1
|
Kinoshita J, Kinoshita Y, Nomura T, Inoue YH. Macrophage-like Blood Cells Are Involved in Inter-Tissue Communication to Activate JAK/STAT Signaling, Inducing Antitumor Turandot Proteins in Drosophila Fat Body via the TNF-JNK Pathway. Int J Mol Sci 2024; 25:13110. [PMID: 39684820 DOI: 10.3390/ijms252313110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Turandot (Tot) family proteins, which are induced via the JAK/STAT pathway after infection, also suppress lymph gland tumors in Drosophila mxcmbn1 mutant larvae. We investigated the potential role of hemocytes in Tot induction in tumor-bearing mutants via immunostaining and RNAi experiments. Normal hemocytes transplanted into mutant larvae were recruited to the tumor and fat body (FB), suggesting that these cells transmit tumor-related information. The transplanted hemocytes ectopically expressed Unpaired3 (Upd3), which is necessary for the activation of JAK/STAT. Eiger, a Drosophila tumor necrosis factor (TNF) ortholog, was highly expressed in tumors. Depletion of the Eiger receptor in hemocytes reduced Tot levels and eventually enhanced tumor growth. The c-Jun N-terminal kinase (JNK) pathway, acting downstream of the receptor, was also activated in the hemocytes of mutants. Downregulation of the JNK pathway in hemocytes inhibited Tot induction, leading to enhanced tumor growth. These results suggest that upd3 expression in hemocytes depends on the Eiger-JNK pathway. We propose that after Eiger activates the JNK pathway in hemocytes present on the tumor, cells expressing Upd3 are recruited to the FB. Upd3 then activates JAK/STAT to induce the expression of antitumor proteins. This study highlights the intricate communication between tissues via blood cells during tumor suppression.
Collapse
Affiliation(s)
- Juri Kinoshita
- Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-0962, Japan
- Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585, Japan
| | - Yuriko Kinoshita
- Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-0962, Japan
| | - Tadashi Nomura
- Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-0962, Japan
- Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585, Japan
| | - Yoshihiro H Inoue
- Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-0962, Japan
| |
Collapse
|
2
|
Martin-Diaz J, Herrera SC. A stem cell activation state coupling spermatogenesis with social interactions in Drosophila males. Cell Rep 2024; 43:114647. [PMID: 39153199 DOI: 10.1016/j.celrep.2024.114647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 07/06/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024] Open
Abstract
Reproduction is paramount to animals. For it to be successful, a coordination of social behavior, physiology, and gamete production is necessary. How are social cues perceived and how do they affect physiology and gametogenesis? While females, ranging from insects to mammals, have provided multiple insights about this coordination, its existence remains largely unknown in males. Here, by using the Drosophila male as a model, we describe a phenomenon by which the availability of potential mating partners triggers an activation state on the stem cell populations of the testis, boosting spermatogenesis. We reveal its reliance on pheromonal communication, even in the absence of mating or other interactions with females. Finally, we identify the interorgan communication signaling network responsible-muscle-secreted tumor necrosis factor alpha (TNF-α)/Eiger and neuronally secreted octopamine trigger, respectively, the Jun N-terminal kinase (JNK) pathway and a change in calcium dynamics in the cyst stem cells. As a consequence, germ line stem cells increase their proliferation.
Collapse
Affiliation(s)
- Javier Martin-Diaz
- Andalusian Center for Developmental Biology (CABD), CSIC, UPO, Junta de Andalucía, Carretera de Utrera km 1, 41013 Sevilla, Spain
| | - Salvador C Herrera
- Andalusian Center for Developmental Biology (CABD), CSIC, UPO, Junta de Andalucía, Carretera de Utrera km 1, 41013 Sevilla, Spain.
| |
Collapse
|
3
|
Xia X, Wu Y, Chen Z, Du D, Chen X, Zhang R, Yan J, Wong IN, Huang R. Colon cancer inhibitory properties of Caulerpa lentillifera polysaccharide and its molecular mechanisms based on three-dimensional cell culture model. Int J Biol Macromol 2024; 267:131574. [PMID: 38615857 DOI: 10.1016/j.ijbiomac.2024.131574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Caulerpa lentillifera is rich in polysaccharides, and its polysaccharides show a significant effect in different biological activities including anti-cancer activity. As an edible algae-derived polysaccharide, exploring the role of colon cancer can better develop the application from a dietary therapy perspective. However, more in-depth studies of C. lentillifera polysaccharide on anti-colon cancer activity and mechanism are needed. In this study, we found that Caulerpa lentillifera polysaccharides (CLP) showed potential anti-colon cancer effect on human colon cancer cell HT29 in monolayer (IC50 = 1.954 mg/mL) and spheroid (IC50 = 0.402 mg/mL). Transcriptomics and metabolomics analyses revealed that CLP had an inhibitory effect on HT29 3D spheroid cells by activating aminoacyl-tRNA biosynthesis as well as arginine and proline metabolism pathways. Furthermore, the anti-colon cancer effects of CLP were confirmed through other human colon cancer cell HCT116 and LoVo in monolayer cells (IC50 = 1.890 mg/mL and 1.437 mg/mL, respectively) and 3D spheroid cells (IC50 = 0.344 mg/mL and 0.975 mg/mL, respectively), and three patient-derived organoids with IC50 values of 6.333-8.780 mg/mL. This study provided basic data for the potential application of CLP in adjuvant therapeutic food for colon cancer on multiple levels, while further investigation of detailed mechanism in vivo was still required.
Collapse
Affiliation(s)
- Xuewei Xia
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yulin Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zexin Chen
- Guangdong Research Center of Organoid Engineering and Technology, Guangzhou 510535, China; Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Danyi Du
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Guangzhou 510515, China
| | - Xiaodan Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Rongxin Zhang
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Centre, Guangzhou 510060, China; State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| | - Jun Yan
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China; Department of Gastrointestinal Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Io Nam Wong
- Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China.
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Hwang SH, Jang HA, Kojour MAM, Yun K, Lee YS, Han YS, Jo YH. Effects of TmTak1 silencing on AMP production as an Imd pathway component in Tenebrio molitor. Sci Rep 2023; 13:18914. [PMID: 37919359 PMCID: PMC10622451 DOI: 10.1038/s41598-023-45978-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023] Open
Abstract
Mealworms beetles, Tenebrio molitor, are the limelight next-generation food for humans due to their high nutrient contents. Since Tenebrio molitor is used as feed for pets and livestock in addition to their ability to decompose polystyrene and plastic waste, it is recognized as an insect with an industrial core value. Therefore, it is important to study the immune mechanism related to the development and infection of mealworms for mass breeding purposes. The immune deficiency (Imd) signaling is one of the main pathways with pivotal roles in the production of antimicrobial peptides (AMPs). Transforming growth factor-β activated kinase (TAK1) is one of the Imd pathway components, forms a complex with TAK1 binding protein 2 (TAB2) to ultimately help activate the transcription factor Relish and eventually induce host to produce AMPs. Relatively, little has been revealed about TAK1 in insect models, especially in the T. molitor. Therefore, this study was conducted to elucidate the function of TmTak1 in T. molitor. Our results showed that the highest and lowest mRNA expression of TmTak1 were found in egg and young larvae respectively. The tissue-specific expression patterns were reported in the gut of T. molitor larvae and the fat bodies of adults. Systemic microbial challenge illustrated TmTak1 high expression following the fungal infection in all dissected tissues except for the whole body. However, silencing TmTak1 experiments showed that the survivability of T. molitor larvae affected significantly following Escherichia coli infection. Accordingly, AMP induction after TmTak1 knock down was mainly reported in the integument and the fat bodies.
Collapse
Affiliation(s)
- Su Hyeon Hwang
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ho Am Jang
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungnam, Republic of Korea
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Maryam Ali Mohammadie Kojour
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Keunho Yun
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yong Seok Lee
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungnam, Republic of Korea
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Yeon Soo Han
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yong Hun Jo
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungnam, Republic of Korea.
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, Republic of Korea.
| |
Collapse
|
5
|
Chimata AV, Darnell H, Raj A, Kango-Singh M, Singh A. Transcriptional pausing factor M1BP regulates cellular homeostasis by suppressing autophagy and apoptosis in Drosophila eye. AUTOPHAGY REPORTS 2023; 2:2252307. [PMID: 37746026 PMCID: PMC10512699 DOI: 10.1080/27694127.2023.2252307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/26/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023]
Abstract
During organogenesis cellular homeostasis plays a crucial role in patterning and growth. The role of promoter proximal pausing of RNA polymerase II, which regulates transcription of several developmental genes by GAGA factor or Motif 1 Binding Protein (M1BP), has not been fully understood in cellular homeostasis. Earlier, we reported that M1BP, a functional homolog of ZKSCAN3, regulates wingless and caspase-dependent cell death (apoptosis) in the Drosophila eye. Further, blocking apoptosis does not fully rescue the M1BPRNAi phenotype of reduced eye. Therefore, we looked for other possible mechanism(s). In a forward genetic screen, members of the Jun-amino-terminal-(NH2)-Kinase (JNK) pathway were identified. Downregulation of M1BP ectopically induces JNK, a pro-death pathway known to activate both apoptosis and caspase-independent (autophagy) cell death. Activation of JNK pathway components can enhance M1BPRNAi phenotype and vice-versa. Downregulation of M1BP ectopically induced JNK signaling, which leads to apoptosis and autophagy. Apoptosis and autophagy are regulated independently by their genetic circuitry. Here, we found that blocking either apoptosis or autophagy alone rescues the reduced eye phenotype of M1BP downregulation; whereas, blocking both apoptosis and autophagy together significantly rescues the M1BP reduced eye phenotype to near wild-type in nearly 85% progeny. This data suggests that the cellular homeostasis response demonstrated by two independent cell death mechanisms, apoptosis and autophagy, can be regulated by a common transcriptional pausing mechanism orchestrated by M1BP. Since these fundamental processes are conserved in higher organisms, this novel functional link between M1BP and regulation of both apoptosis and autophagy can be extrapolated to humans.
Collapse
Affiliation(s)
| | - Hannah Darnell
- Department of Biology, University of Dayton, Dayton, OH, USA
| | - Akanksha Raj
- Department of Biology, University of Dayton, Dayton, OH, USA
| | - Madhuri Kango-Singh
- Department of Biology, University of Dayton, Dayton, OH, USA
- Premedical Program, University of Dayton, Dayton, OH, USA
- Integrative Science and Engineering (ISE), University of Dayton, Dayton, OH, USA
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, USA
- Premedical Program, University of Dayton, Dayton, OH, USA
- Center for Tissue Regeneration & Engineering (TREND), University of Dayton, Dayton, OH, USA
- Integrative Science and Engineering (ISE), University of Dayton, Dayton, OH, USA
- Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA
| |
Collapse
|
6
|
Kim HK, Kim CJ, Jang D, Lim DH. MicroRNA miR-274-5p Suppresses Found-in-Neurons Associated with Melanotic Mass Formation and Developmental Growth in Drosophila. INSECTS 2023; 14:709. [PMID: 37623419 PMCID: PMC10456003 DOI: 10.3390/insects14080709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/07/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023]
Abstract
The hematopoietic system plays a crucial role in immune defense response and normal development, and it is regulated by various factors from other tissues. The dysregulation of hematopoiesis is associated with melanotic mass formation; however, the molecular mechanisms underlying this process are poorly understood. Here, we observed that the overexpression of miR-274 in the fat body resulted in the formation of melanotic masses. Moreover, abnormal activation of the JNK and JAK/STAT signaling pathways was linked to these consequences. In addition to this defect, miR-274 overexpression in the larval fat body decreased the total tissue size, leading to a reduction in body weight. miR-274-5p was found to directly suppress the expression of found-in-neurons (fne), which encodes an RNA-binding protein. Similar to the effects of miR-274 overexpression, fne depletion led to melanotic mass formation and growth reduction. Collectively, miR-274 plays a regulatory role in the fne-JNK signaling axis in melanotic mass formation and growth control.
Collapse
Affiliation(s)
| | | | | | - Do-Hwan Lim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea; (H.K.K.); (C.J.K.); (D.J.)
| |
Collapse
|
7
|
Fort L. Messenger functions of cell death during development and homeostasis. Biochem Soc Trans 2023; 51:759-769. [PMID: 37021685 PMCID: PMC11149382 DOI: 10.1042/bst20220925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 04/27/2023]
Abstract
In our human society, would you not want to know if your neighbor suddenly passed away? Tissues and cells are not that different. Cell death is an inevitable part of tissue homeostasis and comes in different flavors that can either be a consequence of an injury or a regulated phenomenon (such as programed cell death). Historically, cell death was viewed as a way to discard cells, without functional consequences. Today, this view has evolved and recognizes an extra layer of complexity: dying cells can provide physical or chemical signals to notify their neighbors. Like any type of communication, signals can only be read if surrounding tissues have evolved to recognize them and functionally adapt. This short review aims to provide a summary of recent work interrogating the messenger functions and consequences of cell death in various model organisms.
Collapse
Affiliation(s)
- Loic Fort
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, U.S.A
| |
Collapse
|
8
|
Das R, Pandey P, Maurya B, Pradhan P, Sinha D, Mukherjee A, Mutsuddi M. Spoonbill positively regulates JNK signalling mediated apoptosis in Drosophila melanogaster. Eur J Cell Biol 2023; 102:151300. [PMID: 36858008 DOI: 10.1016/j.ejcb.2023.151300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
A-kinase anchoring protein (AKAP) comprises a family of scaffold proteins, which decides the subcellular localisation of a combination of signalling molecules. Spoonbill (Spoon) is a putative A-kinase anchoring protein in Drosophila. We have earlier reported that Spoon suppresses ribonuclear foci formed by trinucleotide repeat expanded transcripts associated with Spinocerebellar Ataxia 8 neurodegeneration in Drosophila. However, the role of Spoonbill in cellular signalling was unexplored. In this report, we have unravelled a novel function of Spoon protein in the regulation of the apoptotic pathway. The Drosophila TNFα homolog, Eiger, induces apoptosis via activation of the JNK pathway. We have shown here that Spoonbill is a positive regulator of the Eiger-induced JNK signalling. Further genetic interaction studies show that the spoon interacts with components of the JNK pathway, TGF-β activated kinase 1 (Tak1 - JNKKK), hemipterous (hep - JNKK) and basket (bsk - JNK). Interestingly, Spoonbill alone can also induce ectopic activation of the JNK pathway in a context-specific manner. To understand the molecular mechanism underlying Spoonbill-mediated modulation of the JNK pathway, the interaction between Spoon and Drosophila JNK was assessed. basket encodes the only known JNK in Drosophila. This serine/threonine-protein kinase phosphorylates Jra/Kay, which transcriptionally regulate downstream targets like Matrix metalloproteinase 1 (Mmp1), puckered (puc), and proapoptotic genes hid, reaper and grim. Interestingly, we found that Spoonbill colocalises and co-immunoprecipitates with the Basket protein in the developing photoreceptor neurons. Hence, we propose that Spoon plays a vital role in JNK-induced apoptosis. Furthermore, stress-induced JNK activation underlying Parkinson's Disease was also examined. In the Parkinson's Drosophila model of neurodegeneration, depletion of Spoonbill leads to a partial reduction of JNK pathway activation, along with improvement in adult motor activity. These observations suggest that the putative scaffold protein Spoonbill is a functional and physical interacting partner of the Drosophila JNK protein, Basket. Spoon protein is localised on the outer mitochondrial membrane (OMM), which may perhaps provide a suitable subcellular niche for activation of Drosophila Basket protein by its kinases which induce apoptosis.
Collapse
Affiliation(s)
- Rituparna Das
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi 221005, India
| | - Pranjali Pandey
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi 221005, India
| | - Bhawana Maurya
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi 221005, India
| | | | - Devanjan Sinha
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi 221005, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
9
|
Serras F. The sooner, the better: ROS, kinases and nutrients at the onset of the damage response in Drosophila. Front Cell Dev Biol 2022; 10:1047823. [PMID: 36353511 PMCID: PMC9637634 DOI: 10.3389/fcell.2022.1047823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/11/2022] [Indexed: 11/20/2022] Open
Abstract
One of the main topics in regeneration biology is the nature of the early signals that trigger the damage response. Recent advances in Drosophila point to the MAP3 kinase Ask1 as a molecular hub that integrates several signals at the onset of regeneration. It has been discovered that reactive oxygen species (ROS) produced in damaged imaginal discs and gut epithelia will activate the MAP3 kinase Ask1. Severely damaged and apoptotic cells produce an enormous amount of ROS, which ensures their elimination by activating Ask1 and in turn the pro-apoptotic function of JNK. However, this creates an oxidative stress environment with beneficial effects that is sensed by neighboring healthy cells. This environment, in addition to the Pi3K/Akt nutrient sensing pathway, can be integrated into Ask1 to launch regeneration. Ultimately the activity of Ask1 depends on these and other inputs and modulates its signaling to achieve moderate levels of p38 and low JNK signaling and thus promote survival and regeneration. This model based on the dual function of Ask1 for early response to damage is discussed here.
Collapse
Affiliation(s)
- Florenci Serras
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institute of Biomedicine of the University of Barcelona, University of Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Feng Y, Zhang Y, Lin Z, Ye X, Lin X, Lv L, Lin Y, Sun S, Qi Y, Lin X. Chromatin remodeler Dmp18 regulates apoptosis by controlling H2Av incorporation in Drosophila imaginal disc development. PLoS Genet 2022; 18:e1010395. [PMID: 36166470 PMCID: PMC9514664 DOI: 10.1371/journal.pgen.1010395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
Programmed Cell Death (PCD) or apoptosis is a highly conserved biological process and plays essential roles both in the development and stress context. In Drosophila, expression of pro-apoptotic genes, including reaper (rpr), head involution defective (hid), grim, and sickle (skl), is sufficient to induce cell death. Here, we demonstrate that the chromatin remodeler Dmp18, the homolog of mammalian Znhit1, plays a crucial role in regulating apoptosis in eye and wing development. We showed that loss of Dmp18 disrupted eye and wing development, up-regulated transcription of pro-apoptotic genes, and induced apoptosis. Inhibition of apoptosis suppressed the eye defects caused by Dmp18 deletion. Furthermore, loss of Dmp18 disrupted H2Av incorporation into chromatin, promoted H3K4me3, but reduced H3K27me3 modifications on the TSS regions of pro-apoptotic genes. These results indicate that Dmp18 negatively regulates apoptosis by mediating H2Av incorporation and histone H3 modifications at pro-apoptotic gene loci for transcriptional regulation. Our study uncovers the role of Dmp18 in regulating apoptosis in Drosophila eye and wing development and provides insights into chromatin remodeling regulating apoptosis at the epigenetic levels.
Collapse
Affiliation(s)
- Ying Feng
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- * E-mail: (YF); (YQ); (XL)
| | - Yan Zhang
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiqing Lin
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaolei Ye
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xue Lin
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lixiu Lv
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Lin
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shenfei Sun
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Qi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- * E-mail: (YF); (YQ); (XL)
| | - Xinhua Lin
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
- * E-mail: (YF); (YQ); (XL)
| |
Collapse
|
11
|
Ogienko AA, Omelina ES, Bylino OV, Batin MA, Georgiev PG, Pindyurin AV. Drosophila as a Model Organism to Study Basic Mechanisms of Longevity. Int J Mol Sci 2022; 23:11244. [PMID: 36232546 PMCID: PMC9569508 DOI: 10.3390/ijms231911244] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
The spatio-temporal regulation of gene expression determines the fate and function of various cells and tissues and, as a consequence, the correct development and functioning of complex organisms. Certain mechanisms of gene activity regulation provide adequate cell responses to changes in environmental factors. Aside from gene expression disorders that lead to various pathologies, alterations of expression of particular genes were shown to significantly decrease or increase the lifespan in a wide range of organisms from yeast to human. Drosophila fruit fly is an ideal model system to explore mechanisms of longevity and aging due to low cost, easy handling and maintenance, large number of progeny per adult, short life cycle and lifespan, relatively low number of paralogous genes, high evolutionary conservation of epigenetic mechanisms and signalling pathways, and availability of a wide range of tools to modulate gene expression in vivo. Here, we focus on the organization of the evolutionarily conserved signaling pathways whose components significantly influence the aging process and on the interconnections of these pathways with gene expression regulation.
Collapse
Affiliation(s)
- Anna A. Ogienko
- Department of Regulation of Genetic Processes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
| | - Evgeniya S. Omelina
- Department of Regulation of Genetic Processes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
- Laboratory of Biotechnology, Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia
| | - Oleg V. Bylino
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology RAS, 119334 Moscow, Russia
| | - Mikhail A. Batin
- Open Longevity, 15260 Ventura Blvd., Sherman Oaks, Los Angeles, CA 91403, USA
| | - Pavel G. Georgiev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology RAS, 119334 Moscow, Russia
| | - Alexey V. Pindyurin
- Department of Regulation of Genetic Processes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
12
|
Zhao Y, Peng D, Liu Y, Zhang Q, Liu B, Deng Y, Ding W, Zhou Z, Liu Q. Usp8 promotes tumor cell migration through activating the JNK pathway. Cell Death Dis 2022; 13:286. [PMID: 35361778 PMCID: PMC8971431 DOI: 10.1038/s41419-022-04749-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 03/07/2022] [Accepted: 03/18/2022] [Indexed: 11/23/2022]
Abstract
Tumor metastasis is the most cause of high mortality for cancer patients. Identification of novel factors that modulate tumor cell migration is of great significance for therapeutic strategies. Here, we find that the ubiquitin-specific protease 8 (Usp8) promotes tumor cell migration through activating the c-Jun N-terminal kinase (JNK) pathway. Genetic epistasis analyses uncover Usp8 acts upstream of Tak1 to control the JNK pathway. Consistently, biochemical results reveal that Usp8 binds Tak1 to remove ubiquitin modification from Tak1, leading to its stabilization. In addition, human USP8 also triggers tumor cell migration and activates the JNK pathway. Finally, we show that knockdown of USP8 in human breast cancer cells suppresses cell migration. Taken together, our findings demonstrate that a conserved Usp8-Tak1-JNK axis promotes tumor cell migration, and providing USP8 as a potential therapeutic target for cancer treatment.
Collapse
|
13
|
Ding X, Li Z, Lin G, Li W, Xue L. Toll-7 promotes tumour growth and invasion in Drosophila. Cell Prolif 2022; 55:e13188. [PMID: 35050535 PMCID: PMC8828261 DOI: 10.1111/cpr.13188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 12/25/2022] Open
Abstract
Objectives Drosophila melanogaster has become an excellent model organism to explore the genetic mechanisms underlying tumour progression. Here, by using well‐established Drosophila tumour models, we identified Toll‐7 as a novel regulator of tumour growth and invasion. Materials and methods Transgenic flies and genetic epistasis analysis were used. All flies were raised on a standard cornmeal and agar medium at 25°C unless otherwise indicated. Immunostaining and RT‐qPCR were performed by standard procedures. Images were taken by OLYMPUS BX51 microscope and Zeiss LSM 880 confocal microscope. Adobe Photoshop 2020 and Zeiss Zen were used to analyse the images. All results were presented in Scatter plots or Column bar graphs created by GraphPad Prism 8.0. Results Loss of Toll‐7 suppresses RasV12/lgl−/−‐induced tumour growth and invasion, as well as cell polarity disruption‐induced invasive cell migration, whereas expression of a constitutively active allele of Toll‐7 is sufficient to promote tumorous growth and cell migration. In addition, the Egr‐JNK signalling is necessary and sufficient for Toll‐7‐induced invasive cell migration. Mechanistically, Toll‐7 facilitates the endocytosis of Egr, which is known to activate JNK in the early endosomes. Moreover, Toll‐7 activates the EGFR‐Ras signalling, which cooperates with the Egr‐JNK signalling to promote Yki‐mediated cell proliferation and tissue overgrowth. Finally, Toll‐7 is necessary and sufficient for the proper maintenance of EGFR protein level. Conclusions Our findings characterized Toll‐7 as a proto‐oncogene that promotes tumour growth and invasion in Drosophila, which shed light on the pro‐tumour function of mammalian Toll‐like receptors (TLRs).
Collapse
Affiliation(s)
- Xiang Ding
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Zhuojie Li
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Gufa Lin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenzhe Li
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Lei Xue
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China.,Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| |
Collapse
|
14
|
Wada Y, Ohsawa S, Igaki T. Yorkie ensures robust tissue growth in Drosophila ribosomal protein mutants. Development 2021; 148:dev198705. [PMID: 34313318 DOI: 10.1242/dev.198705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 06/25/2021] [Indexed: 11/20/2022]
Abstract
Heterozygosity of ribosomal protein genes causes a variety of developmental abnormalities in humans, which are collectively known as ribosomopathies, yet the underlying mechanisms remain elusive. Here, we analyzed Drosophila Minute (M)/+ mutants, a group of mutants heterozygous for ribosomal protein genes that exhibit a characteristic thin-bristle phenotype. We found that, although M/+ flies develop essentially normal wings, simultaneous deletion of one copy of the Hippo pathway effector yki resulted in severe wing growth defects. These defects were caused by JNK-mediated cell death in the wing pouch via Eiger/TNF signaling. The JNK activation in M/+, yki/+ wing discs required the caspase Dronc, which is normally blocked by DIAP1. Notably, heterozygosity of yki reduced DIAP1 expression in the wing pouch, leading to elevation of Dronc activity. Dronc and JNK formed a positive-feedback loop that amplifies Dronc activation, leading to apoptosis. Our observations suggest a mechanism of robust tissue growth whereby tissues with reduced ribosomal protein prevent ectopic apoptosis via Yki activity.
Collapse
Affiliation(s)
- Yayoi Wada
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyoku, Kyoto 607-8501, Japan
| | - Shizue Ohsawa
- Group of Genetics, Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Tatsushi Igaki
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyoku, Kyoto 607-8501, Japan
| |
Collapse
|
15
|
Herrera SC, Bach EA. The Emerging Roles of JNK Signaling in Drosophila Stem Cell Homeostasis. Int J Mol Sci 2021; 22:ijms22115519. [PMID: 34073743 PMCID: PMC8197226 DOI: 10.3390/ijms22115519] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022] Open
Abstract
The Jun N-terminal kinase (JNK) pathway is an evolutionary conserved kinase cascade best known for its roles during stress-induced apoptosis and tumor progression. Recent findings, however, have identified new roles for this pleiotropic pathway in stem cells during regenerative responses and in cellular plasticity. Here, we provide an overview of recent findings about the new roles of JNK signaling in stem cell biology using two well-established Drosophila models: the testis and the intestine. We highlight the pathway’s roles in processes such as proliferation, death, self-renewal and reprogramming, and discuss the known parallels between flies and mammals.
Collapse
Affiliation(s)
- Salvador C. Herrera
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41018 Sevilla, Spain
- Correspondence: (S.C.H.); (E.A.B.)
| | - Erika A. Bach
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Helen L. and Martin S. Kimmel Center for Stem Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Correspondence: (S.C.H.); (E.A.B.)
| |
Collapse
|
16
|
Ma X. Context-dependent interplay between Hippo and JNK pathway in Drosophila. AIMS GENETICS 2021. [DOI: 10.3934/genet.2014.1.20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AbstractBoth Hippo and JNK signaling have well-established roles in regulating many physiological processes, including cell proliferation, growth, survival, and migration. An increasing body of evidence shows that dysregulation of either Hippo or JNK pathway would lead to tumorigenesis. Recently, studies in Drosophila has coupled Hippo with JNK pathway in numerous ways ranging from tissue regeneration to growth control. In this review, I provide an overview of the current understanding of crosstalk between Hippo and JNK pathway in Drosophila, and discuss their context-dependent interactions in gut homeostasis, regeneration, cell competition and migration.
Collapse
Affiliation(s)
- Xianjue Ma
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
17
|
Millet-Boureima C, He S, Le TBU, Gamberi C. Modeling Neoplastic Growth in Renal Cell Carcinoma and Polycystic Kidney Disease. Int J Mol Sci 2021; 22:3918. [PMID: 33920158 PMCID: PMC8070407 DOI: 10.3390/ijms22083918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Renal cell carcinoma (RCC) and autosomal dominant polycystic kidney disease (ADPKD) share several characteristics, including neoplastic cell growth, kidney cysts, and limited therapeutics. As well, both exhibit impaired vasculature and compensatory VEGF activation of angiogenesis. The PI3K/AKT/mTOR and Ras/Raf/ERK pathways play important roles in regulating cystic and tumor cell proliferation and growth. Both RCC and ADPKD result in hypoxia, where HIF-α signaling is activated in response to oxygen deprivation. Primary cilia and altered cell metabolism may play a role in disease progression. Non-coding RNAs may regulate RCC carcinogenesis and ADPKD through their varied effects. Drosophila exhibits remarkable conservation of the pathways involved in RCC and ADPKD. Here, we review the progress towards understanding disease mechanisms, partially overlapping cellular and molecular dysfunctions in RCC and ADPKD and reflect on the potential for the agile Drosophila genetic model to accelerate discovery science, address unresolved mechanistic aspects of these diseases, and perform rapid pharmacological screens.
Collapse
Affiliation(s)
- Cassandra Millet-Boureima
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada; (C.M.-B.); (S.H.); (T.B.U.L.)
| | - Stephanie He
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada; (C.M.-B.); (S.H.); (T.B.U.L.)
| | - Thi Bich Uyen Le
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada; (C.M.-B.); (S.H.); (T.B.U.L.)
- Haematology-Oncology Research Group, National University Cancer Institute, Singapore 119228, Singapore
| | - Chiara Gamberi
- Department of Biology, Coastal Carolina University, Conway, SC 29528-6054, USA
| |
Collapse
|
18
|
de los Reyes Corrales T, Losada-Pérez M, Casas-Tintó S. JNK Pathway in CNS Pathologies. Int J Mol Sci 2021; 22:3883. [PMID: 33918666 PMCID: PMC8070500 DOI: 10.3390/ijms22083883] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/13/2022] Open
Abstract
The c-Jun N-terminal kinase (JNK) signalling pathway is a conserved response to a wide range of internal and external cellular stress signals. Beside the stress response, the JNK pathway is involved in a series of vital regulatory mechanisms during development and adulthood that are critical to maintain tissue homeostasis. These mechanisms include the regulation of apoptosis, growth, proliferation, differentiation, migration and invasion. The JNK pathway has a diverse functionality and cell-tissue specificity, and has emerged as a key player in regeneration, tumorigenesis and other pathologies. The JNK pathway is highly active in the central nervous system (CNS), and plays a central role when cells need to cope with pathophysiological insults during development and adulthood. Here, we review the implications of the JNK pathway in pathologies of the CNS. More specifically, we discuss some newly identified examples and mechanisms of JNK-driven tumor progression in glioblastoma, regeneration/repair after an injury, neurodegeneration and neuronal cell death. All these new discoveries support the central role of JNK in CNS pathologies and reinforce the idea of JNK as potential target to reduce their detrimental effects.
Collapse
|
19
|
Marques-Reis M, Moreno E. Role of cell competition in ageing. Dev Biol 2021; 476:79-87. [PMID: 33753080 DOI: 10.1016/j.ydbio.2021.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/25/2021] [Accepted: 03/16/2021] [Indexed: 11/30/2022]
Abstract
Recent advances in rapid medical detection and diagnostic technology have extended both human health and life expectancy. However, ageing remains one of the critical risk factors in contributing to major incapacitating and fatal conditions, including cancer and neurodegeneration. Therefore, it is vital to study how ageing attributes to (or participates in) endangering human health via infliction of age-related diseases and what must be done to tackle this intractable process. This review encompasses the most recent literature elaborating the role of cell competition (CC) during ageing. CC is a process that occurs between two heterogeneous populations, where the cells with higher fitness levels have a competitive advantage over the neighbouring cells that have comparatively lower fitness levels. This interaction results in the selection of the fit cells, within a population, and elimination of the viable yet suboptimal cells. Therefore, it is tempting to speculate that, if this quality control mechanism works efficiently throughout life, can it ultimately lead to a healthier ageing and extended lifespan. Furthermore, the review aims to collate all the important state of the art publications that provides evidence of the relevance of CC in dietary restriction, stem cell dynamics, and cell senescence, thus, prompting us to advocate its contribution and in exploring new avenues and opportunities in fighting age-related conditions.
Collapse
Affiliation(s)
- Mariana Marques-Reis
- Cell Fitness Laboratory, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038, Lisbon, Portugal
| | - Eduardo Moreno
- Cell Fitness Laboratory, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038, Lisbon, Portugal.
| |
Collapse
|
20
|
Chen X, Chen R, Xu Y, Xia C. PLCγ1 inhibition combined with inhibition of apoptosis and necroptosis increases cartilage matrix synthesis in IL-1β-treated rat chondrocytes. FEBS Open Bio 2021; 11:435-445. [PMID: 33326693 PMCID: PMC7876495 DOI: 10.1002/2211-5463.13064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 12/25/2022] Open
Abstract
Osteoarthritis (OA) is an age-related, chronic degenerative disease. With the increasing median age of the population, this disease has become an important public health problem. New, disease-modifying therapies are needed. A potential novel molecular target is phospholipase Cγ1 (PLCγ1), a critical enzyme with important functions including calcium signaling regulation and cell proliferation. In rat chondrocytes treated with IL-1β (20 ng·mL-1 for 36 h), inhibition of PLCγ1 with U73122 (2 μm for 12 h) increased levels and expression of the cartilage matrix components Collagen2 and Aggrecan. This beneficial effect of PLCγ1 inhibition was counteracted by increased chondrocyte apoptosis and necroptosis, increased cell death, and increase levels of ROS, all potentially negative for OA. Combined treatment of IL-1β + U73122-treated chondrocytes with inhibitors of apoptosis (Z-VAD, 10 μm) and necroptosis (Nec-1, 30 μm) enhanced the increases in levels and expression of Collagen2 and Aggrecan, and prevented the increases in cell death and ROS levels. These results suggest that PLCγ1 inhibition may be a viable approach for an OA therapy, if combined with targeted inhibition of chondrocyte apoptosis and necroptosis.
Collapse
Affiliation(s)
| | - Ri Chen
- School of MedicineXiamen UniversityChina
| | - Yang Xu
- Zhongshan HospitalXiamen UniversityChina
| | - Chun Xia
- Zhongshan HospitalXiamen UniversityChina
| |
Collapse
|
21
|
Signaling cross-talk during development: Context-specific networking of Notch, NF-κB and JNK signaling pathways in Drosophila. Cell Signal 2021; 82:109937. [PMID: 33529757 DOI: 10.1016/j.cellsig.2021.109937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 01/08/2023]
Abstract
Multicellular organisms depend on a handful of core signaling pathways that regulate a variety of cell fate choices. Often these relatively simple signals integrate to form a large and complex signaling network to achieve a distinct developmental fate in a context-specific manner. Various pathway-dependent and independent events control the assembly of signaling complexes. Notch pathway is one such conserved signaling mechanism that integrates with other signaling pathways to exhibit a context-dependent pleiotropic output. To understand how Notch signaling provides a spectrum of distinct outputs, it is important to understand various regulatory switches involved in mediating signaling cross-talk of Notch with other pathways. Here, we review our current understanding as to how Notch signal integrates with JNK and NF-κB signaling pathways in Drosophila to regulate various developmental events such as sensory organ precursor formation, innate immunity, dorsal closure, establishment of planar cell polarity as well as during proliferation and tumor progression. We highlight the importance of conserved signaling molecules during these cross-talks and debate further possibilities of novel switches that may be involved in mediating these cross-talk events.
Collapse
|
22
|
Tafesh-Edwards G, Eleftherianos I. JNK signaling in Drosophila immunity and homeostasis. Immunol Lett 2020; 226:7-11. [PMID: 32598968 DOI: 10.1016/j.imlet.2020.06.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/12/2020] [Accepted: 06/24/2020] [Indexed: 01/29/2023]
Abstract
As members of the mitogen-activated protein kinase (MAPK) family, the c-Jun N-terminal kinases (JNKs) regulate cell responses to a wide range of extrinsic and intrinsic insults, including irradiation, reactive oxygen species (ROS), DNA damage, heat, bacterial antigens, and inflammatory cytokines. Particularly, JNK signaling regulates and promotes many important physiological processes that influence metabolic and tissue homeostasis, cell death/survival, and cell damage repair and ultimately impacts the lifespan of an organism. This diverse functionality causes a variety of tissue-specific and context-specific cellular responses, mediated by various cross talks between JNK and other cellular signaling pathways. Thus, highlighting its significance as a determinant of stress responses, JNK loss-of-function mutations have been implicated in a multitude of pathologies, including neurodegenerative diseases, diabetes, and cancer. Because JNK functions are specified in a context-dependent manner and can greatly vary, the underlying causes for these different outcomes remain largely unresolved despite the gained knowledge of many regulatory roles of JNK signaling during the past two decades. In Drosophila melanogaster, JNK signaling is conserved and required for immune responses, as well as the development for morphogenetic processes (embryonic dorsal closure and thorax closure). Therefore, Drosophila innate immunity provides the ideal model to understand the complex mechanisms underlying JNK activation and regulation. In the following, we review studies in Drosophila that highlight several mechanisms by which JNK signaling influences immunity and homeostasis.
Collapse
Affiliation(s)
- Ghada Tafesh-Edwards
- Infection and Innate Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington DC, 20052, USA
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington DC, 20052, USA.
| |
Collapse
|
23
|
Bolobolova EU, Dorogova NV, Fedorova SA. Major Scenarios of Genetically Regulated Cell Death during Oogenesis in Drosophilamelanogaster. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420060034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Pinal N, Calleja M, Morata G. Pro-apoptotic and pro-proliferation functions of the JNK pathway of Drosophila: roles in cell competition, tumorigenesis and regeneration. Open Biol 2020; 9:180256. [PMID: 30836847 PMCID: PMC6451367 DOI: 10.1098/rsob.180256] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Jun N-terminal kinase (JNK) is a member of the mitogen-activated protein kinase family. It appears to be conserved in all animal species where it regulates important physiological functions involved in apoptosis, cell migration, cell proliferation and regeneration. In this review, we focus on the functions of JNK in Drosophila imaginal discs, where it has been reported that it can induce both cell death and cell proliferation. We discuss this apparent paradox in the light of recent findings and propose that the pro-apoptotic and the pro-proliferative functions are intrinsic properties of JNK activity. Whether one function or another is predominant depends on the cellular context.
Collapse
Affiliation(s)
- Noelia Pinal
- Centro de Biología Molecular CSIC-UAM , Madrid , Spain
| | | | - Ginés Morata
- Centro de Biología Molecular CSIC-UAM , Madrid , Spain
| |
Collapse
|
25
|
Irwin M, Tare M, Singh A, Puli OR, Gogia N, Riccetti M, Deshpande P, Kango-Singh M, Singh A. A Positive Feedback Loop of Hippo- and c-Jun-Amino-Terminal Kinase Signaling Pathways Regulates Amyloid-Beta-Mediated Neurodegeneration. Front Cell Dev Biol 2020; 8:117. [PMID: 32232042 PMCID: PMC7082232 DOI: 10.3389/fcell.2020.00117] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD, OMIM: 104300) is an age-related disorder that affects millions of people. One of the underlying causes of AD is generation of hydrophobic amyloid-beta 42 (Aβ42) peptides that accumulate to form amyloid plaques. These plaques induce oxidative stress and aberrant signaling, which result in the death of neurons and other pathologies linked to neurodegeneration. We have developed a Drosophila eye model of AD by targeted misexpression of human Aβ42 in the differentiating retinal neurons, where an accumulation of Aβ42 triggers a characteristic neurodegenerative phenotype. In a forward deficiency screen to look for genetic modifiers, we identified a molecularly defined deficiency, which suppresses Aβ42-mediated neurodegeneration. This deficiency uncovers hippo (hpo) gene, a member of evolutionarily conserved Hippo signaling pathway that regulates growth. Activation of Hippo signaling causes cell death, whereas downregulation of Hippo signaling triggers cell proliferation. We found that Hippo signaling is activated in Aβ42-mediated neurodegeneration. Downregulation of Hippo signaling rescues the Aβ42-mediated neurodegeneration, whereas upregulation of Hippo signaling enhances the Aβ42-mediated neurodegeneration phenotypes. It is known that c-Jun-amino-terminal kinase (JNK) signaling pathway is upregulated in AD. We found that activation of JNK signaling enhances the Aβ42-mediated neurodegeneration, whereas downregulation of JNK signaling rescues the Aβ42-mediated neurodegeneration. We tested the nature of interactions between Hippo signaling and JNK signaling in Aβ42-mediated neurodegeneration using genetic epistasis approach. Our data suggest that Hippo signaling and JNK signaling, two independent signaling pathways, act synergistically upon accumulation of Aβ42 plaques to trigger cell death. Our studies demonstrate a novel role of Hippo signaling pathway in Aβ42-mediated neurodegeneration.
Collapse
Affiliation(s)
- Madison Irwin
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Meghana Tare
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Aditi Singh
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Oorvashi Roy Puli
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Neha Gogia
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Matthew Riccetti
- Department of Biology, University of Dayton, Dayton, OH, United States
| | | | - Madhuri Kango-Singh
- Department of Biology, University of Dayton, Dayton, OH, United States
- Premedical Program, University of Dayton, Dayton, OH, United States
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, United States
- The Integrative Science and Engineering Center, University of Dayton, Dayton, OH, United States
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, United States
- Premedical Program, University of Dayton, Dayton, OH, United States
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, United States
- The Integrative Science and Engineering Center, University of Dayton, Dayton, OH, United States
- Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, United States
| |
Collapse
|
26
|
Yang L, Wang J, Jin H, Fang Q, Yan Z, Lin Z, Zou Z, Song Q, Stanley D, Ye G. Immune signaling pathways in the endoparasitoid, Pteromalus puparum. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21629. [PMID: 31599031 DOI: 10.1002/arch.21629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
Parasitoids serve as effective biocontrol agents for agricultural pests. However, they face constant challenges from host immune defense and numerous pathogens and must develop potent immune defense against these threats. Despite the recent advances in innate immunity, little is known about the immunological mechanisms of parasitoids. Here, we identified and characterized potential immune-related genes of the endoparasitoid, Pteromalus puparum, which act in regulating populations of some members of the Pieridae. We identified 216 immune-related genes based on interrogating the P. puparum genome and transcriptome databases. We categorized the cognate gene products into recognition molecules, signal moieties and effector proteins operating in four pathways, Toll, IMD, JAK/STAT, and JNK. Comparative analyses of immune-related genes from seven insect species indicate that recognition molecules and effector proteins are more expanded and diversified than signaling genes in these signal pathways. There are common 1:1 orthologs between the endoparasitoid P. puparum and its relative, the ectoparasitoid Nasonia vitripennis. The developmental expression profiles of immune genes randomly selected from the transcriptome analysis were verified by a quantitative polymerase chain reaction. Our work provides comprehensive analyses of P. puparum immune genes, some of which may be exploited in advancing parasitoid-based biocontrol technologies.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Rice Biology & Ministry of Agriculturaland Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiale Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculturaland Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hongxia Jin
- State Key Laboratory of Rice Biology & Ministry of Agriculturaland Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculturaland Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zhichao Yan
- State Key Laboratory of Rice Biology & Ministry of Agriculturaland Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qisheng Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
| | - David Stanley
- USDA Agricultural Research Service, Biological Control of Insects Research Laboratory, 1503 S. Providence Rd, Columbia, Missouri, USA
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculturaland Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
JNK-mediated Slit-Robo signaling facilitates epithelial wound repair by extruding dying cells. Sci Rep 2019; 9:19549. [PMID: 31863086 PMCID: PMC6925126 DOI: 10.1038/s41598-019-56137-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/03/2019] [Indexed: 01/09/2023] Open
Abstract
Multicellular organisms repair injured epithelium by evolutionarily conserved biological processes including activation of c-Jun N-terminal kinase (JNK) signaling. Here, we show in Drosophila imaginal epithelium that physical injury leads to the emergence of dying cells, which are extruded from the wounded tissue by JNK-induced Slit-Roundabout2 (Robo2) repulsive signaling. Reducing Slit-Robo2 signaling in the wounded tissue suppresses extrusion of dying cells and generates aberrant cells with highly upregulated growth factors Wingless (Wg) and Decapentaplegic (Dpp). The inappropriately elevated Wg and Dpp impairs wound repair, as halving one of these growth factor genes cancelled wound healing defects caused by Slit-Robo2 downregulation. Our data suggest that JNK-mediated Slit-Robo2 signaling contributes to epithelial wound repair by promoting extrusion of dying cells from the wounded tissue, which facilitates transient and appropriate induction of growth factors for proper wound healing.
Collapse
|
28
|
Akieda Y, Ogamino S, Furuie H, Ishitani S, Akiyoshi R, Nogami J, Masuda T, Shimizu N, Ohkawa Y, Ishitani T. Cell competition corrects noisy Wnt morphogen gradients to achieve robust patterning in the zebrafish embryo. Nat Commun 2019; 10:4710. [PMID: 31624259 PMCID: PMC6797755 DOI: 10.1038/s41467-019-12609-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 09/18/2019] [Indexed: 12/31/2022] Open
Abstract
Morphogen signalling forms an activity gradient and instructs cell identities in a signalling strength-dependent manner to pattern developing tissues. However, developing tissues also undergo dynamic morphogenesis, which may produce cells with unfit morphogen signalling and consequent noisy morphogen gradients. Here we show that a cell competition-related system corrects such noisy morphogen gradients. Zebrafish imaging analyses of the Wnt/β-catenin signalling gradient, which acts as a morphogen to establish embryonic anterior-posterior patterning, identify that unfit cells with abnormal Wnt/β-catenin activity spontaneously appear and produce noise in the gradient. Communication between unfit and neighbouring fit cells via cadherin proteins stimulates apoptosis of the unfit cells by activating Smad signalling and reactive oxygen species production. This unfit cell elimination is required for proper Wnt/β-catenin gradient formation and consequent anterior-posterior patterning. Because this gradient controls patterning not only in the embryo but also in adult tissues, this system may support tissue robustness and disease prevention. Gradients of morphogens such as Wnt provide instructive cues for cell identities during development. Here, the authors report that in the developing zebrafish embryo, cell competition and elimination of unfit cells are required for proper Wnt gradient formation.
Collapse
Affiliation(s)
- Yuki Akieda
- Laboratory of Integrated Signaling Systems, Department of Molecular Medicine, Institute for Molecular & Cellular Regulation, Gunma University, Gunma, 371-8512, Japan.,Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Shohei Ogamino
- Laboratory of Integrated Signaling Systems, Department of Molecular Medicine, Institute for Molecular & Cellular Regulation, Gunma University, Gunma, 371-8512, Japan
| | - Hironobu Furuie
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.,Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shizuka Ishitani
- Laboratory of Integrated Signaling Systems, Department of Molecular Medicine, Institute for Molecular & Cellular Regulation, Gunma University, Gunma, 371-8512, Japan
| | - Ryutaro Akiyoshi
- Biological Evaluation Technology 2, Research and Development, Olympus Corp., Tokyo, 192-8512, Japan
| | - Jumpei Nogami
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takamasa Masuda
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Nobuyuki Shimizu
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tohru Ishitani
- Laboratory of Integrated Signaling Systems, Department of Molecular Medicine, Institute for Molecular & Cellular Regulation, Gunma University, Gunma, 371-8512, Japan. .,Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan. .,Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
29
|
Li M, Sun S, Priest J, Bi X, Fan Y. Characterization of TNF-induced cell death in Drosophila reveals caspase- and JNK-dependent necrosis and its role in tumor suppression. Cell Death Dis 2019; 10:613. [PMID: 31409797 PMCID: PMC6692325 DOI: 10.1038/s41419-019-1862-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/26/2022]
Abstract
Tumor-necrosis factor (TNF) and its superfamily members are pleiotropic cytokines. Activation of TNF can lead to distinct cellular outcomes including inflammation, cell survival, and different forms of cell death, such as apoptosis and necrosis in a context-dependent manner. However, our understanding of what determines the versatile functions of TNF is far from complete. Here, we examined the molecular mechanisms that distinguish the forms of cell death induced by Eiger (Egr), the sole homolog of TNF in Drosophila. We show that expression of Egr in the developing Drosophila eye simultaneously induces apoptosis and apoptosis-independent developmental defects indicated by cellular disorganization, both of which rely on the c-Jun N-terminal kinase (JNK) signaling activity. Intriguingly, when effector caspases DrICE and Dcp-1 are defective or inhibited, expression of Egr triggers necrosis which is characterized by loss of cell membrane integrity, translucent cytoplasm, and aggregation of cellular organelles. Moreover, such Egr-induced necrosis depends on the catalytic activity of the initiator caspase Dronc and the input from JNK signaling but is independent of their roles in apoptosis. Further mosaic analysis with mutants of scribble (scrib), an evolutionarily conserved tumor suppressor gene regulating cell polarity, suggests that Egr/JNK-mediated apoptosis and necrosis establish a two-layered defense system to inhibit the oncogenic growth of scrib mutant cells. Together, we have identified caspase- and JNK-dependent mechanisms underlying Egr-induced apoptosis versus necrosis and their fail-safe roles in tumor suppression in an intact organism in vivo.
Collapse
Affiliation(s)
- Mingli Li
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Shiyao Sun
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Jessica Priest
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Xiaolin Bi
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yun Fan
- School of Biosciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
30
|
Coelho DS, Moreno E. Emerging links between cell competition and Alzheimer's disease. J Cell Sci 2019; 132:132/13/jcs231258. [PMID: 31263078 DOI: 10.1242/jcs.231258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease (AD) causes a progressive loss of memory and other cognitive functions, which inexorably debilitates patients. There is still no cure for AD and effective treatments to delay or revert AD are urgently needed. On a molecular level, the excessive accumulation of amyloid-β (Aβ) peptides triggers a complex cascade of pathological events underlying neuronal death, whose details are not yet completely understood. Our laboratory recently discovered that cell competition may play a protective role against AD by eliminating less fit neurons from the brain of Aβ-transgenic flies. Loss of Aβ-damaged neurons through fitness comparison with healthy counterparts is beneficial for the organism, delaying cognitive decline and motor disability. In this Review, we introduce the molecular mechanisms of cell competition, including seminal works on the field and latest advances regarding genetic triggers and effectors of cell elimination. We then describe the biological relevance of competition in the nervous system and discuss how competitive interactions between neurons may arise and be exacerbated in the context of AD. Selection of neurons through fitness comparison is a promising, but still emerging, research field that may open new avenues for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Dina S Coelho
- Cell Fitness Laboratory, Champalimaud Centre for the Unknown, Av. Brasília., 1400-038 Lisbon, Portugal
| | - Eduardo Moreno
- Cell Fitness Laboratory, Champalimaud Centre for the Unknown, Av. Brasília., 1400-038 Lisbon, Portugal
| |
Collapse
|
31
|
Centrosome Loss Triggers a Transcriptional Program To Counter Apoptosis-Induced Oxidative Stress. Genetics 2019; 212:187-211. [PMID: 30867197 DOI: 10.1534/genetics.119.302051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
Centrosomes play a critical role in mitotic spindle assembly through their role in microtubule nucleation and bipolar spindle assembly. Loss of centrosomes can impair the ability of some cells to properly conduct mitotic division, leading to chromosomal instability, cell stress, and aneuploidy. Multiple aspects of the cellular response to mitotic error associated with centrosome loss appear to involve activation of JNK signaling. To further characterize the transcriptional effects of centrosome loss, we compared gene expression profiles of wild-type and acentrosomal cells from Drosophila wing imaginal discs. We found elevation of expression of JNK target genes, which we verified at the protein level. Consistent with this, the upregulated gene set showed significant enrichment for the AP-1 consensus DNA-binding sequence. We also found significant elevation in expression of genes regulating redox balance. Based on those findings, we examined oxidative stress after centrosome loss, revealing that acentrosomal wing cells have significant increases in reactive oxygen species (ROS). We then performed a candidate genetic screen and found that one of the genes upregulated in acentrosomal cells, glucose-6-phosphate dehydrogenase, plays an important role in buffering acentrosomal cells against increased ROS and helps protect those cells from cell death. Our data and other recent studies have revealed a complex network of signaling pathways, transcriptional programs, and cellular processes that epithelial cells use to respond to stressors, like mitotic errors, to help limit cell damage and maintain normal tissue development.
Collapse
|
32
|
Mirzoyan Z, Sollazzo M, Allocca M, Valenza AM, Grifoni D, Bellosta P. Drosophila melanogaster: A Model Organism to Study Cancer. Front Genet 2019; 10:51. [PMID: 30881374 PMCID: PMC6405444 DOI: 10.3389/fgene.2019.00051] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/21/2019] [Indexed: 12/26/2022] Open
Abstract
Cancer is a multistep disease driven by the activation of specific oncogenic pathways concomitantly with the loss of function of tumor suppressor genes that act as sentinels to control physiological growth. The conservation of most of these signaling pathways in Drosophila, and the ability to easily manipulate them genetically, has made the fruit fly a useful model organism to study cancer biology. In this review we outline the basic mechanisms and signaling pathways conserved between humans and flies responsible of inducing uncontrolled growth and cancer development. Second, we describe classic and novel Drosophila models used to study different cancers, with the objective to discuss their strengths and limitations on their use to identify signals driving growth cell autonomously and within organs, drug discovery and for therapeutic approaches.
Collapse
Affiliation(s)
- Zhasmine Mirzoyan
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Manuela Sollazzo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Mariateresa Allocca
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | | | - Daniela Grifoni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Paola Bellosta
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.,Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.,Department of Biosciences, University of Milan, Milan, Italy.,Department of Medicine, NYU Langone Medical Center, New York, NY, United States
| |
Collapse
|
33
|
Cosolo A, Jaiswal J, Csordás G, Grass I, Uhlirova M, Classen AK. JNK-dependent cell cycle stalling in G2 promotes survival and senescence-like phenotypes in tissue stress. eLife 2019; 8:41036. [PMID: 30735120 PMCID: PMC6389326 DOI: 10.7554/elife.41036] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 02/06/2019] [Indexed: 01/10/2023] Open
Abstract
The restoration of homeostasis after tissue damage relies on proper spatial-temporal control of damage-induced apoptosis and compensatory proliferation. In Drosophila imaginal discs these processes are coordinated by the stress response pathway JNK. We demonstrate that JNK signaling induces a dose-dependent extension of G2 in tissue damage and tumors, resulting in either transient stalling or a prolonged but reversible cell cycle arrest. G2-stalling is mediated by downregulation of the G2/M-specific phosphatase String(Stg)/Cdc25. Ectopic expression of stg is sufficient to suppress G2-stalling and reveals roles for stalling in survival, proliferation and paracrine signaling. G2-stalling protects cells from JNK-induced apoptosis, but under chronic conditions, reduces proliferative potential of JNK-signaling cells while promoting non-autonomous proliferation. Thus, transient cell cycle stalling in G2 has key roles in wound healing but becomes detrimental upon chronic JNK overstimulation, with important implications for chronic wound healing pathologies or tumorigenic transformation.
Collapse
Affiliation(s)
- Andrea Cosolo
- Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany.,Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Janhvi Jaiswal
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Gábor Csordás
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Institute for Genetics, University of Cologne, Cologne, Germany
| | - Isabelle Grass
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany.,Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Mirka Uhlirova
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Institute for Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Anne-Kathrin Classen
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany.,Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| |
Collapse
|
34
|
Dutta D, Mutsuddi M, Mukherjee A. Synergistic interaction of Deltex and Hrp48 leads to JNK activation. Cell Biol Int 2019; 43:350-357. [PMID: 30597717 DOI: 10.1002/cbin.11089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/23/2018] [Indexed: 01/10/2023]
Abstract
The communication among the cells plays a seminal role in metazoan development by coordinating multiple cellular processes that, in turn, helps in the maintenance of biological homeostasis. Our previous study demonstrated that Dx and Hrp48 together downregulate Notch signaling and induce cell death in Drosophila. To understand the signaling events behind the Dx and Hrp48-induced cell death in a greater detail, we performed a set of genetic experiments followed by immunocytochemical analyses. Our data revealed that Dx along with Hrp48 induced JNK activation and consequently cell death in the eye tissue. Additionally, using genetic and molecular approaches, we identified the domain of Dx protein responsible for its synergistic activity with Hrp48. Altogether, our analyses suggest that coexpression of Dx and Hrp48 activates JNK pathway to induce cell death in eye disc of Drosophila melanogaster.
Collapse
Affiliation(s)
- Debdeep Dutta
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
35
|
Benhra N, Barrio L, Muzzopappa M, Milán M. Chromosomal Instability Induces Cellular Invasion in Epithelial Tissues. Dev Cell 2018; 47:161-174.e4. [DOI: 10.1016/j.devcel.2018.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/19/2018] [Accepted: 08/22/2018] [Indexed: 01/08/2023]
|
36
|
Sarkar A, Gogia N, Glenn N, Singh A, Jones G, Powers N, Srivastava A, Kango-Singh M, Singh A. A soy protein Lunasin can ameliorate amyloid-beta 42 mediated neurodegeneration in Drosophila eye. Sci Rep 2018; 8:13545. [PMID: 30202077 PMCID: PMC6131139 DOI: 10.1038/s41598-018-31787-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 08/24/2018] [Indexed: 01/30/2023] Open
Abstract
Alzheimer's disease (AD), a fatal progressive neurodegenerative disorder, also results from accumulation of amyloid-beta 42 (Aβ42) plaques. These Aβ42 plaques trigger oxidative stress, abnormal signaling, which results in neuronal death by unknown mechanism(s). We misexpress high levels of human Aβ42 in the differentiating retinal neurons of the Drosophila eye, which results in the Alzheimer's like neuropathology. Using our transgenic model, we tested a soy-derived protein Lunasin (Lun) for a possible role in rescuing neurodegeneration in retinal neurons. Lunasin is known to have anti-cancer effect and reduces stress and inflammation. We show that misexpression of Lunasin by transgenic approach can rescue Aβ42 mediated neurodegeneration by blocking cell death in retinal neurons, and results in restoration of axonal targeting from retina to brain. Misexpression of Lunasin downregulates the highly conserved cJun-N-terminal Kinase (JNK) signaling pathway. Activation of JNK signaling can prevent neuroprotective role of Lunasin in Aβ42 mediated neurodegeneration. This neuroprotective function of Lunasin is not dependent on retinal determination gene cascade in the Drosophila eye, and is independent of Wingless (Wg) and Decapentaplegic (Dpp) signaling pathways. Furthermore, Lunasin can significantly reduce mortality rate caused by misexpression of human Aβ42 in flies. Our studies identified the novel neuroprotective role of Lunasin peptide, a potential therapeutic agent that can ameliorate Aβ42 mediated neurodegeneration by downregulating JNK signaling.
Collapse
Affiliation(s)
- Ankita Sarkar
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA
| | - Neha Gogia
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA
| | - Neil Glenn
- Premedical Program, University of Dayton, Dayton, OH, 45469, USA
| | - Aditi Singh
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA
| | - Gillian Jones
- Department of Biology and Biotechnology Center, Western Kentucky University, 1906 College Heights Boulevard, TCCW 351, Bowling Green, KY, 42101, USA
| | - Nathan Powers
- Department of Biology and Biotechnology Center, Western Kentucky University, 1906 College Heights Boulevard, TCCW 351, Bowling Green, KY, 42101, USA
| | - Ajay Srivastava
- Department of Biology and Biotechnology Center, Western Kentucky University, 1906 College Heights Boulevard, TCCW 351, Bowling Green, KY, 42101, USA
| | - Madhuri Kango-Singh
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA
- Premedical Program, University of Dayton, Dayton, OH, 45469, USA
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, 45469, USA
- The Integrative Science and Engineering Center, University of Dayton, Dayton, OH, 45469, USA
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA.
- Premedical Program, University of Dayton, Dayton, OH, 45469, USA.
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, 45469, USA.
- The Integrative Science and Engineering Center, University of Dayton, Dayton, OH, 45469, USA.
- Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA.
| |
Collapse
|
37
|
Feng Y, Li Z, Lv L, Du A, Lin Z, Ye X, Lin Y, Lin X. Tankyrase regulates apoptosis by activating JNK signaling in Drosophila. Biochem Biophys Res Commun 2018; 503:2234-2239. [PMID: 29953853 DOI: 10.1016/j.bbrc.2018.06.143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 11/24/2022]
Abstract
Programmed cell death (PCD), or apoptosis, plays essential roles in various cellular and developmental processes, and dysregulation of apoptosis causes many diseases. Thus, regulation of apoptotic process is very important. Drosophila tankyrase (DTNKS) is an evolutionarily conserved protein with poly(ADP-ribose) polymerase activity. In mammalian cells, tankyrases (TNKSs) have been reported to regulate cell death. To determine whether DTNKS plays function in inducing apoptosis in in vivo development, we used Drosophila as a model system and generated transgenic flies expressing DTNKS. We show that ectopic expression of DTNKS promotes caspase-dependent apoptosis and knockdown of DTNKS by RNAi dramatically alleviates apoptotic defect caused by ectopic expression of pro-apoptotic protein hid or rpr in the adult eye. Moreover, our result shows that ectopic expression of DTNKS triggers the activation of c-Jun N-terminal kinase (JNK) signaling, which is required for DTNKS-mediated apoptosis. Taken together, our finding identifies the role of DTNKS in regulating apoptosis by activating JNK signaling in Drosophila.
Collapse
Affiliation(s)
- Ying Feng
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Zhenzhen Li
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Lixiu Lv
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Anle Du
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Zhiqing Lin
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Xiaolei Ye
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Yi Lin
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Xinhua Lin
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
38
|
Pontin/Tip49 negatively regulates JNK-mediated cell death in Drosophila. Cell Death Discov 2018; 4:8. [PMID: 30062057 PMCID: PMC6060144 DOI: 10.1038/s41420-018-0074-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 06/12/2018] [Indexed: 01/02/2023] Open
Abstract
Pontin (Pont), also known as Tip49, encodes a member of the AAA+ (ATPases Associated with Diverse Cellular Activities) superfamily and plays pivotal roles in cell proliferation and growth, yet its function in cell death has remained poorly understood. Here we performed a genetic screen for dominant modifiers of Eiger-induced JNK-dependent cell death in Drosophila, and identified Pont as a negative regulator of JNK-mediated cell death. In addition, loss of function of Pont is sufficient to induce cell death and activate the transcription of JNK target gene puc. Furthermore, the epistasis analysis indicates that Pont acts downstream of Hep. Finally, we found that Pont is also required for JNK-mediated thorax development and acts as a negative regulator of JNK phosphorylation. Together, our data suggest that pont encodes a negative component of Egr/JNK signaling pathway in Drosophila through negatively regulating JNK phosphorylation, which provides a novel role of ATPase in Egr-JNK signaling.
Collapse
|
39
|
Girnius N, Davis RJ. JNK Promotes Epithelial Cell Anoikis by Transcriptional and Post-translational Regulation of BH3-Only Proteins. Cell Rep 2018; 21:1910-1921. [PMID: 29141222 DOI: 10.1016/j.celrep.2017.10.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/27/2017] [Accepted: 10/18/2017] [Indexed: 11/18/2022] Open
Abstract
Developmental morphogenesis, tissue injury, and oncogenic transformation can cause the detachment of epithelial cells. These cells are eliminated by a specialized form of apoptosis (anoikis). While the processes that contribute to this form of cell death have been studied, the underlying mechanisms remain unclear. Here, we tested the role of the cJUN NH2-terminal kinase (JNK) signaling pathway using murine models with compound JNK deficiency in mammary and kidney epithelial cells. These studies demonstrated that JNK is required for efficient anoikis in vitro and in vivo. Moreover, JNK-promoted anoikis required pro-apoptotic members of the BCL2 family of proteins. We show that JNK acts through a BAK/BAX-dependent apoptotic pathway by increasing BIM expression and phosphorylating BMF, leading to death of detached epithelial cells.
Collapse
Affiliation(s)
- Nomeda Girnius
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
40
|
Ahmed-de-Prado S, Diaz-Garcia S, Baonza A. JNK and JAK/STAT signalling are required for inducing loss of cell fate specification during imaginal wing discs regeneration in Drosophila melanogaster. Dev Biol 2018; 441:31-41. [PMID: 29870691 DOI: 10.1016/j.ydbio.2018.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 05/21/2018] [Accepted: 05/24/2018] [Indexed: 11/25/2022]
Abstract
The regenerative process after tissue damage relies on a variety of cellular responses that includes compensatory cell proliferation and cell fate re-specification. The identification of the signalling networks regulating these cellular events is a central question in regenerative biology. Tissue regeneration models in Drosophila have shown that two of the signals that play a fundamental role during the early stages of regeneration are the c-Jun N-terminal kinase (JNK) and JAK/STAT signalling pathways. These pathways have been shown to be required for controlling regenerative proliferation, however their contribution to the processes of cellular reprogramming and cell fate re-specification that take place during regeneration are largely unknown. Here, we present evidence for a previously unrecognised function of the cooperative activities of JNK and JAK/STAT signalling pathways in inducing loss of cell fate specification in imaginal discs. We show that co-activation of these signalling pathways induces both the cell fate changes in injured areas, as well as in adjacent cells. We have also found that this function relies on the activity of the Caspase initiator encoded by the gene dronc.
Collapse
Affiliation(s)
- Sara Ahmed-de-Prado
- Centro de Biología Molecular "Severo Ochoa", CSIC/UAM, C/Nicolás Cabrera 1, Madrid 28049, Spain
| | - Sandra Diaz-Garcia
- University of California, San Diego Section of Cell&Developmental Biology, La Jolla, CA 92093-0349, USA
| | - Antonio Baonza
- Centro de Biología Molecular "Severo Ochoa", CSIC/UAM, C/Nicolás Cabrera 1, Madrid 28049, Spain.
| |
Collapse
|
41
|
Short-term activation of the Jun N-terminal kinase pathway in apoptosis-deficient cells of Drosophila induces tumorigenesis. Nat Commun 2018; 9:1541. [PMID: 29670104 PMCID: PMC5906466 DOI: 10.1038/s41467-018-04000-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 03/26/2018] [Indexed: 12/17/2022] Open
Abstract
In Drosophila, the JNK pathway eliminates by apoptosis aberrant cells that appear in development. It also performs other functions associated with cell proliferation, but analysis of the latter is hindered by the pro-apoptotic activity. We report the response of apoptosis-deficient cells to transient activation of JNK and show that it causes persistent JNK function during the rest of the development. As a consequence, there is continuous activity of the downstream pathways JAK/STAT, Wg and Dpp, which results in tumour overgrowths. We also show that the oncogenic potential of the Ras-MAPK pathway resides largely on its ability to suppress apoptosis. It has been proposed that a hallmark of tumour cells is that they can evade apoptosis. In reverse, we propose that, in Drosophila, apoptosis-deficient cells become tumorigenic due to their property of acquiring persistent JNK activity after stress events that are inconsequential in tissues in which cells are open to apoptosis. Jun N-terminal kinase (JNK) is necessary for development in tumours, indicating it may play tumour-promoting roles; however, the experimental analysis of the role of JNK in proliferation is hindered by its pro-apoptotic activity. Here the authors carry out experiments in Drosophila with genetic backgrounds that make cells refractory to apoptosis to definitely prove the JNK pathway contribution to tumorigenesis.
Collapse
|
42
|
Hilu-Dadia R, Hakim-Mishnaevski K, Levy-Adam F, Kurant E. Draper-mediated JNK signaling is required for glial phagocytosis of apoptotic neurons during Drosophila metamorphosis. Glia 2018. [PMID: 29520845 DOI: 10.1002/glia.23322] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Development of the central nervous system involves elimination of superfluous neurons through apoptosis and subsequent phagocytosis. In Drosophila, this occurs mainly during three developmental stages: embryogenesis, metamorphosis and emerging adult. Two transmembrane glial phagocytic receptors, SIMU (homolog of the mammalian Stabilin-2) and Draper (homolog of the mammalian MEGF10 and Jedi), mediate glial phagocytosis of apoptotic neurons during embryogenesis. However, less is known about the removal of apoptotic neurons during later stages of development. Here we show that during metamorphosis, Draper plays a critical role in apoptotic cell clearance by glia, whereas SIMU, which is mostly expressed in pupal macrophages outside the brain, is not involved in glial phagocytosis. We found that Draper activates Drosophila c-Jun N-terminal kinase (dJNK) signaling predominantly in the ensheathing glia and astrocytes, where it is required for efficient removal of apoptotic neurons. Our data suggest that besides the dJNK pathway, Draper also triggers an additional signaling pathway capable of removing apoptotic neurons in the pupal brain. This study thus reveals that SIMU unexpectedly is not involved in glial phagocytosis of apoptotic neurons during metamorphosis and highlights the novel role of dJNK signaling in developmental apoptotic cell clearance downstream of Draper.
Collapse
Affiliation(s)
- Reut Hilu-Dadia
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, 34988, Israel.,Department of Genetics and Developmental Biology, The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, 31096, Israel
| | - Ketty Hakim-Mishnaevski
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, 34988, Israel
| | - Flonia Levy-Adam
- Department of Genetics and Developmental Biology, The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, 31096, Israel
| | - Estee Kurant
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, 34988, Israel.,Department of Genetics and Developmental Biology, The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, 31096, Israel
| |
Collapse
|
43
|
Modelling Cooperative Tumorigenesis in Drosophila. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4258387. [PMID: 29693007 PMCID: PMC5859872 DOI: 10.1155/2018/4258387] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/21/2018] [Indexed: 12/13/2022]
Abstract
The development of human metastatic cancer is a multistep process, involving the acquisition of several genetic mutations, tumour heterogeneity, and interactions with the surrounding microenvironment. Due to the complexity of cancer development in mammals, simpler model organisms, such as the vinegar fly, Drosophila melanogaster, are being utilized to provide novel insights into the molecular mechanisms involved. In this review, we highlight recent advances in modelling tumorigenesis using the Drosophila model, focusing on the cooperation of oncogenes or tumour suppressors, and the interaction of mutant cells with the surrounding tissue in epithelial tumour initiation and progression.
Collapse
|
44
|
Mondal T, Bag I, SNCVL P, Garikapati KR, Bhadra U, Pal Bhadra M. Two way controls of apoptotic regulators consign DmArgonaute-1 a better clasp on it. PLoS One 2018; 13:e0190548. [PMID: 29385168 PMCID: PMC5791970 DOI: 10.1371/journal.pone.0190548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 12/16/2017] [Indexed: 02/02/2023] Open
Abstract
Argonaute family proteins are well conserved among all organisms. Its role in mitotic cell cycle progression and apoptotic cell elimination is poorly understood. Earlier we have established the contribution of Ago-1 in cell cycle control related to G2/M cyclin in Drosophila. Here we have extended our study in understanding the relationship of Ago-1 in regulating apoptosis during Drosophila development. Apoptosis play a critical role in controlling organ shape and size during development of multi cellular organism. Multifarious regulatory pathways control apoptosis during development among which highly conserved JNK (c-Jun N-terminal kinase) pathway play a crucial role. Here we have over expressed Ago-1 in Drosophila eye and brain by employing UAS (upstream activation sequence)-GAL4 system under the expression of eye and brain specific driver. Over expression of Ago-1 resulted in reduced number of ommatidia in the eye and produced smaller size brain in adult and larval Drosophila. A drastic reversal of the phenotype towards normal was observed upon introduction of a single copy of the dominant negative mutation of basket (bsk, Drosophila homolog of JNK) indicating an active and physical involvement of the bsk with Ago-1 in inducing developmental apoptotic process. Further study showed that Ago-1 stimulates phosphorylation of JNK through transforming growth factor-β activated kinase 1- hemipterous (Tak1-hep) axis of JNK pathway. JNK phosphorylation results in up regulation of pro-apoptotic genes head involution defective (hid), grim & reaper (rpr) and induces activation of Drosophila caspases (cysteinyl aspartate proteinases);DRONC (Death regulator Nedd2-like caspase), ICE (alternatively Drice, Death related ICE-like caspase) and DCP1 (Death caspase-1) by inhibiting apoptotic inhibitor protein DIAP1 (Death-associated inhibitor of apoptosis 1). Further, Ago-1 also inhibits miR-14 expression to trigger apoptosis. Our findings propose that Ago-1 acts as a key regulator in controlling cell death, tumor regression and stress response in metazoan providing a constructive bridge between RNAi machinery and cell death.
Collapse
Affiliation(s)
- Tanmoy Mondal
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana State, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IICT Campus, Hyderabad, India
| | - Indira Bag
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana State, India
| | - Pushpavalli SNCVL
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana State, India
| | - Koteswara Rao Garikapati
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana State, India
| | - Utpal Bhadra
- Gene Silencing and Functional Genomics Group, CSIR-Centre For Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana State, India
| | - Manika Pal Bhadra
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana State, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IICT Campus, Hyderabad, India
- * E-mail: ,
| |
Collapse
|
45
|
Di Giacomo S, Sollazzo M, de Biase D, Ragazzi M, Bellosta P, Pession A, Grifoni D. Human Cancer Cells Signal Their Competitive Fitness Through MYC Activity. Sci Rep 2017; 7:12568. [PMID: 28974715 PMCID: PMC5626713 DOI: 10.1038/s41598-017-13002-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/13/2017] [Indexed: 02/08/2023] Open
Abstract
MYC-mediated cell competition is a cell-cell interaction mechanism known to play an evolutionary role during development from Drosophila to mammals. Cells expressing low levels of MYC, called losers, are committed to die by nearby cells with high MYC activity, called winners, that overproliferate to compensate for cell loss, so that the fittest cells be selected for organ formation. Given MYC's consolidated role in oncogenesis, cell competition is supposed to be relevant to cancer, but its significance in human malignant contexts is largely uncharacterised. Here we show stereotypical patterns of MYC-mediated cell competition in human cancers: MYC-upregulating cells and apoptotic cells were indeed repeatedly found at the tumour-stroma interface and within the tumour parenchyma. Cell death amount in the stromal compartment and MYC protein level in the tumour were highly correlated regardless of tumour type and stage. Moreover, we show that MYC modulation in heterotypic co-cultures of human cancer cells is sufficient as to subvert their competitive state, regardless of genetic heterogeneity. Altogether, our findings suggest that the innate role of MYC-mediated cell competition in development is conserved in human cancer, with malignant cells using MYC activity to colonise the organ at the expense of less performant neighbours.
Collapse
Affiliation(s)
- Simone Di Giacomo
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, Bologna, 40126, Italy.
| | - Manuela Sollazzo
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, Bologna, 40126, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, Bologna, 40126, Italy
| | - Moira Ragazzi
- Pathology Unit, IRCCS Arcispedale Santa Maria Nuova, Via Amendola 2, 42122, Reggio Emilia, Italy
| | - Paola Bellosta
- Center for Integrate Biology (CIBIO), University of Trento, Via Sommarive 9, Povo, (TN), 38123, Italy
| | - Annalisa Pession
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, Bologna, 40126, Italy
| | - Daniela Grifoni
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, Bologna, 40126, Italy.
| |
Collapse
|
46
|
Martín R, Pinal N, Morata G. Distinct regenerative potential of trunk and appendages of Drosophila mediated by JNK signalling. Development 2017; 144:3946-3956. [PMID: 28935711 DOI: 10.1242/dev.155507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/11/2017] [Indexed: 12/31/2022]
Abstract
The Drosophila body comprises a central part, the trunk, and outgrowths of the trunk, the appendages. Much is known about appendage regeneration, but little about the trunk. As the wing imaginal disc contains a trunk component, the notum, and a wing appendage, we have investigated the response to ablation of these two components. We find that, in contrast with the strong regenerative response of the wing, the notum does not regenerate. Nevertheless, the elimination of the wing primordium elicits a proliferative response of notum cells, but they do not regenerate wing; they form a notum duplicate. Conversely, the wing cells cannot regenerate an ablated notum; they overproliferate and generate a hinge overgrowth. These results suggest that trunk and appendages cannot be reprogrammed to generate each other. Our experiments demonstrate that the proliferative response is mediated by JNK signalling from dying cells, but JNK functions differently in the trunk and the appendages, which may explain their distinct regenerative potential.
Collapse
Affiliation(s)
- Raquel Martín
- Centro de Biología Molecular CSIC-UAM, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Noelia Pinal
- Centro de Biología Molecular CSIC-UAM, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Ginés Morata
- Centro de Biología Molecular CSIC-UAM, Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
47
|
Loudhaief R, Brun-Barale A, Benguettat O, Nawrot-Esposito MP, Pauron D, Amichot M, Gallet A. Apoptosis restores cellular density by eliminating a physiologically or genetically induced excess of enterocytes in the Drosophila midgut. Development 2017; 144:808-819. [PMID: 28246211 DOI: 10.1242/dev.142539] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 01/10/2017] [Indexed: 11/20/2022]
Abstract
Using pathogens or high levels of opportunistic bacteria to damage the gut, studies in Drosophila have identified many signaling pathways involved in gut regeneration. Dying cells emit signaling molecules that accelerate intestinal stem cell proliferation and progenitor differentiation to replace the dying cells quickly. This process has been named 'regenerative cell death'. Here, mimicking environmental conditions, we show that the ingestion of low levels of opportunistic bacteria was sufficient to launch an accelerated cellular renewal program despite the brief passage of bacteria in the gut and the absence of cell death and this is is due to the moderate induction of the JNK pathway that stimulates stem cell proliferation. Consequently, the addition of new differentiated cells to the gut epithelium, without preceding cell loss, leads to enterocyte overcrowding. Finally, we show that a couple of days later, the correct density of enterocytes is promptly restored by means of a wave of apoptosis involving Hippo signaling and preferential removal of old enterocytes.
Collapse
Affiliation(s)
- Rihab Loudhaief
- Université Côte d'Azur, INRA, CNRS, ISA, 06900 Sophia Antipolis, France
| | | | - Olivia Benguettat
- Université Côte d'Azur, INRA, CNRS, ISA, 06900 Sophia Antipolis, France
| | | | - David Pauron
- Université Côte d'Azur, INRA, CNRS, ISA, 06900 Sophia Antipolis, France
| | - Marcel Amichot
- Université Côte d'Azur, INRA, CNRS, ISA, 06900 Sophia Antipolis, France
| | - Armel Gallet
- Université Côte d'Azur, INRA, CNRS, ISA, 06900 Sophia Antipolis, France
| |
Collapse
|
48
|
Killers creating new life: caspases drive apoptosis-induced proliferation in tissue repair and disease. Cell Death Differ 2017; 24:1390-1400. [PMID: 28362431 PMCID: PMC5520457 DOI: 10.1038/cdd.2017.47] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/26/2017] [Accepted: 02/28/2017] [Indexed: 02/06/2023] Open
Abstract
Apoptosis is a carefully orchestrated and tightly controlled form of cell death, conserved across metazoans. As the executioners of apoptotic cell death, cysteine-dependent aspartate-directed proteases (caspases) are critical drivers of this cellular disassembly. Early studies of genetically programmed cell death demonstrated that the selective activation of caspases induces apoptosis and the precise elimination of excess cells, thereby sculpting structures and refining tissues. However, over the past decade there has been a fundamental shift in our understanding of the roles of caspases during cell death-a shift precipitated by the revelation that apoptotic cells actively engage with their surrounding environment throughout the death process, and caspases can trigger a myriad of signals, some of which drive concurrent cell proliferation regenerating damaged structures and building up lost tissues. This caspase-driven compensatory proliferation is referred to as apoptosis-induced proliferation (AiP). Diverse mechanisms of AiP have been found across species, ranging from planaria to mammals. In this review, we summarize the current knowledge of AiP and we highlight recent advances in the field including the involvement of reactive oxygen species and macrophage-like immune cells in one form of AiP, novel regulatory mechanisms affecting caspases during AiP, and emerging clinical data demonstrating the critical importance of AiP in cancer.
Collapse
|
49
|
Abstract
The ubiquitin -like protein SUMO is conjugated covalently to hundreds of target proteins in organisms throughout the eukaryotic domain. Genetic and biochemical studies using the model organism Drosophila melanogaster are beginning to reveal many essential functions for SUMO in cell biology and development. For example, SUMO regulates multiple signaling pathways such as the Ras/MAPK, Dpp, and JNK pathways. In addition, SUMO regulates transcription through conjugation to many transcriptional regulatory proteins, including Bicoid, Spalt , Scm, and Groucho. In some cases, conjugation of SUMO to a target protein inhibits its normal activity, while in other cases SUMO conjugation stimulates target protein activity. SUMO often modulates a biological process by altering the subcellular localization of a target protein. The ability of SUMO and other ubiquitin-like proteins to diversify protein function may be critical to the evolution of developmental complexity.
Collapse
|
50
|
Cullin-4 regulates Wingless and JNK signaling-mediated cell death in the Drosophila eye. Cell Death Dis 2016; 7:e2566. [PMID: 28032862 PMCID: PMC5261020 DOI: 10.1038/cddis.2016.338] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 12/28/2022]
Abstract
In all multicellular organisms, the fundamental processes of cell proliferation and cell death are crucial for growth regulation during organogenesis. Strict regulation of cell death is important to maintain tissue homeostasis by affecting processes like regulation of cell number, and elimination of unwanted/unfit cells. The developing Drosophila eye is a versatile model to study patterning and growth, where complex signaling pathways regulate growth and cell survival. However, the molecular mechanisms underlying regulation of these processes is not fully understood. In a gain-of-function screen, we found that misexpression of cullin-4 (cul-4), an ubiquitin ligase, can rescue reduced eye mutant phenotypes. Previously, cul-4 has been shown to regulate chromatin remodeling, cell cycle and cell division. Genetic characterization of cul-4 in the developing eye revealed that loss-of-function of cul-4 exhibits a reduced eye phenotype. Analysis of twin-spots showed that in comparison with their wild-type counterparts, the cul-4 loss-of-function clones fail to survive. Here we show that cul-4 clones are eliminated by induction of cell death due to activation of caspases. Aberrant activation of signaling pathways is known to trigger cell death in the developing eye. We found that Wingless (Wg) and c-Jun-amino-terminal-(NH2)-Kinase (JNK) signaling are ectopically induced in cul-4 mutant clones, and these signals co-localize with the dying cells. Modulating levels of Wg and JNK signaling by using agonists and antagonists of these pathways demonstrated that activation of Wg and JNK signaling enhances cul-4 mutant phenotype, whereas downregulation of Wg and JNK signaling rescues the cul-4 mutant phenotypes of reduced eye. Here we present evidences to demonstrate that cul-4 is involved in restricting Wg signaling and downregulation of JNK signaling-mediated cell death during early eye development. Overall, our studies provide insights into a novel role of cul-4 in promoting cell survival in the developing Drosophila eye.
Collapse
|