1
|
Tjandrawinata RR, Amalia N, Tandi YYP, Athallah AF, Afif Wibowo C, Aditya MR, Muhammad AR, Azizah MR, Humardani FM, Nojaid A, Christabel JA, Agnuristyaningrum A, Nurkolis F. The forgotten link: how the oral microbiome shapes childhood growth and development. FRONTIERS IN ORAL HEALTH 2025; 6:1547099. [PMID: 39989601 PMCID: PMC11842321 DOI: 10.3389/froh.2025.1547099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/27/2025] [Indexed: 02/25/2025] Open
Abstract
Childhood stunting, defined as impaired linear growth and development, remains a significant global health challenge with long-term consequences on cognitive and physical well-being. Emerging evidence highlights the pivotal role of the oral microbiome-a dynamic microbial ecosystem-in influencing nutritional status, immune response, and overall systemic health. This review explores the intricate interplay between the oral microbiome and stunting, emphasizing mechanisms such as microbial dysbiosis, its impact on nutrient absorption, and immune modulation. Disruptions in the oral microbiome can lead to nutrient malabsorption and systemic inflammation, further exacerbating growth impairments in children. Furthermore, the potential for microbiome-targeted diagnostics and interventions, including probiotics and prebiotics, offers novel strategies to address stunting. A deeper understanding of these interactions may inform innovative diagnostic tools and therapeutic interventions aimed at mitigating stunting through oral microbiome modulation. Integrating oral microbiome research into stunting prevention efforts could provide valuable insights for public health strategies to improve child growth and development, particularly in resource-limited settings. Future research should focus on elucidating the molecular pathways linking the oral microbiome to stunting and developing personalized interventions that optimize microbiome health in early life.
Collapse
Affiliation(s)
- Raymond Rubianto Tjandrawinata
- Center for Pharmaceutical and Nutraceutical Research and Policy, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Nurlinah Amalia
- Medical Study Program, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Master Program of Biomedical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Medical Research Center of Indonesia, Surabaya, Indonesia
| | | | - Ariq Fadhil Athallah
- Medical Study Program, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Caesaroy Afif Wibowo
- Medical Study Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Muhammad Reva Aditya
- Medical Study Program, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Master Program of Biomedical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Athaya Rahmanardi Muhammad
- Medical Study Program, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Master Program of Biomedical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Maghfira Rahma Azizah
- Medical Study Program, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Master Program of Biomedical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | | | - Ammar Nojaid
- Medical Study Program, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | | | | | - Fahrul Nurkolis
- Medical Research Center of Indonesia, Surabaya, Indonesia
- Master of Basic Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
2
|
Boulares A, Jdidi H, Bragazzi NL. Impact of Mouthwash-Induced Oral Microbiome Disruption on Alzheimer's Disease Risk: A Perspective Review. Int Dent J 2025; 75:45-50. [PMID: 39379282 PMCID: PMC11806309 DOI: 10.1016/j.identj.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 10/10/2024] Open
Abstract
The widespread use of mouthwashes, particularly those containing chlorhexidine (CHX), has raised concerns about their impact on the oral microbiome and potential systemic health effects. This perspective review examines the current evidence linking CHX mouthwash use to disruptions in the oral microbiome and explores the potential indirect implications for Alzheimer's disease (AD) risk. CHX mouthwash is effective in reducing dental plaque and gingival inflammation, but it also significantly alters the composition of the oral microbiome, decreasing the abundance of nitrate-reducing bacteria critical for nitric oxide (NO) production. This disruption can lead to increased blood pressure, a major risk factor for AD. Given the established connection between hypertension and AD, the long-term use of CHX mouthwash may indirectly contribute to the onset of AD. However, the relationship between CHX mouthwash use and AD remains largely indirect, necessitating further longitudinal and cohort studies to investigate whether a direct causal link exists. The review aims to highlight the importance of maintaining a balanced oral microbiome for both oral and systemic health and calls for more research into safer oral hygiene practices and their potential impacts on neurodegenerative disease risk.
Collapse
Affiliation(s)
- Ayoub Boulares
- Laboratory Mobility, Faculty of Sport Sciences-STAPS, Aging & Exercise-ER20296, University of Poitiers, Poitiers, France
| | - Hela Jdidi
- Laboratory Mobility, Faculty of Sport Sciences-STAPS, Aging & Exercise-ER20296, University of Poitiers, Poitiers, France
| | - Nicola Luigi Bragazzi
- Department of Food and Drugs, Human Nutrition Unit (HNU), Medical School, University of Parma, Parma, Italy; Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Rashid MH, Kumar SP, Rajan R, Mamillapalli A. Salivary microbiota dysbiosis and elevated polyamine levels contribute to the severity of periodontal disease. BMC Oral Health 2025; 25:2. [PMID: 39748343 PMCID: PMC11697722 DOI: 10.1186/s12903-024-05381-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND The oral cavity is a complex environment which harbours the second largest and most diverse microflora after the gastrointestinal tract. The bacteriome in the oral cavity plays a pivotal role in promoting the health and well-being of human beings. Gingivitis, an inflammation of the gingival tissue, arises due to plaque accumulation on the teeth, often leads to periodontitis. Progression of periodontitis resulting in clinical attachment loss, bone loss and eventually the tooth loss is poorly understood. The present study explores the transitions in microbioata, oxidative stress and polyamine levels during the disease evolution which can contribute to developing effective therapeutic approaches. METHODS Saliva samples were collected from seventy-two individuals after procuring informed consent who were either healthy, gingivitis or stage-specific periodontitis patients. Periodontitis stage was confirmed by clinical and radiographic analysis. Microbiota analysis was carried out by 16S rRNA sequencing on the Nanopore PromethIONsystem platform of Oxford Nanopore technologies. Polyamine levels were quantified with fluorescence spectrophotometer. Ornithine decarboxylase quantification was evaluated by ELISA method. Antioxidant levels of the salivary samples were measured by DPPH, SOD, and catalase assays. Autophagy was measured by acid phosphatase assay. RESULT The salivary microbiota exhibited significant changes in their abundance and diversity between healthy individuals and those with conditions such as gingivitis, and chronic periodontitis. A significant increase in polyamines and ornithine decarboxylase was found in gingivitis and various stages of periodontitis. Elevated oxidative stress observed in gingivitis and periodontitis could have resulted in cell death. CONCLUSION The current study shows the role of salivary microbiota and polyamines in gingivitis and different periodontitis stages. The progressive elevation of Streptococcus levels from gingivitis to periodontitis, coupled with polyamine concentrations, may serve as a promising identification marker for assessing the severity of periodontal disease. Insight into the oral bacterial flora and associated physiological changes provide a foundation for targeted therapeutic interventions in gingivitis and periodontitis diseases emphasising the importance of personalised oral health management strategies.
Collapse
Affiliation(s)
- Md Haroon Rashid
- Department of Life Sciences, GITAM (Deemed to be University), GITAM School of Science, Visakhapatnam, Andhra Pradesh, 530 045, India
| | - Sandhya Pavan Kumar
- Department of Periodontics and Oral Implantology, GITAM Dental College and Hospital, Visakhapatnam, Andhra Pradesh, 530 045, India
| | - Resma Rajan
- 3Sanzyme Biologics Pvt. Ltd., 2nd Floor, Sattva Signature Tower # 8-2-472/1/A/B/SF-3, Road No.1, Banjara Hills, Hyderabad, 500 034, India
| | - Anitha Mamillapalli
- Department of Life Sciences, GITAM (Deemed to be University), GITAM School of Science, Visakhapatnam, Andhra Pradesh, 530 045, India.
| |
Collapse
|
4
|
Bostanghadiri N, Kouhzad M, Taki E, Elahi Z, Khoshbayan A, Navidifar T, Darban-Sarokhalil D. Oral microbiota and metabolites: key players in oral health and disorder, and microbiota-based therapies. Front Microbiol 2024; 15:1431785. [PMID: 39228377 PMCID: PMC11368800 DOI: 10.3389/fmicb.2024.1431785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024] Open
Abstract
The review aimed to investigate the diversity of oral microbiota and its influencing factors, as well as the association of oral microbiota with oral health and the possible effects of dysbiosis and oral disorder. The oral cavity harbors a substantial microbial burden, which is particularly notable compared to other organs within the human body. In usual situations, the microbiota exists in a state of equilibrium; however, when this balance is disturbed, a multitude of complications arise. Dental caries, a prevalent issue in the oral cavity, is primarily caused by the colonization and activity of bacteria, particularly streptococci. Furthermore, this environment also houses other pathogenic bacteria that are associated with the onset of gingival, periapical, and periodontal diseases, as well as oral cancer. Various strategies have been employed to prevent, control, and treat these disorders. Recently, techniques utilizing microbiota, like probiotics, microbiota transplantation, and the replacement of oral pathogens, have caught the eye. This extensive examination seeks to offer a general view of the oral microbiota and their metabolites concerning oral health and disease, and also the resilience of the microbiota, and the techniques used for the prevention, control, and treatment of disorders in this specific area.
Collapse
Affiliation(s)
- Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mobina Kouhzad
- Department of Genetics, Faculty of Science, Islamic Azad University North Tehran Branch, Tehran, Iran
| | - Elahe Taki
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tahereh Navidifar
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Jameie M, Ahli B, Ghadir S, Azami M, Amanollahi M, Ebadi R, Rafati A, Naser Moghadasi A. The hidden link: How oral and respiratory microbiomes affect multiple sclerosis. Mult Scler Relat Disord 2024; 88:105742. [PMID: 38964239 DOI: 10.1016/j.msard.2024.105742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Extensive research has explored the role of gut microbiota in multiple sclerosis (MS). However, the impact of microbial communities in the oral cavity and respiratory tract on MS is an emerging area of investigation. PURPOSE We aimed to review the current literature related to the nasal, oral, and lung microbiota in people with MS (PwMS). METHODS We conducted a narrative review of clinical and preclinical original studies on PubMed that explored the relationship between the bacterial or viral composition of the nasal, lung, and oral microbiota and MS. Additionally, to find relevant studies not retrieved initially, we also searched for references in related review papers, as well as the references cited within the included studies. RESULTS AND CONCLUSIONS Thirteen studies were meticulously reviewed in three sections; oral microbiota (n = 8), nasal microbiota (n = 3), and lung microbiota (n = 2), highlighting considerable alterations in the oral and respiratory microbiome of PwMS compared to healthy controls (HCs). Genera like Aggregatibacter and Streptococcus were less abundant in the oral microbiota of PwMS compared to HCs, while Staphylococcus, Leptotrichia, Fusobacterium, and Bacteroides showed increased abundance in PwMS. Additionally, the presence of specific bacteria, including Streptococcus sanguinis, within the oral microbiota was suggested to influence Epstein-Barr virus reactivation, a well-established risk factor for MS. Studies related to the nasal microbiome indicated elevated levels of specific Staphylococcus aureus toxins, as well as nasal glial cell infection with human herpes virus (HHV)-6 in PwMS. Emerging research on lung microbiome in animal models demonstrated that manipulating the lung microbiome towards lipopolysaccharide-producing bacteria might suppress MS symptoms. These findings open avenues for potential therapeutic strategies. However, further research is crucial to fully understand the complex interactions between the microbiome and MS. This will help identify the most effective timing, bacterial strains, and modulation techniques.
Collapse
Affiliation(s)
- Melika Jameie
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran; Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Ahli
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Ghadir
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Mobin Azami
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mobina Amanollahi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Ebadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Rafati
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
O'Malley MA. The concept of balance in microbiome research. Bioessays 2024; 46:e2400050. [PMID: 38924108 DOI: 10.1002/bies.202400050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
Microbiome research is changing how ecosystems, including animal bodies, are understood. In the case of humans, microbiome knowledge is transforming medical approaches and applications. However, the field is still young, and many conceptual and explanatory issues need resolving. These include how microbiome causality is understood, and how to conceptualize the role microbiomes have in the health status of their hosts and other ecosystems. A key concept that crops up in the medical microbiome literature is "balance." A balanced microbiome is thought to produce health and an imbalanced one disease. Based on a quantitative and qualitative analysis of how balance is used in the microbiome literature, this "think again" essay critically analyses each of the several subconceptions of balance. As well as identifying problems with these uses, the essay suggests some starting points for filling this conceptual gap in microbiome research.
Collapse
Affiliation(s)
- Maureen A O'Malley
- School of History and Philosophy of Science, University of Sydney, Sydney, Australia
| |
Collapse
|
7
|
Wei Y, Dang GP, Ren ZY, Wan MC, Wang CY, Li HB, Zhang T, Tay FR, Niu LN. Recent advances in the pathogenesis and prevention strategies of dental calculus. NPJ Biofilms Microbiomes 2024; 10:56. [PMID: 39003275 PMCID: PMC11246453 DOI: 10.1038/s41522-024-00529-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024] Open
Abstract
Dental calculus severely affects the oral health of humans and animal pets. Calculus deposition affects the gingival appearance and causes inflammation. Failure to remove dental calculus from the dentition results in oral diseases such as periodontitis. Apart from adversely affecting oral health, some systemic diseases are closely related to dental calculus deposition. Hence, identifying the mechanisms of dental calculus formation helps protect oral and systemic health. A plethora of biological and physicochemical factors contribute to the physiological equilibrium in the oral cavity. Bacteria are an important part of the equation. Calculus formation commences when the bacterial equilibrium is broken. Bacteria accumulate locally and form biofilms on the tooth surface. The bacteria promote increases in local calcium and phosphorus concentrations, which triggers biomineralization and the development of dental calculus. Current treatments only help to relieve the symptoms caused by calculus deposition. These symptoms are prone to relapse if calculus removal is not under control. There is a need for a treatment regime that combines short-term and long-term goals in addressing calculus formation. The present review introduces the mechanisms of dental calculus formation, influencing factors, and the relationship between dental calculus and several systemic diseases. This is followed by the presentation of a conceptual solution for improving existing treatment strategies and minimizing recurrence.
Collapse
Affiliation(s)
- Yu Wei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Gao-Peng Dang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhao-Yang Ren
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Mei-Chen Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chen-Yu Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hong-Bo Li
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Tong Zhang
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Li-Na Niu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
8
|
Charalambous EG, Mériaux SB, Guebels P, Muller CP, Leenen FAD, Elwenspoek MMC, Thiele I, Hertel J, Turner JD. The oral microbiome is associated with HPA axis response to a psychosocial stressor. Sci Rep 2024; 14:15841. [PMID: 38982178 PMCID: PMC11233668 DOI: 10.1038/s41598-024-66796-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
Intense psychosocial stress during early life has a detrimental effect on health-disease balance in later life. Simultaneously, despite its sensitivity to stress, the developing microbiome contributes to long-term health. Following stress exposure, HPA-axis activation regulates the "fight or flight" response with the release of glucose and cortisol. Here, we investigated the interaction between the oral microbiome and the stress response. We used a cohort of 115 adults, mean age 24, who either experienced institutionalisation and adoption (n = 40) or were non-adopted controls (n = 75). Glucose and cortisol measurements were taken from participants following an extended socially evaluated cold pressor test (seCPT) at multiple time points. The cohort´s oral microbiome was profiled via 16S-V4 sequencing on microbial DNA from saliva and buccal samples. Using mixed-effect linear regressions, we identified 12 genera that exhibited an interaction with host's cortisol-glucose response to stress, strongly influencing intensity and clearance of cortisol and glucose following stress exposure. Particularly, the identified taxa influenced the glucose and cortisol release profiles and kinetics following seCPT exposure. In conclusion, our study provided evidence for the oral microbiome modifying the effect of stress on the HPA-axis and human metabolism, as shown in glucose-cortisol time series data.
Collapse
Affiliation(s)
- Eleftheria G Charalambous
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, 4354, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur Alzette, Luxembourg
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greisfwald, Germany
- Department of Psychology, University of Cyprus, 2109, Nicosia, Cyprus
| | - Sophie B Mériaux
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, 4354, Esch-sur-Alzette, Luxembourg
| | - Pauline Guebels
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, 4354, Esch-sur-Alzette, Luxembourg
| | - Claude P Muller
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, 4354, Esch-sur-Alzette, Luxembourg
| | - Fleur A D Leenen
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, 4354, Esch-sur-Alzette, Luxembourg
| | - Martha M C Elwenspoek
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, 4354, Esch-sur-Alzette, Luxembourg
| | - Ines Thiele
- School of Medicine, National University of Ireland, Galway, Ireland
- Ryan Institute, National University of Galway, Galway, Ireland
- Division of Microbiology, National University of Galway, Galway, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Johannes Hertel
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur Alzette, Luxembourg
- German Center for Cardiovascular Diseases (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Jonathan D Turner
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, 4354, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
9
|
Chepchumba B, Asudi GO, Katana J, Ngayo MO, Khayeli JA. Isolation of phages against Streptococcus species in the oral cavity for potential control of dental diseases and associated systemic complications. Arch Microbiol 2024; 206:175. [PMID: 38493441 DOI: 10.1007/s00203-024-03897-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 03/19/2024]
Abstract
Dental infections and systemic complications caused by Streptococcus species in the oral cavity are increasingly exhibiting resistance to commonly used antibiotics, posing a potential threat to global public health. Phage therapy may offer a superior alternative, given that bacteriophages can be easily isolated and rapidly replicate in large numbers. In this study, six Streptococcus species from the oral cavity were characterized. Bacteriophages isolated from wastewater using five of these species as hosts produced plaques ranging from 0.2 to 2.4 mm in size. The phages demonstrated stability within a temperature range of 4 ℃ to 37 ℃. However, at temperatures exceeding 45 ℃, a noticeable reduction in bacteriophage titer was observed. Similarly, the phages showed greater stability within a pH range of 5 to 10. The isolated phages exhibited latency periods ranging from 15 to 20 min and had burst sizes varying from 10 to 200 viral particles. This study supports the potential use of bacteriophages in controlling infections caused by Streptococcus species.
Collapse
Affiliation(s)
- Beatrice Chepchumba
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya.
| | - George O Asudi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya
| | - Japhet Katana
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Musa O Ngayo
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | | |
Collapse
|
10
|
Khosravi M, Yousif Merza M, Obaid Saleh R, Ayaz Habib H, Alnemare AK, Bin Mahfoz T, Bin Ghaffar U, Ghildiyal P, Jawad Shoja S, Elawady A. The possible role of altered oropharyngeal microbiota in differentiating true psychosis from malingered psychosis in a forensic psychiatric setting. Med Hypotheses 2024; 184:111284. [DOI: 10.1016/j.mehy.2024.111284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
|
11
|
Takada K, Nakano S, Nishio R, Muku D, Mochizuki S, Inui I, Okita K, Koga A, Watanabe K, Yoshioka Y, Ariyoshi W, Yamasaki R. Medicinal herbs, especially Hibiscus sabdariffa, inhibit oral pathogenic bacteria. J Oral Biosci 2024; 66:179-187. [PMID: 38278302 DOI: 10.1016/j.job.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
OBJECTIVES Medicinal herbs are plants with potential medicinal and health benefits. In recent years, they are being increasingly used as a treatment alternative owing to their effectiveness against various diseases. In this study, we investigated the inhibitory effects of 15 medicinal herbs on causative bacteria for dental caries and periodontal disease. METHODS This study evaluated the effects of the extracts of 15 medicinal herbs on growth and biofilm formation in five oral pathogenic bacterial strains. The herbs were processed into extracts, and bacterial strains were cultured. Then, bacterial growth and biofilm formation were assessed using various methods. Finally, the extract of the herb Hibiscus sabdariffa (hibiscus) was analyzed using high-performance liquid chromatography. RESULTS Incubation of bacteria with the herbal extracts showed that hibiscus exerted a significant inhibitory effect on all the oral pathogenic bacterial strains evaluated in this study. In addition, the pigment delphinidin-3-sambubioside, which is found in hibiscus extract, was identified as a particularly important inhibitory component. CONCLUSIONS These results lay the ground work for the potential development of novel therapeutic or preventive agents against dental caries and periodontal disease, two major oral diseases.
Collapse
Affiliation(s)
- Kazuya Takada
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan; Division of Developmental Stomatognathic Function Science, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Shizuki Nakano
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Reina Nishio
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Daichi Muku
- Department of Chemistry and Biochemistry, The University of Kitakyushu, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Shinichi Mochizuki
- Department of Chemistry and Biochemistry, The University of Kitakyushu, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Inori Inui
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Kaede Okita
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Ayaka Koga
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Koji Watanabe
- Division of Developmental Stomatognathic Function Science, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Yoshie Yoshioka
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Wataru Ariyoshi
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Ryota Yamasaki
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan; Collaborative Research Centre for Green Materials on Environmental Technology, Kyushu Institute of Technology, Kitakyushu, Fukuoka, 804-8550, Japan.
| |
Collapse
|
12
|
Banar M, Rokaya D, Azizian R, Khurshid Z, Banakar M. Oral bacteriophages: metagenomic clues to interpret microbiomes. PeerJ 2024; 12:e16947. [PMID: 38406289 PMCID: PMC10885796 DOI: 10.7717/peerj.16947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Bacteriophages are bacterial viruses that are distributed throughout the environment. Lytic phages and prophages in saliva, oral mucosa, and dental plaque interact with the oral microbiota and can change biofilm formation. The interactions between phages and bacteria can be considered a portion of oral metagenomics. The metagenomic profile of the oral microbiome indicates various bacteria. Indeed, there are various phages against these bacteria in the oral cavity. However, some other phages, like phages against Absconditabacteria, Chlamydiae, or Chloroflexi, have not been identified in the oral cavity. This review gives an overview of oral bacteriophage and used for metagenomics. Metagenomics of these phages deals with multi-drug-resistant bacterial plaques (biofilms) in oral cavities and oral infection. Hence, dentists and pharmacologists should know this metagenomic profile to cope with predental and dental infectious diseases.
Collapse
Affiliation(s)
- Maryam Banar
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Dinesh Rokaya
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Reza Azizian
- Biomedical Innovation and Start-up student association (Biomino), Tehran University of Medical Sciences, Tehran, Iran
- Pediatric Infectious Diseases Research Center (PIDRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Zohaib Khurshid
- Department of Prosthodontics and Implantology, College of Dentistry, King Faisal University, Al-Hofuf, Al Ahsa, Saudi Arabia
- Center of Excellence for Regenerative Dentistry, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Morteza Banakar
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Khosravi M, De Berardis D, Sarabandi S, Mazloom S, Adibi A, Javan N, Ghiasi Z, Nafeli M, Rahmanian N. An Update Review to Cast Light on the Possible Role of Altered Oropharyngeal Microbiota in Differentiating True Psychosis from Malingered Psychosis in a Forensic Psychiatric Setting. Ment Illn 2024; 2024:1-9. [DOI: 10.1155/2024/5595195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024] Open
Abstract
Over the past few years, malingered psychosis has had a progressive occurrence since a great deal of attention has been directed to the closures of long-stay psychiatric institutions and care in the community. Therefore, malingered psychosis needs to be identified to conduct precise forensic assessments and prevent miscarriages of justice and misuse of restricted healthcare resources. Although, over the past decades, researchers have introduced a number of workable psychometric strategies and tools for diagnosing true psychosis, it is still sometimes challenging to differentiate between true and malingered psychosis. Hence, identifying reliable and innovative diagnostic alternatives seems crucial. Accordingly, a summary of gathered evidence is provided by the present review for enhancing future evaluation of oropharyngeal microbiome composition as a practical indicator for diagnosing true psychosis in a forensic psychiatric setting. As per the systematic search terms (namely, “diagnostic marker,” “oropharyngeal microbiome,” “forensic psychiatric setting,” “psychosis,” and “oropharyngeal microbiota”), relevant English publications were searched from January 1, 1980, to September 15, 2023, in Scopus, the Web of Science, Embase, Cochrane Library, PubMed, and Google Scholar databases. Finally, eight articles were included in the present review. Also, we adopted the narrative technique so that the material synthesis leads to a cohesive and compelling story. The results revealed that the periodontal disease and saliva microbiome were possibly associated with true psychosis. Thus, since oropharyngeal microbial compositions are highly different among healthy controls and patients with true psychosis, future research can take advantage of saliva to differentiate between fake and true fake psychosis throughout the initial stages of forensic psychiatric assessment. As a substrate of interest, saliva could also be used for characterizing the various stages of psychosis under a forensic psychiatric setting.
Collapse
Affiliation(s)
- Mohsen Khosravi
- Department of Psychiatry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
- Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | | | - Sahel Sarabandi
- Depertment of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sakineh Mazloom
- Department of Nursing, Zahedan Branch, Islamic Azad University, Zahedan, Iran
| | - Amir Adibi
- Department of Psychiatry, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Negin Javan
- Department of Psychology, Yadegar-e-Imam Khomeini (RAH), Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Ghiasi
- Department of Psychiatry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Nafeli
- Department of Psychiatry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Negar Rahmanian
- Department of Psychiatry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
14
|
Dinis M, Tran NC. Oral immune system and microbes. MICROBES, MICROBIAL METABOLISM, AND MUCOSAL IMMUNITY 2024:147-228. [DOI: 10.1016/b978-0-323-90144-4.00005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Marzbali MY, Banakar M, Mousavi SM, Lai CW. Oral metagenomics changes the game in carcinogenesis. MICROBIAL METAGENOMICS IN EFFLUENT TREATMENT PLANT 2024:185-201. [DOI: 10.1016/b978-0-443-13531-6.00007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Asili P, Mirahmad M, Rezaei P, Mahdavi M, Larijani B, Tavangar SM. The Association of Oral Microbiome Dysbiosis with Gastrointestinal Cancers and Its Diagnostic Efficacy. J Gastrointest Cancer 2023; 54:1082-1101. [PMID: 36600023 DOI: 10.1007/s12029-022-00901-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND The second leading mortality cause in the world is cancer, making it a critical issue that impacts human health. As a result, scientists are looking for novel biomarkers for cancer detection. The oral microbiome, made up of approximately 700 species-level taxa, is a significant source for discovering novel biomarkers. In this review, we aimed to prepare a summary of research that has investigated the association between the oral microbiome and gastrointestinal cancers. METHODS We searched online scientific datasets including Web of Science, PubMed, Scopus, and Google Scholar. Eligibility criteria included human studies that reported abundances of the oral microbiome, or its diagnostic/prognostic performance in patients with gastrointestinal cancers. RESULTS Some phyla of the oral microbiome have a relationship with cancers. Some particular phyla of the oral microbiome that may be related to gastrointestinal cancers consist of Firmicutes, Actinobacteria, Bacteroidetes, Proteobacteria, and Fusobacteria. Changes in the abundances of Porphyromonas, Fusobacterium, Prevotella, and Veillonella are correlated with carcinogenesis, and may be used for distinguishing cancer patients from healthy subjects. Oral, colorectal, pancreatic, and esophageal cancers are the most important cancers related to the oral microbiome. CONCLUSION The results of this study may help future research to select bacteria as an early diagnostic or prognostic biomarker of gastrointestinal cancer. Given the current state of our knowledge, additional research is required to comprehend the multiplex processes underlying the role of bacterial microbiota upon cancer progression and to characterize the complex microbiota-host interaction network.
Collapse
Affiliation(s)
- Pooria Asili
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mirahmad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Rezaei
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Di Pietro L, Boroumand M, Lattanzi W, Manconi B, Salvati M, Cabras T, Olianas A, Flore L, Serrao S, Calò CM, Francalacci P, Parolini O, Castagnola M. A Catalog of Coding Sequence Variations in Salivary Proteins' Genes Occurring during Recent Human Evolution. Int J Mol Sci 2023; 24:15010. [PMID: 37834461 PMCID: PMC10573131 DOI: 10.3390/ijms241915010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Saliva houses over 2000 proteins and peptides with poorly clarified functions, including proline-rich proteins, statherin, P-B peptides, histatins, cystatins, and amylases. Their genes are poorly conserved across related species, reflecting an evolutionary adaptation. We searched the nucleotide substitutions fixed in these salivary proteins' gene loci in modern humans compared with ancient hominins. We mapped 3472 sequence variants/nucleotide substitutions in coding, noncoding, and 5'-3' untranslated regions. Despite most of the detected variations being within noncoding regions, the frequency of coding variations was far higher than the general rate found throughout the genome. Among the various missense substitutions, specific substitutions detected in PRB1 and PRB2 genes were responsible for the introduction/abrogation of consensus sequences recognized by convertase enzymes that cleave the protein precursors. Overall, these changes that occurred during the recent human evolution might have generated novel functional features and/or different expression ratios among the various components of the salivary proteome. This may have influenced the homeostasis of the oral cavity environment, possibly conditioning the eating habits of modern humans. However, fixed nucleotide changes in modern humans represented only 7.3% of all the substitutions reported in this study, and no signs of evolutionary pressure or adaptative introgression from archaic hominins were found on the tested genes.
Collapse
Affiliation(s)
- Lorena Di Pietro
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Mozhgan Boroumand
- Laboratorio di Proteomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Wanda Lattanzi
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Barbara Manconi
- Dipartimento di Scienze della Vita e Dell’ambiente, Università di Cagliari, 09042 Monserrato, Italy
| | - Martina Salvati
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.)
| | - Tiziana Cabras
- Dipartimento di Scienze della Vita e Dell’ambiente, Università di Cagliari, 09042 Monserrato, Italy
| | - Alessandra Olianas
- Dipartimento di Scienze della Vita e Dell’ambiente, Università di Cagliari, 09042 Monserrato, Italy
| | - Laura Flore
- Dipartimento di Scienze della Vita e Dell’ambiente, Università di Cagliari, 09042 Monserrato, Italy
| | - Simone Serrao
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Carla M. Calò
- Dipartimento di Scienze della Vita e Dell’ambiente, Università di Cagliari, 09042 Monserrato, Italy
| | - Paolo Francalacci
- Dipartimento di Scienze della Vita e Dell’ambiente, Università di Cagliari, 09042 Monserrato, Italy
| | - Ornella Parolini
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Massimo Castagnola
- Laboratorio di Proteomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| |
Collapse
|
18
|
Braga SS. Cyclodextrins as Multi-Functional Ingredients in Dentistry. Pharmaceutics 2023; 15:2251. [PMID: 37765220 PMCID: PMC10534413 DOI: 10.3390/pharmaceutics15092251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Cyclodextrins are present in a variety of oral hygiene compositions. The present work describes the role of cyclodextrins in several toothpastes and mouthwashes that are already available in the market, as well as their prospective use in other applications as investigated in studies in the literature. Moreover, cyclodextrins are under study for the development of materials used in various techniques of dental repair, such as fillings, cements and binders therein. Their role in each of the innovative materials is presented. Finally, the prospect of the use of cyclodextrin-based delivery systems for the oral cavity is introduced, with a focus on new cyclodextrin molecules with dual action as bone-targeting agents and osteogenic drugs, and on new cross-linked cyclodextrin particles with a high drug loading and sustained drug delivery profile for the treatment of diseases that require prolonged action, such as periodontitis. In conclusion, cyclodextrins are herein demonstrated to act as versatile and multi-action ingredients with a broad range of applications in dentistry.
Collapse
Affiliation(s)
- Susana Santos Braga
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
19
|
Mäkinen AI, Pappalardo VY, Buijs MJ, Brandt BW, Mäkitie AA, Meurman JH, Zaura E. Salivary microbiome profiles of oral cancer patients analyzed before and after treatment. MICROBIOME 2023; 11:171. [PMID: 37542310 PMCID: PMC10403937 DOI: 10.1186/s40168-023-01613-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND Treating oral squamous cell carcinoma (OSCC) introduces new ecological environments in the oral cavity. This is expected to cause changes in the oral microbiome. The purpose of this study was to gain new information on the salivary microbiome of OSCC patients in order to improve the aftercare of OSCC patients. The aims of this study were to investigate possible changes in the salivary microbiome profiles of OSCC patients before and after cancer treatment and to compare these changes with the profiles of healthy controls. PATIENTS AND METHODS Paraffin-stimulated whole saliva samples were collected, and the salivary flow rate was measured from 99 OSCC patients prior to surgical resection of the tumor and other adjuvant therapy. After treatment, 28 OSCC patients were re-examined with a mean follow-up time of 48 months. In addition, 101 healthy controls were examined and sampled. After DNA extraction and purification, the V4 hypervariable region of the 16S rRNA gene was amplified and sequenced using Illumina MiSeq. The merged read pairs were denoised using UNOISE3, mapped to zero-radius operational taxonomic units (zOTUs), and the representative zOTU sequences were assigned a taxonomy using HOMD. Descriptive statistics were used to study the differences in the microbial profiles of OSCC patients before and after treatment and in comparison to healthy controls. RESULTS At baseline, the OSCC patients showed a higher relative abundance of zOTUs classified as Streptococcus anginosus, Abiotrophia defectiva, and Fusobacterium nucleatum. The microbial profiles differed significantly between OSCC patients and healthy controls (F = 5.9, p < 0.001). Alpha diversity of the salivary microbiome of OSCC patients was decreased at the follow-up, and the microbial profiles differed significantly from the pre-treatment (p < 0.001) and from that of healthy controls (p < 0.001). CONCLUSIONS OSCC patients' salivary microbiome profile had a higher abundance of potentially pathogenic bacteria compared to healthy controls. Treatment of the OSCC caused a significant decrease in alpha diversity and increase in variability of the salivary microbiome, which was still evident after several years of follow-up. OSCC patients may benefit from preventive measures, such as the use of pre- or probiotics, salivary substitutes, or dietary counseling. Video Abstract.
Collapse
Affiliation(s)
- Anna I. Mäkinen
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, P.O. Box 63, 00014 Helsinki, Finland
| | - Vincent Y. Pappalardo
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, the Netherlands
| | - Mark J. Buijs
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, the Netherlands
| | - Bernd W. Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, the Netherlands
| | - Antti A. Mäkitie
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Jukka H. Meurman
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, P.O. Box 63, 00014 Helsinki, Finland
| | - Egija Zaura
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
20
|
Shigdel R, Johannessen A, Lin H, Peddada S, Gómez Real F, Ringel-Kulka T, Svanes C, Bertelsen RJ. Oral bacterial composition associated with lung function and lung inflammation in a community-based Norwegian population. Respir Res 2023; 24:183. [PMID: 37438766 DOI: 10.1186/s12931-023-02491-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/06/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND The oral cavity is the gateway to the bacteria community in the lung. Disruption of the symbiotic balance of the oral microbiota has been associated with respiratory diseases. However, little is known about the relationship between oral bacteria and respiratory outcomes in the general population. We aimed to describe the associations between oral bacteria, lung function, and lung inflammation in a community-based population. METHODS Oral (gingival) samples were collected concurrently with spirometry tests in 477 adults (47% males, median age 28 years) from the RHINESSA study in Bergen, Norway. Bacterial DNA from the 16S rRNA gene from gingival fluid were sequenced by Illumina®MiSeq. Lung function was measured using spirometry and measurement of fractional exhaled nitric oxide (FeNO) were performed to examine airway inflammation. Differential abundance analysis was performed using ANCOM-BC, adjusting for weight, education, and smoking. RESULTS The abundance of the genera Clostridiales, Achromobacter, Moraxella, Flavitalea and Helicobacter were significantly different among those with low FEV1 (< lower limit of normal (LLN)) as compared to normal FEV1 i.e. ≥ LLN. Twenty-three genera differed in abundance between among those with low FVC < LLN as compared to normal FEV1 ≥ LLN. The abundance of 27 genera from phyla Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria and Sacchribacteria differed significantly between elevated FeNO levels (≥ 50 ppb) compared to FeNO ≤ 25 ppb. CONCLUSION Oral bacterial composition was significantly different for those with low FEV or FVC as compared to those with normal lung function equal to or higher than LLN. Differential bacterial composition was also observed for elevated FeNO levels.
Collapse
Affiliation(s)
- Rajesh Shigdel
- Department of Clinical Science, University of Bergen, P.O. Box 7804, N-5020, Bergen, Norway.
| | - Ane Johannessen
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Huang Lin
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Drive, Bethesda, MD, 20892, USA
| | - Shyamal Peddada
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Drive, Bethesda, MD, 20892, USA
| | - Francisco Gómez Real
- Department of Clinical Science, University of Bergen, P.O. Box 7804, N-5020, Bergen, Norway
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Tamar Ringel-Kulka
- UNC Gillings School of Global Public Health, Department of Maternal and Child Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cecilie Svanes
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Randi Jacobsen Bertelsen
- Department of Clinical Science, University of Bergen, P.O. Box 7804, N-5020, Bergen, Norway
- Oral Health Centre of Expertise in Western Norway, Bergen, Norway
| |
Collapse
|
21
|
Khosravi M, De Berardis D, Mazloom S, Adibi A, Javan N, Ghiasi Z, Nafeli M, Rahmanian N. Oropharyngeal microbiome composition as a possible diagnostic marker for true psychosis in a forensic psychiatric setting: A narrative literature review and an opinion. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2023. [DOI: 10.29333/ejgm/13092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The malingered psychosis has increasingly occurred over the past few years due to the tendency towards care in the community and the closures of long-stay psychiatric institutions. Thus, it is required to identify malingered psychosis to reach accurate forensic assessments and inhibit misuse of restricted healthcare resources and miscarriages of justice. Despite the fact that some practical psychometric tools and strategies have been proposed for diagnosing true psychosis over the past decades, the differentiation between true psychosis and malingered psychosis is still sometimes challenging. Accordingly, it seems crucial to identify innovative and reliable diagnostic alternatives. Hence, the present article summarizes a collection of evidence that can be used by researchers to improve future assessment of oropharyngeal microbiome composition as a feasible diagnostic marker for true psychosis in a forensic psychiatric setting.
Collapse
Affiliation(s)
- Mohsen Khosravi
- Department of Psychiatry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, IRAN
| | | | - Sakineh Mazloom
- Department of Nursing, Zahedan Branch, Islamic Azad University, Zahedan, IRAN
| | - Amir Adibi
- Department of Psychiatry, School of Medicine, Ilam University of Medical Sciences, Ilam, IRAN
| | - Negin Javan
- Department of Psychology, Yadegar-e-Imam Khomeini (RAH), Shahre Rey Branch, Islamic Azad University, Tehran, IRAN
| | - Zahra Ghiasi
- Department of Psychiatry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, IRAN
| | - Mohammad Nafeli
- Department of Psychiatry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, IRAN
| | - Negar Rahmanian
- Department of Psychiatry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, IRAN
| |
Collapse
|
22
|
Abola I, Gudra D, Ustinova M, Fridmanis D, Emulina DE, Skadins I, Brinkmane A, Lauga-Tunina U, Gailite L, Auzenbaha M. Oral Microbiome Traits of Type 1 Diabetes and Phenylketonuria Patients in Latvia. Microorganisms 2023; 11:1471. [PMID: 37374973 DOI: 10.3390/microorganisms11061471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Some metabolic disorder treatments require patients to follow a specific diet or to consume supplements that, over time, can lead to oral microbiome alterations. Well-known disorders requiring such treatment are phenylketonuria (PKU), an inborn error of amino acid metabolism, and type 1 diabetes (T1D), a metabolic disorder that requires a specific diet regimen. Therefore, the aim of this study was to investigate the oral health and microbiome characteristics that might contribute to caries activity and periodontal disease risk in PKU and T1D patients. In this cross-sectional study, 45 PKU patients, 24 T1D patients, and 61 healthy individuals between the ages of 12 and 53 years were examined. Their anamnestic data and dental status were assessed by one dentist. Microbial communities were detected from saliva-isolated DNA using 16S rRNA gene V3-V4 sequencing on Illumina MiSeq sequencing platform. Results revealed that the PKU patient group displayed the highest number of extracted teeth (on average 1.34), carious teeth (on average 4.95), and carious activity (44.44% of individuals) compared to the T1D and CTRL groups. The lowest numbers of filled teeth (on average 5.33) and extracted teeth (on average 0.63) per individual were observed in T1D patients. Gingivitis appeared more often in the T1D group; however, possible risk of periodontal disease was seen in both the T1D and PKU patient groups. The highest number of differentially abundant genera was detected in the PKU group (n = 20), with enrichment of Actinomyces (padj = 4.17 × 10-22), Capnocytophaga (padj = 8.53 × 10-8), and Porphyromonas (padj = 1.18 × 10-5) compared to the CTRL group. In conclusion, the dental and periodontal health of PKU patients was found to be significantly inferior compared to T1D patients and healthy controls. T1D patients showed early signs of periodontal disease. Several genera that correlate with periodontal disease development were found in both groups, thus suggesting that T1D and PKU patients should seek early and regular dental advice and be educated about proper oral hygiene practices.
Collapse
Affiliation(s)
- Iveta Abola
- Scientific Laboratory of Molecular Genetics, Rīga Stradiņš University, LV-1007 Riga, Latvia
- Department of Conservative Dentistry and Oral Health, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Dita Gudra
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
| | - Maija Ustinova
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
| | - Davids Fridmanis
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
| | | | - Ingus Skadins
- Scientific Laboratory of Molecular Genetics, Rīga Stradiņš University, LV-1007 Riga, Latvia
- Department of Biology and Microbiology, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Anda Brinkmane
- Department of Conservative Dentistry and Oral Health, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Una Lauga-Tunina
- Department of Endocrinology, Children's Clinical University Hospital, LV-1004 Riga, Latvia
| | - Linda Gailite
- Scientific Laboratory of Molecular Genetics, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Madara Auzenbaha
- Scientific Laboratory of Molecular Genetics, Rīga Stradiņš University, LV-1007 Riga, Latvia
- Department of Biology and Microbiology, Rīga Stradiņš University, LV-1007 Riga, Latvia
- Clinic of Medical Genetics and Prenatal Diagnostics, Children's Clinical University Hospital, LV-1004 Riga, Latvia
- European Reference Network for Hereditary Metabolic Disorders, Children's Clinical University Hospital, LV-1004 Riga, Latvia
| |
Collapse
|
23
|
Eltay EG, Van Dyke T. Resolution of inflammation in oral diseases. Pharmacol Ther 2023:108453. [PMID: 37244405 DOI: 10.1016/j.pharmthera.2023.108453] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
The resolution of inflammation is an essential endogenous process that protects host tissues from an exaggerated chronic inflammatory response. Multiple interactions between host cells and resident oral microbiome regulate the protective functions that lead to inflammation in the oral cavity. Failure of appropriate regulation of inflammation can lead to chronic inflammatory diseases that result from an imbalance between pro-inflammatory and pro-resolution mediators. Thus, failure of the host to resolve inflammation can be considered an essential pathological mechanism for progression from the late stages of acute inflammation to a chronic inflammatory response. Specialized pro-resolving mediators (SPMs), which are essential polyunsaturated fatty acid (PUFA)-derived autacoid mediators, aid in regulating the endogenous inflammation resolving process by stimulating immune cell-mediated clearance of apoptotic polymorphonuclear neutrophils, cellular debris, and microbes, restricting further neutrophil tissue infiltration, and counter-regulating pro-inflammatory cytokine production. The SPM superfamily contains four specialized lipid mediator families: lipoxins, resolvins, protectins, and maresins that can activate resolution pathways. Understanding the crosstalk between resolution signals in the tissue response to injury has therapeutic application potential for preventing, maintaining, and regenerating chronically damaged tissues. Here, we discuss the fundamental concepts of resolution as an active biochemical process, novel concepts demonstrating the role of resolution mediators in tissue regeneration in periodontal and pulpal diseases, and future directions for therapeutic applications with particular emphasis on periodontal therapy.
Collapse
Affiliation(s)
- Eiba G Eltay
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, United States; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Thomas Van Dyke
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, United States; Center for Clinical and Translational Research, The Forsyth Institute, Cambridge, MA, United States; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, United States.
| |
Collapse
|
24
|
Dobon B, Musciotto F, Mira A, Greenacre M, Schlaepfer R, Aguileta G, Astete LH, Ngales M, Latora V, Battiston F, Vinicius L, Migliano AB, Bertranpetit J. The making of the oral microbiome in Agta hunter-gatherers. EVOLUTIONARY HUMAN SCIENCES 2023; 5:e13. [PMID: 37587941 PMCID: PMC10426117 DOI: 10.1017/ehs.2023.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 08/18/2023] Open
Abstract
Ecological and genetic factors have influenced the composition of the human microbiome during our evolutionary history. We analysed the oral microbiota of the Agta, a hunter-gatherer population where some members have adopted an agricultural diet. We show that age is the strongest factor modulating the microbiome, probably through immunosenescence since we identified an increase in the number of species classified as pathogens with age. We also characterised biological and cultural processes generating sexual dimorphism in the oral microbiome. A small subset of oral bacteria is influenced by the host genome, linking host collagen genes to bacterial biofilm formation. Our data also suggest that shifting from a fish/meat diet to a rice-rich diet transforms their microbiome, mirroring the Neolithic transition. All of these factors have implications in the epidemiology of oral diseases. Thus, the human oral microbiome is multifactorial and shaped by various ecological and social factors that modify the oral environment.
Collapse
Affiliation(s)
- Begoña Dobon
- Department of Anthropology, University of Zurich, Switzerland
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Federico Musciotto
- Department of Anthropology, University of Zurich, Switzerland
- Dipartimento di Fisica e Chimica, Università di Palermo, Italy
| | - Alex Mira
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Foundation, Valencia, Spain
- CIBER Center for Epidemiology and Public Health, Madrid, Spain
| | - Michael Greenacre
- Department of Economics and Business, Universitat Pompeu Fabra and Barcelona Graduate School of Economics, Barcelona, Spain
- Faculty of Biosciences, Fisheries and Economics, University of Tromsø, Norway
| | | | - Gabriela Aguileta
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Leonora H. Astete
- Lyceum of the Philippines University, Intramuros, Manila, Philippines
| | - Marilyn Ngales
- Lyceum of the Philippines University, Intramuros, Manila, Philippines
| | - Vito Latora
- School of Mathematical Sciences, Queen Mary University of London, UK
- Dipartimento di Fisica ed Astronomia, Università di Catania and INFN, Catania, Italy
- Complexity Science Hub Vienna, Vienna, Austria
| | - Federico Battiston
- Department of Anthropology, University of Zurich, Switzerland
- Department of Network and Data Science, Central European University, Vienna 1100, Austria
| | - Lucio Vinicius
- Department of Anthropology, University of Zurich, Switzerland
- Department of Anthropology, University College London, UK
| | - Andrea B. Migliano
- Department of Anthropology, University of Zurich, Switzerland
- Department of Anthropology, University College London, UK
| | - Jaume Bertranpetit
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| |
Collapse
|
25
|
Park DY, Hwang J, Kim Y, Lee D, Kim YY, Kim HS, Hwang I. Antimicrobial activity of Limosilactobacillus fermentum strains isolated from the human oral cavity against Streptococcus mutans. Sci Rep 2023; 13:7969. [PMID: 37198248 DOI: 10.1038/s41598-023-35168-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 05/13/2023] [Indexed: 05/19/2023] Open
Abstract
Oral probiotics have been recently gaining much attention owing to their potential to inhibit the progression of dental caries by controlling the cariogenic effects of Streptococcus mutans. We isolated and genotypically identified 77 lactic acid bacteria including 12 Limosilactobacillus fermentum probiotic candidates from the oral cavity of healthy volunteers. Among the 12 L. fermentum isolates, nine isolates effectively inhibited the growth of S. mutans via hydrogen peroxide (H2O2) production. The others neither suppressed the growth of S. mutans nor produced H2O2. Eight out of the nine H2O2-producing L. fermentum isolates exhibited strong adherence to oral epithelial KB cells while inhibiting the adherence of S. mutans to KB cells. The eight H2O2-producing isolates were neither haemolytic based on a blood-agar test, cytotoxic according to lactate dehydrogenase assay, nor resistant to eight antibiotics represented by the European Food Safety Authority guideline, indicating that the isolates have potential to suppress the cariogenesis driven by S. mutans while providing general probiotic benefits.
Collapse
Affiliation(s)
| | | | - Yunji Kim
- Apple Tree Institute of Biomedical Science, Apple Tree Medical Foundation, Goyang-Si, South Korea
| | - Dahye Lee
- Apple Tree Dental Hospital, Apple Tree Medical Foundation, Goyang-Si, South Korea
| | - Young-Youn Kim
- Apple Tree Institute of Biomedical Science, Apple Tree Medical Foundation, Goyang-Si, South Korea
- Apple Tree Dental Hospital, Apple Tree Medical Foundation, Goyang-Si, South Korea
| | - Hye-Sung Kim
- Apple Tree Institute of Biomedical Science, Apple Tree Medical Foundation, Goyang-Si, South Korea
- Apple Tree Dental Hospital, Apple Tree Medical Foundation, Goyang-Si, South Korea
| | | |
Collapse
|
26
|
Asghar F, Bano A, Waheed F, Ahmed Anjum A, Ejaz H, Javed N. Association of exogenous factors with molecular epidemiology of Staphylococcus aureus in human oral cavity. Saudi J Biol Sci 2023; 30:103613. [PMID: 36936700 PMCID: PMC10018566 DOI: 10.1016/j.sjbs.2023.103613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/11/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
The frequency of Staphylococcus aureus strains associated with oral cavity microbiota has prodigious consideration. Although S. aureus has been reflected as an ephemeral member of the human oral cavity microbiota, the isolation, identification, and characterization of S. aureus is important. The present study aimed to characterize S. aureus strains from the oral cavity microflora, isolation of S. aureus from the human oral cavity microbiota, and demographic information of the participants to evaluate exogenous factors associated with the presence of S. aureus and their genetic analysis linkage with different factors. The method used in this study is the isolation of oral cavity microbiomes using sheep blood agar and Mannitol salt agar. We performed antibiotic profiling with various antibiotics and genetic analysis utilizing gene-specific primers for specific genes, including nuc, mecA, pvl, agr, and coa. A significant number of S. aureus isolates were found in the oral cavity of humans 18/84 (21.42%), and all 18 strains tested positive for the confirmatory nuc gene. Antibiotic resistance-conferring gene mecA was positive in 10 (55.6%) isolates. It was found that the occurrence of pvl, agr, and coagulase (coa) genes was 9 (50%), 6 (33.33%), and 10 (55.6%), respectively. The genetic analysis reported that significant associations were present between male and mecA gene (P = 0.03) and coa (P = 0.03), smokers with the occurrence of mecA (P = 0.02), agr (P = 0.048) and coa (P = 0.02) genes. Likewise, the association of antibiotic usage was significantly found with mecA (P = 0.02), coa (P = 0.02); however, the individuals who have taken orthodontic treatment recently have a significant association with agr (P = 0.017). The use of mouth rinse was significantly associated with the prevalence of the pvl gene (P = 0.01), and tooth brushing frequency and inflammation of the buccal cavity were also statistically significant in relation to pvl gene prevalence (P = 0.02, 0.00, respectively). Moreover, calories and weight-controlled diet were significantly associated with mecA, agr, and highly significant with coa (P = 0.02, 0.048, 0.000), so all P < 0.05, and no significant association was found between the socioeconomic status of individuals with aforementioned analyzed genes.
Collapse
Affiliation(s)
- Farah Asghar
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Abida Bano
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Fadia Waheed
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Aftab Ahmed Anjum
- Quality Operations Laboratory, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Numan Javed
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
27
|
Yu KM, Lee AM, Cho HS, Lee JW, Lim SK. Optimization of DNA extraction and sampling methods for successful forensic microbiome analyses of the skin and saliva. Int J Legal Med 2023; 137:63-77. [PMID: 36416962 DOI: 10.1007/s00414-022-02919-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Microbiome studies have contributed to many fields, such as healthcare and medicine; however, these studies are relatively limited in forensics. Microbiome analyses can provide information, such as geolocation and ancestry information, when short tandem repeat (STR) profiling fails. In this study, methods for DNA extraction and sampling from the skin and saliva were optimized for the construction of a Korean Forensic Microbiome Database (KFMD). DNA yields were estimated using four DNA extraction kits, including two automated kits (Maxwell® FSC DNA IQ™ Casework Kit and PrepFiler™ Forensic DNA Extraction Kit, updated) and two manual kits (QIAamp DNA Mini Kit and QIAamp DNA Micro Kit) commonly used in forensic DNA profiling laboratories. Next-generation sequencing of the 16S rRNA V4 region was performed to analyze microbial communities in samples. The Bacterial Transport Swab with Liquid Media (NobleBio), two cotton swabs (PoongSung and Puritan), and nylon-flocked swabs (NobleBio and COPAN) were tested for DNA recovery. The PrepFiler and Maxwell kits showed the highest yields of 3.884 ng/μL and 23.767 ng/μL from the scalp and saliva, respectively. With respect to DNA recovery, nylon-flocked swabs performed better than cotton swabs. The relative abundances of taxa sorted by DNA extraction kits were similar contributions; however, with significant differences in community composition between scalp and saliva samples. Lawsonella and Veillonella were the most abundant genera in the two sample types. Thus, the Maxwell® FSC DNA IQ™ Casework Kit and nylon-flocked swab (NobleBio) were optimal for DNA extraction and collection in microbiome analyses.
Collapse
Affiliation(s)
- Kyeong-Min Yu
- Department of Forensic Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - A-Mi Lee
- Department of Forensic Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hye-Seon Cho
- Department of Forensic Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ji-Woo Lee
- Department of Forensic Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Si-Keun Lim
- Department of Forensic Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
28
|
Cornejo CF, Soken LJ, Salgado PA, Gliosca LA, Squassi AF. Detection of Streptococcus mutans and Streptococcus sobrinus and Their Association with Oral Microbiome Stressors in 6-18-month-old Infants. Int J Clin Pediatr Dent 2023; 16:68-73. [PMID: 37020757 PMCID: PMC10067995 DOI: 10.5005/jp-journals-10005-2489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
Aim To determine the presence of Streptococcus mutans (S. mutans) and Streptococcus sobrinus (S. sobrinus) and their association with extrinsic and intrinsic variables in 6-18-month-old infants. Methods This was an analytical, cross-sectional study of 65 6-18-month-old infants who visited the Centers for Early Childhood in Buenos Aires City. Three groups were established according to the presence of teeth-group I (GI)-edentulous infants, group II (GII)-infants with 1-8 teeth, and group III (GIII)-infants with 9-16 teeth. Data on the variables, diet, use of artificial teats, and oral hygiene were gathered using a self-administered questionnaire. An oral examination was performed according to the International Caries Detection and Assessment System (ICDAS II) criterion. A saliva sample was taken by aspiration with a sterile plastic syringe. Cariogenic Streptococci (CS) were counted using the adherence test in modified gold broth (AT-MGB). Molecular detection and quantification were performed by quantitative polymerase chain reaction (qPCR) (gtfB, gtfT, and tuf). Results A total of 12% of infants received oral hygiene, 38% used bottles, 30% used pacifiers, and 55% had sugar intake. S. sobrinus and S. mutans were detected in 57.1 and 28.6% of the children with caries, respectively. Groups I, II, and III had CS counts of log 2, 3.4, and 3.7, respectively. S. sobrinus was detected in 26.7% of GI, 52.9% of GII, and 85.7% of GIII, while S. mutans was detected in 13.3%, 35.3%, and 57.7%, respectively. Conclusion The prevalence of S. sobrinus was higher than S. mutans in all groups. The presence of CS was significantly associated with sugar intake. No association was found between S. mutans and S. sobrinus and the presence of caries, hygiene habits, or use of artificial teats. Clinical Significance This study supports the role of diet in developing a cariogenic biofilm in children under 2 years of age. How to cite this article Cornejo CF, Soken LJ, Salgado PA, et al. Detection of Streptococcus mutans and Streptococcus sobrinus and Their Association with Oral Microbiome Stressors in 6-18-month-old Infants. Int J Clin Pediatr Dent 2023;16(1):68-73.
Collapse
Affiliation(s)
- Celina F Cornejo
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Odontología Preventiva y Comunitaria, Instituto de Investigaciones en Salud Publica, Buenos Aires, Argentina
| | - Luciana J Soken
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Microbiología y Parasitología, Laboratorio de Diagnostico Microbiológico y Molecular, Buenos Aires, Argentina
| | - Pablo A Salgado
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Odontología Preventiva y Comunitaria, Instituto de Investigaciones en Salud Publica, Buenos Aires, Argentina
| | - Laura A Gliosca
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Microbiología y Parasitología, Laboratorio de Diagnostico Microbiológico y Molecular, Buenos Aires, Argentina
| | - Aldo F Squassi
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Odontología Preventiva y Comunitaria, Instituto de Investigaciones en Salud Publica, Buenos Aires, Argentina
| |
Collapse
|
29
|
de Jongh CA, de Vries TJ, Bikker FJ, Gibbs S, Krom BP. Mechanisms of Porphyromonas gingivalis to translocate over the oral mucosa and other tissue barriers. J Oral Microbiol 2023; 15:2205291. [PMID: 37124549 PMCID: PMC10134951 DOI: 10.1080/20002297.2023.2205291] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Introduction The oral pathogen Porphyromonas gingivalis is not only associated with periodontitis but also with systemic diseases elsewhere in the body. The mechanisms by which P. gingivalis travels from the oral cavity to other organs in the body are largely unknown. This review describes the four putative mechanisms supported by experimental evidence, which enable translocation of P. gingivalis over the oral mucosa, endothelial barriers and subsequent dissemination into the bloodstream. Mechanisms The first mechanism: proteolytic enzymes secreted by P. gingivalis degrade adhesion molecules between tissue cells, and the extracellular matrix. This weakens the structural integrity of the mucosa and allows P. gingivalis to penetrate the tissue. The second is transcytosis: bacteria actively enter tissue cells and transfer to the next layer or the extracellular space. By travelling from cell to cell, P. gingivalis reaches deeper structures. Thirdly, professional phagocytes take up P. gingivalis and travel to the bloodstream where P. gingivalis is released. Lastly, P. gingivalis can adhere to the hyphae forming Candida albicans. These hyphae can penetrate the mucosal tissue, which may allow P. gingivalis to reach deeper structures. Conclusion More research could elucidate targets to inhibit P. gingivalis dissemination and prevent the onset of various systemic diseases.
Collapse
Affiliation(s)
- Caroline A. de Jongh
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Teun J. de Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Floris J. Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bastiaan P. Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- CONTACT Bastiaan P. Krom Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
30
|
Maki KA, Ganesan SM, Meeks B, Farmer N, Kazmi N, Barb JJ, Joseph PV, Wallen GR. The role of the oral microbiome in smoking-related cardiovascular risk: a review of the literature exploring mechanisms and pathways. J Transl Med 2022; 20:584. [PMID: 36503487 PMCID: PMC9743777 DOI: 10.1186/s12967-022-03785-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular disease is a leading cause of morbidity and mortality. Oral health is associated with smoking and cardiovascular outcomes, but there are gaps in knowledge of many mechanisms connecting smoking to cardiovascular risk. Therefore, the aim of this review is to synthesize literature on smoking and the oral microbiome, and smoking and cardiovascular risk/disease, respectively. A secondary aim is to identify common associations between the oral microbiome and cardiovascular risk/disease to smoking, respectively, to identify potential shared oral microbiome-associated mechanisms. We identified several oral bacteria across varying studies that were associated with smoking. Atopobium, Gemella, Megasphaera, Mycoplasma, Porphyromonas, Prevotella, Rothia, Treponema, and Veillonella were increased, while Bergeyella, Haemophilus, Lautropia, and Neisseria were decreased in the oral microbiome of smokers versus non-smokers. Several bacteria that were increased in the oral microbiome of smokers were also positively associated with cardiovascular outcomes including Porphyromonas, Prevotella, Treponema, and Veillonella. We review possible mechanisms that may link the oral microbiome to smoking and cardiovascular risk including inflammation, modulation of amino acids and lipids, and nitric oxide modulation. Our hope is this review will inform future research targeting the microbiome and smoking-related cardiovascular disease so possible microbial targets for cardiovascular risk reduction can be identified.
Collapse
Affiliation(s)
- Katherine A. Maki
- grid.410305.30000 0001 2194 5650Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, 10 Center Drive, Building 10, Bethesda, MD 20814 USA
| | - Sukirth M. Ganesan
- grid.214572.70000 0004 1936 8294Department of Periodontics, The University of Iowa College of Dentistry and Dental Clinics, 801 Newton Rd., Iowa City, IA 52242 USA
| | - Brianna Meeks
- grid.411024.20000 0001 2175 4264University of Maryland, School of Social Work, Baltimore, MD USA
| | - Nicole Farmer
- grid.410305.30000 0001 2194 5650Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, 10 Center Drive, Building 10, Bethesda, MD 20814 USA
| | - Narjis Kazmi
- grid.410305.30000 0001 2194 5650Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, 10 Center Drive, Building 10, Bethesda, MD 20814 USA
| | - Jennifer J. Barb
- grid.410305.30000 0001 2194 5650Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, 10 Center Drive, Building 10, Bethesda, MD 20814 USA
| | - Paule V. Joseph
- grid.420085.b0000 0004 0481 4802National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA ,grid.280738.60000 0001 0035 9863National Institute of Nursing Research, National Institutes of Health, Bethesda, MD USA
| | - Gwenyth R. Wallen
- grid.410305.30000 0001 2194 5650Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, 10 Center Drive, Building 10, Bethesda, MD 20814 USA
| |
Collapse
|
31
|
Toyama N, Ekuni D, Yokoi A, Fukuhara D, Islam MM, Sawada N, Nakashima Y, Nakahara M, Sumita I, Morita M. Features of the oral microbiome in Japanese elderly people with 20 or more teeth and a non-severe periodontal condition during periodontal maintenance treatment: A cross-sectional study. Front Cell Infect Microbiol 2022; 12:957890. [PMID: 36275030 PMCID: PMC9582337 DOI: 10.3389/fcimb.2022.957890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction The aim of the present study was to characterize the profile and diversity of the oral microbiome of a periodontally non-severe group with ≥20 teeth in comparison with a severe periodontitis group of elderly Japanese people. Methods A total of 50 patients who had ≥20 teeth and aged ≥60 years were recruited, and 34 participants (13 non-severe participants) were analyzed. After oral rinse (saliva after rinsing) sample collection, the V3–V4 regions of the 16S rRNA gene were sequenced to investigate microbiome composition, alpha diversity (Shannon index, Simpson index, richness, and evenness), and beta diversity using principal coordinate analysis (PCoA) based on weighted and unweighted UniFrac distances. A linear discriminant analysis effect size was calculated to identify bacterial species in the periodontally non-severe group. Results The periodontally non-severe group showed lower alpha diversity than that of the severe periodontitis group (p <0.05); however, the beta diversities were not significantly different. A higher relative abundance of four bacterial species (Prevotella nanceiensis, Gemella sanguinis, Fusobacterium periodonticum, and Haemophilus parainfluenzae) was observed in the non-severe group than that in the severe periodontitis group. Conclusion The oral microbiome in elderly Japanese people with ≥20 teeth and a non-severe periodontal condition was characterized by low alpha diversity and the presence of four bacterial species.
Collapse
Affiliation(s)
- Naoki Toyama
- Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- *Correspondence: Naoki Toyama,
| | - Daisuke Ekuni
- Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Aya Yokoi
- Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Daiki Fukuhara
- Department of Preventive Dentistry, Okayama University Hospital, Okayama, Japan
| | - Md Monirul Islam
- Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Nanami Sawada
- Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yukiho Nakashima
- Department of Preventive Dentistry, Okayama University Hospital, Okayama, Japan
| | - Momoko Nakahara
- Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ichiro Sumita
- Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Manabu Morita
- Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
32
|
Zaura E. A Commentary on the Potential Use of Oral Microbiome in Prediction, Diagnosis or Prognostics of a Distant Pathology. Dent J (Basel) 2022; 10:dj10090156. [PMID: 36135151 PMCID: PMC9498190 DOI: 10.3390/dj10090156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
In health, the oral microbiome is in balance with its host. If this balance is lost, this symbiosis is replaced by dysbiotic microbial communities, which are thought to affect the rest of the body either directly or via metabolites or pro-inflammatory molecules. The association of oral microbiome with general health has led to attempts to use oral microbial biomarkers for the prediction, diagnosis or prognosis of distant pathologies such as colorectal carcinoma or pancreatic cancer. These attempts however have no chance to succeed if the complexity of the oral ecosystem and the interplay of environmental, behavioral and biological factors is not taken into account. Standardized, well-documented oral sample collection procedures together with detailed clinical oral examination and behavioral data are the prerequisites for the successful evaluation of the oral microbiome as a potential biomarker for distant pathologies.
Collapse
Affiliation(s)
- Egija Zaura
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, Vrije Universiteit Amsterdam and University of Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| |
Collapse
|
33
|
Le Bars P, Kouadio AA, Bandiaky ON, Le Guéhennec L, de La Cochetière MF. Host's Immunity and Candida Species Associated with Denture Stomatitis: A Narrative Review. Microorganisms 2022; 10:microorganisms10071437. [PMID: 35889156 PMCID: PMC9323190 DOI: 10.3390/microorganisms10071437] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
Denture-related Candida stomatitis, which has been described clinically in the literature, is either localized or generalized inflammation of the oral mucosa in connection with a removable prosthesis. During this inflammatory process, the mycobacterial biofilm and the host’s immune response play an essential role. Among microorganisms of this mixed biofilm, the Candida species proliferates easily and changes from a commensal to an opportunistic pathogen. In this situation, the relationship between the Candida spp. and the host is influenced by the presence of the denture and conditioned both by the immune response and the oral microbiota. Specifically, this fungus is able to hijack the innate immune system of its host to cause infection. Additionally, older edentulous wearers of dentures may experience an imbalanced and decreased oral microbiome diversity. Under these conditions, the immune deficiency of these aging patients often promotes the spread of commensals and pathogens. The present narrative review aimed to analyze the innate and adaptive immune responses of patients with denture stomatitis and more particularly the involvement of Candida albicans sp. associated with this pathology.
Collapse
Affiliation(s)
- Pierre Le Bars
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, 44042 Nantes, France; (A.A.K.); (O.N.B.); (L.L.G.)
- Correspondence: authors:
| | - Alain Ayepa Kouadio
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, 44042 Nantes, France; (A.A.K.); (O.N.B.); (L.L.G.)
- Department of Prosthetic Dentistry, Faculty of Dentistry, CHU, Abidjan P.O. Box 612, Côte d’Ivoire
| | - Octave Nadile Bandiaky
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, 44042 Nantes, France; (A.A.K.); (O.N.B.); (L.L.G.)
| | - Laurent Le Guéhennec
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, 44042 Nantes, France; (A.A.K.); (O.N.B.); (L.L.G.)
| | - Marie-France de La Cochetière
- EA 3826 Thérapeutiques Cliniques Et expérimentales des Infections, Faculté de Médecine, CHU Hôtel-Dieu, Université de Nantes, 1, rue G. Veil, 44000 Nantes, France;
| |
Collapse
|
34
|
Pereira de Araújo M, Sato MO, Sato M, Bandara WM KM, Coelho LFL, Souza RLM, Kawai S, Marques MJ. Unbalanced relationships: insights into the interaction between gut microbiota, geohelminths, and schistosomiasis. PeerJ 2022; 10:e13401. [PMID: 35539016 PMCID: PMC9080432 DOI: 10.7717/peerj.13401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/17/2022] [Indexed: 01/14/2023] Open
Abstract
Hosts and their microbiota and parasites have co-evolved in an adaptative relationship since ancient times. The interaction between parasites and intestinal bacteria in terms of the hosts' health is currently a subject of great research interest. Therapeutic interventions can include manipulations of the structure of the intestinal microbiota, which have immunological interactions important for modulating the host's immune system and for reducing inflammation. Most helminths are intestinal parasites; the intestinal environment provides complex interactions with other microorganisms in which internal and external factors can influence the composition of the intestinal microbiota. Moreover, helminths and intestinal microorganisms can modulate the host's immune system either beneficially or harmfully. The immune response can be reduced due to co-infection, and bacteria from the intestinal microbiota can translocate to other organs. In this way, the treatment can be compromised, which, together with drug resistance by the parasites makes healing even more difficult. Thus, this work aimed to understand interactions between the microbiota and parasitic diseases caused by the most important geohelminths and schistosomiasis and the consequences of these associations.
Collapse
Affiliation(s)
- Matheus Pereira de Araújo
- Institute of Biomedical Sciences, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil,Laboratory of Tropical Medicine and Parasitology, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Marcello Otake Sato
- Laboratory of Tropical Medicine and Parasitology, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Megumi Sato
- Graduate School of Health Sciences, Niigata University, Niigata, Niigata, Japan
| | | | | | | | - Satoru Kawai
- Laboratory of Tropical Medicine and Parasitology, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Marcos José Marques
- Institute of Biomedical Sciences, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil
| |
Collapse
|
35
|
La X, Jiang H, Chen A, Zheng H, Shen L, Chen W, Yang F, Zhang L, Cai X, Mao H, Cheng L. Profile of the oral microbiota from preconception to the third trimester of pregnancy and its association with oral hygiene practices. J Oral Microbiol 2022; 14:2053389. [PMID: 35341210 PMCID: PMC8942530 DOI: 10.1080/20002297.2022.2053389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background The oral microbiota plays vital roles in both oral and systemic health, but limited studies have explored the transition of the female oral microbiota from preconception to pregnancy along with pronounced hormonal fluctuations. Aim To characterize the oral microbiota among women in preconception and pregnancy through a prospective study and to explore the associations between the oral microbiota and oral hygiene practices. Methods A total of 202 unstimulated saliva samples were collected from 101 women in both preconception and late pregnancy. The oral microbiota was analyzed using 16S rRNA gene sequencing. Results The Ace and phylogenetic diversity (PD) index were significantly lower in the third trimester than preconception. The pathogenic taxa Prevotella and Atopobium parvulum were significantly higher during late pregnancy than preconception. Women with overall better oral hygiene practice showed lower richness and diversity in preconception compared to women with poorer oral hygiene practice. The abundance of pathogens such as Dialister during both preconception and pregnancy decreased among women with better oral hygiene practice. Conclusions The composition of the oral microbiota changed slightly from preconception to late pregnancy, with more pathogens in saliva samples during pregnancy. Improving oral hygiene practices has the potential to maintain oral micro-ecological balance.
Collapse
Affiliation(s)
- Xuena La
- School of Public Health, Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Xuhui District, Shanghai,China.,Department of Non-communicable Diseases Surveillance, Shanghai Municipal Center for Disease Control and Prevention (SCDC), Changning District, Shanghai,China
| | - Hong Jiang
- School of Public Health, Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Xuhui District, Shanghai,China
| | - An Chen
- Institute of Healthcare Engineering, Management and Architecture (HEMA), Department of Industrial Engineering and Management, Aalto University, Espoo, Finland
| | - Huajun Zheng
- NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Xuhui District, Shanghai,China
| | - Liandi Shen
- Department of Administrative Office, Jiading Maternal and Child Health Care Hospital, Jiading District, Shanghai,China
| | - Weiyi Chen
- School of Public Health, Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Xuhui District, Shanghai,China
| | - Fengyun Yang
- Department of Administrative Office, Jiading Maternal and Child Health Care Hospital, Jiading District, Shanghai,China
| | - Lifeng Zhang
- Department of Administrative Office, Jiading Maternal and Child Health Care Hospital, Jiading District, Shanghai,China
| | - Xushan Cai
- Department of Woman Health care, Jiading Maternal and Child Health Care Hospital, Jiading District, Shanghai, China
| | - Hongfang Mao
- Department of Woman Health care, Jiading Maternal and Child Health Care Hospital, Jiading District, Shanghai, China
| | - Lu Cheng
- Department of Computer Science, Aalto University, Espoo, Finland
| |
Collapse
|
36
|
Bacali C, Vulturar R, Buduru S, Cozma A, Fodor A, Chiș A, Lucaciu O, Damian L, Moldovan ML. Oral Microbiome: Getting to Know and Befriend Neighbors, a Biological Approach. Biomedicines 2022; 10:671. [PMID: 35327473 PMCID: PMC8945538 DOI: 10.3390/biomedicines10030671] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
The oral microbiome, forming a biofilm that covers the oral structures, contains a high number of microorganisms. Biofilm formation starts from the salivary pellicle that allows bacterial adhesion-colonization-proliferation, co-aggregation and biofilm maturation in a complex microbial community. There is a constant bidirectional crosstalk between human host and its oral microbiome. The paper presents the fundamentals regarding the oral microbiome and its relationship to modulator factors, oral and systemic health. The modern studies of oral microorganisms and relationships with the host benefits are based on genomics, transcriptomics, proteomics and metabolomics. Pharmaceuticals such as antimicrobials, prebiotics, probiotics, surface active or abrasive agents and plant-derived ingredients may influence the oral microbiome. Many studies found associations between oral dysbiosis and systemic disorders, including autoimmune diseases, cardiovascular, diabetes, cancers and neurodegenerative disorders. We outline the general and individual factors influencing the host-microbial balance and the possibility to use the analysis of the oral microbiome in prevention, diagnosis and treatment in personalized medicine. Future therapies should take in account the restoration of the normal symbiotic relation with the oral microbiome.
Collapse
Affiliation(s)
- Cecilia Bacali
- Department of Prosthodontics and Dental Materials, “Iuliu Hatieganu” University of Medicine and Pharmacy, 32 Clinicilor St., 400006 Cluj-Napoca, Romania; (C.B.); (S.B.)
| | - Romana Vulturar
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 6 Pasteur St., 400349 Cluj-Napoca, Romania;
- Cognitive Neuroscience Laboratory, University Babes-Bolyai, 30 Fântânele St., 400294 Cluj-Napoca, Romania
| | - Smaranda Buduru
- Department of Prosthodontics and Dental Materials, “Iuliu Hatieganu” University of Medicine and Pharmacy, 32 Clinicilor St., 400006 Cluj-Napoca, Romania; (C.B.); (S.B.)
| | - Angela Cozma
- 4th Medical Department, University of Medicine and Pharmacy “Iuliu Hatieganu” Cluj-Napoca, 18 Republicii St., 400015 Cluj-Napoca, Romania;
| | - Adriana Fodor
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Iuliu Hatieganu” University of Medicine and Pharmacy, 2-4 Clinicilor St., 400012 Cluj-Napoca, Romania;
| | - Adina Chiș
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 6 Pasteur St., 400349 Cluj-Napoca, Romania;
- Cognitive Neuroscience Laboratory, University Babes-Bolyai, 30 Fântânele St., 400294 Cluj-Napoca, Romania
| | - Ondine Lucaciu
- Department of Oral Health, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania;
| | - Laura Damian
- Department of Rheumatology, Emergency Clinical County Hospital Cluj, Centre for Rare Autoimmune and Autoinflammatory Diseases, 2-4 Clinicilor St., 400006 Cluj-Napoca, Romania;
- CMI Reumatologie Dr. Damian, 6-8 Petru Maior St., 400002 Cluj-Napoca, Romania
| | - Mirela Liliana Moldovan
- Department of Dermopharmacy and Cosmetics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 12, I. Creanga St., 400010 Cluj-Napoca, Romania;
| |
Collapse
|
37
|
A Potential “Vitaminic Strategy” against Caries and Halitosis. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Streptococcus mutans and Fusobacterium nucleatum are two key bacteria of the oral microbiota. Due to their ability to form biofilms on oral tissues, they are both involved in the onset of the most common oral diseases. F. nucleatum is also the principal producer of hydrogen sulfide (H2S), causative of the awkward bad breath of halitosis. In this study, the oral product Vea® Oris, made by vitamin E and capric/caprylic acid only, was evaluated as a potential treatment for the most common oral diseases. Different concentrations of the product were tested against both S. mutans and F. nucleatum. The effect on planktonic and biofilm growth was investigated for both strains, and for F. nucleatum, the influence on H2S production was evaluated. From our data, the product did not relevantly reduce the planktonic growth of both strains, whereas it validly counteracted biofilm assemblage. Moreover, an interesting trend of H2S reduction was highlighted. Overall, these results suggested, on the one hand, a synergistic antimicrobial–antibiofilm action of two Vea® Oris components and, together, potential modulation activity on H2S production. However, the study should be implemented to confirm these only preliminary findings, certainly extending the panel of tested bacteria and using alternative methods of detection.
Collapse
|
38
|
Ptasiewicz M, Grywalska E, Mertowska P, Korona-Głowniak I, Poniewierska-Baran A, Niedźwiedzka-Rystwej P, Chałas R. Armed to the Teeth-The Oral Mucosa Immunity System and Microbiota. Int J Mol Sci 2022; 23:882. [PMID: 35055069 PMCID: PMC8776045 DOI: 10.3390/ijms23020882] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 02/01/2023] Open
Abstract
The oral cavity is inhabited by a wide spectrum of microbial species, and their colonization is mostly based on commensalism. These microbes are part of the normal oral flora, but there are also opportunistic species that can cause oral and systemic diseases. Although there is a strong exposure to various microorganisms, the oral mucosa reduces the colonization of microorganisms with high rotation and secretion of various types of cytokines and antimicrobial proteins such as defensins. In some circumstances, the imbalance between normal oral flora and pathogenic flora may lead to a change in the ratio of commensalism to parasitism. Healthy oral mucosa has many important functions. Thanks to its integrity, it is impermeable to most microorganisms and constitutes a mechanical barrier against their penetration into tissues. Our study aims to present the role and composition of the oral cavity microbiota as well as defense mechanisms within the oral mucosa which allow for maintaining a balance between such numerous species of microorganisms. We highlight the specific aspects of the oral mucosa protecting barrier and discuss up-to-date information on the immune cell system that ensures microbiota balance. This study presents the latest data on specific tissue stimuli in the regulation of the immune system with particular emphasis on the resistance of the gingival barrier. Despite advances in understanding the mechanisms regulating the balance on the microorganism/host axis, more research is still needed on how the combination of these diverse signals is involved in the regulation of immunity at the oral mucosa barrier.
Collapse
Affiliation(s)
- Maja Ptasiewicz
- Department of Oral Medicine, Medical University of Lublin, 6 Chodzki Street, 20-093 Lublin, Poland; (M.P.); (R.C.)
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland;
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland;
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland;
| | | | | | - Renata Chałas
- Department of Oral Medicine, Medical University of Lublin, 6 Chodzki Street, 20-093 Lublin, Poland; (M.P.); (R.C.)
| |
Collapse
|
39
|
Martin S, Foulon A, El Hage W, Dufour-Rainfray D, Denis F. Is There a Link between Oropharyngeal Microbiome and Schizophrenia? A Narrative Review. Int J Mol Sci 2022; 23:ijms23020846. [PMID: 35055031 PMCID: PMC8775665 DOI: 10.3390/ijms23020846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 11/16/2022] Open
Abstract
The study aimed to examine the impact of the oropharyngeal microbiome in the pathophysiology of schizophrenia and to clarify whether there might be a bidirectional link between the oral microbiota and the brain in a context of dysbiosis-related neuroinflammation. We selected nine articles including three systemic reviews with several articles from the same research team. Different themes emerged, which we grouped into 5 distinct parts concerning the oropharyngeal phageome, the oropharyngeal microbiome, the salivary microbiome and periodontal disease potentially associated with schizophrenia, and the impact of drugs on the microbiome and schizophrenia. We pointed out the presence of phageoma in patients suffering from schizophrenia and that periodontal disease reinforces the role of inflammation in the pathophysiology of schizophrenia. Moreover, saliva could be an interesting substrate to characterize the different stages of schizophrenia. However, the few studies we have on the subject are limited in scope, and some of them are the work of a single team. At this stage of knowledge, it is difficult to conclude on the existence of a bidirectional link between the brain and the oral microbiome. Future studies on the subject will clarify these questions that for the moment remain unresolved.
Collapse
Affiliation(s)
- Stanislas Martin
- Department of Psychiatry, Centre Hospitalier Universitaire Tours, 37000 Tours, France;
| | - Audrey Foulon
- Faculty of Medicine, Université de Tours, 37000 Tours, France;
| | - Wissam El Hage
- U1253, iBrain, Inserm, CHU Tours, Université de Tours, 37000 Tours, France; (W.E.H.); (D.D.-R.)
| | - Diane Dufour-Rainfray
- U1253, iBrain, Inserm, CHU Tours, Université de Tours, 37000 Tours, France; (W.E.H.); (D.D.-R.)
- Service de Médecine Nucléaire In Vitro, Centre Hospitalier Universitaire Tours, 37044 Tours, France
| | - Frédéric Denis
- Department of Odontology, Centre Hospitalier Universitaire Tours, 37000 Tours, France
- Faculty of Dentistry, Nantes University, 44000 Nantes, France
- EA 75-05 Education, Ethics, Health, Faculty of Medicine, Université de Tours, 37000 Tours, France
- Correspondence: ; Tel.: +33-6-77-15-69-68
| |
Collapse
|
40
|
Handsley-Davis M, Kapellas K, Jamieson LM, Hedges J, Skelly E, Kaidonis J, Anastassiadis P, Weyrich LS. Heritage-specific oral microbiota in Indigenous Australian dental calculus. Evol Med Public Health 2022; 10:352-362. [PMID: 36032329 PMCID: PMC9400808 DOI: 10.1093/emph/eoac024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 03/26/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Background and objectives
Aboriginal Australians and Torres Strait Islanders (hereafter respectfully referred to as Indigenous Australians) experience a high burden of chronic non-communicable diseases (NCDs). Increased NCD risk is linked to oral diseases mediated by the oral microbiota, a microbial community influenced by both vertical transmission and lifestyle factors. As an initial step towards understanding the oral microbiota as a factor in Indigenous health, we present the first investigation of oral microbiota in Indigenous Australian adults.
Methodology
Dental calculus samples from Indigenous Australians with periodontal disease (PD; n = 13) and non-Indigenous individuals both with (n = 19) and without PD (n = 20) were characterized using 16S ribosomal RNA gene amplicon sequencing. Alpha and beta diversity, differentially abundant microbial taxa and taxa unique to different participant groups were analysed using QIIME2.
Results
Samples from Indigenous Australians were more phylogenetically diverse (Kruskal–Wallis H = 19.86, P = 8.3 × 10−6), differed significantly in composition from non-Indigenous samples (PERMANOVA pseudo-F = 10.42, P = 0.001) and contained a relatively high proportion of unique taxa not previously reported in the human oral microbiota (e.g. Endomicrobia). These patterns were robust to stratification by PD status. Oral microbiota diversity and composition also differed between Indigenous individuals living in different geographic regions.
Conclusions and implications
Indigenous Australians may harbour unique oral microbiota shaped by their long relationships with Country (ancestral homelands). Our findings have implications for understanding the origins of oral and systemic NCDs and for the inclusion of Indigenous peoples in microbiota research, highlighting the microbiota as a novel field of enquiry to improve Indigenous health.
Collapse
Affiliation(s)
- Matilda Handsley-Davis
- Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, University of Adelaide , Adelaide, SA, Australia
- Centre for Australian Biodiversity and Heritage (CABAH), University of Adelaide , Adelaide, SA, Australia
| | - Kostas Kapellas
- Australian Research Centre for Population Oral Health (ARCPOH), Adelaide Dental School, University of Adelaide , Adelaide, SA, Australia
| | - Lisa M Jamieson
- Australian Research Centre for Population Oral Health (ARCPOH), Adelaide Dental School, University of Adelaide , Adelaide, SA, Australia
| | - Joanne Hedges
- Australian Research Centre for Population Oral Health (ARCPOH), Adelaide Dental School, University of Adelaide , Adelaide, SA, Australia
| | - Emily Skelly
- Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, University of Adelaide , Adelaide, SA, Australia
| | - John Kaidonis
- Adelaide Dental School, University of Adelaide , Adelaide, SA, Australia
| | | | - Laura S Weyrich
- Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, University of Adelaide , Adelaide, SA, Australia
- Centre for Australian Biodiversity and Heritage (CABAH), University of Adelaide , Adelaide, SA, Australia
- Department of Anthropology and Huck Institutes of the Life Sciences, The Pennsylvania State University , University Park, PA, USA
| |
Collapse
|
41
|
Nath S, Zilm P, Jamieson L, Kapellas K, Goswami N, Ketagoda K, Weyrich LS. Development and characterization of an oral microbiome transplant among Australians for the treatment of dental caries and periodontal disease: A study protocol. PLoS One 2021; 16:e0260433. [PMID: 34843568 PMCID: PMC8629173 DOI: 10.1371/journal.pone.0260433] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/08/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Oral microbiome transplantation (OMT) is a novel concept of introducing health-associated oral microbiota into the oral cavity of a diseased patient. The premise is to reverse the state of oral dysbiosis, and restore the ecological balance to maintain a stable homeostasis with the host immune system. This study will assess the effectiveness, feasibility, and safety of OMT using an interdisciplinary approach. METHODS/DESIGN To find donors suitable for microbial transplantation, supragingival plaque samples will be collected from 600 healthy participants. Each sample (200μL) will subsequently be examined in two ways: 1) 100μL of the sample will undergo high-throughput 16S rRNA gene amplicon sequencing and shotgun sequencing to identify the composition and characterisation of a healthy supragingival microbiome, 2) the remaining 100μL of the plaque sample will be mixed with 25% artificial saliva medium and inoculated into a specialised in-vitro flow cell model containing a hydroxyapatite disk. To obtain sufficient donor plaque, the samples would be grown for 14 days and further analysed microscopically and sequenced to examine and confirm the growth and survival of the microbiota. Samples with the healthiest microbiota would then be incorporated in a hydrogel delivery vehicle to enable transplantation of the donor oral microbiota. The third step would be to test the effectiveness of OMT in caries and periodontitis animal models for efficacy and safety for the treatment of oral diseases. DISCUSSION If OMTs are found to be successful, it can form a new treatment method for common oral diseases such as dental caries and periodontitis. OMTs may have the potential to modulate the oral microbiota and shift the ecological imbalances to a healthier state.
Collapse
Affiliation(s)
- Sonia Nath
- Australian Research Centre for Population Oral Health, Adelaide Dental School, The University of Adelaide, SA, Australia
| | - Peter Zilm
- Oral Microbiology Laboratory, Adelaide Dental School, The University of Adelaide, Adelaide, SA, Australia
| | - Lisa Jamieson
- Australian Research Centre for Population Oral Health, Adelaide Dental School, The University of Adelaide, SA, Australia
| | - Kostas Kapellas
- Australian Research Centre for Population Oral Health, Adelaide Dental School, The University of Adelaide, SA, Australia
| | - Nirmal Goswami
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Acharya Vihar, Bhubaneswar, India
| | - Kevin Ketagoda
- Oral Microbiology Laboratory, Adelaide Dental School, The University of Adelaide, Adelaide, SA, Australia
| | - Laura S. Weyrich
- Department of Anthropology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States of America
- Australian Centre for Ancient DNA, School of Biological Sciences and the Environment Institute, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
42
|
Sato H, Yano A, Shimoyama Y, Sato T, Sugiyama Y, Kishi M. Associations of streptococci and fungi amounts in the oral cavity with nutritional and oral health status in institutionalized elders: a cross sectional study. BMC Oral Health 2021; 21:590. [PMID: 34798863 PMCID: PMC8603531 DOI: 10.1186/s12903-021-01926-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/22/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Disruption of the indigenous microbiota is likely related to frailty caused by undernutrition. However, the relationship between undernutrition and the oral microbiota, especially normal bacteria, is not obvious. The aim of this study was to elucidate the associations of nutritional and oral health conditions with prevalence of bacteria and fungi in the oral cavity of older individuals. METHODS Forty-one institutionalized older individuals with an average age ± standard deviation of 84.6 ± 8.3 years were enrolled as participants. Body mass index (BMI) and oral health assessment tool (OHAT) scores were used to represent nutritional and oral health status. Amounts of total bacteria, streptococci, and fungi in oral specimens collected from the tongue dorsum were determined by quantitative polymerase chain reaction (PCR) assay results. This study followed the STROBE statement for reports of observational studies. RESULTS There was a significant correlation between BMI and streptococcal amount (ρ = 0.526, p < 0.001). The undernutrition group (BMI < 20) showed a significantly lower average number of oral streptococci (p = 0.003). In logistic regression models, streptococcal amount was a significant variable accounting for "not undernutrition" [odds ratio 5.68, 95% confidential interval (CI) 1.64-19.7 (p = 0.06)]. On the other hand, participants with a poor oral health condition (OHAT ≥ 5) harbored significantly higher levels of fungi (p = 0.028). CONCLUSION Oral streptococci were found to be associated with systemic nutritional condition and oral fungi with oral health condition. Thus, in order to understand the relationship of frailty with the oral microbiota in older individuals, it is necessary to examine oral indigenous bacteria as well as etiological microorganisms.
Collapse
Affiliation(s)
- Hanako Sato
- Division of Preventive Dentistry, Department of Oral Medicine, Iwate Medical University School of Dentistry, 1-3-27 Chuo-dori, Morioka, Iwate 020-8505 Japan
| | - Akira Yano
- Iwate Biotechnology Research Center, 174-4 Narita 22 Jiwari, Kitakami, Iwate 024-0003 Japan
| | - Yu Shimoyama
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, 1-1 Idai Dori 1 chome, Yahaba, Iwate 028-3694 Japan
| | - Toshiro Sato
- Division of Preventive Dentistry, Department of Oral Medicine, Iwate Medical University School of Dentistry, 1-3-27 Chuo-dori, Morioka, Iwate 020-8505 Japan
| | - Yukiko Sugiyama
- Division of Preventive Dentistry, Department of Oral Medicine, Iwate Medical University School of Dentistry, 1-3-27 Chuo-dori, Morioka, Iwate 020-8505 Japan
| | - Mitsuo Kishi
- Division of Preventive Dentistry, Department of Oral Medicine, Iwate Medical University School of Dentistry, 1-3-27 Chuo-dori, Morioka, Iwate 020-8505 Japan
| |
Collapse
|
43
|
Monnoyer R, Eftedal I, Hjelde A, Deb S, Haugum K, Lautridou J. Functional Profiling Reveals Altered Metabolic Activity in Divers' Oral Microbiota During Commercial Heliox Saturation Diving. Front Physiol 2021; 12:702634. [PMID: 34721054 PMCID: PMC8548618 DOI: 10.3389/fphys.2021.702634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022] Open
Abstract
Background: The extreme environment in saturation diving affects all life forms, including the bacteria that reside on human skin and mucosa. The oral cavity alone is home to hundreds of different bacteria. In this study, we examined the metabolic activity of oral bacteria from healthy males during commercial heliox saturation diving. We focused on environmentally induced changes that might affect the divers’ health and fitness. Methods: We performed pathway abundance analysis using PICRUSt2, a bioinformatics software package that uses marker gene data to compute the metabolic activity of microbial communities. The analysis is based on 16S rRNA metagenomic data generated from the oral microbiota of 23 male divers before, during, and after 4weeks of commercial heliox saturation diving. Environmentally induced changes in bacterial metabolism were computed from differences in predicted pathway abundances at baseline before, versus during, and immediately after saturation diving. Results and Conclusion: The analysis predicted transient changes that were primarily associated with the survival and growth of bacteria in oxygenated environments. There was a relative increase in the abundance of aerobic metabolic pathways and a concomitant decrease in anaerobic metabolic pathways, primarily comprising of energy metabolism, oxidative stress responses, and adenosylcobalamin biosynthesis. Adenosylcobalamin is a bioactive form of vitamin B12 (vitB12), and a reduction in vitB12 biosynthesis may hypothetically affect the divers’ physiology. While host effects of oral bacterial vitamin metabolism are uncertain, this is a finding that concurs with the existing recommendations for vitB12 supplements as part of the divers’ diet, whether to boost antioxidant defenses in bacteria or their host or to improve oxygen transport during saturation diving.
Collapse
Affiliation(s)
- Roxane Monnoyer
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingrid Eftedal
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - Astrid Hjelde
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sanjoy Deb
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Centre for Nutraceuticals, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Kjersti Haugum
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Medical Microbiology, Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Jacky Lautridou
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
44
|
Cornejo Ulloa P, Krom BP, van der Veen MH. Sex Steroid Hormones as a Balancing Factor in Oral Host Microbiome Interactions. Front Cell Infect Microbiol 2021; 11:714229. [PMID: 34660339 PMCID: PMC8511811 DOI: 10.3389/fcimb.2021.714229] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/13/2021] [Indexed: 11/18/2022] Open
Abstract
Sex steroid hormones (SSH) are cholesterol-derived molecules. They are secreted into saliva and enter the oral cavity, triggering physiological responses from oral tissues, with possible clinical implications, such as gingival inflammation and bleeding. SSH and hormonal changes affect not only oral host cells but also oral microorganisms. Historically, most research has focused on the effect of hormonal changes on specific bacteria and yeasts. Recently a broader effect of SSH on oral microorganisms was suggested. In order to assess the role of SSH in host-microbe interactions in the oral cavity, this review focuses on how and up to what extent SSH can influence the composition and behavior of the oral microbiome. The available literature was reviewed and a comprehensive hypothesis about the role of SSH in host-microbiome interactions is presented. The limited research available indicates that SSH may influence the balance between the host and its microbes in the oral cavity.
Collapse
Affiliation(s)
- Pilar Cornejo Ulloa
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, Netherlands
| | - Bastiaan P Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, Netherlands
| | - Monique H van der Veen
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
45
|
Hallang S, Esberg A, Haworth S, Johansson I. Healthy Oral Lifestyle Behaviours Are Associated with Favourable Composition and Function of the Oral Microbiota. Microorganisms 2021; 9:1674. [PMID: 34442754 PMCID: PMC8401320 DOI: 10.3390/microorganisms9081674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/28/2022] Open
Abstract
Modifiable lifestyle interventions may influence dental disease by shifting the composition of the oral microbiota. This study aimed to test whether lifestyle traits are associated with oral microbiota composition and function. Swedish volunteers, aged 16 to 79 years, completed a lifestyle traits questionnaire including lifestyle characteristics and oral health behaviours. Bacterial 16S rDNA amplicons were sequenced and classified into genera and species, using salivary DNA. Microbiota functions were predicted using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States and the KO Database of Molecular Functions by ortholog annotation. Tests for association used partial least squares and linear regression analysis with correction for multiple testing. The main analysis included 401 participants and 229 common bacterial species (found in ≥10% of the participants). The overall microbiota composition was strongly associated with questions "do you think caries is a disease?" and "do you use floss or a toothpick?". Enriched relative abundance of Actinomyces, Campylobacter, Dialister, Fusobacterium, Peptidophaga and Scardovia genera (all p < 0.05 after adjustment for multiple testing), and functional profiles showing enrichment of carbohydrate related functions, were found in participants who answered "no" to these questions. Socio-demographic traits and other oral hygiene behaviours were also associated. Healthier oral microbiota composition and predicted functions are found in those with favourable oral health behaviours. Modifiable risk factors could be prioritized for possible interventions.
Collapse
Affiliation(s)
- Shirleen Hallang
- Faculty of Health Sciences, Bristol Dental School, University of Bristol, Bristol BS1 2LY, UK; (S.H.); (S.H.)
| | - Anders Esberg
- Department of Odontology, Umeå University, 901 87 Umeå, Sweden;
| | - Simon Haworth
- Faculty of Health Sciences, Bristol Dental School, University of Bristol, Bristol BS1 2LY, UK; (S.H.); (S.H.)
- Department of Odontology, Umeå University, 901 87 Umeå, Sweden;
- Medical Research Council Integrative Epidemiology Unit, Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | | |
Collapse
|
46
|
Shigeishi H, Nakamura M, Oka I, Su CY, Yano K, Ishikawa M, Kaneyasu Y, Sugiyama M, Ohta K. The Associations of Periodontopathic Bacteria and Oral Candida with Periodontal Inflamed Surface Area in Older Adults Receiving Supportive Periodontal Therapy. Diagnostics (Basel) 2021; 11:diagnostics11081397. [PMID: 34441331 PMCID: PMC8392537 DOI: 10.3390/diagnostics11081397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
The periodontal inflamed surface area (PISA) has been proposed for assessment of the total periodontal inflammatory status in people with periodontitis. This study was performed to investigate the associations of periodontopathic bacteria and candida with PISA in older people. We enrolled 100 patients aged ≥ 60 years who visited Hiroshima University Hospital. PISA and periodontal epithelial surface area (PESA) were calculated in each patient. Oral rinse samples were collected for DNA extraction. Periodontopathic bacteria and candida were detected by polymerase chain reaction. The mean values of PISA and PESA were significantly greater in T.forsythia-positive patients than in T.forsythia-negative patients. T.forsythia/C. albicans double-positive patients exhibited significantly greater PISA values than did non-double-positive patients. Additionally, PISA values were significantly greater in T. forsythia//T. denticola/C. albicans triple-positive patients than in T. forsythia//T. denticola/C. albicans non-triple-positive patients (p = 0.02). Propensity score-matching was performed between periodontopathic bacteria-positive and -negative patients using propensity scores generated from clinical factors. Importantly, T.forsythia/T. denticola double-positive patients exhibited significantly greater PISA values than non-double-positive patients among 72 propensity score-matched patients. Our preliminary results highlight the importance of the presence of T.forsythia and T. denticola for periodontal inflammation severity in older Japanese people.
Collapse
Affiliation(s)
- Hideo Shigeishi
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (M.N.); (I.O.); (K.Y.); (M.I.); (Y.K.); (M.S.); (K.O.)
- Correspondence: ; Tel.: +81-82-257-5945
| | - Mariko Nakamura
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (M.N.); (I.O.); (K.Y.); (M.I.); (Y.K.); (M.S.); (K.O.)
| | - Iori Oka
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (M.N.); (I.O.); (K.Y.); (M.I.); (Y.K.); (M.S.); (K.O.)
| | - Cheng-Yih Su
- Department of Oral Health Management, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Kanako Yano
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (M.N.); (I.O.); (K.Y.); (M.I.); (Y.K.); (M.S.); (K.O.)
| | - Momoko Ishikawa
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (M.N.); (I.O.); (K.Y.); (M.I.); (Y.K.); (M.S.); (K.O.)
| | - Yoshino Kaneyasu
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (M.N.); (I.O.); (K.Y.); (M.I.); (Y.K.); (M.S.); (K.O.)
| | - Masaru Sugiyama
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (M.N.); (I.O.); (K.Y.); (M.I.); (Y.K.); (M.S.); (K.O.)
| | - Kouji Ohta
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (M.N.); (I.O.); (K.Y.); (M.I.); (Y.K.); (M.S.); (K.O.)
| |
Collapse
|
47
|
Maitre Y, Mahalli R, Micheneau P, Delpierre A, Guerin M, Amador G, Denis F. Pre and Probiotics Involved in the Modulation of Oral Bacterial Species: New Therapeutic Leads in Mental Disorders? Microorganisms 2021; 9:1450. [PMID: 34361886 PMCID: PMC8306040 DOI: 10.3390/microorganisms9071450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 12/12/2022] Open
Abstract
This systematic review aims to identify probiotics and prebiotics for modulating oral bacterial species associated with mental disorders. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guideline, we search the electronic MEDLINE database published till January 2021 to identify the studies on probiotics and/or prebiotics for preventing and treating major oral dysbiosis that provokes mental disorders. The outcome of the search produces 374 records. After excluding non-relevant studies, 38 papers were included in the present review. While many studies suggest the potential effects of the oral microbiota on the biochemical signalling events between the oral microbiota and central nervous system, our review highlights the limited development concerning the use of prebiotics and/or probiotics in modulating oral dysbiosis potentially involved in the development of mental disorders. However, the collected studies confirm prebiotics and/or probiotics interest for a global or targeted modulation of the oral microbiome in preventing or treating mental disorders. These outcomes also offer exciting prospects for improving the oral health of people with mental disorders in the future.
Collapse
Affiliation(s)
- Yoann Maitre
- Emergency Department, Montpellier University Hospital, 2415 Montpellier, France;
- Aide à la Décision pour une Médecine Personnalisée, Université de Montpellier, 2415 Montpellier, France
| | - Rachid Mahalli
- Department of Odontology, Tours University Hospital, 7505 Tours, France; (R.M.); (P.M.); (A.D.)
| | - Pierre Micheneau
- Department of Odontology, Tours University Hospital, 7505 Tours, France; (R.M.); (P.M.); (A.D.)
| | - Alexis Delpierre
- Department of Odontology, Tours University Hospital, 7505 Tours, France; (R.M.); (P.M.); (A.D.)
| | - Marie Guerin
- Faculty of Dentistry, Clermont-Ferrand University, 63000 Clermont-Ferrand, France;
| | - Gilles Amador
- Faculty of Dentistry, Nantes University, 44035 Nantes, France;
| | - Frédéric Denis
- Department of Odontology, Tours University Hospital, 7505 Tours, France; (R.M.); (P.M.); (A.D.)
- Faculty of Dentistry, Nantes University, 44035 Nantes, France;
- Faculté de Médecine, Education, Ethique, Santé, Université François-Rabelais, 7505 Tours, France
| |
Collapse
|
48
|
Kumar PS. Microbial dysbiosis: The root cause of periodontal disease. J Periodontol 2021; 92:1079-1087. [PMID: 34152022 DOI: 10.1002/jper.21-0245] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Purnima S Kumar
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
49
|
Toyama N, Ekuni D, Matsui D, Koyama T, Nakatochi M, Momozawa Y, Kubo M, Morita M. Comprehensive Analysis of Risk Factors for Periodontitis Focusing on the Saliva Microbiome and Polymorphism. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6430. [PMID: 34198553 PMCID: PMC8296229 DOI: 10.3390/ijerph18126430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
Few studies have exhaustively assessed relationships among polymorphisms, the microbiome, and periodontitis. The objective of the present study was to assess associations simultaneously among polymorphisms, the microbiome, and periodontitis. We used propensity score matching with a 1:1 ratio to select subjects, and then 22 individuals (mean age ± standard deviation, 60.7 ± 9.9 years) were analyzed. After saliva collection, V3-4 regions of the 16S rRNA gene were sequenced to investigate microbiome composition, alpha diversity (Shannon index, Simpson index, Chao1, and abundance-based coverage estimator) and beta diversity using principal coordinate analysis (PCoA) based on weighted and unweighted UniFrac distances. A total of 51 single-nucleotide polymorphisms (SNPs) related to periodontitis were identified. The frequencies of SNPs were collected from Genome-Wide Association Study data. The PCoA of unweighted UniFrac distance showed a significant difference between periodontitis and control groups (p < 0.05). There were no significant differences in alpha diversity and PCoA of weighted UniFrac distance (p > 0.05). Two families (Lactobacillaceae and Desulfobulbaceae) and one species (Porphyromonas gingivalis) were observed only in the periodontitis group. No SNPs showed significant expression. These results suggest that periodontitis was related to the presence of P. gingivalis and the families Lactobacillaceae and Desulfobulbaceae but not SNPs.
Collapse
Affiliation(s)
- Naoki Toyama
- Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (D.E.); (M.M.)
| | - Daisuke Ekuni
- Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (D.E.); (M.M.)
| | - Daisuke Matsui
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (D.M.); (T.K.)
| | - Teruhide Koyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (D.M.); (T.K.)
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673, Japan;
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City 230-0045, Japan; (Y.M.); (M.K.)
| | - Michiaki Kubo
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City 230-0045, Japan; (Y.M.); (M.K.)
| | - Manabu Morita
- Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (D.E.); (M.M.)
| |
Collapse
|
50
|
Chopyk J, Bojanowski CM, Shin J, Moshensky A, Fuentes AL, Bonde SS, Chuki D, Pride DT, Crotty Alexander LE. Compositional Differences in the Oral Microbiome of E-cigarette Users. Front Microbiol 2021; 12:599664. [PMID: 34135868 PMCID: PMC8200533 DOI: 10.3389/fmicb.2021.599664] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
Electronic (e)-cigarettes have been advocated as a safer alternative to conventional tobacco cigarettes. However, there is a paucity of data regarding the impact of e-cigarette aerosol deposition on the human oral microbiome, a key component in human health and disease. We aimed to fill this knowledge gap through a comparative analysis of the microbial community profiles from e-cigarette users and healthy controls [non-smokers/non-vapers (NSNV)]. Moreover, we sought to determine whether e-cigarette aerosol exposure from vaping induces persistent changes in the oral microbiome. To accomplish this, salivary and buccal mucosa samples were collected from e-cigarette users and NSNV controls, with additional oral samples collected from e-cigarette users after 2 weeks of decreased use. Total DNA was extracted from all samples and subjected to PCR amplification and sequencing of the V3-V4 hypervariable regions of the 16S rRNA gene. Our analysis revealed several prominent differences associated with vaping, specific to the sample type (i.e., saliva and buccal). In the saliva, e-cigarette users had a significantly higher alpha diversity, observed operational taxonomic units (OTUs) and Faith's phylogenetic diversity (PD) compared to NSNV controls, which declined with decreased vaping. The buccal mucosa swab samples were marked by a significant shift in beta diversity between e-cigarette users and NSNV controls. There were also significant differences in the relative abundance of several bacterial taxa, with a significant increase in Veillonella and Haemophilus in e-cigarette users. In addition, nasal swabs demonstrated a trend toward higher colonization rates with Staphylococcus aureus in e-cigarette users relative to controls (19 vs. 7.1%; p = n.s.). Overall, these data reveal several notable differences in the oral bacterial community composition and diversity in e-cigarette users as compared to NSNV controls.
Collapse
Affiliation(s)
- Jessica Chopyk
- Department of Pathology, University of California San Diego (UCSD), La Jolla, CA, United States
| | - Christine M. Bojanowski
- Section of Pulmonary Diseases, Critical Care and Environmental Medicine, Department of Medicine, Tulane University, New Orleans, LA, United States
- Pulmonary Critical Care Section, VA San Diego Healthcare System, La Jolla, CA, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, United States
| | - John Shin
- Pulmonary Critical Care Section, VA San Diego Healthcare System, La Jolla, CA, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, United States
| | - Alex Moshensky
- Pulmonary Critical Care Section, VA San Diego Healthcare System, La Jolla, CA, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, United States
| | - Ana Lucia Fuentes
- Pulmonary Critical Care Section, VA San Diego Healthcare System, La Jolla, CA, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, United States
| | - Saniya S. Bonde
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, United States
| | - Dagni Chuki
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, United States
| | - David T. Pride
- Department of Pathology, University of California San Diego (UCSD), La Jolla, CA, United States
- Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, United States
| | - Laura E. Crotty Alexander
- Pulmonary Critical Care Section, VA San Diego Healthcare System, La Jolla, CA, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, United States
| |
Collapse
|