1
|
Tavares da Silva R, José Dos Santos Franco A, Mayara de Souza Grilo M, Lima A, Alcântara Saraiva KL, de Siqueira Ferraz Carvalho R, Targino de Souza Pedrosa G, Schaffner DW, Magnani M. SARS-CoV-2 surrogate bacteriophage φ6 cross-contamination between fruits and gloves, survival on discarded gloves and inactivation by photodynamic treatment. Food Microbiol 2025; 125:104645. [PMID: 39448155 DOI: 10.1016/j.fm.2024.104645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/02/2024] [Accepted: 09/15/2024] [Indexed: 10/26/2024]
Abstract
This study assessed the SARS-CoV-2 surrogate bacteriophage φ6 cross-contamination between high-density polyethylene or polyvinyl chloride gloves and fruits (tomato and cucumber) using different inoculum levels (6.0 and 4.0 log PFU/sample). Bacteriophage φ6 survival on contaminated gloves was assessed over 9 days at 25 °C. The effectiveness of photodynamic treatment using curcumin as a photosensitizer to inactivate φ6 on fruits was determined. The fruit type and the glove material influenced the φ6 transfer. Longer contact times resulted in greater φ6 transfer. The highest φ6 transfer occurred from tomato to HDPE glove (0.8% or -1.1 log % transfer) after 30 s of contact at the higher inoculum level. Bacteriophage φ6 was detected on cross-contaminated HDPE gloves for up to 6 days. Bacteriophage φ6 survived better on vinyl gloves cross-contaminated by cucumber vs. tomato (detected up to 6 vs 3 days). Photodynamic inactivation of φ6 was time-dependent and varied with the tested fruit but was not influenced by viral starting concentration. Photodynamic treatment decreased the φ6 titer by 3.0 and 2.2 log PFU/sample in tomato and cucumber, respectively. Transmission electronic microscopy showed that photodynamic treatment changed the structure of the φ6 capsid. These findings may help in the management of SARS-CoV-2 contamination risks in fruit handling. They may also help in the establishment of effective measures to manage cross-contamination risk.
Collapse
Affiliation(s)
- Ruthchelly Tavares da Silva
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, Campus I, 58051-900, João Pessoa, Brazil
| | - Alyson José Dos Santos Franco
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, Campus I, 58051-900, João Pessoa, Brazil
| | - Maria Mayara de Souza Grilo
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, Campus I, 58051-900, João Pessoa, Brazil
| | - Atila Lima
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ, 08901, USA
| | | | | | - Geany Targino de Souza Pedrosa
- Milk and Dairy Products Laboratory, Food Technology Academic Unit, Agrifood Science and Technology Center, Federal University of Campina Grande, Campus Pombal, 58840-000, Pombal, Brazil
| | - Donald W Schaffner
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, Campus I, 58051-900, João Pessoa, Brazil.
| |
Collapse
|
2
|
Yan J, Cheng W, Ding C, Qiu Z, Li X, Lu X. Research on the Stability and Response of Food Packaging Polystyrene Resin Materials to γ-ray Irradiation. ACS OMEGA 2024; 9:38668-38677. [PMID: 39310197 PMCID: PMC11411651 DOI: 10.1021/acsomega.4c04407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024]
Abstract
Radiation stability of food packaging materials is the key to ensuring food quality. In this study, 60Co γ-ray was selected to investigate the radiation resistance of food packaging polystyrene (PS) resin material, although the FTIR analysis showed that the intensity of several peaks decreased slightly. The gel permeation chromatography (GPC) results displayed that the value of peak molecular weight (Mp) of PS went from 2.68 × 105 g/mol down to 2.22 × 105 g/mol. Moreover, the residual mass (Res) of PS increased from 7.208 to 30.23%, indicating that the tendency of coking of PS was stronger after irradiation. In addition, the peak intensities of the three main pyrolysis products -CH2-, CH4, and CH2=CH2 increased by more than 30% compared to unirradiated PS, and a large number of them were detected in the whole pyrolysis process. Moreover, mechanical property analysis finds that both breaking strength and elongation data increased before irradiation dose of 50 kGy, then, decreased sharply with further increase of irradiation dose. The theoretical bond order analysis confirmed that the tertiary carbon bond attaching the benzene ring had the lowest bond energy. This study can give helpful guidance when using PS for food packing materials.
Collapse
Affiliation(s)
- Jing Yan
- State
Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, P. R. China
- National
Co-innovation Center for Nuclear Waste Disposal and Environmental
Safety, Southwest University of Science
and Technology, Mianyang 621010, P. R. China
| | - Wencai Cheng
- State
Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, P. R. China
- National
Co-innovation Center for Nuclear Waste Disposal and Environmental
Safety, Southwest University of Science
and Technology, Mianyang 621010, P. R. China
- Tianfu
Institute of Research and Innovation, Southwest
University of Science and Technology, Chengdu 610299, P. R. China
| | - Congcong Ding
- State
Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, P. R. China
- National
Co-innovation Center for Nuclear Waste Disposal and Environmental
Safety, Southwest University of Science
and Technology, Mianyang 621010, P. R. China
- Tianfu
Institute of Research and Innovation, Southwest
University of Science and Technology, Chengdu 610299, P. R. China
| | - Ze Qiu
- State
Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, P. R. China
- National
Co-innovation Center for Nuclear Waste Disposal and Environmental
Safety, Southwest University of Science
and Technology, Mianyang 621010, P. R. China
| | - Xiaoan Li
- Nuclear
Medicine Laboratory of Mianyang Central Hospital, Mianyang 621010, P. R. China
| | - Xirui Lu
- State
Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, P. R. China
- National
Co-innovation Center for Nuclear Waste Disposal and Environmental
Safety, Southwest University of Science
and Technology, Mianyang 621010, P. R. China
- Tianfu
Institute of Research and Innovation, Southwest
University of Science and Technology, Chengdu 610299, P. R. China
| |
Collapse
|
3
|
Song K, Xue W, Li X, Chang Y, Liu M. Self-Assembly of Single-Virus SERS Hotspots for Highly Sensitive In Situ Detection of SARS-CoV-2 on Solid Surfaces. Anal Chem 2024; 96:8830-8836. [PMID: 38693713 DOI: 10.1021/acs.analchem.4c01607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Microbial surface transmission has aroused great attention since the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Developing a simple in situ detection method for viruses on solid surfaces is of great significance for timely public health surveillance. Taking advantage of the natural structure of SARS-CoV-2, we reported the assembly of Au@AgNPs on the surface of a single virus by the specific aptamer-spike protein interaction. Multiple hotspots can be created between the neighboring Au@AgNPs for the highly sensitive surface-enhanced Raman scattering (SERS) detection of SARS-CoV-2. Using two different aptamers labeled with Cy3 and Au@AgNPs, in situ SERS detection of pseudotyped SARS-CoV-2 (PSV) on packaging surfaces was achieved within 20 min, with a detection limit of 5.26 TCID50/mL. For the blind testing of 20 PSV-contaminated packaging samples, this SERS aptasensor had a sensitivity of 100% and an accuracy of 100%. This assay has been successfully applied to in situ detection of PSV on the surfaces of different packaging materials, suggesting its potential applicability.
Collapse
Affiliation(s)
- Kaiyun Song
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian POCT laboratory, Dalian University of Technology, Dalian 116024, China
| | - Wei Xue
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian POCT laboratory, Dalian University of Technology, Dalian 116024, China
| | - Xiaona Li
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian POCT laboratory, Dalian University of Technology, Dalian 116024, China
| | - Yangyang Chang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian POCT laboratory, Dalian University of Technology, Dalian 116024, China
| | - Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian POCT laboratory, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
4
|
Wahab A, Muhammad M, Ullah S, Abdi G, Shah GM, Zaman W, Ayaz A. Agriculture and environmental management through nanotechnology: Eco-friendly nanomaterial synthesis for soil-plant systems, food safety, and sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171862. [PMID: 38527538 DOI: 10.1016/j.scitotenv.2024.171862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Through the advancement of nanotechnology, agricultural and food systems are undergoing strategic enhancements, offering innovative solutions to complex problems. This scholarly essay thoroughly examines nanotechnological innovations and their implications within these critical industries. Traditional practices are undergoing radical transformation as nanomaterials emerge as novel agents in roles traditionally filled by fertilizers, pesticides, and biosensors. Micronutrient management and preservation techniques are further enhanced, indicating a shift towards more nutrient-dense and longevity-oriented food production. Nanoparticles (NPs), with their unique physicochemical properties, such as an extraordinary surface-to-volume ratio, find applications in healthcare, diagnostics, agriculture, and other fields. However, concerns about their potential overuse and bioaccumulation raise unanswered questions about their health effects. Molecule-to-molecule interactions and physicochemical dynamics create pathways through which nanoparticles cause toxicity. The combination of nanotechnology and environmental sustainability principles leads to the examination of green nanoparticle synthesis. The discourse extends to how nanomaterials penetrate biological systems, their applications, toxicological effects, and dissemination routes. Additionally, this examination delves into the ecological consequences of nanomaterial contamination in natural ecosystems. Employing robust risk assessment methodologies, including the risk allocation framework, is recommended to address potential dangers associated with nanotechnology integration. Establishing standardized, universally accepted guidelines for evaluating nanomaterial toxicity and protocols for nano-waste disposal is urged to ensure responsible stewardship of this transformative technology. In conclusion, the article summarizes global trends, persistent challenges, and emerging regulatory strategies shaping nanotechnology in agriculture and food science. Sustained, in-depth research is crucial to fully benefit from nanotechnology prospects for sustainable agriculture and food systems.
Collapse
Affiliation(s)
- Abdul Wahab
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Murad Muhammad
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011, China
| | - Shahid Ullah
- Department of Botany, University of Peshawar, Peshawar, Pakistan
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr 75169, Iran
| | | | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Asma Ayaz
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
5
|
Qin T, Chen Y, Miao X, Shao M, Xu N, Mou C, Chen Z, Yin Y, Chen S, Yin Y, Gao L, Peng D, Liu X. Low-Temperature Adaptive Single-Atom Iron Nanozymes against Viruses in the Cold Chain. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309669. [PMID: 38216154 DOI: 10.1002/adma.202309669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/11/2024] [Indexed: 01/14/2024]
Abstract
Outbreaks of viral infectious diseases, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV), pose a great threat to human health. Viral spread is accelerated worldwide by the development of cold chain logistics; Therefore, an effective antiviral approach is required. In this study, it is aimed to develop a distinct antiviral strategy using nanozymes with low-temperature adaptability, suitable for cold chain logistics. Phosphorus (P) atoms are added to the remote counter position of Fe-N-C center to prepare FeN4P2-single-atom nanozymes (SAzymes), exhibiting lipid oxidase (OXD)-like activity at cold chain temperatures (-20, and 4 °C). This feature enables FeN4P2-SAzymes to disrupt multiple enveloped viruses (human, swine, and avian coronaviruses, and H1-H11 subtypes of IAV) by catalyzing lipid peroxidation of the viral lipid envelope. Under the simulated conditions of cold chain logistics, FeN4P2-SAzymes are successfully applied as antiviral coatings on outer packaging and personal protective equipment; Therefore, FeN4P2-SAzymes with low-temperature adaptability and broad-spectrum antiviral properties may serve as key materials for developing specific antiviral approaches to interrupt viral transmission through the cold chain.
Collapse
Affiliation(s)
- Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yulian Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Xinyu Miao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Mengjuan Shao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Nuo Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Chunxiao Mou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yuncong Yin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yinyan Yin
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
- Guangling College, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100700, P. R. China
- Nanozyme Laboratory in Zhongyuan, Henan, 451163, P. R. China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, 225009, P. R. China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| |
Collapse
|
6
|
Wang C, Tan W, Liu X, He M, Zeng S, Sun M, Yan L, Li M, Zhan K, Wang K, Li Q. Habitual salt preference worsens blood pressure in hospitalized hypertensive patients with omicron infection under epidemic-related stress. BMC Public Health 2024; 24:134. [PMID: 38195459 PMCID: PMC10777613 DOI: 10.1186/s12889-023-17633-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/31/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND We investigated the synergistic effect of stress and habitual salt preference (SP) on blood pressure (BP) in the hospitalized Omicron-infected patients. METHODS From 15,185 hospitalized Omicron-infected patients who reported having high BP or hypertension, we recruited 662 patients. All patients completed an electronic questionnaire on diet and stress, and were required to complete morning BP monitoring at least three times. RESULTS The hypertensive group (n = 309) had higher habitual SP (P = 0.015) and COVID-19 related stress (P < 0.001), and had longer hospital stays (7.4 ± 1.5 days vs. 7.2 ± 0.5 days, P = 0.019) compared with controls (n = 353). After adjusting for a wide range of covariates including Omicron epidemic-related stress, habitual SP was found to increase both systolic (4.9 [95% confidence interval (CI), 2.3-7.4] mmHg, P < 0.001) and diastolic (2.1 [95%CI, 0.6-3.6] mmHg, P = 0.006) BP in hypertensive patients, and increase diastolic BP (2.0 [95%CI, 0.2-3.7] mmHg, P = 0.026) in the control group. 31 (8.8%) patients without a history of hypertension were discovered to have elevated BP during hospitalization, and stress was shown to be different in those patients (P < 0.001). In contrast, habitual SP was more common in hypertensive patients with uncontrolled BP, compared with patients with controlled BP (P = 0.002). CONCLUSIONS Habitual SP and psychosocial stress were associated with higher BP in Omicron-infected patients both with and without hypertension. Nonpharmaceutical intervention including dietary guidance and psychiatric therapy are crucial for BP control during the long COVID-19 period.
Collapse
Affiliation(s)
- Chenyi Wang
- Department of Urology Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Wanhong Tan
- Chongqing Yuzhong District Daping Street Community Health Service Center, 400042, Chongqing, PR China
| | - Xiaoxiao Liu
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Chongqing Institute of Hypertension, Army Medical University, 400042, Chongqing, PR China
- Department of Nephrology, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, 100853, Beijing, China
| | - Miao He
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Chongqing Institute of Hypertension, Army Medical University, 400042, Chongqing, PR China
| | - Shi Zeng
- Department of Neurosurgery, People's Hospital of Chongqing Banan District, 401320, Chongqing, PR China
| | - Maojie Sun
- Department of Pharmacy, The Seventh People's Hospital of Chongqing, 400054, Chongqing, PR China
| | - Lijuan Yan
- Department of Urology Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Min Li
- Department of Urology Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Kun Zhan
- Department of Urology Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Kaifa Wang
- School of Mathematics and Statistics, Southwest University, 400715, Chongqing, PR China.
| | - Qiang Li
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Chongqing Institute of Hypertension, Army Medical University, 400042, Chongqing, PR China.
| |
Collapse
|
7
|
Nepomuceno FV, Akutsu RDCCDA, Draeger CL, da Silva ICR. Foodborne Diseases: A Study before and during the COVID-19 Pandemic in Brazil. Nutrients 2023; 16:60. [PMID: 38201890 PMCID: PMC10780968 DOI: 10.3390/nu16010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024] Open
Abstract
Foodborne Diseases (FBDs) are a worldwide problem and occur after contaminated food has been ingested, signaling a lack of food quality. Even though the SARS-CoV-2 virus is not transmitted through food, the COVID-19 pandemic has caused several challenges worldwide that have had direct implications on food production and handling, stimulating and reinforcing the adoption of good manufacturing and food handling practices. The aim of this study was to analyze data on notifications of FBD in Brazil in the years before (2018 and 2019) and during (2020 and 2021) the COVID-19 pandemic. Secondary data from the National System of Notifiable Diseases was analyzed, evaluating: overall incidence rate, lethality and mortality, contamination sites, and criteria for confirming the etiological agent. There were 2206 records of FBDs, and the mortality rate was 0.5% in both periods. The incidence rate before the pandemic was 6.48 and during the pandemic was 3.92, while the mortality coefficient was 0.033 before and 0.019 during the pandemic, both per 100,000 inhabitants. There was no significant difference in the number of FBD notifications in the evaluated periods. There was a migration of the location of FBD, with a significant increase in FBD notifications in hospitals and health units and a reduction in notifications from social events. There was a significant increase in the type of criteria used to confirm outbreaks, with an increase in clinical laboratory tests and clinical reports for bromatology. The increase in notifications in hospitals and health units demonstrates the necessity of improving food safety knowledge and the attitudes and practices of food handlers and healthcare professionals.
Collapse
Affiliation(s)
- Fernanda Vinhal Nepomuceno
- Department of Nutrition, Faculty of Health Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (F.V.N.); (R.d.C.C.d.A.A.)
| | | | - Cainara Lins Draeger
- Department of Nutrition, Faculty of Health Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (F.V.N.); (R.d.C.C.d.A.A.)
| | | |
Collapse
|
8
|
Xie T, Yang J, Fang C, Zhang J, Lin H, Zhu Y, Tang T, Wang C. The survival of murine hepatitis virus (a surrogate of SARS-CoV-2) on conventional packaging materials under cold chain conditions. Front Public Health 2023; 11:1319828. [PMID: 38115844 PMCID: PMC10728718 DOI: 10.3389/fpubh.2023.1319828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Introduction The cold chain conditions have been suggested to facilitate long-distance transmission of SARS-CoV-2, but it is unclear how viable the virus is on cold chain packaging materials. Methods This study used the MHV-JHM strain of murine hepatitis virus as a model organism to investigate the viability of SARS-CoV-2 on foam, plastic, cardboard, and wood sheets at different temperatures (-40°C, -20°C, and 4°C). In addition, the ability of peracetic acid and sodium hypochlorite to eliminate the MHV-JHM on plastic and cardboard sheets were also evaluated. Results The results indicate that MHV-JHM can survive on foam, plastic, or cardboard sheets for up to 28 days at -40°C and -20°C, and up to 14 days on foam and plastic surfaces at 4°C. Although viral nucleic acids were still detectable after storing at 4°C for 28 days, the corresponding virus titer was below the limit of quantification (LOQ). Discussion The study highlights that a positive nucleic acid test result may not indicate that the virus is still viable, and confirms that peracetic acid and sodium hypochlorite can effectively eliminate MHV-JHM on packaging materials under cold chain conditions.
Collapse
Affiliation(s)
- Tiancheng Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Jiaxue Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Chubin Fang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Jing Zhang
- Technology Center of Chengdu Customs, Chengdu, China
| | - Hua Lin
- Technology Center of Chengdu Customs, Chengdu, China
| | - Yalan Zhu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Tian Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Chuan Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Arienzo A, Gallo V, Tomassetti F, Pitaro N, Pitaro M, Antonini G. A narrative review of alternative transmission routes of COVID 19: what we know so far. Pathog Glob Health 2023; 117:681-695. [PMID: 37350182 PMCID: PMC10614718 DOI: 10.1080/20477724.2023.2228048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023] Open
Abstract
The Coronavirus disease 19 (COVID-19) pandemics, caused by severe acute respiratory syndrome coronaviruses, SARS-CoV-2, represent an unprecedented public health challenge. Beside person-to-person contagion via airborne droplets and aerosol, which is the main SARS-CoV-2's route of transmission, alternative modes, including transmission via fomites, food and food packaging, have been investigated for their potential impact on SARS-CoV-2 diffusion. In this context, several studies have demonstrated the persistence of SARS-CoV-2 RNA and, in some cases, of infectious particles on exposed fomites, food and water samples, confirming their possible role as sources of contamination and transmission. Indeed, fomite-to-human transmission has been demonstrated in a few cases where person-to-person transmission had been excluded. In addition, recent studies supported the possibility of acquiring COVID-19 through the fecal-oro route; the occurrence of COVID-19 gastrointestinal infections, in the absence of respiratory symptoms, also opens the intriguing possibility that these cases could be directly related to the ingestion of contaminated food and water. Overall, most of the studies considered these alternative routes of transmission of low epidemiological relevance; however, it should be considered that they could play an important role, or even be prevalent, in settings characterized by different environmental and socio-economic conditions. In this review, we discuss the most recent findings regarding SARS-CoV-2 alternative transmission routes, with the aim to disclose what is known about their impact on COVID-19 spread and to stimulate research in this field, which could potentially have a great impact, especially in low-resource contexts.
Collapse
Affiliation(s)
| | | | | | | | - Michele Pitaro
- National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| | - Giovanni Antonini
- National Institute of Biostructures and Biosystems (INBB), Rome, Italy
- Department of Science, Roma Tre University, Rome, Italy
| |
Collapse
|
10
|
Chen Y, Zhao S, Xu Y, Cai M, Zhang G. SARS-CoV-2 transmission via maritime cold chains: A statistical analysis of nucleic acid detection results of cold chain food imported from Fuzhou ports. Heliyon 2023; 9:e21954. [PMID: 38034616 PMCID: PMC10685251 DOI: 10.1016/j.heliyon.2023.e21954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/22/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Numerous epidemic outbreaks related to cold chains have occurred since the coronavirus disease 2019 (COVID-19) outbreak, suggesting the potential danger of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission through cold chain foods (CCFs). By analyzing SARS-CoV-2 RNA contamination of CCFs imported from Fuzhou ports, this study evaluated the contamination and transmission of SARS-CoV-2 RNA via maritime cold chains, with the aim of provide suggestions for CCFs supervision and public health management. The statistical analysis included 131,385 samples. The majority of the CCFs imported into Fuzhou ports was aquatic raw food that originated in Southeast Asia (57.08 %), South America (19.87 %), and South Asia (11.22 %). South Asia had the highest positivity rate of 0.37 %, followed by Southeast Asia (0.21 %) and South America (0.08 %). The positivity rate showed that the outer packaging of CCFs was the most easily contaminated, accounting for 81.33 % of all positive samples. This suggested that CCFs storage and loading processes were the weak links vulnerable to SARS-CoV-2 contamination. The positivity rates in outer packaging, inner packaging, and content of raw food were 0.48 %, 0.08 %, and 0.05 %, respectively, which were obviously higher than those of processed and refined food. This indicated that increasing the mechanization of factories and implementing sensible worker management practices may decrease viral contamination. The monthly positivity rates varied widely from 0 % (March 2021) to 0.40 % (January 2021), with an average of 0.19 %. The positivity rates in outer packaging, inner packaging and content of crustaceans from Southeast Asia were 2.47 %, 0.41 %, and 0.69 %, which were approximately 5-14 times higher than those of fish and cephalopods. Meanwhile, the monthly detection number show that SARS-CoV-2 epidemic prevention strategies affected the trade of imported CCFs.
Collapse
Affiliation(s)
- Yuxiang Chen
- Fujian CapitalBio Medical Laboratory, Fuzhou, 350108, China
| | - Shuai Zhao
- Department of Breast Surgery, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, China
| | - Yiyuan Xu
- Fujian CapitalBio Medical Laboratory, Fuzhou, 350108, China
| | - Mingzhi Cai
- Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, China
| | - Guanbin Zhang
- Fujian CapitalBio Medical Laboratory, Fuzhou, 350108, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, 350122, China
| |
Collapse
|
11
|
Voidarou C, Rozos G, Stavropoulou E, Giorgi E, Stefanis C, Vakadaris G, Vaou N, Tsigalou C, Kourkoutas Y, Bezirtzoglou E. COVID-19 on the spectrum: a scoping review of hygienic standards. Front Public Health 2023; 11:1202216. [PMID: 38026326 PMCID: PMC10646607 DOI: 10.3389/fpubh.2023.1202216] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
The emergence of COVID-19 in Wuhan, China, rapidly escalated into a worldwide public health crisis. Despite numerous clinical treatment endeavors, initial defenses against the virus primarily relied on hygiene practices like mask-wearing, meticulous hand hygiene (using soap or antiseptic solutions), and maintaining social distancing. Even with the subsequent advent of vaccines and the commencement of mass vaccination campaigns, these hygiene measures persistently remain in effect, aiming to curb virus transmission until the achievement of herd immunity. In this scoping review, we delve into the effectiveness of these measures and the diverse transmission pathways, focusing on the intricate interplay within the food network. Furthermore, we explore the virus's pathophysiology, considering its survival on droplets of varying sizes, each endowed with distinct aerodynamic attributes that influence disease dispersion dynamics. While respiratory transmission remains the predominant route, the potential for oral-fecal transmission should not be disregarded, given the protracted presence of viral RNA in patients' feces after the infection period. Addressing concerns about food as a potential viral vector, uncertainties shroud the virus's survivability and potential to contaminate consumers indirectly. Hence, a meticulous and comprehensive hygienic strategy remains paramount in our collective efforts to combat this pandemic.
Collapse
Affiliation(s)
| | - Georgios Rozos
- Veterinary Directorate, South Aegean Region, Ermoupolis, Greece
| | - Elisavet Stavropoulou
- Department of Medicine, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Elpida Giorgi
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christos Stefanis
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Georgios Vakadaris
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Natalia Vaou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christina Tsigalou
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
12
|
Yang H, Hu J, Tan BK, Wong KH, Huang JJ, Cheung PC, Lin S. Lesson learned from COVID-19 pandemic for the future of food industry. Heliyon 2023; 9:e22479. [PMID: 38045130 PMCID: PMC10689951 DOI: 10.1016/j.heliyon.2023.e22479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023] Open
Abstract
With WHO announcing COVID-19 no longer as a public health emergency of international concern (PHEIC) on May 5, 2023, coupled with the fact that the majority of the countries of the world have dropped strict city lockdown or border closure, this perhaps signals the end of the COVID-19 crisis caused by the SARS-CoV-2 virus. However, the COVID-19 pandemic has resulted in far-reaching effects affecting nearly every aspect of our lives and society. Notably, the food industry including agriculture, food manufacturers, food logistics, distributors and retailers have all felt the profound impact and had experienced significant stress during the pandemic. Therefore, it is essential to retrospect the lessons that can be learned from this pandemic for the food industry. This short review aims to address the food safety issues related to the COVID-19 pandemic by focusing on its foodborne transmission potential, innovations of virus detection strategies suitable for food industry; development of phathogenicaidal methods and devices to inactivate SARS-CoV-2 virus (particularly in industrial scale); and the set-up of related food regulations and guidelines as preventive and control measures for preventing the spread of SARS-CoV-2 virus through the food supply chain during the pandemic. This article may provide useful references for the food industry to minimize the food safety impact of COVID-19 (as well as other respiratory virus) and allows them to better prepare for similar future challenges.
Collapse
Affiliation(s)
- Haoqing Yang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China
| | - Jiamiao Hu
- Diabetes Research Centre, Leicester General Hospital, Leicester LE5 4PW, United Kingdom
| | - Bee K. Tan
- Diabetes Research Centre, Leicester General Hospital, Leicester LE5 4PW, United Kingdom
| | - Ka-hing Wong
- Department of Applied Biology and Chemical Technology, The Hongkong Polytechnic University, Hongkong SAR, China
| | - Jim Junhui Huang
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Republic of Singapore
| | - Peter C.K. Cheung
- Food Research Centre, School of Life Sciences, The Chinese University of Hongkong, Hongkong SAR, China
| | - Shaoling Lin
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China
| |
Collapse
|
13
|
Nie W, Liu C. Assessing food safety risks based on a geospatial analysis: toward a cross-regional food safety management. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6654-6663. [PMID: 37261721 DOI: 10.1002/jsfa.12761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/22/2023] [Accepted: 06/01/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Food safety risks (FSRs) are increasingly characterized by geographical complexity along with rapid urbanization, changing dietary pattern, and the modernization of the food industry. These factors pose challenges for food risk control in developing economies, more so during the global COVID-19 pandemic. The accurate assessment of risk source and transfer path is a crucial step toward enhancing cross-regional food safety management. This study aims to examine the spatial distribution, transfer path and driving factors of FSRs in China, provided with a national food safety database collected from 8.63 million batches of food sampling inspections for 33 different types of foods across 30 provinces. RESULTS The findings reveal significant regional disparities in FSRs, which is the highest in the west with small-scale sampling inspection and the lowest in the east with intensive sampling inspection. Catering and processed foods with higher daily consumption suffer more profound FSR than agricultural products. As evidenced by the shrinking low-low agglomeration areas, the local FSRs have been effectively controlled. The high-high agglomeration areas playing positive impacts on risk control are expanding while distributed discretely. CONCLUSION The spatial transfer of FSRs is significantly driven by multiple drivers: regulatory capacity and intensity, information disclosure, food industry, regional economy, and food consumption. Assessing FSRs based on a geospatial analysis contributes to identifying risk sources, optimizing risk management, and constructing a sustainable food safety system. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenjing Nie
- College of Humanities and Social Development, Nanjing Agricultural University, Nanjing, China
| | - Chunhui Liu
- College of Humanities and Social Development, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
14
|
Chala B, Tilaye T, Waktole G. Re-Emerging COVID-19: Controversy of Its Zoonotic Origin, Risks of Severity of Reinfection and Management. Int J Gen Med 2023; 16:4307-4319. [PMID: 37753439 PMCID: PMC10518360 DOI: 10.2147/ijgm.s419789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/19/2023] [Indexed: 09/28/2023] Open
Abstract
The re-emergence of COVID-19 has sparked controversy around its zoonotic origin, management strategies, risks posed by the virus, and the severity of reinfection. While it is widely accepted that the virus originated from animals, the exact source and transmission pathway remain unclear. This has led to debates regarding the regulation of wildlife markets and trade, as well as the need for more robust surveillance and monitoring systems. Hence, the objective of this review is to provide a brief overview of the disease's biology, preventative strategies, risk factors, degree of reinfection, and epidemiological profile. It offers a thorough examination of the disease's root cause, potential zoonotic transmission, and the most recent preventive measures, like vaccines. In terms of management, there is ongoing debate about the most effective strategies to mitigate the spread of the virus. While public health measures such as social distancing and mask-wearing have been widely implemented, there are differing opinions on the effectiveness of lockdowns and restrictions on public movement. The risks posed by COVID-19 are also a topic of debate, with some arguing that the virus is relatively low-risk for the majority of the population while others highlight the potential for severe illness, particularly among vulnerable populations such as the elderly or those with underlying health conditions. Finally, the possibility of reinfection has raised concerns about the longevity of immunity following infection or vaccination. While some studies have suggested that reinfection may be possible and potentially more severe, the overall risk remains uncertain and further research is needed to fully understand the implications of reinfection.
Collapse
Affiliation(s)
- Bayissa Chala
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Tigist Tilaye
- Olanchiti Hospital, Oromia Health Bureau, Oromia Regional State, Ethiopia
| | - Gemechis Waktole
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
- Department of Biotechnology, College of Natural and Computational Science, Dambi Dollo University, Dambi Dollo, Ethiopia
| |
Collapse
|
15
|
Hamdy ME, El Deeb AH, Hagag NM, Shahein MA, Alaidi O, Hussein HA. Interspecies transmission of SARS CoV-2 with special emphasis on viral mutations and ACE-2 receptor homology roles. Int J Vet Sci Med 2023; 11:55-86. [PMID: 37441062 PMCID: PMC10334861 DOI: 10.1080/23144599.2023.2222981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 07/15/2023] Open
Abstract
COVID-19 outbreak was first reported in 2019, Wuhan, China. The spillover of the disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), to a wide range of pet, zoo, wild, and farm animals has emphasized potential zoonotic and reverse zoonotic viral transmission. Furthermore, it has evoked inquiries about susceptibility of different animal species to SARS-CoV-2 infection and role of these animals as viral reservoirs. Therefore, studying susceptible and non-susceptible hosts for SARS-CoV-2 infection could give a better understanding for the virus and will help in preventing further outbreaks. Here, we review structural aspects of SARS-CoV-2 spike protein, the effect of the different mutations observed in the spike protein, and the impact of ACE2 receptor variations in different animal hosts on inter-species transmission. Moreover, the SARS-CoV-2 spillover chain was reviewed. Combination of SARS-CoV-2 high mutation rate and homology of cellular ACE2 receptors enable the virus to transcend species barriers and facilitate its transmission between humans and animals.
Collapse
Affiliation(s)
- Mervat E. Hamdy
- Genome Research Unit, Animal Health Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Ayman H. El Deeb
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Virology, Faculty of Veterinary Medicine, King Salman International University, South Sinai, Egypt
| | - Naglaa M. Hagag
- Genome Research Unit, Animal Health Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Momtaz A. Shahein
- Department of Virology, Animal Health Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Osama Alaidi
- Biocomplexity for Research and Consulting Co., Cairo, Egypt
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Hussein A. Hussein
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
16
|
Li G, Wang Y, Wang Z, Wang Y, Qi Y, Bai L, Liu Z, Li N. Contamination and Transmission of SARS-CoV-2 Variants in Cold-Chain Food and Food Packaging. China CDC Wkly 2023; 5:485-491. [PMID: 37408615 PMCID: PMC10318554 DOI: 10.46234/ccdcw2023.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/03/2023] [Indexed: 07/07/2023] Open
Affiliation(s)
- Gang Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Yeru Wang
- China National Center for Food Safety Risk Assessment, Beijing, China
| | - Zhenhua Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Yibaina Wang
- China National Center for Food Safety Risk Assessment, Beijing, China
| | - Yan Qi
- China National Center for Food Safety Risk Assessment, Beijing, China
| | - Li Bai
- China National Center for Food Safety Risk Assessment, Beijing, China
| | - Zhaoping Liu
- NHC Key Lab of Food Safety Risk Assessment, Beijing, China
| | - Ning Li
- China National Center for Food Safety Risk Assessment, Beijing, China
| |
Collapse
|
17
|
Jachimowicz-Rogowska K, Winiarska-Mieczan A. Initiatives to Reduce the Content of Sodium in Food Products and Meals and Improve the Population's Health. Nutrients 2023; 15:nu15102393. [PMID: 37242276 DOI: 10.3390/nu15102393] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Table salt is the main source of sodium (Na) in the human diet. Excessive supply of Na in a diet is strongly linked to many non-communicable human diseases, such as hypertension, obesity and stomach cancer. The World Health Organization recommends that daily intake of salt in adult diets should be kept below 5 g/person/day, which corresponds to 2 g Na/person/day. However, on average, adults consume about 9-10 g/person/day, and children and young people about 7-8 g/person/day. Initiatives to reduce salt intake include modifications of food composition in collaboration with the food industry, education of consumers, salt marking on foodstuff labels and taxation of salt. A need also exists to educate society so that they choose low-sodium products. In view of the food technology and amount of salt intake, the most important and the easiest change to make is to reduce the content of salt in baked goods. This paper analyses the results of surveys regarding strategies to reduce salt content in food products and considers multifaceted initiatives to reduce salt intake as a possible efficient method of improving the population's health status.
Collapse
Affiliation(s)
- Karolina Jachimowicz-Rogowska
- Department of Bromatology and Food Physiology, Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka 13 St., 20-950 Lublin, Poland
| | - Anna Winiarska-Mieczan
- Department of Bromatology and Food Physiology, Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka 13 St., 20-950 Lublin, Poland
| |
Collapse
|
18
|
Parsa SM, Norozpour F, Elsheikh AH, Kabeel AE. Solar desalination/purification (solar stills, humidification-dehumidification, solar disinfection) in high altitude during COVID19: Insights of gastrointestinal manifestations and systems' mechanism. JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2023; 10:100259. [PMID: 36816517 PMCID: PMC9927827 DOI: 10.1016/j.hazadv.2023.100259] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
From the starting of the pandemic different transmission routes of the pathogen was brought into the spotlight by researchers from different disciplines. This matter in high-altitudes was more boosted as the main parameters were not exactly realized. In this review we are about to highlight the possibility of consuming contaminated water generated form solar water desalination/disinfection systems in highlands. Three systems including solar still, solar disinfection (which experimented by the authors in 2019 in high altitude) and humidification-dehumidification were consider in this context. Ascribe to the risks of pathogens transmission in solar desalination/disinfection systems where the water resources are heavily polluted in every corner of the world, highlighting the risk of consuming water in high-altitude where there are many other parameters associated with spread of pathogen is of great importance. As it was reported, reliability of solar desalination and solar water disinfections systems against contaminated water by the novel coronavirus remained on the question because the virus can be transmitted by vapor in solar stills due to tiny particle size (60-140 nm) and would not be killed by solar disinfections due to low-temperature of operation <40 °C while for HDH contamination of both water and air by sars-cov-2 could be a concern. Although the SARS-CoV-2 is not a waterborne pathogen, its capability to replicate in stomach and infection of gastrointestinal glandular suggested the potential of transmission via fecal-oral. Eventually, it was concluded that using solar-based water treatment as drinking water in high altitude regions should be cautiously consider and recommendations and considerations are presented. Importantly, this critical review not only about the ongoing pandemic, but it aims is to highlight the importance of produced drinking water by systems for future epidemic/pandemic to prevent spread and entering a pathogen particularly in high-altitude regions via a new routes.
Collapse
Affiliation(s)
- Seyed Masoud Parsa
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Fatemeh Norozpour
- Department of Environmental Engineering, Faculty of Marine Science and Technology, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Ammar H Elsheikh
- Department of Production Engineering and Mechanical Design, Tanta University, Tanta, Egypt
| | - A E Kabeel
- Mechanical Power Engineering Department, Faculty of Engineering, Tanta University, Tanta, Egypt
| |
Collapse
|
19
|
Dai H, Tang H, Sun W, Deng S, Han J. It is time to acknowledge coronavirus transmission via frozen and chilled foods: Undeniable evidence from China and lessons for the world. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161388. [PMID: 36621479 PMCID: PMC9814272 DOI: 10.1016/j.scitotenv.2023.161388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/16/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Since the broke out of the novel coronavirus disease at the end of 2019, nearly 650 million people have been infected around the globe, and >6.6 million have died from this disease. The first wave of infections in mainland China had been effectively controlled within a short period, with no domestic cases of infection for 56 consecutive days from April 16, 2020. Nonetheless, the re-emergence of several outbreaks in multiple Chinese cities posed a new challenge for public health authorities after new cases of infections were found in Xinfadi Market in Beijing on June 11, 2020. In the following series of re-emergent outbreaks, findings from epidemiological investigations suggested that more than twenty re-emergent outbreaks were caused by fomite transmission, predominantly via imported frozen and chilled foods contaminated by the SARS-CoV-2 virus. Seven of the eleven incidents involving frozen and chilled foods were identified by screening individuals with occupational exposure to imported cold-chain foods and associated individuals. Evidence showed that low temperatures and poor ventilation typically maintained through cold-chain logistics create amenable environments for the survival of SARS-CoV-2, making transnational cold chain logistics a congenial vehicle to spread the virus through global transport of consumer goods. To address this gap, here we present a scrutiny of the findings from epidemiological investigations in recent re-emergent outbreaks in China caused by fomite transmission via imported foods and goods. A national regime of traceable cold-chain foods and reinforced customs inspection protocols were established by public health authorities in mainland China as emergency responses to recurring outbreaks from fomite transmission via imported goods. We urge that more attention needs to be given to this specific route of pathogenic transmission to ensure biosecurity and to increase the preparedness for epidemic or pandemic scenarios by the global food industry and logistics carriers.
Collapse
Affiliation(s)
- Han Dai
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China; School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Hao Tang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Wen Sun
- University of Toronto Scarborough, Department of Biological Sciences, Toronto, Ontario M1C 1A4, Canada
| | - Shihai Deng
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Jie Han
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China; School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.
| |
Collapse
|
20
|
Tripathi J, Saxena S, Gautam S. Simulation study to assess the effectiveness of gamma radiation for inactivation of viruses on food packaging material. Radiat Phys Chem Oxf Engl 1993 2023; 204:110678. [PMCID: PMC9709647 DOI: 10.1016/j.radphyschem.2022.110678] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022]
Abstract
The recent COVID-19 pandemic spread across the globe has raised the concern about the possible transmission of viruses through food packaging material during domestic and international trade. Therefore, mitigation strategies are needed to address these safety issues. Preliminary in-silico study showed that interactions between food packaging material and viral surface proteins were possibly hydrophobic in nature with most favourable interaction having a binding free energy of −5.24 kcal/mol. Since these interactions can cause viruses to adsorb on the food packets and get transmitted during supply chain, it is necessary to inactivate the viruses. In this context, efficacy of gamma irradiation in inactivating the viruses on the food packaging material was assessed. For this simulation study P1 (virulent) bacteriophage of E. coli was used as a model system. Gamma irradiation of food packets at an absorbed dose >8 kGy was found to completely inactivate the infectivity of P1(virulent) bacteriophage when co-cultured with E. coli host and assayed for viral plaque formation. Reduction in infectivity of P1(vir) phage was more prominent at ambient temperature (25 ± 2 °C) as compared to cold temperature (6 ± 2 °C) when assayed after storage (one week). Gamma irradiation (2 kGy) completely inactivated the virus particles on food packets when stored for 1 week at both the above temperatures. It is thus proposed that gamma irradiation (2 kGy) can possibly be integrated as a final treatment of the packaged food products to rule out the possibility of viral transmission. However, the efficacy of radiation processing against different pathogenic viruses needs to be determined prior to actual commercial deployment.
Collapse
Affiliation(s)
- Jyoti Tripathi
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Sudhanshu Saxena
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Satyendra Gautam
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India,Corresponding author. Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, Maharashtra, India
| |
Collapse
|
21
|
Norvihoho LK, Yin J, Zhou ZF, Han J, Chen B, Fan LH, Lichtfouse E. Mechanisms controlling the transport and evaporation of human exhaled respiratory droplets containing the severe acute respiratory syndrome coronavirus: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:1701-1727. [PMID: 36846189 PMCID: PMC9944801 DOI: 10.1007/s10311-023-01579-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/13/2023] [Indexed: 05/24/2023]
Abstract
Transmission of the coronavirus disease 2019 is still ongoing despite mass vaccination, lockdowns, and other drastic measures to control the pandemic. This is due partly to our lack of understanding on the multiphase flow mechanics that control droplet transport and viral transmission dynamics. Various models of droplet evaporation have been reported, yet there is still limited knowledge about the influence of physicochemical parameters on the transport of respiratory droplets carrying the severe acute respiratory syndrome coronavirus 2. Here we review the effects of initial droplet size, environmental conditions, virus mutation, and non-volatile components on droplet evaporation and dispersion, and on virus stability. We present experimental and computational methods to analyze droplet transport, and factors controlling transport and evaporation. Methods include thermal manikins, flow techniques, aerosol-generating techniques, nucleic acid-based assays, antibody-based assays, polymerase chain reaction, loop-mediated isothermal amplification, field-effect transistor-based assay, and discrete and gas-phase modeling. Controlling factors include environmental conditions, turbulence, ventilation, ambient temperature, relative humidity, droplet size distribution, non-volatile components, evaporation and mutation. Current results show that medium-sized droplets, e.g., 50 µm, are sensitive to relative humidity. Medium-sized droplets experience delayed evaporation at high relative humidity, and increase airborne lifetime and travel distance. By contrast, at low relative humidity, medium-sized droplets quickly shrink to droplet nuclei and follow the cough jet. Virus inactivation within a few hours generally occurs at temperatures above 40 °C, and the presence of viral particles in aerosols impedes droplet evaporation.
Collapse
Affiliation(s)
- Leslie Kojo Norvihoho
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi People’s Republic of China
| | - Jing Yin
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi People’s Republic of China
| | - Zhi-Fu Zhou
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi People’s Republic of China
| | - Jie Han
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi People’s Republic of China
| | - Bin Chen
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi People’s Republic of China
| | - Li-Hong Fan
- The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi People’s Republic of China
| | - Eric Lichtfouse
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi People’s Republic of China
| |
Collapse
|
22
|
Runlian H, Xinjie D, Ahmed O, Cho E, Chung S. Application of Stress and Anxiety to Viral Epidemics-6 to Measure the Anxiety Response of Cold Chain Practitioners During the COVID-19 Post-Pandemic Era in China. Psychiatry Investig 2023; 20:75-83. [PMID: 36891591 PMCID: PMC9996138 DOI: 10.30773/pi.2022.0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/31/2022] [Indexed: 02/25/2023] Open
Abstract
OBJECTIVE This study explored the psychometric properties of the Chinese version of the Stress and Anxiety to Viral Epidemics-6 Items (SAVE-6) scale for cold chain practitioners exposed to moderate-to-high risk of infection. METHODS A total of 233 cold chain practitioners participated in an anonymous online survey, conducted from October to November 2021. The questionnaire comprised participant demographic characteristics, the Chinese version of SAVE-6, the Generalized Anxiety Disorders-7 (GAD-7), and the Patient Health Questionnaire-9 (PHQ-9) scales. RESULTS Based on the results of the parallel analysis, the single-structure model of the Chinese version of SAVE-6 was adopted. The scale showed satisfactory internal consistency (Cronbach's alpha=0.930) and good convergent validity based on Spearman's correlation coefficient with the GAD-7 (rho=0.616, p<0.001) and PHQ-9 (rho=0.540, p<0.001) scale scores. The optimal cutoff score for Chinese Stress and Anxiety to Viral Epidemics-9 Items was identified as ≥12 (area under the curve=0.797, Sensitivity=0.76, Specificity=0.66) for cold chain practitioners. CONCLUSION The Chinese version of the SAVE-6 scale has good psychometric properties and can be applied as a reliable and valid rating scale to assess the anxiety response of cold chain practitioners in the post-pandemic era.
Collapse
Affiliation(s)
- He Runlian
- Department of Nursing, Taiyuan Central Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Du Xinjie
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Oli Ahmed
- Department of Psychology, University of Chittagong, Chattogram, Bangladesh.,National Centre for Epidemiology and Population Health, Australian National University, Canberra, Australia
| | - Eulah Cho
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seockhoon Chung
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
23
|
Ahmad F, Mohammad ZH, Zaidi S, Ibrahim SA. A comprehensive review on the application of ultrasound for the preservation of fruits and vegetables. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Faizan Ahmad
- Post Harvest Engineering and Technology, Faculty of Agricultural Sciences Aligarh Muslim University Aligarh UP India
| | - Zahra H. Mohammad
- Conrad N. Hilton College of Hotel and Restaurant Management University of Houston Houston Texas USA
| | - Sadaf Zaidi
- Post Harvest Engineering and Technology, Faculty of Agricultural Sciences Aligarh Muslim University Aligarh UP India
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory North Carolina A & T State University Greensboro North Carolina USA
| |
Collapse
|
24
|
Yang T, Li D, Yan Y, Ettoumi FE, Wu RA, Luo Z, Yu H, Lin X. Ultrafast and absolute quantification of SARS-CoV-2 on food using hydrogel RT-LAMP without pre-lysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130050. [PMID: 36182888 PMCID: PMC9507997 DOI: 10.1016/j.jhazmat.2022.130050] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 05/13/2023]
Abstract
With rapid growing of environmental contact infection, more and more attentions are focused on the precise and absolute quantification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus on cold chain foods via point-of-care test (POCT). In this work, we propose a hydrogel-mediated reverse transcription loop-mediated isothermal amplification (RT-LAMP) for ultrafast and absolute quantification of SARS-CoV-2. Cross-linked hydrogel offers opportunities for digital single molecule amplification in nanoconfined spaces, facilitating the virus lysis, RNA reverse transcription and amplification process, which is about 3.4-fold faster than conventional bulk RT-LAMP. Ultrafast quantification of SARS-CoV-2 is accomplished in 15 min without virus pre-lysis and RNA extraction. The sensitivity can accurately quantify SARS-CoV-2 down to 0.5 copy/μL. Furthermore, the integrated system has an excellent specificity, reproducibility and storage stability, which can be also used to test SARS-CoV-2 on various cold chain fruits. The developed ultrafast and simple hydrogel RT-LAMP will be an enormous potential for surveillance of virus or other hazardous microbes in environmental, agricultural and food industry.
Collapse
Affiliation(s)
- Tao Yang
- College of Biosystems Engineering & Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 310058, China
| | - Dong Li
- College of Biosystems Engineering & Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 310058, China
| | - Yuhua Yan
- College of Biosystems Engineering & Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 310058, China
| | - Fatima-Ezzahra Ettoumi
- College of Biosystems Engineering & Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 310058, China
| | - Ricardo A Wu
- College of Biosystems Engineering & Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 310058, China
| | - Zisheng Luo
- College of Biosystems Engineering & Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 310058, China; Ningbo Research Institute, Zhejiang University, 310058, China
| | - Hanry Yu
- Critical Analytics for Manufacturing Personalized Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602, Singapore
| | - Xingyu Lin
- College of Biosystems Engineering & Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 310058, China; Ningbo Research Institute, Zhejiang University, 310058, China.
| |
Collapse
|
25
|
Qian S, Chen Y, Wang X, Wang T, Che Y, Wu J, Ye Z, Xu J. CRISPR/Cas12a-Assisted Dual Visualized Detection of SARS-CoV-2 on Frozen Shrimps. BIOSENSORS 2023; 13:138. [PMID: 36671975 PMCID: PMC9855800 DOI: 10.3390/bios13010138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Given the possibility that food contaminated with SARS-CoV-2 might become an infection source, there is an urgent need for us to develop a rapid and accurate nucleic acid detection method for SARS-CoV-2 in food to ensure food safety. Here, we propose a sensitive, specific, and reliable molecular detection method for SARS-CoV-2. It has a mechanism to control amplicon contamination. Swabs from spiked frozen shrimps were used as detection samples, which were processed by heating at 95 °C for 30 s. These preprocessed samples served as the templates for subsequent amplification. A colorimetric LAMP reaction was carried out to amplify both the SARS-CoV-2 target and the MS2 phage simultaneously in one tube. MS2 phage was detected by colorimetric LAMP as the internal control, while SARS-CoV-2 was detected with a CRISPR/Cas12a system. The fluorescence results could be visually detected with an ultraviolet lamp. Meanwhile, uracil was incorporated during the LAMP reaction to provide an amplicon contamination proof mechanism. This test could detect as low as 20 copies of SARS-CoV-2 in one reaction. Additionally, the detection could be finished in 45 min. The test only needs a heating block and an ultraviolet lamp, which shows the potential for field detection.
Collapse
Affiliation(s)
- Siwenjie Qian
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yanju Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaofu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tingzhang Wang
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou 310012, China
| | - Yang Che
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou 310012, China
| | - Jian Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of on Site Processing Equipment for Agricultural Products, Ministry of Agriculture, Hangzhou 310058, China
| | - Zhangying Ye
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Junfeng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
26
|
Ruani MA, Reiss MJ. Susceptibility to COVID-19 Nutrition Misinformation and Eating Behavior Change during Lockdowns: An International Web-Based Survey. Nutrients 2023; 15:451. [PMID: 36678321 PMCID: PMC9861671 DOI: 10.3390/nu15020451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
To understand the susceptibility to nutrition-health misinformation related to preventing, treating, or mitigating the risk of COVID-19 during the initial lockdowns around the world, the present international web-based survey study (15 April-15 May 2020) gauged participants' (n = 3707) level of nutrition-health misinformation discernment by presenting them with 25 statements (including unfounded or unproven claims circulated at the time), alongside the influence of information sources of varying quality on the frequency of changes in their eating behavior and the extent of misinformation held, depending on the source used for such changes. Results revealed widespread misinformation about food, eating, and health practices related to COVID-19, with the 25 statements put to participants receiving up to 43% misinformed answers (e.g., 'It is safe to eat fruits and vegetables that have been washed with soap or diluted bleach'). Whereas higher quality information sources (nutrition scientists, nutrition professionals) had the biggest influence on eating behavior change, we found greater misinformation susceptibility when relying on poor quality sources for changing diet. Appropriate discernment of misinformation was weakest amongst participants who more frequently changed their eating behavior because of information from poor quality sources, suggesting disparities in the health risks/safety of the changes performed.
Collapse
Affiliation(s)
- Maria A. Ruani
- Curriculum, Pedagogy and Assessment, IOE, UCL’s Faculty of Education and Society, University College London, London WC1E 0ALT, UK
| | | |
Collapse
|
27
|
Gu Z, Han J, Zhang L, Wang H, Luo X, Meng X, Zhang Y, Niu X, Lan Y, Wu S, Cao J, Lichtfouse E. Unanswered questions on the airborne transmission of COVID-19. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:725-739. [PMID: 36628267 PMCID: PMC9816530 DOI: 10.1007/s10311-022-01557-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Policies and measures to control pandemics are often failing. While biological factors controlling transmission are usually well explored, little is known about the environmental drivers of transmission and infection. For instance, respiratory droplets and aerosol particles are crucial vectors for the airborne transmission of the severe acute respiratory syndrome coronavirus 2, the causation agent of the coronavirus 2019 pandemic (COVID-19). Once expectorated, respiratory droplets interact with atmospheric particulates that influence the viability and transmission of the novel coronavirus, yet there is little knowledge on this process or its consequences on virus transmission and infection. Here we review the effects of atmospheric particulate properties, vortex zones, and air pollution on virus survivability and transmission. We found that particle size, chemical constituents, electrostatic charges, and the moisture content of airborne particles can have notable effects on virus transmission, with higher survival generally associated with larger particles, yet some viruses are better preserved on small particles. Some chemical constituents and surface-adsorbed chemical species may damage peptide bonds in viral proteins and impair virus stability. Electrostatic charges and water content of atmospheric particulates may affect the adherence of virion particles and possibly their viability. In addition, vortex zones and human thermal plumes are major environmental factors altering the aerodynamics of buoyant particles in air, which can strongly influence the transport of airborne particles and the transmission of associated viruses. Insights into these factors may provide explanations for the widely observed positive correlations between COVID-19 infection and mortality with air pollution, of which particulate matter is a common constituent that may have a central role in the airborne transmission of the novel coronavirus. Supplementary Information The online version contains supplementary material available at 10.1007/s10311-022-01557-z.
Collapse
Affiliation(s)
- Zhaolin Gu
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Jie Han
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Liyuan Zhang
- School of Water and Environment, Chang’an University, Xi’an, 710064 People’s Republic of China
| | - Hongliang Wang
- Health Science Center, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Xilian Luo
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Xiangzhao Meng
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Yue Zhang
- School of Architecture, Chang’an University, Xi’an, 710064 People’s Republic of China
| | - Xinyi Niu
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Yang Lan
- School of Public Health, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Shaowei Wu
- School of Public Health, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 People’s Republic of China
| | - Eric Lichtfouse
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi People’s Republic of China
- CNRS, IRD, INRAE, CEREGE, Aix-Marseille University, 13100, Aix-en-Provence, France
| |
Collapse
|
28
|
Kumar S, Singh NA, Jain V, Subramaneyaan M, Kumar P. Coronavirus Disease (COVID-19) Possible Transmission Routes and Alleviation Strategies. INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND ALLIED SCIENCES 2023. [DOI: 10.51847/7owk1mtle1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
29
|
Peng S, Li G, Lin Y, Guo X, Xu H, Qiu W, Zhu H, Zheng J, Sun W, Hu X, Zhang G, Li B, Pathak JL, Bi X, Dai J. Stability of SARS-CoV-2 in cold-chain transportation environments and the efficacy of disinfection measures. Front Cell Infect Microbiol 2023; 13:1170505. [PMID: 37153150 PMCID: PMC10154586 DOI: 10.3389/fcimb.2023.1170505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/29/2023] [Indexed: 05/09/2023] Open
Abstract
Background Low temperature is conducive to the survival of COVID-19. Some studies suggest that cold-chain environment may prolong the survival of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and increase the risk of transmission. However, the effect of cold-chain environmental factors and packaging materials on SARS-CoV-2 stability remains unclear. Methods This study aimed to reveal cold-chain environmental factors that preserve the stability of SARS-CoV-2 and further explore effective disinfection measures for SARS-CoV-2 in the cold-chain environment. The decay rate of SARS-CoV-2 pseudovirus in the cold-chain environment, on various types of packaging material surfaces, i.e., polyethylene plastic, stainless steel, Teflon and cardboard, and in frozen seawater was investigated. The influence of visible light (wavelength 450 nm-780 nm) and airflow on the stability of SARS-CoV-2 pseudovirus at -18°C was subsequently assessed. Results Experimental data show that SARS-CoV-2 pseudovirus decayed more rapidly on porous cardboard surfaces than on nonporous surfaces, including polyethylene (PE) plastic, stainless steel, and Teflon. Compared with that at 25°C, the decay rate of SARS-CoV-2 pseudovirus was significantly lower at low temperatures. Seawater preserved viral stability both at -18°C and with repeated freeze-thaw cycles compared with that in deionized water. Visible light from light-emitting diode (LED) illumination and airflow at -18°C reduced SARS-CoV-2 pseudovirus stability. Conclusion Our studies indicate that temperature and seawater in the cold chain are risk factors for SARS-CoV-2 transmission, and LED visible light irradiation and increased airflow may be used as disinfection measures for SARS-CoV-2 in the cold-chain environment.
Collapse
Affiliation(s)
- Shuyi Peng
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, The State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guojie Li
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, The State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuyin Lin
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, The State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China
| | - Xiaolan Guo
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, The State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hao Xu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, The State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenxi Qiu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, The State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huijuan Zhu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, The State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiaying Zheng
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, The State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Sun
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaodong Hu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Guohua Zhang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Bing Li
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, The State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
| | - Janak L. Pathak
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Jianwei Dai, ; Xinhui Bi, ; Janak L. Pathak,
| | - Xinhui Bi
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- *Correspondence: Jianwei Dai, ; Xinhui Bi, ; Janak L. Pathak,
| | - Jianwei Dai
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, The State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Jianwei Dai, ; Xinhui Bi, ; Janak L. Pathak,
| |
Collapse
|
30
|
Lu Y, Yang H, Bai J, He Q, Deng R. CRISPR-Cas based molecular diagnostics for foodborne pathogens. Crit Rev Food Sci Nutr 2022; 64:5269-5289. [PMID: 36476134 DOI: 10.1080/10408398.2022.2153792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Foodborne pathogenic infection has brought multifaceted issues to human life, leading to an urgent demand for advanced detection technologies. CRISPR/Cas-based biosensors have the potential to address various challenges that exist in conventional assays such as insensitivity, long turnaround time and complex pretreatments. In this perspective, we review the relevant strategies of CRISPR/Cas-assisted diagnostics on foodborne pathogens, focusing on biosensing platforms for foodborne pathogens based on fluorescence, colorimetric, (electro)chemiluminescence, electrochemical, and surface-enhanced Raman scattering detection. It summarizes their detection principles by the clarification of foodborne pathogenic bacteria, fungi, and viruses. Finally, we discuss the current challenges or technical barriers of these methods against broad application, and put forward alternative solutions to improve CRISPR/Cas potential for food safety.
Collapse
Affiliation(s)
- Yunhao Lu
- College of Food and Biological Engineering, Chengdu University, Chengdu, P.R. China
| | - Hao Yang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, P.R. China
| | - Jinrong Bai
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, P.R. China
| | - Qiang He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, P.R. China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
31
|
Lee EJ, Han S, Hyun SW, Song GB, Ha SD. Survival of human coronavirus 229E at different temperatures on various food-contact surfaces and food and under simulated digestive conditions. Food Res Int 2022; 162:112014. [PMID: 36461303 PMCID: PMC9526873 DOI: 10.1016/j.foodres.2022.112014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has had a major impact on human health and the global economy. Various transmission possibilities of SARS-CoV-2 have been proposed, such as the surface of food in the cold chain and food packaging, as well as the fecal-oral route, although person-to-person contact via droplets and aerosols has been confirmed as the main route of transmission. This study evaluated the survivability of HCoV-229E, a SARS-CoV-2 surrogate, in suspension, on food-contact surfaces and on food at various temperatures, and in simulated digestive fluids by TCID50 assay. In suspension, HCoV-229E survived after 5 days at 20 °C with a 3.69 log reduction, after 28 days at 4 °C with a 3.07 log reduction, and after 12 weeks at -20 °C with a 1.18 log reduction. On food-contact surfaces, HCoV-229E was not detected on day 3 on stainless steel (SS), plastic (LDPE), and silicone rubber (SR) at 20 °C with a 3.28, 3.24 and 3.28 log reduction, respectively, and survived after 28 days on SS and LDPE at 4 °C with a 3.13 and 2.88 log reduction, respectively, and survived after 12 weeks on SS, LDPE, and SR at -20 °C with a 1.92, 1.32 and 1.99 log reduction, respectively. On food, HCoV-229E was not detected on day 3 on lettuce and day 4 on chicken breast and salmon at 20 °C with a 3.61, 3.26 and 3.08 log reduction, respectively, and on day 14 on lettuce and day 21 on chicken breast and salmon at 4 °C with a 3.88, 3.44 and 3.56 log reduction, respectively. The virus remained viable for 12 weeks in all foods at -20 °C with 2-2.47 log reduction. In addition, in simulated digestive fluid experiments, HCoV-229E was relatively resistant in simulated salivary fluid (SSF; pH 7, 5), fed state simulated gastric fluid (FeSSGF; pH 3, 5, 7), and fasted state simulated intestinal fluid (FaSSIF; pH 7). However, the virus was less tolerant in fasted state simulated gastric fluid (FaSSGF; pH 1.6) and fed state simulated intestinal fluid (FeSSIF; pH 5). Therefore, this study suggested that HCoV-229E remained infectious on various food-contact surfaces and foods; in particular, it survived longer at lower temperatures and survived depending on the pH of the simulated digestive fluid.
Collapse
|
32
|
Nabati F, kamyabiamineh A, Kosari R, Ghasemi F, Seyedebrahimi S, Mohammadi S, Moradi M. Virtual screening based on the structure of more than 105 compounds against four key proteins of SARS-CoV-2: MPro, SRBD, RdRp, and PLpro. INFORMATICS IN MEDICINE UNLOCKED 2022; 35:101134. [PMID: 36406927 PMCID: PMC9652154 DOI: 10.1016/j.imu.2022.101134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022] Open
Abstract
Background SARS-CoV-2 initially originated in Wuhan (China) around December 2019, and spread all over the world. Currently, WHO (Word Health Organization) has licensed several vaccines for this viral infection. However, not everyone can be vaccinated. People with underlying health conditions that weaken their immune systems or those with severe allergies to some vaccine components, may not be able to be vaccinated. Moreover, no vaccination is 100% safe, and the emergence of new SARS-CoV-2 mutations may reduce the efficacy of immunizations. Therefore, it is urgent to develop effective drugs to protect people against this virus. Material and method We performed structure-based virtual screening (SBVS) of a library that was built from ChemDiv and PubChem databases against four SARS-CoV-2 target proteins: S-protein (spike), main protease (MPro), RNA-dependent RNA polymerase, and PLpro. A virtual screening study was performed using PyRx and AutoDock tools. Results Our results suggest that twenty-five top-ranked drugs with the highest energy binding as the potential inhibitors against four SARS-CoV-2 targets, relative to the reference molecules. Based on the energy binding, we suggest that these compounds could be used to produce effective anti-viral drugs against SARS-CoV-2. Conclusion The discovery of novel compounds for COVID-19 using computer-aided drug discovery tools requires knowledge of the structure of coronavirus and various target proteins of the virus. These compounds should be further assessed in experimental assays and clinical trials to validate their actual activity against the disease. These findings may contribute to the drug design studies against COVID-19.
Collapse
|
33
|
Radulovic A, Miocinovic J, Radulovic Z, Rajkovic MB. Relevance of corona virus in food industry: A literature review on risks, challenges, and potential preventive measures. J Food Saf 2022. [DOI: 10.1111/jfs.13016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ana Radulovic
- Department of Animal Source Food Technology Faculty of Agriculture University of Belgrade Beograd Serbia
| | - Jelena Miocinovic
- Department of Animal Source Food Technology Faculty of Agriculture University of Belgrade Beograd Serbia
| | - Zorica Radulovic
- Department of Тechnological Мicrobiology Faculty of Agriculture University of Belgrade Beograd Serbia
| | - Milos B. Rajkovic
- Department of Chemistry and Biochemistry Faculty of Agriculture University of Belgrade Beograd Serbia
| |
Collapse
|
34
|
Liu J, Wu D, Chen J, Jia S, Chen J, Wu Y, Li G. CRISPR-Cas systems mediated biosensing and applications in food safety detection. Crit Rev Food Sci Nutr 2022; 64:2960-2985. [PMID: 36218189 DOI: 10.1080/10408398.2022.2128300] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food safety, closely related to economic development of food industry and public health, has become a global concern and gained increasing attention worldwide. Effective detection technology is of great importance to guarantee food safety. Although several classical detection methods have been developed, they have some limitations in portability, selectivity, and sensitivity. The emerging CRISPR-Cas systems, uniquely integrating target recognition specificity, signal transduction, and efficient signal amplification abilities, possess superior specificity and sensitivity, showing huge potential to address aforementioned challenges and develop next-generation techniques for food safety detection. In this review, we focus on recent progress of CRISPR-Cas mediated biosensing and their applications in food safety monitoring. The properties and principles of commonly used CRISPR-Cas systems are highlighted. Notably, the frequently coupled nucleic acid amplification strategies to enhance their selectivity and sensitivity, especially isothermal amplification methods, as well as various signal output modes are also systematically summarized. Meanwhile, the application of CRISPR-Cas systems-based biosensors in food safety detection including foodborne virus, foodborne bacteria, food fraud, genetically modified organisms (GMOs), toxins, heavy metal ions, antibiotic residues, and pesticide residues is comprehensively described. Furthermore, the current challenges and future prospects in this field are tentatively discussed.
Collapse
Affiliation(s)
- Jianghua Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Jiahui Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Shijie Jia
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Jian Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Yongning Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| |
Collapse
|
35
|
Zhang F, Wang Z, Vijver MG, Peijnenburg WJGM. Theoretical investigation on the interactions of microplastics with a SARS-CoV-2 RNA fragment and their potential impacts on viral transport and exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156812. [PMID: 35738381 PMCID: PMC9212631 DOI: 10.1016/j.scitotenv.2022.156812] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 02/08/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the coronavirus disease-19 (COVID-19) pandemic spread across the world and remains difficult to control. Environmental pollution and habitat conditions do facilitate SARS-CoV-2 transmission as well as increase the risk of exposure to SARS-CoV-2. The coexistence of microplastics (MPs) with SARS-CoV-2 affects the viral behavior in the indoor and outdoor environment, and it is essential to study the interactions between MPs and SARS-CoV-2 because they both are ubiquitously present in our environment. To determine the mechanisms underlying the impact of MPs on SARS-CoV-2, we used molecular dynamic simulations to investigate the molecular interactions between five MPs and a SARS-CoV-2 RNA fragment at temperatures ranging from 223 to 310 K in vacuum and in water. We furthermore compared the interactions of MPs and SARS-CoV-2 RNA fragment to the performance of SARS-CoV-1 and Hepatitis B virus (HBV) RNA fragments in interacting with the MPs. The interaction affinity between the MPs and the SARS-CoV-2 RNA fragment was found to be greater than the affinity between the MPs and the SARS-CoV-1 or HBV RNA fragments, independent of the environmental media, temperature, and type of MPs. The mechanisms of the interaction between the MPs and the SARS-CoV-2 RNA fragment involved electrostatic and hydrophobic processes, and the interaction affinity was associated with the inherent structural parameters (i.e., molecular volume, polar surface area, and molecular topological index) of the MPs monomers. Although the evidence on the infectious potential of SARS-CoV-2 RNA is not fully understood, humans are exposed to MPs via their lungs, and the strong interaction with the gene materials of SARS-CoV-2 likely affects the exposure of humans to SARS-CoV-2.
Collapse
Affiliation(s)
- Fan Zhang
- Institute of Environmental Sciences (CML), Leiden University, Leiden 2300 RA, the Netherlands
| | - Zhuang Wang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing 210044, PR China
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, Leiden 2300 RA, the Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Leiden 2300 RA, the Netherlands; Centre for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven 3720 BA, the Netherlands.
| |
Collapse
|
36
|
Castro GB, Bernegossi AC, Sousa BJDO, De Lima E Silva MR, Silva FRD, Freitas BLS, Ogura AP, Corbi JJ. Global occurrence of SARS-CoV-2 in environmental aquatic matrices and its implications for sanitation and vulnerabilities in Brazil and developing countries. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2160-2199. [PMID: 34310248 DOI: 10.1080/09603123.2021.1949437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
This paper includes a systematic review of the SARS-CoV-2 occurrence in environmental aquatic matrices and a critical sanitation analysis. We discussed the interconnection of sanitation services (wastewater, water supply, solid waste, and stormwater drainage) functioning as an important network for controlling the spread of SARS-CoV-2 in waters. We collected 98 studies containing data of the SARS-CoV-2 occurrence in aquatic matrices around the world, of which 40% were from developing countries. Alongside a significant number of people infected by the virus, developing countries face socioeconomic deficiencies and insufficient public investment in infrastructure. Therefore, our study focused on highlighting solutions to provide sanitation in developing countries, considering the virus control in waters by disinfection techniques and sanitary measures, including alternatives for the vulnerable communities. The need for multilateral efforts to improve the universal coverage of sanitation services demands urgent attention in a pandemic scenario.
Collapse
Affiliation(s)
- Gleyson B Castro
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Aline C Bernegossi
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Bruno José de O Sousa
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | | | - Fernando R Da Silva
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bárbara Luíza S Freitas
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Allan P Ogura
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
- PPG-SEA and CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Juliano J Corbi
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| |
Collapse
|
37
|
Ford JD, Zavaleta-Cortijo C, Ainembabazi T, Anza-Ramirez C, Arotoma-Rojas I, Bezerra J, Chicmana-Zapata V, Galappaththi EK, Hangula M, Kazaana C, Lwasa S, Namanya D, Nkwinti N, Nuwagira R, Okware S, Osipova M, Pickering K, Singh C, Berrang-Ford L, Hyams K, Miranda JJ, Naylor A, New M, van Bavel B. Interactions between climate and COVID-19. Lancet Planet Health 2022; 6:e825-e833. [PMID: 36208645 PMCID: PMC9534524 DOI: 10.1016/s2542-5196(22)00174-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 06/25/2022] [Accepted: 07/12/2022] [Indexed: 05/22/2023]
Abstract
In this Personal View, we explain the ways that climatic risks affect the transmission, perception, response, and lived experience of COVID-19. First, temperature, wind, and humidity influence the transmission of COVID-19 in ways not fully understood, although non-climatic factors appear more important than climatic factors in explaining disease transmission. Second, climatic extremes coinciding with COVID-19 have affected disease exposure, increased susceptibility of people to COVID-19, compromised emergency responses, and reduced health system resilience to multiple stresses. Third, long-term climate change and prepandemic vulnerabilities have increased COVID-19 risk for some populations (eg, marginalised communities). The ways climate and COVID-19 interact vary considerably between and within populations and regions, and are affected by dynamic and complex interactions with underlying socioeconomic, political, demographic, and cultural conditions. These conditions can lead to vulnerability, resilience, transformation, or collapse of health systems, communities, and livelihoods throughout varying timescales. It is important that COVID-19 response and recovery measures consider climatic risks, particularly in locations that are susceptible to climate extremes, through integrated planning that includes public health, disaster preparedness, emergency management, sustainable development, and humanitarian response.
Collapse
Affiliation(s)
- James D Ford
- Priestley International Centre for Climate, University of Leeds, Leeds, UK.
| | - Carol Zavaleta-Cortijo
- Intercultural Citizenship and Indigenous Health Unit, Cayetano Heredia University, Lima, Peru
| | - Triphini Ainembabazi
- Department of Geography, Geo-Informatics, and Climatic Sciences, Makerere University, Kampala, Uganda
| | - Cecilia Anza-Ramirez
- Center of Excellence in Chronic Diseases, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Joana Bezerra
- Community Engagement, Rhodes University, Makhanda, South Africa
| | | | | | - Martha Hangula
- Department of Livestock Production, Agribusiness, and Economics, University of Namibia, Oshakati, Namibia
| | | | - Shuaib Lwasa
- Department of Geography, Geo-Informatics, and Climatic Sciences, Makerere University, Kampala, Uganda
| | | | - Nosipho Nkwinti
- Community Engagement, Rhodes University, Makhanda, South Africa
| | | | - Samuel Okware
- Uganda National Health Research Organisation, Entebbe, Uganda
| | - Maria Osipova
- Arctic State Institute of Culture and Arts, North-Eastern Federal University, Yakutsk, Russia
| | - Kerrie Pickering
- Sustainability Research Centre, University of the Sunshine Coast, Buderim, QLD, Australia
| | - Chandni Singh
- School of Environment and Sustainability, Indian Institute for Human Settlements, Bangalore, India
| | - Lea Berrang-Ford
- Priestley International Centre for Climate, University of Leeds, Leeds, UK
| | - Keith Hyams
- Department of Politics and International Studies, University of Warwick, Coventry, UK
| | - J Jaime Miranda
- Center of Excellence in Chronic Diseases, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Angus Naylor
- School of Public Health and Social Policy, University of Victoria, Victoria, BC, Canada
| | - Mark New
- Environmental and Geographical Science, University of Cape Town, Cape Town, South Africa
| | - Bianca van Bavel
- Priestley International Centre for Climate, University of Leeds, Leeds, UK
| |
Collapse
|
38
|
Han J, He S, Shao W, Wang C, Qiao L, Zhang J, Yang L. Municipal solid waste, an overlooked route of transmission for the severe acute respiratory syndrome coronavirus 2: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 21:81-95. [PMID: 36124224 PMCID: PMC9476438 DOI: 10.1007/s10311-022-01512-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Municipal solid waste could potentially transmit human pathogens during the collection, transport, handling, and disposal of waste. Workers and residents living in the vicinity of municipal solid waste collection or disposal sites are particularly susceptible, especially unprotected workers and waste pickers. Recent evidence suggests that municipal solid waste-mediated transmission can spread the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to humans. Such risks, however, have received little attention from public health authorities so far and may present an under-investigated transmission route for SARS-CoV-2 and other infectious agents during pandemics. In this review, we provide a retrospective analysis of the challenges, practices, and policies on municipal solid waste management during the current pandemic, and scrutinize the recent case reports on the municipal solid waste-mediated transmission of the coronavirus disease 2019 (COVID-19). We found abrupt changes in quantity and composition of municipal solid wastes during the COVID-19. We detail pathways of exposure to SARS-CoV-2 and other pathogens carried on municipal solid wastes. We disclose evidence of pathogenic transmission by municipal solid waste to humans and animals. Assessments of current policies, gaps, and voluntary actions taken on municipal solid waste handling and disposal in the current pandemic are presented. We propose risk mitigation strategies and research priorities to alleviate the risk for humans and vectors exposed to municipal solid wastes.
Collapse
Affiliation(s)
- Jie Han
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Shanshan He
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Wenyuan Shao
- School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Chaoqi Wang
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Longkai Qiao
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Jiaqi Zhang
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Ling Yang
- School of Engineering and Built Environment, Griffith University, Nathan, QLD 4111 Australia
| |
Collapse
|
39
|
Paparella A, Purgatorio C, Chaves-López C, Rossi C, Serio A. The Multifaceted Relationship between the COVID-19 Pandemic and the Food System. Foods 2022; 11:2816. [PMID: 36140944 PMCID: PMC9497833 DOI: 10.3390/foods11182816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
The SARS-CoV-2 pandemic is being questioned for its possible food transmission, due to several reports of the virus on food, outbreaks developed in food companies, as well as its origins linked to the wet market of Wuhan, China. The purpose of this review is to analyze the scientific evidence gathered so far on the relationship between food and the pandemic, considering all aspects of the food system that can be involved. The collected data indicate that there is no evidence that foods represent a risk for the transmission of SARS-CoV-2. In fact, even if the virus can persist on food surfaces, there are currently no proven cases of infection from food. Moreover, the pandemic showed to have deeply influenced the eating habits of consumers and their purchasing methods, but also to have enhanced food waste and poverty. Another important finding is the role of meat processing plants as suitable environments for the onset of outbreaks. Lessons learned from the pandemic include the correct management of spaces, food hygiene education for both food workers and common people, the enhancement of alternative commercial channels, the reorganization of food activities, in particular wet markets, and intensive farming, following correct hygiene practices. All these outcomes lead to another crucial lesson, which is the importance of the resilience of the food system. These lessons should be assimilated to deal with the present pandemic and possible future emergencies. Future research directions include further investigation of the factors linked to the food system that can favor the emergence of viruses, and of innovative technologies that can reduce viral transmission.
Collapse
Affiliation(s)
- Antonello Paparella
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | | | | | | | | |
Collapse
|
40
|
Geng Y, Wang Y. Stability and transmissibility of SARS-CoV-2 in the environment. J Med Virol 2022; 95:e28103. [PMID: 36039831 PMCID: PMC9537778 DOI: 10.1002/jmv.28103] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 01/11/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing the ongoing global coronavirus disease 2019 (COVID-19) pandemic, is believed to be transmitted primarily through respiratory droplets and aerosols. However, reports are increasing regarding the contamination of environmental surfaces, shared objects, and cold-chain foods with SARS-CoV-2 RNA and the possibility of environmental fomite transmission of the virus raises much concern and debate. This study summarizes the current knowledge regarding potential mechanisms of environmental transmission of SARS-CoV-2, including the prevalence of surface contamination in various settings, the viability and stability of the virus on surfaces or fomites, as well as environmental factors affecting virus viability and survival such as temperature and relative humidity. Instances of fomite transmission, including cold-chain food transmission, and the importance of fomite transmission in epidemics, are discussed. The knowledge gaps regarding fomite transmission of SARS-CoV-2 are also briefly analyzed.
Collapse
Affiliation(s)
- Yansheng Geng
- Key Laboratory of Public Health Safety of Hebei Province, School of Public HealthHebei UniversityBaodingChina
| | - Youchun Wang
- Division of HIV/AIDS and Sex‐Transmitted Virus VaccinesNational Institutes for Food and Drug ControlBeijingChina
| |
Collapse
|
41
|
Urrutia-Pereira M, Chong-Neto HJ, Annesi Maesano I, Ansotegui IJ, Caraballo L, Cecchi L, Galán C, López JF, Aguttes MM, Peden D, Pomés A, Zakzuk J, Rosário Filho NA, D'Amato G. Environmental contributions to the interactions of COVID-19 and asthma: A secondary publication and update. World Allergy Organ J 2022; 15:100686. [PMID: 35966894 PMCID: PMC9359502 DOI: 10.1016/j.waojou.2022.100686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/01/2022] Open
Abstract
An outbreak of coronavirus disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) started in Wuhan, Hubei Province, China and quickly spread around the world. Current evidence is contradictory on the association of asthma with COVID-19 and associated severe outcomes. Type 2 inflammation may reduce the risk for severe COVID-19. Whether asthma diagnosis may be a risk factor for severe COVID-19, especially for those with severe disease or non-allergic phenotypes, deserves further attention and clarification. In addition, COVID-19 does not appear to provoke asthma exacerbations, and asthma therapeutics should be continued for patients with exposure to COVID-19. Changes in the intensity of pollinization, an earlier start and extension of the pollinating season, and the increase in production and allergenicity of pollen are known direct effects that air pollution has on physical, chemical, and biological properties of the pollen grains. They are influenced and triggered by meteorological variables that could partially explain the effect on COVID-19. SARS-CoV-2 is capable of persisting in the environment and can be transported by bioaerosols which can further influence its transmission rate and seasonality. The COVID-19 pandemic has changed the behavior of adults and children globally. A general trend during the pandemic has been human isolation indoors due to school lockdowns and loss of job or implementation of virtual work at home. A consequence of this behavior change would presumably be changes in indoor allergen exposures and reduction of inhaled outdoor allergens. Therefore, lockdowns during the pandemic might have improved some specific allergies, while worsening others, depending on the housing conditions.
Collapse
Affiliation(s)
| | - Herberto Jose Chong-Neto
- Division of Allergy and Immunology, Department of Pediatrics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Isabella Annesi Maesano
- French NIH (INSERM), and EPAR Department, IPLESP, INSERM and Sorbonne University, Paris, France
| | | | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Lorenzo Cecchi
- Centre of Bioclimatology, University of Florence, Florence, Italy
- SOS Allergy and Clinical Immunology, USL Toscana Centro, Prato, Italy
| | - Carmen Galán
- Department of Botany, Ecology and Plant Physiology, International Campus of Excellence on Agrifood (ceiA3), University of Córdoba, Córdoba, Spain
| | - Juan Felipe López
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | | | - David Peden
- UNC School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Anna Pomés
- Basic Research, Indoor Biotechnologies, Inc, Charlottesville, VA, United States
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | | | - Gennaro D'Amato
- Division of Respiratory and Allergic Diseases, High Specialty Hospital A. Cardarelli, School of Specialization in Respiratory Diseases, Federico II University, Naples, Italy
| |
Collapse
|
42
|
Guo M, Yan J, Hu Y, Xu L, Song J, Yuan K, Cheng X, Ma S, Liu J, Wu X, Liu L, Rong S, Wang D. Transmission of SARS-CoV-2 on Cold-Chain Food: Precautions Can Effectively Reduce the Risk. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:295-303. [PMID: 35767120 PMCID: PMC9244345 DOI: 10.1007/s12560-022-09521-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/23/2022] [Indexed: 05/02/2023]
Abstract
The COVID-19 pandemic has generated a new era in the world, also in the food safety. Up to now, there is no evidence to suggest that people can infect COVID-19 via food contaminated by SARS-CoV-2. Here, we analyzed the results of regular SARS-CoV-2 nucleic acid testing of considerable cold-chain food practitioners, cold-chain food surfaces, and their internal or external packaging as well as their associated environments, aiming to explore the risk of cold-chain food being contaminated by SARS-CoV-2 and the probability of people infecting COVID-19 through contaminated cold-chain food in the context of COVID-19 epidemic. This study found that only two batches of cold-chain food were contaminated by SARS-CoV-2, none of the cold-chain food handler were infected due to effective regulatory measures for cold-chain food. Therefore, effective supervision and preventive methods could effectively reduce the transmission risk of SARS-CoV-2 on cold-chain food.
Collapse
Affiliation(s)
- Meiyue Guo
- Xiangyang Public Inspection and Testing Center, No. 69, Taiziwan Road, 441000 Xiangyang, Hubei Province People’s Republic of China
| | - Junfeng Yan
- Xiangyang Public Inspection and Testing Center, No. 69, Taiziwan Road, 441000 Xiangyang, Hubei Province People’s Republic of China
| | - Yuan Hu
- Xiangyang Public Inspection and Testing Center, No. 69, Taiziwan Road, 441000 Xiangyang, Hubei Province People’s Republic of China
| | - Lu Xu
- Xiangyang Public Inspection and Testing Center, No. 69, Taiziwan Road, 441000 Xiangyang, Hubei Province People’s Republic of China
| | - Jinling Song
- Xiangyang Public Inspection and Testing Center, No. 69, Taiziwan Road, 441000 Xiangyang, Hubei Province People’s Republic of China
| | - Kun Yuan
- Xiangyang Public Inspection and Testing Center, No. 69, Taiziwan Road, 441000 Xiangyang, Hubei Province People’s Republic of China
| | - Xiangru Cheng
- Xiangyang Public Inspection and Testing Center, No. 69, Taiziwan Road, 441000 Xiangyang, Hubei Province People’s Republic of China
| | - Sui Ma
- Xiangyang Public Inspection and Testing Center, No. 69, Taiziwan Road, 441000 Xiangyang, Hubei Province People’s Republic of China
| | - Jie Liu
- Xiangyang Public Inspection and Testing Center, No. 69, Taiziwan Road, 441000 Xiangyang, Hubei Province People’s Republic of China
| | - Xianbing Wu
- Xiangyang Public Inspection and Testing Center, No. 69, Taiziwan Road, 441000 Xiangyang, Hubei Province People’s Republic of China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030 Hubei Province People’s Republic of China
| | - Shuang Rong
- Department of Nutrition Hygiene and Toxicology, Academy of Nutrition and Health, School of Public Health, Medical College, Wuhan University of Science and Technology, No. 2, Huangjiahu Road, Wuhan, 430065 Hubei Province People’s Republic of China
| | - Di Wang
- Xiangyang Public Inspection and Testing Center, No. 69, Taiziwan Road, 441000 Xiangyang, Hubei Province People’s Republic of China
- Xiangyang Public Health and Anti-Epidemic Materials Research Key Laboratory, No. 69, Taiziwan Road, Xiangyang, 441000 Hubei Province People’s Republic of China
| |
Collapse
|
43
|
Hassoun A, Harastani R, Jagtap S, Trollman H, Garcia-Garcia G, Awad NMH, Zannou O, Galanakis CM, Goksen G, Nayik GA, Riaz A, Maqsood S. Truths and myths about superfoods in the era of the COVID-19 pandemic. Crit Rev Food Sci Nutr 2022; 64:585-602. [PMID: 35930325 DOI: 10.1080/10408398.2022.2106939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Nowadays, during the current COVID-19 pandemic, consumers increasingly seek foods that not only fulfill the basic need (i.e., satisfying hunger) but also enhance human health and well-being. As a result, more attention has been given to some kinds of foods, termed "superfoods," making big claims about their richness in valuable nutrients and bioactive compounds as well as their capability to prevent illness, reinforcing the human immune system, and improve overall health.This review is an attempt to uncover truths and myths about superfoods by giving examples of the most popular foods (e.g., berries, pomegranates, watermelon, olive, green tea, several seeds and nuts, honey, salmon, and camel milk, among many others) that are commonly reported as having unique nutritional, nutraceutical, and functional characteristics.While superfoods have become a popular buzzword in blog articles and social media posts, scientific publications are still relatively marginal. The reviewed findings show that COVID-19 has become a significant driver for superfoods consumption. Food Industry 4.0 innovations have revolutionized many sectors of food technologies, including the manufacturing of functional foods, offering new opportunities to improve the sensory and nutritional quality of such foods. Although many food products have been considered superfoods and intensively sought by consumers, scientific evidence for their beneficial effectiveness and their "superpower" are yet to be provided. Therefore, more research and collaboration between researchers, industry, consumers, and policymakers are still needed to differentiate facts from marketing gimmicks and promote human health and nutrition.
Collapse
Affiliation(s)
- Abdo Hassoun
- Sustainable AgriFoodtch Innovation & Research (SAFIR), Arras, France
- Syrian Academic Expertise (SAE), Gaziantep, Turkey
| | - Rania Harastani
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| | - Sandeep Jagtap
- Sustainable Manufacturing Systems Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield, UK
| | - Hana Trollman
- Department of Work, Employment, Management and Organisations, School of Business, University of Leicester, Leicester, UK
| | - Guillermo Garcia-Garcia
- Department of Agrifood System Economics, Centre 'Camino de Purchil', Institute of Agricultural and Fisheries Research and Training (IFAPA), Granada, Spain
| | - Nour M H Awad
- Faculty of Engineering, Food Engineering Department, Ondokuz Mayis University, Samsun, Turkey
| | - Oscar Zannou
- Faculty of Engineering, Food Engineering Department, Ondokuz Mayis University, Samsun, Turkey
| | - Charis M Galanakis
- Department of Research & Innovation, Galanakis Laboratories, Chania, Greece
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
- Food Waste Recovery Group, ISEKI Food Association, Vienna, Austria
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Turkey
| | - Gulzar Ahmad Nayik
- Department of Food Science and Technology, Government Degree College, Shopian, Jammu & Kashmir, India
| | - Asad Riaz
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
44
|
Liu Y, Shao Y, Wang L, Lu W, Li S, Xu D, Fu YV. Inactivation of porcine epidemic diarrhea virus with electron beam irradiation under cold chain conditions. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2022; 27:102715. [PMID: 35694201 PMCID: PMC9169434 DOI: 10.1016/j.eti.2022.102715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
The many instances of COVID-19 outbreaks suggest that cold chains are a possible route for the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, owing to the low temperatures of cold chains, which are normally below 0 °C, there are limited options for virus inactivation. Here, high-energy electron beam (E-beam) irradiation was used to inactivate porcine epidemic diarrhea virus (PEDV) under simulated cold chain conditions. This coronavirus was used as a surrogate for SARS-CoV-2. The possible mechanism by which high-energy E-beam irradiation inactivates PEDV was also explored. An irradiation dose of 10 kGy reduced the PEDV infectious viral titer by 1.68-1.76 log10TCID 50 / 100 μ L in the cold chain environment, suggesting that greater than 98.1% of PEDV was inactivated. E-beam irradiation at 5-30 kGy damaged the viral genomic RNA with an efficiency of 46.25%-92.11%. The integrity of the viral capsid was disrupted at 20 kGy. The rapid and effective inactivation of PEDV at temperatures below freezing indicates high-energy E-beam irradiation as a promising technology for disinfecting SARS-CoV-2 in cold chain logistics to limit the transmission of COVID-19.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Shao
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weilai Lu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shihua Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Diandou Xu
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Vincent Fu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
45
|
Qian J, Yu Q, Jiang L, Yang H, Wu W. Food cold chain management improvement: A conjoint analysis on COVID-19 and food cold chain systems. Food Control 2022; 137:108940. [PMID: 35261485 PMCID: PMC8890692 DOI: 10.1016/j.foodcont.2022.108940] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/04/2022]
Abstract
Cold chains are effective in maintaining food quality and reducing food losses, especially for long-distance international food commerce. Several recent reports have demonstrated that frozen foods are serving as carriers of SARS-CoV-2 and transmitting the virus from one place to another without any human-to-human contact. This finding highlights significant difficulties facing efforts to control the spread of COVID-19 and reveal a transmission mechanism that may have substantially worsened the global pandemic. Traditional food cold chain management practices do not include specific procedures related to SARS-CoV-2-related environmental control and information warnings; therefore, such procedures are urgently needed to allow food to be safely transported without transmitting SARS-CoV-2. In this study, a conjoint analysis of COVID-19 and food cold chain systems was performed, and the results of this analysis were used to develop an improved food cold chain management system utilizing internet of things (IoT) and blockchain technology. First, 45 COVID-19-related food cold chain incidents in China, primarily involving frozen meat and frozen aquatic products, were summarized. Critical food cold chain control points related to COVID-19 were analyzed, including temperature and cold chain requirements. A conceptual system structure to improve food cold chain management, including information sensing, chain linking and credible tracing, was proposed. Finally, a prototype system, which consisted of cold chain environment monitoring equipment, a cold chain blockchain platform, and a food chain management system, was developed. The system includes: 1) a defining characteristic of the newly developed food cold chain system presented here is the use of IoT technology to enhance real-time environmental information sensing capacity; 2) a hybrid data storage mechanism consisting of off-chain and on-chain systems was applied to enhance data security, and smart contracts were used to establish warning levels for food cold chain incidents; and 3) a hypothetical food cold chain failure scenario demonstration in which information collection, intelligent decision making, and cold chain tracing were integrated and automatically generated for decision-making. By integrating existing technologies and approaches, our study provides a novel solution to improve traditional food cold chain management and thus meet the challenges associated with the COVID-19 pandemic. Although our system has been shown to be effective, subsequent studies are still required to develop precise risk evaluation models for SARs-CoV-2 in food cold chains and more precisely control the entire process. By ensuring food safety and reliable traceability, our system could also contribute to the formulation of appropriate mechanisms for international cooperation and minimize the effect of the COVID-19 pandemic on international food commerce.
Collapse
Affiliation(s)
- Jianping Qian
- Key Laboratory of Agricultural Remote Sensing (AGRIRS), Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Qiangyi Yu
- Key Laboratory of Agricultural Remote Sensing (AGRIRS), Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Li Jiang
- Chinese Academy of Inspection and Quarantine, 100123, Beijing, China
| | - Han Yang
- Key Laboratory of Agricultural Remote Sensing (AGRIRS), Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Wenbin Wu
- Key Laboratory of Agricultural Remote Sensing (AGRIRS), Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| |
Collapse
|
46
|
Bailey ES, Curcic M, Sobsey MD. Persistence of Coronavirus Surrogates on Meat and Fish Products during Long-Term Storage. Appl Environ Microbiol 2022; 88:e0050422. [PMID: 35670583 PMCID: PMC9238416 DOI: 10.1128/aem.00504-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/18/2022] [Indexed: 12/23/2022] Open
Abstract
Multiple pathways of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission have been examined, and the role of contaminated foods as a source of SARS-CoV-2 exposure has been suggested. As many cases of SARS-CoV-2 have been linked to meat processing plants, it may be that conditions in live animal markets and slaughterhouses or meat processing plant procedures transfer viral particles to meat, poultry, and seafood during animal slaughter, processing, storage, or transport. Because of the potential for contamination of foods such as beef, chicken, pork, or fish, the goal of this study was to evaluate the survival of a lipid enveloped RNA bacteriophage, phi 6, as well as two animal coronaviruses, murine hepatitis virus (MHV) and transmissible gastroenteritis virus (TGEV), as SARS-CoV-2 surrogates for their survival under various meat and fish cold-storage conditions over 30 days. Viral surrogates differed in survival, depending on food product and temperature, but overall, viruses survived for extended periods of time at high concentrations at both refrigerated and frozen temperatures. The ability of SARS-CoV-2 viral surrogates like Phi 6 and animal coronaviruses to survive for varying extents on some meat and fish products when stored refrigerated or frozen is a significant and concerning finding. Continued efforts are needed to prevent contamination of foods and food processing surfaces, worker hands, and food processing utensils such as knives, and there is a need to better address the lack of or inadequate disinfection of these foods prior to meat packaging. IMPORTANCE The ability of SARS-CoV-2 viral surrogates like Phi 6 and animal coronaviruses to survive for long periods on meat and fish products at cold temperatures emphasizes the need for rigorous and sustained food sanitation and hygiene in the harvest, transport, processing, and distribution of these foods.
Collapse
Affiliation(s)
- Emily S. Bailey
- Department of Public Health, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, North Carolina, USA
| | - Marina Curcic
- Julia Jones Matthews Department of Public Health, Texas Tech University Health Sciences Center, Abilene, Texas, USA
| | - Mark D. Sobsey
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
47
|
Rathod NB, Elabed N, Özogul F, Regenstein JM, Galanakis CM, Aljaloud SO, Ibrahim SA. The Impact of COVID-19 Pandemic on Seafood Safety and Human Health. Front Microbiol 2022; 13:875164. [PMID: 35814679 PMCID: PMC9257084 DOI: 10.3389/fmicb.2022.875164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic caused several negative impacts on global human health and the world's economy. Food and seafood safety and security were among the principal challenges and causes of concern for the food industry and consumers during the spread of this global pandemic. This article focused on the effects of COVID-19 pandemic on potential safety issues with seafood products and their processing methods. Moreover, the potential impacts of coronavirus transmission through seafood on human health were evaluated. The role of authenticity, traceability, and antimicrobials from natural sources to preserve seafood and the possible interaction of functional foods on the human immune system are also discussed. Although seafood is not considered a principal vector of SARS-CoV-2 transmission, the possible infections through contaminated surfaces of such food products cannot be neglected. The positive effects of seafood consumption on possible immunity built up, and COVID-19 are also summarized.
Collapse
Affiliation(s)
- Nikheel Bhojraj Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, Post-graduate Institute of Post-harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth), Raigad, India
| | - Nariman Elabed
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology (INSAT), University of Carthage, Carthage, Tunisia
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Joe M. Regenstein
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Charis M. Galanakis
- Research and Innovation Department, Galanakis Laboratories, Chania, Greece
- Food Waste Recovery Group, ISEKI Food Association, Vienna, Austria
| | - Sulaiman Omar Aljaloud
- College of Sports Science and Physical Activity, King Saud University, Riyadh, Saudi Arabia
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, 171 Carver Hall, College of Agriculture and Environmental Sciences, North Carolina A & T State University, Greensboro, NC, United States
| |
Collapse
|
48
|
Salehi A, Salmani F, Norozi E, Sadighara P, Zeinali T. Knowledge, attitudes and practices of Iranian people about food safety and hygiene during covid-19 pandemic. BMC Public Health 2022; 22:1148. [PMID: 35676671 PMCID: PMC9174923 DOI: 10.1186/s12889-022-13559-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
AIM The objective of this study was to develop a cultural adopted questionnaire for evaluation of knowledge (K), attitude (A) and practice (P) of Iranian population toward food safety during Covid-19. METHODS The study is based on an online questionnaire that filled by 712 Iranians over 16 years old. Exploratory factor analysis (EFA), confirmatory factor analysis (CFA) and reliability assessment were performed. The construct validity of A and P determined by EFA and confirmed by CFA. Difficulty index was used for K. RESULTS The reliability score of questionnaire was satisfactory. The three items of K-A-P questionnaire were significantly associated with the total score of questionnaire. The KAP questionnaire regarding food safety in covid-19 consisted of 27 items multidimensional scale with strong psychometric features. The respondent showed a satisfactory level of KAP during covid-19 pandemics. CONCLUSION The KAP questionnaire regarding food safety in covid-19 is a valid and reliable tool for measurement of knowledge, attitude and practice of people regarding food safety in covid-19.
Collapse
Affiliation(s)
- Ali Salehi
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Salmani
- Department of Epidemiology and Biostatistics, School of Health, Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Ensiyeh Norozi
- Department of Public Health, School of Health, Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Parisa Sadighara
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Zeinali
- Department of Public Health, School of Health, Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
49
|
Li F, Wang J, Liu Z, Li N. Surveillance of SARS-CoV-2 Contamination in Frozen Food-Related Samples - China, July 2020 - July 2021. China CDC Wkly 2022; 4:465-470. [PMID: 35812777 PMCID: PMC9257695 DOI: 10.46234/ccdcw2022.105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/31/2022] [Indexed: 01/01/2023] Open
Abstract
Introduction Current evidence shows that coronavirus disease 2019 (COVID-19) is neither a food safety issue nor a foodborne disease. However, the outbreaks of this disease in workers of meat- or poultry-processing plants and food markets have been reported in many countries. Systematic reports on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contamination in food-related samples worldwide are lacking so far. This study aimed to survey and monitor SARS-CoV-2 contamination in samples of foods or their packaging, storage environment, and employees, as well as explore the possible potential for virus transmission via frozen foods. Methods Swabs of frozen food-related samples were collected between July 2020 and July 2021 in 31 provincial-level administrative divisions (PLADs) and Xinjiang Construction Corps in China. The SARS-CoV-2 RNAs were extracted and analyzed by real-time quantitative polymerase chain reaction using the commercially available SARS-CoV-2 nucleic acid test kit. Results More than 55.83 million samples were analyzed, and 1,455 (0.26 per 10,000) were found to be positive for SARS-CoV-2 nucleic acid. Among the virus-positive samples, 96.41% (1,398/1,450) and 3.59% (52/1,450) were food/food packaging materials and environment, respectively. As for 1,398 SARS-CoV-2-positive food and food packaging materials, 99.50%, (1,391/1,398) were imported and 7 were domestic. The outer packaging of food was frequently contaminated by the virus 78.75% ( 1,101/1,398). Conclusions Our study supported speculation that cold-chain foods might act as the SARS-CoV-2 carrier, and food handlers/operators were at high risk of exposure to the virus. It is necessary to carry out a comprehensive mass testing for SARS-CoV-2 nuclei acid, along with contact tracing and symptom screening in cold-chain food handlers and processors so as to identify high proportions of asymptomatic or pre-symptomatic infections. Meanwhile, research and development of effective self-protection equipment available at a temperature below -18 ℃ is urgent.
Collapse
Affiliation(s)
- Fengqin Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Jiahui Wang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Zhaoping Liu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Ning Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China,Ning Li,
| |
Collapse
|
50
|
Faustino R, Faria M, Teixeira M, Palavra F, Sargento P, do Céu Costa M. Systematic review and meta-analysis of the prevalence of coronavirus: One health approach for a global strategy. One Health 2022; 14:100383. [PMID: 35399617 PMCID: PMC8979611 DOI: 10.1016/j.onehlt.2022.100383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 01/02/2023] Open
Abstract
Coronaviruses have been responsible for major epidemic crises in 2003 with SARS-CoV-1, in 2012 with MERS-CoV and in 2019 with SARS-CoV-2 (COVID-19), causing serious atypical pneumonia in humans. We intend, with this systematic analysis and meta-analysis, to clarify the prevalence of the various strains of coronavirus in different animal species. For this purpose, we carried out an electronic survey using Pubmed's Veterinary Science search tool to conduct a systematic assessment of published studies reporting the prevalence of different strains of coronavirus in different animal species between 2015 and 2020. We conducted different analysis to assess sensitivity, publication bias, and heterogeneity, using random effect. The final meta-analysis included 42 studies for systematic review and 29 in the meta-analysis. For the geographic regions with a prevalence greater than or equal to 0.20 (Forest plot overall; prevalence = 0.20, p < 0.01, Q = 10,476.22 and I2 = 100%), the most commonly detected viruses were: enteric coronavirus (ECoV), pigeon-dominant coronavirus, (PdCoV), Avian coronavirus M41, Avian coronavirus C46, Avian coronavirus A99, Avian coronavirus JMK, MERS-CoV, Bovine coronavirus, Ro-BatCoV GCCDC1, Alphacoronavirus, Betacoronavirus, Deltacoronavirus, Gamacoronavirus and human coronaviruses (HCoVs). The wide presence of different strains of coronavirus in different animal species on all continents demonstrates the great biodiversity and ubiquity of these viruses. The most recent epidemiological crises caused by coronavirus demonstrates our unpreparedness to anticipate and mitigate emerging risks, as well as the need to implement new epidemiological surveillance programs for viruses. Combined with the need to create advanced training courses in One Health, this is paramount in order to ensure greater effectiveness in fighting the next pandemics.
Collapse
|