1
|
Gupta A, Bohara VS, Siddegowda YB, Chaudhary N, Kumar S. Alpha-synuclein and RNA viruses: Exploring the neuronal nexus. Virology 2024; 597:110141. [PMID: 38917691 DOI: 10.1016/j.virol.2024.110141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Alpha-synuclein (α-syn), known for its pivotal role in Parkinson's disease, has recently emerged as a significant player in neurotropic RNA virus infections. Upregulation of α-syn in various viral infections has been found to impact neuroprotective functions by regulating neurotransmitter synthesis, vesicle trafficking, and synaptic vesicle recycling. This review focuses on the multifaceted role of α-syn in controlling viral replication by modulating chemoattractant properties towards microglial cells, virus-induced ER stress signaling, anti-oxidative proteins expression. Furthermore, the text underlines the α-syn-mediated regulation of interferon-stimulated genes. The review may help suggest potential therapeutic avenues for mitigating the impact of RNA viruses on the central nervous system by exploiting α-syn neuroprotective biology.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Vijay Singh Bohara
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | | | - Nitin Chaudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
2
|
Leak RK, Clark RN, Abbas M, Xu F, Brodsky JL, Chen J, Hu X, Luk KC. Current insights and assumptions on α-synuclein in Lewy body disease. Acta Neuropathol 2024; 148:18. [PMID: 39141121 PMCID: PMC11324801 DOI: 10.1007/s00401-024-02781-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/28/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Lewy body disorders are heterogeneous neurological conditions defined by intracellular inclusions composed of misshapen α-synuclein protein aggregates. Although α-synuclein aggregates are only one component of inclusions and not strictly coupled to neurodegeneration, evidence suggests they seed the propagation of Lewy pathology within and across cells. Genetic mutations, genomic multiplications, and sequence polymorphisms of the gene encoding α-synuclein are also causally linked to Lewy body disease. In nonfamilial cases of Lewy body disease, the disease trigger remains unidentified but may range from industrial/agricultural toxicants and natural sources of poisons to microbial pathogens. Perhaps due to these peripheral exposures, Lewy inclusions appear at early disease stages in brain regions connected with cranial nerves I and X, which interface with inhaled and ingested environmental elements in the nasal or gastrointestinal cavities. Irrespective of its identity, a stealthy disease trigger most likely shifts soluble α-synuclein (directly or indirectly) into insoluble, cross-β-sheet aggregates. Indeed, β-sheet-rich self-replicating α-synuclein multimers reside in patient plasma, cerebrospinal fluid, and other tissues, and can be subjected to α-synuclein seed amplification assays. Thus, clinicians should be able to capitalize on α-synuclein seed amplification assays to stratify patients into potential responders versus non-responders in future clinical trials of α-synuclein targeted therapies. Here, we briefly review the current understanding of α-synuclein in Lewy body disease and speculate on pathophysiological processes underlying the potential transmission of α-synucleinopathy across the neuraxis.
Collapse
Affiliation(s)
- Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, 418C Mellon Hall, 913 Bluff Street, Pittsburgh, PA, 15219, USA.
| | - Rachel N Clark
- Graduate School of Pharmaceutical Sciences, Duquesne University, 418C Mellon Hall, 913 Bluff Street, Pittsburgh, PA, 15219, USA
| | - Muslim Abbas
- Graduate School of Pharmaceutical Sciences, Duquesne University, 418C Mellon Hall, 913 Bluff Street, Pittsburgh, PA, 15219, USA
| | - Fei Xu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Chen
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Xiaoming Hu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Pennsylvania, PA, USA
| |
Collapse
|
3
|
Lengacher NA, Tomlinson JJ, Jochum AK, Franz J, Hasan Ali O, Flatz L, Jochum W, Penninger J, Stadelmann C, Woulfe JM, Schlossmacher MG. Neuropathological assessment of the olfactory bulb and tract in individuals with COVID-19. Acta Neuropathol Commun 2024; 12:70. [PMID: 38698465 PMCID: PMC11067107 DOI: 10.1186/s40478-024-01761-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/17/2024] [Indexed: 05/05/2024] Open
Abstract
The majority of patients with Parkinson disease (PD) experience a loss in their sense of smell and accumulate insoluble α-synuclein aggregates in their olfactory bulbs (OB). Subjects affected by a SARS-CoV-2-linked illness (COVID-19) also frequently experience hyposmia. We previously postulated that microglial activation as well as α-synuclein and tau misprocessing can occur during host responses following microbial encounters. Using semiquantitative measurements of immunohistochemical signals, we examined OB and olfactory tract specimens collected serially at autopsies between 2020 and 2023. Deceased subjects comprised 50 adults, which included COVID19 + patients (n = 22), individuals with Lewy body disease (e.g., PD; dementia with Lewy bodies (n = 6)), Alzheimer disease (AD; n = 3), and other neurodegenerative disorders (e.g., progressive supranuclear palsy (n = 2); multisystem atrophy (n = 1)). Further, we included neurologically healthy controls (n = 9), and added subjects with an inflammation-rich brain disorder as neurological controls (NCO; n = 7). When probing for microglial and histiocytic reactivity in the anterior olfactory nuclei (AON) by anti-CD68 immunostaining, scores were consistently elevated in NCO and AD cases. In contrast, microglial signals on average were not significantly altered in COVID19 + patients relative to healthy controls, although anti-CD68 reactivity in their OB and tracts declined with progression in age. Mild-to-moderate increases in phospho-α-synuclein and phospho-tau signals were detected in the AON of tauopathy- and synucleinopathy-afflicted brains, respectively, consistent with mixed pathology, as described by others. Lastly, when both sides were available for comparison in our case series, we saw no asymmetry in the degree of pathology of the left versus right OB and tracts. We concluded from our autopsy series that after a fatal course of COVID-19, microscopic changes in the rostral, intracranial portion of the olfactory circuitry -when present- reflected neurodegenerative processes seen elsewhere in the brain. In general, microglial reactivity correlated best with the degree of Alzheimer's-linked tauopathy and declined with progression of age in COVID19 + patients.
Collapse
Affiliation(s)
- Nathalie A Lengacher
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Julianna J Tomlinson
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Ann-Kristin Jochum
- Institute of Pathology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Jonas Franz
- Neuropathology Institute, University of Goettingen Medical Centre, Goettingen, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Omar Hasan Ali
- Department of Life Sciences, University of British Columbia, Vancouver, BC, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Lukas Flatz
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Wolfram Jochum
- Institute of Pathology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Josef Penninger
- Department of Life Sciences, University of British Columbia, Vancouver, BC, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Christine Stadelmann
- Neuropathology Institute, University of Goettingen Medical Centre, Goettingen, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - John M Woulfe
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa, ON, Canada.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| | - Michael G Schlossmacher
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
4
|
Parmasad JLA, Ricke KM, Nguyen B, Stykel MG, Buchner-Duby B, Bruce A, Geertsma HM, Lian E, Lengacher NA, Callaghan SM, Joselin A, Tomlinson JJ, Schlossmacher MG, Stanford WL, Ma J, Brundin P, Ryan SD, Rousseaux MWC. Genetic and pharmacological reduction of CDK14 mitigates synucleinopathy. Cell Death Dis 2024; 15:246. [PMID: 38575601 PMCID: PMC10994937 DOI: 10.1038/s41419-024-06534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 04/06/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disease characterized by the loss of midbrain dopaminergic neurons (DaNs) and the abnormal accumulation of α-Synuclein (α-Syn) protein. Currently, no treatment can slow nor halt the progression of PD. Multiplications and mutations of the α-Syn gene (SNCA) cause PD-associated syndromes and animal models that overexpress α-Syn replicate several features of PD. Decreasing total α-Syn levels, therefore, is an attractive approach to slow down neurodegeneration in patients with synucleinopathy. We previously performed a genetic screen for modifiers of α-Syn levels and identified CDK14, a kinase of largely unknown function as a regulator of α-Syn. To test the potential therapeutic effects of CDK14 reduction in PD, we ablated Cdk14 in the α-Syn preformed fibrils (PFF)-induced PD mouse model. We found that loss of Cdk14 mitigates the grip strength deficit of PFF-treated mice and ameliorates PFF-induced cortical α-Syn pathology, indicated by reduced numbers of pS129 α-Syn-containing cells. In primary neurons, we found that Cdk14 depletion protects against the propagation of toxic α-Syn species. We further validated these findings on pS129 α-Syn levels in PD patient neurons. Finally, we leveraged the recent discovery of a covalent inhibitor of CDK14 to determine whether this target is pharmacologically tractable in vitro and in vivo. We found that CDK14 inhibition decreases total and pathologically aggregated α-Syn in human neurons, in PFF-challenged rat neurons and in the brains of α-Syn-humanized mice. In summary, we suggest that CDK14 represents a novel therapeutic target for PD-associated synucleinopathy.
Collapse
Affiliation(s)
- Jean-Louis A Parmasad
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Konrad M Ricke
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Benjamin Nguyen
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Morgan G Stykel
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Brodie Buchner-Duby
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Amanda Bruce
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Haley M Geertsma
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Eric Lian
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Ottawa Institute for Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Nathalie A Lengacher
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Steve M Callaghan
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Alvin Joselin
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Julianna J Tomlinson
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Michael G Schlossmacher
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - William L Stanford
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Ottawa Institute for Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Jiyan Ma
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Chinese Institute for Brain Research, Beijing, China
| | - Patrik Brundin
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Scott D Ryan
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Maxime W C Rousseaux
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
- Ottawa Institute for Systems Biology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
5
|
Limanaqi F, Zecchini S, Saulle I, Strizzi S, Vanetti C, Garziano M, Cappelletti G, Parolin D, Caccia S, Trabattoni D, Fenizia C, Clerici M, Biasin M. Alpha-synuclein dynamics bridge Type-I Interferon response and SARS-CoV-2 replication in peripheral cells. Biol Res 2024; 57:2. [PMID: 38191441 PMCID: PMC10775536 DOI: 10.1186/s40659-023-00482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/15/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Increasing evidence suggests a double-faceted role of alpha-synuclein (α-syn) following infection by a variety of viruses, including SARS-CoV-2. Although α-syn accumulation is known to contribute to cell toxicity and the development and/or exacerbation of neuropathological manifestations, it is also a key to sustaining anti-viral innate immunity. Consistently with α-syn aggregation as a hallmark of Parkinson's disease, most studies investigating the biological function of α-syn focused on neural cells, while reports on the role of α-syn in periphery are limited, especially in SARS-CoV-2 infection. RESULTS Results herein obtained by real time qPCR, immunofluorescence and western blot indicate that α-syn upregulation in peripheral cells occurs as a Type-I Interferon (IFN)-related response against SARS-CoV-2 infection. Noteworthy, this effect mostly involves α-syn multimers, and the dynamic α-syn multimer:monomer ratio. Administration of excess α-syn monomers promoted SARS-CoV-2 replication along with downregulation of IFN-Stimulated Genes (ISGs) in epithelial lung cells, which was associated with reduced α-syn multimers and α-syn multimer:monomer ratio. These effects were prevented by combined administration of IFN-β, which hindered virus replication and upregulated ISGs, meanwhile increasing both α-syn multimers and α-syn multimer:monomer ratio in the absence of cell toxicity. Finally, in endothelial cells displaying abortive SARS-CoV-2 replication, α-syn multimers, and multimer:monomer ratio were not reduced following exposure to the virus and exogenous α-syn, suggesting that only productive viral infection impairs α-syn multimerization and multimer:monomer equilibrium. CONCLUSIONS Our study provides novel insights into the biology of α-syn, showing that its dynamic conformations are implicated in the innate immune response against SARS-CoV-2 infection in peripheral cells. In particular, our results suggest that promotion of non-toxic α-syn multimers likely occurs as a Type-I IFN-related biological response which partakes in the suppression of viral replication. Further studies are needed to replicate our findings in neuronal cells as well as animal models, and to ascertain the nature of such α-syn conformations.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy.
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Irma Saulle
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, Milan, Italy
| | - Sergio Strizzi
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Claudia Vanetti
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Micaela Garziano
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, Milan, Italy
| | - Gioia Cappelletti
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Debora Parolin
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Sonia Caccia
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Claudio Fenizia
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi, 20148, Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy.
| |
Collapse
|
6
|
Mercado G, Kaeufer C, Richter F, Peelaerts W. Infections in the Etiology of Parkinson's Disease and Synucleinopathies: A Renewed Perspective, Mechanistic Insights, and Therapeutic Implications. JOURNAL OF PARKINSON'S DISEASE 2024; 14:1301-1329. [PMID: 39331109 PMCID: PMC11492057 DOI: 10.3233/jpd-240195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Increasing evidence suggests a potential role for infectious pathogens in the etiology of synucleinopathies, a group of age-related neurodegenerative disorders including Parkinson's disease (PD), multiple system atrophy and dementia with Lewy bodies. In this review, we discuss the link between infections and synucleinopathies from a historical perspective, present emerging evidence that supports this link, and address current research challenges with a focus on neuroinflammation. Infectious pathogens can elicit a neuroinflammatory response and modulate genetic risk in PD and related synucleinopathies. The mechanisms of how infections might be linked with synucleinopathies as well as the overlap between the immune cellular pathways affected by virulent pathogens and disease-related genetic risk factors are discussed. Here, an important role for α-synuclein in the immune response against infections is emerging. Critical methodological and knowledge gaps are addressed, and we provide new future perspectives on how to address these gaps. Understanding how infections and neuroinflammation influence synucleinopathies will be essential for the development of early diagnostic tools and novel therapies.
Collapse
Affiliation(s)
- Gabriela Mercado
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher Kaeufer
- Center for Systems Neuroscience, Hannover, Germany
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Franziska Richter
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wouter Peelaerts
- Laboratory for Virology and Gene Therapy, Department of Pharmacy and Pharmaceutical Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Sampson T. Microbial amyloids in neurodegenerative amyloid diseases. FEBS J 2023:10.1111/febs.17023. [PMID: 38041542 PMCID: PMC11144261 DOI: 10.1111/febs.17023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/13/2023] [Accepted: 11/30/2023] [Indexed: 12/03/2023]
Abstract
Human-disease associated amyloidogenic proteins are not unique in their ability to form amyloid fibrillar structures. Numerous microbes produce amyloidogenic proteins that have distinct functions for their physiology in their amyloid form, rather than solely detrimental. Emerging data indicate associations between various microbial organisms, including those which produce functional amyloids, with neurodegenerative diseases. Here, we review some of the evidence suggesting that microbial amyloids impact amyloid disease in host organisms. Experimental data are building a foundation for continued lines of enquiry and suggest that that direct or indirect interactions between microbial and host amyloids may be a contributor to amyloid pathologies. Inhibiting microbial amyloids or their interactions with the host may therefore represent a tangible target to limit various amyloid pathologies.
Collapse
Affiliation(s)
- Timothy Sampson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
8
|
de Fàbregues O, Sellés M, Ramos-Vicente D, Roch G, Vila M, Bové J. Relevance of tissue-resident memory CD8 T cells in the onset of Parkinson's disease and examination of its possible etiologies: infectious or autoimmune? Neurobiol Dis 2023; 187:106308. [PMID: 37741513 DOI: 10.1016/j.nbd.2023.106308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/05/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023] Open
Abstract
Tissue-resident memory CD8 T cells are responsible for local immune surveillance in different tissues, including the brain. They constitute the first line of defense against pathogens and cancer cells and play a role in autoimmunity. A recently published study demonstrated that CD8 T cells with markers of residency containing distinct granzymes and interferon-γ infiltrate the parenchyma of the substantia nigra and contact dopaminergic neurons in an early premotor stage of Parkinson's disease. This infiltration precedes α-synuclein aggregation and neuronal loss in the substantia nigra, suggesting a relevant role for CD8 T cells in the onset of the disease. To date, the nature of the antigen that initiates the adaptive immune response remains unknown. This review will discuss the role of tissue-resident memory CD8 T cells in brain immune homeostasis and in the onset of Parkinson's disease and other neurological diseases. We also discuss how aging and genetic factors can affect the CD8 T cell immune response and how animal models can be misleading when studying human-related immune response. Finally, we speculate about a possible infectious or autoimmune origin of Parkinson's disease.
Collapse
Affiliation(s)
- Oriol de Fàbregues
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain; Movement Disorders Unit, Neurology Department, Vall d'Hebron University Hospital
| | - Maria Sellés
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - David Ramos-Vicente
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Gerard Roch
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Catalonia, Spain; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
| | - Jordi Bové
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain.
| |
Collapse
|
9
|
Thomas R, Connolly KJ, Brekk OR, Hinrich AJ, Hastings ML, Isacson O, Hallett PJ. Viral-like TLR3 induction of cytokine networks and α-synuclein are reduced by complement C3 blockade in mouse brain. Sci Rep 2023; 13:15164. [PMID: 37704739 PMCID: PMC10499893 DOI: 10.1038/s41598-023-41240-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023] Open
Abstract
Inflammatory processes and mechanisms are of central importance in neurodegenerative diseases. In the brain, α-synucleinopathies such as Parkinson's disease (PD) and Lewy body dementia (LBD) show immune cytokine network activation and increased toll like receptor 3 (TLR3) levels for viral double-stranded RNA (dsRNA). Brain inflammatory reactions caused by TLR3 activation are also relevant to understand pathogenic cascades by viral SARS-CoV-2 infection causing post- COVID-19 brain-related syndromes. In the current study, following regional brain TLR3 activation induced by dsRNA in mice, an acute complement C3 response was seen at 2 days. A C3 splice-switching antisense oligonucleotide (ASO) that promotes the splicing of a non-productive C3 mRNA, prevented downstream cytokines, such as IL-6, and α-synuclein changes. This report is the first demonstration that α-synuclein increases occur downstream of complement C3 activation. Relevant to brain dysfunction, post-COVID-19 syndromes and pathological changes leading to PD and LBD, viral dsRNA TLR3 activation in the presence of C3 complement blockade further revealed significant interactions between complement systems, inflammatory cytokine networks and α-synuclein changes.
Collapse
Affiliation(s)
- Ria Thomas
- Neuroregeneration Institute, McLean Hospital/Harvard Medical School, Belmont, MA, 02478, USA
| | - Kyle J Connolly
- Neuroregeneration Institute, McLean Hospital/Harvard Medical School, Belmont, MA, 02478, USA
| | - Oeystein R Brekk
- Neuroregeneration Institute, McLean Hospital/Harvard Medical School, Belmont, MA, 02478, USA
| | - Anthony J Hinrich
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Michelle L Hastings
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Ole Isacson
- Neuroregeneration Institute, McLean Hospital/Harvard Medical School, Belmont, MA, 02478, USA.
| | - Penelope J Hallett
- Neuroregeneration Institute, McLean Hospital/Harvard Medical School, Belmont, MA, 02478, USA.
| |
Collapse
|
10
|
Surguchov A, Emamzadeh FN, Titova M, Surguchev AA. Controversial Properties of Amyloidogenic Proteins and Peptides: New Data in the COVID Era. Biomedicines 2023; 11:1215. [PMID: 37189833 PMCID: PMC10136278 DOI: 10.3390/biomedicines11041215] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
For a long time, studies of amyloidogenic proteins and peptides (amyloidogenic PPs) have been focused basically on their harmful properties and association with diseases. A vast amount of research has investigated the structure of pathogenic amyloids forming fibrous deposits within or around cells and the mechanisms of their detrimental actions. Much less has been known about the physiologic functions and beneficial properties of amyloidogenic PPs. At the same time, amyloidogenic PPs have various useful properties. For example, they may render neurons resistant to viral infection and propagation and stimulate autophagy. We discuss here some of amyloidogenic PPs' detrimental and beneficial properties using as examples beta-amyloid (β-amyloid), implicated in the pathogenesis of Alzheimer's disease (AD), and α-synuclein-one of the hallmarks of Parkinson's disease (PD). Recently amyloidogenic PPs' antiviral and antimicrobial properties have attracted attention because of the COVID-19 pandemic and the growing threat of other viral and bacterial-induced diseases. Importantly, several COVID-19 viral proteins, e.g., spike, nucleocapsid, and envelope proteins, may become amyloidogenic after infection and combine their harmful action with the effect of endogenous APPs. A central area of current investigations is the study of the structural properties of amyloidogenic PPs, defining their beneficial and harmful properties, and identifying triggers that transform physiologically important amyloidogenic PPs into vicious substances. These directions are of paramount importance during the current SARS-CoV-2 global health crisis.
Collapse
Affiliation(s)
- Andrei Surguchov
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Fatemeh N. Emamzadeh
- Analytical Development Department, Iovance Biotherapeutics, Inc., Tampa, FL 33612, USA
| | - Mariya Titova
- The College of Liberal Arts & Sciences, Kansas University, Lawrence, KS 66045, USA
| | - Alexei A. Surguchev
- Department of Surgery, Section of Otolaryngology, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
11
|
Mancini M, Natoli S, Gardoni F, Di Luca M, Pisani A. Dopamine Transmission Imbalance in Neuroinflammation: Perspectives on Long-Term COVID-19. Int J Mol Sci 2023; 24:ijms24065618. [PMID: 36982693 PMCID: PMC10056044 DOI: 10.3390/ijms24065618] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Dopamine (DA) is a key neurotransmitter in the basal ganglia, implicated in the control of movement and motivation. Alteration of DA levels is central in Parkinson’s disease (PD), a common neurodegenerative disorder characterized by motor and non-motor manifestations and deposition of alpha-synuclein (α-syn) aggregates. Previous studies have hypothesized a link between PD and viral infections. Indeed, different cases of parkinsonism have been reported following COVID-19. However, whether SARS-CoV-2 may trigger a neurodegenerative process is still a matter of debate. Interestingly, evidence of brain inflammation has been described in postmortem samples of patients infected by SARS-CoV-2, which suggests immune-mediated mechanisms triggering the neurological sequelae. In this review, we discuss the role of proinflammatory molecules such as cytokines, chemokines, and oxygen reactive species in modulating DA homeostasis. Moreover, we review the existing literature on the possible mechanistic interplay between SARS-CoV-2-mediated neuroinflammation and nigrostriatal DAergic impairment, and the cross-talk with aberrant α-syn metabolism.
Collapse
Affiliation(s)
- Maria Mancini
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
- IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Silvia Natoli
- Department of Clinical Science and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
- IRCCS Maugeri Pavia, 27100 Pavia, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, University of Milan, 20133 Milan, Italy; (F.G.); (M.D.L.)
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, University of Milan, 20133 Milan, Italy; (F.G.); (M.D.L.)
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
- IRCCS Mondino Foundation, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-380-247
| |
Collapse
|
12
|
Heiden DL, Monogue B, Ali MDH, Beckham JD. A functional role for alpha-synuclein in neuroimmune responses. J Neuroimmunol 2023; 376:578047. [PMID: 36791583 PMCID: PMC10022478 DOI: 10.1016/j.jneuroim.2023.578047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Alpha-synuclein is a neuronal protein with unclear function but is associated with the pathogenesis of Parkinson's disease and other synucleinopathies. In this review, we discuss the emerging functional role of alpha-synuclein in support of the unique immune responses in the nervous system. Recent data now show that alpha-synuclein functions to support interferon signaling within neurons and is released from neurons to support chemoattraction and activation of local glial cells and infiltrating immune cells. Inflammatory activation and interferon signaling also induce post-translational modifications of alpha-synuclein that are commonly associated with Parkinson's disease pathogenesis. Taken together, emerging data implicate complex interactions between alpha-synuclein and host immune responses that may contribute to the pathogenesis of Parkinson's disease. Additional study of the function of alpha-synuclein in the brain's immune response may provide disease-modifying therapeutic targets for Parkinson's disease in the future.
Collapse
Affiliation(s)
- Dustin L Heiden
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brendan Monogue
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - M D Haider Ali
- Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - J David Beckham
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Rocky Mountain Regional VA Medical Center, Aurora, CO, USA.
| |
Collapse
|
13
|
Linard M, Foubert-Samier A, Pacaud J, Helmer C. Could JC virus be involved in the onset of multiple system atrophy? A hypothesis. Parkinsonism Relat Disord 2023; 109:105358. [PMID: 36935321 DOI: 10.1016/j.parkreldis.2023.105358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/17/2023]
Affiliation(s)
- Morgane Linard
- INSERM UMR U1219 Bordeaux Population Health Research Centre, University of Bordeaux, Bordeaux, France.
| | - Alexandra Foubert-Samier
- INSERM UMR U1219 Bordeaux Population Health Research Centre, University of Bordeaux, Bordeaux, France; French Reference Centre for MSA, Bordeaux University Hospital, Bordeaux, France; CNRS UMR 5293, Institut des Maladies Neurodégénératives, University of Bordeaux, Bordeaux, France
| | - Jordi Pacaud
- Department of Virology, Bordeaux University Hospital, Bordeaux, France; CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University of Bordeaux, Bordeaux, France
| | - Catherine Helmer
- INSERM UMR U1219 Bordeaux Population Health Research Centre, University of Bordeaux, Bordeaux, France
| |
Collapse
|
14
|
Jensen PH, Schlossmacher MG, Stefanis L. Who Ever Said It Would Be Easy? Reflecting on Two Clinical Trials Targeting α-Synuclein. Mov Disord 2023; 38:378-384. [PMID: 36645106 DOI: 10.1002/mds.29318] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/17/2023] Open
Abstract
Two recent, high-profile manuscripts reported negative results with two parallel approaches of passive immunization targeting α-synuclein in a population of patients with early Parkinson's disease (PD). These phase II studies failed to show a bona fide disease-modifying neuroprotective effect on PD progression, despite the evidence that these antibodies effectively bind native α-synuclein in human serum. Here, we discuss the possible reasons that could help explain the lack of clinical efficacy. In particular, we highlight (1) the wealth of evidence supporting the notion of α-synuclein as a valid therapeutic target; (2) the lack of evidence of target engagement in the aforementioned studies, especially of the elusive oligomeric species, the likely culprits in disease pathogenesis and/or its propagation; (3) the limitations, especially in terms of timing passive immunization, of preclinical models, where the same α-synuclein antibodies succeeded in mitigating disease manifestations; (4) the consideration of possibly intervening at an even earlier stage of disease in future trials; and (5) the multitude of strategies beyond passive immunization that could be used to combat α-synuclein-mediated neurodegeneration, if in the end the current approach is not fruitful. Overall, our perception is that converging developments in the field, among them novel bioassays and biomarkers, improved cellular and animal models and objective measurements of motor activities integrated into clinical trials, if further optimized, will gradually move the momentum of the field forward. This, to better test the concept of whether α-synuclein-targeting therapies can indeed deliver the "holy grail" of neuroprotection to the benefit of the PD community. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Poul Henning Jensen
- Department of Biomedicine and DANDRITE, Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark
| | - Michael G Schlossmacher
- Program in Neuroscience and Division of Neurology, The Ottawa Hospital, University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| | - Leonidas Stefanis
- First Department of Neurology, National and Kapodistrian University of Athens Medical School and Laboratory of Neurodegenerative Diseases, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
15
|
Magalhães JD, Cardoso SM. Mitochondrial signaling on innate immunity activation in Parkinson disease. Curr Opin Neurobiol 2023; 78:102664. [PMID: 36535149 DOI: 10.1016/j.conb.2022.102664] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the accumulation of alpha-synuclein (aSyn) in the nigrostriatal pathway that is followed by severe neuroinflammatory response. PD etiology is still puzzling; however, the mitocentric view might explain the vast majority of molecular findings not only in the brain, but also at systemic level. While neuronal degeneration is tightly associated with mitochondrial dysfunction, the causal role between aSyn accumulation and mitochondrial dysfunction still requires further investigation. Moreover, mitochondrial dysfunction can elicit an inflammatory response that may be transmitted locally but also in a long range through systemic circulation. Furthermore, mitochondrial-driven innate immune activation may involve the synthesis of antimicrobial peptides, of which aSyn poses as a good candidate. While there is still a need to clarify disease-elicited mechanisms and how aSyn has the ability to modulate mitochondrial and cellular dysfunction, recent studies provide insightful views on mitochondria-inflammation axis in PD etiology.
Collapse
Affiliation(s)
- João D Magalhães
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Programme in Biomedicine and Experimental Biology (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Sandra Morais Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
16
|
Gelain DP, Bittencourt RR, Bastos Mendes LF, Moreira JCF, Outeiro TF. RAGE Against the Glycation Machine in Synucleinopathies: Time to Explore New Questions. JOURNAL OF PARKINSON'S DISEASE 2023; 13:717-728. [PMID: 37270812 PMCID: PMC10473104 DOI: 10.3233/jpd-230070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Oligomerization and aggregation of misfolded forms of α-synuclein are believed to be key molecular mechanisms in Parkinson's disease (PD) and other synucleinopathies, so extensive research has attempted to understand these processes. Among diverse post-translational modifications that impact α-synuclein aggregation, glycation may take place at several lysine sites and modify α-synuclein oligomerization, toxicity, and clearance. The receptor for advanced glycation end products (RAGE) is considered a key regulator of chronic neuroinflammation through microglial activation in response to advanced glycation end products, such as carboxy-ethyl-lysine, or carboxy-methyl-lysine. The presence of RAGE in the midbrain of PD patients has been reported in the last decades and this receptor was proposed to have a role in sustaining PD neuroinflammation. However, different PD animal models demonstrated that RAGE is preferentially expressed in neurons and astrocytes, while recent evidence demonstrated that fibrillar, non-glycated α-synuclein binds to RAGE. Here, we summarize the available data on α-synuclein glycation and RAGE in the context of PD, and discuss about the questions yet to be answered that may increase our understanding of the molecular bases of PD and synucleinopathies.
Collapse
Affiliation(s)
- Daniel Pens Gelain
- Center for Oxidative Stress Studies, Department of Biochemistry, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Reykla Ramon Bittencourt
- Center for Oxidative Stress Studies, Department of Biochemistry, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luiz Filipe Bastos Mendes
- Center for Oxidative Stress Studies, Department of Biochemistry, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - José Claudio Fonseca Moreira
- Center for Oxidative Stress Studies, Department of Biochemistry, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Natural Sciences, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| |
Collapse
|
17
|
Monogue B, Chen Y, Sparks H, Behbehani R, Chai A, Rajic AJ, Massey A, Kleinschmidt-Demasters BK, Vermeren M, Kunath T, Beckham JD. Alpha-synuclein supports type 1 interferon signalling in neurons and brain tissue. Brain 2022; 145:3622-3636. [PMID: 35858675 PMCID: PMC10233298 DOI: 10.1093/brain/awac192] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 01/01/2023] Open
Abstract
The protein alpha-synuclein is predominantly expressed in neurons and is associated with neurodegenerative diseases like Parkinson's disease and dementia with Lewy bodies. However, the normal function of alpha-synuclein in neurons is not clearly defined. We have previously shown that mice lacking alpha-synuclein expression exhibit markedly increased viral growth in the brain, increased mortality and increased neuronal cell death, implicating alpha-synuclein in the neuronal innate immune response. To investigate the mechanism of alpha-synuclein-induced immune responses to viral infections in the brain, we challenged alpha-synuclein knockout mice and human alpha-synuclein knockout dopaminergic neurons with RNA virus infection and discovered that alpha-synuclein is required for neuronal expression of interferon-stimulated genes. Furthermore, human alpha-synuclein knockout neurons treated with type 1 interferon failed to induce a broad range of interferon stimulated genes, implying that alpha-synuclein interacts with type 1 interferon signalling. We next found that alpha-synuclein accumulates in the nucleus of interferon-treated human neurons after interferon treatment and we demonstrated that interferon-mediated phosphorylation of STAT2 is dependent on alpha-synuclein expression in human neurons. Next, we found that activated STAT2 co-localizes with alpha-synuclein following type 1 interferon stimulation in neurons. Finally, we found that brain tissue from patients with viral encephalitis expresses increased levels of phospho-serine129 alpha-synuclein in neurons. Taken together, our results show that alpha-synuclein expression supports neuron-specific interferon responses by localizing to the nucleus, supporting STAT2 activation, co-localizing with phosphorylated STAT2 in neurons and supporting expression of interferon-stimulated genes. These data provide a novel mechanism that links interferon activation and alpha-synuclein function in neurons.
Collapse
Affiliation(s)
- Brendan Monogue
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yixi Chen
- Centre for Regenerative Medicine and the School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK
- UK Centre for Mammalian Synthetic Biology, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Hadrian Sparks
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ranya Behbehani
- Centre for Regenerative Medicine and the School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Andrew Chai
- Centre for Regenerative Medicine and the School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Alexander J Rajic
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Aaron Massey
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - B K Kleinschmidt-Demasters
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Departments of Pathology and Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Matthieu Vermeren
- Centre for Regenerative Medicine and the School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Tilo Kunath
- Centre for Regenerative Medicine and the School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK
- UK Centre for Mammalian Synthetic Biology, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - J David Beckham
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| |
Collapse
|
18
|
Alpha-Synuclein and Parkinson's Disease Motor and Non-Motor Symptoms: What Is New? LIFE (BASEL, SWITZERLAND) 2022; 12:life12060904. [PMID: 35743935 PMCID: PMC9227580 DOI: 10.3390/life12060904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 12/03/2022]
|
19
|
Inflammation in dementia with Lewy bodies. Neurobiol Dis 2022; 168:105698. [DOI: 10.1016/j.nbd.2022.105698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/03/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022] Open
|
20
|
Xie J, Tian S, Liu J, Cao R, Yue P, Cai X, Shang Q, Yang M, Han L, Zhang DK. Dual role of the nasal microbiota in neurological diseases—An unignorable risk factor or a potential therapy carrier. Pharmacol Res 2022; 179:106189. [DOI: 10.1016/j.phrs.2022.106189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/06/2022] [Accepted: 03/17/2022] [Indexed: 12/11/2022]
|
21
|
Kasen A, Houck C, Burmeister AR, Sha Q, Brundin L, Brundin P. Upregulation of α-synuclein following immune activation: Possible trigger of Parkinson's disease. Neurobiol Dis 2022; 166:105654. [DOI: 10.1016/j.nbd.2022.105654] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 12/20/2022] Open
|
22
|
Linard M, Ravier A, Mougué L, Grgurina I, Boutillier AL, Foubert-Samier A, Blanc F, Helmer C. Infectious Agents as Potential Drivers of α-Synucleinopathies. Mov Disord 2022; 37:464-477. [PMID: 35040520 DOI: 10.1002/mds.28925] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 12/16/2022] Open
Abstract
α-synucleinopathies, encompassing Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy, are devastating neurodegenerative diseases for which available therapeutic options are scarce, mostly because of our limited understanding of their pathophysiology. Although these pathologies are attributed to an intracellular accumulation of the α-synuclein protein in the nervous system with subsequent neuronal loss, the trigger(s) of this accumulation is/are not clearly identified. Among the existing hypotheses, interest in the hypothesis advocating the involvement of infectious agents in the onset of these diseases is renewed. In this article, we aimed to review the ongoing relevant factors favoring and opposing this hypothesis, focusing on (1) the potential antimicrobial role of α-synuclein, (2) potential entry points of pathogens in regard to early symptoms of diverse α-synucleinopathies, (3) pre-existing literature reviews assessing potential associations between infectious agents and Parkinson's disease, (4) original studies assessing these associations for dementia with Lewy bodies and multiple system atrophy (identified through a systematic literature review), and finally (5) potential susceptibility factors modulating the effects of infectious agents on the nervous system. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Morgane Linard
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR U1219, Bordeaux, France
| | - Alix Ravier
- CM2R (Memory Resource and Research Centre), Geriatrics Department, University Hospitals of Strasbourg, Strasbourg, France
| | - Louisa Mougué
- Cognitive-Behavioral Unit and Memory Consultations, Hospital of Sens, Sens, France
| | - Iris Grgurina
- University of Strasbourg, UMR7364 CNRS, LNCA, Strasbourg, France
| | | | - Alexandra Foubert-Samier
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR U1219, Bordeaux, France.,French Reference Centre for MSA, University Hospital of Bordeaux, Bordeaux, France
| | - Frédéric Blanc
- CM2R (Memory Resource and Research Centre), Geriatrics Department, University Hospitals of Strasbourg, Strasbourg, France.,ICube Laboratory and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Team IMIS, University of Strasbourg, Strasbourg, France
| | - Catherine Helmer
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR U1219, Bordeaux, France
| |
Collapse
|
23
|
Kramer P. Mitochondria-Microbiota Interaction in Neurodegeneration. Front Aging Neurosci 2022; 13:776936. [PMID: 35002678 PMCID: PMC8733591 DOI: 10.3389/fnagi.2021.776936] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s and Parkinson’s are the two best-known neurodegenerative diseases. Each is associated with the excessive aggregation in the brain and elsewhere of its own characteristic amyloid proteins. Yet the two afflictions have much in common and often the same amyloids play a role in both. These amyloids need not be toxic and can help regulate bile secretion, synaptic plasticity, and immune defense. Moreover, when they do form toxic aggregates, amyloids typically harm not just patients but their pathogens too. A major port of entry for pathogens is the gut. Keeping the gut’s microbe community (microbiota) healthy and under control requires that our cells’ main energy producers (mitochondria) support the gut-blood barrier and immune system. As we age, these mitochondria eventually succumb to the corrosive byproducts they themselves release, our defenses break down, pathogens or their toxins break through, and the side effects of inflammation and amyloid aggregation become problematic. Although it gets most of the attention, local amyloid aggregation in the brain merely points to a bigger problem: the systemic breakdown of the entire human superorganism, exemplified by an interaction turning bad between mitochondria and microbiota.
Collapse
Affiliation(s)
- Peter Kramer
- Department of General Psychology, University of Padua, Padua, Italy
| |
Collapse
|
24
|
Alam MM, Yang D, Li XQ, Liu J, Back TC, Trivett A, Karim B, Barbut D, Zasloff M, Oppenheim JJ. Alpha synuclein, the culprit in Parkinson disease, is required for normal immune function. Cell Rep 2022; 38:110090. [PMID: 35021075 PMCID: PMC10258816 DOI: 10.1016/j.celrep.2021.110090] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/30/2021] [Accepted: 11/12/2021] [Indexed: 12/26/2022] Open
Abstract
Alpha-synuclein (αS) is causally involved in the development of Parkinson disease (PD); however, its role in normal vertebrate physiology has remained unknown. Recent studies demonstrate that αS is induced by noroviral infection in the enteric nervous system of children and protects mice against lethal neurotropic viral infection. Additionally, αS is a potent chemotactic activator of phagocytes. In this report, using both wild-type and αS knockout mice, we show that αS is a critical mediator of inflammatory and immune responses. αS is required for the development of a normal inflammatory response to bacterial peptidoglycan introduced into the peritoneal cavity as well as antigen-specific and T cell responses following intraperitoneal immunization. Furthermore, we show that neural cells are the sources of αS required for immune competence. Our report supports the hypothesis that αS accumulates within the nervous system of PD individuals because of an inflammatory/immune response.
Collapse
Affiliation(s)
- Md Masud Alam
- Cellular Immunology Section, Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - De Yang
- Cellular Immunology Section, Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA.
| | - Xiao-Qing Li
- Cellular Immunology Section, Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Jia Liu
- Cellular Immunology Section, Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Timothy Carrel Back
- Cellular Immunology Section, Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Anna Trivett
- Cellular Immunology Section, Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Baktiar Karim
- Molecular Histopathology Laboratory, Leidos Biomedical Research, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Denise Barbut
- Enterin Research Institute, Philadelphia, PA 19103, USA
| | - Michael Zasloff
- Enterin Research Institute, Philadelphia, PA 19103, USA; MedStar Georgetown Transplant Institute, Georgetown University Hospital, Washington, DC 20007, USA
| | - Joost J Oppenheim
- Cellular Immunology Section, Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA.
| |
Collapse
|
25
|
Limbocker R, Errico S, Barbut D, Knowles TPJ, Vendruscolo M, Chiti F, Zasloff M. Squalamine and trodusquemine: two natural products for neurodegenerative diseases, from physical chemistry to the clinic. Nat Prod Rep 2021; 39:742-753. [PMID: 34698757 DOI: 10.1039/d1np00042j] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 1993 to 2021 (mainly 2017-2021)Alzheimer's and Parkinson's diseases are neurodegenerative conditions affecting over 50 million people worldwide. Since these disorders are still largely intractable pharmacologically, discovering effective treatments is of great urgency and importance. These conditions are characteristically associated with the aberrant deposition of proteinaceous aggregates in the brain, and with the formation of metastable intermediates known as protein misfolded oligomers that play a central role in their aetiology. In this Highlight article, we review the evidence at the physicochemical, cellular, animal model and clinical levels on how the natural products squalamine and trodusquemine offer promising opportunities for chronic treatments for these progressive conditions by preventing both the formation of neurotoxic oligomers and their interaction with cell membranes.
Collapse
Affiliation(s)
- Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, USA
| | - Silvia Errico
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy. .,Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
| | - Denise Barbut
- Enterin Inc., 3624 Market Street, Philadelphia, Pennsylvania 19104, USA
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK. .,Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy.
| | - Michael Zasloff
- Enterin Inc., 3624 Market Street, Philadelphia, Pennsylvania 19104, USA.,MedStar-Georgetown Transplant Institute, Georgetown University School of Medicine, Washington, DC 20010, USA.
| |
Collapse
|
26
|
Wallen ZD, Stone WJ, Factor SA, Molho E, Zabetian CP, Standaert DG, Payami H. Exploring human-genome gut-microbiome interaction in Parkinson's disease. NPJ PARKINSONS DISEASE 2021; 7:74. [PMID: 34408160 PMCID: PMC8373869 DOI: 10.1038/s41531-021-00218-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022]
Abstract
The causes of complex diseases remain an enigma despite decades of epidemiologic research on environmental risks and genome-wide studies that have uncovered tens or hundreds of susceptibility loci for each disease. We hypothesize that the microbiome is the missing link. Genetic studies have shown that overexpression of alpha-synuclein, a key pathological protein in Parkinson’s disease (PD), can cause familial PD and variants at alpha-synuclein locus confer risk of idiopathic PD. Recently, dysbiosis of gut microbiome in PD was identified: altered abundances of three microbial clusters were found, one of which was composed of opportunistic pathogens. Using two large datasets, we found evidence that the overabundance of opportunistic pathogens in PD gut is influenced by the host genotype at the alpha-synuclein locus, and that the variants responsible modulate alpha-synuclein expression. Results put forth testable hypotheses on the role of gut microbiome in the pathogenesis of PD, the incomplete penetrance of PD susceptibility genes, and potential triggers of pathology in the gut.
Collapse
Affiliation(s)
- Zachary D Wallen
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William J Stone
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stewart A Factor
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric Molho
- Department of Neurology, Albany Medical College, Albany, NY, USA
| | - Cyrus P Zabetian
- VA Puget Sound Health Care System and Department of Neurology, University of Washington, Seattle, WA, USA
| | - David G Standaert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Haydeh Payami
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
27
|
Oliveira LMA, Gasser T, Edwards R, Zweckstetter M, Melki R, Stefanis L, Lashuel HA, Sulzer D, Vekrellis K, Halliday GM, Tomlinson JJ, Schlossmacher M, Jensen PH, Schulze-Hentrich J, Riess O, Hirst WD, El-Agnaf O, Mollenhauer B, Lansbury P, Outeiro TF. Alpha-synuclein research: defining strategic moves in the battle against Parkinson's disease. NPJ Parkinsons Dis 2021; 7:65. [PMID: 34312398 PMCID: PMC8313662 DOI: 10.1038/s41531-021-00203-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
With the advent of the genetic era in Parkinson's disease (PD) research in 1997, α-synuclein was identified as an important player in a complex neurodegenerative disease that affects >10 million people worldwide. PD has been estimated to have an economic impact of $51.9 billion in the US alone. Since the initial association with PD, hundreds of researchers have contributed to elucidating the functions of α-synuclein in normal and pathological states, and these remain critical areas for continued research. With this position paper the authors strive to achieve two goals: first, to succinctly summarize the critical features that define α-synuclein's varied roles, as they are known today; and second, to identify the most pressing knowledge gaps and delineate a multipronged strategy for future research with the goal of enabling therapies to stop or slow disease progression in PD.
Collapse
Affiliation(s)
- Luis M A Oliveira
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA.
| | - Thomas Gasser
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Robert Edwards
- Departments of Neurology and Physiology, UCSF School of Medicine, San Francisco, CA, USA
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ronald Melki
- Institut François Jacob, MIRCen, CEA and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-aux-Roses, France
| | - Leonidas Stefanis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- First Department of Neurology, Medical School of the National and Kapodistrian University of Athens, Athens, Greece
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Faculty of Life Sciences, EPFL, Lausanne, Switzerland
| | - David Sulzer
- Department of Psychiatry, Neurology, Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Kostas Vekrellis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Glenda M Halliday
- University of Sydney, Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, Sydney, NSW, Australia
| | - Julianna J Tomlinson
- Neuroscience Program, The Ottawa Hospital, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Michael Schlossmacher
- Neuroscience Program, The Ottawa Hospital, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Division of Neurology, The Ottawa Hospital, Ottawa, ON, Canada
| | - Poul Henning Jensen
- Aarhus University, Department of Biomedicine & DANDRITE, Danish Research Institute of Translational Neuroscience, Aarhus, Denmark
| | - Julia Schulze-Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Warren D Hirst
- Neurodegenerative Diseases Research Unit, Biogen, Cambridge, MA, USA
| | - Omar El-Agnaf
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Paracelsus-Elena-Klinik, Kassel, Germany
| | | | - Tiago F Outeiro
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.
- Max Planck Institute for Experimental Medicine, Göttingen, Germany.
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK.
| |
Collapse
|
28
|
Son G, Yoo SJ, Kang S, Rasheed A, Jung DH, Park H, Cho B, Steinbusch HWM, Chang KA, Suh YH, Moon C. Region-specific amyloid-β accumulation in the olfactory system influences olfactory sensory neuronal dysfunction in 5xFAD mice. ALZHEIMERS RESEARCH & THERAPY 2021; 13:4. [PMID: 33397474 PMCID: PMC7784287 DOI: 10.1186/s13195-020-00730-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/23/2020] [Indexed: 01/10/2023]
Abstract
Background Hyposmia in Alzheimer’s disease (AD) is a typical early symptom according to numerous previous clinical studies. Although amyloid-β (Aβ), which is one of the toxic factors upregulated early in AD, has been identified in many studies, even in the peripheral areas of the olfactory system, the pathology involving olfactory sensory neurons (OSNs) remains poorly understood. Methods Here, we focused on peripheral olfactory sensory neurons (OSNs) and delved deeper into the direct relationship between pathophysiological and behavioral results using odorants. We also confirmed histologically the pathological changes in 3-month-old 5xFAD mouse models, which recapitulates AD pathology. We introduced a numeric scale histologically to compare physiological phenomenon and local tissue lesions regardless of the anatomical plane. Results We observed the odorant group that the 5xFAD mice showed reduced responses to odorants. These also did not physiologically activate OSNs that propagate their axons to the ventral olfactory bulb. Interestingly, the amount of accumulated amyloid-β (Aβ) was high in the OSNs located in the olfactory epithelial ectoturbinate and the ventral olfactory bulb glomeruli. We also observed irreversible damage to the ectoturbinate of the olfactory epithelium by measuring the impaired neuronal turnover ratio from the basal cells to the matured OSNs. Conclusions Our results showed that partial and asymmetrical accumulation of Aβ coincided with physiologically and structurally damaged areas in the peripheral olfactory system, which evoked hyporeactivity to some odorants. Taken together, partial olfactory dysfunction closely associated with peripheral OSN’s loss could be a leading cause of AD-related hyposmia, a characteristic of early AD. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-020-00730-2.
Collapse
Affiliation(s)
- Gowoon Son
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Seung-Jun Yoo
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.,Convergence Research Advanced Centre for Olfaction, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.,Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Shinwoo Kang
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Ameer Rasheed
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Da Hae Jung
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Hyunjun Park
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Bongki Cho
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.,Convergence Research Advanced Centre for Olfaction, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Harry W M Steinbusch
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Keun-A Chang
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Yoo-Hun Suh
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Cheil Moon
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea. .,Convergence Research Advanced Centre for Olfaction, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea. .,Korea Brain Research Institute, Daegu, Republic of Korea.
| |
Collapse
|
29
|
Shutinoski B, Hakimi M, Harmsen IE, Lunn M, Rocha J, Lengacher N, Zhou YY, Khan J, Nguyen A, Hake-Volling Q, El-Kodsi D, Li J, Alikashani A, Beauchamp C, Majithia J, Coombs K, Shimshek D, Marcogliese PC, Park DS, Rioux JD, Philpott DJ, Woulfe JM, Hayley S, Sad S, Tomlinson JJ, Brown EG, Schlossmacher MG. Lrrk2 alleles modulate inflammation during microbial infection of mice in a sex-dependent manner. Sci Transl Med 2020; 11:11/511/eaas9292. [PMID: 31554740 DOI: 10.1126/scitranslmed.aas9292] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 12/27/2018] [Accepted: 05/11/2019] [Indexed: 12/20/2022]
Abstract
Variants in the leucine-rich repeat kinase-2 (LRRK2) gene are associated with Parkinson's disease, leprosy, and Crohn's disease, three disorders with inflammation as an important component. Because of its high expression in granulocytes and CD68-positive cells, LRRK2 may have a function in innate immunity. We tested this hypothesis in two ways. First, adult mice were intravenously inoculated with Salmonella typhimurium, resulting in sepsis. Second, newborn mouse pups were intranasally infected with reovirus (serotype 3 Dearing), which induced encephalitis. In both mouse models, wild-type Lrrk2 expression was protective and showed a sex effect, with female Lrrk2-deficient animals not controlling infection as well as males. Mice expressing Lrrk2 carrying the Parkinson's disease-linked p.G2019S mutation controlled infection better, with reduced bacterial growth and longer animal survival during sepsis. This gain-of-function effect conferred by the p.G2019S mutation was mediated by myeloid cells and was abolished in animals expressing a kinase-dead Lrrk2 variant, p.D1994S. Mouse pups with reovirus-induced encephalitis that expressed the p.G2019S Lrrk2 mutation showed increased mortality despite lower viral titers. The p.G2019S mutant Lrrk2 augmented immune cell chemotaxis and generated more reactive oxygen species during virulent infection. Reovirus-infected brains from mice expressing the p.G2019S mutant Lrrk2 contained higher concentrations of α-synuclein. Animals expressing one or two p.D1994S Lrrk2 alleles showed lower mortality from reovirus-induced encephalitis. Thus, Lrrk2 alleles may alter the course of microbial infections by modulating inflammation, and this may be dependent on the sex and genotype of the host as well as the type of pathogen.
Collapse
Affiliation(s)
- Bojan Shutinoski
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Mansoureh Hakimi
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Irene E Harmsen
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Michaela Lunn
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.,Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Juliana Rocha
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Nathalie Lengacher
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Yi Yuan Zhou
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Jasmine Khan
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Angela Nguyen
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Quinton Hake-Volling
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Daniel El-Kodsi
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Juan Li
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Azadeh Alikashani
- Research Centre, Montreal Heart Institute, Montréal, QC, Canada.,Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Claudine Beauchamp
- Research Centre, Montreal Heart Institute, Montréal, QC, Canada.,Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Jay Majithia
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Kevin Coombs
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Derya Shimshek
- Novartis Institutes of BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Paul C Marcogliese
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - David S Park
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - John D Rioux
- Research Centre, Montreal Heart Institute, Montréal, QC, Canada.,Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - John M Woulfe
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.,Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Shawn Hayley
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Subash Sad
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Julianna J Tomlinson
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Earl G Brown
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Michael G Schlossmacher
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada.,Division of Neurology, Department of Medicine, Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
30
|
Characterizing dysbiosis of gut microbiome in PD: evidence for overabundance of opportunistic pathogens. NPJ PARKINSONS DISEASE 2020; 6:11. [PMID: 32566740 PMCID: PMC7293233 DOI: 10.1038/s41531-020-0112-6] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023]
Abstract
In Parkinson's disease (PD), gastrointestinal features are common and often precede the motor signs. Braak and colleagues proposed that PD may start in the gut, triggered by a pathogen, and spread to the brain. Numerous studies have examined the gut microbiome in PD; all found it to be altered, but found inconsistent results on associated microorganisms. Studies to date have been small (N = 20 to 306) and are difficult to compare or combine due to varied methodology. We conducted a microbiome-wide association study (MWAS) with two large datasets for internal replication (N = 333 and 507). We used uniform methodology when possible, interrogated confounders, and applied two statistical tests for concordance, followed by correlation network analysis to infer interactions. Fifteen genera were associated with PD at a microbiome-wide significance level, in both datasets, with both methods, with or without covariate adjustment. The associations were not independent, rather they represented three clusters of co-occurring microorganisms. Cluster 1 was composed of opportunistic pathogens and all were elevated in PD. Cluster 2 was short-chain fatty acid (SCFA)-producing bacteria and all were reduced in PD. Cluster 3 was carbohydrate-metabolizing probiotics and were elevated in PD. Depletion of anti-inflammatory SCFA-producing bacteria and elevated levels of probiotics are confirmatory. Overabundance of opportunistic pathogens is an original finding and their identity provides a lead to experimentally test their role in PD.
Collapse
|
31
|
Dwyer Z, Rudyk C, Situt D, Beauchamp S, Abdali J, Dinesh A, Legancher N, Sun H, Schlossmacher M, Hayley S. Microglia depletion prior to lipopolysaccharide and paraquat treatment differentially modulates behavioral and neuronal outcomes in wild type and G2019S LRRK2 knock-in mice. Brain Behav Immun Health 2020; 5:100079. [PMID: 34589856 PMCID: PMC8474533 DOI: 10.1016/j.bbih.2020.100079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Substantial data have implicated microglial-driven neuroinflammation in Parkinson's disease (PD) and environmental toxicants have been long expected as triggers of such inflammatory processes. Of course, these environmental insults act in the context of genetic vulnerability factors and in this regard, leucine rich repeat kinase 2 (LRRK2), may play a prominent role. METHODS We used a double hit, lipopolysaccharide (LPS; endotoxin) followed by paraquat (pesticide toxicant) model of PD in mice with the most common LRRK2 mutation G2019S, knockin mice and wild type littermates. In order to assess the contribution of microglia, we depleted these cells (through 14 days of the CSF-1 antagonist, PLX-3397) prior to LPS and paraquat exposure. RESULTS We found that the G2019S mice displayed the greatest signs of behavioral pathology, but that the PLX-3397 induced microglial depletion at the time of LPS exposure diminished toxicity and weight loss and blunted the reduction in home-cage activity with subsequent paraquat exposure. However, neither the PLX-3397 pre-treatment nor the G2019S mutation affected the LPS + paraquat induced loss of substantia nigra pars compacta (SNc) dopamine neurons or elevation of circulating immune (IL-6) or stress (corticosterone) factors. Intriguingly, microglial morphological ratings were basally enhanced in G2019S mice and the PLX-3397 pre-treatment reversed this effect. Moreover, PLX-3397 pre-treatment selectively elevated soluble a-synuclein and SIRT3 levels, while reducing SNc caspase-1 and 3, along with CX3CR1. Hence, the re-populated "new" microglia following cessation of PLX-3397 clearly had an altered phenotype or were immature at the time of sacrifice (i.e. after 11 days). CONCLUSIONS Collectively, these findings suggest that G2019S knock-in and PLX-3397 microglial depletion at the time of LPS exposure affects behavioral, but not neurodegenerative responses to subsequent environmental toxin exposure.
Collapse
Affiliation(s)
- Zach Dwyer
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Chris Rudyk
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Divya Situt
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Sheryl Beauchamp
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Jawaria Abdali
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Anu Dinesh
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | | | - Hongyu Sun
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | | | - Shawn Hayley
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - CLINT (Canadian LRRK2 in inflammation team)
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
- University of Ottawa, Canada
- Ottawa Hospital Research Institute, Canada
| |
Collapse
|
32
|
Aravamudhan P, Raghunathan K, Konopka-Anstadt J, Pathak A, Sutherland DM, Carter BD, Dermody TS. Reovirus uses macropinocytosis-mediated entry and fast axonal transport to infect neurons. PLoS Pathog 2020; 16:e1008380. [PMID: 32109948 PMCID: PMC7065821 DOI: 10.1371/journal.ppat.1008380] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/11/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
Several barriers protect the central nervous system (CNS) from pathogen invasion. Yet viral infections of the CNS are common and often debilitating. Understanding how neurotropic viruses co-opt host machinery to overcome challenges to neuronal entry and transmission is important to combat these infections. Neurotropic reovirus disseminates through neural routes and invades the CNS to cause lethal encephalitis in newborn animals. To define mechanisms of reovirus neuronal entry and directional transport, we used primary neuron cultures, which reproduce in vivo infection patterns displayed by different reovirus serotypes. Treatment of neurons with small-molecule inhibitors of different endocytic uptake pathways allowed us to discover that the cellular machinery mediating macropinocytosis is required for reovirus neuronal entry. This mechanism of reovirus entry differs from clathrin-mediated endocytosis, which is used by reovirus to invade non-neuronal cells. Analysis of reovirus transport and release from isolated soma or axonal termini of neurons cultivated in microfluidic devices indicates that reovirus is capable of retrograde but only limited anterograde neuronal transmission. The dynamics of retrograde reovirus movement are consistent with fast axonal transport coordinated by dynein along microtubules. Further analysis of viral transport revealed that multiple virions are transported together in axons within non-acidified vesicles. Reovirus-containing vesicles acidify after reaching the soma, where disassembly of virions and release of the viral core into the cytoplasm initiates replication. These results define mechanisms of reovirus neuronal entry and transport and establish a foundation to identify common host factors used by neuroinvasive viruses. Furthermore, our findings emphasize consideration of cell type-specific entry mechanisms in the tailored design of neurotropic viruses as tracers, oncolytic agents, and delivery vectors. Viral infections of the central nervous system (CNS) cause a significant health burden globally and compel a better mechanistic understanding of neural invasion by viruses to develop effective interventions. Neurotropic reovirus disseminates through neural routes to infect the CNS and serves as a tractable model to study neural invasion by viruses. Despite knowledge of reovirus neurotropism for decades, mechanisms mediating reovirus neuronal infection remain undefined. We used primary neurons cultured in microfluidic devices to study entry and directional transport of reovirus. We discovered that reovirus uses macropinocytosis for neuronal entry as opposed to the use of a clathrin-mediated pathway in non-neuronal cells. We are unaware of another virus using macropinocytosis to enter neurons. Following internalization, reovirus spreads in the retrograde direction using dynein-mediated fast axonal transport but exhibits limited anterograde spread. We further demonstrate that reovirus disassembly and replication occur in the neuronal soma subsequent to axonal transport. Remarkably, these entry and transport mechanisms mirror those used by misfolded proteins implicated in neurodegenerative diseases. Our findings establish the mechanics of reovirus neuronal uptake and spread and provide clues about therapeutic targets to limit neuropathology inflicted by pathogens and misfolded proteins.
Collapse
Affiliation(s)
- Pavithra Aravamudhan
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Center for Microbial Pathogenesis, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Krishnan Raghunathan
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Center for Microbial Pathogenesis, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jennifer Konopka-Anstadt
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Amrita Pathak
- Department of Biochemistry and Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Danica M. Sutherland
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Center for Microbial Pathogenesis, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Bruce D. Carter
- Department of Biochemistry and Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Terence S. Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Center for Microbial Pathogenesis, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
33
|
Shibata-Germanos S, Goodman JR, Grieg A, Trivedi CA, Benson BC, Foti SC, Faro A, Castellan RFP, Correra RM, Barber M, Ruhrberg C, Weller RO, Lashley T, Iliff JJ, Hawkins TA, Rihel J. Structural and functional conservation of non-lumenized lymphatic endothelial cells in the mammalian leptomeninges. Acta Neuropathol 2020; 139:383-401. [PMID: 31696318 PMCID: PMC6989586 DOI: 10.1007/s00401-019-02091-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 12/22/2022]
Abstract
The vertebrate CNS is surrounded by the meninges, a protective barrier comprised of the outer dura mater and the inner leptomeninges, which includes the arachnoid and pial layers. While the dura mater contains lymphatic vessels, no conventional lymphatics have been found within the brain or leptomeninges. However, non-lumenized cells called Brain/Mural Lymphatic Endothelial Cells or Fluorescent Granule Perithelial cells (muLECs/BLECs/FGPs) that share a developmental program and gene expression with peripheral lymphatic vessels have been described in the meninges of zebrafish. Here we identify a structurally and functionally similar cell type in the mammalian leptomeninges that we name Leptomeningeal Lymphatic Endothelial Cells (LLEC). As in zebrafish, LLECs express multiple lymphatic markers, containing very large, spherical inclusions, and develop independently from the meningeal macrophage lineage. Mouse LLECs also internalize macromolecules from the cerebrospinal fluid, including Amyloid-β, the toxic driver of Alzheimer's disease progression. Finally, we identify morphologically similar cells co-expressing LLEC markers in human post-mortem leptomeninges. Given that LLECs share molecular, morphological, and functional characteristics with both lymphatics and macrophages, we propose they represent a novel, evolutionary conserved cell type with potential roles in homeostasis and immune organization of the meninges.
Collapse
Affiliation(s)
| | - James R Goodman
- Department of Anaesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, USA
| | - Alan Grieg
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Chintan A Trivedi
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Bridget C Benson
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Sandrine C Foti
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Ana Faro
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | | | | | - Melissa Barber
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | | | - Roy O Weller
- Clinical Neurosciences (Neuropathology), Faculty of Medicine, Southampton University Hospitals, Southampton, SO16 6YD, UK
| | - Tammaryn Lashley
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Jeffrey J Iliff
- Department of Anaesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Thomas A Hawkins
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
34
|
Bathini P, Brai E, Auber LA. Olfactory dysfunction in the pathophysiological continuum of dementia. Ageing Res Rev 2019; 55:100956. [PMID: 31479764 DOI: 10.1016/j.arr.2019.100956] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/29/2019] [Accepted: 08/26/2019] [Indexed: 12/21/2022]
Abstract
Sensory capacities like smell, taste, hearing, vision decline with aging, but increasing evidence show that sensory dysfunctions are one of the early signs diagnosing the conversion from physiological to pathological brain state. Smell loss represents the best characterized sense in clinical practice and is considered as one of the first preclinical signs of Alzheimer's and Parkinson's disease, occurring a decade or more before the onset of cognitive and motor symptoms. Despite the numerous scientific reports and the adoption in clinical practice, the etiology of sensory damage as prodromal of dementia remains largely unexplored and more studies are needed to resolve the mechanisms underlying sensory network dysfunction. Although both cognitive and sensory domains are progressively affected, loss of sensory experience in early stages plays a major role in reducing the autonomy of demented people in their daily tasks or even possibly contributing to their cognitive decline. Interestingly, the chemosensory circuitry is devoid of a blood brain barrier, representing a vulnerable port of entry for neurotoxic species that can spread to the brain. Furthermore, the exposure of the olfactory system to the external environment make it more susceptible to mechanical injury and trauma, which can cause degenerative neuroinflammation. In this review, we will summarize several findings about chemosensory impairment signing the conversion from healthy to pathological brain aging and we will try to connect those observations to the promising research linking environmental influences to sporadic dementia. The scientific body of knowledge will support the use of chemosensory diagnostics in the presymptomatic stages of AD and other biomarkers with the scope of finding treatment strategies before the onset of the disease.
Collapse
Affiliation(s)
- Praveen Bathini
- Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Emanuele Brai
- VIB-KU Leuven Center for Brain & Disease Research, Laboratory for the Research of Neurodegenerative Diseases, Leuven, Belgium
| | - Lavinia Alberi Auber
- Department of Medicine, University of Fribourg, Fribourg, Switzerland; Swiss Integrative Center of Human Health, Fribourg, Switzerland.
| |
Collapse
|
35
|
Hallett PJ, Engelender S, Isacson O. Lipid and immune abnormalities causing age-dependent neurodegeneration and Parkinson's disease. J Neuroinflammation 2019; 16:153. [PMID: 31331333 PMCID: PMC6647317 DOI: 10.1186/s12974-019-1532-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/25/2019] [Indexed: 12/31/2022] Open
Abstract
This article describes pathogenic concepts and factors, in particular glycolipid abnormalities, that create cell dysfunction and synaptic loss in neurodegenerative diseases. By phenocopying lysosomal storage disorders, such as Gaucher disease and related disorders, age- and dose-dependent changes in glycolipid cell metabolism can lead to Parkinson's disease and related dementias. Recent results show that perturbation of sphingolipid metabolism can precede or is a part of abnormal protein handling in both genetic and idiopathic Parkinson's disease and Lewy body dementia. In aging and genetic predisposition with lipid disturbance, α-synuclein's normal vesicular and synaptic role may be detrimentally shifted toward accommodating and binding such lipids. Specific neuronal glycolipid, protein, and vesicular interactions create potential pathophysiology that is amplified by astroglial and microglial immune mechanisms resulting in neurodegeneration. This perspective provides a new logic for therapeutic interventions that do not focus on protein aggregation, but rather provides a guide to the complex biology and the common sequence of events that lead to age-dependent neurodegenerative disorders.
Collapse
Affiliation(s)
- Penelope J Hallett
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Boston, USA
| | - Simone Engelender
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Boston, USA.,Present Address: Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, 31096, Haifa, Israel
| | - Ole Isacson
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Boston, USA.
| |
Collapse
|
36
|
Bermúdez ML, Seroogy KB, Genter MB. Evaluation of Carnosine Intervention in the Thy1-aSyn Mouse Model of Parkinson's Disease. Neuroscience 2019; 411:270-278. [PMID: 31125602 DOI: 10.1016/j.neuroscience.2019.05.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/03/2019] [Accepted: 05/13/2019] [Indexed: 11/20/2022]
Abstract
Parkinson disease (PD) is a leading neurodegenerative disease, with multifaceted interacting mechanisms. The Thy1-aSyn mouse model of PD exhibits many features of PD patients, including sensorimotor and olfactory dysfunction and protein aggregation. Here, we tested the hypothesis that the dipeptide carnosine, which has anti-aggregating and metal-chelating properties, would provide beneficial effects on the motor and olfactory deficits observed in Thy1-aSyn mice. After 2 months of daily treatment with either intranasal (2 mg/day) or oral (10 mM in drinking water) carnosine, Thy1-aSyn mice and wild-type BDF1 mice were assessed for sensorimotor (challenging beam traversal test and spontaneous activity) and olfactory (buried pellet test) function. In addition, the olfactory epithelium was evaluated immunohistochemically for expression of alpha-synuclein (aSyn) and the carnosine transporter Pept2. Olfactory function was unaffected by carnosine treatment via either administration route. In contrast, intranasal carnosine prevented the normal decline in gait function seen in the challenging beam test in the Thy1-aSyn mice. Moreover, carnosine-treated Thy1-aSyn mice exhibited decreased aSyn immunostaining in the olfactory epithelium compared to vehicle-treated Thy1-aSyn mice, and the carnosine transporter Pept2 was immunolocalized to the apical surface of the olfactory epithelium. These findings demonstrate that intranasal carnosine shows promise in slowing the progression of motor deficits and aSyn deposition in PD.
Collapse
Affiliation(s)
- Mei-Ling Bermúdez
- Department of Environmental Health, University of Cincinnati, ML 670056, Cincinnati, OH 45267-0056, USA
| | - Kim B Seroogy
- Department of Neurology, University of Cincinnati, Medical Sciences Building, ML 0536, Cincinnati, OH 45267-0536, USA
| | - Mary Beth Genter
- Department of Environmental Health, University of Cincinnati, ML 670056, Cincinnati, OH 45267-0056, USA.
| |
Collapse
|
37
|
Barbut D, Stolzenberg E, Zasloff M. Gastrointestinal Immunity and Alpha-Synuclein. JOURNAL OF PARKINSON'S DISEASE 2019; 9:S313-S322. [PMID: 31594249 PMCID: PMC6839499 DOI: 10.3233/jpd-191702] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/09/2019] [Indexed: 12/20/2022]
Abstract
The gastrointestinal (GI) tract is equipped with robust immune defenses which protect the organism from infection. Enteric nerves are front and center in this defensive network, even in the most primitive organisms. Neuropeptides exhibit potent antimicrobial activity in the vicinity of the nerve and attract the innate and adaptive immune systems to help confine the invading agent. Alpha-synuclein (αS) has many biophysical characteristics of antimicrobial peptides and binds small vesicles such as those carrying endocytosed viruses. It is induced in nerve cells in response to viral and bacterial infections. It renders the nerve cell resistant to viral infection and propagation. It signals the immune system by attracting neutrophils and macrophages, and by activating dendritic cells. Most remarkably αS is trafficked to the central nervous system (CNS) conferring immunity in advance of an infection. Chronic GI infection or breakdown of the epithelial barrier can cause αS to accumulate and form neurotoxic aggregates. Overproduction of αS in the enteric nervous system (ENS) and its chronic trafficking to the CNS may damage nerves and lead to Parkinson's disease. Targeting the formation of αS aggregates in the ENS may therefore slow the progression of the disease.
Collapse
Affiliation(s)
| | | | - Michael Zasloff
- Enterin, Inc., Philadelphia, PA, USA
- MedStar Georgetown Transplant Institute, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
38
|
Bagnoli E, FitzGerald U. Mitral cells and the glucagon-like peptide 1 receptor: The sweet smell of success? Eur J Neurosci 2018; 49:422-439. [PMID: 30120857 DOI: 10.1111/ejn.14115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/19/2018] [Accepted: 08/03/2018] [Indexed: 12/11/2022]
Abstract
The olfactory bulb (OB) is often affected at very early stages of neurodegenerative disorders, in the so-called "prodromal" phase. In Parkinson's disease (PD), olfactory disturbances appear years before motor symptoms arise. Additionally, pathological alpha-synuclein aggregates are found in olfactory regions before spreading to other areas of the brain. Being positioned at the frontier between the brain and a potentially hostile environment, could explain the particular vulnerability of the OB. Mitral cells (MCs), the principal projecting neurons of the olfactory system, are involved in the pathogenesis and in the prion-like progression of PD. They are affected by Lewy pathology and are thought to contribute to the axonal transport of misfolded alpha-synuclein to other regions of the brain. Here, we first describe the main markers reported to distinguish MCs from other olfactory neurons. We focus on the glucagon-like peptide 1 receptor (GLP-1R), a membrane protein specifically expressed in MCs. After summarizing OB pathology, we explore the idea of targeting specifically MCs with GLP-1 or its analogues. Exenatide has shown great promise as a neuroprotective and neurorestorative agent and has been used in a clinical trial for clinical PD. Since GLP-1R activation has the ability to mitigate many facets of prodromal PD pathology, we postulate that once a robust biomarker is in place that is capable of identifying individuals in the prodromal phase of PD, homing in on GLP-1R could assist in deferring, or eradicating to a significant degree, the clinical manifestation of this debilitating human disorder.
Collapse
Affiliation(s)
- Enrico Bagnoli
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Una FitzGerald
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
39
|
Volpicelli-Daley L, Brundin P. Prion-like propagation of pathology in Parkinson disease. HANDBOOK OF CLINICAL NEUROLOGY 2018; 153:321-335. [PMID: 29887143 DOI: 10.1016/b978-0-444-63945-5.00017-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over 100 years ago, Lewy bodies and Lewy neurites were defined as a pathologic hallmark of Parkinson disease. Eighty years later, α-synuclein was found to be the primary component of these inclusions. Emerging evidence suggests that α-synuclein pathology propagates across interconnected networks throughout the nervous system in a prion-like manner. Pathologic α-synuclein seeds aggregation of native α-synuclein, resulting in the formation of insoluble inclusions. These seeds can propagate within the neuron and to interconnected neurons, resulting in the spread of pathology throughout the brain. Here, we discuss how the findings that α-synuclein pathology spreads throughout the nervous system has revolutionized our understanding about Parkinson disease pathogenesis and resulted in the development of novel therapeutic strategies to halt disease progression.
Collapse
Affiliation(s)
- Laura Volpicelli-Daley
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Patrik Brundin
- Van Andel Research Institute, Center for Neurodegenerative Science, Grand Rapids, MI, United States.
| |
Collapse
|
40
|
Lathe R, Darlix JL. Prion Protein PRNP: A New Player in Innate Immunity? The Aβ Connection. J Alzheimers Dis Rep 2017; 1:263-275. [PMID: 30480243 PMCID: PMC6159716 DOI: 10.3233/adr-170037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2017] [Indexed: 12/25/2022] Open
Abstract
The prion protein PRNP has been centrally implicated in the transmissible spongiform encephalopathies (TSEs), but its normal physiological role remains obscure. We highlight emerging evidence that PRNP displays antimicrobial activity, inhibiting the replication of multiple viruses, and also interacts directly with Alzheimer's disease (AD) amyloid-β (Aβ) peptide whose own antimicrobial role is now increasingly secure. PRNP and Aβ share share membrane-penetrating, nucleic acid binding, and antiviral properties with classical antimicrobial peptides such as LL-37. We discuss findings that binding of abnormal nucleic acids to PRNP leads to oligomerization of the protein, and suggest that this may be an entrapment and sequestration process that contributes to its antimicrobial activity. Some antimicrobial peptides are known to be exploited by infectious agents, and we cover evidence that PRNP is usurped by herpes simplex virus (HSV-1) that has evolved a virus-encoded 'anti-PRNP'.unction. These findings suggest that PRNP, like LL-37 and Aβ, is likely to be a component of the innate immune system, with implications for the pathoetiology of both AD and TSE.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, UK
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Jean-Luc Darlix
- Faculté de Pharmacie, Centre Nationale de la Recherche Scientifique (CNRS) Unité 7213, Université de Strasbourg, Illkirch, France
| |
Collapse
|
41
|
Borghammer P. How does parkinson's disease begin? Perspectives on neuroanatomical pathways, prions, and histology. Mov Disord 2017; 33:48-57. [PMID: 28843014 DOI: 10.1002/mds.27138] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/20/2017] [Accepted: 07/23/2017] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a multisystem disorder with involvement of the peripheral nervous system. Misfolding and aggregation of α-synuclein is central to the pathogenesis of PD, and it has been postulated that the disease may originate in olfactory and gastrointestinal nerve terminals. The prion-like behavior of α-synuclein has been convincingly demonstrated in vitro and in animal models of PD. Lewy-type pathology have been detected in peripheral organs many years prior to PD diagnosis, and 2 independent studies have now suggested that truncal vagotomy may be protective against the disorder. Other lines of evidence are difficult to reconcile with a peripheral onset of PD, most importantly the relative scarcity of post mortem cases with isolated gastrointestinal α-synuclein pathology without concomitant CNS pathology. This Scientific Perspectives article revisits some important topics with implications for the dual-hit hypothesis. An account of the neuroanatomical pathways necessary for stereotypical α-synuclein spreading is presented. Parallels to the existing knowledge on true prion disorders, including Creutzfeld-Jakob disease, are examined. Finally, the vagotomy studies and the somewhat inconsistent findings in the growing literature on peripheral α-synuclein pathology are discussed. It is concluded that the dual-hit hypothesis remains a potential explanation for PD pathogenesis, but several issues need to be resolved before more firm conclusions can be drawn. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Per Borghammer
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus C, Denmark
| |
Collapse
|