1
|
Fang Y, Niu X, Zhao W, Zhang H. Cardioprotective potential of transcription factor PRRX1 silencing against myocardial ischemia/reperfusion injury by regulating excessive mitophagy and ferroptosis through FKBP5-p38 MAPK axis. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167766. [PMID: 40044064 DOI: 10.1016/j.bbadis.2025.167766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/21/2025] [Accepted: 02/25/2025] [Indexed: 03/09/2025]
Abstract
Myocardial ischemia/reperfusion (I/R) injury is a major cause of various adverse cardiovascular outcomes associated with excessive mitophagy and cardiomyocyte ferroptosis. Paired-related homeobox 1 (PRRX1) is a transcriptional factor involved in cardiovascular injury. However, whether and how PRRX1 regulates excessive mitophagy and cardiomyocyte ferroptosis during myocardial I/R injury remains unclear. Oxygen-glucose deprivation and reperfusion (OGD/R)-treated AC16 cardiomyocytes and myocardial I/R-induced rats were used as in vitro and in vivo models. Our results showed that PRRX1 expression was upregulated in AC16 cells after OGD/R treatment. PRRX1 silencing mitigated OGD/R-induced excessive mitophagy by increasing the mitochondrial membrane potential, adenosine triphosphate and p62 levels, and reducing LC3 II/I level in AC16 cells. In addition, PRRX1 knockdown attenuated OGD/R-induced lactate dehydrogenase (LDH) release and cardiomyocyte ferroptosis by decreasing reactive oxygen species, Fe2+ and acyl-CoA synthetase long-chain family member 4 (ACSL4) levels, and increasing glutathione (GSH) and glutathione peroxidase 4 (GPX4) levels. Furthermore, PRRX1 transcriptionally promoted FK506 binding protein 5 (FKBP5), and increased p38 MAPK activation in AC16 cells. FKBP5 overexpression reversed the effects of PRRX1 silencing on excessive mitophagy and cardiomyocyte ferroptosis in OGD/R-treated AC16 cells. These effects were mitigated by a p38 MAPK inhibitor. Finally, PRRX1 downregulation mitigated myocardial I/R injury by reducing heart infarction and creatine kinase-myocardial band (CK-MB) levels in rat models. These findings demonstrate that PRRX1 silencing attenuates OGD/R-induced excessive mitophagy and cardiomyocyte ferroptosis by decreasing FKBP5 expression and inactivating p38 MAPK signaling, indicating the cardioprotective potential of PRRX1 silencing in myocardial I/R injury.
Collapse
Affiliation(s)
- Yongpeng Fang
- Department of Geriatrics, General Hospital of Ningxia Medical University, Yinchuan 750003, China
| | - Xudong Niu
- Department of Internal Medicine, Yinchuan Maternal and Child Health Hospital, Yinchuan 750004, China
| | - Weifang Zhao
- Cardiac Function Examination Room, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao 266041, China
| | - Huali Zhang
- Medical Examination Center, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou 730050, China.
| |
Collapse
|
2
|
Wang X, Song SM, Lu WQ, Zhao Y, Lv RJ, He Y, Dong N, Yu Q, Yue HM. Alpha-lipoic acid alleviated intermittent hypoxia-induced myocardial injury in mice by promoting autophagy through Nrf2 signaling pathway. Eur J Pharmacol 2025; 994:177380. [PMID: 39954840 DOI: 10.1016/j.ejphar.2025.177380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Obstructive sleep apnea syndrome (OSAS) is a prevalent sleep-related breathing disorder characterized by intermittent hypoxia (IH). Myocardial injury is a common complication associated with OSAS. Alpha-lipoic acid (LA), a potent antioxidant, has been utilized in various disease contexts and has demonstrated significant protective effects in myocardial infarction models. Given the limited treatment options available for OSAS-related myocardial injury, this study aimed to demonstrate the potential therapeutic effects of LA and to investigate the underlying mechanisms. IH is a widely employed method to simulate the pathophysiological conditions associated with OSAS. In vivo experiments were conducted using mice placed in a specialized hypoxic chamber to replicate IH conditions. Echocardiography indicated that exposure to IH severely impaired cardiac function. Treatment with LA activated the Nrf2 pathway and autophagy, which contributed to the improvement of cardiac function in mice with OSAS. Additionally, in vitro studies demonstrated that IH induced apoptosis and decreased cell viability in H9C2 cardiomyocytes. LA enhanced Nrf2 nuclear translocation and its downstream signaling pathways, thereby promoting autophagy, inhibiting apoptosis, and alleviating injury in H9C2 cardiomyocytes. Furthermore, in vitro inhibition of Nrf2 using ML385 reduced autophagy levels and attenuated the protective effects of LA against apoptosis in H9C2 cardiomyocytes. These findings suggest that LA may provide a promising therapeutic strategy for myocardial injury associated with OSAS. By elucidating these findings, new insights into the protective mechanisms of LA against IH-induced myocardial injury are provided, highlighting its potential as a therapeutic agent for diseases associated with OSAS.
Collapse
Affiliation(s)
- Xiao Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Shao-Ming Song
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Wen-Qiang Lu
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yan Zhao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Ren-Jun Lv
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yao He
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Na Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China; Department of Pulmonary and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Qin Yu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China; Department of Pulmonary and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| | - Hong-Mei Yue
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China; Department of Pulmonary and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Tang L, Zhang W, Liao Y, Wang W, Deng X, Wang C, Shi W. Autophagy: a double-edged sword in ischemia-reperfusion injury. Cell Mol Biol Lett 2025; 30:42. [PMID: 40197222 PMCID: PMC11978130 DOI: 10.1186/s11658-025-00713-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 03/04/2025] [Indexed: 04/10/2025] Open
Abstract
Ischemia-reperfusion (I/R) injury describes the pathological process wherein tissue damage, initially caused by insufficient blood supply (ischemia), is exacerbated upon the restoration of blood flow (reperfusion). This phenomenon can lead to irreversible tissue damage and is commonly observed in contexts such as cardiac surgery and stroke, where blood supply is temporarily obstructed. During ischemic conditions, the anaerobic metabolism of tissues and organs results in compromised enzyme activity. Subsequent reperfusion exacerbates mitochondrial dysfunction, leading to increased oxidative stress and the accumulation of reactive oxygen species (ROS). This cascade ultimately triggers cell death through mechanisms such as autophagy and mitophagy. Autophagy constitutes a crucial catabolic mechanism within eukaryotic cells, facilitating the degradation and recycling of damaged, aged, or superfluous organelles and proteins via the lysosomal pathway. This process is essential for maintaining cellular homeostasis and adapting to diverse stress conditions. As a cellular self-degradation and clearance mechanism, autophagy exhibits a dualistic function: it can confer protection during the initial phases of cellular injury, yet potentially exacerbate damage in the later stages. This paper aims to elucidate the fundamental mechanisms of autophagy in I/R injury, highlighting its dual role in regulation and its effects on both organ-specific and systemic responses. By comprehending the dual mechanisms of autophagy and their implications for organ function, this study seeks to explore the potential for therapeutic interventions through the modulation of autophagy within clinical settings.
Collapse
Affiliation(s)
- Lingxuan Tang
- Basic Medical University, Naval Medical University, Shanghai, 200433, China
| | - Wangzheqi Zhang
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yan Liao
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Weijie Wang
- Basic Medical University, Naval Medical University, Shanghai, 200433, China
| | - Xiaoming Deng
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Changli Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Wenwen Shi
- School of Nursing, Navy Military Medical University, Shanghai, China.
| |
Collapse
|
4
|
Sheng R, Wang W, Zeng W, Li B, Yu H, Li X, Liang Y, Wang Y, Liao Y, Liu D. Macrophage Membrane Coated Manganese Dioxide Nanoparticles Loaded with Rapamycin Alleviate Intestinal Ischemia-Reperfusion Injury by Reducing Oxidative Stress and Enhancing Autophagy. Int J Nanomedicine 2025; 20:3541-3557. [PMID: 40125428 PMCID: PMC11929519 DOI: 10.2147/ijn.s507546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/12/2025] [Indexed: 03/25/2025] Open
Abstract
Background Intestinal ischemia-reperfusion (I/R) injury is a common and severe clinical issue. With high morbidity and mortality, it burdens patients and the healthcare system. Despite the efforts in medical research, current treatment options are unsatisfactory, urging novel therapeutic strategies. Oxidative stress and dysregulated autophagy play pivotal roles in the pathogenesis of I/R injury, damaging intestinal tissues and disrupting normal functions. The aim of this study is to fabricate macrophage membrane-coated manganese dioxide nanospheres loaded with rapamycin [Ma@(MnO₂+RAPA)] for alleviating intestinal I/R injury. Methods We engineered honeycomb MnO2 nanospheres coated with a macrophage membrane to act as a drug delivery system, encapsulating RAPA. In vitro OGD/R model in IEC-6 cells and in vivo mouse I/R injury models were used. Targeting ability was evaluated through in-vivo imaging system. Effects on cell viability, reactive oxygen species (ROS) levels, oxygen generation, inflammatory factors, apoptosis, autophagy, and biocompatibility were detected by methods such as MTT assay, fluorescence microscopy, ELISA kit, TUNEL assay, Western blotting and histological analysis. Results In this study, Ma@(MnO₂+RAPA) efficiently deliver RAPA to damaged tissues and exhibited good ROS-responsive release. Our data showed that Ma@(MnO₂+RAPA) reduced ROS, increased O₂, inhibited inflammation, and promoted autophagy while reducing apoptosis in IEC-6 cells. In a mouse I/R model, Ma@(MnO₂+RAPA) significantly reduced Chiu's score, improved tight conjunction proteins, decreased apoptosis, reduced levels of inflammatory cytokines and oxidative stress. RAPA released from the Ma@(MnO₂+RAPA), enhanced the expression of autophagy-regulated proteins p62, Beclin-1, and LC3II. The biocompatibility and safety of Ma@(MnO₂+RAPA) were confirmed through histological analysis and biochemical detection in mice. Conclusion Our results demonstrated that Ma@(MnO₂+RAPA) alleviated intestinal I/R injury by reducing oxidative stress, promoting autophagy, and inhibiting inflammation. This study offers a potential therapeutic strategy for the treatment of intestinal ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Ruxiang Sheng
- Department of Anesthesiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, People’s Republic of China
| | - Wei Wang
- Molecular Diagnosis and Treatment Center for Infectious Diseases Dermatology Hospital of Southern Medical University, Guangzhou, 510091, People’s Republic of China
| | - Weian Zeng
- Department of Anesthesiology, State Key Laboratory of Oncology in South China. Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
| | - Bin Li
- School of Inspection, Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Haoyuan Yu
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, People’s Republic of China
| | - Xuan Li
- Department of Anesthesiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, People’s Republic of China
| | - Yanqiu Liang
- Department of Anesthesiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, People’s Republic of China
| | - Ying Wang
- Department of Anesthesiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, People’s Republic of China
| | - Yuhui Liao
- Molecular Diagnosis and Treatment Center for Infectious Diseases Dermatology Hospital of Southern Medical University, Guangzhou, 510091, People’s Republic of China
| | - Dezhao Liu
- Department of Anesthesiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, People’s Republic of China
| |
Collapse
|
5
|
Dhalla NS, Ostadal P, Tappia PS. Involvement of Oxidative Stress and Antioxidants in Modification of Cardiac Dysfunction Due to Ischemia-Reperfusion Injury. Antioxidants (Basel) 2025; 14:340. [PMID: 40227421 PMCID: PMC11939711 DOI: 10.3390/antiox14030340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 03/11/2025] [Indexed: 04/15/2025] Open
Abstract
Delayed reperfusion of the ischemic heart (I/R) is known to impair the recovery of cardiac function and produce a wide variety of myocardial defects, including ultrastructural damage, metabolic alterations, subcellular Ca2+-handling abnormalities, activation of proteases, and changes in cardiac gene expression. Although I/R injury has been reported to induce the formation of reactive oxygen species (ROS), inflammation, and intracellular Ca2+ overload, the generation of oxidative stress is considered to play a critical role in the development of cardiac dysfunction. Increases in the production of superoxide, hydroxyl radicals, and oxidants, such as hydrogen peroxide and hypochlorous acid, occur in hearts subjected to I/R injury. In fact, mitochondria are a major source of the excessive production of ROS in I/R hearts due to impairment in the electron transport system as well as activation of xanthine oxidase and NADPH oxidase. Nitric oxide synthase, mainly present in the endothelium, is also activated due to I/R injury, leading to the production of nitric oxide, which, upon combination with superoxide radicals, generates nitrosative stress. Alterations in cardiac function, sarcolemma, sarcoplasmic reticulum Ca2+-handling activities, mitochondrial oxidative phosphorylation, and protease activation due to I/R injury are simulated upon exposing the heart to the oxyradical-generating system (xanthine plus xanthine oxidase) or H2O2. On the other hand, the activation of endogenous antioxidants such as superoxide dismutase, catalase, glutathione peroxidase, and the concentration of a transcription factor (Nrf2), which modulates the expression of various endogenous antioxidants, is depressed due to I/R injury in hearts. Furthermore, pretreatment of hearts with antioxidants such as catalase plus superoxide dismutase, N-acetylcysteine, and mercaptopropionylglycerine has been observed to attenuate I/R-induced subcellular Ca2+ handling and changes in Ca2+-regulatory activities; additionally, it has been found to depress protease activation and improve the recovery of cardiac function. These observations indicate that oxidative stress is intimately involved in the pathological effects of I/R injury and different antioxidants attenuate I/R-induced subcellular alterations and improve the recovery of cardiac function. Thus, we are faced with the task of developing safe and effective antioxidants as well as agents for upregulating the expression of endogenous antioxidants for the therapy of I/R injury.
Collapse
Affiliation(s)
- Naranjan S. Dhalla
- St. Boniface Hospital Albrechtsen Research Centre, Institute of Cardiovascular Sciences, Department of Physiology & Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Petr Ostadal
- Department of Cardiology, 2nd Faculty of Medicine, Charles University, Motol University Hospital, V Uvalu 84, 15000 Prague, Czech Republic;
| | - Paramjit S. Tappia
- Asper Clinical Research Institute, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada;
| |
Collapse
|
6
|
Bustamante M, Quiroga C, Mancilla G, Gomez W, Tapia A, Figueroa R, Mondaca-Ruff D, Oyarzún I, Verdejo HE, Lavandero S, Castro P. Autophagy fine-tuning by angiotensin-(1-9) in cultured rat cardiomyocytes. Front Cardiovasc Med 2025; 12:1408325. [PMID: 40144934 PMCID: PMC11937029 DOI: 10.3389/fcvm.2025.1408325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Background The renin-angiotensin system (RAS) plays a pivotal role in regulating blood volume, systemic vascular resistance, and electrolyte balance, serving as a key component of cardiovascular health. Recent findings highlight the role of angiotensin II (Ang II) in inducing autophagy through angiotensin II receptor type 1 (AT1R). Autophagy, a process of self-degradation and turnover of cellular components, is a homeostatic response that eliminates superfluous materials. Abnormal autophagy promotes cardiomyocyte loss and is critical in hypertrophy and heart failure progression. The RAS's non-canonical axis, which includes the angiotensin 1-9 peptide [Ang-(1-9)], has an anti-hypertrophic effect in cardiomyocytes via an unknown mechanism. In the present study, we aimed to elucidate the effect of Ang-(1-9) on cardiomyocyte autophagy. Methods We isolated and cultured neonatal ventricular cardiomyocytes and then co-treated them with Ang-(1-9) in the presence of chloroquine (CQ), Ang-II, and chemical inhibitors of different signaling pathways. After treatment, total RNA and protein extracts were obtained to analyze the abundance of different autophagy markers. Likewise, cells were fixed, and autophagy was analyzed through epifluorescence microscopy. Results Our findings show that CQ leads to a reduction in autophagy markers, such as microtubule-associated protein 1 light chain 3-II (LC3-II) and total LC3, suggesting Ang-(1-9)'s regulatory role in basal autophagy levels. Furthermore, Ang-(1-9) opposes Ang-II-induced autophagy and induces the phosphorylation of the S234 residue of Beclin-1 (BCN1) via an angiotensin II receptor type 2 (AT2R)/Akt-dependent pathway. Conclusions This reduction of Ang-II-induced autophagy by Ang-(1-9) unveils a novel aspect of its action, potentially contributing to its cardioprotective effects.
Collapse
Affiliation(s)
- Mario Bustamante
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Clara Quiroga
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Georthan Mancilla
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Physiology and Biophysics Program, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Wileidy Gomez
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Anita Tapia
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Reinaldo Figueroa
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - David Mondaca-Ruff
- Department of Biochemistry and Molecular Biology & Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Ingrid Oyarzún
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hugo E. Verdejo
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Transducción de Señales Moleculares, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Department of Internal Medicine/Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Pablo Castro
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
7
|
Cheng L, Chang S, Tan Y, He B. Platelet-rich plasma combined with isometric quadriceps contraction regulates autophagy in chondrocytes via the PI3K/AKT/mTOR pathway to promote cartilage repair in knee osteoarthritis. Regen Ther 2025; 28:81-89. [PMID: 39703816 PMCID: PMC11655694 DOI: 10.1016/j.reth.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/25/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024] Open
Abstract
Background This study investigated the molecular mechanism by which the combination of platelet-rich plasma (PRP) and isometric contraction of the quadriceps (ICQ) intervention regulates autophagy in chondrocytes to prevent and treat knee osteoarthritis (KOA). Methods Thirty Sprague-Dawley rats were divided into a control group (CG, n = 6) and a model group (n = 24). After one week, the model group was randomly divided into a joint intervention group (JIG), a rapamycin group (RAG), an MHY1485 group (MYG), and a model blank group (MBG), with JIG, RAG, and MYG receiving the same combined intervention. Results The trend of cartilage lesions in each group was CG < RAG < JIG < MYG < MBG. Compared with MBG and MYG, JIG and RAG showed downregulation of IL-1β, IL-6, IL-18, MMP-13, and TNF-α mRNA in the cartilage (p < 0.01); mTOR protein expression: compared with JIG, RAG showed downregulation, and MYG showed upregulation. Compared with RAG, MYG showed upregulation (p < 0.01); ATG5 protein expression: compared with RAG, MYG showed downregulation (p < 0.01); Beclin1, LC3-I, and ULK1 protein expression: compared with JIG, RAG showed upregulation, and MYG showed downregulation (p < 0.01). Compared with RAG, MYG showed downregulation (p < 0.01); P62 protein expression: compared with RAG, both MBG and RAG showed upregulation, and MYG showed downregulation (p < 0.05); LC3-II/LC3-I ratio: compared with JIG and RAG, the ratio in MYG was decreased (p < 0.01). Conclusion The combined intervention promotes autophagy in chondrocytes by inhibiting the PI3K/AKT/mTOR pathway, downregulating inflammatory factors and MMP-13 in the cartilage, upregulating autophagy markers, inhibiting matrix degradation, and promoting cartilage repair.
Collapse
Affiliation(s)
- Liang Cheng
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
- Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- Human Movement Science, Sichuan Sports College, Chengdu, China
| | - Shuwan Chang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Yajun Tan
- Affiliated Sport Hospital of Chengdu Sport University, Chengdu, China
| | - Benxiang He
- Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| |
Collapse
|
8
|
Tong C, Zhou B. Cardioprotective strategies in myocardial ischemia-reperfusion injury: Implications for improving clinical translation. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2025; 11:100278. [PMID: 40182153 PMCID: PMC11967023 DOI: 10.1016/j.jmccpl.2024.100278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/11/2024] [Accepted: 12/13/2024] [Indexed: 04/05/2025]
Abstract
Ischemic heart disease is the most common cause of death and disability globally which is caused by reduced or complete cessation of blood flow to a portion of the myocardium. One of its clinical manifestations is myocardial infarction, which is commonly treated by restoring of blood flow through reperfusion therapies. However, serious ischemia-reperfusion injury (IRI) can occur, significantly undermining clinical outcomes, for which there is currently no effective therapy. This review revisits several potential pharmacological IRI intervention strategies that have entered preclinical or clinical research phases. Here, we discuss what we have learned through translational failures over the years, and propose possible ways to enhance translation efficiency.
Collapse
Affiliation(s)
- Chao Tong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Bingying Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518063, China
| |
Collapse
|
9
|
Zhang Q, Ding H, Dai Z, Yang R, Zhou S, Tai S. U-shaped association between plasma cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) levels and myocardial infarction. BMC Cardiovasc Disord 2025; 25:116. [PMID: 39972291 PMCID: PMC11837390 DOI: 10.1186/s12872-025-04543-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/31/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND The cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes (cGAS-STING) signaling pathway is closely associated with myocardial infarction (MI). Cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) is a key component of this pathway; however, there is currently a lack of clinical evidence linking plasma cGAMP levels to MI. METHODS This study utilized clinical data from 270 patients diagnosed with coronary heart disease (CHD) at the Second Xiangya Hospital of Central South University. The outcomes included ST-segment elevation and non-ST-segment elevation MI. Univariate and multivariate logistic regression models were used to explore the relationships between plasma cGAMP levels and MI, while restricted cubic spline (RCS) using logistic regression to explore the dose-response relationship. RESULTS Among the 270 patients, the mean plasma cGAMP level was 1352.58 ± 106.02 ng/L and 89 (32.96%) patients were diagnosed with MI. The RCS curves indicated a U-shape association between the cGAMP levels and MI; the risk of MI was negatively correlated with the cGAMP until it hit bottoms at 1352 ng/L. When the cGAMP level exceeded 1352 ng/L, the risk of MI increased significantly (adjusted OR, 1.02; 95% CI: 1.01-1.03). When considering cGAMP as a categorical variable, patients in Tertile 1 and Tertile 3 had a 167% (adjusted OR: 2.67, 95% CI: 1.23-5.78) and 155% (adjusted OR: 2.55, 95% CI: 1.17-5.55) higher risk of MI compared to those in Tertile 2, respectively. These results were consistent across subgroup analyses, notably, a significant interaction by age category was observed in patients with cGAMP ≥ 1352 ng/L, where the positive association was pronounced in the elderly. CONCLUSIONS A U-shaped association exists between cGAMP and MI in the CHD population, with a cutoff point at the cGAMP of 1352 ng/L. Both excessively high and low cGAMP levels are associated with an increased risk of MI, particularly among the elderly with cGAMP ≥ 1352 ng/L. This is the first clinical evidence of the cGAS-cGAMP-STING pathway in metabolic cardiovascular diseases. CLINICALTRIALS GOV IDENTIFIER NCT03363035 (Registration date: 2018-01-15).
Collapse
Affiliation(s)
- Quan Zhang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Huiqing Ding
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zhongling Dai
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Rukai Yang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Shenghua Zhou
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Shi Tai
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
10
|
Luo T, Shen S, Sun Y, El-Ashram S, Zhang X, Liu K, Cao C, Alajmi RA, Deng S, Wu J, Zhang W, Zhang H. Identification and Analysis of Autophagy-Related Genes as Diagnostic Markers and Potential Therapeutic Targets for Tuberculosis Through Bioinformatics. DNA Cell Biol 2025; 44:82-98. [PMID: 39618249 DOI: 10.1089/dna.2024.0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
According to the World Health Organization, Mycobacterium tuberculosis infections affect approximately 25% of the world's population. There is mounting evidence linking autophagy and immunological dysregulation to tuberculosis (TB). As a result, this research set out to discover TB-related autophagy-related biomarkers and prospective treatment targets. We used five autophagy databases to get genes linked to autophagy and Gene Expression Omnibus databases to get genes connected to TB. Then, functional modules associated with autophagy were obtained by analyzing them using weighted gene co-expression network analysis. Both Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were used to examine the autophagy-related genes (ATGs) of important modules. Limma was used to identify differentially expressed ATGs (DE-ATGs), and the external datasets were used to further confirm their identification. We used DE-ATGs and a protein-protein interaction network to search the hub genes. CIBERSORT was used to estimate the kinds and amounts of immune cells. After that, we built a drug-gene interaction network and a network that included messenger RNA, small RNA, and DNA. At last, the differential expression of hub ATGs was confirmed by RT-qPCR, immunohistochemistry, and western blotting. The diagnostic usefulness of hub ATGs was evaluated using receiver operating characteristic curve analysis. Including 508 ATGs, four of the nine modules strongly linked with TB were deemed essential. Interleukin 1B (IL1B), CAPS1, and signal transducer and activator of transcription 1 (STAT1) were identified by intersection out of 22 DE-ATGs discovered by differential expression analysis. Research into immune cell infiltration found that patients with TB had an increased proportion of plasma cells, CD8 T cells, and M0 macrophages. A competitive endogenous RNA network utilized 10 long non-coding RNAs and 2 miRNAs. Then, the IL1B-targeted drug Cankinumad was assessed using this network. During bioinformatics analysis, three hub genes were validated in mouse and macrophage infection models. We found that IL1B, CASP1, and STAT1 are important biomarkers for TB. As a result, these crucial hub genes may hold promise as TB treatment targets.
Collapse
Affiliation(s)
- Tingting Luo
- Key Laboratory of Xinjiang Endicand Ethnic Diseases Cooperated By Education Ministry with Xinjiang Province, Shihezi University, Shihezi, China
| | - Shijie Shen
- Key Laboratory of Xinjiang Endicand Ethnic Diseases Cooperated By Education Ministry with Xinjiang Province, Shihezi University, Shihezi, China
| | - Yufei Sun
- Key Laboratory of Xinjiang Endicand Ethnic Diseases Cooperated By Education Ministry with Xinjiang Province, Shihezi University, Shihezi, China
| | - Saeed El-Ashram
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Xia Zhang
- Key Laboratory of Xinjiang Endicand Ethnic Diseases Cooperated By Education Ministry with Xinjiang Province, Shihezi University, Shihezi, China
| | - Keyu Liu
- Key Laboratory of Xinjiang Endicand Ethnic Diseases Cooperated By Education Ministry with Xinjiang Province, Shihezi University, Shihezi, China
| | - Chengzhang Cao
- Key Laboratory of Xinjiang Endicand Ethnic Diseases Cooperated By Education Ministry with Xinjiang Province, Shihezi University, Shihezi, China
| | - Reem Atalla Alajmi
- Department of Zoology, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | - Siqi Deng
- Key Laboratory of Xinjiang Endicand Ethnic Diseases Cooperated By Education Ministry with Xinjiang Province, Shihezi University, Shihezi, China
| | - Jiangdong Wu
- Key Laboratory of Xinjiang Endicand Ethnic Diseases Cooperated By Education Ministry with Xinjiang Province, Shihezi University, Shihezi, China
| | - Wanjiang Zhang
- Key Laboratory of Xinjiang Endicand Ethnic Diseases Cooperated By Education Ministry with Xinjiang Province, Shihezi University, Shihezi, China
| | - Hongying Zhang
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Ding W, Qian K, Bao W, Wang Z. Phellodendrine inhibits oxidative stress and promotes autophagy by regulating the AMPK/mTOR pathway in burn sepsis-induced intestinal injury. Toxicol Res (Camb) 2025; 14:tfae233. [PMID: 39822373 PMCID: PMC11734437 DOI: 10.1093/toxres/tfae233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/01/2024] [Indexed: 01/19/2025] Open
Abstract
Intestinal injury is an important complication of burn sepsis with limited therapeutic choices. Phellodendrine is a promising compound for gastrointestinal inflammatory diseases and is extracted from the traditional Chinese medicine phellodendron bark. The study aimed to explore the role of phellodendrine against oxidative stress and autophagy in burn sepsis-induced intestinal injury. A mouse model of burn sepsis model was established by intraperitoneally injecting 10 mg/kg lipopolysaccharide (LPS) to mice burned by boiled water. Phellodendrine (30 mg/kg) was injected into mice in the drug group after scalding and before LPS injection. Hematoxylin and eosin staining was performed to observe histopathological changes in murine small intestines. TdT-mediated dUTP Nick-End Labeling (TUNEL) assay was performed to evaluate intestinal cell apoptosis. Immunofluorescence staining was performed to measure the expression and distribution of autophagy markers, light chain 3II (LC3II) and p62 in intestinal tissues. Oxidative stress indicators were detected using corresponding commercial kits. Protein levels of apoptotic markers, autophagy markers, and factors involved in adenosine monophosphate-activated protein kinase (AMPK)/mechanistic target of rapamycin (mTOR) pathway in intestines were quantified by western blotting. Phellodendrine attenuated bun sepsis-induced intestinal pathological changes. Meanwhile, aggravated cell apoptosis, reduction of antioxidant enzymes, and downregulation of autophagy markers in intestinal tissues of burn sepsis group were all improved by phellodendrine. In addition, phellodendrine activated the phosphorylation (p) of AMPK and inhibited p-mTOR signaling in intestines of burn septic mice. In conclusion, phellodendrine suppresses oxidative stress and activates autophagy in burn sepsis-induced intestinal injury by activating AMPK and inhibiting mTOR signaling.
Collapse
Affiliation(s)
- Wei Ding
- Department of Burn and Plastic Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Jinghu District, Wuhu City, Anhui Province 241000, China
| | - Kun Qian
- Department of Burn and Plastic Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Jinghu District, Wuhu City, Anhui Province 241000, China
| | - Wenxiu Bao
- Department of Burn and Plastic Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Jinghu District, Wuhu City, Anhui Province 241000, China
| | - Zhen Wang
- Department of General Practice, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Jinghu District, Wuhu, Anhui Province 241000, China
| |
Collapse
|
12
|
Zheng H, Ou J, Han H, Lu Q, Shen Y. SS-31@Fer-1 Alleviates ferroptosis in hypoxia/reoxygenation cardiomyocytes via mitochondrial targeting. Biomed Pharmacother 2025; 183:117832. [PMID: 39848110 DOI: 10.1016/j.biopha.2025.117832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/02/2025] [Accepted: 01/09/2025] [Indexed: 01/25/2025] Open
Abstract
PURPOSE Targeting mitochondrial ferroptosis presents a promising strategy for mitigating myocardial ischemia-reperfusion (I/R) injury. This study aims to evaluate the efficacy of the mitochondrial-targeted ferroptosis inhibitor SS-31@Fer-1 (elamipretide@ferrostatin1) in reducing myocardial I/R injury. METHODS SS-31@Fer-1 was synthesized and applied to H9C2 cells subjected to hypoxia/reoxygenation (H/R) to assess its protective effects. Cytotoxicity was evaluated using a cell counting kit-8 (CCK-8) assay, with lactate dehydrogenase (LDH) and creatine kinase isoenzyme (CK-MB) levels measured. Mitochondrial reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were assessed using Mito-SOX and JC-1 fluorescent dyes, respectively. Lipid peroxidation products, malondialdehyde (MDA) and glutathione (GSH), were quantified. Mitochondrial structure, mt-cytochrome b (mt-Cytb), and mt-ATP synthase membrane subunit 6 (mt-ATP6) were analyzed. Additionally, iron homeostasis and ferroptosis markers were evaluated. RESULTS SS-31@Fer-1 significantly improved H/R-induced cardiomyocyte viability and reduced LDH and CK-MB levels. Compared to the Fer-1 group, SS-31@Fer-1 reduced GSH and increased MDA levels, enhancing mitochondrial integrity and function. Notably, it increased mitochondrial ROS and decreased MMP, indicating a mitigation of H/R-induced cardiomyocyte cytotoxicity. Furthermore, SS-31@Fer-1 maintained cellular iron homeostasis, as evidenced by increased expression of FTH, FTMT, FPN, and ABCB8. Elevated levels of GPX4 and Nrf2 were observed, while ACSL4 and PTGS2 levels were reduced in the SS-31@Fer-1 group. CONCLUSIONS SS-31@Fer-1 effectively suppressed ferroptosis in H/R-induced cardiomyocytes by maintaining cellular iron homeostasis, improving mitochondrial function, and inhibiting oxidative stress. These findings provide novel insights and opportunities for alleviating myocardial I/R injury.
Collapse
Affiliation(s)
- Hao Zheng
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87, Dingjiaqiao, Gulou District, Nanjing 210009, China; Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jinbo Ou
- Departments of Cardiology, Fudan University Zhongshan Hospital, Qingpu Branch, 1158 Park East Road, Shanghai 60518120, China
| | - Hui Han
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Pathology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qizheng Lu
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Guangdong Second Provincial General Hospital, No. 466 Xingang Middle Road, Haizhu district, Guangzhou 510317, China
| | - Yunli Shen
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
13
|
Wang K, Zhu Q, Liu W, Wang L, Li X, Zhao C, Wu N, Ma C. Mitochondrial apoptosis in response to cardiac ischemia-reperfusion injury. J Transl Med 2025; 23:125. [PMID: 39875870 PMCID: PMC11773821 DOI: 10.1186/s12967-025-06136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025] Open
Abstract
In patients with acute myocardial infarction (AMI), thrombolytic therapy and revascularization strategies allow complete recanalization of occluded epicardial coronary arteries. However, approximately 35% of patients still experience myocardial ischemia/reperfusion (I/R) injury, which contributing to increased AMI mortality. Therefore, an accurate understanding of myocardial I/R injury is important for preventing and treating AMI. The death of each cell (cardiomyocytes, endothelial cells, vascular smooth muscle cells, cardiac fibroblasts, and mesenchymal stem cells) after myocardial ischemia/reperfusion is associated with apoptosis due to mitochondrial dysfunction. Abnormal opening of the mitochondrial permeability transition pore, aberrant mitochondrial membrane potential, Ca2+ overload, mitochondrial fission, and mitophagy can lead to mitochondrial dysfunction, thereby inducing mitochondrial apoptosis. The manifestation of mitochondrial apoptosis varies according to cell type. Here, we reviewed the characteristics of mitochondrial apoptosis in cardiomyocytes, endothelial cells, vascular smooth muscle cells, cardiac fibroblasts, and mesenchymal stem cells following myocardial ischemia/reperfusion.
Collapse
Affiliation(s)
- Kaixin Wang
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China
- Clinical Medical Research Center of Imaging in Liaoning Province, Shenyang, China
| | - Qing Zhu
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China
- Clinical Medical Research Center of Imaging in Liaoning Province, Shenyang, China
| | - Wen Liu
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China
- Clinical Medical Research Center of Imaging in Liaoning Province, Shenyang, China
| | - Linyuan Wang
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China
- Clinical Medical Research Center of Imaging in Liaoning Province, Shenyang, China
| | - Xinxin Li
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China
- Clinical Medical Research Center of Imaging in Liaoning Province, Shenyang, China
| | - Cuiting Zhao
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China
- Clinical Medical Research Center of Imaging in Liaoning Province, Shenyang, China
| | - Nan Wu
- The Central Laboratory of The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Chunyan Ma
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China.
- Clinical Medical Research Center of Imaging in Liaoning Province, Shenyang, China.
| |
Collapse
|
14
|
Dai X, Liang B, Sun Y. Luteolin ameliorates rat model of metabolic syndrome-induced cardiac injury by apoptosis suppression and autophagy promotion via NR4A2/p53 regulation. BMC Complement Med Ther 2025; 25:14. [PMID: 39833877 PMCID: PMC11744851 DOI: 10.1186/s12906-025-04749-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Reduced cardiac autophagy, inflammation, and apoptosis contribute to cardiovascular complications caused by metabolic syndrome (MetS). It is documented that the nuclear receptor 4A2 (NR4A2) could modulate autophagy and apoptosis in cardiac complications. The aim of this investigation was to assess the therapeutic potential of luteolin, with documented beneficial properties, against MetS-associated cardiac injury. METHODS Forty male albino Wistar rats were divided into 5 groups randomly as controls, MetS, and MetS animals treated with luteolin (25, 50, 100 mg/kg ip). The animal's weight, blood pressure, lipid profile, tolerance to glucose and insulin, and cardiac histopathology were evaluated. Moreover, troponin T, creatine kinase-myocardial band (CK-MB), inflammatory profile (IL-6, IL-1β, TNF-α), transforming growth factor-β1 (TGF-β1), oxidative stress, and matrix metalloproteinase-9 (MMP-9) were analyzed to determine the cardiac state. Cardiac NR4A2 and p53, as well as apoptotic (B-cell leukemia/lymphoma 2 [BCL-2], Caspase [CASP]-3, and CASP-9) and autophagic mediators (Sequestosome-1/p62, Microtubule-associated protein 1 A/1B-light chain 3 [LC3], and Beclin-1) were measured by RT-qPCR and ELISA. RESULTS Luteolin remarkably restored MetS-induced biochemical derangements and related cardiac injury via the suppression of apoptosis, inflammation, and stress but promotion of autophagy (p-value < 0.001). CONCLUSION Current findings revealed the promising therapeutical properties of luteolin against MetS-associated cardiovascular risks.
Collapse
Affiliation(s)
- Xiyan Dai
- Department of Comprehensive, Maoming People's Hospital, Maoming, 525000, China
| | - Bo Liang
- Department of MRI, Maoming People's Hospital, Maoming, 525000, China
| | - Yaolin Sun
- Department of Cardiovascular Medicine, First Hospital of Northwest University, Xi'an, 710043, China.
| |
Collapse
|
15
|
Bo X, Li Q, Chen S, Zhou T, Yin N, Song W, Zhao D, Liu J, Fan Q. Evidence and perspectives on miRNA, circRNA, and lncRNA in myocardial ischemia-reperfusion injury: a bibliometric study. J Cardiothorac Surg 2025; 20:66. [PMID: 39815292 PMCID: PMC11736979 DOI: 10.1186/s13019-024-03238-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/24/2024] [Indexed: 01/18/2025] Open
Abstract
OBJECTIVE miRNA, circRNA, and lncRNA play crucial roles in the pathogenesis and progression of myocardial ischemia-reperfusion injury (MI/RI). This study aims to provide valuable insights into miRNA, circRNA, lncRNA, and MI/RI from a bibliometric standpoint, with the goal of fostering further advancements in this area. METHODS The relevant literature in the field of miRNA, circRNA, lncRNA, and MI/RI was retrieved from the Science Citation Index Expanded (SCI-E) database within Web of Science. The "Analyze Results" and "Citation Report" functions in WOS were utilized to compile the annual publication and citation counts in this field. Microsoft Office Excel 2019 was used to organize and visualize the data. Furthermore, bibliometric and visualization analyses of countries/regions, institutions, authors, keywords, and references were conducted using the bibliometric visualization software CiteSpace. RESULTS A total of 858 publications were included for further analysis in this field. The literature was published across 297 journals, with Molecular Medicine Reports contributing the highest number of publications. Researchers from 45 countries participated in studies within this field, with those from China contributing the most publications. The research hotspots in this field primarily focus on three areas: the role of miRNA, circRNA, and lncRNA in the pathogenesis of MI/RI, their potential as therapeutic targets, and their role as biomarkers. Among these, circular RNA, therapy target, inflammatory response, and cardiomyocyte ferroptosis are likely to emerge as emerging trends in this field. CONCLUSION The overall development of research in this field is on the rise. The compilation of research hotspots and emerging trends in this area may provide researchers with more references and assistance in selecting research directions, ultimately benefiting MI/RI patients.
Collapse
Affiliation(s)
- Xiaowen Bo
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Capital Medical University, Beijing, 100069, China
| | - Qiuyu Li
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Capital Medical University, Beijing, 100069, China
| | - Siyuan Chen
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Capital Medical University, Beijing, 100069, China
| | - Tian Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Capital Medical University, Beijing, 100069, China
| | - Ning Yin
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Capital Medical University, Beijing, 100069, China
| | - Wenpeng Song
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Donghui Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Capital Medical University, Beijing, 100069, China
| | - Jinghua Liu
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Capital Medical University, Beijing, 100069, China
| | - Qian Fan
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
16
|
Yin N, Zhao X, Yang J, Liu Z. Exploring the mechanism of pachymic acid intervention in myocardial ischemia based on network pharmacology and experimental validation. J Pharm Pharmacol 2025:rgae153. [PMID: 39756428 DOI: 10.1093/jpp/rgae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025]
Abstract
OBJECTIVES To deeply explore the mechanism of pachymic acid (PA) intervention in myocardial ischemia, providing new ideas and methods for the treatment of myocardial ischemia. METHODS Predict the targets of PA for improving myocardial ischemia, and conduct functional enrichment analysis using databases, such as Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Reactome. To verify these findings, PPI network topology analysis and molecular docking were used to screen key targets and main mechanisms of action and further validated through in vitro experiments on the H9C2 cell line. KEY FINDINGS PA can significantly alleviate myocardial damage caused by hypoxia/reoxygenation, effectively reversing the abnormalities of oxidative stress indicators such as LDH, MDA, SOD, and ROS. PA may exert its effects through 39 targets, particularly by regulating the downregulation of autophagy-related proteins LC3-II and Beclin-1 expression via MTOR, thereby inhibiting excessive autophagy in cardiomyocytes. CONCLUSIONS PA protects myocardial cells during myocardial ischemia through various pathways, particularly by regulating mTOR to inhibit excessive autophagy.
Collapse
Affiliation(s)
- Nengpin Yin
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuan Zhao
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jin Yang
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zongjun Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
Liu W, Hu J, Wang Y, Gan T, Ding Y, Wang X, Xu Q, Xiong J, Xiong N, Lu S, Wang Y, Wang Z. 9-PAHSA ameliorates microvascular damage during cardiac ischaemia/reperfusion injury by promoting LKB1/AMPK/ULK1-mediated autophagy-dependent STING degradation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156241. [PMID: 39579609 DOI: 10.1016/j.phymed.2024.156241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/25/2024] [Accepted: 11/07/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Considering that cardiac microvascular injury may play a more critical role than cardiomyocyte injury in the pathology of early ischaemia/reperfusion (I/R) injury, therapeutic strategies targeting the microvasculature are highly desirable. Palmitic acid-9-hydroxystearic acid (9-PAHSA) is a new class of bioactive anti-inflammatory lipids widely distributed in vegetables, fruits and medicinal plants, especially broccoli and apple. However, the pharmacological effects and underlying mechanisms of 9-PAHSA in protecting- against cardiac microvascular I/R injury have rarely been studied. PURPOSE This study aimed to explore the potential effects and molecular mechanisms of 9-PAHSA on the coronary microvasculature after cardiac I/R injury. METHODS Immunofluorescence staining, western blotting, and other experimental methods were used to evaluate the role and mechanism of 9-PAHSA in cardiac microvascular I/R injury in vivo and in vitro. RESULTS 9-PAHSA administration significantly attenuated myocardial I/R-induced microvascular damage, as indicated by an impaired microvascular structure, reduced regional blood perfusion and decreased endothelial barrier function. In addition, 9-PAHSA administration protected the structure and function of coronary artery endothelial cells (CMECs) to resist I/R damage, an effect that was at least partially mediated by increased autophagy. Mechanistically, 9-PAHSA activated autophagy through the LKB1/AMPK/ULK1 pathway and promoted STING degradation via the autophagic‒lysosomal pathway. CONCLUSIONS To our best knowledge, this study is the first to report that 9-PAHSA attenuates cardiac microvascular I/R injury, potentially by activating LKB1/AMPK/ULK1-mediated autophagy-dependent STING degradation to suppress apoptosis. Thus, 9-PAHSA may be a promising therapeutic option for alleviating cardiac microvascular I/R injury.
Collapse
Affiliation(s)
- Wenhu Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Hu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Ya Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Gan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Ding
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuehua Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Xu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjie Xiong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ni Xiong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Lu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhaohui Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
18
|
Wang Q, Liu X, Yuan J, Yang T, Ding L, Song B, Xu Y. Nek6 regulates autophagy through the mTOR signaling pathway to alleviate cerebral ischemia-reperfusion injury. Mol Brain 2024; 17:96. [PMID: 39702325 DOI: 10.1186/s13041-024-01166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
OBJECTIVE Cerebral ischemia-reperfusion injury (CIRI) is a major obstacle to neurological recovery after clinical treatment of ischemic stroke. The aim of this study was to investigate the molecular mechanism of Nek6 alleviating CIRI through autophagy after cerebral ischemia. MATERIALS AND METHODS A mouse model of CIRI was constructed by middle cerebral artery occlusion (MCAO). TUNEL staining was used to observe the apoptosis of neuronal cells. The oxygen glucose deprivation/reoxygenation (OGD/R) model was established by hypoxia and reoxygenation. The cell apoptosis and activity was detected. Western blot was performed to detect the expression of autophagy-related proteins, protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and adenosine 5'-monophosphate-activated protein kinase (AMPK)/mTOR signaling pathway-related proteins. Cellular autophagy flux was observed by fluorometric method. NIMA-related kinase 6 (Nek6) mRNA stability was detected by actinomycin D treatment. Methylation RNA immunoprecipitation technique was used to detect Nek6 methylation level. RESULTS Nek6 expression was increased in both MCAO and OGD/R models. Overexpression of Nek6 in OGD/R inhibited apoptosis, decreased LC3II and Beclin-1 expression, increased p62 expression, and occurred lysosome dysfunction. Interference with Nek6 has opposite results. Nek6 overexpression promoted p-Akt and p-mTOR protein expressions, inhibited p-AMPK and p-UNC-51-like kinase 1 protein expressions and cell apoptosis, while LY294002, Rapamycin or RSVA405 treatment reversed this effect. Abnormal methyltransferase·like protein 3 (METTL3) expression in CIRI enhanced m6A modification and promoted Nek6 expression level. CONCLUSION This study confirmed that Nek6 regulates autophagy and alleviates CIRI through the mTOR signaling pathway, which provides a novel therapeutic strategy for patients with ischemic stroke in the future.
Collapse
Affiliation(s)
- Qingzhi Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jian-She Road, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, China
| | - Xinjing Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jian-She Road, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, China
| | - Jing Yuan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jian-She Road, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, China
| | - Ting Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jian-She Road, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, China
| | - Lan Ding
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jian-She Road, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, China
| | - Bo Song
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jian-She Road, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jian-She Road, Zhengzhou, 450052, Henan, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, China.
| |
Collapse
|
19
|
Duan Q, Yang W, Zhu X, Feng Z, Song J, Xu X, Kong M, Mao J, Shen J, Deng Y, Tao R, Xu H, Chen W, Li W, Dong A, Han J. Deptor protects against myocardial ischemia-reperfusion injury by regulating the mTOR signaling and autophagy. Cell Death Discov 2024; 10:508. [PMID: 39702468 DOI: 10.1038/s41420-024-02263-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/29/2023] [Accepted: 12/05/2024] [Indexed: 12/21/2024] Open
Abstract
Deptor knockout mice were constructed by crossing Deptor Floxp3 mice with myh6 Cre mice, establishing a myocardial ischemia-reperfusion (I/R) model. Deptor knockout mice exhibited significantly increased myocardial infarction size and increased myocardial apoptosis in vivo. ELISA analysis indicated that the expression of CK-MB, LDH, and CtnT/I was significantly higher in the Deptor knockout mice. Deptor siRNA significantly reduced cell activity and increased myocardial apoptosis after I/R-induced in vitro. Deptor siRNA also significantly up-regulated the expression of p-mTOR, p-4EBP1, and p62, and down-regulated the expression of LC3 after I/R induction. Immunofluorescence indicated that LC3 dual fluorescence was weakened by Deptor knockout, and was enhanced after transfection with Deptor-overexpression plasmids. Treatment with OSI027, a co-inhibitor of mTORC1 and mTORC2, in either Deptor knockout mice or Deptor knockout H9C2 cells, resulted in a significant reduction in infarction size and apoptotic cardiomyocytes. ELISA analysis also showed that the expression of CK-MB, LDH, and CtnT/I were significantly down-regulated by treatment with OSI027. CCK-8 cell viability indicated that cell viability was enhanced, and the number of apoptotic cells was decreased in vitro following treatment with OSI027. These results revealed that OSI027 exerts a protective effect on myocardial ischemia/reperfusion injury in both an in vivo and in an in vitro model of I/R. These findings demonstrate that Deptor protects against I/R-induced myocardial injury by inhibiting the mTOR pathway and by increasing autophagy.
Collapse
Affiliation(s)
- Qunjun Duan
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weijun Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xian Zhu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhanzeng Feng
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiangwei Song
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaobin Xu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Minjian Kong
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiayan Mao
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jian Shen
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yuqin Deng
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Rujia Tao
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hongfei Xu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Chen
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Weidong Li
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Aiqiang Dong
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Jie Han
- Department of Cardiology and Atrial Fibrillation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
20
|
Zheng XB, Wang C, Zhang M, Yao BQ, Wu HY, Hou SX. Exogenous H 2S targeting PI3K/AKT/mTOR pathway alleviates chronic intermittent hypoxia-induced myocardial damage through inhibiting oxidative stress and enhancing autophagy. Sleep Breath 2024; 29:43. [PMID: 39627628 DOI: 10.1007/s11325-024-03216-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/16/2024] [Accepted: 11/22/2024] [Indexed: 03/26/2025]
Abstract
AIMS Hydrogen sulfide (H2S) is a novel gas signaling molecule that has been researched in several physiological and pathological conditions, indicating that strategies targeting H2S may provide clinical benefits in diseases such as chronic cardiomyopathy. Here, we reveal the effect of H2S on chronic intermittent hypoxia (CIH)-related myocardial damage and its mechanistic relevance to phosphoinositol-3 kinase (PI3K). MATERIALS Mice were subjected to a 4-week CIH process to induce myocardial damage, which was accompanied by daily administration of NaHS (a H2S donor) and LY294002 (an inhibitor of PI3K). Changes in heart function were evaluated via echocardiography. Histological examination was applied to assess heart tissue lesions. Myocardial apoptosis was detected by TUNEL staining and apoptosis-associated protein expression. Furthermore, the effects of NaHS on autophagy and the PI3K/AKT/mTOR pathway were investigated. Finally, the level of inflammation is also affected by related proteins. KEY FINDINGS The CIH group presented increased myocardial dysfunction and heart tissue lesions. Echocardiography and histological analysis revealed that, compared with control mice, CIH-treated mice presented significantly more severe left ventricular remodeling and decreased myocardial contractile function. In addition, the apoptosis index and oxidative markers were significantly elevated in the CIH group compared with those in the control group. The autophagy marker Beclin-1 was decreased, while p62 was elevated by CIH treatment. H2S supplementation with NaHS significantly improved cardiac function and alleviated fibrosis, oxidative stress, and apoptosis but upregulated autophagy in CIH mice, and these effects were also observed in animals that underwent only PI3K blockade. Furthermore, PI3K/AKT pathway-mediated inhibition of the mammalian target of rapamycin (mTOR) pathway, the Nrf2/HO-1 pathway and proinflammatory NF-κB activity were shown to play a role in the therapeutic effect of NaHS after CIH stimulation.
Collapse
Affiliation(s)
- Xiao-Bin Zheng
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan City, 030000, China.
| | - Chao Wang
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan City, 030000, China
| | - Ming Zhang
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan City, 030000, China
| | - Bing-Qi Yao
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan City, 030000, China
| | - Hai-Yan Wu
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan City, 030000, China
| | - Shu-Xian Hou
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan City, 030000, China
| |
Collapse
|
21
|
Li H, Ye Z, Zheng G, Su Z. Polysaccharides targeting autophagy to alleviate metabolic syndrome. Int J Biol Macromol 2024; 283:137393. [PMID: 39521230 DOI: 10.1016/j.ijbiomac.2024.137393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/25/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Metabolic syndrome is a prevalent non-communicable disease characterized by central obesity, insulin resistance, hypertension, hyperglycemia, and hyperlipidemia. Epidemiological statistics indicate that one-third of the world's population is affected by metabolic syndrome. Unfortunately, owing to complicated pathogenesis and limited pharmacological options, the growing prevalence of metabolic syndrome threatens human health worldwide. Autophagy is an intracellular degradation mechanism that involves the degradation of unfolded or aggregated proteins and damaged cellular organelles, thereby maintaining metabolic homeostasis. Increasing evidence indicates that dysfunctional autophagy is closely associated with the development of metabolic syndrome, making it an attractive therapeutic target. Furthermore, a growing number of plant-derived polysaccharides have been shown to regulate autophagy, thereby alleviating metabolic syndrome, such as Astragalus polysaccharides, Laminaria japonica polysaccharides, Ganoderma lucidum polysaccharides and Lycium barbarum polysaccharides. In this review, we summarize recent advances in the discovery of autophagy modulators of plant polysaccharides for the treatment of metabolic syndrome, with the aim of providing precursor compounds for the development of new therapeutic agents. Additionally, we look forward to seeing more diseases being treated with plant polysaccharides by regulating autophagy, as well as the discovery of more intricate mechanisms that govern autophagy.
Collapse
Affiliation(s)
- Hongxia Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zeting Ye
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangjuan Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zuqing Su
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
22
|
Shi Y, Zhong Y, Long J, Chen S, Wang C. Fuzi Polysaccharide Isolated from Aconitum Carmichaeli Protects Against Liquid Nitrogen Cryopreservation-Induced Damage in Rat Abdominal Aorta by Enhancing Autophagy. Ann Vasc Surg 2024; 116:45-54. [PMID: 39608450 DOI: 10.1016/j.avsg.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND To investigate the potential protective mechanisms of aconite polysaccharide (fuzi polysaccharide [FZPS-1]) during cryopreservation, with a particular emphasis on morphological changes in autophagy in rat abdominal aorta. METHODS Thirty-six male standard deviation rats were divided into the control group, the cryopreserved model group, and the FZPS-1 intervention group treated with different concentrations of FZPS-1. The structural changes of the abdominal aortic wall were assessed via Masson staining, while cytolysosomes were identified using transmission electron microscope (TEM). The expression of Beclin-1, microtubule-associated protein 1A/1B-light chain 3 (LC3)-II, and P62 was detected by immunohistochemistry and western blot separately. Bcl-2 and Bax messenger RNA (mRNA) expression was measured by RT-qPCR. RESULTS Compared with the control group, the abdominal aortic wall in the model group was severely damaged. Contrarily, FZPS-1 10 mg/mL and 20 mg/mL groups had relatively normal structure of the blood vessel wall, higher cytolysosome counts, and increased Beclin-1 and LC3-II expression compared with the model group (all P < 0.05); P62 expression also increased in the FZPS-1 20 mg/mL group (P < 0.05). Compared with the control group, the mRNA expression of Bcl-2 in the cryopreservation model group was reduced (P < 0.05), while Bax was increased (P < 0.05). Compared with the cryopreservation model group, the mRNA expression of Bcl-2 was upregulated, while Bax was downregulated in the farnesyl pyrophosphate synthase 10 mg/L group (P < 0.05). CONCLUSION During liquid nitrogen cryopreservation, autophagy is inhibited in the rat abdominal aorta, and the blood vessel wall structure is damaged. FZPS-1, as a cryoprotectant, can enhance autophagy and mitigate blood vessel wall damage in the rat abdominal aorta.
Collapse
Affiliation(s)
- Yehong Shi
- The Fifth Affiliated (Zhuhai) Hospital of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Yujia Zhong
- The Fifth Affiliated (Zhuhai) Hospital of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Jundong Long
- The Fifth Affiliated (Zhuhai) Hospital of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Shijiu Chen
- The Fifth Affiliated (Zhuhai) Hospital of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Cheng Wang
- The Fifth Affiliated (Zhuhai) Hospital of Zunyi Medical University, Zhuhai, Guangdong, China.
| |
Collapse
|
23
|
Fang L, Yu Z, Qian X, Fang H, Wang Y. LDHA exacerbates myocardial ischemia-reperfusion injury through inducing NLRP3 lactylation. BMC Cardiovasc Disord 2024; 24:651. [PMID: 39548367 PMCID: PMC11568565 DOI: 10.1186/s12872-024-04251-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/10/2024] [Indexed: 11/17/2024] Open
Abstract
Myocardial ischemia-reperfusion (I/R) injury caused by revascularization treatment is the leading cause of cardiac damage aggravation in ischemic heart disease. Increasing evidence has unraveled the crucial role of pyroptosis in myocardial I/R injury. Of note, lactylation has been validated to be participated in modulating pyroptosis. Hence, this study was aimed to elaborate the potential and mechanism of lactylation in myocardial I/R damage. We established the cell model of I/R through inducing hypoxia/reoxygenation (H/R) of H9c2 cells. It was uncovered that H/R stimulation drove cardiomyocyte pyroptosis and upregulated total lactylation level. Further, we demonstrated that promoting lactylation contributed to H/R-evoked pyroptosis, whereas silencing LDHA led to the opposite results. More than that, LDHA was confirmed to facilitate lactylation of NLRP3 at K245 site and increase its protein stability. Our findings indicated that activation of NLRP3 abolished the function of LDHA deficiency in H/R-treated H9c2 cells. In concert with the aforementioned outcomes, knockout of LDHA attenuated the infarct size and myocardial damage in I/R mice and upregulation of NLRP3 counteracted the effects of LDHA knockout on I/R-evoked injury in vivo. To summarize, the current research provided persuasive evidence that LDHA promoted myocardial I/R damage via enhancing NLRP3 lactylation to induce cardiomyocyte pyroptosis.
Collapse
Affiliation(s)
- Lixiang Fang
- The First People's Hospital of Chun'an County (Chun'an Branch of Zhejiang Provincial People's Hospital), Chun'an County, 1869 Huanhu North Road, Qiandao Lake Town, Zhejiang, 311700, China
| | - Zhenfei Yu
- Department of Intens Care Unit, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453, Stadium Road, Hangzhou, Zhejiang, 310007, China
| | - Xiaoling Qian
- Department of Intens Care Unit, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453, Stadium Road, Hangzhou, Zhejiang, 310007, China
| | - Huiqin Fang
- The First People's Hospital of Chun'an County (Chun'an Branch of Zhejiang Provincial People's Hospital), Chun'an County, 1869 Huanhu North Road, Qiandao Lake Town, Zhejiang, 311700, China
| | - Yakun Wang
- Department of Intens Care Unit, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453, Stadium Road, Hangzhou, Zhejiang, 310007, China.
| |
Collapse
|
24
|
Kan H, Wang P, Yang Y, Jia H, Liu A, Wang M, Ouyang C, Yang X. Apigenin inhibits proliferation and differentiation of cardiac fibroblasts through AKT/GSK3β signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118518. [PMID: 38964628 DOI: 10.1016/j.jep.2024.118518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia miltiorrhiza Bunge (S. miltiorrhiza) is an important Traditional Chinese herbal Medicine (TCM) used to treat cardio-cerebrovascular diseases. Based on the pharmacodynamic substance of S. miltiorrhiza, the aim of present study was to investigate the underlying mechanism of S. miltiorrhiza against cardiac fibrosis (CF) through a systematic network pharmacology approach, molecular docking and dynamics simulation as well as experimental investigation in vitro. MATERIALS AND METHODS A systematic pharmacological analysis was conducted using the Traditional Chinese Medicine Pharmacology (TCMSP) database to screen the effective chemical components of S. miltiorrhiza, then the corresponding potential target genes of the compounds were obtained by the Swiss Target Prediction and TCMSP databases. Meanwhile, GeneCards, DisGeNET, OMIM, and TTD disease databases were used to screen CF targets, and a protein-protein interaction (PPI) network of drug-disease targets was constructed on S. miltiorrhiza/CF targets by Search Tool for the Retrieval of Interacting Genes/Proteins (STING) database. After that, the component-disease-target network was constructed by software Cytoscape 3.7. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed for the intersection targets between drug and disease. The relationship between active ingredient of S. miltiorrhiza and disease targets of CF was assessed via molecular docking and molecular dynamics simulation. Subsequently, the underlying mechanism of the hub compound on CF was experimentally investigated in vitro. RESULTS 206 corresponding targets to effective chemical components from S. miltiorrhiza were determined, and among them, there were 82 targets that overlapped with targets of CF. Further, through PPI analysis, AKT1 and GSK3β were the hub targets, and which were both enriched in the PI3K/AKT signaling pathway, it was the sub-pathways of the lipid and atherosclerosis pathway. Subsequently, compound-disease-genes-pathways diagram is constructed, apigenin (APi) was a top ingredients and AKT1 (51) and GSK3β (22) were the hub genes according to the degree value. The results of molecular docking and dynamics simulation showed that APi has strong affinities with AKT and GSK3β. The results of cell experiments showed that APi inhibited cells viability, proliferation, proteins expression of α-SMA and collagen I/III, phosphorylation of AKT1 and GSK3β in MCFs induced by TGFβ1. CONCLUSION Through a systematic network pharmacology approach, molecular docking and dynamics simulation, and confirmed by in vitro cell experiments, these results indicated that APi interacts with AKT and GSK3β to disrupt the phosphorylation of AKT and GSK3β, thereby inhibiting the proliferation and differentiation of MCFs induced by TGFβ1, which providing new insights into the pharmacological mechanism of S. miltiorrhiza in the treatment of CF.
Collapse
Affiliation(s)
- Hongshuang Kan
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, 437100, China.
| | - Pengyu Wang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, 437100, China.
| | - Yayuan Yang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, 437100, China.
| | - Hongyu Jia
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, 437100, China.
| | - Aimei Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Miao Wang
- Department of Cardiovascular Medicine, Xian Ning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xian'an District, Xian Ning City, Hubei Province, China.
| | - Changhan Ouyang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Xiaosong Yang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China; School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, 437100, China.
| |
Collapse
|
25
|
Zhang Q, Zhang Y, Guo S, Wang X, Wang H. Hydrogen sulfide plays an important role by regulating microRNA in different ischemia-reperfusion injury. Biochem Pharmacol 2024; 229:116503. [PMID: 39179120 DOI: 10.1016/j.bcp.2024.116503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/28/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
MicroRNAs (miRNAs) are the short endogenous non-coding RNAs that regulate the expression of the target gene at posttranscriptional level through degrading or inhibiting the specific target messenger RNAs (mRNAs). MiRNAs regulate the expression of approximately one-third of protein coding genes, and in most cases inhibit gene expression. MiRNAs have been reported to regulate various biological processes, such as cell proliferation, apoptosis and differentiation. Therefore, miRNAs participate in multiple diseases, including ischemia-reperfusion (I/R) injury. Hydrogen sulfide (H2S) was once considered as a colorless, toxic and harmful gas with foul smelling. However, in recent years, it has been discovered that it is the third gas signaling molecule after carbon monoxide (CO) and nitric oxide (NO), with multiple important biological functions. Increasing evidence indicates that H2S plays a vital role in I/R injury through regulating miRNA, however, the mechanism has not been fully understood. In this review, we summarized the current knowledge about the role of H2S in I/R injury by regulating miRNAs, and analyzed its mechanism in detail.
Collapse
Affiliation(s)
- Qi Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yanting Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xiao Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
26
|
Wang K, Zhou Y, Wen C, Du L, Li L, Cui Y, Luo H, Liu Y, Zeng L, Li S, Xiong L, Yue R. Protective effects of tetramethylpyrazine on myocardial ischemia/reperfusion injury involve NLRP3 inflammasome suppression by autophagy activation. Biochem Pharmacol 2024; 229:116541. [PMID: 39284501 DOI: 10.1016/j.bcp.2024.116541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 09/21/2024]
Abstract
Tetramethylpyrazine (TMP) belongs to the active ingredients of the traditional Chinese medicine Chuanxiong, which has a certain protective effect in myocardial ischemia-reperfusion (I/R) injury. It can improve postoperative cardiac function and alleviate ventricular remodeling in acute myocardial infarction patients. However, its specific protective mechanism is still unclear. In this study, a certain concentration of TMP was introduced into I/R mice or H9C2 cells after oxygen-glucose deprivation/reoxygenation (OGD/R) treatment to observe the effects of TMP on cardiomyocyte activity, cytotoxicity, apoptosis, autophagy, pyroptosis, and NLRP3 inflammasome activation. The results displayed that TMP intervention could reduce OGD/R and I/R-induced cardiomyocyte apoptosis, accelerate cellular activity and autophagy levels, and ameliorate myocardial tissue necrosis in I/R mice in a dose-dependent manner. Further, TMP prevented the formation of NLRP3 inflammasomes to suppress pyroptosis by increasing the level of cardiomyocyte autophagy after I/R and OGD/R modelling, the introduction of chloroquine to suppress autophagic activity in vivo and in vitro was further analyzed to confirm whether TMP inhibits NLRP3 inflammasome activation and pyroptosis by increasing autophagy, and we found the inhibitory effect of TMP on NLRP3 inflammasomes and its protective effect against myocardial injury were blocked when autophagy was inhibited with chloroquine. In conclusion, this experiment demonstrated that TMP unusually attenuated I/R injury in mice, and this protective effect was achieved by inhibiting the activation of NLRP3 inflammasomes through enhancing autophagic activity.
Collapse
Affiliation(s)
- Kun Wang
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China.
| | - Yang Zhou
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China.
| | - Cong Wen
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China.
| | - Linqin Du
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China.
| | - Lan Li
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China.
| | - Yangyang Cui
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China.
| | - Hao Luo
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China.
| | - Yanxu Liu
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China.
| | - Lang Zeng
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China.
| | - Shikang Li
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China.
| | - Lijuan Xiong
- Department of Cardiology, People's Hospital of Guang'an District, Guang'an 638550, China.
| | - Rongchuan Yue
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Department of Cardiology, People's Hospital of Guang'an District, Guang'an 638550, China.
| |
Collapse
|
27
|
Zheng X, Wang Y, Gong X, Chen W, Zheng W, Chen T. Quercetin activates autophagy in the distal ischemic area of random skin flaps through Beclin1 to enhance the adaptability to energy deficiency. Heliyon 2024; 10:e38181. [PMID: 39497976 PMCID: PMC11533565 DOI: 10.1016/j.heliyon.2024.e38181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 11/07/2024] Open
Abstract
Random flaps are frequently employed in treating substantial skin abnormalities and in surgical tissue-rebuilding interventions. The random flap technique provides flaps of specific dimensions and contours to fit the surgical incision. However, blood supply deficiency and subsequent ischemia-reperfusion injury can cause severe oxidative stress and apoptosis, eventually leading to distal necrosis, which limits the clinical application of the flap. Quercetin (QUE) is primarily found in the glycoside form in many plant parts, such as stem bark, flowers, leaves, buds, seeds, and fruits. Cellular, animal, and clinical studies have demonstrated the antioxidant, anti-apoptosis, anti-inflammatory, and activation of autophagy properties of QUE. In previous studies, high doses of QUE effectively suppressed the survival of human umbilical vein endothelial cells (HUVECs) stimulated by hydrogen peroxide. However, different concentration gradients of QUE on HUVECs revealed a significant protective effect at a concentration of 10 mM. The protective impact of QUE on HUVECs was evaluated using scratch tests, CCK-8 assays, and EDU assays. Simultaneously, a mouse model of random skin flap was created, and the impact of QUE on skin flap survival was examined by intragastric injection. The QUE group showed a significantly larger survival area of the random flap and higher blood flow intensity compared to the control group. Furthermore, the beneficial effects of QUE were reversed by the autophagy inhibitor 3-MA. Therefore, autophagy plays a significant role in the therapeutic benefits of QUE on flap survival.
Collapse
Affiliation(s)
- Xin Zheng
- Department of Orthopedics, Municipal Hospital Affiliated to Taizhou University, Zhejiang, Taizhou, 318000, China
| | - Yiyu Wang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Zhejiang Taizhou, 318000, China
| | - Xiaokang Gong
- Department of Orthopedics, Municipal Hospital Affiliated to Taizhou University, Zhejiang, Taizhou, 318000, China
| | - Weijie Chen
- Department of Orthopedics, Municipal Hospital Affiliated to Taizhou University, Zhejiang, Taizhou, 318000, China
| | - Wenbiao Zheng
- Department of Orthopedics, Municipal Hospital Affiliated to Taizhou University, Zhejiang, Taizhou, 318000, China
| | - Tao Chen
- Department of Orthopedics, Municipal Hospital Affiliated to Taizhou University, Zhejiang, Taizhou, 318000, China
| |
Collapse
|
28
|
Han X, Jiang Z, Hou Y, Zhou X, Hu B. Myocardial ischemia-reperfusion injury upregulates nucleostemin expression via HIF-1α and c-Jun pathways and alleviates apoptosis by promoting autophagy. Cell Death Discov 2024; 10:461. [PMID: 39477962 PMCID: PMC11525682 DOI: 10.1038/s41420-024-02221-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 10/06/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Myocardial ischemia-reperfusion (I/R) injury, often arising from interventional therapy for acute myocardial infarction, leads to irreversible myocardial cell death. While previous studies indicate that nucleostemin (NS) is induced by myocardial I/R injury and mitigates myocardial cell apoptosis, the underlying mechanisms are poorly understood. Here, our study reveals that NS upregulation is critical for preventing cardiomyocyte death following myocardial I/R injury. Elevated NS protein levels were observed in myocardial I/R injury mouse and rat models, as well as Hypoxia/reoxygenation (H/R) cardiac cell lines (H9C2 cells). We identified binding sites for c-Jun and HIF-1α in the NS promoter region. Inhibition of JNK and HIF-1α led to a significant decrease in NS transcription and protein expression. Furthermore, inhibition of autophagy and NS expression promoted myocardial cell apoptosis in H/R. Notably, the cell model showed reduced LC3I transformation to LC3II, downregulated Beclin1, upregulated p62, and altered expression of autophagy-related proteins upon NS interference in H/R cells. These findings suggest that NS expression, driven by c-Jun and HIF-1α pathways, facilitates autophagy, providing protection against both myocardial I/R injury and H/R-induced cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Xiao Han
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University & Department of Immunology, Medical School of Nantong University, Nantong, 226001, People's Republic of China
| | - Zhicheng Jiang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University & Department of Immunology, Medical School of Nantong University, Nantong, 226001, People's Republic of China
| | - Yufeng Hou
- Department of Immunology, Medical School of Nantong University, Nantong, 226001, People's Republic of China
| | - Xiaorong Zhou
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University & Department of Immunology, Medical School of Nantong University, Nantong, 226001, People's Republic of China.
- Department of Immunology, Medical School of Nantong University, Nantong, 226001, People's Republic of China.
| | - Baoying Hu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University & Department of Immunology, Medical School of Nantong University, Nantong, 226001, People's Republic of China.
- Department of Immunology, Medical School of Nantong University, Nantong, 226001, People's Republic of China.
| |
Collapse
|
29
|
Liao D, He Y, He B, Zeng S, Cui Y, Li C, Huang H. Inhibiting SNX10 induces autophagy to suppress invasion and EMT and inhibits the PI3K/AKT pathway in cervical cancer. Clin Transl Oncol 2024:10.1007/s12094-024-03715-x. [PMID: 39367898 DOI: 10.1007/s12094-024-03715-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/02/2024] [Indexed: 10/07/2024]
Abstract
PURPOSE Cervical cancer (CC) is a prevalent malignancy among women with high morbidity and poor prognosis. Sorting nexin 10 (SNX10) is a newly recognized cancer regulatory factor, while its action on CC progression remains elusive. Hence, this study studied the effect of SNX10 on CC development and investigated the mechanism. METHODS The SNX10 level in CC and the overall survival of CC cases with different SNX10 expressions were determined by bioinformatics analysis in GEPIA. The SNX10 expression in tumor tissues and clinical significance were studied in 64 CC cases. The overall survival was assessed using Kaplan-Meier analysis. The formation of LC3 was evaluated using immunofluorescence. Cell invasion was measured using the Transwell assay. Epithelial-to-mesenchymal transition (EMT) was determined by observing cell morphology and assessing EMT marker levels. A xenograft tumor was constructed to evaluate tumor growth. RESULTS SNX10 was elevated in CC tissues and cells, and the CC cases with high SNX10 levels exhibited poor overall survival. Besides, SNX10 correlated with the FIGO stage, lymph node invasion, and stromal invasion of CC. SNX10 silencing induced CC cell autophagy and suppressed CC cell invasion and EMT. Meanwhile, silenced SNX10 could suppress invasion and EMT via inducing autophagy. Furthermore, SNX10 inhibition suppressed the PI3K/AKT pathway. Moreover, silenced SNX10 restrained the tumor growth, autophagy, and EMT of CC in vivo. CONCLUSION SNX10 was enhanced in CC and correlated with poor prognosis. Silenced SNX10 induced autophagy to suppress invasion and EMT and inhibited the PI3K/AKT pathway in CC, making SNX10 a valuable molecule for CC therapy.
Collapse
Affiliation(s)
- Dan Liao
- Department of Gynaecology, Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, No.1, Huangzhou Xianglong Road of Shilong Town, Dongguan, 523326, Guangdong, China.
| | - Yanxian He
- Department of Gynaecology, Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, No.1, Huangzhou Xianglong Road of Shilong Town, Dongguan, 523326, Guangdong, China
| | - Bin He
- Clinical Translational Medical Center, Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Saitian Zeng
- Department of Gynaecology, Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, No.1, Huangzhou Xianglong Road of Shilong Town, Dongguan, 523326, Guangdong, China
| | - Yejia Cui
- Department of Clinical Laboratory, Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Cuifen Li
- Department of Gynaecology, Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, No.1, Huangzhou Xianglong Road of Shilong Town, Dongguan, 523326, Guangdong, China
| | - Haohai Huang
- Clinical Translational Medical Center, Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, Guangdong, China.
- Department of Clinical Pharmacy, Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, No.1, Huangzhou Xianglong Road of Shilong Town, Dongguan, 523326, Guangdong, China.
| |
Collapse
|
30
|
Ji YW, Wen XY, Tang HP, Jin ZS, Su WT, Zhou L, Xia ZY, Xia ZY, Lei SQ. DJ-1: Potential target for treatment of myocardial ischemia-reperfusion injury. Biomed Pharmacother 2024; 179:117383. [PMID: 39232383 DOI: 10.1016/j.biopha.2024.117383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
Ischemic heart disease (IHD) is a significant global health concern, resulting in high rates of mortality and disability among patients. Although coronary blood flow reperfusion is a key treatment for IHD, it often leads to acute myocardial ischemia-reperfusion injury (IRI). Current intervention strategies have limitations in providing adequate protection for the ischemic myocardium. DJ-1, originally known as a Parkinson's disease related protein, is a highly conserved cytoprotective protein. It is involved in enhancing mitochondrial function, scavenging reactive oxygen species (ROS), regulating autophagy, inhibiting apoptosis, modulating anaerobic metabolism, and exerting anti-inflammatory effects. DJ-1 is also required for protective strategies, such as ischemic preconditioning, ischemic postconditioning, remote ischemic preconditioning and pharmacological conditioning. Therefore, DJ-1 emerges as a potential target for the treatment of myocardial IRI. Our comprehensive review delves into its protective mechanisms in myocardial IRI and the structural foundations underlying its functions.
Collapse
Affiliation(s)
- Yan-Wei Ji
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin-Yu Wen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - He-Peng Tang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhen-Shuai Jin
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wa-Ting Su
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lu Zhou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zheng-Yuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shao-Qing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
31
|
Zhou M, Jia X, Liu H, Xue Y, Wang Y, Li Z, Wu Y, Rui Y. Bibliometric analysis of skeletal muscle ischemia/reperfusion (I/R) research from 1986 to 2022. Heliyon 2024; 10:e37492. [PMID: 39309867 PMCID: PMC11416534 DOI: 10.1016/j.heliyon.2024.e37492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/10/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Tissue damage due to ischemia and reperfusion is a critical medical problem worldwide. Studies in this field have made remarkable advances in understanding the pathogenesis of ischemia/reperfusion (I/R) injury and its treatment with new and known drugs. However, no bibliometric analysis exists in this area of research. Methods Research articles and reviews related to skeletal muscle I/R from 1986 to 2022 were retrieved from the Web of Science Core Collection. Bibliometric analysis was performed using Microsoft Excel 2019, VOSviewer (version 1.6.19), Bibliometrix (R-Tool for R-Studio), and CiteSpace (version 6.1.R5). Results A total of 3682 research articles and reviews from 2846 institutions in 83 countries were considered in this study. Most studies were conducted in the USA. Hobson RW (UMDNJ-New Jersey Medical School) had the highest publication, and Korthuis RJ (Louisiana State University) had the highest co-citations. Our analysis showed that, though the Journal of Surgical Research was most favored, the Journal of Biological Chemistry had the highest number of co-citations. The pathophysiology, interventions, and molecular mechanisms of skeletal muscle I/R injury emerged as the primary research areas, with "apoptosis," "signaling pathway," and "oxidative stress" as the main keywords of research hotspots. Conclusions This study provides a thorough overview of research trends and focal points in skeletal muscle I/R injury by applying bibliometric and visualization techniques. The insights gained from our findings offer a profound understanding of the evolving landscape of skeletal muscle I/R injury research, thereby functioning as a valuable reference and roadmap for future investigations.
Collapse
Affiliation(s)
| | | | | | - Yuan Xue
- Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214000, China
| | - Yapeng Wang
- Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214000, China
| | - Zeqing Li
- Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214000, China
| | - Yongwei Wu
- Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214000, China
| | - Yongjun Rui
- Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214000, China
| |
Collapse
|
32
|
Ma H, Ge Y, Di C, Wang X, Qin B, Wang A, Hu W, Lai Z, Xiong X, Qi R. GQ262 Attenuates Pathological Cardiac Remodeling by Downregulating the Akt/mTOR Signaling Pathway. Int J Mol Sci 2024; 25:10297. [PMID: 39408627 PMCID: PMC11476524 DOI: 10.3390/ijms251910297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiac remodeling, a critical process that can lead to heart failure, is primarily characterized by cardiac hypertrophy. Studies have shown that transgenic mice with Gαq receptor blockade exhibit reduced hypertrophy under induced pressure overload. GQ262, a novel Gαq/11 inhibitor, has demonstrated good biocompatibility and specific inhibitory effects on Gαq/11 compared to other inhibitors. However, its role in cardiac remodeling remains unclear. This study aims to explore the anti-cardiac remodeling effects and mechanisms of GQ262 both in vitro and in vivo, providing data and theoretical support for its potential use in treating cardiac remodeling diseases. Cardiac hypertrophy was induced in mice via transverse aortic constriction (TAC) for 4 weeks and in H9C2 cells through phenylephrine (PE) induction, confirmed with WGA and H&E staining. We found that GQ262 improved cardiac function, inhibited the protein and mRNA expression of hypertrophy markers, and reduced the levels of apoptosis and fibrosis. Furthermore, GQ262 inhibited the Akt/mTOR signaling pathway activation induced by TAC or PE, with its therapeutic effects disappearing upon the addition of the Akt inhibitor ARQ092. These findings reveal that GQ262 inhibits cardiomyocyte hypertrophy and apoptosis through the Akt/mTOR signaling pathway, thereby reducing fibrosis levels and mitigating cardiac remodeling.
Collapse
Affiliation(s)
- Haoyue Ma
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; (H.M.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Yang Ge
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chang Di
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; (H.M.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Xin Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; (H.M.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Boyang Qin
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; (H.M.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Anhui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; (H.M.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Weipeng Hu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; (H.M.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Zirui Lai
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; (H.M.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Xiaofeng Xiong
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Rong Qi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; (H.M.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
33
|
Yang Y, Sun Z, Sun X, Zhang J, Tong T, Zhang X, Yao K. Protective effect of salvianolic acid B against myocardial ischemia/reperfusion injury: preclinical systematic evaluation and meta-analysis. Front Pharmacol 2024; 15:1452545. [PMID: 39323645 PMCID: PMC11422085 DOI: 10.3389/fphar.2024.1452545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024] Open
Abstract
Background Salvianolic acid B is the most abundant water-soluble component in the traditional Chinese medicine Danshen and can reduce myocardial ischemia-reperfusion (MI/R) injury through multiple targets and pathways. However, the role of SalB in protecting the myocardium from ischemia/reperfusion injury remains unclear. Purpose To perform a preclinical systematic review and meta-analysis to assess the efficacy of Sal B in an animal model of myocardial infarction/reperfusion (MI/R) and to summarize the potential mechanisms of Sal B against MI/R. Methods Studies published from inception to March 2024 were systematically searched in PubMed, Web of Science, Embase, China National Knowledge Infrastructure Wanfang, and VIP databases. The methodological quality was determined using the SYRCLE RoB tool. The R software was used to analyze the data. The potential mechanisms are categorized and summarized. Results 32 studies containing 732 animals were included. The results of the meta-analysis showed that Sal B reduced myocardial infarct size (p < 0.01), and the cardiological indices of CK-MB (p < 0.01), CK (p < 0.01), LDH (p < 0.01), and cTnI (p < 0.01) compared to the control group. In addition, Sal B increased cardiac function indices, such as LVFS (p < 0.01), -dp/dt max (p < 0.01), +dp/dt max (p < 0.01), and cardiac output (p < 0.01). The protective effects of Sal B on the myocardium after I/R may be mediated by attenuating oxidative stress and inflammation, promoting neovascularization, regulating vascular function, and attenuating cardiac myocyte apoptosis. Publication bias was observed in all the included studies. Further studies are required to elucidate the extent of the cardioprotective effects of SalB and the safety of its use. Conclusion To the best of our knowledge, this is the first meta-analysis of Sal B in the treatment of MI/R injury, and Sal B demonstrated a positive effect on MI/R injury through the modulation of key pathological indicators and multiple signaling pathways. Further studies are needed to elucidate the extent to which SalB exerts its cardioprotective effects and the safety of its use. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/.
Collapse
Affiliation(s)
- Yuhan Yang
- Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ziyi Sun
- Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoning Sun
- Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jin Zhang
- Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tong Tong
- Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoxiao Zhang
- Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kuiwu Yao
- Academic Management Service, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
34
|
Mohamud Yusuf A, Borbor M, Hussner T, Weghs C, Kaltwasser B, Pillath-Eilers M, Walkenfort B, Kolesnick R, Gulbins E, Hermann DM, Brockmeier U. Acid sphingomyelinase inhibition induces cerebral angiogenesis post-ischemia/reperfusion in an oxidative stress-dependent way and promotes endothelial survival by regulating mitochondrial metabolism. Cell Death Dis 2024; 15:650. [PMID: 39231943 PMCID: PMC11374893 DOI: 10.1038/s41419-024-06935-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 09/06/2024]
Abstract
Acid sphingomyelinase (ASM) inhibitors are widely used for the treatment of post-stroke depression. They promote neurological recovery in animal stroke models via neurorestorative effects. In a previous study, we found that antidepressants including amitriptyline, fluoxetine, and desipramine increase cerebral angiogenesis post-ischemia/reperfusion (I/R) in an ASM-dependent way. To elucidate the underlying mechanisms, we investigated the effects of the functional ASM inhibitor amitriptyline in two models of I/R injury, that is, in human cerebral microvascular endothelial hCMEC/D3 cells exposed to oxygen-glucose deprivation and in mice exposed to middle cerebral artery occlusion (MCAO). In addition to our earlier studies, we now show that amitriptyline increased mitochondrial reactive oxygen species (ROS) formation in hCMEC/D3 cells and increased ROS formation in the vascular compartment of MCAO mice. ROS formation was instrumental for amitriptyline's angiogenic effects. ROS formation did not result in excessive endothelial injury. Instead, amitriptyline induced a profound metabolic reprogramming of endothelial cells that comprised reduced endothelial proliferation, reduced mitochondrial energy metabolism, reduced endoplasmic reticulum stress, increased autophagy/mitophagy, stimulation of antioxidant responses and inhibition of apoptotic cell death. Specifically, the antioxidant heme oxygenase-1, which was upregulated by amitriptyline, mediated amitriptyline's angiogenic effects. Thus, heme oxygenase-1 knockdown severely compromised angiogenesis and abolished amitriptyline's angiogenic responses. Our data demonstrate that ASM inhibition reregulates a complex network of metabolic and mitochondrial responses post-I/R that contribute to cerebral angiogenesis without compromising endothelial survival.
Collapse
Affiliation(s)
- Ayan Mohamud Yusuf
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mina Borbor
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tanja Hussner
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Carolin Weghs
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Britta Kaltwasser
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Matthias Pillath-Eilers
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bernd Walkenfort
- Imaging Center Essen (Electron Microscopy), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | | | - Erich Gulbins
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Ulf Brockmeier
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
35
|
Yu Z, Teng Y, Yang H, Wang Y, Li X, Feng L, Xu W, Hao Y, Li Y. Inhibiting H2AX Can Ameliorate Myocardial Ischemia/Reperfusion Injury by Regulating P53/JNK Signaling Pathway. Cardiol Res Pract 2024; 2024:1905996. [PMID: 39257436 PMCID: PMC11387088 DOI: 10.1155/2024/1905996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/13/2024] [Indexed: 09/12/2024] Open
Abstract
Myocardial ischemia-reperfusion (I/R) injury is a significant area of focus in cardiovascular disease research. I/R injury can increase intracellular oxidative stress, leading to DNA damage. H2AX plays a crucial role in DNA repair. This study utilized mouse and cell models of myocardial I/R to investigate the impact of H2AX on cardiomyocytes during I/R. This study initially assessed the expression of H2AX in MI/R mice compared to a sham surgery group. Subsequently, cardiac function, infarct area, and mitochondrial damage were evaluated after inhibiting H2AX in MI/R mice and a negative control group. Furthermore, the study delved into the molecular mechanisms by analyzing the expression of H2AX, P53, p-JNK, SHP2, p-SHP2, p-RAS, parkin, Drp1, Cyt-C, Caspase-3, and Caspase-8 in cardiomyocytes following the addition of JNK or P53 agonists. The results from western blotting in vivo indicated significantly higher H2AX expression in the MI/R group compared to the sham group. Inhibiting H2AX improved cardiac function, reduced myocardial infarct area, and mitigated mitochondrial damage in the MI/R group. In vitro experiments demonstrated that inhibiting H2AX could attenuate mitochondrial damage and apoptosis in myocardial cells by modulating the P53 and JNK signaling pathways. These findings suggested that inhibiting H2AX may alleviate myocardial I/R injury through the regulation of the P53/JNK pathway, highlighting H2AX as a potential target for the treatment of myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Ziyang Yu
- Department of Cardiology The 6th Affiliated Hospital of Kunming Medical University The People's Hospital of Yuxi City, Yuxi, Yunnan, China
| | - Yirong Teng
- Department of General Practice The 6th Affiliated Hospital of Kunming Medical University The People's Hospital of Yuxi City, Yuxi, Yunnan, China
| | - Hongbo Yang
- Department of Cardiology Fuwai Yunnan Hospital Chinese Academy of Medical Sciences, Kunming, Yunnan, China
| | - Yudi Wang
- Department of Cardiology The 6th Affiliated Hospital of Kunming Medical University The People's Hospital of Yuxi City, Yuxi, Yunnan, China
| | - Xichen Li
- Department of Cardiology The 6th Affiliated Hospital of Kunming Medical University The People's Hospital of Yuxi City, Yuxi, Yunnan, China
| | - Lei Feng
- Department of Laboratory Yan'an Hospital of Kunming City, Kunming, Yunnan, China
| | - Wenbo Xu
- Department of Laboratory The 6th Affiliated Hospital of Kunming Medical University The People's Hospital of Yuxi City, Yuxi, Yunnan, China
| | - Yinglu Hao
- Department of Cardiology The 6th Affiliated Hospital of Kunming Medical University The People's Hospital of Yuxi City, Yuxi, Yunnan, China
| | - Yanping Li
- Department of Cardiology The 6th Affiliated Hospital of Kunming Medical University The People's Hospital of Yuxi City, Yuxi, Yunnan, China
| |
Collapse
|
36
|
Bu Y, Liu Y, Liu M, Yan C, Wang J, Wu H, Song H, Zhang D, Xu K, Liu D, Han Y. TRIM55 Aggravates Cardiomyocyte Apoptosis After Myocardial Infarction via Modulation of the Nrf2/HO-1 Pathway. JACC Basic Transl Sci 2024; 9:1104-1122. [PMID: 39444927 PMCID: PMC11494394 DOI: 10.1016/j.jacbts.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 10/25/2024]
Abstract
Tripartite motif-containing 55 (Trim55) is mainly expressed in myocardium and skeletal muscle, which plays an important role in promoting the embryonic development of the mouse heart. We investigated the role of Trim55 in myocardial infarction and the associated molecular mechanisms. We studied both gain and loss of function in vivo and in vitro. The results showed that Trim55 knockout improved cardiac function and apoptosis after myocardial infarction, and overexpression aggravated cardiac function damage. The mechanism is that Trim55 interacts with nuclear factor, erythroid derived 2 (Nrf2) to accelerate its degradation and inhibit the expression of heme oxygenase 1, thereby promoting cardiomyocyte apoptosis.
Collapse
Affiliation(s)
| | | | - Meili Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Chenghui Yan
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jing Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Hanlin Wu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Haixu Song
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Dali Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Kai Xu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Dan Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yaling Han
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
37
|
Gusev IA, Malofey YB, Sazonova EN. Effects of Neonatal Administration of Non-Opiate Analogues of Leu-Enkephalin on the Delayed Cardiac Consequences of Intrauterine Hypoxia. Bull Exp Biol Med 2024; 177:610-615. [PMID: 39342010 DOI: 10.1007/s10517-024-06234-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Indexed: 10/01/2024]
Abstract
Intrauterine hypoxia (gestation days 15-19, pO2 65 mm Hg, duration 4 h) led to an increase in the expression of p53, beclin-1, endothelial NO synthase (eNOS), and caspase-3 proteins in cardiomyocytes and reduced the number of mast cells in the heart of 60-day-old albino rats. Administration of a non-opiate analogue of leu-enkephalin (NALE peptide: Phe-D-Ala-Gly-Phe-Leu-Arg, 100 μg/kg) on days 2-6 of the neonatal period decreased the severity of delayed posthypoxic myocardial reaction. The content of eNOS+ cardiomyocytes and the total number of mast cells of these animals did not differ from the control parameters; the content of p53+ cardiomyocytes was significantly lower than in animals exposed to intrauterine hypoxia. The cardioprotective activity of NALE was partially neutralized by co-administration with the NO synthase inhibitor (L-NAME, 50 mg/kg). Correction of the delayed posthypoxic changes, similar to the effects of NALE peptide, was observed after neonatal administration of its arginine-free analogue, G peptide (Phe-D-Ala-Gly-Phe-Leu-Gly; 100 μg/kg). Non-opiate analogues of leu-enkephalin NALE and G peptides can be considered as promising substances capable of preventing long-term cardiac consequences of intrauterine hypoxia.
Collapse
Affiliation(s)
- I A Gusev
- Far-East State Medical University, Ministry of Health of the Russian Federation, Khabarovsk, Russia.
| | - Yu B Malofey
- Far-East State Medical University, Ministry of Health of the Russian Federation, Khabarovsk, Russia
| | - E N Sazonova
- Far-East State Medical University, Ministry of Health of the Russian Federation, Khabarovsk, Russia
- Khabarovsk Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration - Research Institute of Maternity and Child Protection, Khabarovsk, Russia
| |
Collapse
|
38
|
Huang XD, Jiang DS, Feng X, Fang ZM. The benefits of oral glucose-lowering agents: GLP-1 receptor agonists, DPP-4 and SGLT-2 inhibitors on myocardial ischaemia/reperfusion injury. Eur J Pharmacol 2024; 976:176698. [PMID: 38821168 DOI: 10.1016/j.ejphar.2024.176698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Myocardial infarction (MI) is a life-threatening cardiovascular disease that, on average, results in 8.5 million deaths worldwide each year. Timely revascularization of occluded vessels is a critical method of myocardial salvage. However, reperfusion paradoxically leads to the worsening of myocardial damage known as myocardial ischaemia/reperfusion injury (MI/RI). Therefore, reducing the size of myocardial infarction after reperfusion is critical and remains an important therapeutic goal. The susceptibility of the myocardium to MI/RI may be increased by diabetes. Currently, some traditional antidiabetic agents such as metformin reduce MI/RI by decreasing inflammation, inhibiting oxidative stress, and improving vascular endothelial function. This appears to be a new direction for the treatment of MI/RI. Recent cardiovascular outcome trials have shown that several oral antidiabetic agents, including glucagon-like peptide-1 receptor agonists (GLP-1RAs), dipeptidyl peptidase-4 inhibitors (DPP-4is), and sodium-glucose-linked transporter-2 inhibitors (SGLT-2is), not only have good antidiabetic effects but also have a protective effect on myocardial protection. This article aims to discuss the mechanisms and effects of oral antidiabetic agents, including GLP-1RAs, DPP-4is, and SGLT-2is, on MI/RI to facilitate their clinical application.
Collapse
Affiliation(s)
- Xu-Dong Huang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Cardiothoracic Surgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Ding-Sheng Jiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Xin Feng
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Ze-Min Fang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Cardiothoracic Surgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
39
|
Kleinbongard P, Andreadou I. Is There a Mitochondrial Protection via Remote Ischemic Conditioning in Settings of Anticancer Therapy Cardiotoxicity? Curr Heart Fail Rep 2024; 21:292-304. [PMID: 38512567 PMCID: PMC11333552 DOI: 10.1007/s11897-024-00658-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
PURPOSE OF REVIEW To provide an overview of (a) protective effects on mitochondria induced by remote ischemic conditioning (RIC) and (b) mitochondrial damage caused by anticancer therapy. We then discuss the available results of studies on mitochondrial protection via RIC in anticancer therapy-induced cardiotoxicity. RECENT FINDINGS In three experimental studies in healthy mice and pigs, there was a RIC-mediated protection against anthracycline-induced cardiotoxicity and there was some evidence of improved mitochondrial function with RIC. The RIC-mediated protection was not confirmed in the two available studies in cancer patients. In adult cancer patients, RIC was associated with an adverse outcome. There are no data on mitochondrial function in cancer patients. Studies in tumor-bearing animals are needed to determine whether RIC does not interfere with the anticancer properties of the drugs and whether RIC actually improves mitochondrial function, ultimately resulting in improved cardiac function.
Collapse
Affiliation(s)
- Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany.
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
40
|
Wu HH, Du JM, Liu P, Meng FL, Li YY, Li WJ, Wang SX, Du NL, Zheng Y, Zhang L, Wang HY, Liu YR, Song CH, Ni X, Li Y, Su GH. LDHA contributes to nicotine induced cardiac fibrosis through autophagy flux impairment. Int Immunopharmacol 2024; 136:112338. [PMID: 38850787 DOI: 10.1016/j.intimp.2024.112338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/10/2024]
Abstract
Cardiac fibrosis is a typical feature of cardiac pathological remodeling, which is associated with adverse clinical outcomes and has no effective therapy. Nicotine is an important risk factor for cardiac fibrosis, yet its underlying molecular mechanism remains poorly understood. This study aimed to identify its potential molecular mechanism in nicotine-induced cardiac fibrosis. Our results showed nicotine exposure led to the proliferation and transformation of cardiac fibroblasts (CFs) into myofibroblasts (MFs) by impairing autophagy flux. Through the use of drug affinity responsive target stability (DARTS) assay, cellular thermal shift assay (CETSA), and surface plasmon resonance (SPR) technology, it was discovered that nicotine directly increased the stability and protein levels of lactate dehydrogenase A (LDHA) by binding to it. Nicotine treatment impaired autophagy flux by regulating the AMPK/mTOR signaling pathway, impeding the nuclear translocation of transcription factor EB (TFEB), and reducing the activity of cathepsin B (CTSB). In vivo, nicotine treatment exacerbated cardiac fibrosis induced in spontaneously hypertensive rats (SHR) and worsened cardiac function. Interestingly, the absence of LDHA reversed these effects both in vitro and in vivo. Our study identified LDHA as a novel nicotine-binding protein that plays a crucial role in mediating cardiac fibrosis by blocking autophagy flux. The findings suggest that LDHA could potentially serve as a promising target for the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Hui-Hui Wu
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Jia-Min Du
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Peng Liu
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fan-Liang Meng
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yue-Yan Li
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Wen-Jing Li
- Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shuang-Xi Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Nai-Li Du
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yan Zheng
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Liang Zhang
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hui-Yun Wang
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yi-Ran Liu
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chun-Hong Song
- Department of Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xi Ni
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Ying Li
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Guo-Hai Su
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
41
|
Sun Y, Xu M, Duan Q, Bryant JL, Xu X. The role of autophagy in the progression of HIV infected cardiomyopathy. Front Cell Dev Biol 2024; 12:1372573. [PMID: 39086659 PMCID: PMC11289186 DOI: 10.3389/fcell.2024.1372573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/05/2024] [Indexed: 08/02/2024] Open
Abstract
Although highly active antiretroviral therapy (HAART) has changed infection with human immunodeficiency virus (HIV) from a diagnosis with imminent mortality to a chronic illness, HIV positive patients who do not develop acquired immunodeficiency syndrome (AIDs) still suffer from a high rate of cardiac dysfunction and fibrosis. Regardless of viral load and CD count, HIV-associated cardiomyopathy (HIVAC) still causes a high rate of mortality and morbidity amongst HIV patients. While this is a well characterized clinical phenomena, the molecular mechanism of HIVAC is not well understood. In this review, we consolidate, analyze, and discuss current research on the intersection between autophagy and HIVAC. Multiple studies have linked dysregulation in various regulators and functional components of autophagy to HIV infection regardless of mode of viral entry, i.e., coronary, cardiac chamber, or pericardial space. HIV proteins, including negative regulatory factor (Nef), glycoprotein 120 (gp120), and transactivator (Tat), have been shown to interact with type II microtubule-associated protein-1 β light chain (LC3-II), Rubiquitin, SQSTM1/p62, Rab7, autophagy-specific gene 7 (ATG7), and lysosomal-associated membrane protein 1 (LAMP1), all molecules critical to normal autophagy. HIV infection can also induce dysregulation of mitochondrial bioenergetics by altering production and equilibrium of adenosine triphosphate (ATP), mitochondrial reactive oxygen species (ROS), and calcium. These changes alter mitochondrial mass and morphology, which normally trigger autophagy to clear away dysfunctional organelles. However, with HIV infection also triggering autophagy dysfunction, these abnormal mitochondria accumulate and contribute to myocardial dysfunction. Likewise, use of HAART, azidothymidine and Abacavir, have been shown to induce cardiac dysfunction and fibrosis by inducing abnormal autophagy during antiretroviral therapy. Conversely, studies have shown that increasing autophagy can reduce the accumulation of dysfunctional mitochondria and restore cardiomyocyte function. Interestingly, Rapamycin, a mammalian target of rapamycin (mTOR) inhibitor, has also been shown to reduce HIV-induced cytotoxicity by regulating autophagy-related proteins, making it a non-antiviral agent with the potential to treat HIVAC. In this review, we synthesize these findings to provide a better understanding of the role autophagy plays in HIVAC and discuss the potential pharmacologic targets unveiled by this research.
Collapse
Affiliation(s)
- Yuting Sun
- Laboratory of Cell Biology, Genetics and Developmental Biology, College of Life Sciences and University Hospital, Shaanxi Normal University, Xi’an, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Mengmeng Xu
- Department of Pediatrics, Morgan Stanley Children’s Hospital, Columbia University, New York, NY, United States
| | - Qinchun Duan
- Laboratory of Cell Biology, Genetics and Developmental Biology, College of Life Sciences and University Hospital, Shaanxi Normal University, Xi’an, China
| | - Joseph L. Bryant
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Xuehong Xu
- Laboratory of Cell Biology, Genetics and Developmental Biology, College of Life Sciences and University Hospital, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
42
|
Zhang S, Yan F, Luan F, Chai Y, Li N, Wang YW, Chen ZL, Xu DQ, Tang YP. The pathological mechanisms and potential therapeutic drugs for myocardial ischemia reperfusion injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155649. [PMID: 38653154 DOI: 10.1016/j.phymed.2024.155649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Cardiovascular disease is the main cause of death and disability, with myocardial ischemia being the predominant type that poses a significant threat to humans. Reperfusion, an essential therapeutic approach, promptly reinstates blood circulation to the ischemic myocardium and stands as the most efficacious clinical method for myocardial preservation. Nevertheless, the restoration of blood flow associated with this process can potentially induce myocardial ischemia-reperfusion injury (MIRI), thereby diminishing the effectiveness of reperfusion and impacting patient prognosis. Therefore, it is of great significance to prevent and treat MIRI. PURPOSE MIRI is an important factor affecting the prognosis of patients, and there is no specific in-clinic treatment plan. In this review, we have endeavored to summarize its pathological mechanisms and therapeutic drugs to provide more powerful evidence for clinical application. METHODS A comprehensive literature review was conducted using PubMed, Web of Science, Embase, Medline and Google Scholar with a core focus on the pathological mechanisms and potential therapeutic drugs of MIRI. RESULTS Accumulated evidence revealed that oxidative stress, calcium overload, mitochondrial dysfunction, energy metabolism disorder, ferroptosis, inflammatory reaction, endoplasmic reticulum stress, pyroptosis and autophagy regulation have been shown to participate in the process, and that the occurrence and development of MIRI are related to plenty of signaling pathways. Currently, a range of chemical drugs, natural products, and traditional Chinese medicine (TCM) preparations have demonstrated the ability to mitigate MIRI by targeting various mechanisms. CONCLUSIONS At present, most of the research focuses on animal and cell experiments, and the regulatory mechanisms of each signaling pathway are still unclear. The translation of experimental findings into clinical practice remains incomplete, necessitating further exploration through large-scale, multi-center randomized controlled trials. Given the absence of a specific drug for MIRI, the identification of therapeutic agents to reduce myocardial ischemia is of utmost significance. For the future, it is imperative to enhance our understanding of the pathological mechanism underlying MIRI, continuously investigate and develop novel pharmaceutical agents, expedite the clinical translation of these drugs, and foster innovative approaches that integrate TCM with Western medicine. These efforts will facilitate the emergence of fresh perspectives for the clinical management of MIRI.
Collapse
Affiliation(s)
- Shuo Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau; Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Fei Yan
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Fei Luan
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Yun Chai
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau.
| | - Yu-Wei Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Zhen-Lin Chen
- International Programs Office, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China.
| |
Collapse
|
43
|
Wu Y, Zhang H, Wang Y, Zhang Y, Hong Z, Wang D. Sephin1 enhances integrated stress response and autophagy to alleviate myocardial ischemia-reperfusion injury in mice. Biomed Pharmacother 2024; 176:116869. [PMID: 38850665 DOI: 10.1016/j.biopha.2024.116869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/19/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
OBJECTIVE Integrated stress response (ISR) is activated to promote cell survival by maintaining the phosphorylation of eukaryotic translation initiation factor 2 (eIF2α). We investigated whether Sephin1 enhances ISR and attenuates myocardial ischemia-reperfusion (MIR) injury. METHODS Male C57BL/6 J mice were injected with Sephin1 (2 mg/kg,i.p.) 30 min before surgery to establish a model of MIR with 45 min ischemia and 180 min reperfusion. In vitro, the H9C2 cell line with hypoxia-reoxygenation (H/R) was used to simulate MIR. Myocardial injury was evaluated by echocardiography, histologic observation after staining with TTC and H&E and electron microscopy. ISR, autophagy and apoptosis in vivo and in vitro were evaluated by immunoblotting, immunohistochemistry, immunofluorescence, and flow cytometry, respectively. Global protein synthesis was determined using a non-radioactive SUnSET Assay based on the puromycin method. Autophinib, an autophagy-specific inhibitor, was used to investigate the correlation between autophagy and apoptosis in the presence of Sephin1. RESULTS In vivo, Sephin1 significantly reduced myocardial injury and improved the cardiac function in MIR mice. Sephin1 administration prolonged ISR, reduced cell apoptosis, and promoted autophagy. In vitro, Sephin1 increased the number of stress granules (SGs) and autophagic vesicles, enhanced ISR and related protein synthesis suppression, and reduced cell apoptosis. Autophinib partly reversed autophagosome formation and apoptosis in H9c2 cells. CONCLUSIONS Sephin1 enhances ISR and related protein synthesis suppression, ameliorates myocardial apoptosis, and promotes autophagy during MIR stress. Sephin1 could act as a noval ISR enhancer for managing acute myocardial ischemia disease.
Collapse
Affiliation(s)
- Yong Wu
- Department of Gerontology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, China
| | - Huabin Zhang
- Department of Gerontology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, China; School of Pharmacy, Wannan Medical College, Wuhu 241001, China
| | - Yue Wang
- Department of Gerontology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, China
| | - Ying Zhang
- Department of Gerontology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, China
| | - Zongyuan Hong
- School of Pharmacy, Wannan Medical College, Wuhu 241001, China
| | - Deguo Wang
- Department of Gerontology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, China.
| |
Collapse
|
44
|
Gao L, Liu W. Knockdown of SDCBP induces autophagy to promote cardiomyocyte growth and angiogenesis in hypoxia/reoxygenation model. Mutat Res 2024; 829:111885. [PMID: 39486220 DOI: 10.1016/j.mrfmmm.2024.111885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
OBJECTIVE Angina, myocardial infarction, and even mortality can result from myocardial ischemia (MI). Angiogenesis facilitates tissue repair, lessens cell damage, and ensures that ischemic tissues receive blood and oxygen. This study investigated the possible mechanism of syndecan-binding protein (SDCBP) on autophagy and assessed its impact on myocardial ischemia. METHOD A cardiac hypoxia-reoxygenation (H/R) cell model was created for this investigation. Flow cytometry, the cell counting kit-8, and Western blotting were used to measure the damage to cardiomyocytes. Western blotting and immunofluorescence were used to quantify autophagy. Furthermore, assays for tube formation, migration, and Western blotting were used to assess angiogenic capacity. Additionally, the EGFR-PI3K-Akt signaling pathway's activation was found using Western blotting. RESULT In the H/R-induced cardiomyocyte model, there is a rise in the expression of SDCBP. Treatment with H/R markedly boosted apoptosis and considerably decreased cell survival. H/R induction strongly inhibits autophagy, increases P62 expression, and decreases LC3II/I expression. Moreover, H/R induction dramatically reduced the ability to form tubes, migrate, and express VEGF, all of which prevented cell angiogenesis. Furthermore, EGFR-PI3K-Akt signaling pathway expression is strongly inhibited by H/R induction. considerable reduction of H/R-induced cell damage, considerable inhibition of apoptosis, promotion autophagy and angiogenesis, and activation of the EGFR-PI3K-Akt signaling pathway are all possible with SDCBP knockdown. CONCLUSION To summarize, this study demonstrates that via stimulating the EGFR-PI3K-Akt signaling pathway, SDCBP knockdown may mitigate the effects of H/R-induced cardiomyocyte death and encourage autophagy and blood vessel formation. A theoretical foundation for possible myocardial infarction treatment is thus provided.
Collapse
Affiliation(s)
- Ling Gao
- Department of Cardiology, Jiujiang First People's Hospital, Jiujiang, Jiangxi 332000, China
| | - Wanqian Liu
- Department of Cardiology, Jiujiang First People's Hospital, Jiujiang, Jiangxi 332000, China.
| |
Collapse
|
45
|
Sun X, Wu S, Mao C, Qu Y, Xu Z, Xie Y, Jiang D, Song Y. Therapeutic Potential of Hydrogen Sulfide in Ischemia and Reperfusion Injury. Biomolecules 2024; 14:740. [PMID: 39062455 PMCID: PMC11274451 DOI: 10.3390/biom14070740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Ischemia-reperfusion (I/R) injury, a prevalent pathological condition in medical practice, presents significant treatment challenges. Hydrogen sulfide (H2S), acknowledged as the third gas signaling molecule, profoundly impacts various physiological and pathophysiological processes. Extensive research has demonstrated that H2S can mitigate I/R damage across multiple organs and tissues. This review investigates the protective effects of H2S in preventing I/R damage in the heart, brain, liver, kidney, intestines, lungs, stomach, spinal cord, testes, eyes, and other tissues. H2S provides protection against I/R damage by alleviating inflammation and endoplasmic reticulum stress; inhibiting apoptosis, oxidative stress, and mitochondrial autophagy and dysfunction; and regulating microRNAs. Significant advancements in understanding the mechanisms by which H2S reduces I/R damage have led to the development and synthesis of H2S-releasing agents such as diallyl trisulfide-loaded mesoporous silica nanoparticles (DATS-MSN), AP39, zofenopril, and ATB-344, offering a new therapeutic avenue for I/R injury.
Collapse
Affiliation(s)
- Xutao Sun
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Siyu Wu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (S.W.); (C.M.); (Y.Q.); (Z.X.)
| | - Caiyun Mao
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (S.W.); (C.M.); (Y.Q.); (Z.X.)
| | - Ying Qu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (S.W.); (C.M.); (Y.Q.); (Z.X.)
| | - Zihang Xu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (S.W.); (C.M.); (Y.Q.); (Z.X.)
| | - Ying Xie
- Department of Synopsis of the Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Deyou Jiang
- Department of Synopsis of the Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (S.W.); (C.M.); (Y.Q.); (Z.X.)
| |
Collapse
|
46
|
Tan X, Xu R, Li AP, Li D, Wang Y, Zhao Q, Long LP, Fan YZ, Zhao CX, Liu Y, Li SH. Antioxidant and anti-Alzheimer's disease activities of 1,8-cineole and its cyclodextrin inclusion complex. Biomed Pharmacother 2024; 175:116784. [PMID: 38781865 DOI: 10.1016/j.biopha.2024.116784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
1,8-Cineole is a bicyclic monoterpene widely distributed in the essential oils of various medicinal plants, and it exhibits significant anti-inflammatory and antioxidant activities. We aimed to investigate the therapeutic effect of 1,8-cineole on anti-Alzheimer's disease by using transgenic Caenorhabditis elegans models. Our studies demonstrated that 1,8-cineole significantly relieved Aβ1-42-induced paralysis and exhibited remarkable antioxidant and anti-Aβ1-42 aggregation activities in transgenic nematodes CL4176, CL2006 and CL2355. We developed a 1,8-cineole/cyclodextrin inclusion complex, displaying enhanced anti-paralysis, anti-Aβ aggregation and antioxidant activities compared to 1,8-cineole. In addition, we found 1,8-cineole treatment activated the SKN-1/Nrf-2 pathway and induced autophagy in nematodes. Our results demonstrated the antioxidant and anti-Alzheimer's disease activities of 1,8-cineole, which provide a potential therapeutic approach for Alzheimer's disease.
Collapse
Affiliation(s)
- Xin Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Rui Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Ai-Pei Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Yun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Li-Ping Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Yu-Zhou Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Chen-Xiao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Sheng-Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China.
| |
Collapse
|
47
|
Peng Y, Tao Y, Liu L, Zhang J, Wei B. Crosstalk among Reactive Oxygen Species, Autophagy and Metabolism in Myocardial Ischemia and Reperfusion Stages. Aging Dis 2024; 15:1075-1107. [PMID: 37728583 PMCID: PMC11081167 DOI: 10.14336/ad.2023.0823-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Myocardial ischemia is the most common cardiovascular disease. Reperfusion, an important myocardial ischemia tool, causes unexpected and irreversible damage to cardiomyocytes, resulting in myocardial ischemia/reperfusion (MI/R) injury. Upon stress, especially oxidative stress induced by reactive oxygen species (ROS), autophagy, which degrades the intracellular energy storage to produce metabolites that are recycled into metabolic pathways to buffer metabolic stress, is initiated during myocardial ischemia and MI/R injury. Excellent cardioprotective effects of autophagy regulators against MI and MI/R have been reported. Reversing disordered cardiac metabolism induced by ROS also exhibits cardioprotective action in patients with myocardial ischemia. Herein, we review current knowledge on the crosstalk between ROS, cardiac autophagy, and metabolism in myocardial ischemia and MI/R. Finally, we discuss the possible regulators of autophagy and metabolism that can be exploited to harness the therapeutic potential of cardiac metabolism and autophagy in the diagnosis and treatment of myocardial ischemia and MI/R.
Collapse
Affiliation(s)
- Yajie Peng
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Yachuan Tao
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- Department of Pharmacology, School of Pharmaceutical Sciences, Fudan University, Shanghai, China
| | - Lingxu Liu
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Ji Zhang
- The First Affiliated Hospital of Zhengzhou University, Department of Pharmacy, Zhengzhou, Henan, China.
| | - Bo Wei
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
48
|
Yu Y, Su FF, Xu C. Maximakinin reversed H 2O 2 induced oxidative damage in rat cardiac H9c2 cells through AMPK/Akt and AMPK/ERK1/2 signaling pathways. Biomed Pharmacother 2024; 174:116489. [PMID: 38513595 DOI: 10.1016/j.biopha.2024.116489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024] Open
Abstract
Maximakinin (MK), a homolog of bradykinin (BK), is extracted from skin venom of the Chinese toad Bombina maxima. Although MK has a good antihypertensive effect, its effect on myocardial cells is unclear. This study investigates the protective effect of MK on hydrogen peroxide (H2O2)-induced oxidative damage in rat cardiac H9c2 cells and explores its mechanism of action. A 3-(4,5-Dimethyl-2-Thiazolyl)-2,5-Diphenyl Tetrazolium Bromide (MTT) assay was selected to detect the effect of MK on H9c2 cell viability, while flow cytometry was used to investigate the influence of MK and H2O2 on intracellular reactive oxygen species (ROS) levels. Protein expression changes were detected by western blot. In addition, specific protein inhibitors were applied to confirm the induction of ROS-related signaling pathways by MK. MTT assay results show that MK significantly reversed H2O2-induced cell growth inhibition. Flow cytometry Dichlorodihydrofluorescein diacetate (DCFH-DA) staining shows that MK significantly reversed H2O2-induced increases in intracellular ROS production in H9c2 cells. Moreover, the addition of specific protein inhibitors suggests that MK reverses H2O2-induced oxidative damage by activating AMP-activated protein kinase (AMPK)/protein kinase B (Akt) and AMPK/extracellular-regulated kinase 1/2 (ERK1/2) pathways. Finally, an inhibitor of bradykinin B2 receptors (B2Rs), HOE-140, was applied to investigate potential targets of MK in H9c2 cells. HOE-140 significantly blocked induction of AMPK/Akt and AMPK/ERK1/2 pathways by MK, suggesting a potentially important role for B2Rs in MK reversing H2O2-induced oxidative damage. Above all, MK protects against oxidative damage by inhibiting H2O2-induced ROS production in H9c2 cells. The protective mechanism of MK may be achieved by activation of B2Rs to activate downstream AMPK/Akt and AMPK/ERK1/2 pathways.
Collapse
Affiliation(s)
- Yang Yu
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Liaoning, Shenyang 110016, China
| | - Fan-Fan Su
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Liaoning, Shenyang 110016, China
| | - Cheng Xu
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Liaoning, Shenyang 110016, China.
| |
Collapse
|
49
|
Boshchenko AA, Maslov LN, Mukhomedzyanov AV, Zhuravleva OA, Slidnevskaya AS, Naryzhnaya NV, Zinovieva AS, Ilinykh PA. Peptides Are Cardioprotective Drugs of the Future: The Receptor and Signaling Mechanisms of the Cardioprotective Effect of Glucagon-like Peptide-1 Receptor Agonists. Int J Mol Sci 2024; 25:4900. [PMID: 38732142 PMCID: PMC11084666 DOI: 10.3390/ijms25094900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 05/13/2024] Open
Abstract
The high mortality rate among patients with acute myocardial infarction (AMI) is one of the main problems of modern cardiology. It is quite obvious that there is an urgent need to create more effective drugs for the treatment of AMI than those currently used in the clinic. Such drugs could be enzyme-resistant peptide analogs of glucagon-like peptide-1 (GLP-1). GLP-1 receptor (GLP1R) agonists can prevent ischemia/reperfusion (I/R) cardiac injury. In addition, chronic administration of GLP1R agonists can alleviate the development of adverse cardiac remodeling in myocardial infarction, hypertension, and diabetes mellitus. GLP1R agonists can protect the heart against oxidative stress and reduce proinflammatory cytokine (IL-1β, TNF-α, IL-6, and MCP-1) expression in the myocardium. GLP1R stimulation inhibits apoptosis, necroptosis, pyroptosis, and ferroptosis of cardiomyocytes. The activation of the GLP1R augments autophagy and mitophagy in the myocardium. GLP1R agonists downregulate reactive species generation through the activation of Epac and the GLP1R/PI3K/Akt/survivin pathway. The GLP1R, kinases (PKCε, PKA, Akt, AMPK, PI3K, ERK1/2, mTOR, GSK-3β, PKG, MEK1/2, and MKK3), enzymes (HO-1 and eNOS), transcription factors (STAT3, CREB, Nrf2, and FoxO3), KATP channel opening, and MPT pore closing are involved in the cardioprotective effect of GLP1R agonists.
Collapse
Affiliation(s)
- Alla A. Boshchenko
- Department of Atherosclerosis and Chronic Coronary Heart Disease, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Leonid N. Maslov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Alexander V. Mukhomedzyanov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Olga A. Zhuravleva
- Department of Atherosclerosis and Chronic Coronary Heart Disease, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Alisa S. Slidnevskaya
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Natalia V. Naryzhnaya
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Arina S. Zinovieva
- Department of Atherosclerosis and Chronic Coronary Heart Disease, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Philipp A. Ilinykh
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
50
|
Liang C, Ma L, Chen Y, Li J, Wang B, Ma C, Yuan Z, Nong X. Artesunate Alleviates Kidney Fibrosis in Type 1 Diabetes with Periodontitis Rats via Promoting Autophagy and Suppression of Inflammation. ACS OMEGA 2024; 9:16358-16373. [PMID: 38617690 PMCID: PMC11007779 DOI: 10.1021/acsomega.4c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 04/16/2024]
Abstract
To explore the effect of periodontal disease on the progression of diabetic kidney disease (DKD), to observe the effects of artesunate (ART) intervention on periodontal and kidney tissues in type 1 diabetic rats with periodontitis, and to explore the possibility of ART for the treatment of DKD. Rat models of diabetes mellitus, periodontitis, and diabetes mellitus with periodontitis were established through streptozotocin (STZ) intraperitoneal injection, maxillary first molar ligation, and P. gingivalis ligation applied sequentially. Ten weeks after modeling, ART gavage treatment was given for 4 weeks. Immunohistochemistry, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and Western blot were used to investigate the inflammatory factors, fibrogenisis, autophagy-related factors, and proteins in periodontal and kidney tissues, and 16S rDNA sequencing was used to detect the changes in dental plaque fluid and kidney tissue flora. Compared to the control group, the protein expression levels of transforming growth factor β1 (TGF-β1) and COL-IV in the periodontal disease (PD) group were increased. The protein expression of TGF-β1, Smad3, and COL-IV increased in the DM group and the DM + PD group, and the expression of TGF-β1, Smad3, and COL-IV was upregulated in the DM + PD group. These results suggest that periodontal disease enhances renal fibrosis and that this process is related to the TGF-β1/Smad/COL-IV signaling pathway. Among the top five dominant bacteria in the kidney of the DM + PD group, the abundance of Proteobacteria increased most significantly, followed by Actinobacteria and Firmicutes with mild increases. The relative abundance of Proteobacteria, Actinobacteria, and Firmicutes in the kidney tissues of DM and PD groups also showed an increasing trend compared with the CON group. Proteobacteria and Firmicutes in the kidney of the PD group and DM + PD group showed an increasing trend, which may mediate the increase of oxidative stress in the kidney and promote the occurrence and development of DN. Periodontal disease may lead to an imbalance of renal flora, aggravate renal damage in T1DM, cause glomerular inflammation and renal tubulointerstitial fibrosis, and reduce the level of autophagy. ART delays the process of renal fibrosis by inhibiting the TGF-β-Smad signaling pathway.
Collapse
Affiliation(s)
- Chen Liang
- College
of Stomatology, Hospital of Stomatology, Guangxi Medical University, No. 10 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Licheng Ma
- College
of Stomatology, Hospital of Stomatology, Guangxi Medical University, No. 10 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Yi Chen
- College
of Stomatology, Hospital of Stomatology, Guangxi Medical University, No. 10 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Jiaquan Li
- Medical
Science Research Center, Guangxi Medical
University, Nanning 530021, Guangxi, China
| | - Binge Wang
- College
of Stomatology, Hospital of Stomatology, Guangxi Medical University, No. 10 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Chubin Ma
- College
of Stomatology, Hospital of Stomatology, Guangxi Medical University, No. 10 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Zhong Yuan
- College
of Stomatology, Hospital of Stomatology, Guangxi Medical University, No. 10 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Xiaolin Nong
- College
of Stomatology, Hospital of Stomatology, Guangxi Medical University, No. 10 Shuangyong Road, Nanning 530021, Guangxi, China
- Guangxi
Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Medical University, Nanning 530021, Guangxi, China
| |
Collapse
|