, Henan, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, Henan, China
| | - Zhao-Yong Shi
- College of Agriculture, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Engineering Research Center for Rural Human Settlement, Luoyang, Henan, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, Henan, China
| | - Shuang Yang
- College of Agriculture, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Engineering Research Center for Rural Human Settlement, Luoyang, Henan, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, Henan, China
| | - Meng-Ge Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Engineering Research Center for Rural Human Settlement, Luoyang, Henan, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, Henan, China
| | - Zhen Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Engineering Research Center for Rural Human Settlement, Luoyang, Henan, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, Henan, China
| | - Shan-Wei Wu
- College of Agriculture, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Engineering Research Center for Rural Human Settlement, Luoyang, Henan, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, Henan, China
| | - Jia-Kai Gao
- College of Agriculture, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Engineering Research Center for Rural Human Settlement, Luoyang, Henan, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, Henan, China
| |
Collapse
|
20
|
Razavizadeh R, Adabavazeh F, Mosayebi Z. Titanium dioxide nanoparticles improve element uptake, antioxidant properties, and essential oil productivity of Melissa officinalis L. seedlings under in vitro drought stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:98020-98033. [PMID: 37603240 DOI: 10.1007/s11356-023-29384-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
In vitro drought stress has a considerable impact on the mass production of active compounds in medicinal plants. Nevertheless, photosynthesis, nutrient uptake, and protein synthesis may be negatively affected by drought, which results in poor growth. Titanium dioxide nanoparticles (TiO2 NPs) have recently been shown to play an important role in increasing nutrient uptake, resistance to various environmental stresses, and better plant growth. Regarding the importance of pharmaceutical metabolites of Melissa officinalis L., this experiment aimed to assess the role of TiO2 NPs in improving physiological responses and phytochemical properties in M. officinalis under in vitro drought stress. For this, two-week-old seedlings were cultured on Murashige and Skoog (MS) medium supplemented with 0, 50, and 100 mg L-1 TiO2 NPs and 0, 3, and 6% (w/v) polyethylene glycol (PEG). Two weeks after treatments, a reduction of chlorophyll, protein content, essential elements, and enhancement of H2O2 and malondialdehyde (MDA) levels were seen as a result of drought stress. It was observed that M. officinalis partially responded to the drought by increasing non-enzymatic antioxidants, including phenolics, flavonoids, and anthocyanin and ascorbate peroxidase activity. Moreover, PEG-induced drought stress increased some important essential oil content such as limonene, alpha-pinene, myrcene, γ-3-carene, citral, and carvacrol; however, the results showed that TiO2 NPs not only increased the quantity of essential oils but also led to tolerance to the drought stress by increasing photosynthetic pigments, antioxidant systems, absorption of essential nutrients, and decreasing H2O2 and MDA levels.
Collapse
Affiliation(s)
- Roya Razavizadeh
- Department of Biology, Payame Noor University, Tehran, 19395-3697, Iran.
| | - Fatemeh Adabavazeh
- Department of Biology, Payame Noor University, Tehran, 19395-3697, Iran
- Department of Biology, Shahid Bahonar University of Kerman, Kerman, 76169-14111, Iran
| | - Zahra Mosayebi
- Department of Biology, Payame Noor University, Tehran, 19395-3697, Iran
| |
Collapse
|
21
|
Yu W, Pei R, Zhang Y, Tu Y, He B. Light regulation of secondary metabolism in fungi. J Biol Eng 2023; 17:57. [PMID: 37653453 PMCID: PMC10472637 DOI: 10.1186/s13036-023-00374-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023] Open
Abstract
Fungi have evolved unique metabolic regulation mechanisms for adapting to the changing environments. One of the key features of fungal adaptation is the production of secondary metabolites (SMs), which are essential for survival and beneficial to the organism. Many of these SMs are produced in response to the environmental cues, such as light. In all fungal species studied, the Velvet complex transcription factor VeA is a central player of the light regulatory network. In addition to growth and development, the intensity and wavelength of light affects the formation of a broad range of secondary metabolites. Recent studies, mainly on species of the genus Aspergillus, revealed that the dimer of VeA-VelB and LaeA does not only regulate gene expression in response to light, but can also be involved in regulating production of SMs. Furthermore, the complexes have a wide regulatory effect on different types of secondary metabolites. In this review, we discussed the role of light in the regulation of fungal secondary metabolism. In addition, we reviewed the photoreceptors, transcription factors, and signaling pathways that are involved in light-dependent regulation of secondary metabolism. The effects of transcription factors on the production of secondary metabolites, as well as the potential applications of light regulation for the production of pharmaceuticals and other products were discussed. Finally, we provided an overview of the current research in this field and suggested potential areas for future research.
Collapse
Affiliation(s)
- Wenbin Yu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Rongqiang Pei
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Yufei Zhang
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Yayi Tu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China.
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China.
| |
Collapse
|
22
|
Ganugi P, Caffi T, Gabrielli M, Secomandi E, Fiorini A, Zhang L, Bellotti G, Puglisi E, Fittipaldi MB, Asinari F, Tabaglio V, Trevisan M, Lucini L. A 3-year application of different mycorrhiza-based plant biostimulants distinctively modulates photosynthetic performance, leaf metabolism, and fruit quality in grapes ( Vitis vinifera L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1236199. [PMID: 37711298 PMCID: PMC10497758 DOI: 10.3389/fpls.2023.1236199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/27/2023] [Indexed: 09/16/2023]
Abstract
The use of microbial biostimulants in agriculture is recognized as a sustainable approach to promoting crop productivity and quality due to improved nutrient uptake, enhanced stress tolerance, and improved ability to cope with non-optimal environments. The present paper aimed to comparatively investigate the effect of seven different commercial mycorrhizal-based treatments in terms of yield, phytochemical components, and technological traits of Malvasia di Candia Aromatica grape (Vitis vinifera L.) plants. Metabolomic analysis and photosynthetic performance were first investigated in leaves to point out biochemical differences related to plant growth. Higher photosynthetic efficiency and better PSII functioning were found in biostimulant-treated vines, reflecting an overall decrease in photoinhibition compared to untreated plants. Untargeted metabolomics followed by multivariate statistics highlighted a robust reprogramming of primary (lipids) and secondary (alkaloids and terpenoids) metabolites in treated plants. The analysis of berry yield and chemical components exhibited significant differences depending on the biostimulant product. Generally, berries obtained from treated plants displayed improved contents of polyphenols and sugars, while yield remained unchanged. These results elucidated the significant role of microbial biostimulants in determining the quality of grape berries and eliciting biochemical changes in vines.
Collapse
Affiliation(s)
- Paola Ganugi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Tito Caffi
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Mario Gabrielli
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Elena Secomandi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
- Department of Sciences, Technologies and Society, University School for Advanced Studies, IUSS, Pavia, Italy
| | - Andrea Fiorini
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Gabriele Bellotti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Florencia Asinari
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Vincenzo Tabaglio
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Marco Trevisan
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
23
|
Zhao Y, Cartabia A, Garcés-Ruiz M, Herent MF, Quetin-Leclercq J, Ortiz S, Declerck S, Lalaymia I. Arbuscular mycorrhizal fungi impact the production of alkannin/shikonin and their derivatives in Alkanna tinctoria Tausch. grown in semi-hydroponic and pot cultivation systems. Front Microbiol 2023; 14:1216029. [PMID: 37637105 PMCID: PMC10447974 DOI: 10.3389/fmicb.2023.1216029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Alkanna tinctoria Tausch. is a medicinal plant well-known to produce important therapeutic compounds, such as alkannin/shikonin and their derivatives (A/Sd). It associates with arbuscular mycorrhizal fungi (AMF), which are known, amongst others beneficial effects, to modulate the plant secondary metabolites (SMs) biosynthesis. However, to the best of our knowledge, no study on the effects of AMF strains on the growth and production of A/Sd in A. tinctoria has been reported in the literature. Methods Here, three experiments were conducted. In Experiment 1, plants were associated with the GINCO strain Rhizophagus irregularis MUCL 41833 and, in Experiment 2, with two strains of GINCO (R. irregularis MUCL 41833 and Rhizophagus aggregatus MUCL 49408) and two native strains isolated from wild growing A. tinctoria (R. irregularis and Septoglomus viscosum) and were grown in a semi-hydroponic (S-H) cultivation system. Plants were harvested after 9 and 37 days in Experiment 1 and 9 days in Experiment 2. In Experiment 3, plants were associated with the two native AMF strains and with R. irregularis MUCL 41833 and were grown for 85 days in pots under greenhouse conditions. Quantification and identification of A/Sd were performed by HPLC-PDA and by HPLC-HRMS/MS, respectively. LePGT1, LePGT2, and GHQH genes involved in the A/Sd biosynthesis were analyzed through RT-qPCR. Results In Experiment 1, no significant differences were noticed in the production of A/Sd. Conversely, in Experiments 2 and 3, plants associated with the native AMF R. irregularis had the highest content of total A/Sd expressed as shikonin equivalent. In Experiment 1, a significantly higher relative expression of both LePGT1 and LePGT2 was observed in plants inoculated with R. irregularis MUCL 41833 compared with control plants after 37 days in the S-H cultivation system. Similarly, a significantly higher relative expression of LePGT2 in plants inoculated with R. irregularis MUCL 41833 was noticed after 9 versus 37 days in the S-H cultivation system. In Experiment 2, a significant lower relative expression of LePGT2 was observed in native AMF R. irregularis inoculated plants compared to the control. Discussion Overall, our study showed that the native R. irregularis strain increased A/Sd production in A. tinctoria regardless of the growing system used, further suggesting that the inoculation of native/best performing AMF is a promising method to improve the production of important SMs.
Collapse
Affiliation(s)
- Yanyan Zhao
- Mycology, Earth and Life Institute, Université catholique de Louvain – UCLouvain, Louvain-la-Neuve, Belgium
| | - Annalisa Cartabia
- Mycology, Earth and Life Institute, Université catholique de Louvain – UCLouvain, Louvain-la-Neuve, Belgium
| | - Mónica Garcés-Ruiz
- Mycology, Earth and Life Institute, Université catholique de Louvain – UCLouvain, Louvain-la-Neuve, Belgium
| | - Marie-France Herent
- Pharmacognosy Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain – UCLouvain, Brussels, Belgium
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain – UCLouvain, Brussels, Belgium
| | - Sergio Ortiz
- Pharmacognosy Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain – UCLouvain, Brussels, Belgium
- UMR 7200, Laboratoire d’Innovation Thérapeutique, Université de Strasbourg, CNRS, Strasbourg Drug Discovery and Development Institute (IMS), Illkirch-Graffenstaden, France
| | - Stéphane Declerck
- Mycology, Earth and Life Institute, Université catholique de Louvain – UCLouvain, Louvain-la-Neuve, Belgium
| | - Ismahen Lalaymia
- Mycology, Earth and Life Institute, Université catholique de Louvain – UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
24
|
Rasouli F, Amini T, Skrovankova S, Asadi M, Hassanpouraghdam MB, Ercisli S, Buckova M, Mrazkova M, Mlcek J. Influence of drought stress and mycorrhizal ( Funneliformis mosseae) symbiosis on growth parameters, chlorophyll fluorescence, antioxidant activity, and essential oil composition of summer savory ( Satureja hortensis L.) plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1151467. [PMID: 37342133 PMCID: PMC10278574 DOI: 10.3389/fpls.2023.1151467] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/12/2023] [Indexed: 06/22/2023]
Abstract
Introduction Drought stress unfavorably influences the growth and physiological traits of plants in the arid and semi-arid regions of the world. This study aimed to determine the effects of arbuscular mycorrhiza fungi (AMF; Funneliformis mosseae) inoculation on the physiological and biochemical responses of summer savory (Satureja hortensis L.) under different irrigation regimes. Methods The first factor was different irrigation regimes, including no drought stress (100% field capacity; FC), moderate drought stress (60% FC), and severe drought stress (30% FC); the second factor included the plants without AMF (AMF0) and with AMF inoculation (AMF1). Results The results showed that better values, higher plant height, shoot mass (fresh and dry weight), relative water content (RWC), membrane stability index (MSI), photosynthesis pigments, Fv, Fm, Fv/Fm, and total soluble proteins were obtained in the plants inoculated with AMF. The highest values were obtained for plants with no drought stress, then the plants subjected to AMF1 under 60% FC, and the lowest ones for plants under 30% FC without AMF inoculation. Thus, these properties are reduced under moderate and severe drought stress. At the same time, the utmost activity of superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), and the highest malondialdehyde (MDA), H2O2, proline, and antioxidant activity (TAA) were achieved for 30% FC + AMF0. It was also found that AMF inoculation improved essential oil (EO) composition, also as EO obtained from plants under drought stress. Carvacrol (50.84-60.03%) was the dominant component in EO; γ-terpinene (19.03-27.33%), p-cymene, α-terpinene, and myrcene, were recognized as other important components in EO. The higher carvacrol and γ-terpinene contents were obtained from summer savory plants with AMF inoculation and the lowest for plants without AMF and under 30% FC. Conclusion According to the present findings, using AMF inoculation could be a sustainable and eco-friendly approach to improve physiological and biochemical characteristics and the essential oil quality of summer savory plants under water shortage conditions.
Collapse
Affiliation(s)
- Farzad Rasouli
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Trifa Amini
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Sona Skrovankova
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Zlin, Czechia
| | - Mohammad Asadi
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | | | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Türkiye
- HGF Agro, Ata Teknokent, Erzurum, Türkiye
| | - Martina Buckova
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Zlin, Czechia
| | - Martina Mrazkova
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Zlin, Czechia
| | - Jiri Mlcek
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Zlin, Czechia
| |
Collapse
|
25
|
Rasouli F, Hassanpouraghdam MB, Pirsarandib Y, Aazami MA, Asadi M, Ercisli S, Mehrabani LV, Puglisi I, Baglieri A. Improvements in the biochemical responses and Pb and Ni phytoremediation of lavender (Lavandula angustifolia L.) plants through Funneliformis mosseae inoculation. BMC PLANT BIOLOGY 2023; 23:252. [PMID: 37173650 PMCID: PMC10182630 DOI: 10.1186/s12870-023-04265-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Heavy metals (HMs) phytoremediation is a well-recognized protocol to remove toxic elements from the soil. As known, arbuscular mycorrhizal fungi (AMF) enhance the plants' growth responses. The idea of the present study was to assay the response of lavender plants to HMs stress under AMF inoculation. We hypothesized that mycorrhiza will enhance the phytoremediation and simultaneously reduce the harmful effects of heavy HMs. So, lavender (Lavandula angustifolia L.) plants were inoculated with AMF (0 and 5 g Kg-1 soil) under Pb [150 and 225 mg kg-1 soil from Pb (NO3)2] and Ni [220 and 330 mg kg-1 soil from Ni (NO3)2] pollution, in the greenhouse conditions. The control treatment was plants not treated with AMF and HMs. Doing this, the root colonization, HMs uptake, enzymatic and non-enzymatic antioxidants pool, MDA, proline, total phenolics (TPC), flavonoids (TFC), anthocyanins, and essential oil (EO) components were evaluated. RESULTS According to the findings, the AMF inoculation enhanced shoot and root Pb and Ni content, antioxidant enzymes activity, the total antioxidant activity by DPPH and FRAP methods, TPC, TFC, anthocyanins, and H2O2 content in the lavender plants subjected to Pb and Ni stress. Moreover, the highest (28.91%) and the least (15.81%) percentages of borneol were identified in the lavender plants subjected to AMF under 150 mg kg-1 of Pb and the control plants without AMF application, respectively. Furthermore, the top 1,8-cineole (12.75%) content was recorded in AMF-inoculated plants. CONCLUSIONS The overall results verify that AMF inoculation can be a reliable methodology to enhance the phytoremediation of Pb and Ni by lavender plants while maintaining reliable growth potential. The treatments improved the main EO constituents content, especially under moderate HMs stress conditions. With more detailed studies, the results will be advisable for the extension section for the phytoremediation of polluted soils.
Collapse
Affiliation(s)
- Farzad Rasouli
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, 55181-83111, Iran
| | | | - Yaghoub Pirsarandib
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, 55181-83111, Iran
| | - Mohammad Ali Aazami
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, 55181-83111, Iran
| | - Mohammad Asadi
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh, 55181-83111, Iran
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Türkiye & HGF Agro, Ata Teknokent, Erzurum, TR-25240, Turkey
| | - Lamia Vojodi Mehrabani
- Department of Agronomy and Plant Breeding, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Ivana Puglisi
- Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123, Catania, Italy
| | - Andrea Baglieri
- Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123, Catania, Italy
| |
Collapse
|
26
|
Soussani FE, Boutasknit A, Ben-Laouane R, Benkirane R, Baslam M, Meddich A. Arbuscular Mycorrhizal Fungi and Compost-Based Biostimulants Enhance Fitness, Physiological Responses, Yield, and Quality Traits of Drought-Stressed Tomato Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091856. [PMID: 37176914 PMCID: PMC10180964 DOI: 10.3390/plants12091856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Climate change-driven water resource constraints cause tomatoes to suffer from drought. The use of biostimulants has emerged as an important approach to enhancing resilience to drought. However, the roles of biostimulants in the physicochemical characteristics of tomatoes in response to drought are poorly understood. In this study, we evaluated the ability of arbuscular mycorrhizal fungi (AMF) and compost (versus NPK application) to improve the agro-physiology, yield, and fruit quality of tomato plants and their tolerance to drought by comparing them with conventional chemical fertilizers (NPK). Under drought conditions, plant growth traits associated with yield and fruit bioactive compounds (carotenoids: 73%; lycopene: 53%; polyphenols: 310%; and flavonoids: 158%) were increased in the AMF-tomato treatment. Compost significantly enhanced sugars (ca. 60%) and protein contents (ca. 20%). Moreover, AMF protected the photosynthetic apparatus from drought-induced oxidative stress, improved photosynthetic efficiency, leaf water potential, and osmolytes, and reduced malondialdehyde (MDA) and hydrogen peroxide (H2O2) accumulation by increasing peroxidase (POX) (140%) and polyphenol oxidase (PPO) (340%) activities compared to their controls. Our findings revealed that NPK is an important nutrient-based fertilizer for plant growth and development. However, its efficiency as a fertilizer is quite low. In addition, we highlighted different mechanisms mediated by AMF and compost, inducing drought tolerance in tomato plants.
Collapse
Affiliation(s)
- Fatima Ezzahra Soussani
- Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-CNRST-05), "Physiology of Abiotic Stresses" Team, Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh 40000, Morocco
- Laboratory of Plant, Animal, and Agro-Industry Productions, Faculty of Science, University Ibn Toufail, Kenitra 14000, Morocco
| | - Abderrahim Boutasknit
- Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-CNRST-05), "Physiology of Abiotic Stresses" Team, Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh 40000, Morocco
| | - Raja Ben-Laouane
- Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-CNRST-05), "Physiology of Abiotic Stresses" Team, Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh 40000, Morocco
- Department of Biology, Faculty of Science and Techniques, BP. 509, Boutalamine, Errachidia 52000, Morocco
| | - Rachid Benkirane
- Laboratory of Plant, Animal, and Agro-Industry Productions, Faculty of Science, University Ibn Toufail, Kenitra 14000, Morocco
| | - Marouane Baslam
- Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-CNRST-05), "Physiology of Abiotic Stresses" Team, Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh 40000, Morocco
| | - Abdelilah Meddich
- Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-CNRST-05), "Physiology of Abiotic Stresses" Team, Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh 40000, Morocco
| |
Collapse
|
27
|
Gao Y, Huang S, Wang Y, Lin H, Pan Z, Zhang S, Zhang J, Wang W, Cheng S, Chen Y. Analysis of the molecular and biochemical mechanisms involved in the symbiotic relationship between Arbuscular mycorrhiza fungi and Manihot esculenta Crantz. FRONTIERS IN PLANT SCIENCE 2023; 14:1130924. [PMID: 36959933 PMCID: PMC10028151 DOI: 10.3389/fpls.2023.1130924] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/22/2023] [Indexed: 05/27/2023]
Abstract
INTRODUCTION Plants and arbuscular mycorrhizal fungi (AMF) mutualistic interactions are essential for sustainable agriculture production. Although it is shown that AMF inoculation improves cassava physiological performances and yield traits, the molecular mechanisms involved in AM symbiosis remain largely unknown. Herein, we integrated metabolomics and transcriptomics analyses of symbiotic (Ri) and asymbiotic (CK) cassava roots and explored AM-induced biochemical and transcriptional changes. RESULTS Three weeks (3w) after AMF inoculations, proliferating fungal hyphae were observable, and plant height and root length were significantly increased. In total, we identified 1,016 metabolites, of which 25 were differentially accumulated (DAMs) at 3w. The most highly induced metabolites were 5-aminolevulinic acid, L-glutamic acid, and lysoPC 18:2. Transcriptome analysis identified 693 and 6,481 differentially expressed genes (DEGs) in the comparison between CK (3w) against Ri at 3w and 6w, respectively. Functional enrichment analyses of DAMs and DEGs unveiled transport, amino acids and sugar metabolisms, biosynthesis of secondary metabolites, plant hormone signal transduction, phenylpropanoid biosynthesis, and plant-pathogen interactions as the most differentially regulated pathways. Potential candidate genes, including nitrogen and phosphate transporters, transcription factors, phytohormone, sugar metabolism-related, and SYM (symbiosis) signaling pathway-related, were identified for future functional studies. DISCUSSION Our results provide molecular insights into AM symbiosis and valuable resources for improving cassava production.
Collapse
Affiliation(s)
- Yu Gao
- Sanya Nanfan Research Institute of Hainan University, School of Life Science, Hainan University, Haikou, Hainan, China
| | - Siyuan Huang
- College of Tropical Crops, Hainan University, Haikou, Hainan, China
| | - Yujie Wang
- Sanya Nanfan Research Institute of Hainan University, School of Life Science, Hainan University, Haikou, Hainan, China
| | - Hongxin Lin
- Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Zhiyong Pan
- College of Horticulture and Forestry of Huazhong Agricultural University, Wuhan, China
| | - Shubao Zhang
- Sanya Nanfan Research Institute of Hainan University, School of Life Science, Hainan University, Haikou, Hainan, China
| | - Jie Zhang
- College of Tropical Crops, Hainan University, Haikou, Hainan, China
| | - Wenquan Wang
- College of Tropical Crops, Hainan University, Haikou, Hainan, China
| | - Shanhan Cheng
- Sanya Nanfan Research Institute of Hainan University, School of Life Science, Hainan University, Haikou, Hainan, China
| | - Yinhua Chen
- Sanya Nanfan Research Institute of Hainan University, School of Life Science, Hainan University, Haikou, Hainan, China
| |
Collapse
|
28
|
Wu QS, Silva FSB, Hijri M, Kapoor R. Editorial: Arbuscular mycorrhiza-mediated augmentation of plant secondary metabolite production. FRONTIERS IN PLANT SCIENCE 2023; 14:1150900. [PMID: 36860900 PMCID: PMC9969354 DOI: 10.3389/fpls.2023.1150900] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Qiang-Sheng Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Fábio S. B. Silva
- Institute of Biological Sciences, University of Pernambuco, Recife, Brazil
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Rupam Kapoor
- Department of Botany, Faculty of Science, University of Delhi, Delhi, India
| |
Collapse
|
29
|
Zhang Y, Liu Q, Sun Y, Jiang J. Inonotus obliquus sclerotia epidermis were different from internal tissues in compound composition, antioxidant activity, and associated fungi. FEMS Microbiol Lett 2023; 370:fnad126. [PMID: 38017614 DOI: 10.1093/femsle/fnad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/06/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023] Open
Abstract
Inonotus obliquus is a medicinal fungus with potential for use in various health applications. To better utilize this fungus, this study focused on epidermis and internal tissues of five sclerotia from different regions in Jilin, Inner Mongolia, and Heilongjiang, examining their polyphenols, polysaccharides, flavonoids, and total triterpenes contents. And evaluated the extracts from sclerotia for their total antioxidant capacity and scavenging ability of DPPH free radicals. The study also isolated the associated fungi from the epidermis and internal tissues of three sclerotia. Results revealed that the polyphenol content was higher in the epidermis than in internal tissue of every sclerotium. However, flavonoid and total triterpenoid content was lower in the epidermis of every sclerotium. The polysaccharide content was no significant in different parts of three sclerotia, but the epidermal polysaccharide content in two sclerotia was significantly higher than in internal tissues. The internal tissue extracts from tested sclerotia exhibited better scavenging ability of DPPH free radicals than those from the epidermis. There was no significant difference in total antioxidant capacity among different parts of three sclerotia, and the internal tissues' total antioxidant capacity in two sclerotia was higher than the epidermis. The number and species of associated fungi in the internal tissues were far less than that in the epidermis. The study suggests separating the epidermis and internal tissue for medicinal use. The research provides insights into the bioactive components and associated fungi of I. obliquus to inform its practical application in medicine.
Collapse
Affiliation(s)
- Yijia Zhang
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Qiao Liu
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Yong Sun
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Jihong Jiang
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
30
|
Loo WT, Chua KO, Mazumdar P, Cheng A, Osman N, Harikrishna JA. Arbuscular Mycorrhizal Symbiosis: A Strategy for Mitigating the Impacts of Climate Change on Tropical Legume Crops. PLANTS (BASEL, SWITZERLAND) 2022; 11:2875. [PMID: 36365329 PMCID: PMC9657156 DOI: 10.3390/plants11212875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Climate change is likely to have severe impacts on food security in the topics as these regions of the world have both the highest human populations and narrower climatic niches, which reduce the diversity of suitable crops. Legume crops are of particular importance to food security, supplying dietary protein for humans both directly and in their use for feed and forage. Other than the rhizobia associated with legumes, soil microbes, in particular arbuscular mycorrhizal fungi (AMF), can mitigate the effects of biotic and abiotic stresses, offering an important complementary measure to protect crop yields. This review presents current knowledge on AMF, highlights their beneficial role, and explores the potential for application of AMF in mitigating abiotic and biotic challenges for tropical legumes. Due to the relatively little study on tropical legume species compared to their temperate growing counterparts, much further research is needed to determine how similar AMF-plant interactions are in tropical legumes, which AMF species are optimal for agricultural deployment and especially to identify anaerobic AMF species that could be used to mitigate flood stress in tropical legume crop farming. These opportunities for research also require international cooperation and support, to realize the promise of tropical legume crops to contribute to future food security.
Collapse
Affiliation(s)
- Wan Teng Loo
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur 50603, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Kah-Ooi Chua
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Purabi Mazumdar
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Acga Cheng
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Normaniza Osman
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Jennifer Ann Harikrishna
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur 50603, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
31
|
Amani Machiani M, Javanmard A, Habibi Machiani R, Sadeghpour A. Arbuscular mycorrhizal Fungi and Changes in Primary and Secondary Metabolites. PLANTS (BASEL, SWITZERLAND) 2022; 11:2183. [PMID: 36079565 PMCID: PMC9460575 DOI: 10.3390/plants11172183] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 05/27/2023]
Abstract
Medicinal and aromatic plants (MAPs) are able to synthesize a diverse group of secondary metabolites (SMs) such as terpenoids or terpenes, steroids, phenolics, and alkaloids with a broad range of therapeutic and pharmacological potentials. Extensive use of MAPs in various industries makes it important to re-evaluate their research, development, production, and use. In intensive agricultural systems, increasing plant productivity is highly dependent on the application of chemical inputs. Extreme use of chemical or synthetic fertilizers, especially higher doses of N fertilization, decrease the yield of bioactive compounds in MAPs. The plant-soil microbial interaction is an eco-friendly strategy to decrease the demand of chemical fertilizers. Arbuscular mycorrhizal fungi (AMF), belongs to phylum Glomeromycota, can form mutualistic symbiotic associations with more than 80% of plant species. The AMF-plant symbiotic association, in addition to increasing nutrient and water uptake, reprograms the metabolic pathways of plants and changes the concentration of primary and secondary metabolites of medicinal and aromatic plants. The major findings reported that inoculation of AMF with MAPs enhanced secondary metabolites directly by increasing nutrient and water uptake and also improving photosynthesis capacity or indirectly by stimulating SMs' biosynthetic pathways through changes in phytohormonal concentrations and production of signaling molecules. Overall, the AMF-MAPs symbiotic association can be used as new eco-friendly technologies in sustainable agricultural systems for improving the quantity and quality of MAPs.
Collapse
Affiliation(s)
- Mostafa Amani Machiani
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, P.O. Box 55136-553, Maragheh 83111-55181, Iran
| | - Abdollah Javanmard
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, P.O. Box 55136-553, Maragheh 83111-55181, Iran
| | - Reyhaneh Habibi Machiani
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, P.O. Box 55136-553, Maragheh 83111-55181, Iran
| | - Amir Sadeghpour
- Crop, Soil and Environment Program, School of Agricultural Sciences, Southern Illinois, University of Carbondale, College of Science, Carbondale, IL 62901, USA
| |
Collapse
|
32
|
Ostadi A, Javanmard A, Amani Machiani M, Sadeghpour A, Maggi F, Nouraein M, Morshedloo MR, Hano C, Lorenzo JM. Co-Application of TiO 2 Nanoparticles and Arbuscular Mycorrhizal Fungi Improves Essential Oil Quantity and Quality of Sage ( Salvia officinalis L.) in Drought Stress Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11131659. [PMID: 35807610 PMCID: PMC9269095 DOI: 10.3390/plants11131659] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 06/01/2023]
Abstract
Drought stress is known as a major yield-limiting factor in crop production that threatens food security worldwide. Arbuscular mycorrhizal fungi (AMF) and titanium dioxide (TiO2) have shown to alleviate the effects of drought stress on plants, but information regarding their co-addition to minimize the effects of drought stress on plants is scant. Here, a two-year field experiment was conducted in 2019 and 2020 to evaluate the influence of different irrigation regimes and fertilizer sources on the EO quantity and quality of sage (Salvia officinalis L.). The experiment was laid out as a split plot arranged in a randomized complete block design with three replicates. The irrigation treatments were 25, 50, and 75% maximum allowable depletion (MAD) percentage of the soil available water as non-stress (MAD25), moderate (MAD50), and severe (MAD75) water stress, respectively. Subplots were four fertilizer sources including no-fertilizer control, TiO2 nanoparticles (100 mg L-1), AMF inoculation, and co-addition of TiO2 and AMF (TiO2 + AMF). Moderate and severe drought stress decreased sage dry matter yield (DMY) by 30 and 65%, respectively. In contrast, application of TiO2 + AMF increased DMY and water use efficiency (WUE) by 35 and 35%, respectively, compared to the unfertilized treatment. The highest EO content (1.483%), yield (2.52 g m-2), and cis-thujone (35.84%, main EO constituent of sage) was obtained in MAD50 fertilized with TiO2 + AMF. In addition, the net income index increased by 44, 47, and 76% with application of TiO2 nanoparticles, AMF, and co-addition of TiO2 + AMF, respectively. Overall, the integrative application of the biofertilizer and nanoparticles (TiO2 + AMF) can be recommended as a sustainable strategy for increasing net income and improving EO productivity and quality of sage plants in drought stress conditions. Future policy discussions should focus on incentivizing growers for replacing synthetic fertilizers with proven nano and biofertilizers to reduce environmental footprints and enhance the sustainability of sage production, especially in drought conditions.
Collapse
Affiliation(s)
- Ali Ostadi
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh P.O. Box 55136-553, Iran; (A.O.); (M.A.M.); (M.N.)
| | - Abdollah Javanmard
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh P.O. Box 55136-553, Iran; (A.O.); (M.A.M.); (M.N.)
| | - Mostafa Amani Machiani
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh P.O. Box 55136-553, Iran; (A.O.); (M.A.M.); (M.N.)
| | - Amir Sadeghpour
- Crop, Soil, and Environment Program, School of Agricultural Sciences, Southern Illinois University of Carbondale, College of Science, Carbondale, IL 62901, USA;
| | - Filippo Maggi
- School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, 62032 Camerino, Italy;
| | - Mojtaba Nouraein
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh P.O. Box 55136-553, Iran; (A.O.); (M.A.M.); (M.N.)
| | - Mohammad Reza Morshedloo
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh P.O. Box 55136-553, Iran;
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328, Orleans University, CEDEX 2, 45067 Orléans, France
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibraodas Viñas, 32900 Ourense, Spain;
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| |
Collapse
|