1
|
Chatterjee M, Saha S, Shom S, Dutta N, Sinha S, Mukhopadhyay K. Glutamate receptor genetic variants affected peripheral glutamatergic transmission and treatment induced improvement of Indian ADHD probands. Sci Rep 2023; 13:19922. [PMID: 37964012 PMCID: PMC10645851 DOI: 10.1038/s41598-023-47117-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD), a childhood-onset neurobehavioral disorder, often perturbs scholastic achievement and peer-relationship. The pivotal role of glutamate (Glu) in learning and memory indicated an influence of Glu in ADHD, leading to the exploration of Glu in different brain regions of ADHD subjects. We for the first time analyzed GluR genetic variations, Glu levels, as well as expression of Glu receptors (GluR) in the peripheral blood of eastern Indian ADHD probands to find out the relevance of Glu in ADHD prognosis. After obtaining informed written consent for participation, peripheral blood was collected for analyzing the genetic variants, Glu level, and expression of target genes. Since ADHD probands are often treated with methylphenidate or atomoxetine for providing symptomatic remediation, we have also tested post-therapeutic improvement in the ADHD trait scores in the presence of different GluR genotypes. Two variants, GRM7 rs3749380 "T" and GRIA1 rs2195450 "C", exhibited associations with ADHD (P ≤ 0.05). A few GluR genetic variants showed significant association with higher trait severity, low IQ, lower plasma Glu level, down-regulated GluR mRNA expression, and poor response to medications. This indicates that down-regulated glutamatergic system may have an effect on ADHD etiology and treatment efficacy warranting further in-depth investigation.
Collapse
Affiliation(s)
- Mahasweta Chatterjee
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal, 700107, India
| | - Sharmistha Saha
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal, 700107, India
| | - Sayanti Shom
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal, 700107, India
| | - Nilanjana Dutta
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal, 700107, India
| | - Swagata Sinha
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal, 700107, India
| | - Kanchan Mukhopadhyay
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal, 700107, India.
| |
Collapse
|
2
|
Apsley AT, Domico ER, Verbiest MA, Brogan CA, Buck ER, Burich AJ, Cardone KM, Stone WJ, Anisimova M, Vandenbergh DJ. A novel hypervariable variable number tandem repeat in the dopamine transporter gene ( SLC6A3). Life Sci Alliance 2023; 6:e202201677. [PMID: 36754567 PMCID: PMC9909461 DOI: 10.26508/lsa.202201677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
The dopamine transporter gene, SLC6A3, has received substantial attention in genetic association studies of various phenotypes. Although some variable number tandem repeats (VNTRs) present in SLC6A3 have been tested in genetic association studies, results have not been consistent. VNTRs in SLC6A3 that have not been examined genetically were characterized. The Tandem Repeat Annotation Library was used to characterize the VNTRs of 64 unrelated long-read haplotype-phased SLC6A3 sequences. Sequence similarity of each repeat unit of the five VNTRs is reported, along with the correlations of SNP-SNP, SNP-VNTR, and VNTR-VNTR alleles across the gene. One of these VNTRs is a novel hyper-VNTR (hyVNTR) in intron 8 of SLC6A3, which contains a range of 3.4-133.4 repeat copies and has a consensus sequence length of 38 bp, with 82% G+C content. The 38-base repeat was predicted to form G-quadruplexes in silico and was confirmed by circular dichroism spectroscopy. In addition, this hyVNTR contains multiple putative binding sites for PRDM9, which, in combination with low levels of linkage disequilibrium around the hyVNTR, suggests it might be a recombination hotspot.
Collapse
Affiliation(s)
- Abner T Apsley
- Department of Biobehavioral Health, The Pennsylvania State University, State College, PA, USA
- The Molecular, Cellular and Integrative Biosciences Program, The Pennsylvania State University, State College, PA, USA
| | - Emma R Domico
- Department of Biobehavioral Health, The Pennsylvania State University, State College, PA, USA
| | - Max A Verbiest
- Institute of Computational Life Science, School of Life Sciences and Facility Management, Zürich University of Applied Sciences, Wädenswil, Switzerland
- Department of Molecular Life Sciences, Faculty of Science, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Carly A Brogan
- Department of Biobehavioral Health, The Pennsylvania State University, State College, PA, USA
| | - Evan R Buck
- Department of Biobehavioral Health, The Pennsylvania State University, State College, PA, USA
| | - Andrew J Burich
- Department of Information Science and Technologies - Applied Data Sciences, The Pennsylvania State University, State College, PA, USA
| | - Kathleen M Cardone
- Department of Biobehavioral Health, The Pennsylvania State University, State College, PA, USA
| | - Wesley J Stone
- Department of Biobehavioral Health, The Pennsylvania State University, State College, PA, USA
| | - Maria Anisimova
- Institute of Computational Life Science, School of Life Sciences and Facility Management, Zürich University of Applied Sciences, Wädenswil, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - David J Vandenbergh
- Department of Biobehavioral Health, The Pennsylvania State University, State College, PA, USA
- The Molecular, Cellular and Integrative Biosciences Program, The Pennsylvania State University, State College, PA, USA
- Institute of the Neurosciences, The Pennsylvania State University, State College, PA, USA
- The Bioinformatics and Genomics Program, The Pennsylvania State University, State College, PA, USA
| |
Collapse
|
3
|
Kessi M, Duan H, Xiong J, Chen B, He F, Yang L, Ma Y, Bamgbade OA, Peng J, Yin F. Attention-deficit/hyperactive disorder updates. Front Mol Neurosci 2022; 15:925049. [PMID: 36211978 PMCID: PMC9532551 DOI: 10.3389/fnmol.2022.925049] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/26/2022] [Indexed: 11/15/2022] Open
Abstract
Background Attention-deficit/hyperactive disorder (ADHD) is a neurodevelopmental disorder that commonly occurs in children with a prevalence ranging from 3.4 to 7.2%. It profoundly affects academic achievement, well-being, and social interactions. As a result, this disorder is of high cost to both individuals and society. Despite the availability of knowledge regarding the mechanisms of ADHD, the pathogenesis is not clear, hence, the existence of many challenges especially in making correct early diagnosis and provision of accurate management. Objectives We aimed to review the pathogenic pathways of ADHD in children. The major focus was to provide an update on the reported etiologies in humans, animal models, modulators, therapies, mechanisms, epigenetic changes, and the interaction between genetic and environmental factors. Methods References for this review were identified through a systematic search in PubMed by using special keywords for all years until January 2022. Results Several genes have been reported to associate with ADHD: DRD1, DRD2, DRD4, DAT1, TPH2, HTR1A, HTR1B, SLC6A4, HTR2A, DBH, NET1, ADRA2A, ADRA2C, CHRNA4, CHRNA7, GAD1, GRM1, GRM5, GRM7, GRM8, TARBP1, ADGRL3, FGF1, MAOA, BDNF, SNAP25, STX1A, ATXN7, and SORCS2. Some of these genes have evidence both from human beings and animal models, while others have evidence in either humans or animal models only. Notably, most of these animal models are knockout and do not generate the genetic alteration of the patients. Besides, some of the gene polymorphisms reported differ according to the ethnic groups. The majority of the available animal models are related to the dopaminergic pathway. Epigenetic changes including SUMOylation, methylation, and acetylation have been reported in genes related to the dopaminergic pathway. Conclusion The dopaminergic pathway remains to be crucial in the pathogenesis of ADHD. It can be affected by environmental factors and other pathways. Nevertheless, it is still unclear how environmental factors relate to all neurotransmitter pathways; thus, more studies are needed. Although several genes have been related to ADHD, there are few animal model studies on the majority of the genes, and they do not generate the genetic alteration of the patients. More animal models and epigenetic studies are required.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Haolin Duan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Juan Xiong
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Yanli Ma
- Department of Neurology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Olumuyiwa A. Bamgbade
- Department of Anesthesiology and Pharmacology, University of British Columbia, Vancouver, BC, Canada
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- *Correspondence: Fei Yin,
| |
Collapse
|
4
|
Wiel LC, Rispoli F, Peccolo G, Rosolen V, Barbi E, Skabar A. ADHD symptoms and school impairment history in parents of ADHD children are a fundamental diagnostic and therapeutic clue. Ital J Pediatr 2022; 48:50. [PMID: 35346326 PMCID: PMC8962016 DOI: 10.1186/s13052-022-01240-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Attention Deficit and Hyperactivity Disorder (ADHD) is a multi-factorial condition, with inheritance playing a major role. Recognizing parents' ADHD represents a clue not only for an earlier diagnosis of the disease in their children, but also to optimize psycho-educational therapy outcomes, by addressing the impairment of parenting related to untreated ADHD. This study aimed to assess the frequency of features suggestive of ADHD during childhood among parents of affected children, and the presence of school and emotional impairment. METHODS We administered the Wender Utah Rating Scale-25, a self-assessment tool for the retrospective identification of symptoms consistent with ADHD during childhood, to a cohort of 120 parents of 60 children with ADHD, and to a consistent number of "controls". RESULTS The WURS-25 proved positive in 49.1% of fathers and 30.0% of mothers of ADHD patients, compared to 1.7% of fathers and 1.7% of mothers of non-ADHD patients (p < 0.0001). The questions addressing learning and emotional impairment provided significantly higher scores in parents with an overall positive test compared to those with negative test (p < 0.0001). CONCLUSIONS This study demonstrates a remarkably high rate of symptoms consistent with ADHD during childhood in parents of affected children. Physicians should be aware that this is a relevant anamnestic clue and, given the relevance of parents' role in the management of children with ADHD, an important issue to address in order to optimize patients' treatment.
Collapse
Affiliation(s)
| | | | | | - Valentina Rosolen
- Institute for Maternal and Child Health – IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Egidio Barbi
- University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health – IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Aldo Skabar
- Institute for Maternal and Child Health – IRCCS “Burlo Garofolo”, Trieste, Italy
| |
Collapse
|
5
|
Ekblad MO, Rolan E, Marceau K, Palmer R, Todorov A, Heath AC, Knopik VS. Disruptive Behavior in Siblings Discordant for Exposure to Maternal Smoking During Pregnancy: A Multi-rater Approach. Nicotine Tob Res 2020; 22:1330-1338. [PMID: 31734697 DOI: 10.1093/ntr/ntz214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/12/2019] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Maternal smoking during pregnancy (SDP) is associated with disruptive behavior. However, there is debate whether the SDP-disruptive behavior association is a potentially causal pathway or rather a spurious effect confounded by shared genetic and environmental factors. AIMS AND METHODS The Missouri Mothers and Their Children Study is a sibling comparison study that includes families (n = 173) selected for sibling pairs (aged 7-16 years) discordant for SDP. Critically, the sibling comparison design is used to disentangle the effects of SDP from familial confounds on disruptive behavior. An SDP severity score was created for each child using a combination of SDP indicators (timing, duration, and amount of SDP). Multiple informants (parents and teachers) reported on disruptive behavior (i.e., DSM-IV semi-structured interview, the Child Behavior Checklist, and Teacher Report Form). RESULTS The variability in disruptive behavior was primarily a function of within-family differences (66%-100%). Consistent with prior genetically informed approaches, the SDP-disruptive behavior association was primarily explained by familial confounds (genetic and environmental). However, when using a multi-rater approach (parents and teachers), results suggest a potentially causal effect of SDP on disruptive behavior (b = 0.09, SE = 0.04, p = 0.03). The potentially causal effect of SDP remained significant in sensitivity analyses. DISCUSSION These findings suggest that familial confounding likely plays a complex role in the SDP-disruptive behavior association when examining both parent and teacher reports of behavior. Importantly, the current study highlights the importance of multiple raters, reflecting a more comprehensive measure of complex behaviors (e.g., disruptive behavior) to examine the teratogenic effects of SDP. IMPLICATIONS Our study provides additional evidence that controlling for genetic and family factors is essential when examining the effect of SDP on later behavioral problems, as it explains a portion of the association between SDP and later behavioral problems. However, we found a significant association between SDP and disruptive behavior when using a multi-rater approach that capitalizes on both parent and teacher report, suggesting that parent and teacher ratings capture a unique perspective that is important to consider when examining SDP-behavior associations.
Collapse
Affiliation(s)
- Mikael O Ekblad
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN.,Department of General Practice, Institute of Clinical Medicine, Turku University and Turku University Hospital, Turku, Finland
| | - Emily Rolan
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN
| | - Kristine Marceau
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN
| | - Rohan Palmer
- Department of Psychology, Emory University, Atlanta, GA
| | - Alexandre Todorov
- Department of Psychiatry, Midwest Alcoholism Research Center, Washington University School of Medicine, St Louis, MO
| | - Andrew C Heath
- Department of Psychiatry, Midwest Alcoholism Research Center, Washington University School of Medicine, St Louis, MO
| | - Valerie S Knopik
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN
| |
Collapse
|
6
|
Kwiatkowski MA, Cope ZA, Lavadia ML, van de Cappelle CJA, Dulcis D, Young JW. Short-active photoperiod gestation induces psychiatry-relevant behavior in healthy mice but a resiliency to such effects are seen in mice with reduced dopamine transporter expression. Sci Rep 2020; 10:10217. [PMID: 32576854 PMCID: PMC7311429 DOI: 10.1038/s41598-020-66873-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/13/2020] [Indexed: 01/02/2023] Open
Abstract
A higher incidence of multiple psychiatric disorders occurs in people born in late winter/early spring. Reduced light exposure/activity level impacts adult rodent behavior and neural mechanisms, yet few studies have investigated such light exposure on gestating fetuses. A dysfunctional dopamine system is implicated in most psychiatric disorders, and genetic polymorphisms reducing expression of the dopamine transporter (DAT) are associated with some conditions. Furthermore, adult mice with reduced DAT expression (DAT-HT) were hypersensitive to short active (SA; 19:5 L:D) photoperiod exposure versus their wildtype (WT) littermates. Effects of SA photoperiod exposure during gestation in these mice have not been examined. We confirmed adult females exhibit a heightened corticosterone response when in SA photoperiod. We then tested DAT-HT mice and WT littermates in psychiatry-relevant behavioral tests after SA or normal active (NA; 12:12 L:D) photoperiod exposure during gestation and early life. SA-born WT mice exhibited sensorimotor gating deficits (males), increased reward preference, less immobility, open arm avoidance (females), less motivation to obtain a reward, and reversal learning deficits, vs. NA-born WT mice. DAT-HT mice were largely resilient to these effects, however. Future studies will determine the mechanism(s) by which SA photoperiod exposure influences brain development to predispose toward emergence of psychiatry-relevant behaviors.
Collapse
Affiliation(s)
- Molly A Kwiatkowski
- Department of Psychiatry, University of California, San Diego, San Diego, USA
| | - Zackary A Cope
- Department of Medicine, Aging Institute, University of Pittsburgh, Pittsburgh, USA
| | - Maria L Lavadia
- Department of Psychiatry, University of California, San Diego, San Diego, USA
| | - Chuck J A van de Cappelle
- Department of Psychiatry, University of California, San Diego, San Diego, USA.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Davide Dulcis
- Department of Psychiatry, University of California, San Diego, San Diego, USA
| | - Jared W Young
- Department of Psychiatry, University of California, San Diego, San Diego, USA. .,Research Service, VA San Diego Healthcare System, San Diego, USA.
| |
Collapse
|
7
|
Lukkes JL, Drozd HP, Fitz SD, Molosh AI, Clapp DW, Shekhar A. Guanfacine treatment improves ADHD phenotypes of impulsivity and hyperactivity in a neurofibromatosis type 1 mouse model. J Neurodev Disord 2020; 12:2. [PMID: 31941438 PMCID: PMC6961243 DOI: 10.1186/s11689-019-9304-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
Background Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder with a mutation in one copy of the neurofibromin gene (NF1+/−). Even though approximately 40–60% of children with NF1 meet the criteria for attention deficit hyperactivity disorder (ADHD), very few preclinical studies, if any, have investigated alterations in impulsivity and risk-taking behavior. Mice with deletion of a single NF1 gene (Nf1+/−) recapitulate many of the phenotypes of NF1 patients. Methods We compared wild-type (WT) and Nf1+/− mouse strains to investigate differences in impulsivity and hyperactivity using the delay discounting task (DDT), cliff avoidance reaction (CAR) test, and open field. We also investigated whether treatment with the clinically effective alpha-2A adrenergic receptor agonist, guanfacine (0.3 mg/kg, i.p.), would reverse deficits observed in behavioral inhibition. Results Nf1+/− mice chose a higher percentage of smaller rewards when both 10- and 20-s delays were administered compared to WT mice, suggesting Nf1+/− mice are more impulsive. When treated with guanfacine (0.3 mg/kg, i.p.), Nf1+/− mice exhibited decreased impulsive choice by waiting for the larger, delayed reward. Nf1+/− mice also exhibited deficits in behavioral inhibition compared to WT mice in the CAR test by repetitively entering the outer edge of the platform where they risk falling. Treatment with guanfacine ameliorated these deficits. In addition, Nf1+/− mice exhibited hyperactivity as increased distance was traveled compared to WT controls in the open field. This hyperactivity in Nf1+/− mice was reduced with guanfacine pre-treatment. Conclusions Overall, our study confirms that Nf1+/− mice exhibit deficits in behavioral inhibition in multiple contexts, a key feature of ADHD, and can be used as a model system to identify alterations in neural circuitry associated with symptoms of ADHD in children with NF1.
Collapse
Affiliation(s)
- J L Lukkes
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 West 15th Street, Indianapolis, IN, 46202, USA.
| | - H P Drozd
- Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 West 15th Street, Indianapolis, IN, 46202, USA.,Program in Medical Neurosciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S D Fitz
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 West 15th Street, Indianapolis, IN, 46202, USA
| | - A I Molosh
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 West 15th Street, Indianapolis, IN, 46202, USA
| | - D W Clapp
- Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 West 15th Street, Indianapolis, IN, 46202, USA.,Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Shekhar
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 West 15th Street, Indianapolis, IN, 46202, USA.,Program in Medical Neurosciences, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Clinical and Translation Sciences Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
8
|
Grünblatt E, Werling AM, Roth A, Romanos M, Walitza S. Association study and a systematic meta-analysis of the VNTR polymorphism in the 3'-UTR of dopamine transporter gene and attention-deficit hyperactivity disorder. J Neural Transm (Vienna) 2019; 126:517-529. [PMID: 30923918 PMCID: PMC6456487 DOI: 10.1007/s00702-019-01998-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/24/2019] [Indexed: 01/21/2023]
Abstract
Attention-deficit hyperactivity disorder (ADHD) has been postulated to associate with dopaminergic dysfunction, including the dopamine transporter (DAT1). Several meta-analyses showed small but significant association between the 10-repeat allele in the DAT1 gene in 3'-untranslated region variant number tandem repeat polymorphism and child and adolescent ADHD, whereas in adult ADHD the 9-repeat allele was suggested to confer as risk allele. Interestingly, recent evidence indicated that the long-allele variants (10 repeats and longer) might confer to lower expression of the transporter in comparison to the short-allele. Therefore, we assessed here the association in samples consisting of families with child and adolescent ADHD as well as a case-control sample, using either the 10- versus 9-repeat or the long- versus short-allele approach. Following, we conducted a systematic review and meta-analysis, including family and case-control studies, using the two aforementioned approaches as well as stratifying to age and ethnicity. The first approach (10-repeat) resulted in nominal significant association in child and adolescent ADHD (OR 1.1050 p = 0.0128), that became significant stratifying to European population (OR 1.1301 p = 0.0085). The second approach (long-allele) resulted in significant association with the whole ADHD population (OR 1.1046 p = 0.0048), followed by significant association for child and adolescent ADHD (OR 1.1602 p = 0.0006) and in Caucasian and in European child and adolescent ADHD (OR 1.1310 p = 0.0114; OR 1.1661 p = 0.0061; respectively). We were not able to confirm the association reported in adults using both approaches. In conclusion, we found further indication for a possible DAT1 gene involvement; however, further studies should be conducted with stringent phenotyping to reduce heterogeneity, a limitation observed in most included studies.
Collapse
Affiliation(s)
- Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
- Translational Molecular Psychiatry, Department of Child and Adolescent Psychiatry and Psychotherapy, Centre for Child and Adolescent Psychiatry Research, University Hospital of Psychiatry Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland.
| | - Anna Maria Werling
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Alexander Roth
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Marcel Romanos
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Wuerzburg, Würzburg, Germany
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Luo Y, Weibman D, Halperin JM, Li X. A Review of Heterogeneity in Attention Deficit/Hyperactivity Disorder (ADHD). Front Hum Neurosci 2019; 13:42. [PMID: 30804772 PMCID: PMC6378275 DOI: 10.3389/fnhum.2019.00042] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 01/25/2019] [Indexed: 12/24/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder that affects approximately 8%–12% of children worldwide. Throughout an individual’s lifetime, ADHD can significantly increase risk for other psychiatric disorders, educational and occupational failure, accidents, criminality, social disability and addictions. No single risk factor is necessary or sufficient to cause ADHD. The multifactorial causation of ADHD is reflected in the heterogeneity of this disorder, as indicated by its diversity of psychiatric comorbidities, varied clinical profiles, patterns of neurocognitive impairment and developmental trajectories, and the wide range of structural and functional brain anomalies. Although evidence-based treatments can reduce ADHD symptoms in a substantial portion of affected individuals, there is yet no curative treatment for ADHD. A number of theoretical models of the emergence and developmental trajectories of ADHD have been proposed, aimed at providing systematic guides for clinical research and practice. We conducted a comprehensive review of the current status of research in understanding the heterogeneity of ADHD in terms of etiology, clinical profiles and trajectories, and neurobiological mechanisms. We suggest that further research focus on investigating the impact of the etiological risk factors and their interactions with developmental neural mechanisms and clinical profiles in ADHD. Such research would have heuristic value for identifying biologically homogeneous subgroups and could facilitate the development of novel and more tailored interventions that target underlying neural anomalies characteristic of more homogeneous subgroups.
Collapse
Affiliation(s)
- Yuyang Luo
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Dana Weibman
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Jeffrey M Halperin
- Department of Psychology, Queens College of the City University of New York, Flushing, NY, United States
| | - Xiaobo Li
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States.,Department of Electric and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
10
|
Hong JH, Hwang IW, Lim MH, Kwon HJ, Jin HJ. Genetic associations between ADHD and dopaminergic genes (DAT1 and DRD4) VNTRs in Korean children. Genes Genomics 2018; 40:1309-1317. [PMID: 30099719 DOI: 10.1007/s13258-018-0726-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/08/2018] [Indexed: 01/01/2023]
Abstract
It is well known that dopaminergic genes affect the development of attention deficit hyperactivity disorder (ADHD) in various populations. Many studies have shown that variable number tandem repeats (VNTRs) located within the 3'-untranslated region of DAT1 and in exon 3 of DRD4 are associated with ADHD development; however, these results were inconsistent. Therefore, we investigated the genetic association between two VNTRs and ADHD in Korean children. We determined the VNTRs using PCR. We examined genotype and allele frequency differences between the experimental and control groups, along with the odds ratios, using Chi square and exact tests. We observed a significant association between the children with ADHD and the control group in the 10R/10R genotype of DAT1 VNTRs (p = 0.025). In addition, the 11R allele of DAT1 VNTRs showed a higher frequency in the control group than in the ADHD group (p = 0.023). Also, the short repeat (without 11R) and long repeat alleles (including 11R) were associated with ADHD (p < 0.05). The analysis of DRD4 VNTRs revealed that the 2R allele is associated with ADHD (p = 0.025). A significant result was also observed in long and short repeats (p < 0.05). Additionally, ADHD subtypes showed that the DRD4 VNTRs are associated with combined and hyperactive-impulsive subtype groups (p < 0.05). Therefore, our results suggest that DAT1 VNTRs and DRD4 VNTRs play a role in the genetic etiology of ADHD in Korean children.
Collapse
Affiliation(s)
- Jun Ho Hong
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan, 330-714, Republic of Korea
| | - In Wook Hwang
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan, 330-714, Republic of Korea
- Enviromental Health Center, Dankook Medical Hospital, Cheonan, Republic of Korea
| | - Myung Ho Lim
- Department of Psychology and Psychotherapy, College of Health Sciences, Dankook University, Cheonan, Republic of Korea
- Enviromental Health Center, Dankook Medical Hospital, Cheonan, Republic of Korea
| | - Ho Jang Kwon
- Department of Preventive Medicine, College of Medicine, Dankook University, Cheonan, Republic of Korea
- Enviromental Health Center, Dankook Medical Hospital, Cheonan, Republic of Korea
| | - Han Jun Jin
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan, 330-714, Republic of Korea.
- Enviromental Health Center, Dankook Medical Hospital, Cheonan, Republic of Korea.
| |
Collapse
|
11
|
Alcantara JA, Vincentis S, Kerr DS, dos Santos B, Alessi R, van der Linden Jr H, Chaim T, Serpa MH, Busatto GF, Gattaz WF, Demarque R, Valente KD. Association study of functional polymorphisms of dopaminergic pathway in epilepsy-related factors of temporal lobe epilepsy in Brazilian population. Eur J Neurol 2018; 25:895-901. [DOI: 10.1111/ene.13631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/28/2018] [Indexed: 12/27/2022]
Affiliation(s)
- J. A. Alcantara
- Hospital das Clinicas HCFMUSP; Faculdade de Medicina; Universidade de Sao Paulo; Sao Paulo SP
- Faculdade de Medicina FMUSP; Universidade de Sao Paulo; Sao Paulo SP
| | - S. Vincentis
- Hospital das Clinicas HCFMUSP; Faculdade de Medicina; Universidade de Sao Paulo; Sao Paulo SP
- Faculdade de Medicina FMUSP; Universidade de Sao Paulo; Sao Paulo SP
| | - D. S. Kerr
- Faculdade de Medicina FMUSP; Universidade de Sao Paulo; Sao Paulo SP
| | - B. dos Santos
- Escola de Enfermagem EEUSP; Universidade de Sao Paulo; Sao Paulo SP
| | - R. Alessi
- Hospital das Clinicas HCFMUSP; Faculdade de Medicina; Universidade de Sao Paulo; Sao Paulo SP
| | | | - T. Chaim
- Faculdade de Medicina FMUSP; Universidade de Sao Paulo; Sao Paulo SP
| | - M. H. Serpa
- Faculdade de Medicina FMUSP; Universidade de Sao Paulo; Sao Paulo SP
| | - G. F. Busatto
- Hospital das Clinicas HCFMUSP; Faculdade de Medicina; Universidade de Sao Paulo; Sao Paulo SP
- Faculdade de Medicina FMUSP; Universidade de Sao Paulo; Sao Paulo SP
| | - W. F. Gattaz
- Hospital das Clinicas HCFMUSP; Faculdade de Medicina; Universidade de Sao Paulo; Sao Paulo SP
- Faculdade de Medicina FMUSP; Universidade de Sao Paulo; Sao Paulo SP
| | - R. Demarque
- Hospital das Clinicas HCFMUSP; Faculdade de Medicina; Universidade de Sao Paulo; Sao Paulo SP
| | - K. D. Valente
- Hospital das Clinicas HCFMUSP; Faculdade de Medicina; Universidade de Sao Paulo; Sao Paulo SP
- Faculdade de Medicina FMUSP; Universidade de Sao Paulo; Sao Paulo SP
| |
Collapse
|
12
|
Magalhães F, Rocha K, Marinho V, Ribeiro J, Oliveira T, Ayres C, Bento T, Leite F, Gupta D, Bastos VH, Velasques B, Ribeiro P, Orsini M, Teixeira S. Neurochemical changes in basal ganglia affect time perception in parkinsonians. J Biomed Sci 2018; 25:26. [PMID: 29554962 PMCID: PMC5858149 DOI: 10.1186/s12929-018-0428-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/08/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Parkinson's disease is described as resulting from dopaminergic cells progressive degeneration, specifically in the substantia nigra pars compacta that influence the voluntary movements control, decision making and time perception. AIM This review had a goal to update the relation between time perception and Parkinson's Disease. METHODOLOGY We used the PRISMA methodology for this investigation built guided for subjects dopaminergic dysfunction in the time judgment, pharmacological models with levodopa and new studies on the time perception in Parkinson's Disease. We researched on databases Scielo, Pubmed / Medline and ISI Web of Knowledge on August 2017 and repeated in September 2017 and February 2018 using terms and associations relevant for obtaining articles in English about the aspects neurobiology incorporated in time perception. No publication status or restriction of publication date was imposed, but we used as exclusion criteria: dissertations, book reviews, conferences or editorial work. RESULTS/DISCUSSION We have demonstrated that the time cognitive processes are underlying to performance in cognitive tasks and that many are the brain areas and functions involved and the modulators in the time perception performance. CONCLUSIONS The influence of dopaminergic on Parkinson's Disease is an important research tool in Neuroscience while allowing for the search for clarifications regarding behavioral phenotypes of Parkinson's disease patients and to study the areas of the brain that are involved in the dopaminergic circuit and their integration with the time perception mechanisms.
Collapse
Affiliation(s)
- Francisco Magalhães
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819, Nossa Sra. de Fátima, Parnaíba, PI, 64202-020, Brazil. .,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil.
| | - Kaline Rocha
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819, Nossa Sra. de Fátima, Parnaíba, PI, 64202-020, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Victor Marinho
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819, Nossa Sra. de Fátima, Parnaíba, PI, 64202-020, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Jéssica Ribeiro
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819, Nossa Sra. de Fátima, Parnaíba, PI, 64202-020, Brazil
| | - Thomaz Oliveira
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819, Nossa Sra. de Fátima, Parnaíba, PI, 64202-020, Brazil
| | - Carla Ayres
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819, Nossa Sra. de Fátima, Parnaíba, PI, 64202-020, Brazil
| | - Thalys Bento
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819, Nossa Sra. de Fátima, Parnaíba, PI, 64202-020, Brazil
| | - Francisca Leite
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819, Nossa Sra. de Fátima, Parnaíba, PI, 64202-020, Brazil
| | - Daya Gupta
- Department of Biology, Camden County College, Blackwood, NJ, USA
| | - Victor Hugo Bastos
- Laboratory of Brain Mapping and Functionality, Federal University of Piauí, Parnaíba, Brazil
| | - Bruna Velasques
- Brain Mapping and Sensory-Motor Integration Laboratory, Psychiatry Institute of Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro, Av. Venceslau Braz, 71 - Botafogo, Rio de Janeiro, RJ, 22290-140, Brazil
| | - Pedro Ribeiro
- Brain Mapping and Sensory-Motor Integration Laboratory, Psychiatry Institute of Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro, Av. Venceslau Braz, 71 - Botafogo, Rio de Janeiro, RJ, 22290-140, Brazil
| | - Marco Orsini
- Rehabilitation Science Program, Analysis of Human Movement Laboratory, Augusto Motta University Center, Rio de Janeiro, Brazil.,Program Professional Master in Applied Science in Health/UNISUAM, Av. Paris, 84, Bonsucesso, Rio de Janeiro, RJ, 21041-020, Brazil
| | - Silmar Teixeira
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819, Nossa Sra. de Fátima, Parnaíba, PI, 64202-020, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
13
|
Salatino-Oliveira A, Rohde LA, Hutz MH. The dopamine transporter role in psychiatric phenotypes. Am J Med Genet B Neuropsychiatr Genet 2018; 177:211-231. [PMID: 28766921 DOI: 10.1002/ajmg.b.32578] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 06/26/2017] [Accepted: 07/18/2017] [Indexed: 01/06/2023]
Abstract
The dopamine transporter (DAT) is one of the most relevant and investigated neurotransmitter transporters. DAT is a plasma membrane protein which plays a homeostatic role, controlling both extracellular and intracellular concentrations of dopamine (DA). Since unbalanced DA levels are known to be involved in numerous mental disorders, a wealth of investigations has provided valuable insights concerning DAT role into normal brain functioning and pathological processes. Briefly, this extensive but non-systematic review discusses what is recently known about the role of SLC6A3 gene which encodes the dopamine transporter in psychiatric phenotypes. DAT protein, SLC6A3 gene, animal models, neuropsychology, and neuroimaging investigations are also concisely discussed. To conclude, current challenges are reviewed in order to provide perspectives for future studies.
Collapse
Affiliation(s)
| | - Luis A Rohde
- Division of Child and Adolescent Psychiatry, Hospital de Clinicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Institute for Developmental Psychiatry for Children and Adolescents, São Paulo, Brazil
| | - Mara H Hutz
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
14
|
Arpón A, Milagro FI, Laja A, Segura V, de Pipaón MS, Riezu-Boj JI, Alfredo Martínez J. Methylation changes and pathways affected in preterm birth: a role for SLC6A3 in neurodevelopment. Epigenomics 2017; 10:91-103. [PMID: 29172706 DOI: 10.2217/epi-2017-0082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
AIM To analyze whether preterm newborns show differences in methylation patterns in comparison to full-term newborns in white blood cells. PATIENTS & METHODS Anthropometrical, biochemical features and methylation levels of preterm newborns (n = 24) and full-term newborns (n = 22) recruited in La Paz University Hospital (Spain) were assessed at 12 months of gestational age, whereas Bayley Scale of Infant Development was evaluated at 24/36 months. RESULTS From all the statistically significant CpGs, methylation levels of cg00997378 (SLC6A3 gene) showed the highest differences (p < 0.0001), being associated with prematurity risk factors. CONCLUSION SLC6A3 methylation, previously related to attention-deficit/hyperactivity disorder, neuronal function and behavior, might be a potential epigenetic biomarker with value in the early diagnosis and management of neurodevelopmental diseases in newborns.
Collapse
Affiliation(s)
- Ana Arpón
- Department of Nutrition, Food Sciences & Physiology, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain.,Centre for Nutrition Research, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Fermín I Milagro
- Department of Nutrition, Food Sciences & Physiology, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain.,Centre for Nutrition Research, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain.,Spanish Biomedical Research Centre in Physiopathology of Obesity & Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
| | - Ana Laja
- Department of Pharmaceutical & Health Sciences, Faculty of Pharmacy, CEU San Pablo University, Madrid, Spain
| | - Víctor Segura
- Unit of Bioinformatics, Centre for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Miguel Sáenz de Pipaón
- Neonatology Department, Hospital Universitario de la Paz, Madrid, Spain.,Instituto de Salud Carlos III, Red de Salud Materno Infantil y Desarrollo (SAMID), Madrid, Spain.,Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| | - José-Ignacio Riezu-Boj
- Department of Nutrition, Food Sciences & Physiology, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain.,Centre for Nutrition Research, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain.,Digestive disease and Nutrition group, Navarra Institute for Health Research (IdiSNa), Pamplona, Spain
| | - J Alfredo Martínez
- Department of Nutrition, Food Sciences & Physiology, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain.,Centre for Nutrition Research, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain.,Spanish Biomedical Research Centre in Physiopathology of Obesity & Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain.,Digestive disease and Nutrition group, Navarra Institute for Health Research (IdiSNa), Pamplona, Spain.,Madrid Institute of Advanced Studies (IMDEA), IMDEA Food, Madrid, Spain
| |
Collapse
|
15
|
Marinho V, Oliveira T, Rocha K, Ribeiro J, Magalhães F, Bento T, Pinto GR, Velasques B, Ribeiro P, Di Giorgio L, Orsini M, Gupta DS, Bittencourt J, Bastos VH, Teixeira S. The dopaminergic system dynamic in the time perception: a review of the evidence. Int J Neurosci 2017; 128:262-282. [PMID: 28950734 DOI: 10.1080/00207454.2017.1385614] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Dopaminergic system plays a key role in perception, which is an important executive function of the brain. Modulation in dopaminergic system forms an important biochemical underpinning of neural mechanisms of time perception in a very wide range, from milliseconds to seconds to longer daily rhythms. Distinct types of temporal experience are poorly understood, and the relationship between processing of different intervals by the brain has received little attention. A comprehensive understanding of interval timing functions should be sought within a wider context of temporal processing, involving genetic aspects, pharmacological models, cognitive aspects, motor control and the neurological diseases with impaired dopaminergic system. Particularly, an unexplored question is whether the role of dopamine in interval timing can be integrated with the role of dopamine in non-interval timing temporal components. In this review, we explore a wider perspective of dopaminergic system, involving genetic polymorphisms, pharmacological models, executive functions and neurological diseases on the time perception. We conclude that the dopaminergic system has great participation in impact on time perception and neurobiological basis of the executive functions and neurological diseases.
Collapse
Affiliation(s)
- Victor Marinho
- a Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI) , Parnaíba , Brazil.,b Genetics and Molecular Biology Laboratory, Federal University of Piauí , Parnaíba , Brazil
| | - Thomaz Oliveira
- a Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI) , Parnaíba , Brazil.,b Genetics and Molecular Biology Laboratory, Federal University of Piauí , Parnaíba , Brazil
| | - Kaline Rocha
- a Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI) , Parnaíba , Brazil
| | - Jéssica Ribeiro
- a Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI) , Parnaíba , Brazil
| | - Francisco Magalhães
- a Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI) , Parnaíba , Brazil
| | - Thalys Bento
- a Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI) , Parnaíba , Brazil
| | - Giovanny R Pinto
- b Genetics and Molecular Biology Laboratory, Federal University of Piauí , Parnaíba , Brazil
| | - Bruna Velasques
- c Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ) , Rio de Janeiro , Brazil
| | - Pedro Ribeiro
- c Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ) , Rio de Janeiro , Brazil
| | - Luiza Di Giorgio
- c Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ) , Rio de Janeiro , Brazil
| | - Marco Orsini
- c Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ) , Rio de Janeiro , Brazil.,d Rehabilitation Science Program, Analysis of Human Movement Laboratory, Augusto Motta University Center (UNISUAM) , Rio de Janeiro , Brazil
| | - Daya S Gupta
- e Department of Biology , Camden County College , Blackwood , NJ , USA
| | - Juliana Bittencourt
- f Biomedical Engineering Program (COPPE), Federal University of Rio de Janeiro (UFRJ) , Rio de Janeiro , Brazil
| | - Victor Hugo Bastos
- g Brain Mapping and Functionality Laboratory, Federal University of Piauí (UFPI) , Parnaíba , Brazil
| | - Silmar Teixeira
- a Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI) , Parnaíba , Brazil
| |
Collapse
|
16
|
DRD4 Gene Polymorphisms as a Risk Factor for Children with Attention Deficit Hyperactivity Disorder in Iranian Population. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2017. [PMID: 28630890 PMCID: PMC5463114 DOI: 10.1155/2017/2494537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background and Objective Dopamine dysfunction is known to be associated with attention deficit hyperactivity disorder (ADHD). Dopamine D4 receptor gene (DRD4) is one of the important genes in this pathway. This study intended to investigate the variable number of tandem repeats (VNTR) in exon 3 of the DRD4 gene in Iranian children and adolescents. Materials and Methods In this study, 130 children with ADHD, aged 6–14 years, and 130 healthy children, within the same age range, were enrolled. All children were selected from northwest of Iran which have Caucasian ethnic background and are of a Turkic ethnic group. VNTR polymorphisms of the DRD4 gene were evaluated by PCR using exon 3-specific primers followed by agarose gel electrophoresis. Findings The Hardy-Weinberg principle and Chi-square test showed a significant difference in 4-repetition (4R) alleles between the ADHD (76.2%) and control (53.8%) groups (p = 0.004; X2 = 17.39; df = 5). The least percentage of repetition alleles in both groups was 2R. Conclusion There is a significant correlation between the 4R alleles of DRD4 and ADHD in the northwest of Iran.
Collapse
|
17
|
Knopik VS, Marceau K, Bidwell LC, Palmer RHC, Smith TF, Todorov A, Evans AS, Heath AC. Smoking during pregnancy and ADHD risk: A genetically informed, multiple-rater approach. Am J Med Genet B Neuropsychiatr Genet 2016; 171:971-81. [PMID: 26799787 PMCID: PMC4958030 DOI: 10.1002/ajmg.b.32421] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 01/08/2016] [Indexed: 11/07/2022]
Abstract
Maternal smoking during pregnancy (SDP) is a significant public health concern with adverse consequences to the health and well-being of the developing child, including behavioral outcomes such as Attention-Deficit Hyperactivity Disorder (ADHD). There is substantial interest in understanding the nature of this reported association, particularly in light of more recent genetically informed studies that suggest that the SDP-ADHD link is less clear than once thought. In a sample of families (N = 173) specifically selected for sibling pairs discordant for prenatal smoking exposure, we use a sibling-comparison approach that controls for shared genetic and familial influences to assess the effects of SDP on ADHD symptom dimensions. ADHD was measured by both parent and teacher report on the Conners report forms and the Child Behavior Checklist/Teacher Report Form (CBCL/TRF). Results for the CBCL/TRF Total ADHD score are consistent with prior genetically informed approaches and suggest that previously reported associations between SDP and ADHD are largely due to familial confounding rather than causal teratogenic effects. However, results from the Conners parent report suggest a potentially causal effect of SDP on hyperactive/impulsive and, to a lesser extent, total ADHD symptoms; SDP results in increased parent-reported hyperactive/impulsive and total ADHD symptoms even after accounting for genetic and familial confounding factors. This suggests that the Conners assessment (parent-report) may provide a sensitive measure for use in studies examining child specific SDP effects on continuous and dimensional aspects of ADHD. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Valerie S Knopik
- Division of Behavioral Genetics, Department of Psychiatry, Rhode Island Hospital, Providence, Rhode Island.
- Department of Psychiatry and Human Behavior, Brown University, Providence, Rhode Island.
| | - Kristine Marceau
- Division of Behavioral Genetics, Department of Psychiatry, Rhode Island Hospital, Providence, Rhode Island
- Center for Alcohol and Addiction Studies, Brown University, Providence, Rhode Island
| | - L Cinnamon Bidwell
- Institute of Cognitive Science, University of Colorado, Boulder, Colorado
| | - Rohan H C Palmer
- Division of Behavioral Genetics, Department of Psychiatry, Rhode Island Hospital, Providence, Rhode Island
- Department of Psychiatry and Human Behavior, Brown University, Providence, Rhode Island
| | - Taylor F Smith
- Division of Behavioral Genetics, Department of Psychiatry, Rhode Island Hospital, Providence, Rhode Island
- Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, California
| | - Alexandre Todorov
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Allison Schettini Evans
- Memorial Hospital, Pawtucket, RI USA; Warren Alpert School of Medicine, Brown University, Providence, Rhode Island
| | - Andrew C Heath
- Midwest Alcoholism Research Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
18
|
Lundwall RA, Rasmussen CG. MAOA Influences the Trajectory of Attentional Development. Front Hum Neurosci 2016; 10:424. [PMID: 27610078 PMCID: PMC4996824 DOI: 10.3389/fnhum.2016.00424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/09/2016] [Indexed: 01/03/2023] Open
Abstract
Attention is vital to success in all aspects of life (Meck and Benson, 2002; Erickson et al., 2015), hence it is important to identify biomarkers of later attentional problems early enough to intervene. Our objective was to determine if any of 11 genes (APOE, BDNF, HTR4, CHRNA4, COMT, DRD4, IGF2, MAOA, SLC5A7, SLC6A3, and SNAP25) predicted the trajectory of attentional development within the same group of children between infancy and childhood. We recruited follow up participants from children who participated as infants in visual attention studies and used a similar task at both time points. Using multilevel modeling, we associated changes in the participant’s position in the distribution of scores in infancy to his/her position in childhood with genetic markers on each of 11 genes. While all 11 genes predicted reaction time (RT) residual scores, only Monoamine oxidase A (MAOA) had a significant interaction including time point. We conclude that the MAOA single nucleotide polymorphism (SNP) rs1137070 is useful in predicting which girls are likely to develop slower RTs on an attention task between infancy and childhood. This early identification is likely to be helpful in early intervention.
Collapse
Affiliation(s)
- Rebecca A Lundwall
- Development of Visual Cognition Laboratory, Department of Psychology, Brigham Young University Provo, UT, USA
| | - Claudia G Rasmussen
- Development of Visual Cognition Laboratory, Department of Psychology, Brigham Young University Provo, UT, USA
| |
Collapse
|
19
|
Williamson D, Johnston C. Marital and Coparenting Relationships: Associations With Parent and Child Symptoms of ADHD. J Atten Disord 2016; 20:684-94. [PMID: 23390081 DOI: 10.1177/1087054712471717] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To examine relations between symptoms of ADHD and reports of marital and coparenting functioning. METHOD Parents of 8- to 12-year-old boys with (n = 26) and without (n =38) ADHD participated. RESULTS Although mothers of children with ADHD had the highest levels of ADHD symptoms, their symptoms were typically not related to measures of the couples' functioning, particularly when controlling for family ADHD and comorbidities. Father ADHD symptoms were related to their reports of couple functioning, and fathers' ADHD symptoms were associated with their negative attributions for their wives' behavior, even with child and mother ADHD controlled. However, when fathers' depression and hostility symptoms were controlled, these were more important predictors of the attributions than ADHD symptoms. CONCLUSION It is important to consider parental levels of ADHD symptoms in the context of other family members' symptoms as well as other forms of psychopathology.
Collapse
|
20
|
Gallo EF, Posner J. Moving towards causality in attention-deficit hyperactivity disorder: overview of neural and genetic mechanisms. Lancet Psychiatry 2016; 3:555-67. [PMID: 27183902 PMCID: PMC4893880 DOI: 10.1016/s2215-0366(16)00096-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 12/17/2022]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterised by developmentally inappropriate levels of inattention and hyperactivity or impulsivity. The heterogeneity of its clinical manifestations and the differential responses to treatment and varied prognoses have long suggested myriad underlying causes. Over the past decade, clinical and basic research efforts have uncovered many behavioural and neurobiological alterations associated with ADHD, from genes to higher order neural networks. Here, we review the neurobiology of ADHD by focusing on neural circuits implicated in the disorder and discuss how abnormalities in circuitry relate to symptom presentation and treatment. We summarise the literature on genetic variants that are potentially related to the development of ADHD, and how these, in turn, might affect circuit function and relevant behaviours. Whether these underlying neurobiological factors are causally related to symptom presentation remains unresolved. Therefore, we assess efforts aimed at disentangling issues of causality, and showcase the shifting research landscape towards endophenotype refinement in clinical and preclinical settings. Furthermore, we review approaches being developed to understand the neurobiological underpinnings of this complex disorder, including the use of animal models, neuromodulation, and pharmacoimaging studies.
Collapse
Affiliation(s)
- Eduardo F Gallo
- Columbia University and New York State Psychiatric Institute, New York, NY, USA.
| | - Jonathan Posner
- Columbia University and New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
21
|
Gomez-Sanchez CI, Riveiro-Alvarez R, Soto-Insuga V, Rodrigo M, Tirado-Requero P, Mahillo-Fernandez I, Abad-Santos F, Carballo JJ, Dal-Ré R, Ayuso C. Attention deficit hyperactivity disorder: genetic association study in a cohort of Spanish children. Behav Brain Funct 2016; 12:2. [PMID: 26746237 PMCID: PMC4706690 DOI: 10.1186/s12993-015-0084-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 12/02/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Attention deficit hyperactivity disorder (ADHD) has a strong genetic component. The study is aimed to test the association of 34 polymorphisms with ADHD symptomatology considering the role of clinical subtypes and sex in a Spanish population. METHODS A cohort of ADHD 290 patients and 340 controls aged 6-18 years were included in a case-control study, stratified by sex and ADHD subtype. Multivariate logistic regression was used to detect the combined effects of multiple variants. RESULTS After correcting for multiple testing, we found several significant associations between the polymorphisms and ADHD (p value corrected ≤0.05): (1) SLC6A4 and LPHN3 were associated in the total population; (2) SLC6A2, SLC6A3, SLC6A4 and LPHN3 were associated in the combined subtype; and (3) LPHN3 was associated in the male sample. Multivariable logistic regression was used to estimate the influence of these variables for the total sample, combined and inattentive subtype, female and male sample, revealing that these factors contributed to 8.5, 14.6, 2.6, 16.5 and 8.5 % of the variance respectively. CONCLUSIONS We report evidence of the genetic contribution of common variants to the ADHD phenotype in four genes, with the LPHN3 gene playing a particularly important role. Future studies should investigate the contribution of genetic variants to the risk of ADHD considering their role in specific sex or subtype, as doing so may produce more predictable and robust models.
Collapse
Affiliation(s)
- Clara I Gomez-Sanchez
- Department of Genetics, IIS-Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM), Avda. Reyes Católicos 2, 28040, Madrid, Spain. .,Centre for Biomedical Research on Rare Diseases (CIBERER), C/Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain.
| | - Rosa Riveiro-Alvarez
- Department of Genetics, IIS-Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM), Avda. Reyes Católicos 2, 28040, Madrid, Spain. .,Centre for Biomedical Research on Rare Diseases (CIBERER), C/Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain.
| | - Victor Soto-Insuga
- Department of Pediatrics, IIS-Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM), Avda. Reyes Católicos 2, 28040, Madrid, Spain.
| | - Maria Rodrigo
- Department of Pediatrics, IIS-Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM), Avda. Reyes Católicos 2, 28040, Madrid, Spain.
| | - Pilar Tirado-Requero
- Department of Pediatrics, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - Ignacio Mahillo-Fernandez
- Department of Epidemiology, IIS-Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM), Avda. Reyes Católicos 2, 28040, Madrid, Spain.
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, Instituto de Investigación Sanitaria Princesa (IP), Hospital Universitario de la Princesa, C/Diego de Leon 62, 28006, Madrid, Spain.
| | - Juan J Carballo
- Department of Psychiatry, IIS-Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM), Avda. Reyes Católicos 2, 28040, Madrid, Spain.
| | - Rafael Dal-Ré
- Clinical Research, BUC (Biosciences UAM + CSIC) Program, International Campus of Excellence, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain.
| | - Carmen Ayuso
- Department of Genetics, IIS-Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM), Avda. Reyes Católicos 2, 28040, Madrid, Spain. .,Centre for Biomedical Research on Rare Diseases (CIBERER), C/Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain.
| |
Collapse
|
22
|
Sánchez-Mora C, Richarte V, Garcia-Martínez I, Pagerols M, Corrales M, Bosch R, Vidal R, Viladevall L, Casas M, Cormand B, Ramos-Quiroga JA, Ribasés M. Dopamine receptor DRD4 gene and stressful life events in persistent attention deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 2015; 168:480-491. [PMID: 26174753 DOI: 10.1002/ajmg.b.32340] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 06/22/2015] [Indexed: 12/15/2022]
Abstract
We performed a case-control association study in persistent ADHD considering eight candidate genes (DRD4, DAT1/SLC6A3, COMT, ADRA2A, CES1, CYP2D6, LPHN3, and OPRM1) and found additional evidence for the involvement of the Dup 120bp and VNTR 48bp functional variants within the dopamine receptor DRD4 gene in the etiology of adult ADHD. We subsequently investigated the interaction of stressful life events with these two DRD4 polymorphisms, and the impact of such events on the severity of ADHD symptomatology. The gene-by-environment analysis revealed an independent effect of stressful experiences on the severity of persistent ADHD, and a gene-by-environment interaction on the inattentive dimension of the disorder, where non carriers of the Dup 120bp (L) - VNTR 48bp (7R) haplotype were more sensitive to environmental adversity than carriers. These results are in agreement with previous works reporting a relationship between DRD4 and the effect of adverse experiences, which may explain the discordant findings in previous genetic studies and strengthen the importance of gene-by-environment interactions on the severity of ADHD. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cristina Sánchez-Mora
- Psychiatric Genetics Unit, Institute Vall d'Hebron Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
| | - Vanesa Richarte
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Iris Garcia-Martínez
- Psychiatric Genetics Unit, Institute Vall d'Hebron Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Mireia Pagerols
- Psychiatric Genetics Unit, Institute Vall d'Hebron Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Montse Corrales
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Rosa Bosch
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Raquel Vidal
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Miguel Casas
- Psychiatric Genetics Unit, Institute Vall d'Hebron Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain.,Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Bru Cormand
- Departament de Genètica, Universitat de Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Catalonia, Spain
| | - Josep Antoni Ramos-Quiroga
- Psychiatric Genetics Unit, Institute Vall d'Hebron Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain.,Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Ribasés
- Psychiatric Genetics Unit, Institute Vall d'Hebron Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
| |
Collapse
|
23
|
Lundwall RA, Watkins JK. Genetic Influence on Slope Variability in a Childhood Reflexive Attention Task. PLoS One 2015; 10:e0130668. [PMID: 26102342 PMCID: PMC4477886 DOI: 10.1371/journal.pone.0130668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/22/2015] [Indexed: 11/19/2022] Open
Abstract
Individuals are not perfectly consistent, and interindividual variability is a common feature in all varieties of human behavior. Some individuals respond more variably than others, however, and this difference may be important to understanding how the brain works. In this paper, we explore genetic contributions to response time (RT) slope variability on a reflexive attention task. We are interested in such variability because we believe it is an important part of the overall picture of attention that, if understood, has the potential to improve intervention for those with attentional deficits. Genetic association studies are valuable in discovering biological pathways of variability and several studies have found such associations with a sustained attention task. Here, we expand our knowledge to include a reflexive attention task. We ask whether specific candidate genes are associated with interindividual variability on a childhood reflexive attention task in 9–16 year olds. The genetic makers considered are on 11 genes: APOE, BDNF, CHRNA4, COMT, DRD4, HTR4, IGF2, MAOA, SLC5A7, SLC6A3, and SNAP25. We find significant associations with variability with markers on nine and we discuss the results in terms of neurotransmitters associated with each gene and the characteristics of the associated measures from the reflexive attention task.
Collapse
Affiliation(s)
- Rebecca A. Lundwall
- Psychology Department, Brigham Young University, Provo, UT, United States of America
- Neuroscience Center, Brigham Young University, Provo, UT, United States of America
- * E-mail:
| | - Jeffrey K. Watkins
- Neuroscience Center, Brigham Young University, Provo, UT, United States of America
| |
Collapse
|
24
|
Association between the dopamine transporter gene (DAT1) and attention deficit hyperactivity disorder-related traits in healthy adults. Psychiatr Genet 2015; 25:119-26. [DOI: 10.1097/ypg.0000000000000086] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
25
|
Shahin O, Meguid NA, Raafat O, Dawood RM, Doss M, Bader El Din NG, El Awady MK. Polymorphism in variable number of tandem repeats of dopamine d4 gene is a genetic risk factor in attention deficit hyperactive egyptian children: pilot study. Biomark Insights 2015; 10:33-8. [PMID: 25983551 PMCID: PMC4426936 DOI: 10.4137/bmi.s18519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 09/04/2014] [Accepted: 09/08/2014] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION The variable number of tandem repeats (VNTR) of the dopamine receptor D4 (DRD4) gene among humans may elucidate individual differences in susceptibility to neuropsychiatric diseases. Dopamine dysfunction may be involved with Attention Deficit Hyperactivity Disorder (ADHD) symptoms. In this study, we report the association between the phenotype of ADHD, a condition characterized by inattentiveness, hyperactivity, and impulsiveness, and a 48-base pair VNTR in exon 3 of the DRD4 polymorphism. SUBJECTS AND METHODS We used a case control approach conducted on 29 ADHD and 31 ethnically matched control Egyptian children (ages 6-12 years). Cases were assessed by a psychiatric semi-structured interview and the Conners' Parent Rating Scale. VNTR polymorphisms of the DRD4 gene were done by touchdown PCR program using exon 3-specific primers followed by agarose gel electrophoresis. RESULTS We observed a significant association between the existence of D4.4 allele of DRD4 and ADHD (P, 0.002); 6.9% of cases showed a single D4.4 and 10.3% showed a double D4.4 as compared to controls in whom D4.4 has never been detected. CONCLUSION Children with smaller number of repeat alleles (two to four repeats) of the DRD4 gene have higher possibility to develop ADHD in Egyptian children.
Collapse
Affiliation(s)
- Ola Shahin
- Professor of Psychiatry, Faculty of Medicine, Cairo University, Egypt
| | - Nagwa A Meguid
- Professor of Human Genetics, National Research Center, Giza, Egypt
| | - Omnia Raafat
- Professor of Psychiatry, Faculty of Medicine, Cairo University, Egypt
| | - Reham M Dawood
- Researcher of Molecular Genetics, Department of Microbial Biotechnology, National Research Center, Giza, Egypt
| | - Malak Doss
- Assistant Researcher of Psychiatry, National Research Center, Giza, Egypt
| | - Noha G Bader El Din
- Assistant Professor of Molecular Genetics, Department of Microbial Biotechnology, National Research Center, Giza, Egypt
| | - Mostafa K El Awady
- Professor of Molecular Genetics, Department of Microbial Biotechnology, National Research Center, Giza, Egypt
| |
Collapse
|
26
|
Brain dopaminergic system related genetic variability interacts with target/mask timing in metacontrast masking. Neuropsychologia 2015; 71:112-8. [DOI: 10.1016/j.neuropsychologia.2015.03.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 02/21/2015] [Accepted: 03/20/2015] [Indexed: 01/21/2023]
|
27
|
Hopkins EE, Wallace ML, Conley YP, Marazita ML. Symptoms of attention-deficit hyperactivity disorder, nonsyndromic orofacial cleft children, and dopamine polymorphisms: a pilot study. Biol Res Nurs 2014; 17:257-62. [PMID: 25271118 DOI: 10.1177/1099800414552186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE Attention-deficit hyperactivity disorder (ADHD) is a common childhood neurobehavioral disorder characterized by inattention, poor impulse control, and motor restlessness. Risk factors include familial stressors, anxiety disorders, learning disabilities, abnormal brain development, heritability, and dopamine polymorphisms. Children with an orofacial clefting (OFC) history are at increased risk of familial stressors, anxiety disorders, learning disabilities, and abnormal brain development. Given this overlap, we present a conceptual model proposing that children with OFC may be more likely to exhibit ADHD symptoms than children without and explore this relationship using pilot data. DESIGN This cross-sectional pilot study included 29 children with OFC or a first-degree relative with OFC recruited through a cleft research registry. METHODS The Disruptive Behavior Disorder Scale was used to collect data on children's ADHD symptoms. Saliva or whole blood samples were collected from children and parents for DNA analyses. ADHD-associated dopamine polymorphisms within the DRD4, DRD2, and DAT1 genes were genotyped. We tested for associations between presence of OFC and dopamine polymorphisms. Mixed-effects models tested whether children with OFC and dopamine polymorphisms had more ADHD symptoms. RESULTS The DRD4 4-repeat allele was associated with increased inattentive ADHD symptoms (p = .03). Having the DRD2 Taq1A1 allele and OFC predicted fewer (p = .02) inattentive ADHD symptoms. Children with OFC were significantly less likely to have the DAT1 10-repeat allele (p = .04). CONCLUSIONS Results indicate that further investigation among a larger sample of children with OFC is warranted, particularly for relationships with inattentive ADHD.
Collapse
Affiliation(s)
- Emily E Hopkins
- College of Continuing and Professional Studies, Chatham University, Pittsburgh, PA, USA
| | - Meredith L Wallace
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yvette P Conley
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mary L Marazita
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, USA School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
28
|
Gorlick MA, Worthy DA, Knopik VS, McGeary JE, Beevers CG, Maddox WT. DRD4 long allele carriers show heightened attention to high-priority items relative to low-priority items. J Cogn Neurosci 2014; 27:509-21. [PMID: 25244120 DOI: 10.1162/jocn_a_00724] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Humans with seven or more repeats in exon III of the DRD4 gene (long DRD4 carriers) sometimes demonstrate impaired attention, as seen in attention-deficit hyperactivity disorder, and at other times demonstrate heightened attention, as seen in addictive behavior. Although the clinical effects of DRD4 are the focus of much work, this gene may not necessarily serve as a "risk" gene for attentional deficits, but as a plasticity gene where attention is heightened for priority items in the environment and impaired for minor items. Here we examine the role of DRD4 in two tasks that benefit from selective attention to high-priority information. We examine a category learning task where performance is supported by focusing on features and updating verbal rules. Here, selective attention to the most salient features is associated with good performance. In addition, we examine the Operation Span (OSPAN) task, a working memory capacity task that relies on selective attention to update and maintain items in memory while also performing a secondary task. Long DRD4 carriers show superior performance relative to short DRD4 homozygotes (six or less tandem repeats) in both the category learning and OSPAN tasks. These results suggest that DRD4 may serve as a "plasticity" gene where individuals with the long allele show heightened selective attention to high-priority items in the environment, which can be beneficial in the appropriate context.
Collapse
|
29
|
Elton A, Alcauter S, Gao W. Network connectivity abnormality profile supports a categorical-dimensional hybrid model of ADHD. Hum Brain Mapp 2014; 35:4531-43. [PMID: 24615988 PMCID: PMC4213949 DOI: 10.1002/hbm.22492] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 12/10/2013] [Accepted: 02/05/2014] [Indexed: 11/08/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is characterized by inattention, hyperactivity, and impulsivity, but there is no consensus regarding whether ADHD exists on the extreme end of a continuum of normal behavior or represents a discrete disorder. In this study, we sought to characterize both the categorical and dimensional variations in network functional connectivity in order to identify neural connectivity mechanisms of ADHD. Functional connectivity analyses of resting-state fMRI data from 155 children with ADHD and 145 typically developing children (TDC) defined the dorsal attention network (DA), default mode network (DM), salience processing network (SAL) and executive control network (CON). Regional alterations in connectivity associated with categorical diagnoses and dimensional symptom measures (inattention and hyperactivity/impulsivity) as well as their interaction were systematically characterized. Dimensional relationships between symptom severity measures and functional connectivity that did not differ between TDC and children with ADHD were observed for each network, supporting a dimensional characterization of ADHD. However, categorical differences in functional connectivity magnitude between TDC and children with ADHD were detected after accounting for dimensional relationships, indicating the existence of categorical mechanisms independent of dimensional effects. Additionally, differential dimensional relationships for TDC versus ADHD children demonstrated categorical differences in brain-behavior relationships. The patterns of network functional organization associated with categorical versus dimensional measures of ADHD accentuate the complexity of this disorder and support a dual characterization of ADHD etiology featuring both dimensional and categorical mechanisms.
Collapse
Affiliation(s)
- Amanda Elton
- Department of Radiology and Biomedical Research Imaging CenterUniversity of North Carolina at Chapel HillNorth Carolina
| | - Sarael Alcauter
- Department of Radiology and Biomedical Research Imaging CenterUniversity of North Carolina at Chapel HillNorth Carolina
| | - Wei Gao
- Department of Radiology and Biomedical Research Imaging CenterUniversity of North Carolina at Chapel HillNorth Carolina
| |
Collapse
|
30
|
Mergy MA, Gowrishankar R, Davis GL, Jessen TN, Wright J, Stanwood GD, Hahn MK, Blakely RD. Genetic targeting of the amphetamine and methylphenidate-sensitive dopamine transporter: on the path to an animal model of attention-deficit hyperactivity disorder. Neurochem Int 2014; 73:56-70. [PMID: 24332984 PMCID: PMC4177817 DOI: 10.1016/j.neuint.2013.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 11/20/2013] [Accepted: 11/23/2013] [Indexed: 12/20/2022]
Abstract
Alterations in dopamine (DA) signaling underlie the most widely held theories of molecular and circuit level perturbations that lead to risk for attention-deficit hyperactivity disorder (ADHD). The DA transporter (DAT), a presynaptic reuptake protein whose activity provides critical support for DA signaling by limiting DA action at pre- and postsynaptic receptors, has been consistently associated with ADHD through pharmacological, behavioral, brain imaging and genetic studies. Currently, the animal models of ADHD exhibit significant limitations, stemming in large part from their lack of construct validity. To remedy this situation, we have pursued the creation of a mouse model derived from a functional nonsynonymous variant in the DAT gene (SLC6A3) of ADHD probands. We trace our path from the identification of these variants to in vitro biochemical and physiological studies to the production of the DAT Val559 mouse model. We discuss our initial findings with these animals and their promise in the context of existing rodent models of ADHD.
Collapse
Affiliation(s)
- Marc A Mergy
- Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Raajaram Gowrishankar
- Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Gwynne L Davis
- Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Tammy N Jessen
- Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jane Wright
- Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Gregg D Stanwood
- Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Maureen K Hahn
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Randy D Blakely
- Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
31
|
Maras Atabay M, Safi Oz Z, Kurtman E. The association between dopamine receptor (DRD4) gene polymorphisms and second language learning style and behavioral variability in undergraduate students in Turkey. Mol Biol Rep 2014; 41:5215-20. [PMID: 24825354 DOI: 10.1007/s11033-014-3389-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
Abstract
The dopamine D4 receptor gene (DRD4) encodes a receptor for dopamine, a chemical messenger used in the brain. One variant of the DRD4 gene, the 7R allele, is believed to be associated with attention deficit hyperactivity disorder (ADHD). The aim of this study was to investigate the relationships between repeat polymorphisms in dopamine DRD4 and second language learning styles such as visual (seeing), tactile (touching), auditory (hearing), kinesthetic (moving) and group/individual learning styles, as well as the relationships among DRD4 gene polymorphisms and ADHD in undergraduate students. A total of 227 students between the ages of 17-21 years were evaluated using the Wender Utah rating scale and DSM-IV diagnostic criteria for ADHD. Additionally, Reid's perceptual learning style questionnaire for second language learning style was applied. In addition, these students were evaluated for social distress factors using the list of Threatening Events (TLE); having had no TLE, having had just one TLE or having had two or more TLEs within the previous 6 months before the interview. For DRD4 gene polymorphisms, DNA was extracted from whole blood using the standard phenol/chloroform method and genotyped using polymerase chain reaction. Second language learners with the DRD4.7+ repeats showed kinaesthetic and auditory learning styles, while students with DRD4.7-repeats showed visual, tactile and group learning, and also preferred the more visual learning styles [Formula: see text]. We also demonstrated that the DRD4 polymorphism significantly affected the risk effect conferred by an increasing level of exposure to TLE.
Collapse
Affiliation(s)
- Meltem Maras Atabay
- Department of Biology Education, Bulent Ecevit University, Zonguldak, Turkey
| | | | | |
Collapse
|
32
|
Maitra S, Sarkar K, Ghosh P, Karmakar A, Bhattacharjee A, Sinha S, Mukhopadhyay K. Potential contribution of dopaminergic gene variants in ADHD core traits and co-morbidity: a study on eastern Indian probands. Cell Mol Neurobiol 2014; 34:549-64. [PMID: 24585059 DOI: 10.1007/s10571-014-0038-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 02/20/2014] [Indexed: 10/25/2022]
Abstract
Association of dopaminergic genes, mainly receptors and transporters, with Attention Deficit Hyperactivity Disorder (ADHD) has been investigated throughout the world due to the importance of dopamine (DA) in various physiological functions including attention, cognition and motor activity, traits. However, till date, etiology of ADHD remains unknown. We explored association of functional variants in the DA receptor 2 (rs1799732 and rs6278), receptor 4 (exon 3 VNTR and rs914655), and transporter (rs28363170 and rs3836790) with hyperactivity, cognitive deficit, and co-morbid disorders in eastern Indian probands. Diagnostic and Statistical Manual for Mental Disorders-IV was followed for recruitment of nuclear families with ADHD probands (N = 160) and ethnically matched controls (N = 160). Cognitive deficit and hyperactive traits were measured using Conner's parents/teachers rating scale. Peripheral blood was collected after obtaining informed written consent and used for genomic DNA isolation. Genetic polymorphisms were analyzed by PCR-based methods followed by population- as well as family-based statistical analyses. Association between genotypes and cognitive/hyperactivity traits and co-morbidities was analyzed by the Multifactor dimensionality reduction (MDR) software. Case-control analysis showed statistically significant difference for rs6278 and rs28363170 (P = 0.004 and 1.332e-007 respectively) while family-based analysis exhibited preferential paternal transmission of rs28363170 '9R' allele (P = 0.04). MDR analyses revealed independent effects of rs1799732, rs6278, rs914655, and rs3836790 in ADHD. Significant independent effects of different sites on cognitive/hyperactivity traits and co-morbid disorders were also noticed. It can be summarized from the present investigation that these gene variants may influence cognitive/hyperactive traits, thereby affecting the disease etiology and associated co-morbid features.
Collapse
Affiliation(s)
- Subhamita Maitra
- Manovikas Biomedical Research and Diagnostic Centre, 482, Madudah, Plot I-24, Sec.-J, E.M. Bypass, Kolkata, 700107, India
| | | | | | | | | | | | | |
Collapse
|
33
|
Akutagava-Martins GC, Salatino-Oliveira A, Kieling CC, Rohde LA, Hutz MH. Genetics of attention-deficit/hyperactivity disorder: current findings and future directions. Expert Rev Neurother 2014; 13:435-45. [DOI: 10.1586/ern.13.30] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
34
|
Tovo-Rodrigues L, Rohde LA, Menezes AMB, Polanczyk GV, Kieling C, Genro JP, Anselmi L, Hutz MH. DRD4 rare variants in Attention-Deficit/Hyperactivity Disorder (ADHD): further evidence from a birth cohort study. PLoS One 2013; 8:e85164. [PMID: 24391992 PMCID: PMC3877354 DOI: 10.1371/journal.pone.0085164] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 11/24/2013] [Indexed: 01/02/2023] Open
Abstract
The dopamine receptor D4 (DRD4) is one of the most studied candidate genes for Attention-Deficit/Hyperactivity Disorder (ADHD). An excess of rare variants and non-synonymous mutations in the VNTR region of 7R allele in ADHD subjects was observed in previous studies with clinical samples. We hypothesize that genetic heterogeneity in the VNTR is an important factor in the pathophysiology of ADHD. The subjects included in the present study are members of the 1993 Pelotas Birth Cohort Study (N=5,249). We conducted an association study with the 4,101 subjects who had DNA samples collected. The hyperactivity-inattention scores were assessed through the parent version of the Strengths and Difficulties Questionnaire at 11 and 15 years of age. The contribution of allele’s length and rare variants to high hyperactivity/inattention scores predisposition was evaluated by multivariate logistic regression. No effect of allele length was observed on high scores of hyperactivity-inattention. By contrast, when resequencing/haplotyping was conducted in a subsample, all 7R rare variants as well as non-synonymous 7R rare variants were associated with high hyperactivity/inattention scores (OR=2.561; P=0.024 and OR=3.216; P=0.008 respectively). A trend for association was observed with 4R rare variants. New coding mutations covered 10 novel motifs and many of them are previously unreported deletions leading to different stop codons. Our findings suggest a contribution of DRD4 7R rare variants to high hyperactivity-inattention scores in a population-based sample from a large birth cohort. These findings provide further evidence for an effect of DRD4 7R rare variants and allelic heterogeneity in ADHD genetic susceptibility.
Collapse
Affiliation(s)
- Luciana Tovo-Rodrigues
- Genetics Department, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luis A. Rohde
- Child and Adolescent Psychiatric Division, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), Brazil
| | - Ana M. B. Menezes
- Graduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Guilherme V. Polanczyk
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), Brazil
- Department of Psychiatry, Medical School and Research Support Center on Neurodevelopment and Mental Health, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Christian Kieling
- Child and Adolescent Psychiatric Division, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Julia P. Genro
- Genetics Department, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luciana Anselmi
- Child and Adolescent Psychiatric Division, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), Brazil
| | - Mara H. Hutz
- Genetics Department, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail:
| |
Collapse
|
35
|
Greenwood TA, Joo EJ, Shektman T, Sadovnick AD, Remick RA, Keck PE, McElroy SL, Kelsoe JR. Association of dopamine transporter gene variants with childhood ADHD features in bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:137-45. [PMID: 23255304 PMCID: PMC3904300 DOI: 10.1002/ajmg.b.32108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 09/27/2012] [Indexed: 11/08/2022]
Abstract
Bipolar disorder (BD) and attention deficit hyperactivity disorder (ADHD) exhibit remarkably high rates of comorbidity, as well as patterns of familial co-segregation. Epidemiological data suggests that these disorders either share a common genetic architecture or that ADHD features in BD may represent an etiologically distinct subtype. We previously used the Wender Utah Rating Scale (WURS) to assess ADHD features in BD families and identified three heritable factors relating to impulsivity, mood instability, and inattention. Linkage analysis revealed a LOD score of 1.33 for the inattention factor on 5p15.3 near the dopamine transporter gene (DAT1), which has been associated with both BD and ADHD. Pharmacological evidence also suggests a role for DAT in both disorders. We have now evaluated the association of ten DAT1 variants for the WURS total score and factors in an overlapping sample of 87 BD families. Significant associations for three SNPs were observed across the WURS measures, notably for a SNP in intron 8 with the WURS total score (P = 0.007) and for variants in introns 9 and 13 with mood instability (P = 0.009 and 0.004, respectively). Analysis of an independent sample of 52 BD cases and 46 healthy controls further supported association of the intron 8 variant with mood instability (P = 0.005), and a combined analysis confirmed the associations of this SNP with WURS total score. Impulsivity and mood instability (P = 0.002, 0.007, and 8 × 10(-4), respectively). These data suggest that variants within DAT1 may predispose to a subtype of BD characterized by early prodromal features that include attentional deficits.
Collapse
Affiliation(s)
| | - Eun-Jeong Joo
- Department of Neuropsychiatry, Eulji University, Eulji General Hospital, Seoul, Korea
| | | | | | | | | | | | - John R. Kelsoe
- Department of Psychiatry, University of California San Diego, La Jolla, CA,San Diego Veterans Affairs Healthcare System, San Diego, CA,Institute for Genomic Medicine, University of California San Diego, La Jolla, CA
| |
Collapse
|
36
|
Tanida T, Tasaka K, Akahoshi E, Ishihara-Sugano M, Saito M, Kawata S, Danjo M, Tokumoto J, Mantani Y, Nagahara D, Tabuchi Y, Yokoyama T, Kitagawa H, Kawata M, Hoshi N. Fetal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin transactivates aryl hydrocarbon receptor-responsive element III in the tyrosine hydroxylase immunoreactive neurons of the mouse midbrain. J Appl Toxicol 2013; 34:117-26. [DOI: 10.1002/jat.2839] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 10/16/2012] [Accepted: 10/16/2012] [Indexed: 01/03/2023]
Affiliation(s)
- Takashi Tanida
- Department of Anatomy and Neurobiology; Kyoto Prefectural University of Medicine; Kawaramachi Hirokoji, Kamigyo-ku Kyoto 602-8566 Japan
- Department of Animal Science, Graduate School of Agricultural Science; Kobe University; 1-1 Rokkodai cho, Nada Kobe 657-8501 Japan
| | - Ken Tasaka
- Department of Animal Science, Graduate School of Agricultural Science; Kobe University; 1-1 Rokkodai cho, Nada Kobe 657-8501 Japan
| | - Eiichi Akahoshi
- Frontier Research Laboratory, Corporate Research and Development Center; Toshiba Corporation; 1 Komukai-Toshiba cho, Saiwai Kawasaki 212-8582 Japan
| | - Mitsuko Ishihara-Sugano
- Frontier Research Laboratory, Corporate Research and Development Center; Toshiba Corporation; 1 Komukai-Toshiba cho, Saiwai Kawasaki 212-8582 Japan
| | - Michiko Saito
- Laboratory of Molecular and Cell Genetics, Graduate School of Biological Sciences; Nara Institute of Science and Technology; 8916-5 Takayama, Ikoma Nara 630-0192 Japan
| | - Shigehisa Kawata
- Laboratory of Molecular Oncology, Graduate School of Biological Sciences; Nara Institute of Science and Technology; 8916-5 Takayama, Ikoma Nara 630-0192 Japan
| | - Megumi Danjo
- Department of Animal Science, Graduate School of Agricultural Science; Kobe University; 1-1 Rokkodai cho, Nada Kobe 657-8501 Japan
| | - Junko Tokumoto
- Department of Animal Science, Graduate School of Agricultural Science; Kobe University; 1-1 Rokkodai cho, Nada Kobe 657-8501 Japan
| | - Youhei Mantani
- Department of Animal Science, Graduate School of Agricultural Science; Kobe University; 1-1 Rokkodai cho, Nada Kobe 657-8501 Japan
| | - Daichi Nagahara
- Department of Animal Science, Graduate School of Agricultural Science; Kobe University; 1-1 Rokkodai cho, Nada Kobe 657-8501 Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center; University of Toyama; 2630 Sugitani Toyama 930-0194 Japan
| | - Toshifumi Yokoyama
- Department of Animal Science, Graduate School of Agricultural Science; Kobe University; 1-1 Rokkodai cho, Nada Kobe 657-8501 Japan
| | - Hiroshi Kitagawa
- Department of Animal Science, Graduate School of Agricultural Science; Kobe University; 1-1 Rokkodai cho, Nada Kobe 657-8501 Japan
| | - Mitsuhiro Kawata
- Department of Anatomy and Neurobiology; Kyoto Prefectural University of Medicine; Kawaramachi Hirokoji, Kamigyo-ku Kyoto 602-8566 Japan
| | - Nobuhiko Hoshi
- Department of Animal Science, Graduate School of Agricultural Science; Kobe University; 1-1 Rokkodai cho, Nada Kobe 657-8501 Japan
| |
Collapse
|
37
|
Fairbanks LA, Way BM, Breidenthal SE, Bailey JN, Jorgensen MJ. Maternal and offspring dopamine D4 receptor genotypes interact to influence juvenile impulsivity in vervet monkeys. Psychol Sci 2012; 23:1099-104. [PMID: 22961771 DOI: 10.1177/0956797612444905] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The merging of psychological and genetic methodologies has led to an increasing appreciation of environmental moderators of the relationships between genotype and phenotype. Here we used a nonhuman-primate model to study the moderating effect of the mother's genotype on the association of a dopamine D4 receptor (DRD4) gene polymorphism with juvenile impulsivity, assessed in a standardized social-challenge test. The results showed that juvenile carriers of the rare 5-repeat variant of the exon III 48-base-pair repeat polymorphism scored significantly higher in social impulsivity than juveniles homozygous for the common 6-repeat allele. In addition, juvenile genotype interacted with maternal genotype to influence impulsivity, with the highest rates of impulsivity found in variant offspring with variant mothers. These results highlight the importance of considering the genotype of the parents in studies of early experience and vulnerability genes for impulsivity-related traits.
Collapse
Affiliation(s)
- Lynn A Fairbanks
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | | | | | | | | |
Collapse
|
38
|
Archer T, Oscar-Berman M, Blum K. Epigenetics in Developmental Disorder: ADHD and Endophenotypes. JOURNAL OF GENETIC SYNDROMES & GENE THERAPY 2011; 2:1000104. [PMID: 22224195 PMCID: PMC3250517 DOI: 10.4172/2157-7412.1000104] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Heterogeneity in attention-deficit/hyperactivity disorder (ADHD), with complex interactive operations of genetic and environmental factors, is expressed in a variety of disorder manifestations: severity, co-morbidities of symptoms, and the effects of genes on phenotypes. Neurodevelopmental influences of genomic imprinting have set the stage for the structural-physiological variations that modulate the cognitive, affective, and pathophysiological domains of ADHD. The relative contributions of genetic and environmental factors provide rapidly proliferating insights into the developmental trajectory of the condition, both structurally and functionally. Parent-of-origin effects seem to support the notion that genetic risks for disease process debut often interact with the social environment, i.e., the parental environment in infants and young children. The notion of endophenotypes, markers of an underlying liability to the disorder, may facilitate detection of genetic risks relative to a complex clinical disorder. Simple genetic association has proven insufficient to explain the spectrum of ADHD. At a primary level of analysis, the consideration of epigenetic regulation of brain signalling mechanisms, dopamine, serotonin, and noradrenaline is examined. Neurotrophic factors that participate in the neurogenesis, survival, and functional maintenance of brain systems, are involved in neuroplasticity alterations underlying brain disorders, and are implicated in the genetic predisposition to ADHD, but not obviously, nor in a simple or straightforward fashion. In the context of intervention, genetic linkage studies of ADHD pharmacological intervention have demonstrated that associations have fitted the "drug response phenotype," rather than the disorder diagnosis. Despite conflicting evidence for the existence, or not, of genetic associations between disorder diagnosis and genes regulating the structure and function of neurotransmitters and brain-derived neurotrophic factor (BDNF), associations between symptoms-profiles endophenotypes and single nucleotide polymorphisms appear reassuring.
Collapse
Affiliation(s)
- Trevor Archer
- Department of Psychology, University of Gothenburg, Box 500, SE-40530 Gothenburg, Sweden
| | - Marlene Oscar-Berman
- Departments of Psychiatry, Neurology, and Anatomy & Neurobiology, Boston University School of Medicine, and Boston VA Healthcare System, Boston, MA, USA
| | - Kenneth Blum
- Department of Psychiatry, University of Florida College of Medicine, and McKnight Brain Institute, Gainesville, FL, USA
| |
Collapse
|
39
|
Skiba T, Landi N, Wagner R, Grigorenko EL. In search of the perfect phenotype: an analysis of linkage and association studies of reading and reading-related processes. Behav Genet 2011; 41:6-30. [PMID: 21243420 PMCID: PMC3056345 DOI: 10.1007/s10519-011-9444-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 12/22/2010] [Indexed: 01/15/2023]
Abstract
Reading ability and specific reading disability (SRD) are complex traits involving several cognitive processes and are shaped by a complex interplay of genetic and environmental forces. Linkage studies of these traits have identified several susceptibility loci. Association studies have gone further in detecting candidate genes that might underlie these signals. These results have been obtained in samples of mainly European ancestry, which vary in their languages, inclusion criteria, and phenotype assessments. Such phenotypic heterogeneity across samples makes understanding the relationship between reading (dis)ability and reading-related processes and the genetic factors difficult; in addition, it may negatively influence attempts at replication. In moving forward, the identification of preferable phenotypes for future sample collection may improve the replicability of findings. This review of all published linkage and association results from the past 15 years was conducted to determine if certain phenotypes produce more replicable and consistent results than others.
Collapse
Affiliation(s)
| | - Nicole Landi
- Yale University & Haskins Laboratories, New Haven, CT, USA
| | | | - Elena L. Grigorenko
- Yale University, New Heaven, CT, USA
- Moscow State University, Moscow, Russia
- Columbia University, New York, NY, USA
| |
Collapse
|
40
|
Miller B, McCardle P. Moving closer to a public health model of language and learning disabilities: the role of genetics and the search for etiologies. Behav Genet 2011; 41:1-5. [PMID: 21229298 PMCID: PMC3897164 DOI: 10.1007/s10519-010-9439-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 12/22/2010] [Indexed: 01/27/2023]
Abstract
Continued progress in language and learning disabilities (LDs) research requires a renewed focused on issues of etiology. Genetics research forms a central tenet of such an agenda and is critical in clarifying relationships among oral language development, acquisition of literacy and mathematics, executive function skills, and comorbid conditions. For progress to be made, diversified efforts must continue to emphasize molecular and behavioral genetics (including quantitative genetics) approaches, in concert with multi-disciplinary and multi-modal projects, to provide an integrated understanding of the behavioral and biological manifestations of language and learning disabilities. Critically, increased efforts to include ethnic, socio-economic, and linguistically diverse participant samples across a range of developmental stages is required to meet the public health needs of learners in the US and across the world. Taken together, this body of work will continue to enhance our understanding of LDs and help us move toward a truly prevention based approach to language and learning disabilities.
Collapse
Affiliation(s)
- Brett Miller
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6100 Executive Blvd., Suite 4B05, MSC 7510, Bethesda, MD 20892, USA.
| | | |
Collapse
|