1
|
Vicidomini C, Palumbo R, Moccia M, Roviello GN. Oxidative Processes and Xenobiotic Metabolism in Plants: Mechanisms of Defense and Potential Therapeutic Implications. J Xenobiot 2024; 14:1541-1569. [PMID: 39449425 PMCID: PMC11503355 DOI: 10.3390/jox14040084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Plants are continuously exposed to environmental challenges, including pollutants, pesticides, and heavy metals, collectively termed xenobiotics. These substances induce oxidative stress by generating reactive oxygen species (ROS), which can damage cellular components such as lipids, proteins, and nucleic acids. To counteract this, plants have evolved complex metabolic pathways to detoxify and process these harmful compounds. Oxidative stress in plants primarily arises from the overproduction of hydrogen peroxide (H2O2), superoxide anions (O2•-), singlet oxygen (1O2), and hydroxyl radicals (•OH), by-products of metabolic activities such as photosynthesis and respiration. The presence of xenobiotics leads to a notable increase in ROS, which can result in cellular damage and metabolic disruption. To combat this, plants have developed a strong antioxidant defense mechanism that includes enzymatic antioxidants that work together to eliminate ROS, thereby reducing their harmful effects. In addition to enzymatic defenses, plants also synthesize various non-enzymatic antioxidants, including flavonoids, phenolic acids, and vitamins. These compounds effectively neutralize ROS and help regenerate other antioxidants, offering extensive protection against oxidative stress. The metabolism of xenobiotic substances in plants occurs in three stages: the first involves modification, which refers to the chemical alteration of xenobiotics to make them less harmful. The second involves conjugation, where the modified xenobiotics are combined with other substances to increase their solubility, facilitating their elimination from the plant. The third stage involves compartmentalization, which is the storage or isolation of conjugated xenobiotics in specific parts of the plant, helping to prevent damage to vital cellular functions. Secondary metabolites found in plants, such as alkaloids, terpenoids, and flavonoids, play a vital role in detoxification and the defense against oxidative stress. Gaining a deeper understanding of the oxidative mechanisms and the pathways of xenobiotic metabolism in plants is essential, as this knowledge can lead to the formulation of plant-derived strategies aimed at alleviating the effects of environmental pollution and enhancing human health by improving detoxification and antioxidant capabilities, as discussed in this review.
Collapse
Affiliation(s)
- Caterina Vicidomini
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Rosanna Palumbo
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Maria Moccia
- Institute of Crystallography, Italian National Council for Research (IC-CNR), Strada Provinciale 35d, 9, Montelibretti, 00010 Rome, Italy
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
2
|
Jakubek P, Parchem K, Wieckowski MR, Bartoszek A. The Interplay between Endogenous and Foodborne Pro-Oxidants and Antioxidants in Shaping Redox Homeostasis. Int J Mol Sci 2024; 25:7827. [PMID: 39063068 PMCID: PMC11276820 DOI: 10.3390/ijms25147827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Oxidative stress has been known about in biological sciences for several decades; however, the understanding of this concept has evolved greatly since its foundation. Over the past years, reactive oxygen species, once viewed as solely deleterious, have become recognized as intrinsic components of life. In contrast, antioxidants, initially believed to be cure-all remedies, have failed to prove their efficacy in clinical trials. Fortunately, research on the health-promoting properties of antioxidants has been ongoing. Subsequent years showed that the former assumption that all antioxidants acted similarly was greatly oversimplified. Redox-active compounds differ in their chemical structures, electrochemical properties, mechanisms of action, and bioavailability; therefore, their efficacy in protecting against oxidative stress also varies. In this review, we discuss the changing perception of oxidative stress and its sources, emphasizing everyday-life exposures, particularly those of dietary origin. Finally, we posit that a better understanding of the physicochemical properties and biological outcomes of antioxidants is crucial to fully utilize their beneficial impact on health.
Collapse
Affiliation(s)
- Patrycja Jakubek
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland;
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland;
| | - Karol Parchem
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland;
| | - Mariusz R. Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland;
| | - Agnieszka Bartoszek
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland;
| |
Collapse
|
3
|
Peng M, Grootaert C, Vercauteren M, Boon N, Janssen C, Rajkovic A, Asselman J. Probing Long-Term Impacts: Low-Dose Polystyrene Nanoplastics Exacerbate Mitochondrial Health and Evoke Secondary Glycolysis via Repeated and Single Dosing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9967-9979. [PMID: 38814788 DOI: 10.1021/acs.est.3c10868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Nanoplastics (NPs) are omnipresent in the environment and contribute to human exposure. However, little is known regarding the long-term effects of NPs on human health. In this study, human intestinal Caco-2 cells were exposed to polystyrene nanoplastics (nanoPS) in an environmentally relevant concentration range (102-109 particles/mL) under two realistic exposure scenarios. In the first scenario, cells were repeatedly exposed to nanoPS every 2 days for 12 days to study the long-term effects. In the second scenario, only nanoPS was added once and Caco-2 cells were cultured for 12 days to study the duration of the initial effects of NPs. Under repeated dosing, initial subtle effects on mitochondria induced by low concentrations would accrue over consistent exposure to nanoPS and finally lead to significant impairment of mitochondrial respiration, mitochondrial mass, and cell differentiation process at the end of prolonged exposure, accompanied by significantly increased glycolysis over the whole exposure period. Single dosing of nanoPS elicited transient effects on mitochondrial and glycolytic functions, as well as increased reactive oxygen species (ROS) production in the early phase of exposure, but the self-recovery capacity of cells mitigated these effects at intermediate culture times. Notably, secondary effects on glycolysis and ROS production were observed during the late culture period, while the cell differentiation process and mitochondrial mass were not affected at the end. These long-term effects are of crucial importance for comprehensively evaluating the health hazards arising from lifetime exposure to NPs, complementing the extensively observed acute effects associated with prevalent short-term exposure to high concentrations. Our study underlines the need to study the toxicity of NPs in realistic long-term exposure scenarios such as repeated dosing.
Collapse
Affiliation(s)
- Miao Peng
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400 Oostende Belgium
| | - Charlotte Grootaert
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Maaike Vercauteren
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400 Oostende Belgium
| | - Nico Boon
- Center for Microbial Technology and Ecology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Colin Janssen
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400 Oostende Belgium
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Jana Asselman
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400 Oostende Belgium
| |
Collapse
|
4
|
Bouyahya A, Bakrim S, Aboulaghras S, El Kadri K, Aanniz T, Khalid A, Abdalla AN, Abdallah AA, Ardianto C, Ming LC, El Omari N. Bioactive compounds from nature: Antioxidants targeting cellular transformation in response to epigenetic perturbations induced by oxidative stress. Biomed Pharmacother 2024; 174:116432. [PMID: 38520868 DOI: 10.1016/j.biopha.2024.116432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024] Open
Abstract
Oxidative stress results from a persistent imbalance in oxidation levels that promotes oxidants, playing a crucial role in the early and sustained phases of DNA damage and genomic and epigenetic instability, both of which are intricately linked to the development of tumors. The molecular pathways contributing to carcinogenesis in this context, particularly those related to double-strand and single-strand breaks in DNA, serve as indicators of DNA damage due to oxidation in cancer cases, as well as factors contributing to epigenetic instability through ectopic expressions. Oxidative stress has been considered a therapeutic target for many years, and an increasing number of studies have highlighted the promising effectiveness of natural products in cancer treatment. In this regard, we present significant research on the therapeutic targeting of oxidative stress using natural molecules and underscore the essential role of oxidative stress in cancer. The consequences of stress, especially epigenetic instability, also offer significant therapeutic prospects. In this context, the use of natural epi-drugs capable of modulating and reorganizing the epigenetic network is beginning to emerge remarkably. In this review, we emphasize the close connections between oxidative stress, epigenetic instability, and tumor transformation, while highlighting the role of natural substances as antioxidants and epi-drugs in the anti-tumoral context.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Sara Aboulaghras
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Kawtar El Kadri
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Tarik Aanniz
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Morocco
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan PO Box: 114, Saudi Arabia.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ahmed A Abdallah
- Department of Anatomy, Faculty of Medicine, Umm Alqura University, Makkah 21955, Saudi Arabia
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia.
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia; School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia; Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam.
| | - Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
| |
Collapse
|
5
|
Pecchillo Cimmino T, Panico I, Scarano S, Stornaiuolo M, Esposito G, Ammendola R, Cattaneo F. Formyl Peptide Receptor 2-Dependent cPLA2 and 5-LOX Activation Requires a Functional NADPH Oxidase. Antioxidants (Basel) 2024; 13:220. [PMID: 38397818 PMCID: PMC10886330 DOI: 10.3390/antiox13020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Phospholipases (PL) A2 catalyzes the hydrolysis of membrane phospholipids and mostly generates arachidonic acid (AA). The enzyme 5-lipoxygenase (5-LOX) can metabolize AA to obtain inflammatory leukotrienes, whose biosynthesis highly depends on cPLA2 and 5-LOX activities. Formyl Peptide Receptor 2 (FPR2) belongs to a subfamily of class A GPCRs and is considered the most versatile FPRs isoform. Signaling triggered by FPR2 includes the activation of several downstream kinases and NADPH oxidase (NOX)-dependent ROS generation. In a metabolomic analysis we observed a significant increase in AA concentration in FPR2-stimulated lung cancer cell line CaLu-6. We analyzed cPLA2 phosphorylation and observed a time-dependent increase in cPLA2 Ser505 phosphorylation in FPR2-stimulated cells, which was prevented by the MEK inhibitor (PD098059) and the p38MAPK inhibitor (SB203580) and by blocking NOX function. Similarly, we demonstrated that phosphorylation of 5-LOX at Ser271 and Ser663 residues requires FPR2-dependent p38MAPK and ERKs activation. Moreover, we showed that 5-LOX Ser271 phosphorylation depends on a functional NOX expression. Our overall data demonstrate for the first time that FPR2-induced ERK- and p38MAPK-dependent phosphorylation/activation of cPLA2 and 5-LOX requires a functional NADPH oxidase. These findings represent an important step towards future novel therapeutic possibilities aimed at resolving the inflammatory processes underlying many human diseases.
Collapse
Affiliation(s)
- Tiziana Pecchillo Cimmino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (I.P.); (S.S.); (G.E.); (R.A.)
| | - Iolanda Panico
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (I.P.); (S.S.); (G.E.); (R.A.)
| | - Simona Scarano
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (I.P.); (S.S.); (G.E.); (R.A.)
| | - Mariano Stornaiuolo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy;
| | - Gabriella Esposito
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (I.P.); (S.S.); (G.E.); (R.A.)
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (I.P.); (S.S.); (G.E.); (R.A.)
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (I.P.); (S.S.); (G.E.); (R.A.)
| |
Collapse
|
6
|
Dong S, Chen C, Di C, Wang S, Dong Q, Lin W, Liu D. The Association between NADPH Oxidase 2 (NOX2) and Drug Resistance in Cancer. Curr Cancer Drug Targets 2024; 24:1195-1212. [PMID: 38362697 DOI: 10.2174/0115680096277328240110062433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 02/17/2024]
Abstract
NADPH oxidase, as a major source of intracellular reactive oxygen species (ROS), assumes an important role in the immune response and oxidative stress response of the body. NADPH oxidase 2 (NOX2) is the first and most representative member of the NADPH oxidase family, and its effects on the development of tumor cells are gaining more and more attention. Our previous study suggested that NCF4 polymorphism in p40phox, a key subunit of NOX2, affected the outcome of diffuse large B-cell lymphoma patients treated with rituximab. It hypothesized that NOX2-mediated ROS could enhance the cytotoxic effects of some anti-tumor drugs in favor of patients with tumors. Several reviews have summarized the role of NOX2 and its congeners-mediated ROS in anti-tumor therapy, but few studies focused on the relationship between the expression of NOX2 and anti-tumor drug resistance. In this article, we systematically introduced the NOX family, represented by NOX2, and a classification of the latest inhibitors and agonists of NOX2. It will help researchers to have a more rational and objective understanding of the dual role of NOX2 in tumor drug resistance and is expected to provide new ideas for oncology treatment and overcoming drug resistance in cancer.
Collapse
Affiliation(s)
- Shiqi Dong
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Chao Chen
- Department of laboratory, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Chang Di
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Shufan Wang
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Quan Dong
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Wenxin Lin
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Duo Liu
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| |
Collapse
|
7
|
Mehranfard N, Ghasemi M, Rajabian A, Ansari L. Protective potential of naringenin and its nanoformulations in redox mechanisms of injury and disease. Heliyon 2023; 9:e22820. [PMID: 38058425 PMCID: PMC10696200 DOI: 10.1016/j.heliyon.2023.e22820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
Increasing evidence suggests that elevated intracellular levels of reactive oxygen species (ROS) play a significant role in the pathogenesis of many diseases. Increased intracellular levels of ROS can lead to the oxidation of lipids, DNA, and proteins, contributing to cellular damage. Hence, the maintenance of redox hemostasis is essential. Naringenin (NAR) is a flavonoid included in the flavanones subcategory. Various pharmacological actions have been ascribable to this phytochemical composition, including antioxidant, anti-inflammatory, antibacterial, antiviral, antitumor, antiadipogenic, neuro-, and cardio-protective activities. This review focused on the underlying mechanism responsible for the antioxidative stress properties of NAR and its' nanoformulations. Several lines of in vitro and in vivo investigations suggest the effects of NAR and its nanoformulation on their target cells via modulating signaling pathways. These nanoformulations include nanoemulsion, nanocarriers, solid lipid nanoparticles (SLN), and nanomicelle. This review also highlights several beneficial health effects of NAR nanoformulations on human diseases including brain disorders, cancer, rheumatoid arthritis, and small intestine injuries. Employing nanoformulation can improve the pharmacokinetic properties of NAR and consequently efficiency by reducing its limitations, such as low bioavailability. The protective effects of NAR and its' nanoformulations against oxidative stress may be linked to the modulation of Nrf2-heme oxygenase-1, NO/cGMP/potassium channel, COX-2, NF-κB, AMPK/SIRT3, PI3K/Akt/mTOR, BDNF, NOX, and LOX-1 pathways. Understanding the mechanism behind the protective effects of NAR can facilitate drug development for the treatment of oxidative stress-related disorders.
Collapse
Affiliation(s)
- Nasrin Mehranfard
- Nanokadeh Darooee Samen Private Joint Stock Company, Urmia, 5715793731, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezoo Rajabian
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Legha Ansari
- Nanokadeh Darooee Samen Private Joint Stock Company, Urmia, 5715793731, Iran
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
8
|
Liu J, Han X, Zhang T, Tian K, Li Z, Luo F. Reactive oxygen species (ROS) scavenging biomaterials for anti-inflammatory diseases: from mechanism to therapy. J Hematol Oncol 2023; 16:116. [PMID: 38037103 PMCID: PMC10687997 DOI: 10.1186/s13045-023-01512-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
Inflammation is a fundamental defensive response to harmful stimuli, but the overactivation of inflammatory responses is associated with most human diseases. Reactive oxygen species (ROS) are a class of chemicals that are generated after the incomplete reduction of molecular oxygen. At moderate levels, ROS function as critical signaling molecules in the modulation of various physiological functions, including inflammatory responses. However, at excessive levels, ROS exert toxic effects and directly oxidize biological macromolecules, such as proteins, nucleic acids and lipids, further exacerbating the development of inflammatory responses and causing various inflammatory diseases. Therefore, designing and manufacturing biomaterials that scavenge ROS has emerged an important approach for restoring ROS homeostasis, limiting inflammatory responses and protecting the host against damage. This review systematically outlines the dynamic balance of ROS production and clearance under physiological conditions. We focus on the mechanisms by which ROS regulate cell signaling proteins and how these cell signaling proteins further affect inflammation. Furthermore, we discuss the use of potential and currently available-biomaterials that scavenge ROS, including agents that were engineered to reduce ROS levels by blocking ROS generation, directly chemically reacting with ROS, or catalytically accelerating ROS clearance, in the treatment of inflammatory diseases. Finally, we evaluate the challenges and prospects for the controlled production and material design of ROS scavenging biomaterials.
Collapse
Affiliation(s)
- Jiatong Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoyue Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Tingyue Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Keyue Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhaoping Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Prosthodontics, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu, 610041, China.
| |
Collapse
|
9
|
Stavely R, Ott LC, Rashidi N, Sakkal S, Nurgali K. The Oxidative Stress and Nervous Distress Connection in Gastrointestinal Disorders. Biomolecules 2023; 13:1586. [PMID: 38002268 PMCID: PMC10669114 DOI: 10.3390/biom13111586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Oxidative stress is increasingly recognized as a central player in a range of gastrointestinal (GI) disorders, as well as complications stemming from therapeutic interventions. This article presents an overview of the mechanisms of oxidative stress in GI conditions and highlights a link between oxidative insult and disruption to the enteric nervous system (ENS), which controls GI functions. The dysfunction of the ENS is characteristic of a spectrum of disorders, including neurointestinal diseases and conditions such as inflammatory bowel disease (IBD), diabetic gastroparesis, and chemotherapy-induced GI side effects. Neurons in the ENS, while essential for normal gut function, appear particularly vulnerable to oxidative damage. Mechanistically, oxidative stress in enteric neurons can result from intrinsic nitrosative injury, mitochondrial dysfunction, or inflammation-related pathways. Although antioxidant-based therapies have shown limited efficacy, recognizing the multifaceted role of oxidative stress in GI diseases offers a promising avenue for future interventions. This comprehensive review summarizes the literature to date implicating oxidative stress as a critical player in the pathophysiology of GI disorders, with a focus on its role in ENS injury and dysfunction, and highlights opportunities for the development of targeted therapeutics for these diseases.
Collapse
Affiliation(s)
- Rhian Stavely
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Leah C. Ott
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Niloufar Rashidi
- Institute for Health and Sport, Victoria University, St Albans, VIC 3021, Australia
| | - Samy Sakkal
- Institute for Health and Sport, Victoria University, St Albans, VIC 3021, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, St Albans, VIC 3021, Australia
- Department of Medicine Western Health, The University of Melbourne, St Albans, VIC 3021, Australia
- Regenerative Medicine and Stem Cell Program, Australian Institute for Musculoskeletal Science (AIMSS), St Albans, VIC 3021, Australia
| |
Collapse
|
10
|
Blas-García A, Apostolova N. Novel Therapeutic Approaches to Liver Fibrosis Based on Targeting Oxidative Stress. Antioxidants (Basel) 2023; 12:1567. [PMID: 37627562 PMCID: PMC10451738 DOI: 10.3390/antiox12081567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic liver disease (CLD) constitutes a growing global health issue, with no effective treatments currently available. Oxidative stress closely interacts with other cellular and molecular processes to trigger stress pathways in different hepatic cells and fuel the development of liver fibrosis. Therefore, inhibition of reactive oxygen species (ROS)-mediated effects and modulation of major antioxidant responses to counteract oxidative stress-induced damage have emerged as interesting targets to prevent or ameliorate liver injury. Although many preclinical studies have shown that dietary supplements with antioxidant properties can significantly prevent CLD progression in animal models, this strategy has not proved effective to significantly reduce fibrosis when translated into clinical trials. Novel and more specific therapeutic approaches are thus required to alleviate oxidative stress and reduce liver fibrosis. We have reviewed the relevant literature concerning the crucial role of alterations in redox homeostasis in different hepatic cell types during the progression of CLD and discussed current pharmacological approaches to ameliorate fibrosis by reducing oxidative stress focusing on selective modulation of enzymatic oxidant sources, antioxidant systems and ROS-mediated pathogenic processes.
Collapse
Affiliation(s)
- Ana Blas-García
- Departamento de Fisiología, Universitat de València, Av. Blasco Ibáñez, 15, 46010 Valencia, Spain
- FISABIO (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana), Av. de Catalunya, 21, 46020 Valencia, Spain
- CIBERehd (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), Instituto de Salud Carlos III, Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Nadezda Apostolova
- FISABIO (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana), Av. de Catalunya, 21, 46020 Valencia, Spain
- CIBERehd (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), Instituto de Salud Carlos III, Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Departamento de Farmacología, Universitat de València, Av. Blasco Ibáñez, 15, 46010 Valencia, Spain
| |
Collapse
|
11
|
Braun S, Jelača S, Laube M, George S, Hofmann B, Lönnecke P, Steinhilber D, Pietzsch J, Mijatović S, Maksimović-Ivanić D, Hey-Hawkins E. Synthesis and In Vitro Biological Evaluation of p-Carborane-Based Di- tert-butylphenol Analogs. Molecules 2023; 28:molecules28114547. [PMID: 37299023 DOI: 10.3390/molecules28114547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Targeting inflammatory mediators and related signaling pathways may offer a rational strategy for the treatment of cancer. The incorporation of metabolically stable, sterically demanding, and hydrophobic carboranes in dual cycloxygenase-2 (COX-2)/5-lipoxygenase (5-LO) inhibitors that are key enzymes in the biosynthesis of eicosanoids is a promising approach. The di-tert-butylphenol derivatives R-830, S-2474, KME-4, and E-5110 represent potent dual COX-2/5-LO inhibitors. The incorporation of p-carborane and further substitution of the p-position resulted in four carborane-based di-tert-butylphenol analogs that showed no or weak COX inhibition but high 5-LO inhibitory activities in vitro. Cell viability studies on five human cancer cell lines revealed that the p-carborane analogs R-830-Cb, S-2474-Cb, KME-4-Cb, and E-5110-Cb exhibited lower anticancer activity compared to the related di-tert-butylphenols. Interestingly, R-830-Cb did not affect the viability of primary cells and suppressed HCT116 cell proliferation more potently than its carbon-based R-830 counterpart. Considering all the advantages of boron cluster incorporation for enhancement of drug biostability, selectivity, and availability of drugs, R-830-Cb can be tested in further mechanistic and in vivo studies.
Collapse
Affiliation(s)
- Sebastian Braun
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Sanja Jelača
- Department of Immunology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia
| | - Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Sven George
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Bettina Hofmann
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Peter Lönnecke
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, School of Science, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia
| | - Evamarie Hey-Hawkins
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| |
Collapse
|
12
|
Li Q, Chen Z, Zhou X, Li G, Zhang C, Yang Y. Ferroptosis and multi-organ complications in COVID-19: mechanisms and potential therapies. Front Genet 2023; 14:1187985. [PMID: 37303950 PMCID: PMC10250669 DOI: 10.3389/fgene.2023.1187985] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023] Open
Abstract
COVID-19 is an infectious disease caused by SARS-CoV-2, with respiratory symptoms as primary manifestations. It can progress to severe illness, leading to respiratory failure and multiple organ dysfunction. Recovered patients may experience persistent neurological, respiratory, or cardiovascular symptoms. Mitigating the multi-organ complications of COVID-19 has been highlighted as a crucial part of fighting the epidemic. Ferroptosis is a type of cell death linked to altered iron metabolism, glutathione depletion, glutathione peroxidase 4 (GPX4) inactivation, and increased oxidative stress. Cell death can prevent virus replication, but uncontrolled cell death can also harm the body. COVID-19 patients with multi-organ complications often exhibit factors related to ferroptosis, suggesting a possible connection. Ferroptosis inhibitors can resist SARS-CoV-2 infection from damaging vital organs and potentially reduce COVID-19 complications. In this paper, we outline the molecular mechanisms of ferroptosis and, based on this, discuss multi-organ complications in COVID-19, then explore the potential of ferroptosis inhibitors as a supplementary intervention for COVID-19. This paper will provide a reference for the possible treatment of SARS-CoV-2 infected disease to reduce the severity of COVID-19 and its subsequent impact.
Collapse
Affiliation(s)
- Qi Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zeyuan Chen
- Department of Pharmacy, Luxian People’s Hospital, Luzhou, China
| | - Xiaoshi Zhou
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Guolin Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Changji Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
13
|
Göbel T, Goebel B, Hyprath M, Lamminger I, Weisser H, Angioni C, Mathes M, Thomas D, Kahnt AS. Three-dimensional growth reveals fine-tuning of 5-lipoxygenase by proliferative pathways in cancer. Life Sci Alliance 2023; 6:e202201804. [PMID: 36849252 PMCID: PMC9971161 DOI: 10.26508/lsa.202201804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/01/2023] Open
Abstract
The leukotriene (LT) pathway is positively correlated with the progression of solid malignancies, but the factors that control the expression of 5-lipoxygenase (5-LO), the central enzyme in LT biosynthesis, in tumors are poorly understood. Here, we report that 5-LO along with other members of the LT pathway is up-regulated in multicellular colon tumor spheroids. This up-regulation was inversely correlated with cell proliferation and activation of PI3K/mTORC-2- and MEK-1/ERK-dependent pathways. Furthermore, we found that E2F1 and its target gene MYBL2 were involved in the repression of 5-LO during cell proliferation. Importantly, we found that this PI3K/mTORC-2- and MEK-1/ERK-dependent suppression of 5-LO is also existent in tumor cells from other origins, suggesting that this mechanism is widely applicable to other tumor entities. Our data show that tumor cells fine-tune 5-LO and LT biosynthesis in response to environmental changes repressing the enzyme during proliferation while making use of the enzyme under cell stress conditions, implying that tumor-derived 5-LO plays a role in the manipulation of the tumor stroma to quickly restore cell proliferation.
Collapse
Affiliation(s)
- Tamara Göbel
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Bjarne Goebel
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Marius Hyprath
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Ira Lamminger
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Hannah Weisser
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Carlo Angioni
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, ZAFES, Goethe University, Frankfurt, Germany
| | - Marius Mathes
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, ZAFES, Goethe University, Frankfurt, Germany
- Fraunhofer Institute of Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| | - Astrid S Kahnt
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| |
Collapse
|
14
|
Goicoechea L, Conde de la Rosa L, Torres S, García-Ruiz C, Fernández-Checa JC. Mitochondrial cholesterol: Metabolism and impact on redox biology and disease. Redox Biol 2023; 61:102643. [PMID: 36857930 PMCID: PMC9989693 DOI: 10.1016/j.redox.2023.102643] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
Cholesterol is a crucial component of membrane bilayers by regulating their structural and functional properties. Cholesterol traffics to different cellular compartments including mitochondria, whose cholesterol content is low compared to other cell membranes. Despite the limited availability of cholesterol in the inner mitochondrial membrane (IMM), the metabolism of cholesterol in the IMM plays important physiological roles, acting as the precursor for the synthesis of steroid hormones and neurosteroids in steroidogenic tissues and specific neurons, respectively, or the synthesis of bile acids through an alternative pathway in the liver. Accumulation of cholesterol in mitochondria above physiological levels has a negative impact on mitochondrial function through several mechanisms, including the limitation of crucial antioxidant defenses, such as the glutathione redox cycle, increased generation of reactive oxygen species and consequent oxidative modification of cardiolipin, and defective assembly of respiratory supercomplexes. These adverse consequences of increased mitochondrial cholesterol trafficking trigger the onset of oxidative stress and cell death, and, ultimately, contribute to the development of diverse diseases, including metabolic liver diseases (i.e. fatty liver disease and liver cancer), as well as lysosomal disorders (i.e. Niemann-Pick type C disease) and neurodegenerative diseases (i.e. Alzheimer's disease). In this review, we summarize the metabolism and regulation of mitochondrial cholesterol and its potential impact on liver and neurodegenerative diseases.
Collapse
Affiliation(s)
- Leire Goicoechea
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Laura Conde de la Rosa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Sandra Torres
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Carmen García-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain; Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - José C Fernández-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain; Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
15
|
Role of Oxidative Stress in Liver Disorders. LIVERS 2022. [DOI: 10.3390/livers2040023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Oxygen is vital for life as it is required for many different enzymatic reactions involved in intermediate metabolism and xenobiotic biotransformation. Moreover, oxygen consumption in the electron transport chain of mitochondria is used to drive the synthesis of ATP to meet the energetic demands of cells. However, toxic free radicals are generated as byproducts of molecular oxygen consumption. Oxidative stress ensues not only when the production of reactive oxygen species (ROS) exceeds the endogenous antioxidant defense mechanism of cells, but it can also occur as a consequence of an unbalance between antioxidant strategies. Given the important role of hepatocytes in the biotransformation and metabolism of xenobiotics, ROS production represents a critical event in liver physiology, and increasing evidence suggests that oxidative stress contributes to the development of many liver diseases. The present review, which is part of the special issue “Oxidant stress in Liver Diseases”, aims to provide an overview of the sources and targets of ROS in different liver diseases and highlights the pivotal role of oxidative stress in cell death. In addition, current antioxidant therapies as treatment options for such disorders and their limitations for future trial design are discussed.
Collapse
|
16
|
Miazek K, Beton K, Śliwińska A, Brożek-Płuska B. The Effect of β-Carotene, Tocopherols and Ascorbic Acid as Anti-Oxidant Molecules on Human and Animal In Vitro/In Vivo Studies: A Review of Research Design and Analytical Techniques Used. Biomolecules 2022; 12:biom12081087. [PMID: 36008981 PMCID: PMC9406122 DOI: 10.3390/biom12081087] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
Prolonged elevated oxidative stress (OS) possesses negative effect on cell structure and functioning, and is associated with the development of numerous disorders. Naturally occurred anti-oxidant compounds reduce the oxidative stress in living organisms. In this review, antioxidant properties of β-carotene, tocopherols and ascorbic acid are presented based on in vitro, in vivo and populational studies. Firstly, environmental factors contributing to the OS occurrence and intracellular sources of Reactive Oxygen Species (ROS) generation, as well as ROS-mediated cellular structure degradation, are introduced. Secondly, enzymatic and non-enzymatic mechanism of anti-oxidant defence against OS development, is presented. Furthermore, ROS-preventing mechanisms and effectiveness of β-carotene, tocopherols and ascorbic acid as anti-oxidants are summarized, based on studies where different ROS-generating (oxidizing) agents are used. Oxidative stress biomarkers, as indicators on OS level and prevention by anti-oxidant supplementation, are presented with a focus on the methods (spectrophotometric, fluorometric, chromatographic, immuno-enzymatic) of their detection. Finally, the application of Raman spectroscopy and imaging as a tool for monitoring the effect of anti-oxidant (β-carotene, ascorbic acid) on cell structure and metabolism, is proposed. Literature data gathered suggest that β-carotene, tocopherols and ascorbic acid possess potential to mitigate oxidative stress in various biological systems. Moreover, Raman spectroscopy and imaging can be a valuable technique to study the effect of oxidative stress and anti-oxidant molecules in cell studies.
Collapse
Affiliation(s)
- Krystian Miazek
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
- Correspondence:
| | - Karolina Beton
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland
| | - Beata Brożek-Płuska
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
| |
Collapse
|
17
|
Shpakova V, Rukoyatkina N, Al Arawe N, Prilepskaya A, Kharazova A, Sharina I, Gambaryan S, Martin E. ML355 Modulates Platelet Activation and Prevents ABT-737 Induced Apoptosis in Platelets. J Pharmacol Exp Ther 2022; 381:164-175. [PMID: 35197320 PMCID: PMC9073945 DOI: 10.1124/jpet.121.000973] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/05/2022] [Indexed: 01/14/2023] Open
Abstract
12-lipoxigenase (12-LOX) is implicated in regulation of platelet activation processes and can be a new promising target for antiplatelet therapy. However, investigations of 12-LOX were restricted by the lack of specific and potent 12-LOX inhibitors and by controversial data concerning the role of 12-LOX metabolites in platelet functions. A novel specific 12-LOX inhibitor ML355 was shown to inhibit platelet aggregation without adverse side effects on hemostasis; however, the molecular mechanisms of its action on platelets are poorly understood. Here, we showed that ML355 inhibited platelet activation induced by thrombin or thromboxane A2, but not by collagen-related peptide. ML355 blocked protein kinase B, phosphoinositide 3-kinase, and extracellular signal-regulated kinase, but not p38 kinase, spleen tyrosine kinase (Syk), or phospholipase Cγ2 phosphorylation in activated platelets. The main inhibitory effect of low doses of ML355 (1-20 μM) on thrombin activated platelets was mediated by the decrease in reactive oxygen species level, whereas high doses of ML355 (50 μM) caused cyclic adenosine monophosphate activation. ML355 did not affect the activity of nitric oxide-dependent soluble guanylyl cyclase, nor did it affect the relaxation of preconstricted aortic rings in mice. ML355 itself did not affect platelet viability, but at 50 μM dose blocked caspase-dependent apoptosis induced by B-cell lymphoma II inhibitor ABT-737. SIGNIFICANCE STATEMENT: The current paper provides novel and original data concerning molecular mechanisms of 12-LOX inhibitor ML355 action on platelets. These data reveal antiplatelet and protective effects of ML355 on platelets and may be of importance for both antiplatelet and anticancer therapy.
Collapse
Affiliation(s)
- Valentina Shpakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia (V.S., N.R., S.G.); Saint Petersburg State University, Saint Petersburg, Russia (N.A.A., A.P., A.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, Texas (I.S., E.M.)
| | - Natalia Rukoyatkina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia (V.S., N.R., S.G.); Saint Petersburg State University, Saint Petersburg, Russia (N.A.A., A.P., A.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, Texas (I.S., E.M.)
| | - Nada Al Arawe
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia (V.S., N.R., S.G.); Saint Petersburg State University, Saint Petersburg, Russia (N.A.A., A.P., A.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, Texas (I.S., E.M.)
| | - Anna Prilepskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia (V.S., N.R., S.G.); Saint Petersburg State University, Saint Petersburg, Russia (N.A.A., A.P., A.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, Texas (I.S., E.M.)
| | - Alexandra Kharazova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia (V.S., N.R., S.G.); Saint Petersburg State University, Saint Petersburg, Russia (N.A.A., A.P., A.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, Texas (I.S., E.M.)
| | - Iraida Sharina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia (V.S., N.R., S.G.); Saint Petersburg State University, Saint Petersburg, Russia (N.A.A., A.P., A.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, Texas (I.S., E.M.)
| | - Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia (V.S., N.R., S.G.); Saint Petersburg State University, Saint Petersburg, Russia (N.A.A., A.P., A.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, Texas (I.S., E.M.)
| | - Emil Martin
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia (V.S., N.R., S.G.); Saint Petersburg State University, Saint Petersburg, Russia (N.A.A., A.P., A.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, Texas (I.S., E.M.)
| |
Collapse
|
18
|
Protective Effect of Pueraria lobate (Willd.) Ohwi root extract on Diabetic Nephropathy via metabolomics study and mitochondrial homeostasis-involved pathways. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
19
|
Kriska T, Herrnreiter A, Pfister SL, Adebesin A, Falck JR, Campbell WB. Macrophage 12(S)-HETE Enhances Angiotensin II-Induced Contraction by a BLT2 (Leukotriene B 4 Type-2 Receptor) and TP (Thromboxane Receptor)-Mediated Mechanism in Murine Arteries. Hypertension 2022; 79:104-114. [PMID: 34784723 PMCID: PMC8849474 DOI: 10.1161/hypertensionaha.121.17824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
12/15-LO (12/15-lipoxygenase), encoded by Alox15 gene, metabolizes arachidonic acid to 12(S)-HETE (12-hydroxyeicosatetraenoic acid). Macrophages are the major source of 12/15-LO among immune cells, and 12/15-LO plays a crucial role in development of hypertension. Global Alox15- or macrophage-deficient mice are resistant to Ang II (angiotensin II)-induced hypertension. This study tests the hypothesis that macrophage 12(S)-HETE contributes to Ang II-mediated arterial constriction and thus to development of Ang II-induced hypertension. Ang II constricted isolated abdominal aortic and mesenteric arterial rings. 12(S)-HETE (100 nmol/L) alone was without effect; however, it significantly enhanced Ang II-induced constriction. The presence of wild-type macrophages also enhanced the Ang II-induced constriction, while Alox15-/- macrophages did not. Using this model, pretreatment of aortic rings with inhibitors, receptor agonists/antagonists, or removal of the endothelium, systematically uncovered an endothelium-mediated, Ang II receptor-2-mediated and superoxide-mediated enhancing effect of 12(S)-HETE on Ang II constrictions. The role of superoxide was confirmed using aortas from p47phox-/- mice where 12(S)-HETE failed to enhance constriction to Ang II. In cultured arterial endothelial cells, 12(S)-HETE increased the production of superoxide, and 12(S)-HETE or Ang II increased the production of an isothromboxane-like metabolite. A TP (thromboxane receptor) antagonist inhibited 12(S)-HETE enhancement of Ang II constriction. Both Ang II-induced hypertension and the enhancing effect of 12(S)-HETE on Ang II contractions were eliminated by a BLT2 (leukotriene B4 receptor-2) antagonist. These results outline a mechanism where the macrophage 12/15-LO pathway enhances the action of Ang II. 12(S)-HETE, acting on the BLT2, contributes to the hypertensive action of Ang II in part by promoting endothelial synthesis of a superoxide-derived TP agonist.
Collapse
Affiliation(s)
- Tamas Kriska
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee (T.K., A.H., S.L.P., W.B.C.)
| | - Anja Herrnreiter
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee (T.K., A.H., S.L.P., W.B.C.)
| | - Sandra L Pfister
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee (T.K., A.H., S.L.P., W.B.C.)
| | - Adeniyi Adebesin
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (A.A., J.R.F.)
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (A.A., J.R.F.)
| | - William B Campbell
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee (T.K., A.H., S.L.P., W.B.C.)
| |
Collapse
|
20
|
Lopes-Pires ME, Frade-Guanaes JO, Quinlan GJ. Clotting Dysfunction in Sepsis: A Role for ROS and Potential for Therapeutic Intervention. Antioxidants (Basel) 2021; 11:88. [PMID: 35052592 PMCID: PMC8773140 DOI: 10.3390/antiox11010088] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
Sepsis is regarded as one of the main causes of death among the critically ill. Pathogen infection results in a host-mediated pro-inflammatory response to fight infection; as part of this response, significant endogenous reactive oxygen (ROS) and nitrogen species (RNS) production occurs, instigated by a variety of sources, including activated inflammatory cells, such as neutrophils, platelets, and cells from the vascular endothelium. Inflammation can become an inappropriate self-sustaining and expansive process, resulting in sepsis. Patients with sepsis often exhibit loss of aspects of normal vascular homeostatic control, resulting in abnormal coagulation events and the development of disseminated intravascular coagulation. Diagnosis and treatment of sepsis remain a significant challenge for healthcare providers globally. Targeting the drivers of excessive oxidative/nitrosative stress using antioxidant treatments might be a therapeutic option. This review focuses on the association between excessive oxidative/nitrosative stress, a common feature in sepsis, and loss of homeostatic control at the level of the vasculature. The literature relating to potential antioxidants is also described.
Collapse
Affiliation(s)
- Maria Elisa Lopes-Pires
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London W12 0NN, UK;
| | | | - Gregory J. Quinlan
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London W12 0NN, UK;
| |
Collapse
|
21
|
Oxidative Stress-Related Mechanisms in Melanoma and in the Acquired Resistance to Targeted Therapies. Antioxidants (Basel) 2021; 10:antiox10121942. [PMID: 34943045 PMCID: PMC8750393 DOI: 10.3390/antiox10121942] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma is a highly aggressive cancer with the poorest prognosis, representing the deadliest form of skin cancer. Activating mutations in BRAF are the most frequent genetic alterations, present in approximately 50% of all melanoma cases. The use of specific inhibitors towards mutant BRAF variants and MEK, a downstream signaling target of BRAF in the MAPK pathway, has significantly improved progression-free and overall survival in advanced melanoma patients carrying BRAF mutations. Nevertheless, despite these improvements, resistance still develops within the first year of therapy in around 50% of patients, which is a significant problem in managing BRAF-mutated advanced melanoma. Understanding these mechanisms is one of the mainstreams of the research on BRAFi/MEKi acquired resistance. Both genetic and epigenetic mechanisms have been described. Moreover, in recent years, oxidative stress has emerged as another major force involved in all the phases of melanoma development, from initiation to progression until the onsets of the metastatic phenotype and chemoresistance, and has thus become a target for therapy. In the present review, we discuss the current knowledge on oxidative stress and its signaling in melanoma, as well as the oxidative stress-related mechanisms in the acquired resistance to targeted therapies.
Collapse
|
22
|
Topical Administration of 15-Deoxy- Δ 12,14-Prostaglandin J 2 Using a Nonionic Cream: Effect on UVB-Induced Skin Oxidative, Inflammatory, and Histopathological Modifications in Mice. Mediators Inflamm 2021; 2021:9330596. [PMID: 34764817 PMCID: PMC8577928 DOI: 10.1155/2021/9330596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/23/2021] [Indexed: 12/20/2022] Open
Abstract
UVB radiation is certainly one of the most important environmental threats to which we are subjected to. This fact highlights the crucial protective role of the skin. However, the skin itself may not be capable of protecting against UVB depending on irradiation intensity and time of exposition. Sun blockers are used to protect our skin, but they fail to fully protect it against oxidative and inflammatory injuries initiated by UVB. To solve this issue, topical administration of active molecules is an option. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) is an arachidonic acid-derived lipid with proresolution and anti-inflammatory actions. However, as far as we are aware, there is no evidence of its therapeutic use in a topical formulation to treat the deleterious events initiated by UVB, which was the aim of the present study. We used a nonionic cream to vehiculate 15d-PGJ2 (30, 90, and 300 ng/mouse) (TFcPGJ2) in the skin of hairless mice. UVB increased skin edema, myeloperoxidase activity, metalloproteinase-9 activity, lipid peroxidation, superoxide anion production, gp91phox and COX-2 mRNA expression, cytokine production, sunburn and mast cells, thickening of the epidermis, and collagen degradation. UVB also diminished skin ability to reduce iron and scavenge free radicals, reduced glutathione (GSH), sulfhydryl proteins, and catalase activity. TFcPGJ2 inhibited all these pathological alterations in the skin caused by UVB. No activity was observed with the unloaded topical formulation. The protective outcome of TFcPGJ2 indicates it is a promising therapeutic approach against cutaneous inflammatory and oxidative pathological alterations.
Collapse
|
23
|
Fat of the Gut: Epithelial Phospholipids in Inflammatory Bowel Diseases. Int J Mol Sci 2021; 22:ijms222111682. [PMID: 34769112 PMCID: PMC8584226 DOI: 10.3390/ijms222111682] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
Inflammatory bowel diseases (IBD) comprise a distinct set of clinical symptoms resulting from chronic inflammation within the gastrointestinal (GI) tract. Despite the significant progress in understanding the etiology and development of treatment strategies, IBD remain incurable for thousands of patients. Metabolic deregulation is indicative of IBD, including substantial shifts in lipid metabolism. Recent data showed that changes in some phospholipids are very common in IBD patients. For instance, phosphatidylcholine (PC)/phosphatidylethanolamine (PE) and lysophosphatidylcholine (LPC)/PC ratios are associated with the severity of the inflammatory process. Composition of phospholipids also changes upon IBD towards an increase in arachidonic acid and a decrease in linoleic and a-linolenic acid levels. Moreover, an increase in certain phospholipid metabolites, such as lysophosphatidylcholine, sphingosine-1-phosphate and ceramide, can result in enhanced intestinal inflammation, malignancy, apoptosis or necroptosis. Because some phospholipids are associated with pathogenesis of IBD, they may provide a basis for new strategies to treat IBD. Current attempts are aimed at controlling phospholipid and fatty acid levels through the diet or via pharmacological manipulation of lipid metabolism.
Collapse
|
24
|
Smolka C, Schlösser D, Koentges C, Tarkhnishvili A, Gorka O, Pfeifer D, Bemtgen X, Asmussen A, Groß O, Diehl P, Moser M, Bode C, Bugger H, Grundmann S, Pankratz F. Cardiomyocyte-specific miR-100 overexpression preserves heart function under pressure overload in mice and diminishes fatty acid uptake as well as ROS production by direct suppression of Nox4 and CD36. FASEB J 2021; 35:e21956. [PMID: 34605573 DOI: 10.1096/fj.202100829rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 12/16/2022]
Abstract
MicroRNAs are key regulators of the cardiac response to injury. MiR-100 has recently been suggested to be involved in different forms of heart failure, but functional studies are lacking. In the present study, we examined the impact of transgenic miR-100 overexpression on cardiac structure and function during physiological aging and pathological pressure-overload-induced heart failure in mice after transverse aortic constriction surgery. MiR-100 was moderately upregulated after induction of pressure overload in mice. While in our transgenic model the cardiomyocyte-specific overexpression of miR-100 did not result in an obvious cardiac phenotype in unchallenged mice, the transgenic mouse strain exhibited less left ventricular dilatation and a higher ejection fraction than wildtype animals, demonstrating an attenuation of maladaptive cardiac remodeling by miR-100. Cardiac transcriptome analysis identified a repression of several regulatory genes related to cardiac metabolism, lipid peroxidation, and production of reactive oxygen species (ROS) by miR-100 overexpression, possibly mediating the observed functional effects. While the modulation of ROS-production seemed to be indirectly affected by miR-100 via Alox5-and Nox4-downregulation, we demonstrated that miR-100 induced a direct repression of the scavenger protein CD36 in murine hearts resulting in a decreased uptake of long-chain fatty acids and an alteration of mitochondrial respiratory function with an enhanced glycolytic state. In summary, we identified miR-100 as a modulator of cardiac metabolism and ROS production without an apparent cardiac phenotype at baseline but a protective effect under conditions of pressure-overload-induced cardiac stress, providing new insight into the mechanisms of heart failure.
Collapse
Affiliation(s)
- Christian Smolka
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Delia Schlösser
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Koentges
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Aleksandre Tarkhnishvili
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oliver Gorka
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dietmar Pfeifer
- Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Xavier Bemtgen
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexander Asmussen
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Olaf Groß
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Diehl
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Moser
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Bode
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Heiko Bugger
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Sebastian Grundmann
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Franziska Pankratz
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
25
|
Preclinical and Clinical Antioxidant Effects of Natural Compounds against Oxidative Stress-Induced Epigenetic Instability in Tumor Cells. Antioxidants (Basel) 2021; 10:antiox10101553. [PMID: 34679688 PMCID: PMC8533336 DOI: 10.3390/antiox10101553] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 01/17/2023] Open
Abstract
ROS (reactive oxygen species) are produced via the noncomplete reduction in molecular oxygen in the mitochondria of higher organisms. The produced ROS are placed in various cell compartments, such as the mitochondria, cytoplasm, and endoplasmic reticulum. In general, there is an equilibrium between the synthesis of ROS and their reduction by the natural antioxidant defense system, called the redox system. Therefore, when this balance is upset, the excess ROS production can affect different macromolecules, such as proteins, lipids, nucleic acids, and sugars, which can lead to an electronic imbalance than oxidation of these macromolecules. Recently, it has also been shown that ROS produced at the cellular level can affect different signaling pathways that participate in the stimulation of transcription factors linked to cell proliferation and, consequently, to the carcinogenesis process. Indeed, ROS can activate the pathway of tyrosine kinase, MAP kinase, IKK, NF-KB, phosphoinositol 3 phosphate, and hypoxia-inducible factor (HIF). The activation of these signaling pathways directly contributes to the accelerated proliferation process and, as a result, the appearance of cancer. In addition, the use of antioxidants, especially natural ones, is now a major issue in the approach to cancer prevention. Some natural molecules, especially phytochemicals isolated from medicinal plants, have now shown interesting preclinical and clinical results.
Collapse
|
26
|
Wang H, Wang X, Li P, Dong M, Yao SQ, Tang B. Fluorescent probes for visualizing ROS-associated proteins in disease. Chem Sci 2021; 12:11620-11646. [PMID: 34659698 PMCID: PMC8442704 DOI: 10.1039/d1sc02165f] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022] Open
Abstract
Abnormal expression of proteins, including catalytic and expression dysfunction, is directly related to the development of various diseases in living organisms. Reactive oxygen species (ROS) could regulate protein expression by redox modification or cellular signal pathway and thus influence the development of disease. Determining the expression level and activity of these ROS-associated proteins is of considerable importance in early-stage disease diagnosis and the identification of new drug targets. Fluorescence imaging technology has emerged as a powerful tool for specific in situ imaging of target proteins by virtue of its non-invasiveness, high sensitivity and good spatiotemporal resolution. In this review, we summarize advances made in the past decade for the design of fluorescent probes that have contributed to tracking ROS-associated proteins in disease. We envision that this review will attract significant attention from a wide range of researchers in their utilization of fluorescent probes for in situ investigation of pathological processes synergistically regulated by both ROS and proteins.
Collapse
Affiliation(s)
- Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University Jinan 250014 P. R. China
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University Jinan 250014 P. R. China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University Jinan 250014 P. R. China
| | - Mingyan Dong
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University Jinan 250014 P. R. China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore Singapore 117543 Singapore
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
27
|
Soliman AM, Das S, Mahakkanukrauh P. Inflammatory Molecular Mediators and Pathways Involved in Vascular Aging and Stroke: A Comprehensive Review. Curr Med Chem 2021; 29:5522-5542. [PMID: 34488579 DOI: 10.2174/0929867328666210901122359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/01/2021] [Accepted: 07/23/2021] [Indexed: 11/22/2022]
Abstract
There is an increase in the incidence of cardiovascular diseases with aging and it is one of the leading causes of death worldwide. The main cardiovascular pathologies include atherosclerosis, stroke, myocardial infarction, hypertension and stroke. Chronic inflammation is one of the significant contributors to the age-related vascular diseases. Therefore, it is important to understand the molecular mechanisms of the persistent inflammatory conditions occurring in the blood vessels as well as the signaling pathways involved. Herein, we performed an extant search of literature involving PubMed, ISI, WoS and Scopus databases for retrieving all relevant articles with the most recent findings illustrating the potential role of various inflammatory mediators along with their proposed activated pathways in the pathogenesis and progression of vascular aging. We also highlight the major pathways contributing to age-related vascular disorders. The outlined molecular mechanisms, pathways and mediators of vascular aging represent potential drug targets that can be utilized to inhibit and/or slow the pathogenesis and progression of vascular aging.
Collapse
Affiliation(s)
- Amro M Soliman
- Department of Biological Sciences-Physiology, Cell and Developmental Biology, University of Alberta, Edmonton, AB T6G 2R3. Canada
| | - Srijit Das
- Department of Human & Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, P.C. 123, Al Khoud, Muscat. Oman
| | - Pasuk Mahakkanukrauh
- Department of Anatomy & Excellence center of Osteology Research and Training, Cadaveric Surgical and Training Center, Chiang Mai University, Chiang Mai 50200. Thailand
| |
Collapse
|
28
|
Jiménez-Uribe AP, Gómez-Sierra T, Aparicio-Trejo OE, Orozco-Ibarra M, Pedraza-Chaverri J. Backstage players of fibrosis: NOX4, mTOR, HDAC, and S1P; companions of TGF-β. Cell Signal 2021; 87:110123. [PMID: 34438016 DOI: 10.1016/j.cellsig.2021.110123] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/16/2022]
Abstract
The fibrotic process could be easily defined as a pathological excess of extracellular matrix deposition, leading to disruption of tissue architecture and eventually loss of function; however, this process involves a complex network of several signal transduction pathways. Virtually almost all organs could be affected by fibrosis, the most affected are the liver, lung, skin, kidney, heart, and eyes; in all of them, the transforming growth factor-beta (TGF-β) has a central role. The canonical and non-canonical signal pathways of TGF-β impact the fibrotic process at the cellular and molecular levels, inducing the epithelial-mesenchymal transition (EMT) and the induction of profibrotic gene expression with the consequent increase in proteins such as alpha-smooth actin (α-SMA), fibronectin, collagen, and other extracellular matrix proteins. Recently, it has been reported that some molecules that have not been typically associated with the fibrotic process, such as nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4), mammalian target of rapamycin (mTOR), histone deacetylases (HDAC), and sphingosine-1 phosphate (S1P); are critical in its development. In this review, we describe and discuss the role of these new players of fibrosis and the convergence with TGF-β signaling pathways, unveiling new insights into the panorama of fibrosis that could be useful for future therapeutic targets.
Collapse
Affiliation(s)
| | - Tania Gómez-Sierra
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, CDMX 04510, Mexico
| | - Omar Emiliano Aparicio-Trejo
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City 14080, Mexico
| | - Marisol Orozco-Ibarra
- Laboratorio de Neurobiología Molecular y Celular, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Av. Insurgentes Sur # 3877, La Fama, Alcaldía Tlalpan, CP 14269 Ciudad de México, Mexico
| | - José Pedraza-Chaverri
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, CDMX 04510, Mexico.
| |
Collapse
|
29
|
Khasabova IA, Seybold VS, Simone DA. The role of PPARγ in chemotherapy-evoked pain. Neurosci Lett 2021; 753:135845. [PMID: 33774149 PMCID: PMC8089062 DOI: 10.1016/j.neulet.2021.135845] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/27/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022]
Abstract
Although millions of people are diagnosed with cancer each year, survival has never been greater thanks to early diagnosis and treatments. Powerful chemotherapeutic agents are highly toxic to cancer cells, but because they typically do not target cancer cells selectively, they are often toxic to other cells and produce a variety of side effects. In particular, many common chemotherapies damage the peripheral nervous system and produce neuropathy that includes a progressive degeneration of peripheral nerve fibers. Chemotherapy-induced peripheral neuropathy (CIPN) can affect all nerve fibers, but sensory neuropathies are the most common, initially affecting the distal extremities. Symptoms include impaired tactile sensitivity, tingling, numbness, paraesthesia, dysesthesia, and pain. Since neuropathic pain is difficult to manage, and because degenerated nerve fibers may not grow back and regain normal function, considerable research has focused on understanding how chemotherapy causes painful CIPN so it can be prevented. Due to the fact that both therapeutic and side effects of chemotherapy are primarily associated with the accumulation of reactive oxygen species (ROS) and oxidative stress, this review focuses on the activation of endogenous antioxidant pathways, especially PPARγ, in order to prevent the development of CIPN and associated pain. The use of synthetic and natural PPARγ agonists to prevent CIPN is discussed.
Collapse
Affiliation(s)
- Iryna A Khasabova
- Department of Diagnostic and Biological Sciences, University of Minnesota, School of Dentistry, Minneapolis, MN, 55455, United States
| | - Virginia S Seybold
- Department of Diagnostic and Biological Sciences, University of Minnesota, School of Dentistry, Minneapolis, MN, 55455, United States
| | - Donald A Simone
- Department of Diagnostic and Biological Sciences, University of Minnesota, School of Dentistry, Minneapolis, MN, 55455, United States.
| |
Collapse
|
30
|
Sander WJ, Fourie C, Sabiu S, O'Neill FH, Pohl CH, O'Neill HG. Reactive oxygen species as potential antiviral targets. Rev Med Virol 2021; 32:e2240. [PMID: 33949029 DOI: 10.1002/rmv.2240] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Indexed: 12/14/2022]
Abstract
Reactive oxygen species (ROS) are by-products of cellular metabolism and can be either beneficial, at low levels, or deleterious, at high levels, to the cell. It is known that several viral infections can increase oxidative stress, which is mainly facilitated by viral-induced imbalances in the antioxidant defence mechanisms of the cell. While the exact role of ROS in certain viral infections (adenovirus and dengue virus) remains unknown, other viruses can use ROS for enhancement of pathogenesis (SARS coronavirus and rabies virus) or replication (rhinovirus, West Nile virus and vesicular stomatitis virus) or both (hepatitis C virus, human immunodeficiency virus and influenza virus). While several viral proteins (mainly for hepatitis C and human immunodeficiency virus) have been identified to play a role in ROS formation, most mediators of viral ROS modulation are yet to be elucidated. Treatment of viral infections, including hepatitis C virus, human immunodeficiency virus and influenza virus, with ROS inhibitors has shown a decrease in both pathogenesis and viral replication both in vitro and in animal models. Clinical studies indicating the potential for targeting ROS-producing pathways as possible broad-spectrum antiviral targets should be evaluated in randomized controlled trials.
Collapse
Affiliation(s)
- Willem J Sander
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Corinne Fourie
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Saheed Sabiu
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa.,Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| | - Frans H O'Neill
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Carolina H Pohl
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Hester G O'Neill
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
31
|
Mahgoub S, Hashad N, Ali S, Ibrahim R, Said AM, Moharram FA, Mady M. Polyphenolic Profile of Callistemon viminalis Aerial Parts: Antioxidant, Anticancer and In Silico 5-LOX Inhibitory Evaluations. Molecules 2021; 26:molecules26092481. [PMID: 33923148 PMCID: PMC8123052 DOI: 10.3390/molecules26092481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022] Open
Abstract
Five new compounds viz kaempferol 3-O-(4″-galloyl)-β-d-glucopyranosyl-(1‴→6″)-O-β-d-glucopyranoside (1), kaempferol 3-O-β-d-mannuronopyranoside (2), kaempferol 3-O-β-d-mannopyranoside (3), quercetin 3-O-β-d-mannuronopyranoside (4), 2, 3 (S)- hexahydroxydiphenoyl]-d-glucose (5) along with fifteen known compounds were isolated from 80% aqueous methanol extract (AME) of C. viminalis. AME and compounds exerted similar or better antioxidant activity to ascorbic acid using DPPH, O2−, and NO inhibition methods. In addition, compounds 16, 4, and 7 showed cytotoxic activity against MCF-7 cell lines while 3, 7 and 16 exhibited strong activity against HepG2. An in silico analysis using molecular docking for polyphenolic compounds 2, 3, 7, 16 and 17 against human stable 5-LOX was performed and compared to that of ascorbic acid and quercetin. The binding mode as well as the enzyme-inhibitor interactions were evaluated. All compounds occupied the 5-LOX active site and showed binding affinity greater than ascorbic acid or quercetin. The data herein suggest that AME, a source of polyphenols, could be used against oxidative-stress-related disorders.
Collapse
Affiliation(s)
- Shahenda Mahgoub
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Ein-Helwan, Helwan, Cairo 11795, Egypt;
- Correspondence: (S.M.); (A.M.S.); (F.A.M.); Tel.: +1716-907-5016 (A.M.S.); +202-2554-160 (F.A.M.)
| | - Nashwa Hashad
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo 11795, Egypt; (N.H.); (R.I.); (M.M.)
| | - Sahar Ali
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Ein-Helwan, Helwan, Cairo 11795, Egypt;
| | - Reham Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo 11795, Egypt; (N.H.); (R.I.); (M.M.)
| | - Ahmed M. Said
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Helwan University, Ein-Helwan, Helwan, Cairo 11795, Egypt
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Correspondence: (S.M.); (A.M.S.); (F.A.M.); Tel.: +1716-907-5016 (A.M.S.); +202-2554-160 (F.A.M.)
| | - Fatma A. Moharram
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo 11795, Egypt; (N.H.); (R.I.); (M.M.)
- Correspondence: (S.M.); (A.M.S.); (F.A.M.); Tel.: +1716-907-5016 (A.M.S.); +202-2554-160 (F.A.M.)
| | - Mohamed Mady
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo 11795, Egypt; (N.H.); (R.I.); (M.M.)
| |
Collapse
|
32
|
Shen X, Huo B, Li Y, Song C, Wu T, He J. Response of the critically endangered Przewalski's gazelle (Procapra przewalskii) to selenium deprived environment. J Proteomics 2021; 241:104218. [PMID: 33831599 DOI: 10.1016/j.jprot.2021.104218] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023]
Abstract
Selenium (Se) is an essential mineral nutrient for animals. Se deprivation can lead to many disorders and even death. This study investigated the response of Przewalski's gazelle (P. przewalskii) to Se-deprived environment. We found that Se deprivation in soil and forage not only influenced the mineral contents of the blood and hair in P. przewalskii, but also severely disrupted their blood parameters. We identified significant changes in the abundance of 146 proteins and 25 metabolites (P < 0.05) in serum, including the selenoproteins L8IG93 (glutathione peroxidase) and F4YD09 (Cu/Zn superoxide dismutase). Furthermore, the major known proteins and metabolites associated with the Se stress response in P. przewalskii were Cu/Zn superoxide dismutase, the vitamin K-dependent protein C, the C4b-binding protein alpha chain, complement component C7, lipase linoleic acid, peptidase D, thymidine, pseudo-uridine, L-phenylalanine, L-glutamine, PGA1, and 15-deoxy-delta-12,14-PGJ2. The main signaling pathways involved included complement and coagulation cascades, metabolic pathways, and stress granule formation. Our results indicate that the intake of Se-deficient forage elicited an oxidative stress response in P. przewalskii. These findings provide insights into the response mechanisms of this threatened gazelle to Se stress, and enable the development of conservation strategies to protect populations on the Qinghai-Tibetan Plateau. SIGNIFICANCE: This study is the first to point out the presence of oxidative stress in P. przewalskii in selenium-deficient areas through proteomics and metabolomics studies. These findings should prove helpful for conservation efforts aimed at P. przewalskii populations and maintenance of the integrity of their ecological environment.
Collapse
Affiliation(s)
- Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, Xinjiang, China; World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang 550004, China.
| | - Bin Huo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yuanfeng Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Chunjie Song
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ting Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jian He
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
33
|
Dwivedi S, Kushalan S, Paithankar JG, D'Souza LC, Hegde S, Sharma A. Environmental toxicants, oxidative stress and health adversities: interventions of phytochemicals. J Pharm Pharmacol 2021; 74:516-536. [PMID: 33822130 DOI: 10.1093/jpp/rgab044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/17/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Oxidative stress is the most common factor mediating environmental chemical-induced health adversities. Recently, an exponential rise in the use of phytochemicals as an alternative therapeutics against oxidative stress-mediated diseases has been documented. Due to their free radical quenching property, plant-derived natural products have gained substantial attention as a therapeutic agent in environmental toxicology. The present review aimed to describe the therapeutic role of phytochemicals in mitigating environmental toxicant-mediated sub-cellular and organ toxicities via controlling cellular antioxidant response. METHODS The present review has covered the recently related studies, mainly focussing on the free radical scavenging role of phytochemicals in environmental toxicology. KEY FINDINGS In vitro and in vivo studies have reported that supplementation of antioxidant-rich compounds can ameliorate the toxicant-induced oxidative stress, thereby improving the health conditions. Improving the cellular antioxidant pool has been considered as a mode of action of phytochemicals. However, the other cellular targets of phytochemicals remain uncertain. CONCLUSIONS Knowing the therapeutic value of phytochemicals to mitigate the chemical-induced toxicity is an initial stage; mechanistic understanding needs to decipher for development as therapeutics. Moreover, examining the efficacy of phytochemicals against mixer toxicity and identifying the bioactive molecule are major challenges in the field.
Collapse
Affiliation(s)
- Shiwangi Dwivedi
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Deralakatte, Mangaluru, India
| | - Sharanya Kushalan
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Bioresource and Biotechnology, Deralakatte, Mangaluru, India
| | - Jagdish Gopal Paithankar
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Deralakatte, Mangaluru, India
| | - Leonard Clinton D'Souza
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Deralakatte, Mangaluru, India
| | - Smitha Hegde
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Bioresource and Biotechnology, Deralakatte, Mangaluru, India
| | - Anurag Sharma
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Deralakatte, Mangaluru, India
| |
Collapse
|
34
|
Park D, Kwak DW, Kim JH. Leukotriene B 4 receptors contribute to house dust mite-induced eosinophilic airway inflammation via T H2 cytokine production. BMB Rep 2021. [PMID: 33612149 PMCID: PMC8016659 DOI: 10.5483/bmbrep.2021.54.3.247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leukotriene B4 (LTB4) is a lipid mediator of inflammation that is generated from arachidonic acid via the 5-lipoxygenase pathway. Previous studies have reported that the receptors of LTB4, BLT1, and BLT2 play mediatory roles in the allergic airway inflammation induced by ovalbumin (OVA). However, considering that house dust mites (HDMs) are the most prevalent allergen and well-known risk factor for asthmatic allergies, we are interested in elucidating the contributory roles of BLT1/2 in HDM-induced allergic airway inflammation. Our aim in this study was to investigate whether BLT1/2 play any roles in HDM-induced allergic airway inflammation. In this study, we observed that the levels of ligands for BLT1/2 [LTB4 and 12(S)-HETE (12(S)-hydroxyeicosatetraenoic acid)] were significantly increased in bronchoalveolar lavage fluid (BALF) after HDM challenge. Block-ade of BLT1 or BLT2 as well as of 5-lipoxygenase (5-LO) or 12-lipoxygenase (12-LO) markedly suppressed the production of TH2 cytokines (IL-4, IL-5, and IL-13) and alleviated lung inflammation and mucus secretion in an HDM-induced eosinophilic airway-inflammation mouse model. Together, these results indicate that the 5-/12-LO-BLT1/2 cascade plays a role in HDM-induced airway inflammation by mediating the production of TH2 cytokines. Our findings suggest that BLT1/2 may be a potential therapeutic target for patients with HDM-induced allergic asthma.
Collapse
Affiliation(s)
- Donghwan Park
- Department of Biotechnology, College of Life Sciences, Korea University, Seoul 02841, Korea
| | - Dong-Wook Kwak
- Department of Biotechnology, College of Life Sciences, Korea University, Seoul 02841, Korea
| | - Jae-Hong Kim
- Department of Life Sciences, College of Life Sciences, Korea University, Seoul 02841, Korea
| |
Collapse
|
35
|
Ensminger DC, Salvador-Pascual A, Arango BG, Allen KN, Vázquez-Medina JP. Fasting ameliorates oxidative stress: A review of physiological strategies across life history events in wild vertebrates. Comp Biochem Physiol A Mol Integr Physiol 2021; 256:110929. [PMID: 33647461 DOI: 10.1016/j.cbpa.2021.110929] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 02/06/2023]
Abstract
Fasting is a component of many species' life history due to environmental factors or behavioral patterns that limit access to food. Despite metabolic and physiological challenges associated with these life history stages, fasting-adapted wild vertebrates exhibit few if any signs of oxidative stress, suggesting that fasting promotes redox homeostasis. Here we review mammalian, avian, reptilian, amphibian, and piscine examples of animals undergoing fasting during prolonged metabolic suppression (e.g. hibernation and estivation) or energetically demanding processes (e.g. migration and breeding) to better understand the mechanisms underlying fasting tolerance in wild vertebrates. These studies largely show beneficial effects of fasting on redox balance via limited oxidative damage. Though some species exhibit signs of oxidative stress due to energetically or metabolically extreme processes, fasting wild vertebrates largely buffer themselves from the negative consequences of oxidative damage through specific strategies such as elevating antioxidants, selectively maintaining redox balance in critical tissues, or modifying behavioral patterns. We conclude with suggestions for future research to better elucidate the protective effects of fasting on oxidative stress as well as disentangle the impacts from other life history stages. Further research in these areas will facilitate our understanding of the mechanisms wild vertebrates use to mitigate the negative impacts associated with metabolically-extreme life history stages as well as potential translation into therapeutic interventions in non-fasting-adapted species including humans.
Collapse
Affiliation(s)
- David C Ensminger
- Department of Integrative Biology, University of California, Berkeley, USA
| | | | - B Gabriela Arango
- Department of Integrative Biology, University of California, Berkeley, USA
| | - Kaitlin N Allen
- Department of Integrative Biology, University of California, Berkeley, USA
| | | |
Collapse
|
36
|
Zhao W, Li C, Zhang H, Zhou Q, Chen X, Han Y, Chen X. Dihydrotanshinone I Attenuates Plaque Vulnerability in Apolipoprotein E-Deficient Mice: Role of Receptor-Interacting Protein 3. Antioxid Redox Signal 2021; 34:351-363. [PMID: 32323566 DOI: 10.1089/ars.2019.7796] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aims: Vulnerable plaque disruption in advanced atherosclerosis leads to acute thrombus and subsequent myocardial infarction and severely threatens human health. Necroptosis of macrophage involved in the necrotic core is one key factor for plaque vulnerability. Dihydrotanshinone I (DHT) is a natural diterpenoid isolated from Danshen demonstrating effective anti-inflammatory property. It is accepted that inflammation plays a crucial role in the process of atherogenesis. However, whether DHT prevents atherosclerosis is poorly understood. Here, we investigated the effect of DHT on vulnerable plaque in an apolipoprotein E-deficient (ApoE-/-) mice model of atherosclerosis and the underlying protective mechanisms. Results: In the in vitro experiment, first LPS/ZVAD (LPS, lipopolysaccharide; ZVAD, ZVAD-FMK, a cell-permeable pan-caspase inhibitor) stimulated necroptosis of macrophage in a receptor-interacting protein 3 (RIP3)-dependent pathway, which was regulated by Toll-like receptor 4 (TLR4) dimerization. Further study illustrated that activated RIP3 evoked endoplasmic reticulum stress as well as reactive oxygen species generation. Both DHT and RIP3 silence reversed the above phenomena. In the in vivo experiment, aorta and serum samples were collected to determine features of plaque stability, including plaque size, necrotic core area, as well as collagen content in fibrous cap and the expression of related protein molecules. Both DHT and RIP3 inhibitor GSK872 significantly enhanced plaque stability in ApoE-/- mice by reducing oxidative stress, shrinking necrotic core area, increasing collagen content, and decreasing RIP3 expression. Innovation and Conclusion: Our study showed that DHT may stabilize vulnerable plaque by suppressing RIP3-mediated necroptosis of macrophage, which indicates its potential application as a lead compound for cardiovascular treatments, especially for advanced atherosclerosis. Antioxid. Redox Signal. 34, 351-363.
Collapse
Affiliation(s)
- Wenwen Zhao
- Qingdao University Medical College, Qingdao, China
| | - Chunxia Li
- Key Lab for Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical College, Zunyi, China
| | - Hao Zhang
- Qingdao University Medical College, Qingdao, China
| | - Qihui Zhou
- Institute for Translational Medicine, Qingdao University, Qingdao, China.,Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xuehong Chen
- Qingdao University Medical College, Qingdao, China
| | - Yantao Han
- Qingdao University Medical College, Qingdao, China
| | - Xiuping Chen
- Key Lab for Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical College, Zunyi, China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
37
|
Wang R, Chen J, Ding F, Zhang L, Wu X, Wan Y, Hu J, Zhang X, Wu Q. Renal tubular injury induced by glyphosate combined with hard water: the role of cytosolic phospholipase A2. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:130. [PMID: 33569432 PMCID: PMC7867956 DOI: 10.21037/atm-20-7739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background The combined effects of glyphosate and hard water on chronic kidney disease of unknown etiology (CDKu) have attracted much interest, but the mechanisms remain unknown. Cytoplasmic phospholipase A2 (cPLA2) plays a key role in the acute and chronic inflammatory reactions. This study explored the effect of glyphosate combined with hard water on renal tubules and the possible targets and mechanisms involved. Methods In vivo experiments were conducted to investigate the synergistic effects and potential mechanisms of glyphosate and hard water on renal tubular injury in mice. Results Administration of glyphosate in mice resulted in elevated levels of β2-microglobulin (β2-MG), albumin (ALB), and serum creatinine (SCr) compared to control mice. This increase was more pronounce when glyphosate was combined with hard water. In the glyphosate-treated mice, small areas of the kidney revealed fibroblast proliferation and vacuolar degeneration, particularly at the higher dose of 400 mg/kg glyphosate. However, the combination of glyphosate and hard water induced an even greater degree of pathological changes in the kidney. Immunofluorescence and western blot analyses showed that glyphosate and hard water had a coordinated effect on calcium ions (Ca2+)-activated phospholipase A2 and the activation may play a key role in inflammation and renal tubular injury. Exposure to glyphosate alone or glyphosate plus hard water increased the levels of oxidative stress markers and inflammatory biomarkers, namely, thromboxane A2 (TX-A2), leukotriene B4 (LTB4), prostaglandin E2 (PGE2), nitric oxide synthase (NOS), and nitric oxide (NO). Parameters of oxidative stress, including the levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were decreased. Further analysis showed that the levels of these biomarkers were significantly different between the mice treated with glyphosate plus hard water and the mice treated with glyphosate alone. Conclusions These findings suggested that hard water combined with glyphosate can induce renal tubular injury in mice, and this may involve mitogen-activated protein kinases (MAPK)/cytosolic phospholipase A2 (cPLA2)/arachidonic acid (AA) and its downstream factors.
Collapse
Affiliation(s)
- Ruojing Wang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China
| | - Jing Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fan Ding
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China
| | - Lin Zhang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China
| | - Xuan Wu
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Xiaoyan Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qing Wu
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Su W, Shi J, Zhao Y, Li H, Lei L. Gingival fibroblasts dynamically reprogram cellular metabolism during infection of Porphyromonas gingivalis. Arch Oral Biol 2020; 121:104963. [PMID: 33157496 DOI: 10.1016/j.archoralbio.2020.104963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The purpose of the present study was to explore the sequential changes in the cellular metabolism in gingival fibroblasts (GFs) in response toPorphyromonas gingvalis (P. gingivalis) ATCC33277 infection. DESIGN GFs were treated withP. gingivalis at the MOI of 50 for 4, 24 and 48 h to mimic the early, medium, and late phase in the bacterial infection. LDH assay and cell counting kit-8 were utilized to explore cell death and proliferation. Real-time PCR was utilized to explore the gene transcription of pro-inflammatory genes. The relative levels of biomolecules in GFs were measured by gas chromatography-mass spectrometry. Principal component analysis and orthogonal partial least-squares-discriminant analysis were performed to visualize the metabolic difference among experimental groups. In addition, pathway analysis was conducted regarding differential metabolites in GFs. RESULTS P. gingivalis infection triggered significant gene transcription of IL-1β, IL 6, MCP 1, and MMP 1 in GFs. In addition, P. gingivalis stimulated cell proliferation of GFs at MOI of 10, 50 and 250. Moreover, P. gingivalis triggered significant cell death at higher MOI. 69, 173 and 148 metabolites were qualitatively detected at 4, 24 and 48 h after P. gingivalis infection respectively in GFs, showing a sequential change of different phase. Kyoto Encyclopedia of Genes and Genomes pathway analysis demonstrated that ATP-binding cassette transporters, glutathione, purine and pyrimidine metabolism was significantly altered in different phase. CONCLUSIONS Human GFs may sequentially rewire metabolomics to shape the inflammatory responses and support the proliferation of host cells during P. gingivalis infection.
Collapse
Affiliation(s)
- Wenqi Su
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China; Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jiahong Shi
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China; Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yunhe Zhao
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China; Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Houxuan Li
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China; Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Lang Lei
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China; Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
39
|
Xie N, Zhang L, Gao W, Huang C, Huber PE, Zhou X, Li C, Shen G, Zou B. NAD + metabolism: pathophysiologic mechanisms and therapeutic potential. Signal Transduct Target Ther 2020; 5:227. [PMID: 33028824 PMCID: PMC7539288 DOI: 10.1038/s41392-020-00311-7] [Citation(s) in RCA: 408] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/04/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) and its metabolites function as critical regulators to maintain physiologic processes, enabling the plastic cells to adapt to environmental changes including nutrient perturbation, genotoxic factors, circadian disorder, infection, inflammation and xenobiotics. These effects are mainly achieved by the driving effect of NAD+ on metabolic pathways as enzyme cofactors transferring hydrogen in oxidation-reduction reactions. Besides, multiple NAD+-dependent enzymes are involved in physiology either by post-synthesis chemical modification of DNA, RNA and proteins, or releasing second messenger cyclic ADP-ribose (cADPR) and NAADP+. Prolonged disequilibrium of NAD+ metabolism disturbs the physiological functions, resulting in diseases including metabolic diseases, cancer, aging and neurodegeneration disorder. In this review, we summarize recent advances in our understanding of the molecular mechanisms of NAD+-regulated physiological responses to stresses, the contribution of NAD+ deficiency to various diseases via manipulating cellular communication networks and the potential new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lu Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Wei Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Peter Ernst Huber
- CCU Molecular and Radiation Oncology, German Cancer Research Center; Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Xiaobo Zhou
- First Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Changlong Li
- West China School of Basic Medical Sciences & Forensic Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Guobo Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Bingwen Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
- CCU Molecular and Radiation Oncology, German Cancer Research Center; Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
- Department of Thoracic Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
40
|
Liu M, Zhang G, Song M, Wang J, Shen C, Chen Z, Huang X, Gao Y, Zhu C, Lin C, Mi S, Liu C. Activation of Farnesoid X Receptor by Schaftoside Ameliorates Acetaminophen-Induced Hepatotoxicity by Modulating Oxidative Stress and Inflammation. Antioxid Redox Signal 2020; 33:87-116. [PMID: 32037847 DOI: 10.1089/ars.2019.7791] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aims: Acetaminophen (APAP) overdose leads to acute liver injury by inducing hepatic mitochondrial oxidative stress and inflammation. However, the molecular mechanisms involved are still unclear. Farnesoid X receptor (FXR) serves as a therapeutic target for the treatment of liver disorders, whose activation has been proved to protect APAP-induced hepatotoxicity. In this study, we examined whether FXR activation by schaftoside (SS), a naturally occurring flavonoid from Desmodium styracifolium, could protect mice against APAP-induced hepatotoxicity via regulation of oxidative stress and inflammation. Results: We first found that SS exhibited potent protective effects against APAP-induced hepatotoxicity in mice. The study reveals that SS is a potential agonist of FXR, which protects mice from hepatotoxicity mostly via regulation of oxidative stress and inflammation. Mechanistically, the hepatoprotective SS is associated with the induction of the genes of phase II detoxifying enzymes (e.g., UGT1A1, GSTα1), phase III drug efflux transporters (e.g., bile salt export pump, organic solvent transporter protein β), and glutathione metabolism-related enzymes (e.g., glutamate-cysteine ligase modifier subunit [Gclm], glutamate-cysteine ligase catalytic subunit [Gclc]). More importantly, SS-mediated FXR activation could fine-tune the pro- and anti-inflammatory eicosanoids generation via altering eicosanoids metabolic pathway, thereby resulting in decrease of hepatic inflammation. In contrast, FXR deficiency can abrogate the above effects. Innovation and Conclusion: Our results provided the direct evidence that FXR activation by SS could attenuate APAP-induced hepatotoxicity via inhibition of nuclear factor kappa-B signaling and fine-tuning the generation of proinflammatory mediators' eicosanoids. Our findings indicate that strategies to activate FXR signaling in hepatocytes may provide a promising therapeutic approach to alleviate liver injury induced by APAP overdose.
Collapse
Affiliation(s)
- Meijing Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Beijing Advanced Innovation Center for Big Data-based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Guohui Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai, China
| | - Meng Song
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jueyu Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuangpeng Shen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhao Chen
- The Fifth Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xingan Huang
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Gao
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China.,Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Chenchen Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chaozhan Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Suiqing Mi
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Changhui Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
41
|
Jaeger M, Matzaraki V, Aguirre-Gamboa R, Gresnigt MS, Chu X, Johnson MD, Oosting M, Smeekens SP, Withoff S, Jonkers I, Perfect JR, van de Veerdonk FL, Kullberg BJ, Joosten LAB, Li Y, Wijmenga C, Netea MG, Kumar V. A Genome-Wide Functional Genomics Approach Identifies Susceptibility Pathways to Fungal Bloodstream Infection in Humans. J Infect Dis 2020; 220:862-872. [PMID: 31241743 DOI: 10.1093/infdis/jiz206] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/23/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Candidemia, one of the most common causes of fungal bloodstream infection, leads to mortality rates up to 40% in affected patients. Understanding genetic mechanisms for differential susceptibility to candidemia may aid in designing host-directed therapies. METHODS We performed the first genome-wide association study on candidemia, and we integrated these data with variants that affect cytokines in different cellular systems stimulated with Candida albicans. RESULTS We observed strong association between candidemia and a variant, rs8028958, that significantly affects the expression levels of PLA2G4B in blood. We found that up to 35% of the susceptibility loci affect in vitro cytokine production in response to Candida. Furthermore, potential causal genes located within these loci are enriched for lipid and arachidonic acid metabolism. Using an independent cohort, we also showed that the numbers of risk alleles at these loci are negatively correlated with reactive oxygen species and interleukin-6 levels in response to Candida. Finally, there was a significant correlation between susceptibility and allelic scores based on 16 independent candidemia-associated single-nucleotide polymorphisms that affect monocyte-derived cytokines, but not with T cell-derived cytokines. CONCLUSIONS Our results prioritize the disturbed lipid homeostasis and oxidative stress as potential mechanisms that affect monocyte-derived cytokines to influence susceptibility to candidemia.
Collapse
Affiliation(s)
- Martin Jaeger
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vasiliki Matzaraki
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.,University of Groningen, University Medical Center Groningen, Department of Genetics, the Netherlands
| | - Raúl Aguirre-Gamboa
- University of Groningen, University Medical Center Groningen, Department of Genetics, the Netherlands
| | - Mark S Gresnigt
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Xiaojing Chu
- University of Groningen, University Medical Center Groningen, Department of Genetics, the Netherlands
| | - Melissa D Johnson
- Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina
| | - Marije Oosting
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sanne P Smeekens
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sebo Withoff
- University of Groningen, University Medical Center Groningen, Department of Genetics, the Netherlands
| | - Iris Jonkers
- University of Groningen, University Medical Center Groningen, Department of Genetics, the Netherlands
| | - John R Perfect
- Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina
| | - Frank L van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bart-Jan Kullberg
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Yang Li
- University of Groningen, University Medical Center Groningen, Department of Genetics, the Netherlands
| | - Cisca Wijmenga
- University of Groningen, University Medical Center Groningen, Department of Genetics, the Netherlands.,K.G. Jebsen Coeliac Disease Research Centre, Department of Immunology, University of Oslo, Norway
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.,Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Craiova, Romania
| | - Vinod Kumar
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.,University of Groningen, University Medical Center Groningen, Department of Genetics, the Netherlands
| |
Collapse
|
42
|
Moldogazieva NT, Mokhosoev IM, Mel'nikova TI, Zavadskiy SP, Kuz'menko AN, Terentiev AA. Dual Character of Reactive Oxygen, Nitrogen, and Halogen Species: Endogenous Sources, Interconversions and Neutralization. BIOCHEMISTRY (MOSCOW) 2020; 85:S56-S78. [PMID: 32087054 DOI: 10.1134/s0006297920140047] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oxidative stress resulting from accumulation of reactive oxygen, nitrogen, and halogen species (ROS, RNS, and RHS, respectively) causes the damage of cells and biomolecules. However, over the long evolutionary time, living organisms have developed the mechanisms for adaptation to oxidative stress conditions including the activity of the antioxidant system (AOS), which maintains low intracellular levels of RONS (ROS and RNS) and RHS. Moreover, living organisms have adapted to use low concentrations of these electrophiles for the regulation of cell functions through the reversible post-translational chemical modifications of redox-sensitive amino acid residues in intracellular effectors of signal transduction pathways (protein kinases and protein phosphatases), transcription factors, etc. An important fine-tuning mechanism that ensures involvement of RONS and RHS in the regulation of physiological processes is interconversion between different reactive species. This review focuses on the complex networks of interacting RONS and RHS types and their endogenous sources, such as NOX family of NADPH oxidases, complexes I and III of the mitochondrial electron transport chain, NO synthases, cytochrome P450-containing monooxygenase system, xanthine oxidoreductase, and myeloperoxidases. We highlight that kinetic parameters of reactions involving RONS and RHS determine the effects of these reactive species on cell functions. We also describe the functioning of enzymatic and non-enzymatic AOS components and the mechanisms of RONS and RHS scavenging under physiological conditions. We believe that analysis of interactions between RONS and relationships between different endogenous sources of these compounds will contribute to better understanding of their role in the maintenance of cell redox homeostasis as well as initiation and progression of diseases.
Collapse
Affiliation(s)
- N T Moldogazieva
- Sechenov First Moscow State Medical University, Moscow, 119991, Russia.
| | - I M Mokhosoev
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia.
| | - T I Mel'nikova
- Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - S P Zavadskiy
- Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - A N Kuz'menko
- Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - A A Terentiev
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| |
Collapse
|
43
|
Inhibition of Proinflammatory Enzymes and Attenuation of IL-6 in LPS-Challenged RAW 264.7 Macrophages Substantiates the Ethnomedicinal Use of the Herbal Drug Homalium bhamoense Cubitt & W.W.Sm. Int J Mol Sci 2020; 21:ijms21072421. [PMID: 32244489 PMCID: PMC7178040 DOI: 10.3390/ijms21072421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/31/2022] Open
Abstract
Commonly used to treat skin injuries in Asia, several Homalium spp. have been found to promote skin regeneration and wound healing. While ethnobotanical surveys report the use of H. bhamoense trunk bark as a wound salve, there are no studies covering bioactive properties. As impaired cutaneous healing is characterized by excessive inflammation, a series of inflammatory mediators involved in wound healing were targeted with a methanol extract obtained from H. bhamoense trunk bark. Results showed concentration-dependent inhibition of hyaluronidase and 5-lipoxygenase upon exposure to the extract, with IC50 values of 396.9 ± 25.7 and 29.0 ± 2.3 µg mL−1, respectively. H. bhamoense trunk bark extract also exerted anti-inflammatory activity by significantly suppressing the overproduction of interleukin 6 (IL-6) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages at concentrations ranging from 125 to 1000 µg mL−1, while leading to a biphasic effect on nitric oxide (NO) and tumor necrosis factor alpha (TNF-α) levels. The phenolic profile was elucidated by HPLC-DAD, being characterized by the occurrence of ellagic acid as the main constituent, in addition to a series of methylated derivatives, which might underlie the observed anti-inflammatory effects. Our findings provide in vitro data on anti-inflammatory ability of H. bhamoense trunk bark, disclosing also potential cutaneous toxicity as assessed in HaCaT keratinocytes.
Collapse
|
44
|
The Role of Hydrogen Peroxide and Peroxiredoxins throughout the Cell Cycle. Antioxidants (Basel) 2020; 9:antiox9040280. [PMID: 32224940 PMCID: PMC7222192 DOI: 10.3390/antiox9040280] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 01/22/2023] Open
Abstract
Hydrogen peroxide (H2O2) is an oxidizing agent that induces cellular damage at inappropriate concentrations and gives rise to an arrest during cell cycle progression, causing cell death. Recent evidence indicates that H2O2 also acts as a promoter for cell cycle progression by oxidizing specific thiol proteins. The intracellular concentration of H2O2 is regulated tightly, enabling its use as a cellular signaling molecule while minimizing its potential to cause cellular damage. Peroxiredoxins (Prxs) have peroxidase activity toward H2O2, organic hydroperoxides, and peroxynitrite for protecting cells from oxidative stress. They are suggested to work as signaling mediators, allowing the local accumulation of H2O2 by inactivating their peroxidase activity uniquely compared with other antioxidant proteins such as catalase and glutathione peroxidase. Given that Prxs are highly sensitive to oxidation by H2O2, they act as sensors and transducers of H2O2 signaling via transferring their oxidation state to effector proteins. The concentrations of intracellular H2O2 increase as the cell cycle progresses from G1 to mitosis. Here, we summarize the roles of Prxs with regard to the regulation of cell cycle-dependent kinase activity and anaphase-promoting complex/cyclosome in terms of changes in H2O2 levels. Protection of the cell from unwanted progression of the cell cycle is suggested to be a role of Prx. We discuss the possible roles of Prxs to control H2O2 levels.
Collapse
|
45
|
Negre-Salvayre A, Guerby P, Gayral S, Laffargue M, Salvayre R. Role of reactive oxygen species in atherosclerosis: Lessons from murine genetic models. Free Radic Biol Med 2020; 149:8-22. [PMID: 31669759 DOI: 10.1016/j.freeradbiomed.2019.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 12/19/2022]
Abstract
Atherosclerosis is a multifactorial chronic and inflammatory disease of medium and large arteries, and the major cause of cardiovascular morbidity and mortality worldwide. The pathogenesis of atherosclerosis involves a number of risk factors and complex events including hypercholesterolemia, endothelial dysfunction, increased permeability to low density lipoproteins (LDL) and their sequestration on extracellular matrix in the intima of lesion-prone areas. These events promote LDL modifications, particularly by oxidation, which generates acute and chronic inflammatory responses implicated in atherogenesis and lesion progression. Reactive oxygen species (ROS) (which include both free radical and non-free radical oxygen intermediates), play a key-role at each step of atherogenesis, in endothelial dysfunction, LDL oxidation, and inflammatory events involved in the initiation and development of atherosclerosis lesions. Most advanced knowledge supporting the "oxidative theory of atherosclerosis" i.e. the nature and the cellular sources of ROS and antioxidant defences, as well as the mechanisms involved in the redox balance, is based on the use of genetically engineered animals, i.e. transgenic, genetically modified, or altered for systems producing or neutralizing ROS in the vessels. This review summarizes the results obtained from animals genetically manipulated for various sources of ROS or antioxidant defences in the vascular wall, and their relevance (advance or limitation), for understanding the place and role of ROS in atherosclerosis.
Collapse
Affiliation(s)
| | - Paul Guerby
- Inserm U-1048, Université de Toulouse, France; Pôle de gynécologie obstétrique, Hôpital Paule-de-Viguier, CHU de Toulouse, France
| | | | | | | |
Collapse
|
46
|
Basmaeil Y, Rashid MA, Khatlani T, AlShabibi M, Bahattab E, Abdullah ML, Abomaray F, Kalionis B, Massoudi S, Abumaree M. Preconditioning of Human Decidua Basalis Mesenchymal Stem/Stromal Cells with Glucose Increased Their Engraftment and Anti-diabetic Properties. Tissue Eng Regen Med 2020; 17:209-222. [PMID: 32077075 PMCID: PMC7105536 DOI: 10.1007/s13770-020-00239-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/10/2019] [Accepted: 01/06/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Mesenchymal stem/stromal cells (MSCs) from the decidua basalis (DBMSCs) of the human placenta have important functions that make them potential candidates for cellular therapy. Previously, we showed that DBMSC functions do not change significantly in a high oxidative stress environment, which was induced by hydrogen peroxide (H2O2) and immune cells. Here, we studied the consequences of glucose, another oxidative stress inducer, on the phenotypic and functional changes in DBMSCs. Methods: DBMSCs were exposed to a high level of glucose, and its effect on DBMSC phenotypic and functional properties was determined. DBMSC expression of oxidative stress and immune molecules after exposure to glucose were also identified. Results: Conditioning of DBMSCs with glucose improved their adhesion and invasion. Glucose also increased DBMSC expression of genes with survival, proliferation, migration, invasion, anti-inflammatory, anti-chemoattractant and antimicrobial properties. In addition, DBMSC expression of B7H4, an inhibitor of T cell proliferation was also enhanced by glucose. Interestingly, glucose modulated DBMSC expression of genes involved in insulin secretion and prevention of diabetes. Conclusion: These data show the potentially beneficial effects of glucose on DBMSC functions. Preconditioning of DBMSCs with glucose may therefore be a rational strategy for increasing their therapeutic potential by enhancing their engraftment efficiency. In addition, glucose may program DBMSCs into insulin producing cells with ability to counteract inflammation and infection associated with diabetes. However, future in vitro and in vivo studies are essential to investigate the findings of this study further. Electronic supplementary material The online version of this article (10.1007/s13770-020-00239-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yasser Basmaeil
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Mail Code 1515, P.O. Box 22490, Riyadh, 11426, Kingdom of Saudi Arabia.
| | - Manar Al Rashid
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Mail Code 1515, P.O. Box 22490, Riyadh, 11426, Kingdom of Saudi Arabia
| | - Tanvir Khatlani
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Mail Code 1515, P.O. Box 22490, Riyadh, 11426, Kingdom of Saudi Arabia
| | - Manal AlShabibi
- National Center for Stem Cell Technology, Life Sciences and Environment Research Institute, King Abdulaziz City for Science and Technology, P.O Box 6086, Riyadh, 11442, Kingdom of Saudi Arabia
| | - Eman Bahattab
- National Center for Stem Cell Technology, Life Sciences and Environment Research Institute, King Abdulaziz City for Science and Technology, P.O Box 6086, Riyadh, 11442, Kingdom of Saudi Arabia
| | - Meshan L Abdullah
- Experimental Medicine, King Abdullah International Medical Research Center MNG-HA, Ali Al Arini, Ar Rimayah, Riyadh, 11481, Kingdom of Saudi Arabia
| | - Fawaz Abomaray
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 14186, Stockholm, Sweden
| | - Bill Kalionis
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre and University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Obstetrics and Gynaecology, Royal Women's Hospital, 20 Flemington Rd, Parkville, VIC, 3052, Australia
| | - Safia Massoudi
- Department of Forensic Biology, College of Forensic Sciences, Naif Arab University for Security Sciences, Khurais Rd, Ar Rimayah, Riyadh, 14812, Kingdom of Saudi Arabia
| | - Mohammad Abumaree
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Mail Code 1515, P.O. Box 22490, Riyadh, 11426, Kingdom of Saudi Arabia.,College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Mail Code 3124, P.O. Box 3660, Riyadh, 11481, Kingdom of Saudi Arabia
| |
Collapse
|
47
|
Firczuk M, Bajor M, Graczyk-Jarzynka A, Fidyt K, Goral A, Zagozdzon R. Harnessing altered oxidative metabolism in cancer by augmented prooxidant therapy. Cancer Lett 2020; 471:1-11. [DOI: 10.1016/j.canlet.2019.11.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/20/2019] [Accepted: 11/30/2019] [Indexed: 12/17/2022]
|
48
|
Dhummakupt ES, Rizzo GM, Feasel M, Mach PM, Tran BQ, Carmany DO, Demond PS, McBride EM, Maughan M, Sekowski JW, Glaros T. Proteomic and Metabolomic Profiling Identify Plasma Biomarkers for Exposure to Ultra-low Levels of Carfentanil. Toxicol Sci 2020; 167:524-535. [PMID: 30321427 DOI: 10.1093/toxsci/kfy259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Despite the recent epidemic of fentanyl abuse, there are few validated assays capable of rapidly detecting these compounds. In order to improve the ability to detect carfentanil at physiologically relevant concentrations, we developed a systems biology approach to discover host-based markers which are specifically amplified upon exposure in a rabbit model. For this work, two "omics" pipelines utilizing mass spectrometry were developed and leveraged. First, a proteomics pipeline was developed to interrogate the blood plasma for protein-based biomarkers. Due to the incredible dynamic range of the plasma protein content, a multi-dimensional fractionation technique was used to partition and more accurately investigate the circulating plasma proteome. Isobaric tandem mass tags were integrated into the workflow to make quantitative assessments across all animals for an extended time course post-exposure. In addition to the proteomics efforts, blood plasma was also processed through an untargeted metabolomics pipeline. This approach allows for the identification of >800 small molecule features. By processing and analyzing data sets in parallel, we were able to identify a unique fingerprint of protein and metabolite perturbations that manifest following exposure to carfentanil.
Collapse
Affiliation(s)
- Elizabeth S Dhummakupt
- Biosciences Division, BioDefense Branch, US Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD 21010, USA
| | | | - Michael Feasel
- Biosciences Division, BioDefense Branch, US Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD 21010, USA
| | - Phillip M Mach
- Biosciences Division, BioDefense Branch, US Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD 21010, USA
| | | | | | | | - Ethan M McBride
- Biosciences Division, BioDefense Branch, US Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD 21010, USA
| | | | - Jennifer W Sekowski
- Biosciences Division, BioDefense Branch, US Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD 21010, USA
| | - Trevor Glaros
- Biosciences Division, BioDefense Branch, US Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD 21010, USA
| |
Collapse
|
49
|
From Past to Present: The Link Between Reactive Oxygen Species in Sperm and Male Infertility. Antioxidants (Basel) 2019; 8:antiox8120616. [PMID: 31817049 PMCID: PMC6943565 DOI: 10.3390/antiox8120616] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 01/13/2023] Open
Abstract
Reactive oxygen species (ROS) can be generated in mammalian cells via both enzymatic and non-enzymatic mechanisms. In sperm cells, while ROS may function as signalling molecules for some physiological pathways, the oxidative stress arising from the ubiquitous production of these compounds has been implicated in the pathogenesis of male infertility. In vitro studies have undoubtedly shown that spermatozoa are indeed susceptible to free radicals. However, many reports correlating ROS with sperm function impairment are based on an oxidative stress scenario created in vitro, lacking a more concrete observation of the real capacity of sperm in the production of ROS. Furthermore, sample contamination by leukocytes and the drawbacks of many dyes and techniques used to measure ROS also greatly impact the reliability of most studies in this field. Therefore, in addition to a careful scrutiny of the data already available, many aspects of the relationship between ROS and sperm physiopathology are still in need of further controlled and solid experiments before any definitive conclusions are drawn.
Collapse
|
50
|
Pharmacological inhibition of p38 potentiates antimicrobial peptide TP4-induced cell death in glioblastoma cells. Mol Cell Biochem 2019; 464:1-9. [PMID: 31673920 DOI: 10.1007/s11010-019-03643-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022]
Abstract
Glioblastoma is the most common and deadly type of brain cancer. The poor prognosis may be largely attributed to inadequate disease response to current chemotherapeutic agents. Activation of p38 is associated with deleterious outcomes in glioblastoma patients, as its signaling mediates chemoresistance mechanisms. Antimicrobial peptide tilapia piscidin (TP) 4 was identified from Nile tilapia (Oreochromis niloticus) and exhibits strong bactericidal effects on Gram-positive and Gram-negative bacteria. TP4 also has anticancer activity toward human triple-negative breast cancer cells and glioblastoma cells. In the present study, we tested the cytotoxic effects of combined TP4 and p38 inhibitors on glioblastoma U251 cells. We found that the combination of TP4 and p38 inhibitors (SB202190 and VX-745) enhanced cytotoxicity in U251 glioblastoma cells but not noncancerous neural cells. Cytotoxicity from the combination treatments proceeded via necrosis and not apoptosis. Mechanistically, SB202190 potentiated TP4-induced mitochondrial dysfunction, reactive oxygen species generation and unbalanced antioxidant status, which resulted in necrotic cell death. Thus, we demonstrated for the first time that combinations of TP4 and p38 inhibitors have the potential to preferentially target glioblastoma cells, while sparing noncancerous neural cells.
Collapse
|