1
|
Liu H, An X, Liu X, Yang S, Liu Y, Wei X, Li X, Chen Q, Wang J. Molecular mechanism of salinity and waterlogging tolerance in mangrove Kandelia obovata. FRONTIERS IN PLANT SCIENCE 2024; 15:1354249. [PMID: 38384752 PMCID: PMC10879410 DOI: 10.3389/fpls.2024.1354249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024]
Abstract
Mangrove forests are colloquially referred to as "Earth's kidneys" and serve many important ecological and commercial functions. Salinity and waterlogging stress are the most important abiotic stressors restricting the growth and development of mangroves. Kandelia obovata (K. obovata) is the greatest latitudinally-distributed salt mangrove species in China.Here, morphology and transcriptomics were used to study the response of K. obovata to salt and waterlogging stress. In addition, weighted gene co-expression network analysis of the combined gene expression and phenotypic datasets was used to identify core salinity- and waterlogging-responsive modules. In this study, we observed that both high salinity and waterlogging significantly inhibited growth and development in K. obovata. Notably, growth was negatively correlated with salt concentration and positively correlated with waterlogging duration, and high salinity was significantly more inhibitive than waterlogging. A total of 7, 591 salt-responsive and 228 waterlogging-responsive differentially expressed genes were identified by RNA sequencing. Long-term salt stress was highly correlated with the measured physiological parameters while long-term waterlogging was poorly correlated with these traits. At the same time, 45 salinity-responsive and 16 waterlogging-responsive core genes were identified. All 61 core genes were mainly involved in metabolic and biosynthesis of secondary metabolites pathways. This study provides valuable insight into the molecular mechanisms of salinity and waterlogging tolerance in K. obovata, as well as a useful genetic resource for the improvement of mangrove stress tolerance using molecular breeding techniques.
Collapse
Affiliation(s)
- Huizi Liu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Xia An
- Zhejiang Xiaoshan Institute of Cotton and Bast Fiber Crops, Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xing Liu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Sheng Yang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Yu Liu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Xin Wei
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Xiaowen Li
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Qiuxia Chen
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Jinwang Wang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| |
Collapse
|
2
|
Wang X, Komatsu S. Subcellular Proteomics to Elucidate Soybean Response to Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:2865. [PMID: 37571018 PMCID: PMC10421527 DOI: 10.3390/plants12152865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
Climate change jeopardizes soybean production by declining seed yield and quality. In this review, the morphophysiological alterations of soybean in response to abiotic stress are summarized, followed by illustrations of cellular metabolisms and regulatory mechanisms to organellar stress based on subcellular proteomics. This highlights the communications associated with reactive oxygen species scavenging, molecular chaperones, and phytohormone signals among subcellular compartments. Given the complexity of climate change and the limitations of plants in coping with multiple abiotic stresses, a generic response to environmental constraints is proposed between calcium and abscisic acid signals in subcellular organelles. This review summarizes the findings of subcellular proteomics in stressed soybean and discusses the future prospects of subcellular proteomics for promoting the improvement of climate-tolerant crops.
Collapse
Affiliation(s)
- Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China;
| | - Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| |
Collapse
|
3
|
Seeley MM, Stacy EA, Martin RE, Asner GP. Foliar functional and genetic variation in a keystone Hawaiian tree species estimated through spectroscopy. Oecologia 2023; 202:15-28. [PMID: 37171625 DOI: 10.1007/s00442-023-05374-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 04/11/2023] [Indexed: 05/13/2023]
Abstract
Imaging spectroscopy has the potential to map closely related plant taxa at landscape scales. Although spectral investigations at the leaf and canopy levels have revealed relationships between phylogeny and reflectance, understanding how spectra differ across, and are inherited from, genotypes of a single species has received less attention. We used a common-garden population of four varieties of the keystone canopy tree, Metrosideros polymorpha, from Hawaii Island and four F1-hybrid genotypes derived from controlled crosses to determine if reflectance spectra discriminate sympatric, conspecific varieties of this species and their hybrids. With a single exception, pairwise comparisons of leaf reflectance patterns successfully distinguished varieties of M. polymorpha on Hawaii Island as well as populations of the same variety from different islands. Further, spectral variability within a single variety from Hawaii Island and the older island of Oahu was greater than that observed among the four varieties on Hawaii Island. F1 hybrids most frequently displayed leaf spectral patterns intermediate to those of their parent taxa. Spectral reflectance patterns distinguished each of two of the hybrid genotypes from one of their parent varieties, indicating that classifying hybrids may be possible, particularly if sample sizes are increased. This work quantifies a baseline in spectral variability for an endemic Hawaiian tree species and advances the use of imaging spectroscopy in biodiversity studies at the genetic level.
Collapse
Affiliation(s)
- M M Seeley
- Center for Global Discovery and Conservation Science, Arizona State University, Hilo, HI, 96720, USA.
- School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ, 85281, USA.
| | - E A Stacy
- School of Life Sciences, University of Nevada, Las Vegas, NV, 89154, USA
| | - R E Martin
- Center for Global Discovery and Conservation Science, Arizona State University, Hilo, HI, 96720, USA
- School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ, 85281, USA
| | - G P Asner
- Center for Global Discovery and Conservation Science, Arizona State University, Hilo, HI, 96720, USA
- School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ, 85281, USA
| |
Collapse
|
4
|
Li Z, Fu Z, Zhang S, Zhang X, Xue X, Chen Y, Zhang Z, Lai Z, Lin Y. Genome-wide analysis of the GLP gene family and overexpression of GLP1-5-1 to promote lignin accumulation during early somatic embryo development in Dimocarpus longan. BMC Genomics 2023; 24:138. [PMID: 36944911 PMCID: PMC10029309 DOI: 10.1186/s12864-023-09201-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/21/2023] [Indexed: 03/23/2023] Open
Abstract
Longan (Dimocarpus longan Lour.) is an economically important subtropical fruit tree. Its fruit quality and yield are affected by embryo development. As a plant seed germination marker gene, the germin-like protein (GLP) gene plays an important role in embryo development. However, the mechanism underlying the role of the GLP gene in somatic embryos is still unclear. Therefore, we conducted genome-wide identification of the longan GLP (DlGLP) gene and preliminarily verified the function of DlGLP1-5-1. Thirty-five genes were identified as longan GLP genes and divided into 8 subfamilies. Based on transcriptome data and qRT‒PCR results, DlGLP genes exhibited the highest expression levels in the root, and the expression of most DlGLPs was upregulated during the early somatic embryogenesis (SE) in longan and responded to high temperature stress and 2,4-D treatment; eight DlGLP genes were upregulated under MeJA treatment, and four of them were downregulated under ABA treatment. Subcellular localization showed that DlGLP5-8-2 and DlGLP1-5-1 were located in the cytoplasm and extracellular stroma/chloroplast, respectively. Overexpression of DIGLP1-5-1 in the globular embryos (GEs) of longan promoted the accumulation of lignin and decreased the H2O2 content by regulating the activities of ROS-related enzymes. The results provide a reference for the functional analysis of DlGLPs and related research on improving lignin accumulation in the agricultural industry through genetic engineering.
Collapse
Affiliation(s)
- Zhuoyun Li
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhuoran Fu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuting Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xueying Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaodong Xue
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zihao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
5
|
Integrative pathway and network analysis provide insights on flooding-tolerance genes in soybean. Sci Rep 2023; 13:1980. [PMID: 36737640 PMCID: PMC9898312 DOI: 10.1038/s41598-023-28593-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Soybean is highly sensitive to flooding and extreme rainfall. The phenotypic variation of flooding tolerance is a complex quantitative trait controlled by many genes and their interaction with environmental factors. We previously constructed a gene-pool relevant to soybean flooding-tolerant responses from integrated multiple omics and non-omics databases, and selected 144 prioritized flooding tolerance genes (FTgenes). In this study, we proposed a comprehensive framework at the systems level, using competitive (hypergeometric test) and self-contained (sum-statistic, sum-square-statistic) pathway-based approaches to identify biologically enriched pathways through evaluating the joint effects of the FTgenes within annotated pathways. These FTgenes were significantly enriched in 36 pathways in the Gene Ontology database. These pathways were related to plant hormones, defense-related, primary metabolic process, and system development pathways, which plays key roles in soybean flooding-induced responses. We further identified nine key FTgenes from important subnetworks extracted from several gene networks of enriched pathways. The nine key FTgenes were significantly expressed in soybean root under flooding stress in a qRT-PCR analysis. We demonstrated that this systems biology framework is promising to uncover important key genes underlying the molecular mechanisms of flooding-tolerant responses in soybean. This result supplied a good foundation for gene function analysis in further work.
Collapse
|
6
|
Yang Q, Sharif Y, Zhuang Y, Chen H, Zhang C, Fu H, Wang S, Cai T, Chen K, Raza A, Wang L, Zhuang W. Genome-wide identification of germin-like proteins in peanut ( Arachis hypogea L.) and expression analysis under different abiotic stresses. FRONTIERS IN PLANT SCIENCE 2023; 13:1044144. [PMID: 36756235 PMCID: PMC9901545 DOI: 10.3389/fpls.2022.1044144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
Peanut is an important food and feed crop, providing oil and protein nutrients. Germins and germin-like proteins (GLPs) are ubiquitously present in plants playing numerous roles in defense, growth and development, and different signaling pathways. However, the GLP members have not been comprehensively studied in peanut at the genome-wide scale. We carried out a genome-wide identification of the GLP genes in peanut genome. GLP members were identified comprehensively, and gene structure, genomic positions, motifs/domains distribution patterns, and phylogenetic history were studied in detail. Promoter Cis-elements, gene duplication, collinearity, miRNAs, protein-protein interactions, and expression were determined. A total of 84 GLPs (AhGLPs ) were found in the genome of cultivated peanut. These GLP genes were clustered into six groups. Segmental duplication events played a key role in the evolution of AhGLPs, and purifying selection pressure was underlying the duplication process. Most AhGLPs possessed a well-maintained gene structure and motif organization within the same group. The promoter regions of AhGLPs contained several key cis-elements responsive to 'phytohormones', 'growth and development', defense, and 'light induction'. Seven microRNAs (miRNAs) from six families were found targeting 25 AhGLPs. Gene Ontology (GO) enrichment analysis showed that AhGLPs are highly enriched in nutrient reservoir activity, aleurone grain, external encapsulating structure, multicellular organismal reproductive process, and response to acid chemicals, indicating their important biological roles. AhGLP14, AhGLP38, AhGLP54, and AhGLP76 were expressed in most tissues, while AhGLP26, AhGLP29, and AhGLP62 showed abundant expression in the pericarp. AhGLP7, AhGLP20, and AhGLP21, etc., showed specifically high expression in embryo, while AhGLP12, AhGLP18, AhGLP40, AhGLP78, and AhGLP82 were highly expressed under different hormones, water, and temperature stress. The qRT-PCR results were in accordance with the transcriptome expression data. In short, these findings provided a foundation for future functional investigations on the AhGLPs for peanut breeding programs.
Collapse
Affiliation(s)
- Qiang Yang
- Center of Legume Plant Genetics and System Biology, College of Agronomy, College of Life Science, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Yasir Sharif
- Center of Legume Plant Genetics and System Biology, College of Agronomy, College of Life Science, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Yuhui Zhuang
- Center of Legume Plant Genetics and System Biology, College of Agronomy, College of Life Science, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Hua Chen
- Center of Legume Plant Genetics and System Biology, College of Agronomy, College of Life Science, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Chong Zhang
- Center of Legume Plant Genetics and System Biology, College of Agronomy, College of Life Science, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Huiwen Fu
- College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Shanshan Wang
- College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Tiecheng Cai
- Center of Legume Plant Genetics and System Biology, College of Agronomy, College of Life Science, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Kun Chen
- College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Ali Raza
- Center of Legume Plant Genetics and System Biology, College of Agronomy, College of Life Science, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Lihui Wang
- College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Weijian Zhuang
- Center of Legume Plant Genetics and System Biology, College of Agronomy, College of Life Science, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
- College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| |
Collapse
|
7
|
Chen X, Li N, Liu C, Wang H, Li Y, Xie Y, Ma F, Liang J, Li C. Exogenous GABA improves the resistance of apple seedlings to long-term drought stress by enhancing GABA shunt and secondary cell wall biosynthesis. TREE PHYSIOLOGY 2022; 42:2563-2577. [PMID: 35972819 DOI: 10.1093/treephys/tpac096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Drought stress is an important factor limiting apple production. γ-Aminobutyric acid (GABA) exists widely in plants and participates in the response to abiotic stress as a metabolite or signaling molecule. The role of exogenous GABA in apple plants, response to long-term drought stress remains unclear. Our study confirmed that exogenous GABA affects the drought resistance of apple plants under long-term drought stress. We found that 1 mM exogenous GABA improved the resistance of apple seedlings to long-term drought stress. The plants showed better growth, less reactive oxygen radical accumulation, less damage to cell membranes and greater active photosynthetic capacity. Under long-term drought stress, exogenous GABA facilitated GABA shunt, resulting in more accumulation of organic acids, namely citric acid, succinic acid and malic acid, in roots and stems of apple seedlings. In addition, exogenous GABA upregulated the expression of cellulose-related genes and lignin-related genes, and activated secondary cell wall-related transcription factors to synthesize more cellulose and lignin. A multiple factorial analysis confirmed that the GABA shunt and the biosynthesis of cellulose and lignin substantially contributed to the growth of apple seedlings with the application of exogenous GABA under long-term drought stress. Our results suggested that exogenous GABA improved the resistance of apple seedlings to long-term drought stress by enhancing GABA shunt and secondary cell wall biosynthesis.
Collapse
Affiliation(s)
- Xiao Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Na Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chenlu Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongtao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuxing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanmei Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiakai Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cuiying Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
8
|
Identification of Functional Genetic Variations Underlying Flooding Tolerance in Brazilian Soybean Genotypes. Int J Mol Sci 2022; 23:ijms231810611. [PMID: 36142529 PMCID: PMC9502317 DOI: 10.3390/ijms231810611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/23/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Flooding is a frequent environmental stress that reduces soybean (Glycine max) growth and grain yield in many producing areas in the world, such as, e.g., in the United States, Southeast Asia and Southern Brazil. In these regions, soybean is frequently cultivated in lowland areas by rotating with rice (Oryza sativa), which provides numerous technical, economic and environmental benefits. Given these realities, this work aimed to characterize physiological responses, identify genes differentially expressed under flooding stress in Brazilian soybean genotypes with contrasting flooding tolerance, and select SNPs with potential use for marker-assisted selection. Soybean cultivars TECIRGA 6070 (flooding tolerant) and FUNDACEP 62 (flooding sensitive) were grown up to the V6 growth stage and then flooding stress was imposed. Total RNA was extracted from leaves 24 h after the stress was imposed and sequenced. In total, 421 induced and 291 repressed genes were identified in both genotypes. TECIRGA 6070 presented 284 and 460 genes up- and down-regulated, respectively, under flooding conditions. Of those, 100 and 148 genes were exclusively up- and down-regulated, respectively, in the tolerant genotype. Based on the RNA sequencing data, SNPs in differentially expressed genes in response to flooding stress were identified. Finally, 38 SNPs, located in genes with functional annotation for response to abiotic stresses, were found in TECIRGA 6070 and absent in FUNDACEP 62. To validate them, 22 SNPs were selected for designing KASP assays that were used to genotype a panel of 11 contrasting genotypes with known phenotypes. In addition, the phenotypic and grain yield impacts were analyzed in four field experiments using a panel of 166 Brazilian soybean genotypes. Five SNPs possibly related to flooding tolerance in Brazilian soybean genotypes were identified. The information generated from this research will be useful to develop soybean genotypes adapted to poorly drained soils or areas subject to flooding.
Collapse
|
9
|
Han X, Zhao Y, Chen Y, Xu J, Jiang C, Wang X, Zhuo R, Lu MZ, Zhang J. Lignin biosynthesis and accumulation in response to abiotic stresses in woody plants. FORESTRY RESEARCH 2022; 2:9. [PMID: 39525415 PMCID: PMC11524291 DOI: 10.48130/fr-2022-0009] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 06/13/2022] [Indexed: 11/16/2024]
Abstract
Woody plants have to experience various abiotic stresses due to their immobility and perennial characteristics. However, woody plants have evolved a series of specific regulation pathways in physiological and molecular mechanisms to deal with adverse environments. Compared with herbaceous plants, perennial woody plants have the advantages of developed roots and hard stems, and increased secondary xylem, which can strengthen the vascular system of the plants. The lignification process involves the lignin deposition on the cell wall by oxidation and polymerization of lignin monomer, which plays an important role in abiotic stress tolerance. This review focuses on recent progress in the biosynthesis, content, and accumulation of lignin in response to various abiotic stresses in plants. The role of transcription factors is also discussed in regulating lignin biosynthesis to enhance abiotic stress tolerance via changing cell wall lignification. Although woody plants shared similar lignin biosynthesis mechanisms with herbaceous plants, the temporal and spatial expression and stress response profiles of lignin biosynthetic genes provide the basis for the differences in stress tolerance of various species. An in-depth understanding of the role of lignin in the abiotic stress tolerance of woody plants will lay the foundation for the next step in tree resistance breeding through genetic engineering.
Collapse
Affiliation(s)
- Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Yanqiu Zhao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Yinjie Chen
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Jing Xu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Cheng Jiang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Xiaqin Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
10
|
Khan MN, Ahmed I, Ud Din I, Noureldeen A, Darwish H, Khan M. Proteomic insight into soybean response to flooding stress reveals changes in energy metabolism and cell wall modifications. PLoS One 2022; 17:e0264453. [PMID: 35511817 PMCID: PMC9070951 DOI: 10.1371/journal.pone.0264453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 11/19/2022] Open
Abstract
Soybean is a legume crop enriched with proteins and oil. It is frequently exposed to anthropogenic and natural flooding that limits its growth and yield. Current study applied gel-free proteomic techniques to unravel soybean response mechanism to flooding stress. Two-days-old soybeans were flooded for 4 days continuously and root samples were collected at days 2 to 6 for proteomic and enzymatic analyses. Age-matched untreated soybeans were collected as control. After protein extraction, purification and tryptic digestion, the peptides were analyzed on nano-liquid chromatography-mass spectrometry. A total of 539 and 472 proteins with matched peptides 2 or more were identified in control and flooded seedlings, respectively. Among these 364 proteins were commonly identified in both control and flooded soybeans. Fourty-two protein's abundances were changed 4-fold after 2-days of flooding stress as compared to starting point. The cluster analysis showed that highly increased proteins included cupin family proteins, enolase, pectin methylesterase inhibitor, glyoxalase II, alcohol dehydrogenase and aldolase. The enzyme assay of enolase and pectin methylesterase inhibitor confirmed protein abundance changes. These findings suggest that soybean adopts the less energy consuming strategies and brings biochemical and structural changes in the cell wall to effectively respond to flooding stress and for the survival.
Collapse
Affiliation(s)
- Mudassar Nawaz Khan
- Institute of Biotechnology & Genetic Engineering, The University of Agriculture Peshawar, Peshawar, Pakistan
- Department of Biotechnology & Genetic Engineering, Hazara University Mansehra, Mansehra, Pakistan
| | - Iftikhar Ahmed
- Bio Resources Conservation Institute, National Agricultural Research Center Islamabad, Islamabad, Pakistan
| | - Israr Ud Din
- Institute of Biotechnology & Genetic Engineering, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Ahmed Noureldeen
- Department of Biology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Hadeer Darwish
- Department of Biotechnology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Majid Khan
- Institute of Biotechnology & Genetic Engineering, The University of Agriculture Peshawar, Peshawar, Pakistan
| |
Collapse
|
11
|
Zhang M, Liu S, Wang Z, Yuan Y, Zhang Z, Liang Q, Yang X, Duan Z, Liu Y, Kong F, Liu B, Ren B, Tian Z. Progress in soybean functional genomics over the past decade. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:256-282. [PMID: 34388296 PMCID: PMC8753368 DOI: 10.1111/pbi.13682] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 05/24/2023]
Abstract
Soybean is one of the most important oilseed and fodder crops. Benefiting from the efforts of soybean breeders and the development of breeding technology, large number of germplasm has been generated over the last 100 years. Nevertheless, soybean breeding needs to be accelerated to meet the needs of a growing world population, to promote sustainable agriculture and to address future environmental changes. The acceleration is highly reliant on the discoveries in gene functional studies. The release of the reference soybean genome in 2010 has significantly facilitated the advance in soybean functional genomics. Here, we review the research progress in soybean omics (genomics, transcriptomics, epigenomics and proteomics), germplasm development (germplasm resources and databases), gene discovery (genes that are responsible for important soybean traits including yield, flowering and maturity, seed quality, stress resistance, nodulation and domestication) and transformation technology during the past decade. At the end, we also briefly discuss current challenges and future directions.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Zhao Wang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yaqin Yuan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhifang Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qianjin Liang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xia Yang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zongbiao Duan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Baohui Liu
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Bo Ren
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
12
|
Mustafa G, Komatsu S. Plant proteomic research for improvement of food crops under stresses: a review. Mol Omics 2021; 17:860-880. [PMID: 34870299 DOI: 10.1039/d1mo00151e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Crop improvement approaches have been changed due to technological advancements in traditional plant-breeding methods. Abiotic and biotic stresses limit plant growth and development, which ultimately lead to reduced crop yield. Proteins encoded by genomes have a considerable role in the endurance and adaptation of plants to different environmental conditions. Biotechnological applications in plant breeding depend upon the information generated from proteomic studies. Proteomics has a specific advantage to contemplate post-translational modifications, which indicate the functional effects of protein modifications on crop production. Subcellular proteomics helps in exploring the precise cellular responses and investigating the networking among subcellular compartments during plant development and biotic/abiotic stress responses. Large-scale mass spectrometry-based plant proteomic studies with a more comprehensive overview are now possible due to dramatic improvements in mass spectrometry, sample preparation procedures, analytical software, and strengthened availability of genomes for numerous plant species. Development of stress-tolerant or resilient crops is essential to improve crop productivity and growth. Use of high throughput techniques with advanced instrumentation giving efficient results made this possible. In this review, the role of proteomic studies in identifying the stress-response processes in different crops is summarized. Advanced techniques and their possible utilization on plants are discussed in detail. Proteomic studies accelerate marker-assisted genetic augmentation studies on crops for developing high yielding stress-tolerant lines or varieties under stresses.
Collapse
Affiliation(s)
- Ghazala Mustafa
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan.
| |
Collapse
|
13
|
Kemat N, Visser RGF, Krens FA. Hypolignification: A Decisive Factor in the Development of Hyperhydricity. PLANTS (BASEL, SWITZERLAND) 2021; 10:2625. [PMID: 34961095 PMCID: PMC8707489 DOI: 10.3390/plants10122625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 06/12/2023]
Abstract
One of the characteristics of hyperhydric plants is the reduction of cell wall lignification (hypolignification), but how this is related to the observed abnormalities of hyperhydricity (HH), is still unclear. Lignin is hydrophobic, and we speculate that a reduction in lignin levels leads to more capillary action of the cell wall and consequently to more water in the apoplast. p-coumaric acid is the hydroxyl derivative of cinnamic acid and a precursor for lignin and flavonoids in higher plant. In the present study, we examined the role of lignin in the development of HH in Arabidopsis thaliana by checking the wild-types (Ler and Col-0) and mutants affected in phenylpropanoid biosynthesis, in the gene coding for cinnamate 4-hydroxylase, C4H (ref3-1 and ref3-3). Exogenously applied p-coumaric acid decreased the symptoms of HH in both wild-type and less-lignin mutants. Moreover, the results revealed that exogenously applied p-coumaric acid inhibited root growth and increased the total lignin content in both wild-type and less-lignin mutants. These effects appeared to diminish the symptoms of HH and suggest an important role for lignin in HH.
Collapse
Affiliation(s)
- Nurashikin Kemat
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (R.G.F.V.); (F.A.K.)
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Richard G. F. Visser
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (R.G.F.V.); (F.A.K.)
| | - Frans A. Krens
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (R.G.F.V.); (F.A.K.)
| |
Collapse
|
14
|
Komatsu S, Yamaguchi H, Hitachi K, Tsuchida K, Kono Y, Nishimura M. Proteomic and Biochemical Analyses of the Mechanism of Tolerance in Mutant Soybean Responding to Flooding Stress. Int J Mol Sci 2021; 22:9046. [PMID: 34445752 PMCID: PMC8396653 DOI: 10.3390/ijms22169046] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
To investigate the mechanism of flooding tolerance of soybean, flooding-tolerant mutants derived from gamma-ray irradiated soybean were crossed with parent cultivar Enrei for removal of other factors besides the genes related to flooding tolerance in primary generated mutant soybean. Although the growth of the wild type was significantly suppressed by flooding compared with the non-flooding condition, that of the mutant lines was better than that of the wild type even if it was treated with flooding. A two-day-old mutant line was subjected to flooding for 2 days and proteins were analyzed using a gel-free/label-free proteomic technique. Oppositely changed proteins in abundance between the wild type and mutant line under flooding stress were associated in endoplasmic reticulum according to gene-ontology categorization. Immunoblot analysis confirmed that calnexin accumulation increased in both the wild type and mutant line; however, calreticulin accumulated in only the mutant line under flooding stress. Furthermore, although glycoproteins in the wild type decreased by flooding compared with the non-flooding condition, those in the mutant line increased even if it was under flooding stress. Alcohol dehydrogenase accumulated in the wild type and mutant line; however, this enzyme activity significantly increased and mildly increased in the wild type and mutant line, respectively, under flooding stress compared with the non-flooding condition. Cell death increased and decreased in the wild type and mutant line, respectively, by flooding stress. These results suggest that the regulation of cell death through the fermentation system and glycoprotein folding might be an important factor for the acquisition of flooding tolerance in mutant soybean.
Collapse
Affiliation(s)
- Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| | - Hisateru Yamaguchi
- Department of Medical Technology, Yokkaichi Nursing and Medical Care University, Yokkaichi 512-8045, Japan;
| | - Keisuke Hitachi
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (K.T.)
| | - Kunihiro Tsuchida
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (K.T.)
| | - Yuhi Kono
- Central Region Agricultural Research Center, National Agriculture and Food Research Organization, Joetsu 943-0193, Japan;
| | - Minoru Nishimura
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan;
| |
Collapse
|
15
|
Endoplasmic Reticulum Subproteome Analysis Reveals Underlying Defense Mechanisms of Wheat Seedling Leaves under Salt Stress. Int J Mol Sci 2021; 22:ijms22094840. [PMID: 34063651 PMCID: PMC8124925 DOI: 10.3390/ijms22094840] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 01/13/2023] Open
Abstract
Salt stress is the second most important abiotic stress factor in the world, which seriously affects crop growth, development and grain production. In this study, we performed the first integrated physiological and endoplasmic reticulum (ER) proteome analysis of wheat seedling leaves under salt stress using a label-free-based quantitative proteomic approach. Salt stress caused significant decrease in seedling height, root length, relative water content and chlorophyll content of wheat seedling leaves, indicating that wheat seedling growth was significantly inhibited under salt stress. The ER proteome analysis identified 233 ER-localized differentially accumulated proteins (DAPs) in response to salt stress, including 202 upregulated and 31 downregulated proteins. The upregulated proteins were mainly involved in the oxidation-reduction process, transmembrane transport, the carboxylic acid metabolic process, stress response, the arbohydrate metabolic process and proteolysis, while the downregulated proteins mainly participated in the metabolic process, biological regulation and the cellular process. In particular, salt stress induced significant upregulation of protein disulfide isomerase-like proteins and heat shock proteins and significant downregulation of ribosomal protein abundance. Further transcript expression analysis revealed that half of the detected DAP genes showed a consistent pattern with their protein levels under salt stress. A putative metabolic pathway of ER subproteome of wheat seedling leaves in response to salt stress was proposed, which reveals the potential roles of wheat ER proteome in salt stress response and defense.
Collapse
|
16
|
Riviezzi B, García-Laviña CX, Morel MA, Castro-Sowinski S. Facing the communication between soybean plants and microorganisms (Bradyrhizobium and Delftia) by quantitative shotgun proteomics. Symbiosis 2021. [DOI: 10.1007/s13199-021-00758-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Zaynab M, Peng J, Sharif Y, Fatima M, Albaqami M, Al-Yahyai R, Khan KA, Alotaibi SS, Alaraidh IA, Shaikhaldein HO, Li S. Genome-Wide Identification and Expression Profiling of Germin-Like Proteins Reveal Their Role in Regulating Abiotic Stress Response in Potato. FRONTIERS IN PLANT SCIENCE 2021; 12:831140. [PMID: 35251067 PMCID: PMC8891383 DOI: 10.3389/fpls.2021.831140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/31/2021] [Indexed: 05/05/2023]
Abstract
Germin and germin-like proteins (GLPs) perform a significant role in plants against biotic and abiotic stress. To understand the role of GLPs in potato, a comprehensive genome-wide analysis was performed in the potato genome. This study identified a total of 70 StGLPs genes in the potato genome, distributed among 11 chromosomes. Phylogenetic analysis exhibited that StGLPs were categorized into six groups with high bootstrap values. StGLPs gene structure and motifs analysis showed a relatively well-maintained intron-exon and motif formation within the cognate group. Additionally, several cis-elements in the promoter regions of GLPs were hormones, and stress-responsive and different families of miRNAs target StGLPs. Gene duplication under selection pressure also exhibited positive and purifying selections in StGLPs. In our results, the StGLP5 gene showed the highest expression in response to salt stress among all expressed StGLPs. Totally 19 StGLPs genes were expressed in response to heat stress. Moreover, three genes, StGLP30, StGLP17, and StGLP14, exhibited a relatively higher expression level in the potato after heat treatment. In total, 22 genes expressed in response to abscisic acid (ABA) treatment indicated that ABA performed an essential role in the plant defense or tolerance mechanism to environmental stress. RNA-Seq data validated by RT-qPCR also confirm that the StGLP5 gene showed maximum expression among selected genes under salt stress. Concisely, our results provide a platform for further functional exploration of the StGLPs against salt and heat stress conditions.
Collapse
Affiliation(s)
- Madiha Zaynab
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiaofeng Peng
- Instrument Analysis Center, Shenzhen University, Shenzhen, China
| | - Yasir Sharif
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mahpara Fatima
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohammed Albaqami
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rashid Al-Yahyai
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Khalid Ali Khan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Ibrahim A. Alaraidh
- Botany and Microbiology Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Hassan O. Shaikhaldein
- Botany and Microbiology Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Shuangfei Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- *Correspondence: Shuangfei Li,
| |
Collapse
|
18
|
Baslam M, Mitsui T, Sueyoshi K, Ohyama T. Recent Advances in Carbon and Nitrogen Metabolism in C3 Plants. Int J Mol Sci 2020; 22:E318. [PMID: 33396811 PMCID: PMC7795015 DOI: 10.3390/ijms22010318] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/19/2022] Open
Abstract
C and N are the most important essential elements constituting organic compounds in plants. The shoots and roots depend on each other by exchanging C and N through the xylem and phloem transport systems. Complex mechanisms regulate C and N metabolism to optimize plant growth, agricultural crop production, and maintenance of the agroecosystem. In this paper, we cover the recent advances in understanding C and N metabolism, regulation, and transport in plants, as well as their underlying molecular mechanisms. Special emphasis is given to the mechanisms of starch metabolism in plastids and the changes in responses to environmental stress that were previously overlooked, since these changes provide an essential store of C that fuels plant metabolism and growth. We present general insights into the system biology approaches that have expanded our understanding of core biological questions related to C and N metabolism. Finally, this review synthesizes recent advances in our understanding of the trade-off concept that links C and N status to the plant's response to microorganisms.
Collapse
Affiliation(s)
- Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan; (M.B.); (T.M.)
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan; (M.B.); (T.M.)
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan;
| | - Kuni Sueyoshi
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan;
| | - Takuji Ohyama
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan;
- Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| |
Collapse
|
19
|
Wang X, Komatsu S. Review: Proteomic Techniques for the Development of Flood-Tolerant Soybean. Int J Mol Sci 2020; 21:E7497. [PMID: 33053653 PMCID: PMC7589014 DOI: 10.3390/ijms21207497] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
Soybean, which is rich in protein and oil as well as phytochemicals, is cultivated in several climatic zones. However, its growth is markedly decreased by flooding stress, which is caused by climate change. Proteomic techniques were used for understanding the flood-response and -tolerant mechanisms in soybean. Subcellular proteomics has potential to elucidate localized cellular responses and investigate communications among subcellular components during plant growth and under stress stimuli. Furthermore, post-translational modifications play important roles in stress response and tolerance to flooding stress. Although many flood-response mechanisms have been reported, flood-tolerant mechanisms have not been fully clarified for soybean because of limitations in germplasm with flooding tolerance. This review provides an update on current biochemical and molecular networks involved in soybean tolerance against flooding stress, as well as recent developments in the area of functional genomics in terms of developing flood-tolerant soybeans. This work will expedite marker-assisted genetic enhancement studies in crops for developing high-yielding stress-tolerant lines or varieties under abiotic stress.
Collapse
Affiliation(s)
- Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| |
Collapse
|
20
|
Ye X, Chen XF, Cai LY, Lai NW, Deng CL, Guo JX, Yang LT, Chen LS. Molecular and physiological mechanisms underlying magnesium-deficiency-induced enlargement, cracking and lignification of Citrus sinensis leaf veins. TREE PHYSIOLOGY 2020; 40:1277-1291. [PMID: 32348504 DOI: 10.1093/treephys/tpaa059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Little is known about the physiological and molecular mechanisms underlying magnesium (Mg)-deficiency-induced enlargement, cracking and lignification of midribs and main lateral veins of Citrus leaves. Citrus sinensis (L.) Osbeck seedlings were irrigated with nutrient solution at a concentration of 0 (Mg-deficiency) or 2 (Mg-sufficiency) mM Mg(NO3)2 for 16 weeks. Enlargement, cracking and lignification of veins occurred only in lower leaves, but not in upper leaves. Total soluble sugars (glucose + fructose + sucrose), starch and cellulose concentrations were less in Mg-deficiency veins of lower leaves (MDVLL) than those in Mg-sufficiency veins of lower leaves (MSVLL), but lignin concentration was higher in MDVLL than that in MSVLL. However, all four parameters were similar between Mg-deficiency veins of upper leaves (MDVUL) and Mg-sufficiency veins of upper leaves (MSVUL). Using label-free, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, we identified 1229 and 492 differentially abundant proteins (DAPs) in MDVLL vs MSVLL and MDVUL vs MSVUL, respectively. Magnesium-deficiency-induced alterations of Mg, nonstructural carbohydrates, cell wall components, and protein profiles were greater in veins of lower leaves than those in veins of upper leaves. The increased concentration of lignin in MDVLL vs MSVLL might be caused by the following factors: (i) repression of cellulose and starch accumulation promoted lignin biosynthesis; (ii) abundances of proteins involved in phenylpropanoid biosynthesis pathway, hormone biosynthesis and glutathione metabolism were increased; and (iii) the abundances of the other DAPs [viz., copper/zinc-superoxide dismutase, ascorbate oxidase (AO) and ABC transporters] involved in lignin biosynthesis were elevated. Also, the abundances of several proteins involved in cell wall metabolism (viz., expansins, Rho GTPase-activating protein gacA, AO, monocopper oxidase-like protein and xyloglucan endotransglucosylase/hydrolase) were increased in MDVLL vs MSVLL, which might be responsible for the enlargement and cracking of leaf veins.
Collapse
Affiliation(s)
- Xin Ye
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Xu-Feng Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Li-Ya Cai
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Ning-Wei Lai
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Chong-Ling Deng
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, 40 Putuo Road, Qixing District, Guilin 541004, China
| | - Jiu-Xin Guo
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Lin-Tong Yang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Li-Song Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
- The Higher Education Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, College of Resources and Environment, FAFU, 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| |
Collapse
|
21
|
Wu W, Zhu S, Chen Q, Lin Y, Tian J, Liang C. Cell Wall Proteins Play Critical Roles in Plant Adaptation to Phosphorus Deficiency. Int J Mol Sci 2019; 20:E5259. [PMID: 31652783 PMCID: PMC6862644 DOI: 10.3390/ijms20215259] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023] Open
Abstract
Phosphorus is one of the mineral nutrient elements essential for plant growth and development. Low phosphate (Pi) availability in soils adversely affects crop production. To cope with low P stress, remodeling of root morphology and architecture is generally observed in plants, which must be accompanied by root cell wall modifications. It has been documented that cell wall proteins (CWPs) play critical roles in shaping cell walls, transmitting signals, and protecting cells against environmental stresses. However, understanding of the functions of CWPs involved in plant adaptation to P deficiency remains fragmentary. The aim of this review was to summarize advances in identification and functional characterization of CWPs in responses to P deficiency, and to highlight the critical roles of CWPs in mediating root growth, P reutilization, and mobilization in plants.
Collapse
Affiliation(s)
- Weiwei Wu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China.
| | - Shengnan Zhu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China.
| | - Qianqian Chen
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China.
| | - Yan Lin
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China.
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China.
| | - Cuiyue Liang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
22
|
Xiao L, Li T, Jiang G, Jiang Y, Duan X. Cell wall proteome analysis of banana fruit softening using iTRAQ technology. J Proteomics 2019; 209:103506. [DOI: 10.1016/j.jprot.2019.103506] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 06/22/2019] [Accepted: 08/19/2019] [Indexed: 10/26/2022]
|
23
|
Bevilaqua JM, Finger-Teixeira A, Marchiosi R, Oliveira DMD, Joia BM, Ferro AP, Parizotto ÂV, Dos Santos WD, Ferrarese-Filho O. Exogenous application of rosmarinic acid improves saccharification without affecting growth and lignification of maize. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:275-282. [PMID: 31330394 DOI: 10.1016/j.plaphy.2019.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Biomimetically incorporated into the lignin structure, rosmarinic acid improves in vitro maize cell wall saccharification; however, no in planta studies have been performed. We hypothesized that rosmarinic acid, itself, could inducer saccharification without disturbing plant growth. Its effects on growth, enzymes of the phenylpropanoid pathway, lignin, monomeric composition, and saccharification of maize were evaluated. In a short-term (24 h) exposure, rosmarinic acid caused deleterious effects on maize roots, inhibiting the first enzymes of the phenylpropanoid pathway, phenylalanine ammonia-lyase and tyrosine ammonia-lyase, altering lignin composition and slightly increasing saccharification. In a long-term (14 d) exposure, rosmarinic acid increased saccharification of maize stems by about 50% without any deleterious effects on plant growth, the phenylpropanoid pathway and lignin formation. This demonstrated that exogenous application of rosmarinic acid on maize plants improved saccharification, and represented an interesting approach in facilitating enzymatic hydrolysis of biomass polysaccharides and increasing bioethanol production.
Collapse
Affiliation(s)
- Jennifer Munik Bevilaqua
- Laboratory of Plant Biochemistry, Department of Biochemistry, University of Maringá, 87020-900, PR, Brazil
| | - Aline Finger-Teixeira
- Laboratory of Plant Biochemistry, Department of Biochemistry, University of Maringá, 87020-900, PR, Brazil
| | - Rogério Marchiosi
- Laboratory of Plant Biochemistry, Department of Biochemistry, University of Maringá, 87020-900, PR, Brazil
| | - Dyoni Matias de Oliveira
- Laboratory of Plant Biochemistry, Department of Biochemistry, University of Maringá, 87020-900, PR, Brazil
| | - Breno Miguel Joia
- Laboratory of Plant Biochemistry, Department of Biochemistry, University of Maringá, 87020-900, PR, Brazil
| | - Ana Paula Ferro
- Laboratory of Plant Biochemistry, Department of Biochemistry, University of Maringá, 87020-900, PR, Brazil
| | | | | | - Osvaldo Ferrarese-Filho
- Laboratory of Plant Biochemistry, Department of Biochemistry, University of Maringá, 87020-900, PR, Brazil.
| |
Collapse
|
24
|
Pan R, He D, Xu L, Zhou M, Li C, Wu C, Xu Y, Zhang W. Proteomic analysis reveals response of differential wheat (Triticum aestivum L.) genotypes to oxygen deficiency stress. BMC Genomics 2019; 20:60. [PMID: 30658567 PMCID: PMC6339445 DOI: 10.1186/s12864-018-5405-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/21/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Waterlogging is one of the main abiotic stresses that limit wheat production. Quantitative proteomics analysis has been applied in the study of crop abiotic stress as an effective way in recent years (e.g. salt stress, drought stress, heat stress and waterlogging stress). However, only a few proteins related to primary metabolism and signal transduction, such as UDP - glucose dehydrogenase, UGP, beta glucosidases, were reported to response to waterlogging stress in wheat. The differentially expressed proteins between genotypes of wheat in response to waterlogging are less-defined. In this study, two wheat genotypes, one is sensitive to waterlogging stress (Seri M82, named as S) and the other is tolerant to waterlogging (CIGM90.863, named as T), were compared in seedling roots under hypoxia conditions to evaluate the different responses at proteomic level. RESULTS A total of 4560 proteins were identified and the number of differentially expressed proteins (DEPs) were 361, 640, 788 in S and 33, 207, 279 in T in 1, 2, 3 days, respectively. These DEPs included 270 common proteins, 681 S-specific and 50 T-specific proteins, most of which were misc., protein processing, DNA and RNA processing, amino acid metabolism and stress related proteins induced by hypoxia. Some specific proteins related to waterlogging stress, including acid phosphatase, oxidant protective enzyme, S-adenosylmethionine synthetase 1, were significantly different between S and T. A total of 20 representative genes encoding DEPs, including 7 shared DEPs and 13 cultivar-specific DEPs, were selected for further RT-qPCR analysis. Fourteen genes showed consistent dynamic expression patterns at mRNA and protein levels. CONCLUSIONS Proteins involved in primary metabolisms and protein processing were inclined to be affected under hypoxia stress. The negative effects were more severe in the sensitive genotype. The expression patterns of some specific proteins, such as alcohol dehydrogenases and S-adenosylmethionine synthetase 1, could be applied as indexes for improving the waterlogging tolerance in wheat. Some specific proteins identified in this study will facilitate the subsequent protein function validation and biomarker development.
Collapse
Affiliation(s)
- Rui Pan
- Hubei Collaborative Innovation Center for Grain Industry/ School of Agriculture, Yangtze University, Jingzhou, 434025 China
| | - Dongli He
- College of Life Sciences, Hubei University, Wuhan, 430074 China
| | - Le Xu
- Hubei Collaborative Innovation Center for Grain Industry/ School of Agriculture, Yangtze University, Jingzhou, 434025 China
| | - Meixue Zhou
- Hubei Collaborative Innovation Center for Grain Industry/ School of Agriculture, Yangtze University, Jingzhou, 434025 China
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, Hobart, Tasmania 7250 Australia
| | - Chengdao Li
- Hubei Collaborative Innovation Center for Grain Industry/ School of Agriculture, Yangtze University, Jingzhou, 434025 China
- Western Barley Genetics Alliance, School of Veterinary and Life Sciences (VLS), Murdoch University, Murdoch, WA Australia
| | - Chu Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025 China
| | - Yanhao Xu
- Hubei Collaborative Innovation Center for Grain Industry/ School of Agriculture, Yangtze University, Jingzhou, 434025 China
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry/ School of Agriculture, Yangtze University, Jingzhou, 434025 China
| |
Collapse
|
25
|
Li Y, Li H, Li YF, Zhao J, Guo J, Wang R, Li B, Zhang Z, Gao Y. Evidence for molecular antagonistic mechanism between mercury and selenium in rice (Oryza sativa L.): A combined study using 1, 2-dimensional electrophoresis and SR-XRF techniques. J Trace Elem Med Biol 2018; 50:435-440. [PMID: 29066364 DOI: 10.1016/j.jtemb.2017.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 09/25/2017] [Accepted: 10/13/2017] [Indexed: 11/16/2022]
Abstract
Mercury (Hg) is a hazardous chemical in the environment and can accumulate in the food chain. Selenium (Se) is a necessary element for human health and has antagonistic effects on Hg toxicity. In this work, we investigated the effect of Se on Hg containing and Hg-responsive proteins in rice using 1, 2-dimensional electrophoresis combined with SR-XRF techniques. Two weeks old rice seedlings were exposed to Hg and/or Se compounds. After 21days proteins in the rice roots were separated by electrophoresis and their metal contents were determined by X-ray fluorescence to identify Hg and Se responsive biomolecules. The results show that under Hg stress alone Hg is bound to proteins with molecular weights of 15-25kDa. With the addition of Se, a new Hg-containing protein band in the 55-70kDa range was also found, while the content of Hg in the 15-25kDa proteins decreased. Ten and nine new protein spots were identified after adding Se to inorganic Hg and methylmercury exposed roots, respectively. Adding Se regulates the abundance of proteins associated with carbohydrate and energy metabolism, stress response, cell cycle, and DNA replication indicating that these proteins mediate the antagonism of Se against Hg toxicity. This study helps us to better understand the molecular mechanism of Hg tolerance as well as the molecular antagonism between Hg and Se in rice plants.
Collapse
Affiliation(s)
- Yunyun Li
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 10049, China; College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Hong Li
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 10049, China
| | - Yu-Feng Li
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 10049, China
| | - Jiating Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 10049, China.
| | - Jingxia Guo
- College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Ru Wang
- College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Bai Li
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 10049, China
| | - Zhiyong Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 10049, China
| | - Yuxi Gao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 10049, China.
| |
Collapse
|
26
|
Komatsu S, Hashiguchi A. Subcellular Proteomics: Application to Elucidation of Flooding-Response Mechanisms in Soybean. Proteomes 2018; 6:E13. [PMID: 29495455 PMCID: PMC5874772 DOI: 10.3390/proteomes6010013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/13/2018] [Accepted: 02/23/2018] [Indexed: 02/06/2023] Open
Abstract
Soybean, which is rich in protein and oil, is cultivated in several climatic zones; however, its growth is markedly decreased by flooding. Proteomics is a useful tool for understanding the flooding-response mechanism in soybean. Subcellular proteomics has the potential to elucidate localized cellular responses and investigate communications among subcellular components during plant growth and during stress. Under flooding, proteins related to signaling, stress and the antioxidative system are increased in the plasma membrane; scavenging enzymes for reactive-oxygen species are suppressed in the cell wall; protein translation is suppressed through inhibition of proteins related to preribosome biogenesis and mRNA processing in the nucleus; levels of proteins involved in the electron transport chain are reduced in the mitochondrion; and levels of proteins related to protein folding are decreased in the endoplasmic reticulum. This review discusses the advantages of a gel-free/label-free proteomic technique and methods of plant subcellular purification. It also summarizes cellular events in soybean under flooding and discusses future prospects for generation of flooding-tolerant soybean.
Collapse
Affiliation(s)
- Setsuko Komatsu
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| | - Akiko Hashiguchi
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan.
| |
Collapse
|
27
|
Characterization of regulatory elements in OsRGLP2 gene promoter from different rice accessions through sequencing and in silico evaluation. Comput Biol Chem 2018; 73:206-212. [PMID: 29501997 DOI: 10.1016/j.compbiolchem.2018.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 02/17/2018] [Accepted: 02/20/2018] [Indexed: 12/18/2022]
Abstract
Germins and germin-like proteins from cupin superfamily contribute resistance to heat denaturation, chemical degradation and against plant pathogens, further functions in plant growth and development. In this study, from three different Oryza sativa accessions KS-282 and Pak 7178 and Pak 7865, OsRGLP2 gene promoter region was amplified, sequenced and analyzed. Sequencing data was evaluated via different computational tools. The regulatory elements were predicted by Consite tool and mapping was done. Many transcription factors binding sites were discovered in OsRGLP2 gene promoter; among these factors, HFH-1 having a significant role in germination was picked for further investigation. To study the interaction between HFH-1 and corresponding regulatory factors, HADDOCK Webserver was used. Graphical models for the interactions of HFH-1 and related regulatory elements were studied by graphic molecular system PyMOL. Mapping of cis-acting regulatory elements in OsRGLP2 gene promoter from three rice accessions showed differences in their position and copy number. Important regulatory elements found in OsRGLP2 promoter region were TATA, CAAT Box, ARR1, GATA, AGAAA, CAAT and DNA-binding One Zinc Finger (Dof) factors, few of them contribute to the regulation of plant defensive system, light responses, developmental and growth activities. Furthermore, during DNA interaction studies, it was found that HFH-1 transcription factor participates in hydrogen bonds formation with thymine and adenine bases.
Collapse
|
28
|
Wang X, Komatsu S. Proteomic approaches to uncover the flooding and drought stress response mechanisms in soybean. J Proteomics 2018; 172:201-215. [PMID: 29133124 DOI: 10.1016/j.jprot.2017.11.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/13/2017] [Accepted: 11/08/2017] [Indexed: 12/20/2022]
Abstract
Soybean is the important crop with abundant protein, vegetable oil, and several phytochemicals. With such predominant values, soybean is cultivated with a long history. However, flooding and drought stresses exert deleterious effects on soybean growth. The present review summarizes the morphological changes and affected events in soybean exposed to such extreme-water conditions. Sensitive organ in stressed soybean at different-developmental stages is presented based on protein profiles. Protein quality control and calcium homeostasis in the endoplasmic reticulum are discussed in soybean under both stresses. In addition, the way of calcium homeostasis in mediating protein folding and energy metabolism is addressed. Finally, stress response to flooding and drought is systematically demonstrated. This review concludes the recent findings of plant response to flooding and drought stresses in soybean employed proteomic approaches. BIOLOGICAL SIGNIFICANCE Soybean is considered as traditional-health food because of nutritional elements and pharmacological values. Flooding and drought exert deleterious effects to soybean growth. Proteomic approaches have been employed to elucidate stress response in soybean exposed to flooding and drought stresses. In this review, stress response is presented on organ-specific manner in the early-stage plant and soybean seedling exposed to combined stresses. The endoplasmic reticulum (ER) stress is induced by both stresses; and stress-response in the ER is addressed in the root tip of early-stage soybean. Moreover, calcium-response processes in stressed plant are described in the ER and in the cytosol. Additionally, stress-dependent response was discussed in flooded and drought-stressed plant. This review depicts stress response in the sensitive organ of stressed soybean and forms the basis to develop molecular markers related to plant defense under flooding and drought stresses.
Collapse
Affiliation(s)
- Xin Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| |
Collapse
|
29
|
Kosová K, Vítámvás P, Urban MO, Prášil IT, Renaut J. Plant Abiotic Stress Proteomics: The Major Factors Determining Alterations in Cellular Proteome. FRONTIERS IN PLANT SCIENCE 2018; 9:122. [PMID: 29472941 PMCID: PMC5810178 DOI: 10.3389/fpls.2018.00122] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/23/2018] [Indexed: 05/19/2023]
Abstract
HIGHLIGHTS: Major environmental and genetic factors determining stress-related protein abundance are discussed.Major aspects of protein biological function including protein isoforms and PTMs, cellular localization and protein interactions are discussed.Functional diversity of protein isoforms and PTMs is discussed. Abiotic stresses reveal profound impacts on plant proteomes including alterations in protein relative abundance, cellular localization, post-transcriptional and post-translational modifications (PTMs), protein interactions with other protein partners, and, finally, protein biological functions. The main aim of the present review is to discuss the major factors determining stress-related protein accumulation and their final biological functions. A dynamics of stress response including stress acclimation to altered ambient conditions and recovery after the stress treatment is discussed. The results of proteomic studies aimed at a comparison of stress response in plant genotypes differing in stress adaptability reveal constitutively enhanced levels of several stress-related proteins (protective proteins, chaperones, ROS scavenging- and detoxification-related enzymes) in the tolerant genotypes with respect to the susceptible ones. Tolerant genotypes can efficiently adjust energy metabolism to enhanced needs during stress acclimation. Stress tolerance vs. stress susceptibility are relative terms which can reflect different stress-coping strategies depending on the given stress treatment. The role of differential protein isoforms and PTMs with respect to their biological functions in different physiological constraints (cellular compartments and interacting partners) is discussed. The importance of protein functional studies following high-throughput proteome analyses is presented in a broader context of plant biology. In summary, the manuscript tries to provide an overview of the major factors which have to be considered when interpreting data from proteomic studies on stress-treated plants.
Collapse
Affiliation(s)
- Klára Kosová
- Division of Crop Genetics and Breeding, Laboratory of Plant Stress Biology and Biotechnology, Crop Research Institute, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Pavel Vítámvás
- Division of Crop Genetics and Breeding, Laboratory of Plant Stress Biology and Biotechnology, Crop Research Institute, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Milan O. Urban
- Division of Crop Genetics and Breeding, Laboratory of Plant Stress Biology and Biotechnology, Crop Research Institute, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Ilja T. Prášil
- Division of Crop Genetics and Breeding, Laboratory of Plant Stress Biology and Biotechnology, Crop Research Institute, Prague, Czechia
| | - Jenny Renaut
- Environmental Research and Technology Platform, Environmental Research and Innovation, Luxembourg Institute of Science and Technology (LIST), Esch-sur-Alzette, Luxembourg
| |
Collapse
|
30
|
Elagamey E, Sinha A, Narula K, Abdellatef MA, Chakraborty N, Chakraborty S. Molecular Dissection of Extracellular Matrix Proteome Reveals Discrete Mechanism RegulatingVerticillium DahliaeTriggered Vascular Wilt Disease in Potato. Proteomics 2017; 17. [DOI: 10.1002/pmic.201600373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/07/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Eman Elagamey
- National Institute of Plant Genome Research; New Delhi India
- Plant Pathology Research Institute; Agricultural Research Center (ARC); Giza Egypt
| | - Arunima Sinha
- National Institute of Plant Genome Research; New Delhi India
| | - Kanika Narula
- National Institute of Plant Genome Research; New Delhi India
| | - Magdi A.E. Abdellatef
- National Institute of Plant Genome Research; New Delhi India
- Plant Pathology Research Institute; Agricultural Research Center (ARC); Giza Egypt
| | | | | |
Collapse
|
31
|
Yin X, Komatsu S. Comprehensive analysis of response and tolerant mechanisms in early-stage soybean at initial-flooding stress. J Proteomics 2017; 169:225-232. [PMID: 28137666 DOI: 10.1016/j.jprot.2017.01.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/17/2017] [Accepted: 01/23/2017] [Indexed: 12/31/2022]
Abstract
Soybean is one of the most cultivated crops in the world; however, it is very sensitive to flooding stress, which markedly reduces its growth and yield. Morphological and biochemical changes such as an increase of fresh weight and a decrease of ATP content happen in early-stage soybean at initial-flooding stress, indicating that soybean responses to flooding stress are keys for its survival and seedling growth. Phosphoproteomics and nuclear proteomics are useful tools to detect protein-phosphorylation status and to identify transcriptional factors. In the review, the effect of flooding on soybean response to initial flooding stress is discussed based on recent results of proteomic, phosphoproteomic, nuclear proteomic, and nuclear phosphoproteomic studies. In addition, soybean survival under flooding stress, which is defined as tolerance mechanism, is discussed with the results of comprehensive analysis in flooding-tolerant mutant line and abscisic acid-treated soybean. BIOLOGICAL SIGNIFICANCE Soybean is one of the most cultivated crops in the world; however, it is very sensitive to flooding stress, especially soybean responses to initial flooding stress is key for its survival and seedling growth. Recently, proteomic techniques are applied to investigate the response and tolerant mechanisms of soybean at initial flooding condition. In this review, the progress in proteomic, phosphoproteomic, nuclear proteomic, and nuclear phosphoproteomic studies about the initial-flooding response mechanism in early-stage soybean is presented. In addition, the tolerant mechanism in soybean is discussed with the results of comprehensive analysis in flooding-tolerant mutant line and abscisic acid-treated soybean. Through this review, the key proteins and genes involved in initial flooding response and tolerance at early stage soybean are summarized and they contribute greatly to uncover response and tolerance mechanism at early stage under stressful environmental conditions in soybean.
Collapse
Affiliation(s)
- Xiaojian Yin
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
32
|
Kazemi Oskuei B, Yin X, Hashiguchi A, Bandehagh A, Komatsu S. Proteomic analysis of soybean seedling leaf under waterlogging stress in a time-dependent manner. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2017; 1865:1167-1177. [PMID: 28666670 DOI: 10.1016/j.bbapap.2017.06.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 05/01/2017] [Accepted: 06/23/2017] [Indexed: 01/07/2023]
Abstract
Leaf is sensitive to environmental changes and exhibits specific responses to abiotic stress. To identify the response mechanism in soybean leaf under waterlogging stress, a gel-free/label-free proteomic technique combined with polyethylene glycol fractionation was used. Attenuated photosynthesis by waterlogging stress in the leaf of soybean seedlings was indicated from proteomic results. Defensive mechanisms such as reactive oxygen species (ROS) scavenging was also recognized. Cluster analysis revealed that proteins that exhibit characteristic dynamics in response to waterlogging were mainly related to photosynthesis. Among the identified photorespiration-related proteins, the protein abundance and enzyme activity of hydroxypyruvate reductase were transiently increased in control plants, but were clearly decreased in response to waterlogging stress. These results suggest that waterlogging directly impairs photosynthesis and photorespiration. Furthermore, hydroxypyruvate reductase may be a critical enzyme controlling the rate of photorespiration.
Collapse
Affiliation(s)
- Bita Kazemi Oskuei
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan; Department of Plant Breeding and Biotechnology, University of Tabriz, Tabriz 5166616471, Iran
| | - Xiaojian Yin
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Akiko Hashiguchi
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Ali Bandehagh
- Department of Plant Breeding and Biotechnology, University of Tabriz, Tabriz 5166616471, Iran
| | - Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| |
Collapse
|
33
|
Hu J, Zhu W, Li Y, Guan Q, Yan H, Yu J, Fu Z, Lu X, Tian J. SWATH-based quantitative proteomics reveals the mechanism of enhanced Bombyx mori nucleopolyhedrovirus-resistance in silkworm reared on UV-B treated mulberry leaves. Proteomics 2017; 17. [PMID: 28556443 DOI: 10.1002/pmic.201600383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 12/29/2022]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the most acute infectious diseases in silkworm, which has led to great economic loss in sericulture. Previous study showed that the content of secondary metabolites in mulberry leaves, particularly for moracin N, was increased after UV-B irradiation. In this study, the BmNPV resistance of silkworms reared on UV-B treated and moracin N spread mulberry leaves was improved. To uncover the mechanism of enhanced BmNPV resistance, silkworm midguts from UV-B treated mulberry leaves (BUM) and moracin N (BNM) groups were analyzed by SWATH-based proteomic technique. Of note, the abundance of ribosomal proteins in BUM and BNM groups was significantly changed to maintain the synthesis of total protein levels and cell survival. While, cytochrome c oxidase subunit II, calcium ATPase and programmed cell death 4 involved in apoptotic process were up-regulated in BNM group. Expressions of lipase-1, serine protease precursor, Rab1 protein, and histone genes were increased significantly in BNM group. These results suggest that moracin N might be the main active component in UV-B treated mulberry leaves which could improve the BmNPV-resistance of silkworm through promoting apoptotic cell death, enhancing the organism immunity, and regulating the intercellular environment of cells in silkworm. It also presents an innovative process to reduce the mortality rate of silkworms infected with BmNPV.
Collapse
Affiliation(s)
- Jin Hu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, P. R. China
| | - Wei Zhu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, P. R. China
| | - Yaohan Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Qijie Guan
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, P. R. China
| | - Haijian Yan
- Chun'an Country Cocoon & Silk Company, Hangzhou, P. R. China
| | - Jiaojiao Yu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, P. R. China
| | - Zhirong Fu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, P. R. China
| | - Xingmeng Lu
- College of Animal Science, Zhejiang University, Hangzhou, P. R. China
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
34
|
Yin X, Hiraga S, Hajika M, Nishimura M, Komatsu S. Transcriptomic analysis reveals the flooding tolerant mechanism in flooding tolerant line and abscisic acid treated soybean. PLANT MOLECULAR BIOLOGY 2017; 93:479-496. [PMID: 28012053 DOI: 10.1007/s11103-016-0576-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/07/2016] [Indexed: 06/06/2023]
Abstract
Soybean is highly sensitive to flooding stress and exhibits markedly reduced plant growth and grain yield under flooding conditions. To explore the mechanisms underlying initial flooding tolerance in soybean, RNA sequencing-based transcriptomic analysis was performed using a flooding-tolerant line and ABA-treated soybean. A total of 31 genes included 12 genes that exhibited similar temporal patterns were commonly changed in these plant groups in response to flooding and they were mainly involved in RNA regulation and protein metabolism. The mRNA expression of matrix metalloproteinase, glucose-6-phosphate isomerase, ATPase family AAA domain-containing protein 1, and cytochrome P450 77A1 was up-regulated in wild-type soybean under flooding conditions; however, no changes were detected in the flooding-tolerant line or ABA-treated soybean. The mRNA expression of cytochrome P450 77A1 was specifically up-regulated in root tips by flooding stress, but returned to the level found in control plants following treatment with the P450 inhibitor uniconazole. The survival ratio and root fresh weight of plants were markedly improved by 3-h uniconazole treatment under flooding stress. Taken together, these results suggest that cytochrome P450 77A1 is suppressed by uniconazole treatment and that this inhibition may enhance soybean tolerance to flooding stress.
Collapse
Affiliation(s)
- Xiaojian Yin
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
- Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-2, Tsukuba, 305-8518, Japan
| | - Susumu Hiraga
- Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-2, Tsukuba, 305-8518, Japan
| | - Makita Hajika
- Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-2, Tsukuba, 305-8518, Japan
| | - Minoru Nishimura
- Graduate School of Life and Food Sciences, Niigata University, Niigata, 950-2181, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan.
- Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-2, Tsukuba, 305-8518, Japan.
| |
Collapse
|
35
|
Gao J, Zhang S, He WD, Shao XH, Li CY, Wei YR, Deng GM, Kuang RB, Hu CH, Yi GJ, Yang QS. Comparative Phosphoproteomics Reveals an Important Role of MKK2 in Banana (Musa spp.) Cold Signal Network. Sci Rep 2017; 7:40852. [PMID: 28106078 PMCID: PMC5247763 DOI: 10.1038/srep40852] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/09/2016] [Indexed: 12/18/2022] Open
Abstract
Low temperature is one of the key environmental stresses, which greatly affects global banana production. However, little is known about the global phosphoproteomes in Musa spp. and their regulatory roles in response to cold stress. In this study, we conducted a comparative phosphoproteomic profiling of cold-sensitive Cavendish Banana and relatively cold tolerant Dajiao under cold stress. Phosphopeptide abundances of five phosphoproteins involved in MKK2 interaction network, including MKK2, HY5, CaSR, STN7 and kinesin-like protein, show a remarkable difference between Cavendish Banana and Dajiao in response to cold stress. Western blotting of MKK2 protein and its T31 phosphorylated peptide verified the phosphoproteomic results of increased T31 phosphopeptide abundance with decreased MKK2 abundance in Daojiao for a time course of cold stress. Meanwhile increased expression of MKK2 with no detectable T31 phosphorylation was found in Cavendish Banana. These results suggest that the MKK2 pathway in Dajiao, along with other cold-specific phosphoproteins, appears to be associated with the molecular mechanisms of high tolerance to cold stress in Dajiao. The results also provide new evidence that the signaling pathway of cellular MKK2 phosphorylation plays an important role in abiotic stress tolerance that likely serves as a universal plant cold tolerance mechanism.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro- bioresources, South China Agricultural University, Guangzhou, 510640, China.,Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China.,The Guangzhou Research Branch of the National Banana Improvement Center, Guangzhou, 510640, China
| | - Sheng Zhang
- Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Wei-Di He
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China.,The Guangzhou Research Branch of the National Banana Improvement Center, Guangzhou, 510640, China.,Key Laboratory of Horticultural Plant Biology of the Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Xiu-Hong Shao
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China.,The Guangzhou Research Branch of the National Banana Improvement Center, Guangzhou, 510640, China
| | - Chun-Yu Li
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China.,The Guangzhou Research Branch of the National Banana Improvement Center, Guangzhou, 510640, China
| | - Yue-Rong Wei
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China.,The Guangzhou Research Branch of the National Banana Improvement Center, Guangzhou, 510640, China
| | - Gui-Ming Deng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China.,The Guangzhou Research Branch of the National Banana Improvement Center, Guangzhou, 510640, China
| | - Rui-Bin Kuang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China.,The Guangzhou Research Branch of the National Banana Improvement Center, Guangzhou, 510640, China
| | - Chun-Hua Hu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China.,The Guangzhou Research Branch of the National Banana Improvement Center, Guangzhou, 510640, China
| | - Gan-Jun Yi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China.,The Guangzhou Research Branch of the National Banana Improvement Center, Guangzhou, 510640, China
| | - Qiao-Song Yang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China.,The Guangzhou Research Branch of the National Banana Improvement Center, Guangzhou, 510640, China
| |
Collapse
|
36
|
Hashiguchi A, Komatsu S. Impact of Post-Translational Modifications of Crop Proteins under Abiotic Stress. Proteomes 2016; 4:proteomes4040042. [PMID: 28248251 PMCID: PMC5260974 DOI: 10.3390/proteomes4040042] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 11/30/2016] [Accepted: 12/16/2016] [Indexed: 12/15/2022] Open
Abstract
The efficiency of stress-induced adaptive responses of plants depends on intricate coordination of multiple signal transduction pathways that act coordinately or, in some cases, antagonistically. Protein post-translational modifications (PTMs) can regulate protein activity and localization as well as protein-protein interactions in numerous cellular processes, thus leading to elaborate regulation of plant responses to various external stimuli. Understanding responses of crop plants under field conditions is crucial to design novel stress-tolerant cultivars that maintain robust homeostasis even under extreme conditions. In this review, proteomic studies of PTMs in crops are summarized. Although the research on the roles of crop PTMs in regulating stress response mechanisms is still in its early stage, several novel insights have been retrieved so far. This review covers techniques for detection of PTMs in plants, representative PTMs in plants under abiotic stress, and how PTMs control functions of representative proteins. In addition, because PTMs under abiotic stresses are well described in soybeans under submergence, recent findings in PTMs of soybean proteins under flooding stress are introduced. This review provides information on advances in PTM study in relation to plant adaptations to abiotic stresses, underlining the importance of PTM study to ensure adequate agricultural production in the future.
Collapse
Affiliation(s)
- Akiko Hashiguchi
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan.
| | - Setsuko Komatsu
- National Institute of Crop Science, NARO, Tsukuba 305-8518, Japan.
| |
Collapse
|
37
|
Mustafa G, Sakata K, Komatsu S. Proteomic analysis of soybean root exposed to varying sizes of silver nanoparticles under flooding stress. J Proteomics 2016; 148:113-25. [PMID: 27469891 DOI: 10.1016/j.jprot.2016.07.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/22/2016] [Accepted: 07/22/2016] [Indexed: 11/24/2022]
Abstract
UNLABELLED Silver nanoparticles (Ag-NPs) are excessively used as antibacterial agents; however, environmental interaction specifically with the plants remain uncertain. To study the size-dependent effects of Ag-NPs on soybean under flooding, a proteomic technique was used. Morphological analysis revealed that treatment with Ag-NPs of 15nm promoted soybean growth under flooding compared to 2 and 50-80nm. A total of 228 common proteins that significantly changed in abundance under flooding without and with Ag-NPs of 2, 15, and 50-80nm. Under varying sizes of Ag-NPs, number of protein synthesis related proteins decreased compared to flooding while number of amino acid synthesis related proteins were increased under Ag-NPs of 15nm. Hierarchical clustering identified the ribosomal proteins that increased under Ag-NPs of 15nm while decreased under other sizes. In silico protein-protein interaction indicated the beta ketoacyl reducatse 1 as the most interacted protein under Ag-NPs of 15nm while least interacted under other sizes. The beta ketoacyl reductase 1 was up-regulated under Ag-NPs of 15nm while its enzyme activity was decreased. These results suggest that the different sizes of Ag-NPs might affect the soybean growth under flooding by regulating the proteins related to amino acid synthesis and wax formation. BIOLOGICAL SIGNIFICANCE This study highlighted the response of soybean proteins towards varying sizes of Ag NPs under flooding stress using gel-free proteomic technique. The Ag NPs of 15nm improved the length of root including hypocotyl of soybean. The proteins related to protein metabolism, cell division/organization, and amino acid metabolism were differentially changed under the varying sizes of Ag NPs. The protein synthesis-related proteins were decreased while amino acid metabolism-related proteins were increased under varying sizes of Ag NPs. The ribosomal proteins were increased under Ag NPs of 15nm. The beta ketoacyl reductase 1 was identified as the most interacted protein under varying sizes of Ag NPs. The mRNA expression level of beta ketoacyl reductase was up-regulated under Ag NPs of 15nm while its activity was decreased. These results suggest that the Ag NPs of 15nm improved the soybean growth under flooding stress by increasing the proteins related to amino acid synthesis and waxes formation.
Collapse
Affiliation(s)
- Ghazala Mustafa
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Katsumi Sakata
- Department of Life Science and Informatics, Maebashi Institute of Technology, Maebashi 371-0816, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
38
|
Ghahremani M, Stigter KA, Plaxton W. Extraction and Characterization of Extracellular Proteins and Their Post-Translational Modifications from Arabidopsis thaliana Suspension Cell Cultures and Seedlings: A Critical Review. Proteomes 2016; 4:E25. [PMID: 28248235 PMCID: PMC5217358 DOI: 10.3390/proteomes4030025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 01/10/2023] Open
Abstract
Proteins secreted by plant cells into the extracellular space, consisting of the cell wall, apoplastic fluid, and rhizosphere, play crucial roles during development, nutrient acquisition, and stress acclimation. However, isolating the full range of secreted proteins has proven difficult, and new strategies are constantly evolving to increase the number of proteins that can be detected and identified. In addition, the dynamic nature of the extracellular proteome presents the further challenge of identifying and characterizing the post-translational modifications (PTMs) of secreted proteins, particularly glycosylation and phosphorylation. Such PTMs are common and important regulatory modifications of proteins, playing a key role in many biological processes. This review explores the most recent methods in isolating and characterizing the plant extracellular proteome with a focus on the model plant Arabidopsis thaliana, highlighting the current challenges yet to be overcome. Moreover, the crucial role of protein PTMs in cell wall signalling, development, and plant responses to biotic and abiotic stress is discussed.
Collapse
Affiliation(s)
- Mina Ghahremani
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Kyla A Stigter
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - William Plaxton
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada.
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
39
|
Qin J, Zhang J, Liu D, Yin C, Wang F, Chen P, Chen H, Ma J, Zhang B, Xu J, Zhang M. iTRAQ-based analysis of developmental dynamics in the soybean leaf proteome reveals pathways associated with leaf photosynthetic rate. Mol Genet Genomics 2016; 291:1595-605. [PMID: 27048574 DOI: 10.1007/s00438-016-1202-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 03/15/2016] [Indexed: 10/22/2022]
Abstract
Photosynthetic rate which acts as a vital limiting factor largely affects the potential of soybean production, especially during the senescence phase. However, the physiological and molecular mechanisms that underlying the change of photosynthetic rate during the developmental process of soybean leaves remain unclear. In this study, we compared the protein dynamics during the developmental process of leaves between the soybean cultivar Hobbit and the high-photosynthetic rate cultivar JD 17 using the iTRAQ (isobaric tags for relative and absolute quantification) method. A total number of 1269 proteins were detected in the leaves of these two cultivars at three different developmental stages. These proteins were classified into nine expression patterns depending on the expression levels at different developmental stages, and the proteins in each pattern were also further classified into three large groups and 20 small groups depending on the protein functions. Only 3.05-6.53 % of the detected proteins presented a differential expression pattern between these two cultivars. Enrichment factor analysis indicated that proteins involved in photosynthesis composed an important category. The expressions of photosynthesis-related proteins were also further confirmed by western blotting. Together, our results suggested that the reduction in photosynthetic rate as well as chloroplast activity and composition during the developmental process was a highly regulated and complex process which involved a serial of proteins that function as potential candidates to be targeted by biotechnological approaches for the improvement of photosynthetic rate and production.
Collapse
Affiliation(s)
- Jun Qin
- National Soybean Improvement Center Shijiazhuang Sub-Center, North China Key Laboratory of Biology and Genetic Improvement of Soybean Ministry of Agriculture, Cereal and Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050031, People's Republic of China
- Department of Horticulture, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Jianan Zhang
- National Foxtail Millet Improvement Center, Minor Cereal Crops Laboratory of Hebei Province Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, People's Republic of China
| | - Duan Liu
- Geochemical Environmental Research Group, Texas A&M University, 833 Graham Road, College Station, TX, 77845, USA
| | - Changcheng Yin
- Beijing Protein Innovation, B-8, Beijing Airport Industrial Zone, Beijing, 101318, People's Republic of China
| | - Fengmin Wang
- National Soybean Improvement Center Shijiazhuang Sub-Center, North China Key Laboratory of Biology and Genetic Improvement of Soybean Ministry of Agriculture, Cereal and Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050031, People's Republic of China
| | - Pengyin Chen
- Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Hao Chen
- Beijing Protein Innovation, B-8, Beijing Airport Industrial Zone, Beijing, 101318, People's Republic of China
| | - Jinbing Ma
- Department of Horticulture, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Bo Zhang
- Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jin Xu
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, People's Republic of China.
| | - Mengchen Zhang
- National Soybean Improvement Center Shijiazhuang Sub-Center, North China Key Laboratory of Biology and Genetic Improvement of Soybean Ministry of Agriculture, Cereal and Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050031, People's Republic of China.
| |
Collapse
|
40
|
Yin X, Komatsu S. Nuclear Proteomics Reveals the Role of Protein Synthesis and Chromatin Structure in Root Tip of Soybean during the Initial Stage of Flooding Stress. J Proteome Res 2016; 15:2283-98. [PMID: 27291164 DOI: 10.1021/acs.jproteome.6b00330] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To identify the upstream events controlling the regulation of flooding-responsive proteins in soybean, proteomic analysis of nuclear proteins in root tip was performed. By using nuclear fractions, which were highly enriched, a total of 365 nuclear proteins were changed in soybean root tip at initial stage of flooding stress. Four exon-junction complex-related proteins and NOP1/NOP56, which function in upstream of 60S preribosome biogenesis, were decreased in flooded soybean. Furthermore, proteomic analysis of crude protein extract revealed that the protein translation was suppressed by continuous flooding stress. Seventeen chromatin structure-related nuclear proteins were decreased in response to flooding stress. Out of them, histone H3 was clearly decreased with protein abundance and mRNA expression levels at the initial flooding stress. Additionally, a number of protein synthesis-, RNA-, and DNA-related nuclear proteins were decreased in a time-dependent manner. mRNA expressions of genes encoding the significantly changed flooding-responsive nuclear proteins were inhibited by the transcriptional inhibitor, actinomycin D. These results suggest that protein translation is suppressed through inhibition of preribosome biogenesis- and mRNA processing-related proteins in nuclei of soybean root tip at initial flooding stress. In addition, flooding stress may regulate histone variants with gene expression in root tip.
Collapse
Affiliation(s)
- Xiaojian Yin
- Graduate School of Life and Environmental Sciences, University of Tsukuba , Tsukuba 305-8572, Japan
- National Institute of Crop Science, National Agriculture and Food Research Organization , Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba , Tsukuba 305-8572, Japan
- National Institute of Crop Science, National Agriculture and Food Research Organization , Tsukuba 305-8518, Japan
| |
Collapse
|
41
|
Wang X, Komatsu S. Gel-Free/Label-Free Proteomic Analysis of Endoplasmic Reticulum Proteins in Soybean Root Tips under Flooding and Drought Stresses. J Proteome Res 2016; 15:2211-27. [PMID: 27224218 DOI: 10.1021/acs.jproteome.6b00190] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Soybean is a widely cultivated crop; however, it is sensitive to flooding and drought stresses. The adverse environmental cues cause the endoplasmic reticulum (ER) stress due to accumulation of unfolded or misfolded proteins. To investigate the mechanisms in response to flooding and drought stresses, ER proteomics was performed in soybean root tips. The enzyme activity of NADH cytochrome c reductase was two-fold higher in the ER than other fractions, indicating that the ER was isolated with high purity. Protein abundance of ribosomal proteins was decreased under both stresses compared to control condition; however, the percentage of increased ribosomes was two-fold higher in flooding compared to drought. The ER proteins related to protein glycosylation and signaling were in response to both stresses. Compared to control condition, calnexin was decreased under both stresses; however, protein disulfide isomerase-like proteins and heat shock proteins were markedly decreased under flooding and drought conditions, respectively. Furthermore, fewer glycoproteins and higher levels of cytosolic calcium were identified under both stresses compared to control condition. These results suggest that reduced accumulation of glycoproteins in response to both stresses might be due to dysfunction of protein folding through calnexin/calreticulin cycle. Additionally, the increased cytosolic calcium levels induced by flooding and drought stresses might disturb the ER environment for proper protein folding in soybean root tips.
Collapse
Affiliation(s)
- Xin Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba , Tsukuba 305-8572, Japan
- National Institute of Crop Science, National Agriculture and Food Research Organization , Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba , Tsukuba 305-8572, Japan
- National Institute of Crop Science, National Agriculture and Food Research Organization , Tsukuba 305-8518, Japan
| |
Collapse
|
42
|
Wang X, Komatsu S. Plant subcellular proteomics: Application for exploring optimal cell function in soybean. J Proteomics 2016; 143:45-56. [PMID: 26808589 DOI: 10.1016/j.jprot.2016.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/06/2016] [Accepted: 01/13/2016] [Indexed: 01/11/2023]
Abstract
UNLABELLED Plants have evolved complicated responses to developmental changes and stressful environmental conditions. Subcellular proteomics has the potential to elucidate localized cellular responses and investigate communications among subcellular compartments during plant development and in response to biotic and abiotic stresses. Soybean, which is a valuable legume crop rich in protein and vegetable oil, can grow in several climatic zones; however, the growth and yield of soybean are markedly decreased under stresses. To date, numerous proteomic studies have been performed in soybean to examine the specific protein profiles of cell wall, plasma membrane, nucleus, mitochondrion, chloroplast, and endoplasmic reticulum. In this review, methods for the purification and purity assessment of subcellular organelles from soybean are summarized. In addition, the findings from subcellular proteomic analyses of soybean during development and under stresses, particularly flooding stress, are presented and the proteins regulated among subcellular compartments are discussed. Continued advances in subcellular proteomics are expected to greatly contribute to the understanding of the responses and interactions that occur within and among subcellular compartments during development and under stressful environmental conditions. BIOLOGICAL SIGNIFICANCE Subcellular proteomics has the potential to investigate the cellular events and interactions among subcellular compartments in response to development and stresses in plants. Soybean could grow in several climatic zones; however, the growth and yield of soybean are markedly decreased under stresses. Numerous proteomics of cell wall, plasma membrane, nucleus, mitochondrion, chloroplast, and endoplasmic reticulum was carried out to investigate the respecting proteins and their functions in soybean during development or under stresses. In this review, methods of subcellular-organelle enrichment and purity assessment are summarized. In addition, previous findings of subcellular proteomics are presented, and functional proteins regulated among different subcellular are discussed. Subcellular proteomics contributes greatly to uncovering responses and interactions among subcellular compartments during development and under stressful environmental conditions in soybean.
Collapse
Affiliation(s)
- Xin Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
43
|
Yasmeen F, Raja NI, Mustafa G, Sakata K, Komatsu S. Quantitative proteomic analysis of post-flooding recovery in soybean root exposed to aluminum oxide nanoparticles. J Proteomics 2016; 143:136-150. [PMID: 27079982 DOI: 10.1016/j.jprot.2016.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 12/22/2022]
Abstract
UNLABELLED Aluminum oxide nanoparticles (Al2O3 NPs) are used in various commercial and agricultural products. Soybean exhibits severe reduction in growth under flooding condition. To examine the effects of Al2O3 NPs on the recovery of soybean from flooding, proteomic analysis was performed. Survival percentage and weight/length of root including hypocotyl were improved after 2 and 4days of flooding with 50ppm Al2O3 NPs leading to recovery as compared to flooding. A total of 211 common proteins were changed in abundance during the recovery period after treatment without or with Al2O3 NPs. These proteins were related to protein synthesis, stress, cell wall, and signaling. Among the identified stress-related proteins, S-adenosyl-l-methionine dependent methyltransferases were recovered from flooding with Al2O3 NPs. Hierarchical clustering divided the identified proteins into three clusters. Cluster II exhibited the greatest change in proteins related to protein synthesis, transport, and development during the recovery from flooding with Al2O3 NPs. However, activity of enolase remained unchanged during flooding leading to subsequent recovery with Al2O3 NPs. These results suggest that S-adenosyl-l-methionine dependent methyltransferases and enolase might be involved in mediating recovery responses by Al2O3 NPs. BIOLOGICAL SIGNIFICANCE This study highlighted the role of Al2O3 NPs in recovery of soybean seedlings from flooding stress using gel-free proteomic technique. The key findings of this study are as follows: (i) survival percentage was enhanced at 50ppm Al2O3 NPs during the recovery stage; (ii) seedling weight and weight/length of root including hypocotyl improved at 50ppm Al2O3 NPs during the period of recovery; (iii) protein synthesis and stress related proteins were increased on recovery after flooding without or with Al2O3 NPs; (iv) the abundance of S-adenosyl-l-methionine dependent methyltransferases recovered from flooding with Al2O3 NPs; (v) glycolysis related proteins amplified under flooding with Al2O3 NPs; (vi) enolase enzyme remained unchanged during flooding leading to subsequent recovery from flooding with Al2O3 NPs. Collectively, these results suggest that S-adenosyl-l-methionine dependent methyltransferases and enolase are involved in response to flooding with Al2O3 NPs and might be helpful in recovery from flooding stress.
Collapse
Affiliation(s)
- Farhat Yasmeen
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Naveed Iqbal Raja
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Ghazala Mustafa
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Katsumi Sakata
- Maebashi Institute of Technology, Maebashi 371-0816, Japan
| | - Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
44
|
Yin X, Nishimura M, Hajika M, Komatsu S. Quantitative Proteomics Reveals the Flooding-Tolerance Mechanism in Mutant and Abscisic Acid-Treated Soybean. J Proteome Res 2016; 15:2008-25. [PMID: 27132649 DOI: 10.1021/acs.jproteome.6b00196] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Flooding negatively affects the growth of soybean, and several flooding-specific stress responses have been identified; however, the mechanisms underlying flooding tolerance in soybean remain unclear. To explore the initial flooding tolerance mechanisms in soybean, flooding-tolerant mutant and abscisic acid (ABA)-treated plants were analyzed. In the mutant and ABA-treated soybeans, 146 proteins were commonly changed at the initial flooding stress. Among the identified proteins, protein synthesis-related proteins, including nascent polypeptide-associated complex and chaperonin 20, and RNA regulation-related proteins were increased in abundance both at protein and mRNA expression. However, these proteins identified at the initial flooding stress were not significantly changed during survival stages under continuous flooding. Cluster analysis indicated that glycolysis- and cell wall-related proteins, such as enolase and polygalacturonase inhibiting protein, were increased in abundance during survival stages. Furthermore, lignification of root tissue was improved even under flooding stress. Taken together, these results suggest that protein synthesis- and RNA regulation-related proteins play a key role in triggering tolerance to the initial flooding stress in soybean. Furthermore, the integrity of cell wall and balance of glycolysis might be important factors for promoting tolerance of soybean root to flooding stress during survival stages.
Collapse
Affiliation(s)
- Xiaojian Yin
- Graduate School of Life and Environmental Sciences, University of Tsukuba , Tsukuba 305-8572, Japan
- National Institute of Crop Science, National Agriculture and Food Research Organization , Tsukuba 305-8518, Japan
| | - Minoru Nishimura
- Graduate School of Life and Food Sciences, Niigata University , Niigata 950-2181, Japan
| | - Makita Hajika
- National Institute of Crop Science, National Agriculture and Food Research Organization , Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba , Tsukuba 305-8572, Japan
- National Institute of Crop Science, National Agriculture and Food Research Organization , Tsukuba 305-8518, Japan
| |
Collapse
|
45
|
Kamal AHM, Komatsu S. Proteins involved in biophoton emission and flooding-stress responses in soybean under light and dark conditions. Mol Biol Rep 2016; 43:73-89. [PMID: 26754663 DOI: 10.1007/s11033-015-3940-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/31/2015] [Indexed: 01/15/2023]
Abstract
To know the molecular systems basically flooding conditions in soybean, biophoton emission measurements and proteomic analyses were carried out for flooding-stressed roots under light and dark conditions. Photon emission was analyzed using a photon counter. Gel-free quantitative proteomics were performed to identify significant changes proteins using the nano LC-MS along with SIEVE software. Biophoton emissions were significantly increased in both light and dark conditions after flooding stress, but gradually decreased with continued flooding exposure compared to the control plants. Among the 120 significantly identified proteins in the roots of soybean plants, 73 and 19 proteins were decreased and increased in the light condition, respectively, and 4 and 24 proteins were increased and decreased, respectively, in the dark condition. The proteins were mainly functionally grouped into cell organization, protein degradation/synthesis, and glycolysis. The highly abundant lactate/malate dehydrogenase proteins were decreased in flooding-stressed roots exposed to light, whereas the lysine ketoglutarate reductase/saccharopine dehydrogenase bifunctional enzyme was increased in both light and dark conditions. Notably, however, specific enzyme assays revealed that the activities of these enzymes and biophoton emission were sharply increased after 3 days of flooding stress. This finding suggests that the source of biophoton emission in roots might involve the chemical excitation of electron or proton through enzymatic or non-enzymatic oxidation and reduction reactions. Moreover, the lysine ketoglutarate reductase/saccharopine dehydrogenase bifunctional enzyme may play important roles in responses in flooding stress of soybean under the light condition and as a contributing factor to biophoton emission.
Collapse
Affiliation(s)
- Abu Hena Mostafa Kamal
- National Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-18, Tsukuba, 305-8518, Japan
| | - Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-18, Tsukuba, 305-8518, Japan.
| |
Collapse
|
46
|
Latef AAHA, Jan S, Abd‐Allah EF, Rashid B, John R, Ahmad P. Soybean under abiotic stress. PLANT‐ENVIRONMENT INTERACTION 2016:28-42. [DOI: 10.1002/9781119081005.ch2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
47
|
Mustafa G, Sakata K, Komatsu S. Proteomic analysis of flooded soybean root exposed to aluminum oxide nanoparticles. J Proteomics 2015; 128:280-97. [PMID: 26306862 DOI: 10.1016/j.jprot.2015.08.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 08/02/2015] [Accepted: 08/15/2015] [Indexed: 12/25/2022]
Abstract
Aluminum oxide (Al2O3) nanoparticles are used in agricultural products and cause various adverse growth effects on different plant species. To study the effects of Al2O3 nanoparticles on soybean under flooding stress, a gel-free proteomic technique was used. Morphological analysis revealed that treatment with 50 ppm Al2O3 nanoparticles under flooding stress enhanced soybean growth compared to ZnO and Ag nanoparticles. A total of 172 common proteins that significantly changed in abundance among control, flooding-stressed, and flooding-stressed soybean treated with Al2O3 nanoparticles were mainly related to energy metabolism. Under Al2O3 nanoparticles the energy metabolism was decreased compared to flooding stress. Hierarchical clustering divided identified proteins into four clusters, with proteins related to glycolysis exhibiting the greatest changes in abundance. Al2O3 nanoparticle-responsive proteins were predominantly related to protein synthesis/degradation, glycolysis, and lipid metabolism. mRNA expression analysis of Al2O3 nanoparticle-responsive proteins that displayed a 5-fold change in abundance revealed that NmrA-like negative transcriptional regulator was up-regulated, and flavodoxin-like quinone reductase was down-regulated. Moreover, cell death in root including hypocotyl was less evident in flooding-stressed with Al2O3 nanoparticles compared to flooding-treated soybean. These results suggest that Al2O3 nanoparticles might promote the growth of soybean under flooding stress by regulating energy metabolism and cell death.
Collapse
Affiliation(s)
- Ghazala Mustafa
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Katsumi Sakata
- Department of Life Science and Informatics, Maebashi Institute of Technology, Maebashi 371-0816, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
48
|
Abstract
Climate change is considered a major threat to world agriculture and food security. To improve the agricultural productivity and sustainability, the development of high-yielding stress-tolerant, and climate-resilient crops is essential. Of the abiotic stresses, flooding stress is a very serious hazard because it markedly reduces plant growth and grain yield. Proteomic analyses indicate that the effects of flooding stress are not limited to oxygen deprivation but include many other factors. Although many flooding response mechanisms have been reported, flooding tolerance mechanisms have not been fully clarified for soybean. There were limitations in soybean materials, such as mutants and varieties, while they were abundant in rice and Arabidopsis. In this review, plant proteomic technologies are introduced and flooding tolerance mechanisms of soybeans are summarized to assist in the improvement of flooding tolerance in soybeans. This work will expedite transgenic or marker-assisted genetic enhancement studies in crops for developing high-yielding stress-tolerant lines or varieties under abiotic stress.
Collapse
Affiliation(s)
- Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-18, Tsukuba 305-8518, Japan
| | - Makoto Tougou
- National Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-18, Tsukuba 305-8518, Japan
| | - Yohei Nanjo
- National Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-18, Tsukuba 305-8518, Japan
| |
Collapse
|
49
|
Kosová K, Vítámvás P, Urban MO, Klíma M, Roy A, Prášil IT. Biological Networks Underlying Abiotic Stress Tolerance in Temperate Crops--A Proteomic Perspective. Int J Mol Sci 2015; 16:20913-42. [PMID: 26340626 PMCID: PMC4613235 DOI: 10.3390/ijms160920913] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/16/2015] [Accepted: 08/10/2015] [Indexed: 12/26/2022] Open
Abstract
Abiotic stress factors, especially low temperatures, drought, and salinity, represent the major constraints limiting agricultural production in temperate climate. Under the conditions of global climate change, the risk of damaging effects of abiotic stresses on crop production increases. Plant stress response represents an active process aimed at an establishment of novel homeostasis under altered environmental conditions. Proteins play a crucial role in plant stress response since they are directly involved in shaping the final phenotype. In the review, results of proteomic studies focused on stress response of major crops grown in temperate climate including cereals: common wheat (Triticum aestivum), durum wheat (Triticum durum), barley (Hordeum vulgare), maize (Zea mays); leguminous plants: alfalfa (Medicago sativa), soybean (Glycine max), common bean (Phaseolus vulgaris), pea (Pisum sativum); oilseed rape (Brassica napus); potato (Solanum tuberosum); tobacco (Nicotiana tabaccum); tomato (Lycopersicon esculentum); and others, to a wide range of abiotic stresses (cold, drought, salinity, heat, imbalances in mineral nutrition and heavy metals) are summarized. The dynamics of changes in various protein functional groups including signaling and regulatory proteins, transcription factors, proteins involved in protein metabolism, amino acid metabolism, metabolism of several stress-related compounds, proteins with chaperone and protective functions as well as structural proteins (cell wall components, cytoskeleton) are briefly overviewed. Attention is paid to the differences found between differentially tolerant genotypes. In addition, proteomic studies aimed at proteomic investigation of multiple stress factors are discussed. In conclusion, contribution of proteomic studies to understanding the complexity of crop response to abiotic stresses as well as possibilities to identify and utilize protein markers in crop breeding processes are discussed.
Collapse
Affiliation(s)
- Klára Kosová
- Laboratory of Plant Stress Biology and Biotechnology, Division of Crop Genetics and Breeding, Crop Research Institute, Drnovská 507/73, 16106 Prague, Czech Republic.
| | - Pavel Vítámvás
- Laboratory of Plant Stress Biology and Biotechnology, Division of Crop Genetics and Breeding, Crop Research Institute, Drnovská 507/73, 16106 Prague, Czech Republic.
| | - Milan Oldřich Urban
- Laboratory of Plant Stress Biology and Biotechnology, Division of Crop Genetics and Breeding, Crop Research Institute, Drnovská 507/73, 16106 Prague, Czech Republic.
| | - Miroslav Klíma
- Laboratory of Plant Stress Biology and Biotechnology, Division of Crop Genetics and Breeding, Crop Research Institute, Drnovská 507/73, 16106 Prague, Czech Republic.
| | - Amitava Roy
- Research Institute of Agricultural Engineering, Drnovská 507, 16106 Prague, Czech Republic.
| | - Ilja Tom Prášil
- Laboratory of Plant Stress Biology and Biotechnology, Division of Crop Genetics and Breeding, Crop Research Institute, Drnovská 507/73, 16106 Prague, Czech Republic.
| |
Collapse
|
50
|
Cho WK, Hyun TK, Kumar D, Rim Y, Chen XY, Jo Y, Kim S, Lee KW, Park ZY, Lucas WJ, Kim JY. Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli. Mol Cells 2015; 38:685-96. [PMID: 26194822 PMCID: PMC4546940 DOI: 10.14348/molcells.2015.0033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 12/21/2022] Open
Abstract
Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Based on bioinformatics analyses, 389 classical rice cell wall proteins, possessing a signal peptide, and 334 putative non-classical cell wall proteins, lacking a signal peptide, were identified. By combining previously established rice cell wall protein databases with current data for the classical rice cell wall proteins, a comprehensive rice cell wall proteome, comprised of 496 proteins, was constructed. A comparative analysis of the rice and Arabidopsis cell wall proteomes revealed a high level of homology, suggesting a predominant conservation between monocot and eudicot cell wall proteins. This study importantly increased information on cell wall proteins, which serves for future functional analyses of these identified rice cell wall proteins.
Collapse
Affiliation(s)
- Won Kyong Cho
- Division of Applied Life Science (BK21plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Tae Kyung Hyun
- Department of Industrial Plant Science and Technology, College of Agricultural, Life and Environmental Sciences, Chungbuk National University, Cheongju 361-763,
Korea
| | - Dhinesh Kumar
- Division of Applied Life Science (BK21plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Yeonggil Rim
- Division of Applied Life Science (BK21plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Xiong Yan Chen
- Division of Applied Life Science (BK21plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Yeonhwa Jo
- Division of Applied Life Science (BK21plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Suwha Kim
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712,
Korea
| | - Keun Woo Lee
- Division of Applied Life Science (BK21plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Zee-Yong Park
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712,
Korea
| | - William J. Lucas
- Department of Plant Biology, University of California, Davis, CA 95616,
USA
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| |
Collapse
|