1
|
Reynolds TH, Mills N, Hoyte D, Ehnstrom K, Arata A. The Oldest of Old Male C57B/6J Mice Are Protected from Sarcopenic Obesity: The Possible Role of Skeletal Muscle Protein Kinase B Expression. Int J Mol Sci 2024; 25:10278. [PMID: 39408607 PMCID: PMC11476861 DOI: 10.3390/ijms251910278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
The impact of aging on body composition and glucose metabolism is not well established in C57BL/6J mice, despite being a common pre-clinical model for aging and metabolic research. The purpose of this study was to examine the effect of advancing age on body composition, in vivo glucose metabolism, and skeletal muscle AKT expression in young (Y: 4 months old, n = 7), old (O: 17-18 months old, n = 10), and very old (VO: 26-27 month old, n = 9) male C57BL/6J mice. Body composition analysis, assessed by nuclear magnetic resonance, demonstrated O mice had a significantly greater fat mass and body fat percentage when compared to Y and VO mice. Furthermore, VO mice had a significantly greater lean body mass than both O and Y mice. We also found that the VO mice had greater AKT protein levels in skeletal muscle compared to O mice, an observation that explains a portion of the increased lean body mass in VO mice. During glucose tolerance (GT) testing, blood glucose values were significantly lower in the VO mice when compared to the Y and O mice. No age-related differences were observed in insulin tolerance (IT). We also assessed the glucose response to AMPK activation by 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR). The change in blood glucose following AICAR administration was significantly reduced in VO mice compared to Y and AG mice. Our findings indicate that lean body mass and AKT2 protein expression in muscle are significantly increased in VO mice compared to O mice. The increase in AKT2 likely plays a role in the greater lean body mass observed in the oldest of old mice. Finally, despite the increased GT, VO mice appear to be resistant to AMPK-mediated glucose uptake.
Collapse
Affiliation(s)
- Thomas H. Reynolds
- Health and Human Physiological Sciences Department, Skidmore College, Saratoga Springs, NY 12866, USA
| | | | | | | | | |
Collapse
|
2
|
Mo X, Cheng R, Shen L, Sun Y, Wang P, Jiang G, Wen L, Li X, Peng X, Liao Y, He R, Yan H, Liu L. High-fat diet induces sarcopenic obesity in natural aging rats through the gut-trimethylamine N-oxide-muscle axis. J Adv Res 2024:S2090-1232(24)00205-4. [PMID: 38744403 DOI: 10.1016/j.jare.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
INTRODUCTION The lack of suitable animal models for sarcopenic obesity (SO) limits in-depth research into the disease. Emerging studies have demonstrated that gut dysbiosis is involved in the development of SO. As the importance of microbial metabolites is starting to unveil, it is necessary to comprehend the specific metabolites associated with gut microbiota and SO. OBJECTIVES We aimed to investigate whether high-fat diet (HFD) causes SO in natural aging animal models and specific microbial metabolites that are involved in linking HFD and SO. METHODS Young rats received HFD or control diet for 80 weeks, and obesity-related metabolic disorders and sarcopenia were measured. 16S rRNA sequencing and non-targeted and targeted metabolomics methods were used to detect fecal gut microbiota and serum metabolites. Gut barrier function was evaluated by intestinal barrier integrity and intestinal permeability. Trimethylamine N-oxide (TMAO) treatment was further conducted for verification. RESULTS HFD resulted in body weight gain, dyslipidemia, impaired glucose tolerance, insulin resistance, and systemic inflammation in natural aging rats. HFD also caused decreases in muscle mass, strength, function, and fiber cross-sectional area and increase in muscle fatty infiltration in natural aging rats. 16S rRNA sequencing and nontargeted and targeted metabolomics analysis indicated that HFD contributed to gut dysbiosis, mainly characterized by increases in deleterious bacteria and TMAO. HFD destroyed intestinal barrier integrity and increased intestinal permeability, as evaluated by reducing levels of colonic mucin-2, tight junction proteins, goblet cells and elevating serum level of fluorescein isothiocyanate-dextran 4. Correlation analysis showed a positive association between TMAO and SO. In addition, TMAO treatment aggravated the development of SO in HFD-fed aged rats through regulating the ROS-AKT/mTOR signaling pathway. CONCLUSION HFD leads to SO in natural aging rats, partially through the gut-microbiota-TMAO-muscle axis.
Collapse
Affiliation(s)
- Xiaoxing Mo
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Ruijie Cheng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Lihui Shen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Yunhong Sun
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Pei Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Guanhua Jiang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Lin Wen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Xiaoqin Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Xiaobo Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Ruikun He
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Hong Yan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
3
|
Sun QQ, Zhu H, Tang HY, Liu YY, Chen YY, Wang S, Qin Y, Gan HT, Wang S. RNA analysis of diet-induced sarcopenic obesity in rats. Arch Gerontol Geriatr 2023; 108:104920. [PMID: 36603360 DOI: 10.1016/j.archger.2022.104920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Obesity has been suggested as a risk factor for sarcopenia. Sarcopenic obesity (SO), as a new category of obesity, is a high-risk geriatric syndrome in elderly individuals. However, knowledge about the molecular pathomechanisms of SO is still sparse. In the present study, starting at 13 months, male Sprague-Dawley (SD) rats were fed a high-fat diet (HFD) and normal diet (ND) for 28 weeks to establish a rodent animal model of SO with an identical protocol, which was further assessed and verified as a successful SO model. Through RNA-seq analysis of gastrocnemius muscle in SO rats, we found that differentially expressed genes (DEGs) and alternative splicing events (ASEs) focused mainly on inflammatory, immune-response, skeletal muscle cell differentiation, fat cell differentiation and antigen processing and presentation. Furthermore, as the core regulation factor of skeletal muscle, the mef2c (myocyte enhancer Factor 2C) gene also has a significant alternative 3' splice site (A3SS) and down-regulated expression in HFD-induced SO. The alternative genes targeted by mef2c identified by GO analysis were enriched in transcript regulation of RNA polymerase II promoter. In conclusion, these explorative findings in aging high-fat-fed rats might serve as a firm starting point for understanding the pathway and mechanism of sarcopenic obesity.
Collapse
Affiliation(s)
- Qian-Qian Sun
- The Center of Gerontology and Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Huan Zhu
- The Center of Gerontology and Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Hui-Yu Tang
- The Center of Gerontology and Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Yan-Yan Liu
- The Center of Gerontology and Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Yan-Yu Chen
- Department of Rheumatology and Immunology, Chongqing Emergency Medical Center, Chongqing, China
| | - Shumeng Wang
- Department of Anesthesiology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai,, China
| | - Yi Qin
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hua-Tian Gan
- The Center of Gerontology and Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China.
| | - Shuang Wang
- The Center of Gerontology and Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Zhu H, Sun Q, Tang H, Chen Y, Tan K, Xu X, Wang S. A novel rat model of sarcopenic obesity based on aging and high-fat diet consumption. Biogerontology 2023; 24:235-244. [PMID: 36607484 DOI: 10.1007/s10522-022-10010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023]
Abstract
Sarcopenic obesity (SO) is defined as a combination of obesity and sarcopenia, leading to serious health consequences. However, a lack of suitable animal models has hampered research into this disorder. 12-month-old Sprague-Dawley rats were given a high fat content (HFD, SO group) or standard diet (DC groups) for 28 weeks (until 20 months of age). In addition, 2-month-old rats were fed a standard diet as an age control (YC group) until they reached 10 months of age. At the end of the intervention, quadriceps development in the rats was monitored using magnetic resonance examinations and MR spectroscopy. Age-related changes in muscle mass and strength, histopathology, HFD-induced adiposity, and metabolic disturbances were compared between the three groups. Comparing with DC group, rats of SO (20 months, and fed by high-fat diet) exhibited a more prominent loss of muscle mass and strength, a more pronounced decline in myofibre number, IFM, increase in myocyte apoptosis accompanied with increased visceral fat, remarkable glycolipid metabolic disorders, and insulin resistance. However, DC group rats (20 months with standard diet) only showed a decline in quadriceps cross-sectional area/body weight, forelimb grip strength, myofibre cross-sectional area and number, and intermyofibrillar mitochondria number (IFM), increased myocyte apoptosis, without significant metabolic disorder compared with YC group rats. After verifying, SO animal model was successfully set up by HFD induced obesity concomitant with aging-related sarcopenia.
Collapse
Affiliation(s)
- Huan Zhu
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qianqian Sun
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Huiyu Tang
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanyu Chen
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ke Tan
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xu Xu
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Shuang Wang
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Liu C, Wong PY, Chung YL, Chow SKH, Cheung WH, Law SW, Chan JCN, Wong RMY. Deciphering the "obesity paradox" in the elderly: A systematic review and meta-analysis of sarcopenic obesity. Obes Rev 2023; 24:e13534. [PMID: 36443946 DOI: 10.1111/obr.13534] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/20/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022]
Abstract
Aging and obesity are two global concerns in public health. Sarcopenic obesity (SO), defined as the combination of age-related sarcopenia and obesity, has become a pressing issue. This systematic review and meta-analysis summarize the current clinical evidence relevant to SO. PubMed, Embase, and Web of Science were searched, and 106 clinical studies with 167,151 elderlies were included. The estimated prevalence of SO was 9% in both men and women. Obesity was associated with 34% reduced risk of sarcopenia (odds ratio [OR] 0.66, 95% CI 0.48-0.91; p < 0.001). The pooled hazard ratio (HR) of all-cause mortality was 1.51 (95% CI 1.14-2.02; p < 0.001) for people with SO compared with healthy individuals. SO was associated with increased risk of cardiovascular disease and related mortality, metabolic disorders, cognitive impairment, arthritis, functional limitation, and lung diseases (all ORs > 1.0, p < 0.05). The attenuated risk of sarcopenia in elderlies with obesity ("obesity paradox") was dependent on higher muscle mass and strength. Apart from unifying the diagnosis of SO, more research is needed to subphenotype people with obesity and sarcopenia for individualized treatment. Meanwhile, the maintenance of proper body composition of muscle and fat may delay or attenuate the adverse outcomes of aging.
Collapse
Affiliation(s)
- Chaoran Liu
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pui Yan Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yik Lok Chung
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Simon Kwoon-Ho Chow
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wing Hoi Cheung
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sheung Wai Law
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Juliana Chung Ngor Chan
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ronald Man Yeung Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
6
|
Branched-Chain Amino Acids and Di-Alanine Supplementation in Aged Mice: A Translational Study on Sarcopenia. Nutrients 2023; 15:nu15020330. [PMID: 36678201 PMCID: PMC9861351 DOI: 10.3390/nu15020330] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
In age-related sarcopenia, the gradual loss of skeletal muscle mass, function and strength is underpinned by an imbalanced rate of protein synthesis/breakdown. Hence, an adequate protein intake is considered a valuable strategy to mitigate sarcopenia. Here, we investigated the effects of a 12-week oral supplementation with branched-chain amino acids (BCAAs: leucine, isoleucine, and valine) with recognized anabolic properties, in 17-month-old (AGED) C57BL/6J male mice. BCAAs (2:1:1) were formulated in drinking water, alone or plus two L-Alanine equivalents (2ALA) or dipeptide L-Alanyl-L-Alanine (Di-ALA) to boost BCAAs bioavailability. Outcomes were evaluated on in/ex vivo readouts vs. 6-month-old (ADULT) mice. In vivo hind limb plantar flexor torque was improved in AGED mice treated with BCAAs + Di-ALA or 2ALA (recovery score, R.S., towards ADULT: ≥20%), and all mixtures significantly increased hind limb volume. Ex vivo, myofiber cross-sectional areas were higher in gastrocnemius (GC) and soleus (SOL) muscles from treated mice (R.S. ≥ 69%). Contractile indices of isolated muscles were improved by the mixtures, especially in SOL muscle (R.S. ≥ 20%). The latter displayed higher mTOR protein levels in mice supplemented with 2ALA/Di-ALA-enriched mixtures (R.S. ≥ 65%). Overall, these findings support the usefulness of BCAAs-based supplements in sarcopenia, particularly as innovative formulations potentiating BCAAs bioavailability and effects.
Collapse
|
7
|
Cheng KYK, Bao Z, Long Y, Liu C, Huang T, Cui C, Chow SKH, Wong RMY, Cheung WH. Sarcopenia and Ageing. Subcell Biochem 2023; 103:95-120. [PMID: 37120466 DOI: 10.1007/978-3-031-26576-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Musculoskeletal ageing is a major health challenge as muscles and bones constitute around 55-60% of body weight. Ageing muscles will result in sarcopenia that is characterized by progressive and generalized loss of skeletal muscle mass and strength with a risk of adverse outcomes. In recent years, a few consensus panels provide new definitions for sarcopenia. It was officially recognized as a disease in 2016 with an ICD-10-CM disease code, M62.84, in the International Classification of Diseases (ICD). With the new definitions, there are many studies emerging to investigate the pathogenesis of sarcopenia, exploring new interventions to treat sarcopenia and evaluating the efficacy of combination treatments for sarcopenia. The scope of this chapter is to summarize and appraise the evidence in terms of (1) clinical signs, symptoms, screening, and diagnosis, (2) pathogenesis of sarcopenia with emphasis on mitochondrial dysfunction, intramuscular fat infiltration and neuromuscular junction deterioration, and (3) current treatments with regard to physical exercises and nutritional supplement.
Collapse
Affiliation(s)
- Keith Yu-Kin Cheng
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhengyuan Bao
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yufeng Long
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Chaoran Liu
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Tao Huang
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Can Cui
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Simon Kwoon-Ho Chow
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Ronald Man Yeung Wong
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Hoi Cheung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
8
|
Effect of Mechanical Stimuli and Zoledronic Acid on the Femoral Bone Morphology in Rats with Obesity and Limited Mobility. J Clin Med 2022; 12:jcm12010043. [PMID: 36614859 PMCID: PMC9820925 DOI: 10.3390/jcm12010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/28/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Our study aimed to compare the impact of zoledronic acid and whole-body vibration (WBV) as a non-pharmacological method of treatment for early obesity/immobility-related osteoporosis in male rat models. In total, 36 male Wistar rats were assigned to the following groups: obese control with immobility (Control, n = 12) and two experimental groups (n = 12 each), including obese and immobile rats subjected to whole-body vibration with an acceleration level of 3 m/s2 g (obesity and immobility + WBV) and obese and immobile rats that received an intramuscular injection of zoledronic acid at a dose of 0.025 mg/kg (obesity and immobility + ZOL). After the 8th and 16th week of treatment, n = 6 rats from each group were euthanized and isolated femora were subjected to a histological examination of bone, and analysis of the expression of osteoprotegerin (OPG) and the receptor activator of nuclear factor kappa-B ligand (RANKL) involved in bone turnover and the amount of thin collagen fibers (PSR stain). The obtained results showed that short-term vibrotherapy (up to 8 weeks) can lead to improvement in bone remodeling in rat models with obesity and limited mobility.
Collapse
|
9
|
Ichii S, Matsuoka I, Okazaki F, Shimada Y. Zebrafish Models for Skeletal Muscle Senescence: Lessons from Cell Cultures and Rodent Models. Molecules 2022; 27:molecules27238625. [PMID: 36500717 PMCID: PMC9739860 DOI: 10.3390/molecules27238625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Human life expectancy has markedly increased over the past hundred years. Consequently, the percentage of elderly people is increasing. Aging and sarcopenic changes in skeletal muscles not only reduce locomotor activities in elderly people but also increase the chance of trauma, such as bone fractures, and the incidence of other diseases, such as metabolic syndrome, due to reduced physical activity. Exercise therapy is currently the only treatment and prevention approach for skeletal muscle aging. In this review, we aimed to summarize the strategies for modeling skeletal muscle senescence in cell cultures and rodents and provide future perspectives based on zebrafish models. In cell cultures, in addition to myoblast proliferation and myotube differentiation, senescence induction into differentiated myotubes is also promising. In rodents, several models have been reported that reflect the skeletal muscle aging phenotype or parts of it, including the accelerated aging models. Although there are fewer models of skeletal muscle aging in zebrafish than in mice, various models have been reported in recent years with the development of CRISPR/Cas9 technology, and further advancements in the field using zebrafish models are expected in the future.
Collapse
Affiliation(s)
- Shogo Ichii
- Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Izumi Matsuoka
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie 514-8507, Japan
| | - Fumiyoshi Okazaki
- Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
- Zebrafish Drug Screening Center, Mie University, Tsu, Mie 514-8507, Japan
| | - Yasuhito Shimada
- Zebrafish Drug Screening Center, Mie University, Tsu, Mie 514-8507, Japan
- Department of Bioinformatics, Mie University Advanced Science Research Promotion Center, Tsu, Mie 514-8507, Japan
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
- Correspondence: ; Tel.: +81-592-31-5411
| |
Collapse
|
10
|
Martínez-Gayo A, Félix-Soriano E, Sáinz N, González-Muniesa P, Moreno-Aliaga MJ. Changes Induced by Aging and Long-Term Exercise and/or DHA Supplementation in Muscle of Obese Female Mice. Nutrients 2022; 14:nu14204240. [PMID: 36296923 PMCID: PMC9610919 DOI: 10.3390/nu14204240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity and aging promote chronic low-grade systemic inflammation. The aim of the study was to analyze the effects of long-term physical exercise and/or omega-3 fatty acid Docosahexaenoic acid (DHA) supplementation on genes or proteins related to muscle metabolism, inflammation, muscle damage/regeneration and myokine expression in aged and obese mice. Two-month-old C57BL/6J female mice received a control or a high-fat diet for 4 months. Then, the diet-induced obese (DIO) mice were distributed into four groups: DIO, DIO + DHA, DIO + EX (treadmill training) and DIO + DHA + EX up to 18 months. Mice fed a control diet were sacrificed at 2, 6 and 18 months. Aging increased the mRNA expression of Tnf-α and decreased the expression of genes related to glucose uptake (Glut1, Glut4), muscle atrophy (Murf1, Atrogin-1, Cas-9) and myokines (Metrnl, Il-6). In aged DIO mice, exercise restored several of these changes. It increased the expression of genes related to glucose uptake (Glut1, Glut4), fatty acid oxidation (Cpt1b, Acox), myokine expression (Fndc5, Il-6) and protein turnover, decreased Tnf-α expression and increased p-AKT/AKT ratio. No additional effects were observed when combining exercise and DHA. These data suggest the effectiveness of long-term training to prevent the deleterious effects of aging and obesity on muscle dysfunction.
Collapse
Affiliation(s)
- Alejandro Martínez-Gayo
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
| | - Elisa Félix-Soriano
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
| | - Neira Sáinz
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
| | - Pedro González-Muniesa
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
- IdISNA–Navarra Institute for Health Research, 31008 Pamplona, Spain
- Correspondence: (P.G.-M.); (M.J.M.-A.)
| | - María J. Moreno-Aliaga
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
- IdISNA–Navarra Institute for Health Research, 31008 Pamplona, Spain
- Correspondence: (P.G.-M.); (M.J.M.-A.)
| |
Collapse
|
11
|
Lyu Q, Wen Y, He B, Zhang X, Chen J, Sun Y, Zhao Y, Xu L, Xiao Q, Deng H. The ameliorating effects of metformin on disarrangement ongoing in gastrocnemius muscle of sarcopenic and obese sarcopenic mice. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166508. [PMID: 35905940 DOI: 10.1016/j.bbadis.2022.166508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 12/15/2022]
Abstract
Sarcopenia and obese sarcopenia are increasingly prevalent chronic diseases with multifactorial pathogenesis, and no approved therapeutic drug to date. In the established sarcopenic mice models, muscle weakness, ectopic lipid deposition, and inflammatory responses in both serum and gastrocnemius muscle were observed, which were even deteriorated in obese sarcopenic models. With metformin intervention for 5 months, metformin exhibited benefits and restoring effects on gastrocnemius muscle of sarcopenic mice, but less effective on that of obese sarcopenic mice, as reflected in the increased percentage of muscle mass and enlarged fiber cross-sectional area, enhanced grip strength and exercise capacities, as well as the ameliorated ectopic lipid deposition and partially restored level of TNF-α, IL-1β, IL-6, MCP-1 and IL-1α, which may be via the activation of phospho-AMPKα (Thr172). The significant up-regulated mRNA and protein level of lipolysis related proteins like hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) may contribute to the ameliorated ectopic lipid deposition with metformin intervention. The uptake of free fatty acid may be also inhibited in obese sarcopenic mice with metformin administration, as reflected in down-regulated mRNA and protein level of fatty acid transporter CD36. Furthermore, NF-κB signaling pathway was involved in the anti-inflammatory effect of metformin. These findings suggest that metformin treatment may be conducive to the prevention of age-related sarcopenia by regulating lipid metabolism in skeletal muscle, i.e. enhanced lipolysis and attenuated hyper-inflammatory responses, which may be AMPK-dependent processes. Moreover, high-fat diet would aggravate the damage to ageing in skeletal muscles and reduced their reactivity to metformin.
Collapse
Affiliation(s)
- Qiong Lyu
- Department of General Practice, The First Affiliated Hospital of Chongqing Medical University, No.1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, China.
| | - Ya Wen
- Department of Physiology and Pharmacology, Karolinska Institutet, Bioclinicum, J8:30, SE-171 77 Stockholm, Sweden
| | - Bin He
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, No.1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, China
| | - Xiang Zhang
- Department of Physiology and Pharmacology, Karolinska Institutet, Bioclinicum, J8:30, SE-171 77 Stockholm, Sweden
| | - Jinliang Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, China
| | - Yue Sun
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, China
| | - Yuxing Zhao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, China
| | - Lingjie Xu
- Department of General Practice, The First Affiliated Hospital of Chongqing Medical University, No.1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, China
| | - Qian Xiao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, China
| | - Huisheng Deng
- Department of General Practice, The First Affiliated Hospital of Chongqing Medical University, No.1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, China
| |
Collapse
|
12
|
Pasdar Y, Darbandi M, Rezaeian S, Najafi F, Hamzeh B, Bagheri A. Association of Obesity, Sarcopenia, and Sarcopenic Obesity With Hypertension in Adults: A Cross-Sectional Study From Ravansar, Iran During 2014-2017. Front Public Health 2022; 9:705055. [PMID: 35186858 PMCID: PMC8847445 DOI: 10.3389/fpubh.2021.705055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND AND AIMS Hypertension may lead to disability and death by increasing the risk of cardiovascular disease, kidney failure, and dementia. This study aimed to determine the association between obesity, sarcopenia and sarcopenic obesity, and hypertension in adults resident in Ravansar, a city in the west of Iran. METHODS This cross-sectional study was conducted on 4,021 subjects from the baseline data of the Ravansar Non-Communicable Disease (RaNCD) cohort study, in the west region of Iran, from October 2014 up to February 2017. Body composition was categorized into obese, sarcopenia, sarcopenic obese, and normal based on measurements of muscle strength, skeletal muscle mass, and waist circumference. Univariate and multiple logistic regression models were used to examine the relationships, using the STATA 15 software. RESULTS The mean age of the participant was 47.9 years (SD: 8.4), the body mass index (BMI) was 26.84 kg/m2 (SD: 4.44), and the prevalence of hypertension was 15.12%. The prevalence of obesity, sarcopenia, and sarcopenic obesity were 24.37, 22.01, and 6.91%, respectively. Body composition groups had significant differences in age, total calorie intake, BMI, skeletal muscle mass, and muscle strength (P-value ≤ 0.001). In crude model, the obese (OR = 2.64; 95% CI: 2.11-3.30), sarcopenic (OR = 2.45; 95% CI: 1.94-3.08), and sarcopenic obese (OR = 3.83; 95% CI: 2.81-5.22) groups had a higher odds of hypertension. However, in adjusted models, only the obese group had a higher likelihood of hypertension (OR = 2.18; 95% CI: 1.70-2.80). CONCLUSION This study showed that obesity was associated with hypertension, whereas sarcopenia and sarcopenic obesity had no significant relationship with hypertension.
Collapse
Affiliation(s)
- Yahya Pasdar
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Social Development and Health Promotion Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mitra Darbandi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahab Rezaeian
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farid Najafi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Cardiovascular Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Behrooz Hamzeh
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Social Development and Health Promotion Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Bagheri
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.,School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
13
|
Salomão R, Neto IVDS, Ramos GV, Tibana RA, Durigan JQ, Pereira GB, Franco OL, Royer C, Neves FDAR, de Carvalho ACA, Nóbrega OT, Haddad R, Prestes J, Marqueti RDC. Paternal Resistance Exercise Modulates Skeletal Muscle Remodeling Pathways in Fathers and Male Offspring Submitted to a High-Fat Diet. Front Physiol 2021; 12:706128. [PMID: 34646148 PMCID: PMC8503191 DOI: 10.3389/fphys.2021.706128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/02/2021] [Indexed: 11/24/2022] Open
Abstract
Although some studies have shown that a high-fat diet (HFD) adversely affects muscle extracellular matrix remodeling, the mechanisms involved in muscle trophism, inflammation, and adipogenesis have not been fully investigated. Thus, we investigated the effects of 8 weeks of paternal resistance training (RT) on gene and protein expression/activity of critical factors involved in muscle inflammation and remodeling of fathers and offspring (offspring exposed to standard chow or HFD). Animals were randomly distributed to constitute sedentary fathers (SF; n = 7; did not perform RT) or trained fathers (TF n = 7; performed RT), with offspring from mating with sedentary females. After birth, 28 male pups were divided into four groups (n = 7 per group): offspring from sedentary father submitted either to control diet (SFO-C) or high-fat diet (SFO-HF) and offspring from trained father submitted to control diet (TFO-C) or high-fat diet (TFO-HF). Our results show that an HFD downregulated collagen mRNA levels and upregulated inflammatory and atrophy pathways and adipogenic transcription factor mRNA levels in offspring gastrocnemius muscle. In contrast, paternal RT increased MMP-2 activity and decreased IL-6 levels in offspring exposed to a control diet. Paternal RT upregulated P70s6k and Ppara mRNA levels and downregulated Atrogin1 mRNA levels, while decreasing NFκ-B, IL-1β, and IL-8 protein levels in offspring exposed to an HFD. Paternal physical training influences key skeletal muscle remodeling pathways and inflammatory profiles relevant for muscle homeostasis maintenance in offspring submitted to different diets.
Collapse
Affiliation(s)
- Rebecca Salomão
- Laboratory of Molecular Analysis, Faculty of Ceilândia, Universidade de Brasília, Brasília, Brazil.,Graduate Program in Rehabilitation Sciences, Universidade de Brasília, Brasília, Brazil
| | - Ivo Vieira de Sousa Neto
- Laboratory of Molecular Analysis, Faculty of Ceilândia, Universidade de Brasília, Brasília, Brazil.,Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Brasília, Brazil
| | | | - Ramires Alsamir Tibana
- Graduate Program in Health Sciences, Faculdade de Medicine, Universidade Federal do Mato Grosso (UFTM), Cuiabá, Brazil
| | | | - Guilherme Borges Pereira
- Interinstitutional Program of Post-Graduation in Physiological Sciences (UFSCar/UNESP), Department of Physiological Sciences, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Octávio Luiz Franco
- Graduate Program in Genomics Science and Biotechnology, Universidade Católica de Brasília, Brasília, Brazil.,S-Inova Biotech, Graduate Program in Biotechnology, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Carine Royer
- Laboratory of Molecular Analysis, Faculty of Ceilândia, Universidade de Brasília, Brasília, Brazil.,Laboratory of Molecular Pharmacology, Faculty of Health Sciences, Universidade de Brasília, Brasília, Brazil
| | | | | | - Otávio Toledo Nóbrega
- Graduate Program of Medical Sciences, Universidade de Brasília, Brasília, Brazil.,Center for Tropical Medicine, Universidade de Brasília, Brasília, Brazil
| | - Rodrigo Haddad
- Laboratory of Molecular Analysis, Faculty of Ceilândia, Universidade de Brasília, Brasília, Brazil.,Center for Tropical Medicine, Universidade de Brasília, Brasília, Brazil
| | - Jonato Prestes
- Graduate Program of Physical Education, Universidade Católica de Brasilia, Brasília, Brazil
| | - Rita de Cássia Marqueti
- Laboratory of Molecular Analysis, Faculty of Ceilândia, Universidade de Brasília, Brasília, Brazil.,Graduate Program in Rehabilitation Sciences, Universidade de Brasília, Brasília, Brazil.,Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
14
|
Cannataro R, Carbone L, Petro JL, Cione E, Vargas S, Angulo H, Forero DA, Odriozola-Martínez A, Kreider RB, Bonilla DA. Sarcopenia: Etiology, Nutritional Approaches, and miRNAs. Int J Mol Sci 2021; 22:9724. [PMID: 34575884 PMCID: PMC8466275 DOI: 10.3390/ijms22189724] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023] Open
Abstract
Sarcopenia, an age-related decline in skeletal muscle mass and function, dramatically affects the quality of life. Although there is a consensus that sarcopenia is a multifactorial syndrome, the etiology and underlying mechanisms are not yet delineated. Moreover, research about nutritional interventions to prevent the development of sarcopenia is mainly focused on the amount and quality of protein intake. The impact of several nutrition strategies that consider timing of food intake, anti-inflammatory nutrients, metabolic control, and the role of mitochondrial function on the progression of sarcopenia is not fully understood. This narrative review summarizes the metabolic background of this phenomenon and proposes an integral nutritional approach (including dietary supplements such as creatine monohydrate) to target potential molecular pathways that may affect reduce or ameliorate the adverse effects of sarcopenia. Lastly, miRNAs, in particular those produced by skeletal muscle (MyomiR), might represent a valid tool to evaluate sarcopenia progression as a potential rapid and early biomarker for diagnosis and characterization.
Collapse
Affiliation(s)
- Roberto Cannataro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy
- Research Division, Dynamical Business & Science Society, DBSS International SAS, Bogotá 110311, Colombia; (J.L.P.); (S.V.); (D.A.B.)
| | - Leandro Carbone
- Research Division, Dynamical Business & Science Society, DBSS International SAS, Bogotá 110311, Colombia; (J.L.P.); (S.V.); (D.A.B.)
- Faculty of Medicine, University of Salvador, Buenos Aires 1020, Argentina
| | - Jorge L. Petro
- Research Division, Dynamical Business & Science Society, DBSS International SAS, Bogotá 110311, Colombia; (J.L.P.); (S.V.); (D.A.B.)
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy
| | - Salvador Vargas
- Research Division, Dynamical Business & Science Society, DBSS International SAS, Bogotá 110311, Colombia; (J.L.P.); (S.V.); (D.A.B.)
- Faculty of Sport Sciences, EADE-University of Wales Trinity Saint David, 29018 Málaga, Spain
| | - Heidy Angulo
- Grupo de Investigación Programa de Medicina (GINUMED), Corporación Universitaria Rafael Núñez, Cartagena 130001, Colombia;
| | - Diego A. Forero
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia;
| | - Adrián Odriozola-Martínez
- Sport Genomics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain;
- kDNA Genomics, Joxe Mari Korta Research Center, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA;
| | - Diego A. Bonilla
- Research Division, Dynamical Business & Science Society, DBSS International SAS, Bogotá 110311, Colombia; (J.L.P.); (S.V.); (D.A.B.)
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
- kDNA Genomics, Joxe Mari Korta Research Center, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
- Research Group in Biochemistry and Molecular Biology, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
| |
Collapse
|
15
|
Ma Y, He M, Hou LS, Xu S, Huang ZX, Zhao N, Kang Y, Yue JR, Wu C. The role of SARC-F scale in predicting progression risk of COVID-19 in elderly patients: a prospective cohort study in Wuhan. BMC Geriatr 2021; 21:355. [PMID: 34112103 PMCID: PMC8190739 DOI: 10.1186/s12877-021-02310-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/25/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Since the outbreak of COVID-19, it has been documented that old age and underlying illnesses are associated with poor prognosis among COVID-19 patients. However, it is unknown whether sarcopenia, a common geriatric syndrome, is associated with poor prognosis among older COVID-19 patients. The aim of our prospective cohort study is to investigate the association between sarcopenia risk and severe disease among COVID-19 patients aged ≥60 years. METHOD A prospective cohort study of 114 hospitalized older patients (≥60 years) with confirmed COVID-19 pneumonia between 7 February, 2020 and 6 April, 2020. Epidemiological, socio-demographic, clinical and laboratory data on admission and outcome data were extracted from electronic medical records. All patients were assessed for sarcopenia on admission using the SARC-F scale and the outcome was the development of the severe disease within 60 days. We used the Cox proportional hazards model to identify the association between sarcopenia and progression of disease defined as severe cases in a total of 2908 person-days. RESULT Of 114 patients (mean age 69.52 ± 7.25 years, 50% woman), 38 (33%) had a high risk of sarcopenia while 76 (67%) did not. We found that 43 (38%) patients progressed to severe cases. COVID-19 patients with higher risk sarcopenia were more likely to develop severe disease than those without (68% versus 22%, p < 0.001). After adjustment for demographic and clinical factors, higher risk sarcopenia was associated with a higher hazard of severe condition [hazard ratio = 2.87 (95% CI, 1.33-6.16)]. CONCLUSION We found that COVID-19 patients with higher sarcopenia risk were more likely to develop severe condition. A clinician-friendly assessment of sarcopenia could help in early warning of older patients at high-risk with severe COVID-19 pneumonia.
Collapse
Affiliation(s)
- Yao Ma
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- COVID-19 Medical Assistance Teams (Hubei) of West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Min He
- COVID-19 Medical Assistance Teams (Hubei) of West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li-Sha Hou
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shen Xu
- COVID-19 Medical Assistance Teams (Hubei) of West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhi-Xin Huang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Na Zhao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Yan Kang
- COVID-19 Medical Assistance Teams (Hubei) of West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Ji-Rong Yue
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
- COVID-19 Medical Assistance Teams (Hubei) of West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Chenkai Wu
- Global Health Research Center, Duke Kunshan University, Suzhou, Jiangsu Province, China
| |
Collapse
|
16
|
Brown LA, Perry RA, Haynie WS, Lee DE, Rosa-Caldwell ME, Brown JL, Greene NP, Wolchok JC, Washington TA. Moderators of skeletal muscle maintenance are compromised in sarcopenic obese mice. Mech Ageing Dev 2021; 194:111404. [PMID: 33249192 DOI: 10.1016/j.mad.2020.111404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/31/2022]
Abstract
The purpose of this study was to determine whether sarcopenic obesity accelerates impairments in muscle maintenance through the investigation of cell cycle progression and myogenic, inflammatory, catabolic and protein synthetic signaling in mouse gastrocnemius muscles. At 4 weeks old, 24 male C57BL/6 mice were fed either a high fat diet (HFD, 60 % fat) or normal chow (NC, 17 % fat) for either 8-12 weeks or 21-23 months. At 3-4 months or 22-24 months the gastrocnemius muscles were excised. In addition, plasma was taken for C2C12 differentiation experiments. Mean cross-sectional area (CSA) was reduced by 29 % in aged HFD fed mice compared to the aged NC mice. MyoD was roughly 50 % greater in the aged mice compared to young mice, whereas TNF-α and IGF-1 gene expression in aged HFD fed mice were reduced by 52 % and 65 % in comparison to aged NC fed mice, respectively. Myotubes pretreated with plasma from aged NC fed mice had 14 % smaller myotube diameter than their aged HFD counterparts. Aged obese mice had greater impairments to mediators of muscle maintenance as evident by reductions in muscle mass, CSA, along with alterations in cell cycle regulation and inflammatory and insulin signaling.
Collapse
Affiliation(s)
- Lemuel A Brown
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701 United States; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109 United States
| | - Richard A Perry
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523 United States
| | - Wesley S Haynie
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701 United States
| | - David E Lee
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville AR, 72701 United States; NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, NC 27708, United States; Department of Chemistry, Duke University, Durham, NC 27708 United States
| | - Megan E Rosa-Caldwell
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville AR, 72701 United States
| | - Jacob L Brown
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville AR, 72701 United States; Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Nicholas P Greene
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville AR, 72701 United States
| | - Jeffrey C Wolchok
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701 United States
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701 United States.
| |
Collapse
|
17
|
Nemoto A, Goyagi T. Tail suspension is useful as a sarcopenia model in rats. Lab Anim Res 2021; 37:7. [PMID: 33441192 PMCID: PMC7805154 DOI: 10.1186/s42826-020-00083-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/29/2020] [Indexed: 12/21/2022] Open
Abstract
Background Sarcopenia promotes skeletal muscle atrophy and exhibits a high mortality rate. Its elucidation is of the highest clinical importance, but an animal experimental model remains controversial. In this study, we investigated a simple method for studying sarcopenia in rats. Results Muscle atrophy was investigated in 24-week-old, male, tail-suspended (TS), Sprague Dawley and spontaneously hypertensive rats (SHR). Age-matched SD rats were used as a control group. The skeletal muscle mass weight, muscle contraction, whole body tension (WBT), cross-sectional area (CSA), and Muscle RING finger-1 (MuRF-1) were assessed. Enzyme-linked immunosorbent assay was used to evaluate the MuRF-1 levels. Two muscles, the extensor digitorum longus and soleus muscles, were selected for representing fast and slow muscles, respectively. All data, except CSA, were analyzed by a one-way analysis of variance, whereas CSA was analyzed using the Kruskal-Wallis test. Muscle mass weight, muscle contraction, WBT, and CSA were significantly lower in the SHR (n = 7) and TS (n = 7) groups than in the control group, whereas MuRF-1 expression was dominant. Conclusions TS and SHR presented sarcopenic phenotypes in terms of muscle mass, muscle contraction and CSA. TS is a useful technique for providing muscle mass atrophy and weakness in an experimental model of sarcopenia in rats.
Collapse
Affiliation(s)
- Akira Nemoto
- Department of Anesthesia and Intensive Care Medicine, Akita University Graduate School of Medicine, 1-1-1, Hondo, Akita, 010-0843, Japan
| | - Toru Goyagi
- Department of Anesthesia and Intensive Care Medicine, Akita University Graduate School of Medicine, 1-1-1, Hondo, Akita, 010-0843, Japan.
| |
Collapse
|
18
|
Mankhong S, Kim S, Moon S, Kwak HB, Park DH, Kang JH. Experimental Models of Sarcopenia: Bridging Molecular Mechanism and Therapeutic Strategy. Cells 2020; 9:E1385. [PMID: 32498474 PMCID: PMC7348939 DOI: 10.3390/cells9061385] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
Sarcopenia has been defined as a progressive decline of skeletal muscle mass, strength, and functions in elderly people. It is accompanied by physical frailty, functional disability, falls, hospitalization, and mortality, and is becoming a major geriatric disorder owing to the increasing life expectancy and growing older population worldwide. Experimental models are critical to understand the pathophysiology of sarcopenia and develop therapeutic strategies. Although its etiologies remain to be further elucidated, several mechanisms of sarcopenia have been identified, including cellular senescence, proteostasis imbalance, oxidative stress, and "inflammaging." In this article, we address three main aspects. First, we describe the fundamental aging mechanisms. Next, we discuss both in vitro and in vivo experimental models based on molecular mechanisms that have the potential to elucidate the biochemical processes integral to sarcopenia. The use of appropriate models to reflect sarcopenia and/or its underlying pathways will enable researchers to understand sarcopenia and develop novel therapeutic strategies for sarcopenia. Lastly, we discuss the possible molecular targets and the current status of drug candidates for sarcopenia treatment. In conclusion, the development of experimental models for sarcopenia is essential to discover molecular targets that are valuable as biochemical biomarkers and/or therapeutic targets for sarcopenia.
Collapse
Affiliation(s)
- Sakulrat Mankhong
- Department of Pharmacology, Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Korea; (S.M.); (S.K.); (S.M.)
| | - Sujin Kim
- Department of Pharmacology, Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Korea; (S.M.); (S.K.); (S.M.)
- Department of Kinesiology, Inha University, Incheon 22212, Korea; (H.-B.K.); (D.-H.P.)
- Institute of Sports & Arts Convergence (ISAC), Inha University, Incheon 22212, Korea
| | - Sohee Moon
- Department of Pharmacology, Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Korea; (S.M.); (S.K.); (S.M.)
| | - Hyo-Bum Kwak
- Department of Kinesiology, Inha University, Incheon 22212, Korea; (H.-B.K.); (D.-H.P.)
- Institute of Sports & Arts Convergence (ISAC), Inha University, Incheon 22212, Korea
| | - Dong-Ho Park
- Department of Kinesiology, Inha University, Incheon 22212, Korea; (H.-B.K.); (D.-H.P.)
- Institute of Sports & Arts Convergence (ISAC), Inha University, Incheon 22212, Korea
| | - Ju-Hee Kang
- Department of Pharmacology, Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Korea; (S.M.); (S.K.); (S.M.)
- Institute of Sports & Arts Convergence (ISAC), Inha University, Incheon 22212, Korea
| |
Collapse
|
19
|
Baek KW, Jung YK, Kim JS, Park JS, Hah YS, Kim SJ, Yoo JI. Rodent Model of Muscular Atrophy for Sarcopenia Study. J Bone Metab 2020; 27:97-110. [PMID: 32572370 PMCID: PMC7297619 DOI: 10.11005/jbm.2020.27.2.97] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/25/2022] Open
Abstract
The hallmark symptom of sarcopenia is the loss of muscle mass and strength without the loss of overall body weight. Sarcopenia patients are likely to have worse clinical outcomes and higher mortality than do healthy individuals. The sarcopenia population shows an annual increase of ~0.8% in the population after age 50, and the prevalence rate is rapidly increasing with the recent worldwide aging trend. Based on International Classification of Diseases, Tenth Revision, a global classification of disease published by the World Health Organization, issued the disease code (M62.84) given to sarcopenia in 2016. Therefore, it is expected that the study of sarcopenia will be further activated based on the classification of disease codes in the aging society. Several epidemiological studies and meta-analyses have looked at the correlation between the prevalence of sarcopenia and several environmental factors. In addition, studies using cell lines and rodents have been done to understand the biological mechanism of sarcopenia. Laboratory rodent models are widely applicable in sarcopenia studies because of the advantages of time savings, cost saving, and various analytical applications that could not be used for human subjects. The rodent models that can be applied to the sarcopenia research are diverse, but a simple and fast method that can cause atrophy or aging is preferred. Therefore, we will introduce various methods of inducing muscular atrophy in rodent models to be applied to the study of sarcopenia.
Collapse
Affiliation(s)
- Kyung-Wan Baek
- Department of Physical Education, Gyeongsang National University, Jinju, Korea
- Department of Orthopaedic Surgery, Gyoengsang National University Hospital, Gyeongsang National University, Jinju, Korea
| | - Youn-Kwan Jung
- Biomedical Research Institute, Gyoengsang National University Hospital, Gyeongsang National University, Jinju, Korea
| | - Ji-Seok Kim
- Department of Physical Education, Gyeongsang National University, Jinju, Korea
| | - Jin Sung Park
- Department of Orthopaedic Surgery, Gyoengsang National University Hospital, Gyeongsang National University, Jinju, Korea
| | - Young-Sool Hah
- Biomedical Research Institute, Gyoengsang National University Hospital, Gyeongsang National University, Jinju, Korea
| | - So-Jeong Kim
- Department of Convergence of Medical Sciences, Gyeongsang National University, Jinju, Korea
| | - Jun-Il Yoo
- Department of Orthopaedic Surgery, Gyoengsang National University Hospital, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
20
|
Yin J, Qian Z, Chen Y, Li Y, Zhou X. MicroRNA regulatory networks in the pathogenesis of sarcopenia. J Cell Mol Med 2020; 24:4900-4912. [PMID: 32281300 PMCID: PMC7205827 DOI: 10.1111/jcmm.15197] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/25/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia is an age‐related disease characterized by disturbed homeostasis of skeletal muscle, leading to a decline in muscle mass and function. Loss of muscle mass and strength leads to falls and fracture, and is often accompanied by other geriatric diseases, including osteoporosis, frailty and cachexia, resulting in a general decrease in quality of life and an increase in mortality. Although the underlying mechanisms of sarcopenia are still not completely understood, there has been a marked improvement in the understanding of the pathophysiological changes leading to sarcopenia in recent years. The role of microRNAs (miRNAs), especially, has been clearer in skeletal muscle development and homeostasis. miRNAs form part of a gene regulatory network and have numerous activities in many biological processes. Intervention based on miRNAs may develop into an innovative treatment strategy to conquer sarcopenia. This review is divided into three sections: firstly, the latest understanding of the pathogenesis of sarcopenia is summarized; secondly, increasing evidence for the involvement of miRNAs in the regulation of muscle quantity or quality and muscle homeostasis is highlighted; and thirdly, the possibilities and limitations of miRNAs as a treatment for sarcopenia are explored.
Collapse
Affiliation(s)
- Jiayu Yin
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiyuan Qian
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuqi Chen
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Li
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Zhou
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
21
|
Messa GAM, Piasecki M, Hurst J, Hill C, Tallis J, Degens H. The impact of a high-fat diet in mice is dependent on duration and age, and differs between muscles. J Exp Biol 2020; 223:jeb217117. [PMID: 31988167 PMCID: PMC7097303 DOI: 10.1242/jeb.217117] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022]
Abstract
Prolonged high-fat diets (HFDs) can cause intramyocellular lipid (IMCL) accumulation that may negatively affect muscle function. We investigated the duration of a HFD required to instigate these changes, and whether the effects are muscle specific and aggravated in older age. Muscle morphology was determined in the soleus, extensor digitorum longus (EDL) and diaphragm muscles of female CD-1 mice from 5 groups: young fed a HFD for 8 weeks (YS-HFD, n=16), young fed a HFD for 16 weeks (YL-HFD, n=28) and young control (Y-Con, n=28). The young animals were 20 weeks old at the end of the experiment. Old (70 weeks) female CD-1 mice received either a normal diet (O-Con, n=30) or a HFD for 9 weeks (OS-HFD, n=30). Body mass, body mass index and intramyocellular lipid (IMCL) content increased in OS-HFD (P≤0.003). In the young mice, this increase was seen in YL-HFD and not YS-HFD (P≤0.006). The soleus and diaphragm fibre cross-sectional area (FCSA) in YL-HFD was larger than that in Y-Con (P≤0.004) while OS-HFD had a larger soleus FCSA compared with that of O-Con after only 9 weeks on a HFD (P<0.001). The FCSA of the EDL muscle did not differ significantly between groups. The oxidative capacity of fibres increased in young mice only, irrespective of HFD duration (P<0.001). High-fat diet-induced morphological changes occurred earlier in the old animals than in the young, and adaptations to HFD were muscle specific, with the EDL being least responsive.
Collapse
Affiliation(s)
- Guy A M Messa
- Department of Life Sciences, Research Centre for Musculoskeletal Science & Sports Medicine, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Mathew Piasecki
- Clinical, Metabolic and Molecular Physiology, MRC-ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Josh Hurst
- Center for Sport, Exercise and Life Sciences, Alison Gingell Building, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Cameron Hill
- Center for Sport, Exercise and Life Sciences, Alison Gingell Building, Coventry University, Priory Street, Coventry CV1 5FB, UK
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, Kings College, London SE1 1UL, UK
| | - Jason Tallis
- Center for Sport, Exercise and Life Sciences, Alison Gingell Building, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Hans Degens
- Department of Life Sciences, Research Centre for Musculoskeletal Science & Sports Medicine, Manchester Metropolitan University, Manchester M1 5GD, UK
- Institute of Sport Science and Innovations, Lithuanian Sports University, LT-44221 Kaunas, Lithuania
- University of Medicine and Pharmacy of Targu Mures, Târgu Mureş 540139, Romania
| |
Collapse
|
22
|
Barathikannan K, Chelliah R, Rubab M, Daliri EBM, Elahi F, Kim DH, Agastian P, Oh SY, Oh DH. Gut Microbiome Modulation Based on Probiotic Application for Anti-Obesity: A Review on Efficacy and Validation. Microorganisms 2019; 7:microorganisms7100456. [PMID: 31623075 PMCID: PMC6843309 DOI: 10.3390/microorganisms7100456] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/27/2019] [Accepted: 10/12/2019] [Indexed: 12/12/2022] Open
Abstract
The growing prevalence of obesity has become an important problem worldwide as obesity has several health risks. Notably, factors such as excessive food consumption, a sedentary way of life, high sugar consumption, a fat-rich diet, and a certain genetic profile may lead to obesity. The present review brings together recent advances regarding the significance of interventions involving intestinal gut bacteria and host metabolic phenotypes. We assess important biological molecular mechanisms underlying the impact of gut microbiota on hosts including bile salt metabolism, short-chain fatty acids, and metabolic endotoxemia. Some previous studies have shown a link between microbiota and obesity, and associated disease reports have been documented. Thus, this review focuses on obesity and gut microbiota interactions and further develops the mechanism of the gut microbiome approach related to human obesity. Specifically, we highlight several alternative diet treatments including dietary changes and supplementation with probiotics. The future direction or comparative significance of fecal transplantation, synbiotics, and metabolomics as an approach to the modulation of intestinal microbes is also discussed.
Collapse
Affiliation(s)
- Kaliyan Barathikannan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea.
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea.
| | - Momna Rubab
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea.
| | - Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea.
| | - Fazle Elahi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea.
| | - Dong-Hwan Kim
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea.
| | - Paul Agastian
- Department of Plant Biology and Biotechnology, Loyola College, Chennai 600-034, India.
| | - Seong-Yoon Oh
- Three & Four Co., Ltd., 992-15, Jusan-ri, Hojeo-myeon, Wonju-si 26460, Korea.
| | - Deog Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea.
| |
Collapse
|
23
|
Nascimento CM, Ingles M, Salvador-Pascual A, Cominetti MR, Gomez-Cabrera MC, Viña J. Sarcopenia, frailty and their prevention by exercise. Free Radic Biol Med 2019; 132:42-49. [PMID: 30176345 DOI: 10.1016/j.freeradbiomed.2018.08.035] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/08/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022]
Abstract
Sarcopenia is a major component of the frailty syndrome, both being considered as strong predictors of morbidity, disability, and death in older people. In this review, we explore the definitions of sarcopenia and frailty and summarize the current knowledge on their relationship with oxidative stress and the possible therapeutic interventions to prevent or treat them, including exercise-based interventions and multimodal strategies. We highlight the relevance of the impairment of the nervous system and of the anabolic response (protein synthesis) in muscle aging leading to frailty and sarcopenia. We also discuss the importance of malnutrition and physical inactivity in these geriatric syndromes. Finally, we propose multimodal interventions, including exercise programs and nutritional supplementation, as the strategies to prevent and treat both sarcopenia and frailty.
Collapse
Affiliation(s)
- C M Nascimento
- Laboratorio de Biologia do Envelhecimento (LABEN), Departamento de Gerontologia UFSCar, Rod. Washington Luis, km 235, São Carlos, SP, Brazil
| | - M Ingles
- Freshage Research Group. Department of Physiotherapy. University of Valencia, CIBERFES, INCLIVA, Spain
| | - A Salvador-Pascual
- Freshage Research Group. Department of Physiology. University of Valencia, CIBERFES, INCLIVA, Spain
| | - M R Cominetti
- Laboratorio de Biologia do Envelhecimento (LABEN), Departamento de Gerontologia UFSCar, Rod. Washington Luis, km 235, São Carlos, SP, Brazil
| | - M C Gomez-Cabrera
- Freshage Research Group. Department of Physiology. University of Valencia, CIBERFES, INCLIVA, Spain.
| | - J Viña
- Freshage Research Group. Department of Physiology. University of Valencia, CIBERFES, INCLIVA, Spain
| |
Collapse
|
24
|
Cardiac hypertrophy in sarcopenic obese C57BL/6J mice is independent of Akt/mTOR cellular signaling. Exp Gerontol 2018; 111:122-132. [DOI: 10.1016/j.exger.2018.06.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 06/20/2018] [Accepted: 06/23/2018] [Indexed: 02/02/2023]
|
25
|
Garcia-Contreras C, Vazquez-Gomez M, Torres-Rovira L, Gonzalez J, Porrini E, Gonzalez-Colaço M, Isabel B, Astiz S, Gonzalez-Bulnes A. Characterization of Ageing- and Diet-Related Swine Models of Sarcopenia and Sarcopenic Obesity. Int J Mol Sci 2018. [PMID: 29534532 PMCID: PMC5877684 DOI: 10.3390/ijms19030823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia and sarcopenic obesity are currently considered major global threats for health and well-being. However, there is a lack of adequate preclinical models for their study. The present trial evaluated the suitability of aged swine by determining changes in adiposity, fatty acids composition, antioxidant status and lipid peroxidation, development of metabolic disturbances and structural changes in tissues and organs. Iberian sows with clinical evidence of aging-related sarcopenia were fed a standard diet fulfilling their maintenance requirements or an obesogenic diet for 100 days. Aging and sarcopenia were related to increased lipid accumulation and cellular dysfunction at both adipose tissue and non-adipose ectopic tissues (liver and pancreas). Obesity concomitant to sarcopenia aggravates the condition by increasing visceral adiposity and causing dyslipidemia, insulin resistance and lipotoxicity in non-adipose tissues. These results support that the Iberian swine model represents certain features of sarcopenia and sarcopenic obesity in humans, paving the way for future research on physiopathology of these conditions and possible therapeutic targets.
Collapse
Affiliation(s)
| | - Marta Vazquez-Gomez
- Faculty of Veterinary Sciences, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | | | - Jorge Gonzalez
- Micros Veterinaria, Campus de Vegazana, 24007 Leon, Spain.
| | - Esteban Porrini
- Institute of Biomedical Technology (ITB), Universidad de La Laguna, 38200 Tenerife, Spain.
| | - Magali Gonzalez-Colaço
- Central Unit of Clinical Research and Clinical Assays (UCICEC), Universitary Hospital of Canary Island, 28010 Tenerife, Spain.
| | - Beatriz Isabel
- Faculty of Veterinary Sciences, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Susana Astiz
- Comparative Physiology Group, SGIT-INIA, 28040 Madrid, Spain.
| | - Antonio Gonzalez-Bulnes
- Comparative Physiology Group, SGIT-INIA, 28040 Madrid, Spain.
- Faculty of Veterinary Sciences, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
26
|
Yamada E, Okada S, Bastie CC, Vatish M, Nakajima Y, Shibusawa R, Ozawa A, Pessin JE, Yamada M. Fyn phosphorylates AMPK to inhibit AMPK activity and AMP-dependent activation of autophagy. Oncotarget 2018; 7:74612-74629. [PMID: 27626315 PMCID: PMC5340180 DOI: 10.18632/oncotarget.11916] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/05/2016] [Indexed: 02/06/2023] Open
Abstract
We previously demonstrated that proto-oncogene Fyn decreased energy expenditure and increased metabolic phenotypes. Also Fyn decreased autophagy-mediated muscle mass by directly inhibiting LKB1 and stimulating STAT3 activities, respectively. AMPK, a downstream target of LKB1, was recently identified as a key molecule controlling autophagy. Here we identified that Fyn phosphorylates the α subunit of AMPK on Y436 and inhibits AMPK enzymatic activity without altering the assembly state of the AMPK heterotrimeric complex. As pro-inflammatory mediators are reported modulators of the autophagy processes, treatment with the pro-inflammatory cytokine TNFα resulted in 1) increased Fyn activity 2) stimulated Fyn-dependent AMPKα tyrosine phosphorylation and 3) decreased AICAR-dependent AMPK activation. Importantly, TNFα induced inhibition of autophagy was not observed when AMPKα was mutated on Y436. 4) These data demonstrate that Fyn plays an important role in relaying the effects of TNFα on autophagy and apoptosis via phosphorylation and inhibition of AMPK.
Collapse
Affiliation(s)
- Eijiro Yamada
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Shuichi Okada
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Claire C Bastie
- Division of Biomedical Sciences, Warwick Medical School, Coventry, West Midlands, United Kingdom
| | - Manu Vatish
- Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Oxford, United Kingdom
| | - Yasuyo Nakajima
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ryo Shibusawa
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Atsushi Ozawa
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Jeffrey E Pessin
- Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Masanobu Yamada
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
27
|
Cho HJ, Ahn SH, Lee YS, Lee SH, Im DS, Kim I, Koh JM, Kim S, Kim BJ. Free Fatty Acid Receptor 4 Mediates the Beneficial Effects of n-3 Fatty Acids on Body Composition in Mice. Calcif Tissue Int 2017; 101:654-662. [PMID: 28900676 DOI: 10.1007/s00223-017-0323-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/05/2017] [Indexed: 12/21/2022]
Abstract
As populations continue to age worldwide, sarcopenic obesity has heightened interest due to its medical importance. Although much evidence now indicates that n-3 fatty acids (FAs) may have beneficial effects on body composition including fat and muscle, their exact mechanisms have not yet been elucidated. Because free FA receptor 4 (FFA4) has been reported to be a receptor for n-3 FAs, we hypothesized that the protective role of n-3 FAs on body composition could be mediated by FFA4. To test this possibility, we generated mice overexpressing n-3 FAs but lacking FFA4 by crossing fat-1 transgenic (fat-1 Tg+) and FFA4 knockout (Ffar4 -/-) mice. Because fat-1 Tg+ mice, in which n-6 is endogenously converted into n-3 FAs, contain high n-3 FA levels, they could be a good animal model for studying the effects of n-3 FAs in vivo. Male and female littermates were included in high-fat-diet- (HFD) and ovariectomy-induced models, respectively. In the HFD model, male fat-1 Tg+ mice had a lower percentage of fat mass and a higher percentage of lean mass than their wild-type littermates only when they had the Ffar4 +/+ not the Ffar4 -/- background. Female fat-1 Tg+ mice showed less increase of fat mass percentage and less decrease of lean mass percentage after ovariectomy than wild-type littermates. However, these effects on body composition were attenuated in the Ffar4 -/- background. Taken together, our results indicate that the beneficial effects of n-3 FAs on body composition were mediated by FFA4 and thus suggest that FFA4 may be a potential therapeutic target for modulating sarcopenic obesity.
Collapse
Affiliation(s)
- Han Jin Cho
- Asan Medical Center, Asan Institute for Life Sciences, Seoul, 05505, South Korea
| | - Seong Hee Ahn
- Department of Endocrinology and Metabolism, Inha University Hospital, Inha University School of Medicine, Inchon, 22332, South Korea
| | - Young-Sun Lee
- Asan Medical Center, Asan Institute for Life Sciences, Seoul, 05505, South Korea
| | - Seung Hun Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Dong-Soon Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Pusan, 46241, South Korea
| | - Inki Kim
- Asan Medical Center, Asan Institute for Life Sciences, Seoul, 05505, South Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Sungsub Kim
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Taejon, 34134, South Korea.
| | - Beom-Jun Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea.
| |
Collapse
|
28
|
Lee SR, Khamoui AV, Jo E, Zourdos MC, Panton LB, Ormsbee MJ, Kim JS. Effect of conjugated linoleic acids and omega-3 fatty acids with or without resistance training on muscle mass in high-fat diet-fed middle-aged mice. Exp Physiol 2017; 102:1500-1512. [PMID: 28795443 DOI: 10.1113/ep086317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 08/08/2017] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? This study examined the effects of 20 weeks of administration of conjugated linoleic acids/omega-3 fatty acids with or without programed resistance exercise training on body composition, skeletal muscle properties and functional capacity in middle-aged mice fed a high-fat diet. What is the main finding and its importance? Chronic daily administration of conjugated linoleic acids/omega-3 fatty acids with resistance exercise training can help to blunt fat gain, alleviate loss of myogenic capacity and sensorimotor function and lower tissue inflammation in middle-aged mice during chronic high-fat diet-induced catabolism. This study investigated the effects of 20 weeks of combined conjugated linoleic acid (CLA)/omega-3 fatty acid (n-3) administration independently or combined with resistance exercise training (RET) on skeletal muscle in middle-aged mice consuming a high-fat diet (HFD). Nine-month-old C57BL/6 mice were randomly assigned into four experimental groups (H, high-fat diet; HE, H + RET; HCN, H + CLA/n-3; and HECN, H + CLA/n3 + RET). Body composition and functional capacity were assessed pre- and post-intervention. Muscle tissues were collected at 14 months of age. ANOVA was used, with significance set at P ≤ 0.05. Fat mass significantly increased in H (+74%), HE (+142%) and HECN (+43%) but not in HCN. Muscle wet weights were significantly lower in H and HCN than in HE and HECN. Grip strength substantially declined in H (-15%) and HCN (-17%), whereas sensorimotor function significantly declined only in H (-11%). HECN exhibited improvement in strength (+22%) and sensorimotor coordination (+17%). In comparison to H, muscle tumour necrosis factor-α mRNA expression was significantly lower in HE (-39%), HCN (-24%) and HECN (-21%), respectively. Mean myofibre cross-sectional areas were markedly lower in H and HCN than in HE and HECN. H showed significantly lower satellite cell abundance and numbers of myonuclei than all other groups. Our findings suggest that long-term daily CLA/n-3 intake with resistance training improved sensorimotor function, ameliorated fat gain and prevented loss of myogenic capacity while lowering tumour necrosis factor-α expression during chronic HFD.
Collapse
Affiliation(s)
- Sang-Rok Lee
- Department of Kinesiology and Dance, New Mexico State University, Las Cruces, NM, USA.,Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Andy V Khamoui
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA.,Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL, USA.,Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL, USA
| | - Edward Jo
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA.,Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL, USA.,Department of Kinesiology and Health Promotion, California State Polytechnic University, Pomona, CA, USA
| | - Michael C Zourdos
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA.,Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL, USA
| | - Lynn B Panton
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA.,Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL, USA
| | - Michael J Ormsbee
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA.,Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL, USA
| | - Jeong-Su Kim
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA.,Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL, USA.,Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
29
|
Ishida J, Saitoh M, Doehner W, von Haehling S, Anker M, Anker SD, Springer J. Animal models of cachexia and sarcopenia in chronic illness: Cardiac function, body composition changes and therapeutic results. Int J Cardiol 2017; 238:12-18. [DOI: 10.1016/j.ijcard.2017.03.154] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 02/07/2023]
|
30
|
Cleasby ME, Jamieson PM, Atherton PJ. Insulin resistance and sarcopenia: mechanistic links between common co-morbidities. J Endocrinol 2016; 229:R67-81. [PMID: 26931135 DOI: 10.1530/joe-15-0533] [Citation(s) in RCA: 339] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/01/2016] [Indexed: 12/15/2022]
Abstract
Insulin resistance (IR) in skeletal muscle is a key defect mediating the link between obesity and type 2 diabetes, a disease that typically affects people in later life. Sarcopenia (age-related loss of muscle mass and quality) is a risk factor for a number of frailty-related conditions that occur in the elderly. In addition, a syndrome of 'sarcopenic obesity' (SO) is now increasingly recognised, which is common in older people and is applied to individuals that simultaneously show obesity, IR and sarcopenia. Such individuals are at an increased risk of adverse health events compared with those who are obese or sarcopenic alone. However, there are no licenced treatments for sarcopenia or SO, the syndrome is poorly defined clinically and the mechanisms that might explain a common aetiology are not yet well characterised. In this review, we detail the nature and extent of the clinical syndrome, highlight some of the key physiological processes that are dysregulated and discuss some candidate molecular pathways that could be implicated in both metabolic and anabolic defects in skeletal muscle, with an eye towards future therapeutic options. In particular, the potential roles of Akt/mammalian target of rapamycin signalling, AMP-activated protein kinase, myostatin, urocortins and vitamin D are discussed.
Collapse
Affiliation(s)
- Mark E Cleasby
- Department of Comparative Biomedical SciencesRoyal Veterinary College, University of London, London, UK
| | - Pauline M Jamieson
- Centre for Cardiovascular ScienceQueen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Philip J Atherton
- Division of Medical Sciences and Graduate Entry MedicineUniversity of Nottingham, Medical School, Royal Derby Hospital, Derby, UK
| |
Collapse
|
31
|
Rivas DA, McDonald DJ, Rice NP, Haran PH, Dolnikowski GG, Fielding RA. Diminished anabolic signaling response to insulin induced by intramuscular lipid accumulation is associated with inflammation in aging but not obesity. Am J Physiol Regul Integr Comp Physiol 2016; 310:R561-9. [PMID: 26764052 DOI: 10.1152/ajpregu.00198.2015] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 01/11/2016] [Indexed: 12/24/2022]
Abstract
The loss of skeletal muscle mass is observed in many pathophysiological conditions, including aging and obesity. The loss of muscle mass and function with aging is defined as sarcopenia and is characterized by a mismatch between skeletal muscle protein synthesis and breakdown. Characteristic metabolic features of both aging and obesity are increases in intramyocellular lipid (IMCL) content in muscle. IMCL accumulation may play a mechanistic role in the development of anabolic resistance and the progression of muscle atrophy in aging and obesity. In the present study, aged and high-fat fed mice were used to determine mechanisms leading to muscle loss. We hypothesized the accumulation of bioactive lipids in skeletal muscle, such as ceramide or diacylglycerols, leads to insulin resistance with aging and obesity and the inability to activate protein synthesis, contributing to skeletal muscle loss. We report a positive association between bioactive lipid accumulation and the loss of lean mass and muscle strength. Obese and aged animals had significantly higher storage of ceramide and diacylglycerol compared with young. Furthermore, there was an attenuated insulin response in components of the mTOR anabolic signaling pathway. We also observed differential increases in the expression of inflammatory cytokines and the phosphorylation of IκBα with aging and obesity. These data challenge the accepted role of increased inflammation in obesity-induced insulin resistance in skeletal muscle. Furthermore, we have now established IκBα with a novel function in aging-associated muscle loss that may be independent of its previously understood role as an NF-κB inhibitor.
Collapse
Affiliation(s)
- Donato A Rivas
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Tufts University, Boston, Massachusetts; and
| | - Devin J McDonald
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Tufts University, Boston, Massachusetts; and
| | - Nicholas P Rice
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Tufts University, Boston, Massachusetts; and
| | - Prashanth H Haran
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Tufts University, Boston, Massachusetts; and
| | - Gregory G Dolnikowski
- Mass Spectrometry Unit; Jean Mayer U.S. Department of Agriculture, Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Roger A Fielding
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Tufts University, Boston, Massachusetts; and
| |
Collapse
|
32
|
Santamarina AB, Oliveira JL, Silva FP, Carnier J, Mennitti LV, Santana AA, de Souza GHI, Ribeiro EB, Oller do Nascimento CM, Lira FS, Oyama LM. Green Tea Extract Rich in Epigallocatechin-3-Gallate Prevents Fatty Liver by AMPK Activation via LKB1 in Mice Fed a High-Fat Diet. PLoS One 2015; 10:e0141227. [PMID: 26536464 PMCID: PMC4633218 DOI: 10.1371/journal.pone.0141227] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/05/2015] [Indexed: 01/19/2023] Open
Abstract
Supplementation with epigallocatechin-3-gallate has been determined to aid in the prevention of obesity. Decaffeinated green tea extract appears to restore a normal hepatic metabolic profile and attenuate high-fat diet (HFD)-induced effects, thereby preventing non-alcoholic fatty liver disease in mice. Mice were maintained on either a control diet (CD) or HFD for 16 weeks and supplemented with either water or green tea extract (50 mg/kg/day). The body mass increase, serum adiponectin level, and lipid profile were measured over the course of the treatment. Furthermore, the AMPK pathway protein expression in the liver was measured. From the fourth week, the weight gain in the CD + green tea extract (CE) group was lower than that in the CD + water (CW) group. From the eighth week, the weight gain in the HFD + water (HFW) group was found to be higher than that in the CW group. Moreover, the weight gain in the HFD + green tea extract (HFE) group was found to be lower than that in the HFW group. Carcass lipid content was found to be higher in the HFW group than that in the CW and HFE groups. Serum analysis showed reduced non-esterified fatty acid level in the CE and HFE groups as compared with their corresponding placebo groups. Increased adiponectin level was observed in the same groups. Increased VLDL-TG secretion was observed in the HFW group as compared with the CW and HFE groups. Increased protein expression of AdipoR2, SIRT1, pLKB1, and pAMPK was observed in the HFE group, which explained the reduced expression of ACC, FAS, SREBP-1, and ChREBP in this group. These results indicate that the effects of decaffeinated green tea extract may be related to the activation of AMPK via LKB1 in the liver of HFD-fed mice.
Collapse
Affiliation(s)
| | - Juliana L. Oliveira
- Departamento de Fisiologia—Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda P. Silva
- Departamento de Fisiologia—Universidade Federal de São Paulo, São Paulo, Brazil
| | - June Carnier
- Departamento de Fisiologia—Universidade Federal de São Paulo, São Paulo, Brazil
| | - Laís V. Mennitti
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde—Universidade Federal de São Paulo, Santos, Brazil
| | - Aline A. Santana
- Departamento de Fisiologia—Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Eliane B. Ribeiro
- Departamento de Fisiologia—Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Fábio S. Lira
- Exercise and Immunometabolism Research Group, Department of Physical Education, Universidade Estadual Paulista, UNESP, Presidente Prudente, SP, Brazil
| | - Lila M. Oyama
- Departamento de Fisiologia—Universidade Federal de São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
33
|
A sustained high fat diet for two years decreases IgM and IL-1 beta in ageing Wistar rats. IMMUNITY & AGEING 2015; 12:12. [PMID: 26421054 PMCID: PMC4585810 DOI: 10.1186/s12979-015-0040-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/23/2015] [Indexed: 12/22/2022]
Abstract
Background The immune system undergoes several alterations of innate and adaptive immunity during ageing. The main features of the aged immune system are a reduced diversity of T cell receptors and a reduced activity of innate immune cells with subsequent changes in adaptive immunity resulting in a less effective, less specific, and dys-regulated immune response and in an increased susceptibility towards infection, malignancy, and autoimmunity. The process is referred to as immunosenescence and is also modulated by environmental modifiers, such as dietary factors. High fat diet (HFD), via direct modulation of immune cell function by fatty acids and/or increased body fat mass, influences immune function. However, it is not clear whether HFD is beneficial or detrimental for the functioning of the ageing immune system. Methods Male Wistar rats fed with either a high fat diet (HFD 43 en% of fat) or control diet (SD, 25 en% of fat) over up to 24 month and were analyzed for plasma IL-1β, IL-6, TNF, IgM, IgG1, IgA, IgG2a, IgG2b, IgG2c, light chains lambda and kappa, testosterone, prolactin and percentage of splenic B cells and apoptosis rate, respectively. Results In general, all analyzed immunoglobuline isotypes increased with age, except for IgA. This increase was attenuated by HFD. In HFD and SD rats the percentage of B cells in the spleen and also their apoptotic rate was lower in aged as compared to young animals with no additional diet-induced effect. Testosterone and prolactin levels were lower in old animals, as expected. There was a statistical trend towards an increased prolactin/testosterone ratio in middle aged (6–12 monthsnth) HFD rats as compared to SD. IL-6 was neither affected by HFD nor age. On the other hand, HFD rats showed a decrease in IL-1β as compared to SD, which correlated with the above-mentioned suppressive effect on immunoglobulin isotypes, especially IgM. Conclusion In Wistar rats, HFD reveals an immunosuppressive effect in ageing animals by decreasing immunoglobulins, especially IgM, and IL-1β when compared to SD.
Collapse
|
34
|
Effects of chronic high-fat feeding on skeletal muscle mass and function in middle-aged mice. Aging Clin Exp Res 2015; 27:403-11. [PMID: 25647784 DOI: 10.1007/s40520-015-0316-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/09/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Increased adipose tissue may promote catabolic events in skeletal muscle. The aim of this study was to test whether high-fat diet (HFD)-induced obesity would accelerate the onset of muscle wasting in middle-aged mice. METHODS Muscle was collected from C57BL/6 mice at 9 months of age (baseline) and 14 months of age after consuming a control (C) or HFD. Mice in C and HFD were also subjected to evaluations of body composition and function before and after their respective diets. RESULTS HFD demonstrated significant (p < 0.05) losses of grip strength (-15 %) and sensorimotor coordination (-11 %), whereas C did not. Lean mass decreased to a greater degree in HFD although not significantly (C: -20.69 ± 7.94 vs. HFD: -31.14 ± 5.49 %, p > 0.05). Gastrocnemius, quadriceps, and hamstrings mass in C and HFD were significantly reduced from baseline (-27 to 43 and -39 to 47 %, respectively, p < 0.05) with no differences between the two; however, soleus mass was lower only in HFD (-24 %, p = 0.03). Myofiber area, satellite cells, and myonuclei of the gastrocnemius were lower only in HFD (-23, -19, and -16 %, respectively, p < 0.05) compared to baseline. CONCLUSIONS HFD-induced obesity adversely affected function in middle-aged mice. Atrophy of the soleus in HFD but not C suggests sensitivity of oxidative muscle to HFD-dependent catabolism more so than aging. In the muscles containing fast/mixed fibers, aging effects may have concealed the catabolic nature of HFD; however, morphological changes in the gastrocnemius including decreased fiber area, satellite cells, and myonuclei are consistent with an atrophic phenotype related to HFD.
Collapse
|
35
|
Budui SL, Rossi AP, Zamboni M. The pathogenetic bases of sarcopenia. CLINICAL CASES IN MINERAL AND BONE METABOLISM 2015; 12:22-6. [PMID: 26136791 DOI: 10.11138/ccmbm/2015.12.1.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aging is accompanied by involuntary loss of skeletal muscle mass, strength and function, called sarcopenia. The mechanisms underlying the development of sarcopenia are not completely understood and most likely multi-factorial, but significant progress has been made over the past few years to identify some of the major contributors. Besides life style-related factors, as diet and physical activity, sarcopenia seems to be also determined by hormonal dysregulation, chronic inflammatory status, ectopic adipose tissue accumulation, neurological and vascular changes associated with aging. The present mini-review focused on the basic factors that primarily impact muscle homeostasis in older subjects. A better understanding of cellular mechanism leading to sarcopenia is required to establish evidence-based intervention in order to prevent onset of symptoms associated with sarcopenia and to extend the time free from disability in older adults.
Collapse
Affiliation(s)
- Simona L Budui
- Geriatric Section, Department of Medicine, University of Verona, Verona, Italy
| | - Andrea P Rossi
- Geriatric Section, Department of Medicine, University of Verona, Verona, Italy
| | - Mauro Zamboni
- Geriatric Section, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
36
|
Kob R, Fellner C, Bertsch T, Wittmann A, Mishura D, Sieber CC, Fischer BE, Stroszczynski C, Bollheimer CL. Gender-specific differences in the development of sarcopenia in the rodent model of the ageing high-fat rat. J Cachexia Sarcopenia Muscle 2015; 6:181-91. [PMID: 26136194 PMCID: PMC4458084 DOI: 10.1002/jcsm.12019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/05/2015] [Accepted: 02/23/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Sarcopenia is linked to functional impairments, loss of independence, and mortality. In the past few years, obesity has been established as being a risk factor for a decline in muscle mass and function. There are several molecular pathological mechanisms, which have been under discussion that might explain this relationship. However, most studies were conducted using male animals and for a short period of time. METHODS In this study, the gender-specific effect of long-term, high-fat content feeding in Sprague-Dawley rats was examined. Development of the quadriceps muscle of the animals was monitored in vivo using magnetic resonance. The results of these measurements and of the biochemical analysis of the aged muscle were compared. RESULTS Surprisingly, only male but not female rats showed a decline in muscle cross-sectional area at 16 months of age as a result of a chronic oversupply of dietary fats. This loss of muscle mass could not be explained by either de-regulation of the anabolic Akt pathway or by up-regulation of the main ubiquitin ligases of muscle, MAFbx and MuRF-1. However, fusion of satellite cells to myotubes was induced by the high-fat diet in male rats, possibly as a result of an increased need for compensatory regeneration processes. Caspase-3-dependent apoptosis induction, irrespective of diet, seems to be the major determinant of muscle decline during ageing in male but not female rats. CONCLUSION Taken together, activation of the apoptosis-inducing Caspase-3 seems to be the most important trigger for the age-related muscle loss. Male rats were more prone to the decline of muscle during ageing than female animals, which was further enforced by a long-term, high fat diet.
Collapse
Affiliation(s)
- Robert Kob
- Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany
| | - Claudia Fellner
- Institute of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - Thomas Bertsch
- Institute of Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Paracelsus Medical University, Nuremberg, Germany
| | - Astrid Wittmann
- Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany
| | - Daria Mishura
- Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany
| | - Cornel C Sieber
- Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany.,Department of General Internal Medicine and Geriatrics, Hospital of the Order of St. John of God, Regensburg, Germany
| | - Barbara E Fischer
- Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany
| | | | - Cornelius L Bollheimer
- Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany.,Department of General Internal Medicine and Geriatrics, Hospital of the Order of St. John of God, Regensburg, Germany
| |
Collapse
|
37
|
Tardif N, Salles J, Guillet C, Tordjman J, Reggio S, Landrier J, Giraudet C, Patrac V, Bertrand‐Michel J, Migne C, Collin M, Chardigny J, Boirie Y, Walrand S. Muscle ectopic fat deposition contributes to anabolic resistance in obese sarcopenic old rats through eIF2α activation. Aging Cell 2014; 13:1001-11. [PMID: 25139155 PMCID: PMC4326920 DOI: 10.1111/acel.12263] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2014] [Indexed: 12/25/2022] Open
Abstract
Obesity and aging are characterized by decreased insulin sensitivity (IS) and muscle protein synthesis. Intramuscular ceramide accumulation has been implicated in insulin resistance during obesity. We aimed to measure IS, muscle ceramide level, protein synthesis, and activation of intracellular signaling pathways involved in translation initiation in male Wistar young (YR, 6-month) and old (OR, 25-month) rats receiving a low- (LFD) or a high-fat diet (HFD) for 10 weeks. A corresponding cellular approach using C2C12 myotubes treated with palmitate to induce intracellular ceramide deposition was taken. A decreased ability of adipose tissue to store lipids together with a reduced adipocyte diameter and a development of fibrosis were observed in OR after the HFD. Consequently, OR fed the HFD were insulin resistant, showed a strong increase in intramuscular ceramide level and a decrease in muscle protein synthesis associated with increased eIF2α phosphorylation. The accumulation of intramuscular lipids placed a lipid burden on mitochondria and created a disconnect between metabolic and regulating pathways in skeletal muscles of OR. In C2C12 cells, palmitate-induced ceramide accumulation was associated with a decreased protein synthesis together with upregulated eIF2α phosphorylation. In conclusion, a reduced ability to expand adipose tissues was found in OR, reflecting a lower lipid buffering capacity. Muscle mitochondrial activity was affected in OR conferring a reduced ability to oxidize fatty acids entering the muscle cell. Hence, OR were more prone to ectopic muscle lipid accumulation than YR, leading to decreased muscle protein anabolism. This metabolic change is a potential therapeutic target to counter sarcopenic obesity.
Collapse
Affiliation(s)
- Nicolas Tardif
- Clermont Université Université d'Auvergne Unité de Nutrition Humaine BP 10448Clermont‐Ferrand F‐63000France
- INRA UMR 1019 UNH CRNH Auvergne Clermont‐Ferrand F‐63000 France
| | - Jérôme Salles
- Clermont Université Université d'Auvergne Unité de Nutrition Humaine BP 10448Clermont‐Ferrand F‐63000France
- INRA UMR 1019 UNH CRNH Auvergne Clermont‐Ferrand F‐63000 France
| | - Christelle Guillet
- Clermont Université Université d'Auvergne Unité de Nutrition Humaine BP 10448Clermont‐Ferrand F‐63000France
- INRA UMR 1019 UNH CRNH Auvergne Clermont‐Ferrand F‐63000 France
| | - Joan Tordjman
- UPMC Inserm U872 Equipe 7 Centre de Recherche des Cordeliers Paris F‐75006France
| | - Sophie Reggio
- UPMC Inserm U872 Equipe 7 Centre de Recherche des Cordeliers Paris F‐75006France
| | | | - Christophe Giraudet
- Clermont Université Université d'Auvergne Unité de Nutrition Humaine BP 10448Clermont‐Ferrand F‐63000France
- INRA UMR 1019 UNH CRNH Auvergne Clermont‐Ferrand F‐63000 France
| | - Véronique Patrac
- Clermont Université Université d'Auvergne Unité de Nutrition Humaine BP 10448Clermont‐Ferrand F‐63000France
- INRA UMR 1019 UNH CRNH Auvergne Clermont‐Ferrand F‐63000 France
| | | | - Carole Migne
- Clermont Université Université d'Auvergne Unité de Nutrition Humaine BP 10448Clermont‐Ferrand F‐63000France
- INRA UMR 1019 UNH CRNH Auvergne Clermont‐Ferrand F‐63000 France
| | - Marie‐Laure Collin
- Clermont Université Université d'Auvergne Unité de Nutrition Humaine BP 10448Clermont‐Ferrand F‐63000France
- INRA UMR 1019 UNH CRNH Auvergne Clermont‐Ferrand F‐63000 France
| | - Jean‐Michel Chardigny
- Clermont Université Université d'Auvergne Unité de Nutrition Humaine BP 10448Clermont‐Ferrand F‐63000France
- INRA UMR 1019 UNH CRNH Auvergne Clermont‐Ferrand F‐63000 France
| | - Yves Boirie
- Clermont Université Université d'Auvergne Unité de Nutrition Humaine BP 10448Clermont‐Ferrand F‐63000France
- INRA UMR 1019 UNH CRNH Auvergne Clermont‐Ferrand F‐63000 France
- CHU Clermont‐Ferrand Service de Nutrition Clinique Clermont‐Ferrand F‐63003France
| | - Stéphane Walrand
- Clermont Université Université d'Auvergne Unité de Nutrition Humaine BP 10448Clermont‐Ferrand F‐63000France
- INRA UMR 1019 UNH CRNH Auvergne Clermont‐Ferrand F‐63000 France
| |
Collapse
|
38
|
Kob R, Bollheimer LC, Bertsch T, Fellner C, Djukic M, Sieber CC, Fischer BE. Sarcopenic obesity: molecular clues to a better understanding of its pathogenesis? Biogerontology 2014; 16:15-29. [PMID: 25376109 DOI: 10.1007/s10522-014-9539-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/03/2014] [Indexed: 12/20/2022]
Abstract
An age-dependent decline in skeletal muscle mass, strength, and endurance during the aging process is a physiological development, but several factors may exacerbate this process, leading to the threatening state of sarcopenia, frailty, and eventually higher mortality rates. Obesity appears to be such a promoting factor and has been linked in several studies to sarcopenia. The reason for this causal association remains poorly understood. Notwithstanding the fact that a higher body mass might simply lead to diminished physical activity and therefore contribute to a decline in skeletal muscle, several molecular mechanisms have been hypothesized. There could be an obesity derived intracellular lipotoxicity (i.e., elevated intramuscular levels of lipids and their derivatives), which induces apoptosis by means of an elevated oxidative stress. Paracrine mechanisms and inflammatory cytokines, such as CRP and IL-6 could be confounders of the actual underlying pathological mechanism. Due to a cross-talk of the hypothalamo-pituitary axis with nutritional status, obese subjects are more in a catabolic state of metabolism, with a higher susceptibility to muscle wasting under energy restriction. Obesity induces insulin resistance in the skeletal muscle, which consequently leads to perturbed metabolism, and misrouted signaling in the muscle cells. In obesity, muscle progenitor cells could differentiate to an adipocyte-like phenotype as a result of paracrine signals from (adipo)cytokines leading to a reduced muscular renewal capacity. The present review outlines current knowledge concerning possible pathways, which might be involved in the molecular pathogenesis of sarcopenic obesity.
Collapse
Affiliation(s)
- Robert Kob
- Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kobergerstraße 60, 90408, Nuremberg, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Non-steroidal anti-inflammatory drugs attenuate the vascular responses in aging metabolic syndrome rats. Acta Pharmacol Sin 2014; 35:1364-74. [PMID: 25263337 DOI: 10.1038/aps.2014.67] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/21/2014] [Indexed: 12/25/2022] Open
Abstract
AIM Metabolic syndrome (MS) and aging are low-grade systemic inflammatory conditions, and inflammation is a key component of endothelial dysfunction. The aim of this study was to investigate the effects of non-steroidal anti-inflammatory drugs (NSAIDs) upon the vascular reactivity in aging MS rats. METHODS MS was induced in young male rats by adding 30% sucrose in drinking water over 6, 12, and 18 months. When the treatment was finished, the blood samples were collected, and aortas were dissected out. The expression of COX isoenzymes and PLA2 in the aortas was analyzed using Western blot analysis. The contractile responses of aortic rings to norepinephrine (1 μmol/L) were measured in the presence or absence of different NSAIDs (10 μmol/L for each). RESULTS Serum levels of pro-inflammatory cytokines (IL-6, TNF-α, and IL-1β) in control rats were remained stable during the aging process, whereas serum IL-6 in MS rats were significantly increased at 12 and 18 months. The levels of COX isoenzyme and PLA2 in aortas from control rats increased with the aging, whereas those in aortas from MS rats were irregularly increased with the highest levels at 6 months. Pretreatment with acetylsalicylic acid (a COX-1 preferential inhibitor), indomethacin (a non-selective COX inhibitor) or meloxicam (a COX-2 preferential inhibitor) decreased NE-induced contractions of aortic rings from MS rats at all the ages, with meloxicam being the most potent. Acetylsalicylic acid also significantly reduced the maximum responses of ACh-induced vasorelaxation of aortic rings from MS rats, but indomethacin and meloxicam had no effect. CONCLUSION NSAIDs can directly affect vascular responses in aging MS rats. Understanding the effects of NSAIDs on blood vessels may improve the treatment of cardiovascular diseases and MS in the elders.
Collapse
|
40
|
Abstract
The importance of skeletal muscle for metabolic health and obesity prevention is gradually gaining recognition. As a result, interventions are being developed to increase or maintain muscle mass and metabolic function in adult and elderly populations. These interventions include exercise, hormonal and nutritional therapies. Nonetheless, growing evidence suggests that maternal malnutrition and obesity during pregnancy and lactation impede skeletal muscle development and growth in the offspring, with long-term functional consequences lasting into adult life. Here we review the role of skeletal muscle in health and obesity, providing an insight into how this tissue develops and discuss evidence that maternal obesity affects its development, growth and function into adult life. Such evidence warrants the need to develop early life interventions to optimise skeletal muscle development and growth in the offspring and thereby maximise metabolic health into adult life.
Collapse
|
41
|
Fellner C, Schick F, Kob R, Hechtl C, Vorbuchner M, Büttner R, Hamer OW, Sieber CC, Stroszczynski C, Bollheimer LC. Diet-Induced and Age-Related Changes in the Quadriceps Muscle: MRI and MRS in a Rat Model of Sarcopenia. Gerontology 2014; 60:530-8. [DOI: 10.1159/000360289] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 02/04/2014] [Indexed: 11/19/2022] Open
|
42
|
Williamson DL, Li Z, Tuder RM, Feinstein E, Kimball SR, Dungan CM. Altered nutrient response of mTORC1 as a result of changes in REDD1 expression: effect of obesity vs. REDD1 deficiency. J Appl Physiol (1985) 2014; 117:246-56. [PMID: 24876363 DOI: 10.1152/japplphysiol.01350.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Although aberrant mTORC1 signaling has been well established in models of obesity, little is known about its repressor, REDD1. Therefore, the initial goal of this study was to determine the role of REDD1 on mTORC1 in obese skeletal muscle. REDD1 expression (protein and message) and mTORC1 signaling (S6K1, 4E-BP1, raptor-mTOR association, Rheb GTP) were examined in lean vs. ob/ob and REDD1 wild-type (WT) vs. knockout (KO) mice, under conditions of altered nutrient intake [fasted and fed or diet-induced obesity (10% vs. 60% fat diet)]. Despite higher (P < 0.05) S6K1 and 4E-BP1 phosphorylation, two models of obesity (ob/ob and diet-induced) displayed elevated (P < 0.05) skeletal muscle REDD1 expression compared with lean or low-fat-fed mouse muscle under fasted conditions. The ob/ob mice displayed elevated REDD1 expression (P < 0.05) that coincided with aberrant mTORC1 signaling (hyperactive S6K1, low raptor-mTOR binding, elevated Rheb GTP; P < 0.05) under fasted conditions, compared with the lean, which persisted in a dysregulated fashion under fed conditions. REDD1 KO mice gained limited body mass on a high-fat diet, although S6K1 and 4E-BP1 phosphorylation remained elevated (P < 0.05) in both the low-fat and high-fat-fed KO vs. WT mice. Similarly, the REDD1 KO mouse muscle displayed blunted mTORC1 signaling responses (S6K1 and 4E-BP1, raptor-mTOR binding) and circulating insulin under fed conditions vs. the robust responses (P < 0.05) in the WT fed mouse muscle. These studies suggest that REDD1 in skeletal muscle may serve to limit hyperactive mTORC1, which promotes aberrant mTORC1 signaling responses during altered nutrient states.
Collapse
Affiliation(s)
- David L Williamson
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York;
| | - Zhuyun Li
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York
| | - Rubin M Tuder
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Denver, Colorado
| | - Elena Feinstein
- Research Division, Quark Pharmaceuticals, Ness Ziona, Israel; and
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Cory M Dungan
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York
| |
Collapse
|