1
|
Soh BXP, Smith NW, von Hurst PR, McNabb WC. Achieving High Protein Quality Is a Challenge in Vegan Diets: A Narrative Review. Nutr Rev 2024:nuae176. [PMID: 39661760 DOI: 10.1093/nutrit/nuae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024] Open
Abstract
The transition toward plant-based (PB) diets has gained attention as a plausible step toward achieving sustainable and healthy dietary goals. However, the complete elimination of all animal-sourced foods from the diet (ie, a vegan diet) may have nutritional ramifications that warrant close examination. Two such concerns are the adequacy and bioavailability of amino acids (AAs) from plant-sourced foods and the consequences for older vegan populations who have elevated AA requirements. This narrative review describes the challenges of achieving high protein quality from vegan diets. Data were synthesized from peer-reviewed research articles and reviews. Plant-sourced proteins provide poorer distribution of indispensable AAs (IAAs) and have poorer digestibility, partly due to their inherent structural components within the food matrix. The review addresses complexities of combinations of varied plant protein sources and why the inclusion of novel PB alternatives adds uncertainty to the achievement of adequate protein adequacy. Meal distribution patterns of protein and the ensuing physiological impacts deserve further research and are outlined in this review. Particular attention is given to describing the challenges of achieving sufficient protein and IAA intakes by aging populations who choose to follow a vegan diet. This review contributes to the emerging discussions of nutritional risks associated with vegan diets and adds perspective to the current dietary shifts toward PB diets.
Collapse
Affiliation(s)
- Bi Xue Patricia Soh
- Sustainable Nutrition Initiative, Riddet Institute, Massey University, Palmerston North, 4410, New Zealand
| | - Nick W Smith
- Sustainable Nutrition Initiative, Riddet Institute, Massey University, Palmerston North, 4410, New Zealand
| | - Pamela R von Hurst
- School of Sport Exercise and Nutrition, College of Health, Massey University, Auckland, 0632, New Zealand
| | - Warren C McNabb
- Sustainable Nutrition Initiative, Riddet Institute, Massey University, Palmerston North, 4410, New Zealand
| |
Collapse
|
2
|
Shan S, Hoffman JM. Serine metabolism in aging and age-related diseases. GeroScience 2024:10.1007/s11357-024-01444-1. [PMID: 39585647 DOI: 10.1007/s11357-024-01444-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024] Open
Abstract
Non-essential amino acids are often overlooked in biomedical research; however, they are crucial components of organismal metabolism. One such metabolite that is integral to physiological function is serine. Serine acts as a pivotal link connecting glycolysis with one-carbon and lipid metabolism, as well as with pyruvate and glutathione syntheses. Interestingly, increasing evidence suggests that serine metabolism may impact the aging process, and supplementation with serine may confer benefits in safeguarding against aging and age-related disorders. This review synthesizes recent insights into the regulation of serine metabolism during aging and its potential to promote healthy lifespan and mitigate a spectrum of age-related diseases.
Collapse
Affiliation(s)
- Shengshuai Shan
- Department of Biological Sciences, Augusta University, Augusta, GA, 30912, USA.
| | - Jessica M Hoffman
- Department of Biological Sciences, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
3
|
Spears M, Cooper G, Sather B, Bailey M, Boles JA, Bothner B, Miles MP. Comparative Impact of Organic Grass-Fed and Conventional Cattle-Feeding Systems on Beef and Human Postprandial Metabolomics-A Randomized Clinical Trial. Metabolites 2024; 14:533. [PMID: 39452914 PMCID: PMC11509860 DOI: 10.3390/metabo14100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES Cattle-feeding systems may have health implications for consumers of beef products. Organic grass-fed (GRA) and conventional (CON) cattle-feeding systems may result in beef products with differing metabolite profiles and therefore could impact the postprandial metabolomic response of consumers. This study aims to measure whole beef metabolomics and postprandial metabolomic response of consumers between GRA and CON beef to elucidate potential health implications. METHODS This study followed a randomized double-blind crossover design with healthy male and female subjects (n = 10). Plasma samples were taken at fasting (0) and postprandially for four hours after consumption of a steak from each condition. Untargeted metabolomic analysis of whole beef and human plasma samples used LC/MS. Multivariate and pathway enrichment analysis in MetaboAnalyst was used to investigate metabolite and biochemical pathways that distinguished CON and GRA. RESULTS Cattle-feeding systems impacted both postprandial and whole beef steak metabolomic profiles. Metabolites that contributed to this variation included carnitine species (Proionylcarnitine), fatty acids, amino acids (L-valine), and Calamendiol. These metabolites have been associated with oxidative stress, inflammation, and cardiovascular health. Functional pathway enrichment analysis revealed numerous amino acid degradation pathways, especially branched-chain amino acids, and fatty acid degradation that changed throughout the postprandial time course. CONCLUSIONS These findings suggest that CON and GRA cattle-feeding systems differentially impact whole beef metabolomics, as well as consumer postprandial metabolic responses and the associated health implications.
Collapse
Affiliation(s)
- Meghan Spears
- Department of Food Systems, Nutrition, and Kinesiology, Montana State University, Bozeman, MT 59717, USA;
| | - Gwendolyn Cooper
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA; (G.C.)
| | - Brett Sather
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA; (G.C.)
| | - Marguerite Bailey
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA; (G.C.)
| | - Jane A. Boles
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT 59717, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA; (G.C.)
| | - Mary P. Miles
- Department of Food Systems, Nutrition, and Kinesiology, Montana State University, Bozeman, MT 59717, USA;
| |
Collapse
|
4
|
Szafrańska JO, Waraczewski R, Bartoń M, Wesołowska-Trojanowska M, Maziejuk W, Nowak P, Sołowiej BG. The effect of organic fruit juices on physicochemical, microbiological and antioxidative aspects of organic goat's and cow's fermented whey beverages produced on laboratory and industrial scale. J Dairy Sci 2024:S0022-0302(24)01131-7. [PMID: 39265835 DOI: 10.3168/jds.2024-25350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/10/2024] [Indexed: 09/14/2024]
Abstract
Fermented milk beverages have been known for years and are characterized by excellent health-promoting properties. Therefore, consumer attention has been drawn to this product type in recent years. In the presented research, the technology of production in laboratory and industrial scale of controlled fermentation of whey beverages containing sweet and sour organic cow's or goat's whey with the addition of organic fruit juices (apple, blackcurrant juice or Kamchatka berry), has been described. Food production on a laboratory scale involves small batch processes designed for experimentation and refinement, often with precise control over variables and conditions. In contrast, industrial-scale food production in enterprises focuses on large volume output with an emphasis on efficiency, consistency, and adherence to regulatory standards for mass consumption. In this study was examined the amino acid content and nutritional value of the obtained products. Tests were carried out on fermented whey drinks' microbiology and antioxidant properties. The significance was determined using an ANOVA (ANOVA)-each prepared drink was characterized by better antioxidant properties and nutritional values compared with product without juice addition. Microbiological examination proved that only one product was not fit for consumption according to the Polish norm. Using whey (goat and cow) as a base for a fermented beverage with enhanced health benefits is a positive step toward using products commonly regarded as waste.
Collapse
Affiliation(s)
- J O Szafrańska
- Department of Dairy Technology and Functional Foods, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Poland, Skromna 8, 20-704 Lublin, Poland.
| | - R Waraczewski
- Department of Dairy Technology and Functional Foods, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Poland, Skromna 8, 20-704 Lublin, Poland
| | - M Bartoń
- Department of Dairy Technology and Functional Foods, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Poland, Skromna 8, 20-704 Lublin, Poland
| | - M Wesołowska-Trojanowska
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Sciences and Bio-technology, University of Life Sciences in Lublin, Poland, Skromna 8, 20-704 Lublin, Poland
| | - W Maziejuk
- Family Organic Farm "Figa" Waldemar and Tomasz Maziejuk, Mszana 44/2, 38-454 Tylawa, Poland
| | - P Nowak
- Manufacturer of BIO Juices NFC Korab Garden Sp. z o. o., Samoklęski, Kolonia Druga 21A, 21-132 Kamionka, Poland
| | - B G Sołowiej
- Department of Dairy Technology and Functional Foods, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Poland, Skromna 8, 20-704 Lublin, Poland
| |
Collapse
|
5
|
He W, Connolly ED, Cross HR, Wu G. Dietary protein and amino acid intakes for mitigating sarcopenia in humans. Crit Rev Food Sci Nutr 2024:1-24. [PMID: 38803274 DOI: 10.1080/10408398.2024.2348549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Adult humans generally experience a 0.5-1%/year loss in whole-body skeletal muscle mass and a reduction of muscle strength by 1.5-5%/year beginning at the age of 50 years. This results in sarcopenia (aging-related progressive losses of skeletal muscle mass and strength) that affects 10-16% of adults aged ≥ 60 years worldwide. Concentrations of some amino acids (AAs) such as branched-chain AAs, arginine, glutamine, glycine, and serine are reduced in the plasma of older than young adults likely due to insufficient protein intake, reduced protein digestibility, and increased AA catabolism by the portal-drained viscera. Acute, short-term, or long-term administration of some of these AAs or a mixture of proteinogenic AAs can enhance blood flow to skeletal muscle, activate the mechanistic target of rapamycin cell signaling pathway for the initiation of muscle protein synthesis, and modulate the metabolic activity of the muscle. In addition, some AA metabolites such as taurine, β-alanine, carnosine, and creatine have similar physiological effects on improving muscle mass and function in older adults. Long-term adequate intakes of protein and the AA metabolites can aid in mitigating sarcopenia in elderly adults. Appropriate combinations of animal- and plant-sourced foods are most desirable to maintain proper dietary AA balance.
Collapse
Affiliation(s)
- Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Erin D Connolly
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - H Russell Cross
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| |
Collapse
|
6
|
Chen J, Huang M. Intensive care unit-acquired weakness: Recent insights. JOURNAL OF INTENSIVE MEDICINE 2024; 4:73-80. [PMID: 38263973 PMCID: PMC10800771 DOI: 10.1016/j.jointm.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/16/2023] [Accepted: 07/07/2023] [Indexed: 01/25/2024]
Abstract
Intensive care unit-acquired weakness (ICU-AW) is a common complication in critically ill patients and is associated with a variety of adverse outcomes. These include the need for prolonged mechanical ventilation and ICU stay; higher ICU, in-hospital, and 1-year mortality; and increased in-hospital costs. ICU-AW is associated with multiple risk factors including age, underlying disease, severity of illness, organ failure, sepsis, immobilization, receipt of mechanical ventilation, and other factors related to critical care. The pathological mechanism of ICU-AW remains unclear and may be considerably varied. This review aimed to evaluate recent insights into ICU-AW from several aspects including risk factors, pathophysiology, diagnosis, and treatment strategies; this provides new perspectives for future research.
Collapse
Affiliation(s)
- Juan Chen
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Man Huang
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| |
Collapse
|
7
|
Razzaq W, Masood Z, Hassan HU, Benzer S, Nadeem K, Arai T. An investigation on protein and amino acid contents in scales and muscles of pomfret Parastromateus niger (Bloch, 1795) and Pampus argenteus (Eupharasen, 1788). BRAZ J BIOL 2024; 84:e258880. [DOI: 10.1590/1519-6984.258880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/10/2022] [Indexed: 12/23/2022] Open
Abstract
Abstract The present investigation was aimed to examine the percentage quantity of protein and amino acids in scales and muscles of Pampus argenteus and Parastromateus niger gathered from the local fish market of district Quetta of Balochistan. About 80 specimens of these two species, i.e., Pampus argenteus (N=40) and Parastromateus niger (N = 40), were collected from April 2017 to May 2018. In general, crude protein content was high in scales, that is, 71.03% in Parastromateus niger and 52.11% in Pampus argenteus, as well as in muscles of two Pomfret species of fishes i.e., 63.44% in Pampus argenteus and 60.99% in Parastromateus niger on a dry-weight basis, respectively. Likewise, the muscles and scales of Parastromateus niger reveal well compositions of amino acids that include proline was found to be high, and methionine was less than other amino acids, whereas threonine was found high in the scales of Pampus argenteus, but methionine was observed in lesser amount. However, the amino acids found in Pampus argenteus muscles also showed different compositions, such as lysine was found to be high, but histidine was less, respectively. In comparison, amino acids like tryptophan and cysteine were not detected in both scales and muscles of thesePomfret species of fishes. Thus, this study was based on analyzing the utilization of both Pomfret species of scales and meat whether they could have values as good supplements of both protein and certain kinds of essential amino acids in animal diets.
Collapse
Affiliation(s)
- W. Razzaq
- Sardar Bhadur Khan Women’s University, Pakistan
| | - Z. Masood
- Sardar Bhadur Khan Women’s University, Pakistan
| | - H. U. Hassan
- University of Karachi, Pakistan; Ministry of National Food Security and Research, Pakistan
| | | | | | - T. Arai
- Universiti Brunei Darussalam, Brunei Darussalam
| |
Collapse
|
8
|
Paoletti A, Pencharz PB, Ball RO, Kong D, Xu L, Elango R, Courtney-Martin G. The dietary requirement for total sulfur amino acids in adults aged ≥60 years appears to be higher in males than in females. Am J Clin Nutr 2023; 118:538-548. [PMID: 37356549 DOI: 10.1016/j.ajcnut.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 05/09/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND The total sulfur amino acid (TSAA) recommendation in older adults is based on data from young adults. Physiological evidence suggests that older adults have a higher requirement than young adults. OBJECTIVES The objective of this study was to determine the TSAA requirement in healthy men and women aged ≥60 y. METHODS The TSAA requirement was determined using the indicator amino acid oxidation method with L-[1-13C]phenylalanine as the indicator. At recruitment, 15 older adults (n = 7 men and n = 8 women; BMI < 30 kg/m2) were assigned to receive 7 methionine intakes (5, 10, 15, 19, 25, 35, and 40 mg/kg/d) without dietary cysteine. Intake levels were randomly assigned to each subject. Following enrollment, 2 subjects completed 2 intakes and 3 completed 3, while the remainder completed all 7. Mean TSAA requirement was determined from oxidation of L-[1-13C]phenylalanine using a mixed-effect change-point model. The 95% CI was calculated using parametric bootstrap. To test whether breakpoints were different between men and women, the overlap in the 95% CI was calculated. RESULTS The mean TSAA requirement was 26.2 (Rm2 = 0.39, Rc2 = 0.89; P < 0.001) and 17.1 mg/kg/d (Rm2 = 0.22, Rc2 = 0.79; P < 0.001) for men and women, respectively. The requirement was significantly higher in men than in women (difference in CI: 9.1 ± 8.85). CONCLUSIONS To our knowledge, this is the first study to determine the TSAA requirement in older adults. The requirement in older women is similar to current recommendations but is 75% higher in older men. These findings are important given recommendations for increased plant protein consumption. They will help in the assessment of diet quality and provide the basis of dietary guidelines for older adults consuming a plant-based diet. This trial was registered at clinicaltrials.gov as NCT04595188.
Collapse
Affiliation(s)
- Alyssa Paoletti
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Paul B Pencharz
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Ronald O Ball
- Department of Agriculture, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Dehan Kong
- Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Libai Xu
- Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Rajavel Elango
- Department of Pediatrics, School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Glenda Courtney-Martin
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Kanova M, Kohout P. Molecular Mechanisms Underlying Intensive Care Unit-Acquired Weakness and Sarcopenia. Int J Mol Sci 2022; 23:8396. [PMID: 35955530 PMCID: PMC9368893 DOI: 10.3390/ijms23158396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle is a highly adaptable organ, and its amount declines under catabolic conditions such as critical illness. Aging is accompanied by a gradual loss of muscle, especially when physical activity decreases. Intensive care unit-acquired weakness is a common and highly serious neuromuscular complication in critically ill patients. It is a consequence of critical illness and is characterized by a systemic inflammatory response, leading to metabolic stress, that causes the development of multiple organ dysfunction. Muscle dysfunction is an important component of this syndrome, and the degree of catabolism corresponds to the severity of the condition. The population of critically ill is aging; thus, we face another negative effect-sarcopenia-the age-related decline of skeletal muscle mass and function. Low-grade inflammation gradually accumulates over time, inhibits proteosynthesis, worsens anabolic resistance, and increases insulin resistance. The cumulative consequence is a gradual decline in muscle recovery and muscle mass. The clinical manifestation for both of the above conditions is skeletal muscle weakness, with macromolecular damage, and a common mechanism-mitochondrial dysfunction. In this review, we compare the molecular mechanisms underlying the two types of muscle atrophy, and address questions regarding possible shared molecular mechanisms, and whether critical illness accelerates the aging process.
Collapse
Affiliation(s)
- Marcela Kanova
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Ostrava, 708 52 Ostrava, Czech Republic
- Institute of Physiology and Pathophysiology, Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic
| | - Pavel Kohout
- Department of Internal Medicine, 3rd Faculty of Medicine, Charles University Prague and Teaching Thomayer Hospital, 140 59 Prague, Czech Republic;
| |
Collapse
|
10
|
Palit P, Gazi MA, Das S, Hasan MM, Noor Z, Ferdous J, Alam MA, Nuzhat S, Islam MR, Mahfuz M, Haque R, Ahmed T. Exploratory Analysis of Selected Components of the mTOR Pathway Reveals Potentially Crucial Associations with Childhood Malnutrition. Nutrients 2022; 14:1612. [PMID: 35458174 PMCID: PMC9031007 DOI: 10.3390/nu14081612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/13/2022] [Accepted: 03/25/2022] [Indexed: 12/10/2022] Open
Abstract
Dysregulations in the mammalian target of rapamycin (mTOR) pathway are associated with several human anomalies. We aimed to elucidate possible implications for potential aberrations in the mTOR pathway with childhood malnutrition. We analyzed the activity of phospho-mTORC1 and the expressions of several mTOR pathway genes, namely: MTOR, TSC1, LAMTOR2, RPS6K1 and RICTOR from peripheral blood mononuclear cells isolated from venous blood of children suffering from different forms of malnutrition and compared them with those from healthy children. Significant reduction in the phosphorylation of mTORC1 was noted, as well as a decrease in expression of LAMTOR2 gene and increase in TSC1 gene expression were observed between malnourished children in comparison to the healthy children. The deregulation in the activity of the TSC1 and LAMTOR2 gene was significantly associated with all forms of childhood malnutrition. Our findings provide key insights into possible down-modulation in the overall activity of the mTOR pathway in childhood malnutrition. Further studies focusing on the analysis of a multitude of components involved in the mTOR pathway both at the gene and protein expression levels are required for conclusive evidence for the aforementioned proposition.
Collapse
Affiliation(s)
- Parag Palit
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (P.P.); (S.D.); (M.M.H.); (J.F.); (M.A.A.); (S.N.); (M.R.I.); (M.M.); (T.A.)
| | - Md Amran Gazi
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (P.P.); (S.D.); (M.M.H.); (J.F.); (M.A.A.); (S.N.); (M.R.I.); (M.M.); (T.A.)
| | - Subhasish Das
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (P.P.); (S.D.); (M.M.H.); (J.F.); (M.A.A.); (S.N.); (M.R.I.); (M.M.); (T.A.)
| | - Md Mehedi Hasan
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (P.P.); (S.D.); (M.M.H.); (J.F.); (M.A.A.); (S.N.); (M.R.I.); (M.M.); (T.A.)
| | - Zannatun Noor
- Emerging Infections and Parasitology Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (Z.N.); (R.H.)
| | - Jafrin Ferdous
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (P.P.); (S.D.); (M.M.H.); (J.F.); (M.A.A.); (S.N.); (M.R.I.); (M.M.); (T.A.)
| | - Md Ashraful Alam
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (P.P.); (S.D.); (M.M.H.); (J.F.); (M.A.A.); (S.N.); (M.R.I.); (M.M.); (T.A.)
| | - Sharika Nuzhat
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (P.P.); (S.D.); (M.M.H.); (J.F.); (M.A.A.); (S.N.); (M.R.I.); (M.M.); (T.A.)
| | - Md Ridwan Islam
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (P.P.); (S.D.); (M.M.H.); (J.F.); (M.A.A.); (S.N.); (M.R.I.); (M.M.); (T.A.)
| | - Mustafa Mahfuz
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (P.P.); (S.D.); (M.M.H.); (J.F.); (M.A.A.); (S.N.); (M.R.I.); (M.M.); (T.A.)
- Faculty of Medicine and Health Technology, University of Tampere, 33014 Tampere, Finland
| | - Rashidul Haque
- Emerging Infections and Parasitology Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (Z.N.); (R.H.)
| | - Tahmeed Ahmed
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (P.P.); (S.D.); (M.M.H.); (J.F.); (M.A.A.); (S.N.); (M.R.I.); (M.M.); (T.A.)
- Department of Global Health, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
11
|
Querfurth H, Lee HK. Mammalian/mechanistic target of rapamycin (mTOR) complexes in neurodegeneration. Mol Neurodegener 2021; 16:44. [PMID: 34215308 PMCID: PMC8252260 DOI: 10.1186/s13024-021-00428-5] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Novel targets to arrest neurodegeneration in several dementing conditions involving misfolded protein accumulations may be found in the diverse signaling pathways of the Mammalian/mechanistic target of rapamycin (mTOR). As a nutrient sensor, mTOR has important homeostatic functions to regulate energy metabolism and support neuronal growth and plasticity. However, in Alzheimer's disease (AD), mTOR alternately plays important pathogenic roles by inhibiting both insulin signaling and autophagic removal of β-amyloid (Aβ) and phospho-tau (ptau) aggregates. It also plays a role in the cerebrovascular dysfunction of AD. mTOR is a serine/threonine kinase residing at the core in either of two multiprotein complexes termed mTORC1 and mTORC2. Recent data suggest that their balanced actions also have implications for Parkinson's disease (PD) and Huntington's disease (HD), Frontotemporal dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS). Beyond rapamycin; an mTOR inhibitor, there are rapalogs having greater tolerability and micro delivery modes, that hold promise in arresting these age dependent conditions.
Collapse
Affiliation(s)
- Henry Querfurth
- Department of Neurology, Tufts Medical Center, Boston, Massachusetts, USA.
| | - Han-Kyu Lee
- Department of Neurology, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Cai J, Chen Z, Wu W, Lin Q, Liang Y. High animal protein diet and gut microbiota in human health. Crit Rev Food Sci Nutr 2021; 62:6225-6237. [PMID: 33724115 DOI: 10.1080/10408398.2021.1898336] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The role of the intestinal flora in health and disease has become a research hotspot. Compared with carbohydrates and fats, proteins are metabolized primarily by microbial fermentation in the intestine. The production of protein fermentation products and metabolites depends on the composition, diversity, and metabolism of the gut microbiota. Several protein fermentation products, including indoles, phenols, polyamines, hydrogen sulfide (H2S), amines, and carnitine, are toxic. This study analyzes the relationship between high-protein diets (HPDs), the intestinal microbiota, and human health and disease. Long-term HPDs increase the risk of intestinal diseases, type 2 diabetes (T2DM), obesity, central nervous system (CNS) diseases, and cardiovascular diseases (CVD) by producing toxic metabolites in the colon, including amines, H2S, and ammonia. Short-term HPDs have little effect on the metabolism of healthy individuals under 65 years old. However, meeting the protein requirements of individuals over 65 years old using HPDs is more challenging. The adverse effects of HPDs on athletes are minimal. Natural compounds (plant extracts, whose main constituents are polysaccharides and polyphenols), prebiotics, probiotics, and regular physical exercise improve gut dysbiosis and reduce disease risk.
Collapse
Affiliation(s)
- Jie Cai
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Zhongxu Chen
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Wei Wu
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Qinlu Lin
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Ying Liang
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
13
|
Watson MD, Cross BL, Grosicki GJ. Evidence for the Contribution of Gut Microbiota to Age-Related Anabolic Resistance. Nutrients 2021; 13:706. [PMID: 33672207 PMCID: PMC7926629 DOI: 10.3390/nu13020706] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
Globally, people 65 years of age and older are the fastest growing segment of the population. Physiological manifestations of the aging process include undesirable changes in body composition, declines in cardiorespiratory fitness, and reductions in skeletal muscle size and function (i.e., sarcopenia) that are independently associated with mortality. Decrements in muscle protein synthetic responses to anabolic stimuli (i.e., anabolic resistance), such as protein feeding or physical activity, are highly characteristic of the aging skeletal muscle phenotype and play a fundamental role in the development of sarcopenia. A more definitive understanding of the mechanisms underlying this age-associated reduction in anabolic responsiveness will help to guide promyogenic and function promoting therapies. Recent studies have provided evidence in support of a bidirectional gut-muscle axis with implications for aging muscle health. This review will examine how age-related changes in gut microbiota composition may impact anabolic response to protein feeding through adverse changes in protein digestion and amino acid absorption, circulating amino acid availability, anabolic hormone production and responsiveness, and intramuscular anabolic signaling. We conclude by reviewing literature describing lifestyle habits suspected to contribute to age-related changes in the microbiome with the goal of identifying evidence-informed strategies to preserve microbial homeostasis, anabolic sensitivity, and skeletal muscle with advancing age.
Collapse
Affiliation(s)
| | | | - Gregory J. Grosicki
- Biodynamics and Human Performance Center, Georgia Southern University (Armstrong Campus), Savannah, GA 31419, USA; (M.D.W.); (B.L.C.)
| |
Collapse
|
14
|
Azhar G, Raza S, Pangle A, Coleman K, Dawson A, Schrader A, Wolfe RR, Wei JY. Potential Beneficial Effects of Dietary Protein Supplementation and Exercise on Functional Capacity in a Pilot Study of Individuals with Heart Failure with Preserved Ejection Fraction. Gerontol Geriatr Med 2021; 6:2333721420982808. [PMID: 33426179 PMCID: PMC7758656 DOI: 10.1177/2333721420982808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 01/02/2023] Open
Abstract
Approximately half of heart failure patients in the US have heart failure with preserved ejection fraction (HFpEF). HFpEF impairs physical performance and thus reduces quality of life. Increasing dietary protein intake can increase lean body mass and physical performance in healthy elderly individuals, but the effect of a high-quality protein supplement, with or without a structured exercise program, has not been investigated in HFpEF patients. Twenty-three obese elderly HFpEF patients with grade 1 or 2 diastolic dysfunction were randomized into three groups: control, protein supplementation alone, and protein plus exercise. Protein supplementation involved providing sufficient whey protein so that total intake was 1.2 g protein/kg/day. The exercise intervention was 2 days of hydrotherapy and 1 day of gym sessions per week under supervision of a fitness expert. Physical parameters and functional tests were performed at baseline and at 12 weeks. Protein supplementation alone failed to improve physical performance. However, when combined with light exercise, there was significant improvement in some (6-minute walk, 10 m walking speed, quadriceps strength), but not all, physical function measurements. The results of this pilot study suggest that further exploration of potential interactive effects between protein supplementation and light exercise in individuals with HFpEF is warranted.
Collapse
Affiliation(s)
- Gohar Azhar
- Donald W. Reynolds Institute on Aging, UAMS, Little Rock, AR, USA
| | - Sakeena Raza
- Donald W. Reynolds Institute on Aging, UAMS, Little Rock, AR, USA
| | - Amanda Pangle
- Donald W. Reynolds Institute on Aging, UAMS, Little Rock, AR, USA
| | - Kellie Coleman
- Donald W. Reynolds Institute on Aging, UAMS, Little Rock, AR, USA
| | - Amanda Dawson
- Donald W. Reynolds Institute on Aging, UAMS, Little Rock, AR, USA
| | - Amy Schrader
- Donald W. Reynolds Institute on Aging, UAMS, Little Rock, AR, USA
| | - Robert R Wolfe
- Donald W. Reynolds Institute on Aging, UAMS, Little Rock, AR, USA
| | - Jeanne Y Wei
- Donald W. Reynolds Institute on Aging, UAMS, Little Rock, AR, USA
| |
Collapse
|
15
|
Liao X, Wu M, Hao Y, Deng H. Exploring the Preventive Effect and Mechanism of Senile Sarcopenia Based on "Gut-Muscle Axis". Front Bioeng Biotechnol 2020; 8:590869. [PMID: 33251202 PMCID: PMC7674676 DOI: 10.3389/fbioe.2020.590869] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Age-related sarcopenia probably leads to chronic systemic inflammation and plays a vital role in the development of the complications of the disease. Gut microbiota, an environmental factor, is the medium of nutritional support to muscle cells, having significant impact on sarcopenia. Consequently, a significant amount of studies explored and showed the presence of gut microbiome–muscle axis (gut–muscle axis for short), which was possibly considered as the disease interventional target of age-related sarcopenia. However, a variety of nutrients probably affect the changes of the gut–muscle axis so as to affect the healthy balance of skeletal muscle. Therefore, it is necessary to study the mechanism of intestinal–muscle axis, and nutrients play a role in the treatment of senile sarcopenia through this mechanism. This review summarizes the available literature on mechanisms and specific pathways of gut–muscle axis and discusses the potential role and therapeutic feasibility of gut microbiota in age-related sarcopenia to understand the development of age-related sarcopenia and figure out the novel perspective of the potential therapeutic interventional targets.
Collapse
Affiliation(s)
- Xiaoshan Liao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, Guangzhou, China
| | - Mengting Wu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yuting Hao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hong Deng
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Taurine Attenuates Catabolic Processes Related to the Onset of Sarcopenia. Int J Mol Sci 2020; 21:ijms21228865. [PMID: 33238549 PMCID: PMC7700215 DOI: 10.3390/ijms21228865] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 12/25/2022] Open
Abstract
Sarcopenia that occurs with advancing age is characterized by a gradual loss of muscle protein component due to the activation of catabolic pathways, increased level of inflammation, and mitochondrial dysfunction. Experimental evidence demonstrates that several physio-pathological processes involved in the onset of sarcopenia may be counteracted by the intake of specific amino acids or antioxidant molecules, suggesting that diet may represent an effective strategy for improving the anabolic response of muscle during aging. The non-essential amino acid taurine is highly expressed in several mammalian tissues, including skeletal muscle where it is involved in the ion channel regulation, in the modulation of intracellular calcium concentration, and where it plays an important role as an antioxidant and anti-inflammatory factor. Here, with the purpose to reproduce the chronic low-grade inflammation characteristics of senescent muscle in an in vitro system, we exploited the role of Tumor Necrosis Factor α (TNF) and we analyzed the effect of taurine in the modulation of different signaling pathways known to be dysregulated in sarcopenia. We demonstrated that the administration of high levels of taurine in myogenic L6 cells stimulates the differentiation process by downregulating the expression of molecules involved in inflammatory pathways and modulating processes such as autophagy and apoptosis. Although further studies are currently ongoing in our laboratory to better elucidate the molecular mechanisms responsible for the positive effect of taurine on myogenic differentiation, this study suggests that taurine supplementation may represent a strategy to delay the loss of mass and functionality characteristic of senescent muscles.
Collapse
|
17
|
Hu H, Smith S, Li X, Qian Z, Su Y, Lin M, Tu J, Liu YM. Fast quantification of free amino acids in food by microfluidic voltage-assisted liquid desorption electrospray ionization-tandem mass spectrometry. Anal Bioanal Chem 2020; 412:1947-1954. [PMID: 32020315 PMCID: PMC8717839 DOI: 10.1007/s00216-020-02450-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 12/19/2022]
Abstract
A method based on microfluidic voltage-assisted liquid desorption electrospray ionization-tandem mass spectrometry (VAL-DESI-MS/MS) has been developed for fast quantification of free amino acids in food. Food extracts were transferred to the microfluidic platform and analyzed by liquid desorption ESI-MS/MS. Deuterated aspartic acid (i.e., 2,2,3-d3-Asp) was used as internal standard for analysis. The method had linear calibration curves with r2 values > 0.998. Limits of detection were at the level of sub μM for the amino acids tested, i.e., glutamic acid (Glu), arginine (Arg), tyrosine (Tyr), tryptophan (Trp), and phenylalanine (Phe). To validate the proposed method in food analysis, extracts of Cordyceps fungi were analyzed. Amino acid contents were found in the range from 0.63 mg/g (Tyr in Cordyceps sinensis) to 4.44 mg/g (Glu in Cordyceps militaris). Assay repeatability (RSD) was ≤ 5.2% for all the five amino acids measured in all the samples analyzed. Recovery was found in the range from 95.8 to 105.1% at two spiking concentrations of 0.250 mg/g and 1.00 mg/g. These results prove that the proposed microfluidic VAL-DESI-MS/MS method offers a quick and convenient means of quantifying free amino acids with accuracy and repeatability. Therefore, it may have potential in food analysis for nutritional and quality assessment purposes. Graphical abstract.
Collapse
Affiliation(s)
- Hankun Hu
- Zhongnan Hospital, Wuhan University, 169 Donghu Rd, Wuhan, 430071, Hubei, China
| | - Shila Smith
- Department of Chemistry and Biochemistry, Jackson State University, 1400 Lynch Street, Jackson, MS, 39217, USA
| | - Xiangtang Li
- Department of Chemistry and Biochemistry, Jackson State University, 1400 Lynch Street, Jackson, MS, 39217, USA
| | - Zhengming Qian
- Key Laboratory of State Administration of Traditional Chinese Medicine, Sunshine Lake Pharma Co., Ltd, Dongguan, 523850, Guangdong, China
| | - Yaxia Su
- Zhongnan Hospital, Wuhan University, 169 Donghu Rd, Wuhan, 430071, Hubei, China
| | - Manting Lin
- Zhongnan Hospital, Wuhan University, 169 Donghu Rd, Wuhan, 430071, Hubei, China
| | - Jiancheng Tu
- Zhongnan Hospital, Wuhan University, 169 Donghu Rd, Wuhan, 430071, Hubei, China.
| | - Yi-Ming Liu
- Department of Chemistry and Biochemistry, Jackson State University, 1400 Lynch Street, Jackson, MS, 39217, USA.
| |
Collapse
|
18
|
Meat Quality of Commercial Chickens Reared in Different Production Systems: Industrial, Range and Organic. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2019-0067] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
Meat is an important part of the human diet since it provides several nutrients. However, the amount of these nutrients can differ according to several factors. With this in mind, the present research was designed with the main objective of evaluating the effect of production system of broiler chickens (industrial, range and organic) on meat quality. The physicochemical, chemical and nutritional characteristics were determined in breast and drumstick meat. The organic chickens presented the lowest amounts of fat and cholesterol and the highest amounts of protein. The colour was also influenced by the production system, where organic and range chickens had the highest values of redness in both cuts (breast and drumstick). In addition, the content of essential fatty acids (C18:2n-6 and C18:3n-3) and other fatty acids with high biological importance, such as eicosapentanoic acid (EPA; C20:5n-3), docosapentanoic acid (DPA; C22:5n-3) and docosahexanoic acid (DHA; C22:6n-3) were higher in organic samples compared to industrial or range chickens. The amino acids content did not vary with the production system. With regard to mineral contents, organic chickens had the highest values of iron in drumstick and significantly lower values of magnesium in both cuts than industrial chickens. On the whole, the meat of the organic chickens showed better nutritional characteristics than those produced in range or industrial conditions.
Collapse
|
19
|
Durainayagam B, Mitchell CJ, Milan AM, Zeng N, Sharma P, Mitchell SM, Ramzan F, Knowles SO, Sjödin A, Wagner KH, Roy NC, Fraser K, Cameron-Smith D. Impact of a High Protein Intake on the Plasma Metabolome in Elderly Males: 10 Week Randomized Dietary Intervention. Front Nutr 2019; 6:180. [PMID: 31867339 PMCID: PMC6910071 DOI: 10.3389/fnut.2019.00180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/13/2019] [Indexed: 12/26/2022] Open
Abstract
High protein diets may improve the maintenance of skeletal muscle mass in the elderly, although it remains less clear what broader impact such diets have on whole body metabolic regulation in the elderly. Non-targeted polar metabolomics analysis using HILIC HPLC-MS was used to profile the circulating plasma metabolome of elderly men (n = 31; 74.7 ± 4.0 years) who were randomized to consume for 10 weeks a diet designed to achieve either protein (RDA; 0.8·g−1·kg−1) or that doubled this recommend intake (2RDA; 1.6.g.kg−1). A limited number of plasma metabolites (n = 24) were significantly differentially regulated by the diet. These included markers of protein anabolism, which increased by the 2RDA diet, including; urea, creatine, and glutarylcarnitine. Whilst in response to the RDA diet; glutamine, glutamic acid, and proline were increased, relative to the 2RDA diet (p < 0.05). Metaboanalyst identified six major metabolic pathways to be influenced by the quantity of protein intake, most notably the arginine and proline pathways. Doubling of the recommended protein intake in older males over 10 weeks exerted only a limited impact on circulating metabolites, as determined by LC-MS. This metabolomic response was almost entirely due to increased circulating abundances of metabolites potentially indicative of altered protein anabolism, without evidence of impact on pathways for metabolic health. Trial Registration: This trial was registered on 3rd March 2016 at the Australia New Zealand Clinical Trial Registry (www.anzctr.org.au) at ACTRN 12616000310460.
Collapse
Affiliation(s)
- Brenan Durainayagam
- Liggins Institute, University of Auckland, Auckland, New Zealand.,Division of Systems Medicine and Digestive Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Cameron J Mitchell
- Liggins Institute, University of Auckland, Auckland, New Zealand.,School of Kinesiology, The University of British Columbia, Vancouver, BC, Canada
| | - Amber M Milan
- Liggins Institute, University of Auckland, Auckland, New Zealand.,Food Nutrition & Health Team, AgResearch, Palmerston North, New Zealand
| | - Nina Zeng
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Pankaja Sharma
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Sarah M Mitchell
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Farha Ramzan
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Scott O Knowles
- Food Nutrition & Health Team, AgResearch, Palmerston North, New Zealand
| | - Anders Sjödin
- Department of Nutrition, Exercise and Sport, Copenhagen University, Copenhagen, Denmark
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences and Research Platform Active Ageing, University of Vienna, Vienna, Austria
| | - Nicole C Roy
- The High-Value Nutrition National Science Challenge, Auckland, New Zealand.,Food & Bio-based Products Group, AgResearch, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Karl Fraser
- The High-Value Nutrition National Science Challenge, Auckland, New Zealand.,Food & Bio-based Products Group, AgResearch, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - David Cameron-Smith
- Liggins Institute, University of Auckland, Auckland, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand.,Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore, Singapore
| |
Collapse
|
20
|
Scicchitano BM, Sica G. The Beneficial Effects of Taurine to Counteract Sarcopenia. Curr Protein Pept Sci 2019; 19:673-680. [PMID: 27875962 PMCID: PMC6040170 DOI: 10.2174/1389203718666161122113609] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 12/19/2022]
Abstract
Aging is a multifactorial process characterized by several features including low-grade inflammation, increased oxidative stress and reduced regenerative capacity, which ultimately lead to alteration in morpho-functional properties of skeletal muscle, thus promoting sarcopenia. This condition is characterized by a gradual loss of muscle mass due to an unbalance between protein synthesis and degradation, finally conveying in functional decline and disability. The development of specific therapeutic approaches able to block or reverse this condition may represent an invaluable tool for the promotion of a healthy aging among elderly people. It is well established that changes in the quantity and the quality of dietary proteins, as well as the intake of specific amino acids, are able to counteract some of the physiopathological processes related to the progression of the loss of muscle mass and may have beneficial effects in improving the anabolic response of muscle in the elderly. Taurine is a non-essential amino acid expressed in high concentration in several mammalian tissues and particularly in skeletal muscle where it is involved in the modulation of intracellular calcium concentration and ion channel regulation and where it also acts as an antioxidant and anti-inflammatory factor. The aim of this review is to summarize the pleiotropic effects of taurine on specific muscle targets and to discuss its role in regulating signaling pathways involved in the maintenance of muscle homeostasis. We also highlight the potential use of taurine as a therapeutic molecule for the amelioration of skeletal muscle function and performance severely compromised during aging.
Collapse
Affiliation(s)
- Bianca Maria Scicchitano
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Largo Francesco Vito 1-00168, Roma, Italy
| | - Gigliola Sica
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Largo Francesco Vito 1-00168, Roma, Italy
| |
Collapse
|
21
|
Negro M, Perna S, Spadaccini D, Castelli L, Calanni L, Barbero M, Cescon C, Rondanelli M, D'Antona G. Effects of 12 Weeks of Essential Amino Acids (EAA)-Based Multi-Ingredient Nutritional Supplementation on Muscle Mass, Muscle Strength, Muscle Power and Fatigue in Healthy Elderly Subjects: A Randomized Controlled Double-Blind Study. J Nutr Health Aging 2019; 23:414-424. [PMID: 31021358 DOI: 10.1007/s12603-019-1163-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To counteract muscle mass, muscle strength and power loss during aging, and to study age-related change of neuromuscular manifestation of fatigue in relation to nutritional supplementation. DESIGN randomized controlled double-blind study. SETTING Twice-daily consumption for 12 weeks of an Essential Amino Acids (EAA)-based multi-ingredient nutritional supplement containing EAA, creatine, vitamin D and Muscle Restore Complex®. PARTICIPANTS 38 healthy elderly subjects (8 male, 30 female; age: 68.91±4.60 years; body weight: 69.40±15.58 kg; height: 1.60±0.09 m) were randomized and allocated in supplement (SUPP) or placebo (PLA) group. Mean Measurements: Vitamin D blood level; Appendicular Lean Mass (ALM); Visceral Adipose Tissue (VAT); Maximal Voluntary Contraction (MVC) and Peak Power (PP); myoelectric descriptors of fatigue: Fractal Dimension and Conduction Velocity initial values (FD iv, CV iv), their rates of change (FD slopes, CV slopes) and the Time to perform the Task (TtT). Mean Results: Significant changes were found in SUPP compared to baseline: Vitamin D (+8.73 ng/ml; p<0.001); ALM (+0.34 kg; p<0.001); VAT (-76.25 g; p<0.001); MVC (+0.52 kg; p<0.001); PP (+4.82 W; p<0.001). Between group analysis (SUPP Vs. PLA) showed improvements: vitamin D blood levels (+11,72 ng/ml; p<0.001); Legs FFM (+443.7 g; p<0.05); ALM (+0.53 kg; p<0.05); MVC (+1.38 kg; p<0.05); PP (+9.87 W; p<0.05). No statistical changes were found for FD iv, CV iv, FD and CV slopes and TtT, either compared to baseline or between groups. Significant correlations between mean differences in SUPP group were also found. CONCLUSION The study demonstrates that in healthy elderly subjects an EAA-based multi-ingredient nutritional supplementation of 12 weeks is not effective to change myoelectric manifestation of fatigue and TtT failure but can positively affect muscle mass, muscle strength, muscle power and VAT, counterbalancing more than one year of age-related loss of muscle mass and strength.
Collapse
Affiliation(s)
- M Negro
- Giuseppe D'Antona, CRIAMS-Sport Medicine Centre, University of Pavia, Voghera, Italy,
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Dato S, Hoxha E, Crocco P, Iannone F, Passarino G, Rose G. Amino acids and amino acid sensing: implication for aging and diseases. Biogerontology 2018; 20:17-31. [DOI: 10.1007/s10522-018-9770-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/16/2018] [Indexed: 11/30/2022]
|
23
|
Ni Lochlainn M, Bowyer RCE, Steves CJ. Dietary Protein and Muscle in Aging People: The Potential Role of the Gut Microbiome. Nutrients 2018; 10:E929. [PMID: 30036990 PMCID: PMC6073774 DOI: 10.3390/nu10070929] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 12/22/2022] Open
Abstract
Muscle mass, strength, and physical function are known to decline with age. This is associated with the development of geriatric syndromes including sarcopenia and frailty. Dietary protein is essential for skeletal muscle function. Resistance exercise appears to be the most beneficial form of physical activity for preserving skeletal muscle and a synergistic effect has been noted when this is combined with dietary protein. However, older adults have shown evidence of anabolic resistance, where greater amounts of protein are required to stimulate muscle protein synthesis, and response is variable. Thus, the recommended daily amount of protein is greater for older people. The aetiologies and mechanisms responsible for anabolic resistance are not fully understood. The gut microbiota is implicated in many of the postulated mechanisms for anabolic resistance, either directly or indirectly. The gut microbiota change with age, and are influenced by dietary protein. Research also implies a role for the gut microbiome in skeletal muscle function. This leads to the hypothesis that the gut microbiome might modulate individual response to protein in the diet. We summarise the existing evidence for the role of the gut microbiota in anabolic resistance and skeletal muscle in aging people, and introduce the metabolome as a tool to probe this relationship in the future.
Collapse
Affiliation(s)
- Mary Ni Lochlainn
- The Department of Twin Research, Kings College London, 3-4th Floor South Wing Block D, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK.
- Clinical Age Research Unit, Kings College Hospital Foundation Trust, London SE5 9RS, UK.
| | - Ruth C E Bowyer
- The Department of Twin Research, Kings College London, 3-4th Floor South Wing Block D, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK.
| | - Claire J Steves
- The Department of Twin Research, Kings College London, 3-4th Floor South Wing Block D, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK.
- Clinical Age Research Unit, Kings College Hospital Foundation Trust, London SE5 9RS, UK.
| |
Collapse
|
24
|
Giezenaar C, Luscombe-Marsh ND, Hutchison AT, Standfield S, Feinle-Bisset C, Horowitz M, Chapman I, Soenen S. Dose-Dependent Effects of Randomized Intraduodenal Whey-Protein Loads on Glucose, Gut Hormone, and Amino Acid Concentrations in Healthy Older and Younger Men. Nutrients 2018; 10:nu10010078. [PMID: 29329233 PMCID: PMC5793306 DOI: 10.3390/nu10010078] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/05/2017] [Accepted: 01/09/2018] [Indexed: 02/07/2023] Open
Abstract
Protein-rich supplements are used widely for the prevention and management of malnutrition in older people. We have reported that healthy older, compared to younger, adults have less suppression of energy intake by whey-protein-effects on appetite-related hormones are unknown. The objective was to determine the effects of intraduodenally administered whey-protein on glucose, gut hormone, and amino acid concentrations, and their relation to subsequent ad libitum energy intake at a buffet meal, in healthy older and younger men. Hydrolyzed whey-protein (30 kcal, 90 kcal, and 180 kcal) and a saline control (~0 kcal) were infused intraduodenally for 60 min in 10 younger (19-29 years, 73 ± 2 kg, 22 ± 1 kg/m²) and 10 older (68-81 years, 79 ± 2 kg, 26 ± 1 kg/m²) healthy men in a randomized, double-blind fashion. Plasma insulin, glucagon, gastric inhibitory peptide (GIP), glucagon-like peptide-1 (GLP-1), peptide tyrosine-tyrosine (PYY), and amino acid concentrations, but not blood glucose, increased, while ghrelin decreased during the whey-protein infusions. Plasma GIP concentrations were greater in older than younger men. Energy intake correlated positively with plasma ghrelin and negatively with insulin, glucagon, GIP, GLP-1, PYY, and amino acids concentrations (p < 0.05). In conclusion, intraduodenal whey-protein infusions resulted in increased GIP and comparable ghrelin, insulin, glucagon, GIP, GLP-1, PYY, and amino acid responses in healthy older and younger men, which correlated to subsequent energy intake.
Collapse
Affiliation(s)
- Caroline Giezenaar
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, Adelaide 5000, Australia; (C.G.); (N.D.L.-M.); (A.T.H.); (S.S.); (C.F.-B.); (M.H.); (I.C.)
| | - Natalie D Luscombe-Marsh
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, Adelaide 5000, Australia; (C.G.); (N.D.L.-M.); (A.T.H.); (S.S.); (C.F.-B.); (M.H.); (I.C.)
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Food and Nutrition, Adelaide 5000, Australia
| | - Amy T Hutchison
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, Adelaide 5000, Australia; (C.G.); (N.D.L.-M.); (A.T.H.); (S.S.); (C.F.-B.); (M.H.); (I.C.)
| | - Scott Standfield
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, Adelaide 5000, Australia; (C.G.); (N.D.L.-M.); (A.T.H.); (S.S.); (C.F.-B.); (M.H.); (I.C.)
| | - Christine Feinle-Bisset
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, Adelaide 5000, Australia; (C.G.); (N.D.L.-M.); (A.T.H.); (S.S.); (C.F.-B.); (M.H.); (I.C.)
| | - Michael Horowitz
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, Adelaide 5000, Australia; (C.G.); (N.D.L.-M.); (A.T.H.); (S.S.); (C.F.-B.); (M.H.); (I.C.)
| | - Ian Chapman
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, Adelaide 5000, Australia; (C.G.); (N.D.L.-M.); (A.T.H.); (S.S.); (C.F.-B.); (M.H.); (I.C.)
| | - Stijn Soenen
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, Adelaide 5000, Australia; (C.G.); (N.D.L.-M.); (A.T.H.); (S.S.); (C.F.-B.); (M.H.); (I.C.)
- Correspondence: ; Tel.: +61-8-8313-3638
| |
Collapse
|
25
|
Andersson-Hall U, Gustavsson C, Pedersen A, Malmodin D, Joelsson L, Holmäng A. Higher Concentrations of BCAAs and 3-HIB Are Associated with Insulin Resistance in the Transition from Gestational Diabetes to Type 2 Diabetes. J Diabetes Res 2018; 2018:4207067. [PMID: 29967793 PMCID: PMC6008749 DOI: 10.1155/2018/4207067] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/07/2018] [Indexed: 01/22/2023] Open
Abstract
AIM Determine the metabolic profile and identify risk factors of women transitioning from gestational diabetes mellitus (GDM) to type 2 diabetes mellitus (T2DM). METHODS 237 women diagnosed with GDM underwent an oral glucose tolerance test (OGTT), anthropometrics assessment, and completed lifestyle questionnaires six years after pregnancy. Blood was analysed for clinical variables (e.g., insulin, glucose, HbA1c, adiponectin, leptin, and lipid levels) and NMR metabolomics. Based on the OGTT, women were divided into three groups: normal glucose tolerance (NGT), impaired glucose tolerance (IGT), and T2DM. RESULTS Six years after GDM, 19% of subjects had T2DM and 19% IGT. After BMI adjustment, the IGT group had lower HDL, higher leptin, and higher free fatty acid (FFA) levels, and the T2DM group higher triglyceride, FFA, and C-reactive protein levels than the NGT group. IGT and T2DM groups reported lower physical activity. NMR measurements revealed that levels of branched-chain amino acids (BCAAs) and the valine metabolite 3-hydroxyisobyturate were higher in T2DM and IGT groups and correlated with measures of insulin resistance and lipid metabolism. CONCLUSION In addition to well-known clinical risk factors, BCAAs and 3-hydroxyisobyturate are potential markers to be evaluated as predictors of metabolic risk after pregnancy complicated by GDM.
Collapse
Affiliation(s)
- Ulrika Andersson-Hall
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carolina Gustavsson
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Pedersen
- Swedish NMR Centre, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Malmodin
- Swedish NMR Centre, University of Gothenburg, Gothenburg, Sweden
| | - Louise Joelsson
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Agneta Holmäng
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
26
|
Nutritional Considerations in Preventing Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:497-528. [DOI: 10.1007/978-981-13-1435-3_23] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Abiri B, Vafa M. Nutrition and sarcopenia: A review of the evidence of nutritional influences. Crit Rev Food Sci Nutr 2017; 59:1456-1466. [DOI: 10.1080/10408398.2017.1412940] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Behnaz Abiri
- Department of Nutrition, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Salles J, Chanet A, Berry A, Giraudet C, Patrac V, Domingues-Faria C, Rocher C, Guillet C, Denis P, Pouyet C, Bonhomme C, Le Ruyet P, Rolland Y, Boirie Y, Walrand S. Fast digestive, leucine-rich, soluble milk proteins improve muscle protein anabolism, and mitochondrial function in undernourished old rats. Mol Nutr Food Res 2017; 61. [PMID: 28758352 DOI: 10.1002/mnfr.201700287] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/03/2017] [Accepted: 07/20/2017] [Indexed: 12/16/2022]
Abstract
SCOPE One strategy to manage malnutrition in older patients is to increase protein and energy intake. Here, we evaluate the influence of protein quality during refeeding on improvement in muscle protein and energy metabolism. METHODS AND RESULTS Twenty-month-old male rats (n = 40) were fed 50% of their spontaneous intake for 12 weeks to induce malnutrition, then refed ad libitum with a standard diet enriched with casein or soluble milk proteins (22%) for 4 weeks. A 13C-valine was infused to measure muscle protein synthesis and expression of MuRF1, and MAFbx was measured to evaluate muscle proteolysis. mTOR pathway activation and mitochondrial function were assessed in muscle. Malnutrition was associated with a decrease in body weight, fat mass, and lean mass, particularly muscle mass. Malnutrition decreased muscle mTOR pathway activation and protein FSR associated with increased MuRF1 mRNA levels, and decreased mitochondrial function. The refeeding period partially restored fat mass and lean mass. Unlike the casein diet, the soluble milk protein diet improved muscle protein metabolism and mitochondrial function in old malnourished rats. CONCLUSIONS These results suggest that providing better-quality proteins during refeeding may improve efficacy of renutrition in malnourished older patients.
Collapse
Affiliation(s)
- Jérôme Salles
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, Clermont-Ferrand, France
| | - Audrey Chanet
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, Clermont-Ferrand, France
| | - Alexandre Berry
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, Clermont-Ferrand, France
| | - Christophe Giraudet
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, Clermont-Ferrand, France
| | - Véronique Patrac
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, Clermont-Ferrand, France
| | - Carla Domingues-Faria
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, Clermont-Ferrand, France
| | | | - Christelle Guillet
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, Clermont-Ferrand, France
| | - Philippe Denis
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, Clermont-Ferrand, France
| | - Corinne Pouyet
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, Clermont-Ferrand, France
| | - Cécile Bonhomme
- Lactalis Nutrition Santé, Torcé, France
- Lactalis Research and Development, Retiers, France
| | - Pascale Le Ruyet
- Lactalis Nutrition Santé, Torcé, France
- Lactalis Research and Development, Retiers, France
| | - Yves Rolland
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse (CHU Toulouse), Toulouse, France
- UMR INSERM 1027, University of Toulouse III, Toulouse, France
| | - Yves Boirie
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Clinical Nutrition Department, Clermont-Ferrand, France
| | - Stéphane Walrand
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, Clermont-Ferrand, France
| |
Collapse
|
29
|
Wu G, Cross HR, Gehring KB, Savell JW, Arnold AN, McNeill SH. Composition of free and peptide-bound amino acids in beef chuck, loin, and round cuts. J Anim Sci 2017; 94:2603-13. [PMID: 27285936 DOI: 10.2527/jas.2016-0478] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Meat is a food for humans. However, beef consumption in the United States has steadily declined by >14% over the past decade due to a variety of factors, including insufficient knowledge of animal protein. This study quantified all proteinogenic AA as well as nutritionally and physiologically significant nonproteinogenic AA and small peptides in beef cuts from 3 subprimals (chuck, round, and loin). Beef carcasses ( = 10) were selected at 3 commercial packing plants in the United States. Retail-cut samples were analyzed for the nitrogenous substances after acid, alkaline, or enzymatic hydrolysis and after deproteinization. In these chuck, round, and loin cuts, total amounts of glutamate (free plus peptide bound) were the highest (69-75 mg/g dry weight) followed by lysine, leucine, arginine, and glutamine in descending order. This is the first study to determine aspartate, asparagine, glutamate, and glutamine in meat proteins of any animal species. In all the beef samples evaluated, glutamine was the most abundant free AA (4.0-5.7 mg/g dry weight) followed by taurine, alanine, glutamate, and β-alanine. Additionally, samples from all beef cuts had high concentrations of anserine, carnosine, and glutathione, which were 2.8 to 3.7, 15.2 to 24.2, and 0.68 to 0.79 mg/g dry weight, respectively. Beef top loin steaks appear to provide higher protein nutrition values than top round steaks and under blade roasts, but all are excellent sources of proteinogenic AA as well as antioxidant AA and peptides to improve human growth, development, and health. Our findings may help guide future decisions regarding human and animal nutrition.
Collapse
|
30
|
De Bandt JP. Leucine and Mammalian Target of Rapamycin-Dependent Activation of Muscle Protein Synthesis in Aging. J Nutr 2016; 146:2616S-2624S. [PMID: 27934653 DOI: 10.3945/jn.116.234518] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/11/2016] [Accepted: 06/15/2016] [Indexed: 12/17/2022] Open
Abstract
The preservation or restoration of muscle mass is of prime importance for healthy aging. However, aging has been repeatedly shown to be associated with resistance of muscle to the anabolic effects of feeding. Leucine supplementation has been proposed as a possible strategy because of its regulatory role on protein homeostasis. Indeed, it acts independently of growth factors and leads to enhanced cap-dependent mRNA translation initiation and increased protein synthesis. Leucine acts as a signaling molecule directly at the muscle level via the activation of mammalian/mechanistic target of rapamycin complex 1 (mTORC1). However, in aged muscle, mTORC1 activation seems to be impaired, with decreased sensitivity and responsiveness of muscle protein synthesis to amino acids, whereas the phosphorylation state of several components of this signaling pathway appears to be higher in the basal state. This may stem from specific age-related impairment of muscle signaling and from decreased nutrient and growth factor delivery to the muscle. Whether aging per se affects mTORC1 signaling remains to be established, because aging is frequently associated with inadequate protein intake, decreased insulin sensitivity, inactivity, inflammatory processes, etc. Whatever its origin, this anabolic resistance to feeding can be mitigated by quantitative and qualitative manipulation of protein supply, such as leucine supplementation; however, there remains the question of possible adverse effects of long-term, high-dose leucine supplementation in terms of insulin resistance and tumorigenesis.
Collapse
Affiliation(s)
- Jean-Pascal De Bandt
- EA4466 PRETRAM, Nutrition Biology Laboratory, Faculty of Pharmacy, Paris Descartes University, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
31
|
Radhakrishnan R, Lee IJ. Gibberellins producing Bacillus methylotrophicus KE2 supports plant growth and enhances nutritional metabolites and food values of lettuce. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:181-189. [PMID: 27721133 DOI: 10.1016/j.plaphy.2016.09.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/15/2016] [Accepted: 09/29/2016] [Indexed: 05/02/2023]
Abstract
The nutritional quality of green leafy vegetables can be enhanced by application of plant beneficial micro-organisms. The present study was aimed to increase the food values of lettuce leaves by bacterial treatment. We isolated bacterial strain KE2 from Kimchi food and identified as Bacillus methylotrophicus by phylogenetic analysis. The beneficial effect of B. methylotrophicus KE2 on plants was confirmed by increasing the percentage of seed germination of Lactuca sativa L., Cucumis melo L., Glycine max L. and Brassica juncea L. It might be the secretion of array of gibberellins (GA1, GA3, GA7, GA8, GA9, GA12, GA19, GA20, GA24, GA34 and GA53) and indole-acetic acid from B. methylotrophicus KE2. The mechanism of plant growth promotion via their secreted metabolites was confirmed by a significant increase of GA deficient mutant rice plant growth. Moreover, the bacterial association was favor to enhance shoot length, shoot fresh weight and leaf width of lettuce. The higher concentration of protein, amino acids (Asp, Thr, Ser, Glu, Gly, Ala, Leu, Tyr and His), gama-aminobutric acid and fructose was found in bacterial culture (KE2) applied plants. The macro and micro minerals such as K, Mg, Na, P, Fe, Zn and N were also detected as significantly higher quantities in bacteria treated plants than untreated control plants. In addition, the carotenoids and chlorophyll a were also increased in lettuce at bacterial inoculation. The results of this study suggest that B. methylotrophicus KE2 application to soil helps to increase the plant growth and food values of lettuce.
Collapse
Affiliation(s)
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Republic of Korea.
| |
Collapse
|
32
|
Rasmussen B, Gilbert E, Turki A, Madden K, Elango R. Determination of the safety of leucine supplementation in healthy elderly men. Amino Acids 2016; 48:1707-16. [DOI: 10.1007/s00726-016-2241-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/18/2016] [Indexed: 12/21/2022]
|
33
|
Hou Y, Yao K, Yin Y, Wu G. Endogenous Synthesis of Amino Acids Limits Growth, Lactation, and Reproduction in Animals. Adv Nutr 2016; 7:331-42. [PMID: 26980816 PMCID: PMC4785480 DOI: 10.3945/an.115.010850] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Amino acids (AAs) are building blocks of protein. Eight AAs (Ala, Asn, Asp, Glu, Gln, Gly, Pro, and Ser) are formed by all animals, whereas de novo synthesis of Arg occurs in a species-specific manner in most mammals (e.g., humans, pigs, and rats). Synthesizable AAs were traditionally classified as nutritionally nonessential for animals, because they were thought to be formed in sufficient amounts. However, this assumption is not supported by evidence showing that 1) rats grow slowly when their diets do not contain Arg, Glu, or Gln despite adequate provision of all other proteinogenous AAs; 2) pigs cannot achieve maximum growth, lactation, or reproduction performance when fed corn- and soybean meal-based diets meeting National Research Council-recommended requirements of protein and AAs without supplemental Arg, Glu, Gln, Gly, or Pro; 3) chickens exhibit increases in lean tissue gain and feed efficiency when their diets are supplemented with Glu, Gln, Gly, and Pro; 4) lactating cows cannot obtain maximum milk protein production without a postruminal supply of Gln or Pro; 5) fish cannot achieve maximum growth when diets do not contain Gln or Pro; and 6) men fail to sustain spermatogenesis when fed an Arg-deficient diet. Quantitative analysis of nitrogen metabolism showed that AA synthesis in animals is constrained by both precursor availability and enzyme activity. Taken together, these findings support the conclusion that the endogenous synthesis of AAs limits growth, lactation, and reproduction in animals. This new knowledge can guide the optimization of human nutrition for improving health and well-being.
Collapse
Affiliation(s)
- Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| | - Kang Yao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China; and
| | - Yulong Yin
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China;,Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China; and
| | - Guoyao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China; Department of Animal Science, Texas A&M University, College Station, TX
| |
Collapse
|
34
|
Abstract
Glutamine, reviewed extensively in the last century, is a key substrate for the splanchnic bed in the whole body and is a nutrient of particular interest in gastrointestinal research. A marked decrease in the plasma glutamine concentration has recently been observed in neonates and adults during acute illness and stress. Although some studies in newborns have shown parenteral and enteral supplementation with glutamine to be of benefit (by decreasing proteolysis and activating the immune system), clinical trials have not demonstrated prolonged advantages such as reductions in mortality or risk of infections in adults. In addition, glutamine is not able to combat the muscle wasting associated with disease or age-related sarcopenia. Oral glutamine supplementation initiated before advanced age in rats increases gut mass and improves the villus height of mucosa, thereby preventing the gut atrophy encountered in advanced age. Enterocytes from very old rats continuously metabolize glutamine into citrulline, which allowed, for the first time, the use of citrulline as a noninvasive marker of intestinal atrophy induced by advanced age.
Collapse
Affiliation(s)
- Dominique Meynial-Denis
- D. Meynial-Denis is with the Unit of Human Nutrition (UNH), French National Institute for Agricultural Research (INRA), Joint Research Unit (UMR) 1019, Center for Research in Human Nutrition (CRNH) Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
35
|
Farshidfar F, Shulgina V, Myrie SB. Nutritional supplementations and administration considerations for sarcopenia in older adults. ACTA ACUST UNITED AC 2016. [DOI: 10.3233/nua-150057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Farnaz Farshidfar
- Department of Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Canada
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Canada
| | - Veronika Shulgina
- Department of Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Canada
| | - Semone B. Myrie
- Department of Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Canada
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
36
|
The impact of nutrients on the aging rate: A complex interaction of demographic, environmental and genetic factors. Mech Ageing Dev 2016; 154:49-61. [PMID: 26876763 DOI: 10.1016/j.mad.2016.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 02/05/2016] [Indexed: 12/27/2022]
Abstract
Nutrition has a strong influence on the health status of the elderly, with many dietary components associated to either an increased risk of disease or to an improvement of the quality of life and to a delay of age-related pathologies. A direct effect of a reduced caloric intake on the delay of aging phenotypes is documented in several organisms. The role of nutrients in the regulation of human lifespan is not easy to disentangle, influenced by a complex interaction of nutrition with environmental and genetic factors. The individual genetic background is fundamental for mediating the effects of nutritional components on aging. Classical genetic factors able to influence nutrient metabolism are considered those belonging to insulin/insulin growth factor (INS/IGF-1) signaling, TOR signaling and Sirtuins, but also genes involved in inflammatory/immune response and antioxidant activity can have a major role. Considering the worldwide increasing interest in nutrition to prevent age related diseases and achieve a healthy aging, in this review we will discuss this complex interaction, in the light of metabolic changes occurring with aging, with the aim of shedding a light on the enormous complexity of the metabolic scenario underlying longevity phenotype.
Collapse
|
37
|
Ponka R, Fokou E, Kansci G, Beaucher E, Piot M, Leonil J, Gaucheron F. Amino acids, major carotenoids and vitamin A activity of some traditional sauces consumed in the Far North Region of Cameroon. J Food Compost Anal 2015. [DOI: 10.1016/j.jfca.2015.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Goisser S, Kemmler W, Porzel S, Volkert D, Sieber CC, Bollheimer LC, Freiberger E. Sarcopenic obesity and complex interventions with nutrition and exercise in community-dwelling older persons--a narrative review. Clin Interv Aging 2015; 10:1267-82. [PMID: 26346071 PMCID: PMC4531044 DOI: 10.2147/cia.s82454] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
One of the many threats to independent life is the age-related loss of muscle mass and muscle function commonly referred to as sarcopenia. Another important health risk in old age leading to functional decline is obesity. Obesity prevalence in older persons is increasing, and like sarcopenia, severe obesity has been consistently associated with several negative health outcomes, disabilities, falls, and mobility limitations. Both sarcopenia and obesity pose a health risk for older persons per se, but in combination, they synergistically increase the risk for negative health outcomes and an earlier onset of disability. This combination of sarcopenia and obesity is commonly referred to as sarcopenic obesity. The present narrative review reports the current knowledge on the effects of complex interventions containing nutrition and exercise interventions in community-dwelling older persons with sarcopenic obesity. To date, several complex interventions with different outcomes have been conducted and have shown promise in counteracting either sarcopenia or obesity, but only a few studies have addressed the complex syndrome of sarcopenic obesity. Strong evidence exists on exercise interventions in sarcopenia, especially on strength training, and for obese older persons, strength exercise in combination with a dietary weight loss intervention demonstrated positive effects on muscle function and body fat. The differences in study protocols and target populations make it impossible at the moment to extract data for a meta-analysis or give state-of-the-art recommendations based on reliable evidence. A conclusion that can be drawn from this narrative review is that more exercise programs containing strength and aerobic exercise in combination with dietary interventions including a supervised weight loss program and/or protein supplements should be conducted in order to investigate possible positive effects on sarcopenic obesity.
Collapse
Affiliation(s)
- Sabine Goisser
- Institute for Biomedicine of Aging (IBA), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Nuremberg, Germany
| | - Wolfgang Kemmler
- Institute of Medical Physics (IMP), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Simone Porzel
- Nutricia GmbH, Danone Medical Nutrition, Erlangen, Germany
| | - Dorothee Volkert
- Institute for Biomedicine of Aging (IBA), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Nuremberg, Germany
| | - Cornel Christian Sieber
- Institute for Biomedicine of Aging (IBA), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Nuremberg, Germany ; Department of Internal Medicine and Geriatrics, St John of God Hospital (Barmherzige Brüder), Regensburg, Germany
| | - Leo Cornelius Bollheimer
- Institute for Biomedicine of Aging (IBA), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Nuremberg, Germany ; Department of Internal Medicine and Geriatrics, St John of God Hospital (Barmherzige Brüder), Regensburg, Germany
| | - Ellen Freiberger
- Institute for Biomedicine of Aging (IBA), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Nuremberg, Germany
| |
Collapse
|
39
|
Double-blind, placebo-controlled pilot trial of L-Leucine-enriched amino-acid mixtures on body composition and physical performance in men and women aged 65-75 years. Eur J Clin Nutr 2015; 70:182-8. [PMID: 26081485 PMCID: PMC4744242 DOI: 10.1038/ejcn.2015.91] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 04/10/2015] [Accepted: 04/17/2015] [Indexed: 02/07/2023]
Abstract
Background/Objectives: Adequate protein intake is essential to retaining muscle and maintaining physical function, especially in the elderly, and L-Leucine has received attention as an essential amino acid (EAA) that enhances protein retention. The study's aim was to compare the efficacy of EAA mixtures on lean tissue mass (LTM) and functional performance (FP) in a healthy elderly population. Subjects/Methods: Thirty-six subjects (65–75 years) volunteered to receive capsules with EAAs (Groups A and B containing 20% and 40% L-Leucine, respectively) or placebo (lactose containing 0% L-Leucine, Group C) for 12 weeks. The daily amount ranged from 11 to 21 g (0.21 g/ kg/day) and was taken in two equal dosages alongside food, morning and evening. Main outcomes measured before and after intervention were LTM and FP (30-s arm-curl test; 30-s chair-stand test (30-CST); 6-min walk test (6-WT); and handgrip strength). Secondary outcomes included dietary intakes and physical activity. Results: Twenty-five subjects (11 male and 14 female) completed the study (Group A, n=8; Group B, n=8; Group C, n=9). Gains associated with medium effect sizes were noted in LTM (Group B, 1.1 ±1.1%, P=0.003) and FP (Group A in 30-CST (11.0±11.5%, P=0.02) and 6-WT (8.8±10.0%, P=0.02); Group B in 6-WT (5.8±6.6%, P=0.03) and a trend in 30-CST (13.2±16.0, P=0.06)). Significant differences between groups were not observed in secondary outcomes. Conclusions: Twice-daily supplementation of EAAs containing 20% or 40% L-Leucine improved aspects of functional status and at the higher level improved LTM. Further work to establish change in a larger sample and palatable supplemental format is now required.
Collapse
|
40
|
Yang Y, Wu Z, Meininger CJ, Wu G. L-Leucine and NO-mediated cardiovascular function. Amino Acids 2015; 47:435-47. [PMID: 25552397 DOI: 10.1007/s00726-014-1904-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/13/2014] [Indexed: 02/06/2023]
Abstract
Reduced availability of nitric oxide (NO) in the vasculature is a major factor contributing to the impaired action of insulin on blood flow and, therefore, insulin resistance in obese and diabetic subjects. Available evidence shows that vascular insulin resistance plays an important role in the pathogenesis of cardiovascular disease, the leading cause of death in developed nations. Interestingly, increased concentrations of L-leucine in the plasma occur in obese humans and other animals with vascular dysfunction. Among branched-chain amino acids, L-leucine is unique in inhibiting NO synthesis from L-arginine in endothelial cells and may modulate cardiovascular homeostasis in insulin resistance. Results of recent studies indicate that L-leucine is an activator of glutamine:fructose-6-phosphate aminotransferase (GFAT), which is the first and a rate-controlling enzyme in the synthesis of glucosamine (an inhibitor of endothelial NO synthesis). Through stimulating the mammalian target of rapamycin signaling pathway and thus protein synthesis, L-leucine may enhance GFAT protein expression, thereby inhibiting NO synthesis in endothelial cells. We propose that reducing circulating levels of L-leucine or endothelial GFAT activity may provide a potentially novel strategy for preventing and/or treating cardiovascular disease in obese and diabetic subjects. Such means may include dietary supplementation with either α-ketoglutarate to enhance the catabolism of L-leucine in the small intestine and other tissues or with N-ethyl-L-glutamine to inhibit GFAT activity in endothelial cells. Preventing leucine-induced activation of GFAT by nutritional supplements or pharmaceutical drugs may contribute to improved cardiovascular function by enhancing vascular NO synthesis.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China,
| | | | | | | |
Collapse
|
41
|
Wu G, Bazer FW, Cross HR. Land-based production of animal protein: impacts, efficiency, and sustainability. Ann N Y Acad Sci 2014; 1328:18-28. [DOI: 10.1111/nyas.12566] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Guoyao Wu
- Department of Animal Science; Texas A&M University; College Station Texas
| | - Fuller W. Bazer
- Department of Animal Science; Texas A&M University; College Station Texas
| | - H. Russell Cross
- Department of Animal Science; Texas A&M University; College Station Texas
| |
Collapse
|
42
|
Wu G, Fanzo J, Miller DD, Pingali P, Post M, Steiner JL, Thalacker-Mercer AE. Production and supply of high-quality food protein for human consumption: sustainability, challenges, and innovations. Ann N Y Acad Sci 2014; 1321:1-19. [PMID: 25123207 DOI: 10.1111/nyas.12500] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Food and Agriculture Organization of the United Nations estimates that 843 million people worldwide are hungry and a greater number suffer from nutrient deficiencies. Approximately one billion people have inadequate protein intake. The challenge of preventing hunger and malnutrition will become even greater as the global population grows from the current 7.2 billion people to 9.6 billion by 2050. With increases in income, population, and demand for more nutrient-dense foods, global meat production is projected to increase by 206 million tons per year during the next 35 years. These changes in population and dietary practices have led to a tremendous rise in the demand for food protein, especially animal-source protein. Consuming the required amounts of protein is fundamental to human growth and health. Protein needs can be met through intakes of animal and plant-source foods. Increased consumption of food proteins is associated with increased greenhouse gas emissions and overutilization of water. Consequently, concerns exist regarding impacts of agricultural production, processing and distribution of food protein on the environment, ecosystem, and sustainability. To address these challenging issues, the New York Academy of Sciences organized the conference "Frontiers in Agricultural Sustainability: Studying the Protein Supply Chain to Improve Dietary Quality" to explore sustainable innovations in food science and programming aimed at producing the required quality and quantity of protein through improved supply chains worldwide. This report provides an extensive discussion of these issues and summaries of the presentations from the conference.
Collapse
Affiliation(s)
- Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, Texas
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Significant progress has been made in the field of defining and describing the pathophysiology of wasting conditions such as cachexia. The number of new promising drugs, nutritional therapy alternatives, and exercise/rehabilitation programs is increasing. The purpose of this review is to give an overview of recent clinical findings from intervention studies investigating multimodal anabolic therapies utilizing drug, nutritional, and/or exercise interventions in order to counteract wasting. RECENT FINDINGS Anabolic agents such as ghrelin and selective androgen receptor modulators are under late-phase clinical testing and hold promise as new therapies, and their ability to mitigate weight loss and improve muscle mass and physical function is evaluated. In the past 2 years, eight new studies investigating interventions with anabolic potential in wasting have been published, among which three of these studies were multimodal. SUMMARY Targeted anabolic therapies aiming to prevent or reverse wasting might involve a combination of anabolic pharmacologic drugs, nutrition, and physical exercise working concurrently to enhance muscle protein synthesis and reduce breakdown. Some anabolic pharmacological interventions demonstrate the potential to improve muscle mass, but the multimodal interventions seem in greater extent to also demonstrate improvement in physical function.
Collapse
Affiliation(s)
- Trude Rakel Balstad
- aEuropean Palliative Care Research Centre (PRC), Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU) bCancer Clinic, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | | | | |
Collapse
|
44
|
Schroeder S, Zimmermann A, Carmona-Gutierrez D, Eisenberg T, Ruckenstuhl C, Andryushkova A, Pendl T, Harger A, Madeo F. Metabolites in aging and autophagy. MICROBIAL CELL 2014; 1:110-114. [PMID: 28357231 PMCID: PMC5349198 DOI: 10.15698/mic2014.04.142] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sabrina Schroeder
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Andreas Zimmermann
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Didac Carmona-Gutierrez
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Christoph Ruckenstuhl
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Aleksandra Andryushkova
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Tobias Pendl
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Alexandra Harger
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria. ; Division of Endocrinology and Metabolism, Dept. of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| |
Collapse
|
45
|
Welch AA, MacGregor AJ, Minihane AM, Skinner J, Valdes AA, Spector TD, Cassidy A. Dietary fat and fatty acid profile are associated with indices of skeletal muscle mass in women aged 18-79 years. J Nutr 2014; 144:327-34. [PMID: 24401817 DOI: 10.3945/jn.113.185256] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Age-related loss of skeletal muscle mass results in a reduction in metabolically active tissue and has been related to the onset of obesity and sarcopenia. Although the causes of muscle loss are poorly understood, dietary fat has been postulated to have a role in determining protein turnover through an influence on both inflammation and insulin resistance. This study was designed to investigate the cross-sectional relation between dietary fat intake, as dietary percentage of fat energy (PFE) and fatty acid profile, with indices of skeletal muscle mass in the population setting. Body composition [fat-free mass (FFM; in kg)] and the fat-free mass index (FFMI; kg FFM/m(2)) was measured by using dual-energy X-ray absorptiometry in 2689 women aged 18-79 y from the TwinsUK Study and calculated according to quintile of dietary fat (by food-frequency questionnaire) after multivariate adjustment. Positive associations were found between the polyunsaturated-to-saturated fatty acid (SFA) ratio and indices of FFM, and inverse associations were found with PFE, SFAs, monounsaturated fatty acids (MUFAs), and trans fatty acids (TFAs) (all as % of energy). Extreme quintile dietary differences for PFE were -0.6 kg for FFM and -0.28 kg/m(2) for FFMI; for SFAs, MUFAs, and TFAs, these were -0.5 to -0.8 kg for FFM and -0.26 to -0.38 kg/m(2) for FFMI. These associations were of a similar magnitude to the expected decline in muscle mass that occurs over 10 y. To our knowledge, this is the first population-based study to demonstrate an association between a comprehensive range of dietary fat intake and FFM. These findings indicate that a dietary fat profile already associated with cardiovascular disease protection may also be beneficial for conservation of skeletal muscle mass.
Collapse
Affiliation(s)
- Ailsa A Welch
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | | | | | | | | | | | |
Collapse
|
46
|
Welch AA, MacGregor AJ, Minihane AM, Skinner J, Valdes AA, Spector TD, Cassidy A. Dietary fat and fatty acid profile are associated with indices of skeletal muscle mass in women aged 18-79 years. J Nutr 2014. [PMID: 24401817 DOI: 10.3945/jn.113.185256\] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Age-related loss of skeletal muscle mass results in a reduction in metabolically active tissue and has been related to the onset of obesity and sarcopenia. Although the causes of muscle loss are poorly understood, dietary fat has been postulated to have a role in determining protein turnover through an influence on both inflammation and insulin resistance. This study was designed to investigate the cross-sectional relation between dietary fat intake, as dietary percentage of fat energy (PFE) and fatty acid profile, with indices of skeletal muscle mass in the population setting. Body composition [fat-free mass (FFM; in kg)] and the fat-free mass index (FFMI; kg FFM/m(2)) was measured by using dual-energy X-ray absorptiometry in 2689 women aged 18-79 y from the TwinsUK Study and calculated according to quintile of dietary fat (by food-frequency questionnaire) after multivariate adjustment. Positive associations were found between the polyunsaturated-to-saturated fatty acid (SFA) ratio and indices of FFM, and inverse associations were found with PFE, SFAs, monounsaturated fatty acids (MUFAs), and trans fatty acids (TFAs) (all as % of energy). Extreme quintile dietary differences for PFE were -0.6 kg for FFM and -0.28 kg/m(2) for FFMI; for SFAs, MUFAs, and TFAs, these were -0.5 to -0.8 kg for FFM and -0.26 to -0.38 kg/m(2) for FFMI. These associations were of a similar magnitude to the expected decline in muscle mass that occurs over 10 y. To our knowledge, this is the first population-based study to demonstrate an association between a comprehensive range of dietary fat intake and FFM. These findings indicate that a dietary fat profile already associated with cardiovascular disease protection may also be beneficial for conservation of skeletal muscle mass.
Collapse
Affiliation(s)
- Ailsa A Welch
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | | | | | | | | | | | |
Collapse
|
47
|
Welch AA, MacGregor AJ, Minihane AM, Skinner J, Valdes AA, Spector TD, Cassidy A. Dietary Fat and Fatty Acid Profile Are Associated with Indices of Skeletal Muscle Mass in Women Aged 18–79 Years. J Nutr 2014. [DOI: 10.3945/jn.113.185256 or 1=1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ailsa A. Welch
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | | | | - Jane Skinner
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Anna A. Valdes
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Tim D. Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Aedin Cassidy
- Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
48
|
Chen G, Zhang J, Zhang Y, Liao P, Li T, Chen L, Yin Y, Wang J, Wu G. Oral MSG administration alters hepatic expression of genes for lipid and nitrogen metabolism in suckling piglets. Amino Acids 2013; 46:245-50. [DOI: 10.1007/s00726-013-1615-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 10/22/2013] [Indexed: 10/26/2022]
|
49
|
Abstract
Age-related muscle loss impacts on whole-body metabolism and leads to frailty and sarcopenia, which are risk factors for fractures and mortality. Although nutrients are integral to muscle metabolism the relationship between nutrition and muscle loss has only been extensively investigated for protein and amino acids. The objective of the present paper is to describe other aspects of nutrition and their association with skeletal muscle mass. Mechanisms for muscle loss relate to imbalance in protein turnover with a number of anabolic pathways of which the mechanistic TOR pathway and the IGF-1–Akt–FoxO pathways are the most characterised. In terms of catabolism the ubiquitin proteasome system, apoptosis, autophagy, inflammation, oxidation and insulin resistance are among the major mechanisms proposed. The limited research associating vitamin D, alcohol, dietary acid–base load, dietary fat and anti-oxidant nutrients with age-related muscle loss is described. Vitamin D may be protective for muscle loss; a more alkalinogenic diet and diets higher in the anti-oxidant nutrients vitamin C and vitamin E may also prevent muscle loss. Although present recommendations for prevention of sarcopenia focus on protein, and to some extent on vitamin D, other aspects of the diet including fruits and vegetables should be considered. Clearly, more research into other aspects of nutrition and their role in prevention of muscle loss is required.
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW The increasing prevalence of sarcopenic obesity in older adults has heightened interest in identifying the most effective treatment. This review highlights recent progress in the management, with an emphasis on lifestyle interventions and pharmacologic therapy aimed at reversing sarcopenic obesity. RECENT FINDINGS Whereas weight loss and exercise independently reverse sarcopenic obesity, they act synergistically in combination to improve body composition and physical function, beyond which is observed with either intervention alone. Optimizing protein intake appears to have beneficial effects on net muscle protein accretion in older adults. Myostatin inhibition is associated with favorable changes in body composition in animal studies, although experience in humans is relatively limited. Testosterone and growth hormone offer improvements in body composition, but the benefits must be weighed against potential risks of therapy. GHRH-analog therapy shows promise, but further studies are needed in older adults. SUMMARY At present, lifestyle interventions incorporating both diet-induced weight loss and regular exercise appear to be the optimal treatment for sarcopenic obesity. Maintenance of adequate protein intake is also advisable. Ongoing studies will determine whether pharmacologic therapy such as myostatin inhibitors or GHRH analogs have a role in the treatment of sarcopenic obesity.
Collapse
Affiliation(s)
- Matthew F Bouchonville
- Division of Endocrinology, Diabetes, and Metabolism, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | | |
Collapse
|