1
|
Hejazian SM, Hejazian SS, Mostafavi SM, Hosseiniyan SM, Montazersaheb S, Ardalan M, Zununi Vahed S, Barzegari A. Targeting cellular senescence in kidney diseases and aging: A focus on mesenchymal stem cells and their paracrine factors. Cell Commun Signal 2024; 22:609. [PMID: 39696575 DOI: 10.1186/s12964-024-01968-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Cellular senescence is a phenomenon distinguished by the halting of cellular division, typically triggered by DNA injury or numerous stress-inducing factors. Cellular senescence is implicated in various pathological and physiological processes and is a hallmark of aging. The presence of accumulated senescent cells, whether transiently (acute senescence) or persistently (chronic senescence) plays a dual role in various conditions such as natural kidney aging and different kidney disorders. Elevations in senescent cells and senescence-associated secretory phenotype (SASP) levels correlate with decreased kidney function, kidney ailments, and age-related conditions. Strategies involving senotherapeutic agents like senolytics, senomorphics, and senoinflammation have been devised to specifically target senescent cells. Mesenchymal stem cells (MSCs) and their secreted factors may also offer alternative approaches for anti-senescence interventions. The MSC-derived secretome compromises significant therapeutic benefits in kidney diseases by facilitating tissue repair via anti-inflammatory, anti-fibrosis, anti-apoptotic, and pro-angiogenesis effects, thereby improving kidney function and mitigating disease progression. Moreover, by promoting the clearance of senescent cells or modulating their secretory profiles, MSCs could potentially reverse some age-related declines in kidney function.This review article intends to shed light on the present discoveries concerning the role of cellular senescence in kidney aging and diseases. Furthermore, it outlines the role of senotherapeutics utilized to alleviate kidney damage and aging. It also highlights the possible impact of MSCs secretome on mitigating kidney injury and prolonging lifespan across various models of kidney diseases as a novel senotherapy.
Collapse
Affiliation(s)
| | - Seyyed Sina Hejazian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyedeh Mina Mostafavi
- Ayatollah Taleghani Hospital, Research Development Unit, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Abolfazl Barzegari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Jans K, Lüersen K, von Frieling J, Roeder T, Rimbach G. Dietary sucrose determines the regulatory activity of lithium on gene expression and lifespan in Drosophila melanogaster. Aging (Albany NY) 2024; 16:9309-9333. [PMID: 38862239 PMCID: PMC11210232 DOI: 10.18632/aging.205933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/10/2024] [Indexed: 06/13/2024]
Abstract
The amount of dietary sugars and the administration of lithium both impact the lifespan of the fruit fly Drosophila melanogaster. It is noteworthy that lithium is attributed with insulin-like activity as it stimulates protein kinase B/Akt and suppresses the activity of glycogen synthase kinase-3 (GSK-3). However, its interaction with dietary sugar has largely remained unexplored. Therefore, we investigated the effects of lithium supplementation on known lithium-sensitive parameters in fruit flies, such as lifespan, body composition, GSK-3 phosphorylation, and the transcriptome, while varying the dietary sugar concentration. For all these parameters, we observed that the efficacy of lithium was significantly influenced by the sucrose content in the diet. Overall, we found that lithium was most effective in enhancing longevity and altering body composition when added to a low-sucrose diet. Whole-body RNA sequencing revealed a remarkably similar transcriptional response when either increasing dietary sucrose from 1% to 10% or adding 1 mM LiCl to a 1% sucrose diet, characterized by a substantial overlap of nearly 500 differentially expressed genes. Hence, dietary sugar supply is suggested as a key factor in understanding lithium bioactivity, which could hold relevance for its therapeutic applications.
Collapse
Affiliation(s)
- Katharina Jans
- Division of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Kiel D-24118, Germany
| | - Kai Lüersen
- Division of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Kiel D-24118, Germany
| | - Jakob von Frieling
- Division of Molecular Physiology, Institute of Zoology, University of Kiel, Kiel D-24118, Germany
| | - Thomas Roeder
- Division of Molecular Physiology, Institute of Zoology, University of Kiel, Kiel D-24118, Germany
| | - Gerald Rimbach
- Division of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Kiel D-24118, Germany
| |
Collapse
|
3
|
Guarente L, Sinclair DA, Kroemer G. Human trials exploring anti-aging medicines. Cell Metab 2024; 36:354-376. [PMID: 38181790 DOI: 10.1016/j.cmet.2023.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/01/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024]
Abstract
Here, we summarize the current knowledge on eight promising drugs and natural compounds that have been tested in the clinic: metformin, NAD+ precursors, glucagon-like peptide-1 receptor agonists, TORC1 inhibitors, spermidine, senolytics, probiotics, and anti-inflammatories. Multiple clinical trials have commenced to evaluate the efficacy of such agents against age-associated diseases including diabetes, cardiovascular disease, cancer, and neurodegenerative diseases. There are reasonable expectations that drugs able to decelerate or reverse aging processes will also exert broad disease-preventing or -attenuating effects. Hence, the outcome of past, ongoing, and future disease-specific trials may pave the way to the development of new anti-aging medicines. Drugs approved for specific disease indications may subsequently be repurposed for the treatment of organism-wide aging consequences.
Collapse
Affiliation(s)
- Leonard Guarente
- Department of Biology, Massachusetts Institute for Technology, Cambridge, MA 02139; Academy for Healthspan and Lifespan Research (AHLR), New York, NY, USA.
| | - David A Sinclair
- Academy for Healthspan and Lifespan Research (AHLR), New York, NY, USA; Blavatnik Institute, Genetics Department, Harvard Medical School, Boston, MA 02115, USA
| | - Guido Kroemer
- Academy for Healthspan and Lifespan Research (AHLR), New York, NY, USA; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
4
|
Oliveira R, Monteiro-Soares M, Guerreiro JP, Pereira R, Teixeira-Rodrigues A. Estimating Type 2 Diabetes Prevalence: A Model of Drug Consumption Data. PHARMACY 2024; 12:18. [PMID: 38392925 PMCID: PMC10892415 DOI: 10.3390/pharmacy12010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Observational, cross-sectional prevalence studies are costly and time-consuming. The development of indirect methods estimating prevalence used to obtain faster, less-expensive, and more robust results would be an advantage for several healthcare applications. This study aimed to use the drug dispensing data from community pharmacies to estimate the prevalence of Type 2 Diabetes mellitus (T2DM) in the Portuguese population. A cross-sectional study was conducted using a database of dispensed medicines with an indication for Diabetes mellitus in 2018 and 2021, stratified by geographic region. The methodology was based on a sequential method of acquiring prevalence estimates obtained through exposure to medicines using the daily doses defined per thousand inhabitants per day and adjusted to the rate of adherence to therapy, prescription patterns, and concomitance of antidiabetic drugs. The estimated overall T2DM prevalence in 2018 was 13.9%, and it was 14.2% for 2021. The results show the increased consumption of antidiabetic drugs, with fixed-dose combination antidiabetics and new antidiabetics being particularly important in 2021. This work allowed for the development of a model to obtain the estimated prevalence of T2DM based on drug consumption, using a simple, fast, and robust method that is in line with the available evidence. However, with the recent expanding indications for new antidiabetics, the inclusion of further data in the model needs to be studied.
Collapse
Affiliation(s)
- Rita Oliveira
- FP-BHS—Biomedical and Health Sciences Research Unit, FFP-I3ID—Instituto de Investigação, Inovação e Desenvolvimento, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Rua Carlos da Maia 296, 4200-150 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo de Ferreira 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo de Ferreira 228, 4050-313 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Matilde Monteiro-Soares
- CINTESIS—Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, 4050-313 Porto, Portugal;
- MEDCIDS—Departamento de Medicina da Comunidade Informação e Decisão em Saúde, Faculty of Medicine, University of Porto, 4050-313 Porto, Portugal
- Portuguese Red Cross Health School Lisbon, Avenida de Ceuta nº 1, 1300-125 Lisbon, Portugal
- Cross I&D, Avenida de Ceuta nº 1, 1300-125 Lisbon, Portugal
| | - José Pedro Guerreiro
- Centre for Health Evaluation & Research/Infosaúde, National Association of Pharmacies, 1300-125 Lisbon, Portugal; (J.P.G.); (R.P.); (A.T.-R.)
| | - Rúben Pereira
- Centre for Health Evaluation & Research/Infosaúde, National Association of Pharmacies, 1300-125 Lisbon, Portugal; (J.P.G.); (R.P.); (A.T.-R.)
| | - António Teixeira-Rodrigues
- Centre for Health Evaluation & Research/Infosaúde, National Association of Pharmacies, 1300-125 Lisbon, Portugal; (J.P.G.); (R.P.); (A.T.-R.)
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3Bs PT Government Associate Laboratory, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
5
|
Elsheikh M, El Sabagh A, Mohamed IB, Bhongade M, Hassan MM, Jalal PK. Frailty in end-stage liver disease: Understanding pathophysiology, tools for assessment, and strategies for management. World J Gastroenterol 2023; 29:6028-6048. [PMID: 38130738 PMCID: PMC10731159 DOI: 10.3748/wjg.v29.i46.6028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/08/2023] [Accepted: 12/01/2023] [Indexed: 12/13/2023] Open
Abstract
Frailty and sarcopenia are frequently observed in patients with end-stage liver disease. Frailty is a complex condition that arises from deteriorations across various physiological systems, including the musculoskeletal, cardiovascular, and immune systems, resulting in a reduced ability of the body to withstand stressors. This condition is associated with declined resilience and increased vulnerability to negative outcomes, including disability, hospitalization, and mortality. In cirrhotic patients, frailty is influenced by multiple factors, such as hyperammonemia, hormonal imbalance, malnutrition, ascites, hepatic encephalopathy, and alcohol intake. Assessing frailty is crucial in predicting morbidity and mortality in cirrhotic patients. It can aid in making critical decisions regarding patients' eligibility for critical care and transplantation. This, in turn, can guide the development of an individualized treatment plan for each patient with cirrhosis, with a focus on prioritizing exercise, proper nutrition, and appropriate treatment of hepatic complications as the primary lines of treatment. In this review, we aim to explore the topic of frailty in liver diseases, with a particular emphasis on pathophysiology, clinical assessment, and discuss strategies for preventing frailty through effective treatment of hepatic complications. Furthermore, we explore novel assessment and management strategies that have emerged in recent years, including the use of wearable technology and telemedicine.
Collapse
Affiliation(s)
- Mazen Elsheikh
- Department of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Ahmed El Sabagh
- Department of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Islam B Mohamed
- Department of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Megha Bhongade
- Department of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Manal M Hassan
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Prasun Kumar Jalal
- Department of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX 77030, United States
| |
Collapse
|
6
|
Zhang T, Yin X, Yu X, Shang R, Lu L, Miao J. Metformin protects fibroblasts from patients with GNE myopathy by restoring autophagic flux via an AMPK/mTOR-independent pathway. Biomed Pharmacother 2023; 164:114958. [PMID: 37263165 DOI: 10.1016/j.biopha.2023.114958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/13/2023] [Accepted: 05/27/2023] [Indexed: 06/03/2023] Open
Abstract
UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) myopathy is an autosomal recessive disease characterized by rimmed vacuoles (RVs). Previous studies have shown that metformin protects against several neuromuscular disorders. In the present study, we summarize the clinical features of three GNE patients with the p.D207V mutation. The pathogenesis of GNE myopathy is described, and the significance of metformin in this disease is observed. Skin biopsy-derived fibroblasts from patients with GNE myopathy, carrying a D207V mutation in GNE, were cultured. GNE fibroblasts and control fibroblasts were treated under normal culture conditions, serum starvation conditions, or serum starvation + metformin conditions. Histopathological and immunohistochemical analyses of muscle samples showed that autophagy was involved in the formation of RVs in the muscle of patients. Starved GNE fibroblasts showed decreased autophagy-related proteins and impaired autophagic flow (p < 0.05). The mRFP-GFP-LC3 assay showed that the fusion of autophagosomes with lysosomes was partially blocked in GNE cells. Notably, metformin treatment upregulated the expression of autophagy proteins, increased the number of autolysosomes (p < 0.001), and influenced the viability of GNE cells (p < 0.001). Furthermore, adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and phosphorylated (p)-AMPK expression levels were upregulated in serum-starved GNE fibroblasts, while the mammalian target of rapamycin (mTOR) and p-mTOR expression levels were downregulated in both groups. Metformin treatment inhibited the AMPK-mTOR signaling pathway. Our results suggest that metformin plays a protective role in the GNE fibroblast by restoring autophagic flux and through the AMPK/mTOR-independent pathway.
Collapse
Affiliation(s)
- Tongtong Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun 130000, China
| | - Xiang Yin
- Department of Neurology, The First Hospital of Jilin University, Changchun 130000, China
| | - Xuefan Yu
- Department of Neurology, The First Hospital of Jilin University, Changchun 130000, China
| | - Ren Shang
- Department of Neurology, The First Hospital of Jilin University, Changchun 130000, China
| | - Liuzhe Lu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130000, China
| | - Jing Miao
- Department of Neurology, The First Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
7
|
Mone P, Martinelli G, Lucariello A, Leo AL, Marro A, De Gennaro S, Marzocco S, Moriello D, Frullone S, Cobellis L, Santulli G. Extended-release metformin improves cognitive impairment in frail older women with hypertension and diabetes: preliminary results from the LEOPARDESS Study. Cardiovasc Diabetol 2023; 22:94. [PMID: 37085892 PMCID: PMC10122301 DOI: 10.1186/s12933-023-01817-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 03/28/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Women have a high risk of frailty independently of age and menopause state. Diabetes and hypertension increase the risk of frailty and cognitive impairment. Metformin has been employed in post-menopausal women and some reports have shown encouraging effects in terms of attenuated frailty. However, the impact on cognitive performance of a recently introduced extended-release formulation of metformin has never been explored. METHODS We studied consecutive frail hypertensive and diabetic older women presenting at the ASL (local health authority of the Italian Ministry of Health) Avellino, Italy, from June 2021 to August 2022, who were treated or not with extended-release metformin. We included a control group of frail older males with diabetes and hypertension treated with extended-release metformin and a control group of frail older women with diabetes and hypertension treated with regular metformin. RESULTS A total of 145 patients successfully completed the study. At the end of the 6-month follow-up, we observed a significantly different cognitive performance compared to baseline in the group of frail women treated with extended-release metformin (p: 0.007). Then, we compared the follow-up groups and we observed significant differences between frail women treated vs. untreated (p: 0.041), between treated frail women and treated frail men (p: 0.016), and between women treated with extended-release metformin vs. women treated with regular metformin (p: 0.048). We confirmed the crucial role of extended-release metformin applying a multivariable logistic analysis to adjust for potential confounders. CONCLUSIONS We evidenced, for the first time to the best of our knowledge, the favorable effects on cognitive impairment of extended-release metformin in frail women with diabetes and hypertension.
Collapse
Affiliation(s)
- Pasquale Mone
- Department of Medicine, Division of Cardiology, Einstein Institute for Aging Research, Fleischer Institute for Diabetes Research (FIDAM), Einstein - Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York City, NY, USA.
- ASL Avellino, Avellino, Italy.
- University of Campania "Luigi Vanvitelli", Caserta, Italy.
| | | | | | | | | | | | | | | | | | - Luigi Cobellis
- University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Gaetano Santulli
- Department of Medicine, Division of Cardiology, Einstein Institute for Aging Research, Fleischer Institute for Diabetes Research (FIDAM), Einstein - Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York City, NY, USA.
- Department of Molecular Pharmacology, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York City, NY, USA.
| |
Collapse
|
8
|
Lushchak O, Gospodaryov D, Strilbytska O, Bayliak M. Changing ROS, NAD and AMP: A path to longevity via mitochondrial therapeutics. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:157-196. [PMID: 37437977 DOI: 10.1016/bs.apcsb.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Lifespan of many organisms, from unicellular yeast to extremely complex human organism, strongly depends on the genetic background and environmental factors. Being among most influential target energy metabolism is affected by macronutrients, their caloric values, and peculiarities of catabolism. Mitochondria are central organelles that respond for energy metabolism in eukaryotic cells. Mitochondria generate reactive oxygen species (ROS), which are lifespan modifying metabolites and a kind of biological clock. Oxidized nicotinamide adenine dinucleotide (NAD+) and adenosine monophosphate (AMP) are important metabolic intermediates and molecules that trigger or inhibit several signaling pathways involved in gene silencing, nutrient allocation, and cell regeneration and programmed death. A part of NAD+ and AMP metabolism is tied to mitochondria. Using substances that able to target mitochondria, as well as allotopic expression of specific enzymes, are envisioned to be innovative approaches to prolong lifespan by modulation of ROS, NAD+, and AMP levels. Among substances, an anti-diabetic drug metformin is believed to increase NAD+ and AMP levels, indirectly influencing histone deacetylases, involved in gene silencing, and AMP-activated protein kinase, an energy sensor of cells. Mitochondrially targeted derivatives of ubiquinone were found to interact with ROS. A mitochondrially targeted non-proton-pumping NADH dehydrogenase may influence both ROS and NAD+ levels. Chapter describes putative how mitochondria-targeted drugs and NADH dehydrogenase extend lifespan, perspectives of creating drugs with similar properties and their usage as senotherapeutic pills are discussed in the chapter.
Collapse
Affiliation(s)
- Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine.
| | - Dmytro Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Olha Strilbytska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Maria Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
9
|
Mohammed T, Bowe M, Plant A, Perez M, Alvarez CA, Mortensen EM. Metformin Use Is Associated With Lower Mortality in Veterans With Diabetes Hospitalized With Pneumonia. Clin Infect Dis 2023; 76:1237-1244. [PMID: 36575139 PMCID: PMC10319762 DOI: 10.1093/cid/ciac900] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Recent studies suggest that metformin use may be associated with improved infectious disease-related outcomes, whereas other papers suggest potentially worse outcomes in serious bacterial infections. Our purpose was to examine the association of prior outpatient prescription of metformin on 30- and 90-day mortality for older veterans with pre-existing diabetes hospitalized with pneumonia. METHODS We conducted a retrospective cohort study using national Department of Veterans Affairs data of patients ≥65 years with a prior history of diabetes who were hospitalized with pneumonia over a 10-year period (fiscal years 2002-2012.) For our primary analysis, we created a propensity score and matched metformin users to nonusers 1:1. RESULTS We identified 34 759 patients who met the inclusion criteria, 20.3% of whom were prescribed metformin. Unadjusted 30-day mortality was 9.6% for those who received metformin versus 13.9% in nonusers (P < .003), and 90-day mortality was 15.8% for those who received metformin versus 23.0% for nonusers (P < .0001). For the propensity score model, we matched 6899 metformin users to 6899 nonusers. After propensity matching, both 30-day (relative risk [RR]: .86; 95% confidence interval [CI]: .78-.95) and 90-day (RR: .85; 95% CI: .79-.92) mortality was significantly lower for metformin users. CONCLUSIONS Prior receipt of metformin was associated with significantly lower mortality after adjusting for potential confounders. Additional research is needed to examine the safety and potential benefits of metformin use in patients with respiratory infections.
Collapse
Affiliation(s)
- Turab Mohammed
- Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Michael Bowe
- Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Alexandria Plant
- Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Mario Perez
- Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Carlos A Alvarez
- Department of Medicine, VA North Texas Health Care System, Dallas, Texas, USA
- Department of Medicine, Texas Tech University Health Sciences Centre, Jerry H. Hodge School of Pharmacy, Dallas, Texas, USA
| | - Eric M Mortensen
- Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
- Department of Medicine, VA North Texas Health Care System, Dallas, Texas, USA
| |
Collapse
|
10
|
Liu J, Zhang M, Deng D, Zhu X. The function, mechanisms, and clinical applications of metformin: potential drug, unlimited potentials. Arch Pharm Res 2023; 46:389-407. [PMID: 36964307 DOI: 10.1007/s12272-023-01445-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 03/08/2023] [Indexed: 03/26/2023]
Abstract
Metformin has been used clinically for more than 60 years. As time goes by, more and more miraculous effects of metformin beyond the clinic have been discovered and discussed. In addition to the clinically approved hypoglycemic effect, it also has a positive metabolic regulation effect on the human body that cannot be ignored. Such as anti-cancer, anti-aging, brain repair, cardiovascular protection, gastrointestinal regulation, hair growth and inhibition of thyroid nodules, and other nonclinical effects. Metformin affects almost the entire body in the situation taking it over a long period, and the preventive effects of metformin in addition to treating diabetes are also beginning to be recommended in some guidelines. This review is mainly composed of four parts: the development history of metformin, the progress of clinical efficacy, the nonclinical efficacy of metformin, and the consideration and prospect of its application.
Collapse
Affiliation(s)
- Jianhong Liu
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Ming Zhang
- Department of Physical Medicine and Rehabilitation, Zibo Central Hospital, Zibo, China
| | - Dan Deng
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China.
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China.
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China.
| |
Collapse
|
11
|
Simpson FR, Justice JN, Pilla SJ, Kritchevsky SB, Boyko EJ, Munshi MN, Ferris CK, Espeland MA. An Examination of Whether Diabetes Control and Treatments Are Associated With Change in Frailty Index Across 8 Years: An Ancillary Exploratory Study From the Action for Health in Diabetes (Look AHEAD) Trial. Diabetes Care 2023; 46:519-525. [PMID: 36542537 PMCID: PMC10020016 DOI: 10.2337/dc22-1728] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/27/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The aim of this study was to describe cross-sectional and longitudinal associations between glycated hemoglobin (HbA1c) levels and strategies to control type 2 diabetes with baseline levels and 8-year changes in a deficit accumulation frailty index (FI), a commonly used marker of biological aging. RESEARCH DESIGN AND METHODS We conducted exploratory analyses from 4,169 participants, aged 45-76 years, who were followed in the Action for Health in Diabetes (Look AHEAD) randomized controlled clinical trial, pooling data across intervention groups. We related baseline and 8-year levels of HbA1c with FI scores using analyses of variance and covariance. Associations between 8-year changes in FI and the use of diabetes medication classes and weight changes were assessed with control for HbA1c levels. Inverse probability weighting was used to assess bias associated with differential follow-up. RESULTS Baseline and average HbA1c levels over time of <7%, as compared with ≥8%, were associated with less increase in FI scores over 8 years (both P ≤ 0.002). After adjustment for HbA1c, use of metformin and weight loss >5% were independently associated with slower increases in frailty. CONCLUSIONS Lower HbA1c levels among individuals with diabetes are associated with slower biological aging as captured by a deficit accumulation FI. Strategies to control diabetes through weight loss or metformin use may also slow aging.
Collapse
Affiliation(s)
- Felicia R. Simpson
- Department of Mathematics, Winston-Salem State University, Winston-Salem, NC
| | - Jamie N. Justice
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, NC
| | - Scott J. Pilla
- Division of General Internal Medicine, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Stephen B. Kritchevsky
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, NC
| | - Edward J. Boyko
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Medha N. Munshi
- Joslin Geriatric Diabetes Program, Joslin Diabetes Center, Boston, MA
| | - Chloe K. Ferris
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Mark A. Espeland
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, NC
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC
| | | |
Collapse
|
12
|
Petrosyan AS, Rud' RS, Polyakov PP, Kade AK, Zanin SA. The Pathogenetic Basis of the Action of Bempedoic Acid. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2023. [DOI: 10.20996/1819-6446-2022-12-11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The modern cardiology has a wide range of medications which affect various pathogenetic links of atherosclerosis, but even the best of them still obtain disadvantages causing intolerance and medicine discontinuation. The development of new hypolipidemic medications will allow not only to introduce alternative therapies into the cardiology practice, but also to completely execute the strategy of residual risk reduction by utilizing rational combinations of medications. One of such alternatives could be bempedoic acid, which can have a positive effect on a number of endpoints as the results of third phase trials have shown. These effects are also confirmed in Mendelian randomization studies. The mechanism of action of bempedoic acid is presumably associated with inhibition of the activity of ATP citrate lyase – the enzyme responsible for the breakdown of citrate into acetyl-CoA and oxaloacetate. Acetyl-CoA, in turn, is used by the cell to synthesize cholesterol and fatty acids. Thus, bempedoic acid affects in the same metabolic pathway as statins, but at an earlier stage. According to this, it is possible that medications of these classes will have similar side effects and pleiotropic effects associated with modulation of the mevalonic pathway, such as prenylation regulatory proteins (small GTPases) or reduction of coenzyme Q synthesis. However, there are also some specific features of the pharmacodynamics and pharmacokinetics of bempedoic acid to be considered. In particular, once entered the body, it must be activated via esterification by very long-chain acyl-CoA synthetase-1. The enzyme isoform required for this process is expressed in a tissue-specific manner and, for example, is absent in skeletal myocytes. In addition, citrate, oxaloacetate, and acetyl-CoA are important regulators of many intracellular processes: metabolism, growth and proliferation, mechanotransduction, posttranslational modifications of histones and other proteins. The levels of all three substances are altered by bempedoic acid, although no firm conclusions about the effects of these changes can be drawn at this time. The mentioned features probably have a significant impact on the clinical profile of bempedoic acid and underlie the differences from statins already observed in third phase trials, including, for example, a reduced risk of the onset or worsening of diabetes mellitus while taking bempedoic acid.
Collapse
Affiliation(s)
| | - R. S. Rud'
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | | | | |
Collapse
|
13
|
Abdelhafiz AH. Effects of hypoglycaemic therapy on frailty: a multi-dimensional perspective. Expert Rev Endocrinol Metab 2023; 18:53-65. [PMID: 36650694 DOI: 10.1080/17446651.2023.2168644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
INTRODUCTION The prevalence of diabetes is increasing in older people. With increasing age, frailty emerges as a new complication leading to disability. Frailty does not only include physical dysfunction but also involves negative impact on cognition and mood. Triad of impairments (TOI) is a new concept that includes physical frailty, dementia and depression to reflect the wider spectrum of frailty. AREAS COVERED Little is known about effects of hypoglycaemic agents on frailty syndrome. A literature search was performed on studies, which reported effects of hypoglycaemic agents on the component of the TOI. EXPERT OPINION It appears that most hypoglycaemic agents have some effects on frailty, although the results of clinical studies are inconsistent. Metformin seems to have a consistent and a positive effect on physical frailty. Its effects on cognitive function, however, are inconclusive but tend to be positive. Metformin appeared to improve depressive symptoms. Other agents such as incretins, thiazolidinediones, and sodium glucose transporter-2 inhibitors have some positive effects on cognition and depression. Sulfonylureas, glinides, or insulin have either negative or neutral effects on TOI components. The negative effects of insulin could be partially explained by the negative psychological factors and the frequent episodes of hypoglycemia associated with such therapy.
Collapse
Affiliation(s)
- Ahmed H Abdelhafiz
- Department of Geriatric Medicine, Rotherham General Hospital, Moorgate Road, Rotherham, UK
| |
Collapse
|
14
|
Wong PF, Dharmani M, Ramasamy TS. Senotherapeutics for mesenchymal stem cell senescence and rejuvenation. Drug Discov Today 2023; 28:103424. [PMID: 36332835 DOI: 10.1016/j.drudis.2022.103424] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/04/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Mesenchymal stem cells (MSCs) are susceptible to replicative senescence and senescence-associated functional decline, which hampers their use in regenerative medicine. Senotherapeutics are drugs that target cellular senescence through senolytic and senomorphic functions to induce apoptosis and suppress chronic inflammation caused by the senescence-associated secreted phenotype (SASP), respectively. Therefore, senotherapeutics could delay aging-associated degeneration. They could also be used to eliminate senescent MSCs during in vitro expansion or bioprocessing for transplantation. In this review, we discuss the role of senotherapeutics in MSC senescence, rejuvenation, and transplantation, with examples of some tested compounds in vitro. The prospects, challenges, and the way forward in clinical applications of senotherapeutics in cell-based therapeutics are also discussed.
Collapse
Affiliation(s)
- Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Murugan Dharmani
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Thamil Selvee Ramasamy
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603 Wilayah Persekutuan Kuala Lumpur, Malaysia.
| |
Collapse
|
15
|
Powell M, Clark C, Alyakin A, Vogelstein JT, Hart B. Exploration of Residual Confounding in Analyses of Associations of Metformin Use and Outcomes in Adults With Type 2 Diabetes. JAMA Netw Open 2022; 5:e2241505. [PMID: 36367726 PMCID: PMC9652760 DOI: 10.1001/jamanetworkopen.2022.41505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
IMPORTANCE Metformin is often used as a first-line therapy for type 2 diabetes; however, frequent discontinuation with reduced kidney function and increased disease severity indicates that a comparison with any other group (eg, nonusers or insulin users) must address significant residual confounding concerns. OBJECTIVES To examine the potential for residual confounding in a commonly used observational study design applied to metformin and to propose a more robust study design for future observational studies of metformin. DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study with a prevalent user design was conducted using an administrative claims database for Medicare Advantage beneficiaries in the US. Participants were categorized into 2 distinct cohorts: 404 458 individuals with type 2 diabetes and 81 791 individuals with prediabetes. Clinical history was observed in 2018, and end points were observed in 2019. Statistical analyses were conducted between May and December 2021. EXPOSURES Prevalent use (recent prescription and history of use on at least 90 of the preceding 365 days) of metformin or insulin but not both at the start of the observation period. MAIN OUTCOMES AND MEASURES Total inpatient admission days in 2019 and total medical spending (excluding prescription drugs) in 2019. Each of these measures was treated as a binary outcome (0 vs >0 inpatient days and top 10% vs bottom 90% of medical spending). RESULTS The study included 404 458 adults with type 2 diabetes (mean [SD] age, 74.5 [7.5] years; 52.7% female). A strong metformin effect estimate was associated with reduced inpatient admissions (odds ratio, 0.60; 95% CI, 0.58-0.62) and reduced medical expenditures (odds ratio, 0.57; 95% CI, 0.55-0.60). However, implementation of additional robust design features (negative control outcomes and a complementary cohort) revealed that the estimated beneficial effect was attributable to residual confounding associated with individuals' overall health, not metformin itself. CONCLUSIONS AND RELEVANCE These findings suggest that common observational study designs for studies of metformin in a type 2 diabetes population are at risk for consequential residual confounding. By performing 2 additional validation checks, the study design proposed here exposes residual confounding that nullifies the initially favorable claim derived from a common study design.
Collapse
Affiliation(s)
- Mike Powell
- Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
| | | | - Anton Alyakin
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, Maryland
| | - Joshua T. Vogelstein
- Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health at Johns Hopkins University, Baltimore, Maryland
| | | |
Collapse
|
16
|
Therapeutic Antiaging Strategies. Biomedicines 2022; 10:biomedicines10102515. [PMID: 36289777 PMCID: PMC9599338 DOI: 10.3390/biomedicines10102515] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022] Open
Abstract
Aging constitutes progressive physiological changes in an organism. These changes alter the normal biological functions, such as the ability to manage metabolic stress, and eventually lead to cellular senescence. The process itself is characterized by nine hallmarks: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. These hallmarks are risk factors for pathologies, such as cardiovascular diseases, neurodegenerative diseases, and cancer. Emerging evidence has been focused on examining the genetic pathways and biological processes in organisms surrounding these nine hallmarks. From here, the therapeutic approaches can be addressed in hopes of slowing the progression of aging. In this review, data have been collected on the hallmarks and their relative contributions to aging and supplemented with in vitro and in vivo antiaging research experiments. It is the intention of this article to highlight the most important antiaging strategies that researchers have proposed, including preventive measures, systemic therapeutic agents, and invasive procedures, that will promote healthy aging and increase human life expectancy with decreased side effects.
Collapse
|
17
|
Cao X, Zhang J, Ma C, Li X, Chia-Ling K, Levine ME, Hu G, Allore H, Chen X, Wu X, Liu Z. Life course traumas and cardiovascular disease-the mediating role of accelerated aging. Ann N Y Acad Sci 2022; 1515:208-218. [PMID: 35725988 PMCID: PMC10145586 DOI: 10.1111/nyas.14843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The complex relationship between life course traumas and cardiovascular disease (CVD) and the underpinning pathways are poorly understood. We aimed to (1) examine the associations of three separate assessments including childhood, adulthood (after 16 years of age), and lifetime traumas (childhood or adulthood) with CVD; (2) examine the associations between diverse life course traumatic profiles and CVD; and (3) examine the extent to which PhenoAge, a well-developed phenotypic aging measure, mediated these associations. Using data from 104,939 participants from the UK Biobank, we demonstrate that subgroups of childhood, adulthood, and lifetime traumas were associated with CVD. Furthermore, life course traumatic profiles were significantly associated with CVD. For instance, compared with the subgroup experiencing nonsevere traumas across life course, those who experienced nonsevere childhood and severe adulthood traumas, severe childhood and nonsevere adulthood traumas, or severe traumas across life course had significantly higher odds of CVD (odds ratios: 1.07-1.33). Formal mediation analyses suggested that phenotypic aging partially mediated the above associations. These findings suggest a potential pathway from life course traumas to CVD through phenotypic aging, and underscore the importance of policy programs targeting traumas over the life course in ameliorating inequalities in cardiovascular health.
Collapse
Affiliation(s)
- Xingqi Cao
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, Zhejiang University School of Medicine, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jingyun Zhang
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, Zhejiang University School of Medicine, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Chao Ma
- School of Economics and Management, Southeast University, Nanjing, China
| | - Xueqin Li
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, Zhejiang University School of Medicine, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Kuo Chia-Ling
- Department of Public Health Sciences, Connecticut Convergence Institute for Translation in Regenerative Engineering, Institute for Systems Genomics, University of Connecticut Health, Farmington, Connecticut, USA
| | - Morgan E. Levine
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Guoqing Hu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Heather Allore
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Xi Chen
- Department of Health Policy and Management, Yale School of Public Health, New Haven, Connecticut, USA
- Department of Economics, Yale University, New Haven, Connecticut, USA
| | - Xifeng Wu
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, Zhejiang University School of Medicine, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zuyun Liu
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, Zhejiang University School of Medicine, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Zhao JL, Qiao XH, Mao JH, Liu F, Fu HD. The interaction between cellular senescence and chronic kidney disease as a therapeutic opportunity. Front Pharmacol 2022; 13:974361. [PMID: 36091755 PMCID: PMC9459105 DOI: 10.3389/fphar.2022.974361] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/03/2022] [Indexed: 01/10/2023] Open
Abstract
Chronic kidney disease (CKD) is an increasingly serious public health problem in the world, but the effective therapeutic approach is quite limited at present. Cellular senescence is characterized by the irreversible cell cycle arrest, senescence-associated secretory phenotype (SASP) and senescent cell anti-apoptotic pathways (SCAPs). Renal senescence shares many similarities with CKD, including etiology, mechanism, pathological change, phenotype and outcome, however, it is difficult to judge whether renal senescence is a trigger or a consequence of CKD, since there is a complex correlation between them. A variety of cellular signaling mechanisms are involved in their interactive association, which provides new potential targets for the intervention of CKD, and then extends the researches on senotherapy. Our review summarizes the common features of renal senescence and CKD, the interaction between them, the strategies of senotherapy, and the open questions for future research.
Collapse
Affiliation(s)
- Jing-Li Zhao
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiao-Hui Qiao
- Department of Pediatric Internal Medicine, Ningbo Women and Children’s Hospital, Ningbo, China
| | - Jian-Hua Mao
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- *Correspondence: Jian-Hua Mao,
| | - Fei Liu
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hai-Dong Fu
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
19
|
Sanz-Cánovas J, López-Sampalo A, Cobos-Palacios L, Ricci M, Hernández-Negrín H, Mancebo-Sevilla JJ, Álvarez-Recio E, López-Carmona MD, Pérez-Belmonte LM, Gómez-Huelgas R, Bernal-López MR. Management of Type 2 Diabetes Mellitus in Elderly Patients with Frailty and/or Sarcopenia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148677. [PMID: 35886528 PMCID: PMC9318510 DOI: 10.3390/ijerph19148677] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/04/2023]
Abstract
The life expectancy of the population is increasing worldwide due to improvements in the prevention, diagnosis, and treatment of diseases. This favors a higher prevalence of type 2 diabetes mellitus (T2DM) in the elderly. Sarcopenia and frailty are also frequently present in aging. These three entities share common mechanisms such as insulin resistance, chronic inflammation, and mitochondrial dysfunction. The coexistence of these situations worsens the prognosis of elderly patients. In this paper, we review the main measures for the prevention and management of sarcopenia and/or frailty in elderly patients with T2DM.
Collapse
Affiliation(s)
- Jaime Sanz-Cánovas
- Unidad de Gestión Clínica de Medicina Interna, Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), 29010 Málaga, Spain; (J.S.-C.); (A.L.-S.); (L.C.-P.); (M.R.); (H.H.-N.); (J.J.M.-S.); (E.Á.-R.); (M.D.L.-C.); (L.M.P.-B.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), 29590 Málaga, Spain
| | - Almudena López-Sampalo
- Unidad de Gestión Clínica de Medicina Interna, Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), 29010 Málaga, Spain; (J.S.-C.); (A.L.-S.); (L.C.-P.); (M.R.); (H.H.-N.); (J.J.M.-S.); (E.Á.-R.); (M.D.L.-C.); (L.M.P.-B.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), 29590 Málaga, Spain
| | - Lidia Cobos-Palacios
- Unidad de Gestión Clínica de Medicina Interna, Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), 29010 Málaga, Spain; (J.S.-C.); (A.L.-S.); (L.C.-P.); (M.R.); (H.H.-N.); (J.J.M.-S.); (E.Á.-R.); (M.D.L.-C.); (L.M.P.-B.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), 29590 Málaga, Spain
| | - Michele Ricci
- Unidad de Gestión Clínica de Medicina Interna, Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), 29010 Málaga, Spain; (J.S.-C.); (A.L.-S.); (L.C.-P.); (M.R.); (H.H.-N.); (J.J.M.-S.); (E.Á.-R.); (M.D.L.-C.); (L.M.P.-B.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), 29590 Málaga, Spain
| | - Halbert Hernández-Negrín
- Unidad de Gestión Clínica de Medicina Interna, Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), 29010 Málaga, Spain; (J.S.-C.); (A.L.-S.); (L.C.-P.); (M.R.); (H.H.-N.); (J.J.M.-S.); (E.Á.-R.); (M.D.L.-C.); (L.M.P.-B.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), 29590 Málaga, Spain
| | - Juan José Mancebo-Sevilla
- Unidad de Gestión Clínica de Medicina Interna, Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), 29010 Málaga, Spain; (J.S.-C.); (A.L.-S.); (L.C.-P.); (M.R.); (H.H.-N.); (J.J.M.-S.); (E.Á.-R.); (M.D.L.-C.); (L.M.P.-B.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), 29590 Málaga, Spain
| | - Elena Álvarez-Recio
- Unidad de Gestión Clínica de Medicina Interna, Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), 29010 Málaga, Spain; (J.S.-C.); (A.L.-S.); (L.C.-P.); (M.R.); (H.H.-N.); (J.J.M.-S.); (E.Á.-R.); (M.D.L.-C.); (L.M.P.-B.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), 29590 Málaga, Spain
| | - María Dolores López-Carmona
- Unidad de Gestión Clínica de Medicina Interna, Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), 29010 Málaga, Spain; (J.S.-C.); (A.L.-S.); (L.C.-P.); (M.R.); (H.H.-N.); (J.J.M.-S.); (E.Á.-R.); (M.D.L.-C.); (L.M.P.-B.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), 29590 Málaga, Spain
| | - Luis Miguel Pérez-Belmonte
- Unidad de Gestión Clínica de Medicina Interna, Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), 29010 Málaga, Spain; (J.S.-C.); (A.L.-S.); (L.C.-P.); (M.R.); (H.H.-N.); (J.J.M.-S.); (E.Á.-R.); (M.D.L.-C.); (L.M.P.-B.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), 29590 Málaga, Spain
| | - Ricardo Gómez-Huelgas
- Unidad de Gestión Clínica de Medicina Interna, Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), 29010 Málaga, Spain; (J.S.-C.); (A.L.-S.); (L.C.-P.); (M.R.); (H.H.-N.); (J.J.M.-S.); (E.Á.-R.); (M.D.L.-C.); (L.M.P.-B.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), 29590 Málaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (R.G.-H.); (M.R.B.-L.); Tel.: +34-951291169 (R.G.-H.); +34-951290346 (M.R.B.-L.)
| | - Maria Rosa Bernal-López
- Unidad de Gestión Clínica de Medicina Interna, Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), 29010 Málaga, Spain; (J.S.-C.); (A.L.-S.); (L.C.-P.); (M.R.); (H.H.-N.); (J.J.M.-S.); (E.Á.-R.); (M.D.L.-C.); (L.M.P.-B.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), 29590 Málaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (R.G.-H.); (M.R.B.-L.); Tel.: +34-951291169 (R.G.-H.); +34-951290346 (M.R.B.-L.)
| |
Collapse
|
20
|
Thomas C, Wurzer L, Malle E, Ristow M, Madreiter-Sokolowski CT. Modulation of Reactive Oxygen Species Homeostasis as a Pleiotropic Effect of Commonly Used Drugs. FRONTIERS IN AGING 2022; 3:905261. [PMID: 35821802 PMCID: PMC9261327 DOI: 10.3389/fragi.2022.905261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/18/2022] [Indexed: 01/17/2023]
Abstract
Age-associated diseases represent a growing burden for global health systems in our aging society. Consequently, we urgently need innovative strategies to counteract these pathological disturbances. Overwhelming generation of reactive oxygen species (ROS) is associated with age-related damage, leading to cellular dysfunction and, ultimately, diseases. However, low-dose ROS act as crucial signaling molecules and inducers of a vaccination-like response to boost antioxidant defense mechanisms, known as mitohormesis. Consequently, modulation of ROS homeostasis by nutrition, exercise, or pharmacological interventions is critical in aging. Numerous nutrients and approved drugs exhibit pleiotropic effects on ROS homeostasis. In the current review, we provide an overview of drugs affecting ROS generation and ROS detoxification and evaluate the potential of these effects to counteract the development and progression of age-related diseases. In case of inflammation-related dysfunctions, cardiovascular- and neurodegenerative diseases, it might be essential to strengthen antioxidant defense mechanisms in advance by low ROS level rises to boost the individual ROS defense mechanisms. In contrast, induction of overwhelming ROS production might be helpful to fight pathogens and kill cancer cells. While we outline the potential of ROS manipulation to counteract age-related dysfunction and diseases, we also raise the question about the proper intervention time and dosage.
Collapse
Affiliation(s)
- Carolin Thomas
- Laboratory of Energy Metabolism Institute of Translational Medicine Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Lia Wurzer
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Ernst Malle
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Michael Ristow
- Laboratory of Energy Metabolism Institute of Translational Medicine Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | | |
Collapse
|
21
|
Taheri R, Kazerouni F, Mirfakhraei R, Kalbasi S, Shahrokhi SZ, Rahimipour A. The influence of SLC22A3 rs543159 and rs1317652 genetic variants on metformin therapeutic efficacy in newly diagnosed patients with type 2 diabetes mellitus: 25 weeks follow-up study. Gene 2022; 823:146382. [PMID: 35240257 DOI: 10.1016/j.gene.2022.146382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/18/2022] [Accepted: 02/24/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Among anti-diabetic medications, metformin has been proven to be the preferred initial pharmacologic agent for type 2 diabetes mellitus (T2DM) treatment. Despite its safety and efficacy, the response to metformin varies between individuals. Genetic variations, especially within genes involved in pharmacokinetics and pharmacodynamics of metformin (e.g SLC22A3), have been suggested to be responsible for the observed inter-individual differences. By considering the undeniable role of organic cation transporter 3 in hepatic uptake of metformin, this study was aimed to investigate the association of rs543159 and rs1317652 variants in SLC22A3 gene with response to metformin monotherapy in newly diagnosed patients with T2DM. METHODS The study included 200 T2DM patients who received metformin monotherapy for 25 weeks. The patients were classified into 2 groups according to their HbA1c values: the responders (reduction in HbA1c levels by at least 1% after 25 weeks treatment with metformin) and non-responders (less than 1% reduction in HbA1c levels after 25 weeks treatment with metformin). We used tetra ARMS-PCR method to determine genotypes of the target variants. RESULTS For the rs543159, CA and AA genotypes were more frequent in responders as compared to non-responders (OR = 2.48; 95% CI = 1.28-4.78, P-value = 0.0057) under the dominant model. In case of rs1317652 CC and CT genotypes were more frequent in metformin responders as compared to non-responder group (OR = 2.49; 95% CI = 1.32-4.70, P-value = 0.0043) under the dominant model. Parameters such as fasting blood sugar (FBS), HbA1c, and total cholesterol (TC) levels were significantly lower in the responder group after 25 weeks of metformin monotherapy. Moreover, according to the result of multiple linear regression rs543159 and base line HbA1c values are significantly associated with response to metformin monotherapy. CONCLUSION Our results suggested that rs543159 and rs1317652 in SLC22A3 gene might be associated with variability in response to metformin therapy in T2DM patients.
Collapse
Affiliation(s)
- Rana Taheri
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faranak Kazerouni
- Department of Medical Lab Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Mirfakhraei
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Kalbasi
- Department of Clinical Endocrinology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Zahra Shahrokhi
- Department of Biochemistry, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ali Rahimipour
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Ferri-Guerra J, Aparicio-Ugarriza R, Mohammed YN, Ysea O, Florez H, Ruiz JG. Propensity Score Matching to Determine the Impact of Metformin on All-Cause Mortality in Older Veterans with Diabetes Mellitus. South Med J 2022; 115:208-213. [PMID: 35237840 DOI: 10.14423/smj.0000000000001363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVES To determine whether metformin is associated with reduced all-cause mortality in older adults with diabetes mellitus as compared with insulin or sulfonylureas, and to evaluate whether the metformin cumulative exposure followed a dose-response relation. METHODS Retrospective cohort study with propensity score matching in veterans 65 years old and older with diabetes mellitus. Patients who had new prescriptions for metformin were matched for demographic and clinical factors with patients receiving new prescriptions for insulin or sulfonylureas using propensity score matching. All-cause mortality risks were compared between metformin and insulin/sulfonylureas using multivariate Cox regression models. A similar approach was used for tertiles of cumulative metformin doses. RESULTS A sample of 174 veterans taking metformin was matched with 174 who took insulin/sulfonylureas. Most patients were men (97.4%), White (80.45%), and their mean ± standard deviation age was 69.15 ± 7.65 years. Metformin exposure was associated with reduced risk of all-cause mortality (hazard ratio 0.57, 95% confidence interval 0.39-0.84, P = 0.005). The upper tertile of cumulative metformin exposure was associated with lower all-cause mortality in the fully adjusted model (hazard ratio 0.28, 95% confidence interval 0.10-0.77, P = 0.013). CONCLUSIONS This propensity matching study shows that metformin exposure is associated with a lower risk of all-cause mortality. Higher metformin cumulative exposure seems to reduce the risk of all-cause mortality in older veterans with diabetes mellitus.
Collapse
Affiliation(s)
- Juliana Ferri-Guerra
- From the Miami VA Healthcare System Geriatric Research, Education, and Clinical Center (GRECC), Miami, Florida
| | - Raquel Aparicio-Ugarriza
- From the Miami VA Healthcare System Geriatric Research, Education, and Clinical Center (GRECC), Miami, Florida
| | - Y Nadeem Mohammed
- From the Miami VA Healthcare System Geriatric Research, Education, and Clinical Center (GRECC), Miami, Florida
| | - Otoniel Ysea
- From the Miami VA Healthcare System Geriatric Research, Education, and Clinical Center (GRECC), Miami, Florida
| | - Hermes Florez
- From the Miami VA Healthcare System Geriatric Research, Education, and Clinical Center (GRECC), Miami, Florida
| | - Jorge G Ruiz
- From the Miami VA Healthcare System Geriatric Research, Education, and Clinical Center (GRECC), Miami, Florida
| |
Collapse
|
23
|
Cao X, Chen C, He L, Zheng Z, Zhang J, Hoogendijk EO, Liu X, Li S, Wang X, Zhu Y, Liu Z. Development and Validation of a New Simple Functional Score in the Older Chinese Population. Front Public Health 2022; 10:813323. [PMID: 35284388 PMCID: PMC8907530 DOI: 10.3389/fpubh.2022.813323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/19/2022] [Indexed: 11/30/2022] Open
Abstract
Background Existing aging metrics incorporating cognitive and physical function are often not feasible for application in research and clinical practice. Therefore, this study aimed to develop and validate a new simple functional score based on self-reported cognitive and physical function in the older Chinese population. Methods The development sample included 3,929 older adults aged 60-95 years from the China Health and Retirement Longitudinal Study (CHARLS). The validation sample included 1,345 older adults aged 60-87 years from the Rugao Longitudinal Aging study (RLAS). Logistic regression models and receiver operating characteristic curves were used to examine the associations of the new functional score with all-cause mortality risk. Results Six items were selected to construct the new functional score in CHARLS. This functional score was associated with all-cause mortality risk, with an adjusted odds ratio of 1.10 (95% confidence interval = 1.07, 1.13). This functional score presented additional predictive utility beyond age and sex, as demonstrated by the significantly increased C-statistic, integrated discrimination improvement (IDI), and continuous net reclassification improvement (NRI) (all P < 0.001). Furthermore, this functional score was further validated in RLAS, such that adding the new functional score to a model of age and sex improved all-cause mortality risk discrimination (IDI = 0.036, P < 0.001; NRI = 0.485, P < 0.001). To facilitate the quick screening of the older population with deteriorations in cognitive and physical function, we introduced a publicly available online tool designed for this new functional score. Conclusions A new functional score based on six self-reported items was developed and validated in the older Chinese population, and was demonstrated to be a simple and practical tool to assess functional deterioration, showing good feasibility, and performance.
Collapse
Affiliation(s)
- Xingqi Cao
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Chen
- National Center for Acquired Immunodeficiency Syndrome/Sexually Transmitted Disease (AIDS/STD) Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liu He
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhoutao Zheng
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingyun Zhang
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Emiel O. Hoogendijk
- Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC-Location VU University Medical Center, Amsterdam, Netherlands
| | - Xiaoting Liu
- School of Public Affairs, Zhejiang University, Hangzhou, China
| | - Shujuan Li
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiaofeng Wang
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Yimin Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Zuyun Liu
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
24
|
Cheng FF, Liu YL, Du J, Lin JT. Metformin's Mechanisms in Attenuating Hallmarks of Aging and Age-Related Disease. Aging Dis 2022; 13:970-986. [PMID: 35855344 PMCID: PMC9286921 DOI: 10.14336/ad.2021.1213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/13/2021] [Indexed: 11/01/2022] Open
Affiliation(s)
- Fang-Fang Cheng
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang 453003, China.
| | - Yan-Li Liu
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang 453003, China.
| | - Jang Du
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang 453003, China.
| | - Jun-Tang Lin
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang 453003, China.
- Correspondence should be addressed to: Dr. Jun-Tang Lin, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
25
|
Kaushik S, Tasset I, Arias E, Pampliega O, Wong E, Martinez-Vicente M, Cuervo AM. Autophagy and the hallmarks of aging. Ageing Res Rev 2021; 72:101468. [PMID: 34563704 DOI: 10.1016/j.arr.2021.101468] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022]
Abstract
Autophagy, an essential cellular process that mediates degradation of proteins and organelles in lysosomes, has been tightly linked to cellular quality control for its role as part of the proteostasis network. The current interest in identifying the cellular and molecular determinants of aging, has highlighted the important contribution of malfunctioning of autophagy with age to the loss of proteostasis that characterizes all old organisms. However, the diversity of cellular functions of the different types of autophagy and the often reciprocal interactions of autophagy with other determinants of aging, is placing autophagy at the center of the aging process. In this work, we summarize evidence for the contribution of autophagy to health- and lifespan and provide examples of the bidirectional interplay between autophagic pathways and several of the so-called hallmarks of aging. This central role of autophagy in aging, and the dependence on autophagy of many geroprotective interventions, has motivated a search for direct modulators of autophagy that could be used to slow aging and extend healthspan. Here, we review some of those ongoing therapeutic efforts and comment on the potential of targeting autophagy in aging.
Collapse
|
26
|
Calabrese EJ, Agathokleous E, Kapoor R, Dhawan G, Kozumbo WJ, Calabrese V. Metformin-enhances resilience via hormesis. Ageing Res Rev 2021; 71:101418. [PMID: 34365027 DOI: 10.1016/j.arr.2021.101418] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/23/2021] [Accepted: 08/02/2021] [Indexed: 02/06/2023]
Abstract
The present paper demonstrates that metformin (MF) induced a broad spectrum of hormetic biphasic dose responses in a wide range of experimental studies, affecting multiple organ systems, cell types, and endpoints enhancing resilience to chemical stresses in preconditioning and co-current exposure protocols. Detailed mechanistic evaluations indicate that MF-induced hormetic-adaptive responses are mediated often via the activation of adenosine monophosphate-activated kinase (AMPK) protein and its subsequent upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2). Hormesis-induced protective responses by MF are largely mediated via a vast and highly integrated anti-inflammatory molecular network that enhances longevity and delays the onset and slows the progression of neurodegenerative and other chronic diseases.
Collapse
|
27
|
Shoshan-Barmatz V, Anand U, Nahon-Crystal E, Di Carlo M, Shteinfer-Kuzmine A. Adverse Effects of Metformin From Diabetes to COVID-19, Cancer, Neurodegenerative Diseases, and Aging: Is VDAC1 a Common Target? Front Physiol 2021; 12:730048. [PMID: 34671273 PMCID: PMC8521008 DOI: 10.3389/fphys.2021.730048] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Metformin has been used for treating diabetes mellitus since the late 1950s. In addition to its antihyperglycemic activity, it was shown to be a potential drug candidate for treating a range of other diseases that include various cancers, cardiovascular diseases, diabetic kidney disease, neurodegenerative diseases, renal diseases, obesity, inflammation, COVID-19 in diabetic patients, and aging. In this review, we focus on the important aspects of mitochondrial dysfunction in energy metabolism and cell death with their gatekeeper VDAC1 (voltage-dependent anion channel 1) as a possible metformin target, and summarize metformin's effects in several diseases and gut microbiota. We question how the same drug can act on diseases with opposite characteristics, such as increasing apoptotic cell death in cancer, while inhibiting it in neurodegenerative diseases. Interestingly, metformin's adverse effects in many diseases all show VDAC1 involvement, suggesting that it is a common factor in metformin-affecting diseases. The findings that metformin has an opposite effect on various diseases are consistent with the fact that VDAC1 controls cell life and death, supporting the idea that it is a target for metformin.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | | | - Marta Di Carlo
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Anna Shteinfer-Kuzmine
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
28
|
Rescuing Immunosenescence via Non-Specific Vaccination. IMMUNO 2021. [DOI: 10.3390/immuno1030015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Discrepancies in lifespan and healthy-life span are predisposing populations to an increasing burden of age-related disease. Accumulating evidence implicates aging of the immune system, termed immunosenescence, in the pathogenesis of multiple age-related diseases. Moreover, immune dysregulation in the elderly increases vulnerability to infection and dampens pathogen-specific immune responses following vaccination. The health challenges manifesting from these age related deficits have been dramatically exemplified by the current SARS-CoV-2 pandemic. Approaches to either attenuate or reverse functional markers of immunosenescence are therefore urgently needed. Recent evidence suggests systemic immunomodulation via non-specific vaccination with live-attenuated vaccines may be a promising avenue to at least reduce aged population vulnerability to viral infection. This short review describes current understanding of immunosenescence, the historical and mechanistic basis of vaccine-mediated immunomodulation, and the outstanding questions and challenges required for broad adoption.
Collapse
|
29
|
Autophagy Modulators in Cancer Therapy. Int J Mol Sci 2021; 22:ijms22115804. [PMID: 34071600 PMCID: PMC8199315 DOI: 10.3390/ijms22115804] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a process of self-degradation that plays an important role in removing damaged proteins, organelles or cellular fragments from the cell. Under stressful conditions such as hypoxia, nutrient deficiency or chemotherapy, this process can also become the strategy for cell survival. Autophagy can be nonselective or selective in removing specific organelles, ribosomes, and protein aggregates, although the complete mechanisms that regulate aspects of selective autophagy are not fully understood. This review summarizes the most recent research into understanding the different types and mechanisms of autophagy. The relationship between apoptosis and autophagy on the level of molecular regulation of the expression of selected proteins such as p53, Bcl-2/Beclin 1, p62, Atg proteins, and caspases was discussed. Intensive studies have revealed a whole range of novel compounds with an anticancer activity that inhibit or activate regulatory pathways involved in autophagy. We focused on the presentation of compounds strongly affecting the autophagy process, with particular emphasis on those that are undergoing clinical and preclinical cancer research. Moreover, the target points, adverse effects and therapeutic schemes of autophagy inhibitors and activators are presented.
Collapse
|
30
|
Pourpirali R, Mahmoudnezhad A, Oroojalian F, Zarghami N, Pilehvar Y. Prolonged proliferation and delayed senescence of the adipose-derived stem cells grown on the electrospun composite nanofiber co-encapsulated with TiO 2 nanoparticles and metformin-loaded mesoporous silica nanoparticles. Int J Pharm 2021; 604:120733. [PMID: 34044059 DOI: 10.1016/j.ijpharm.2021.120733] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
This study was aimed to investigate the effects of the Poly-ε-Caprolactone/Gelatin nanofibers (PCL/GEL NFs) co-encapsulated with TiO2 nanoparticles (nTiO2) and metformin-loaded mesoporous silica nanoparticles (MET@MSNs) on prolonging the in vitro expansion of human adipose-derived stem cells (hADSCs) without inducing cellular senescence and aging. FTIR, BET, FE-SEM, and TEM were applied to characterize the fabricated MET@MSNs and electrospun composite NFs. The presence of inorganic particles, nTiO2 and MSNs, in the scaffolds improved their mechanical properties and led to a more sustained release of MET with almost the lack of the initial burst release from nTiO2/MET@MSNs-loaded NFs. The enhanced adhesion, metabolic activity, and proliferation rate of the hADSCs grown on nTiO2/MET@MSNs-loaded NFs were demonstrated via FE-SEM images, MTT test and PicoGreen assay, respectively, over 28 days of culture. Furthermore, the irregular nanofibrillar structures and the impact of sustained release of MET led to a significant upregulation in the mRNA levels of autophagy (Atg-5, Atg-7, Atg-12, and Beclin-1) and stemness (Nanog3, Sox-2, and Oct-4) markers as well as a considerable down-regulation of p16INK4A senescence marker. Further, the upregulation of hTERT, enhanced activity of telomerase, and increased telomere length were more pronounced in the hADSCs cultured on nTiO2/MET@MSNs-loaded NFs as compared to other types of NFs. Overall, our findings demonstrated the potential of the fabricated nanocomposite platform for counteracting cellular senescence and achieving sufficient quantities of fresh hADSCs with preserved stemness for various stem cell-based regenerative medicine purposes.
Collapse
Affiliation(s)
- Raheleh Pourpirali
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Aydin Mahmoudnezhad
- Department of Medical Microbiology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Nosratollah Zarghami
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Younes Pilehvar
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
31
|
Blasimme A. The plasticity of ageing and the rediscovery of ground-state prevention. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2021; 43:67. [PMID: 33948779 PMCID: PMC8096726 DOI: 10.1007/s40656-021-00414-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 04/07/2021] [Indexed: 05/05/2023]
Abstract
In this paper, I present an emerging explanatory framework about ageing and care. In particular, I focus on how, in contrast to most classical accounts of ageing, biomedicine today construes the ageing process as a modifiable trajectory. This framing turns ageing from a stage of inexorable decline into the focus of preventive strategies, harnessing the functional plasticity of the ageing organism. I illustrate this shift by focusing on studies of the demographic dynamics in human population, observations of ageing as an intraspecifically heterogenous phenotype, and the experimental manipulation of longevity, in both model organisms and humans. I suggest that such an explanatory framework about ageing creates the epistemological conditions for the rise of a peculiar form of prevention that does not aim to address a specific condition. Rather it seeks to stall the age-related accumulation of molecular damage and functional deficits, boosting individual resilience against age-related decline. I call this preventive paradigm "ground-state prevention." While new, ground-state prevention bears conceptual resemblance to forms of medical wisdom prominent in classic Galenic medicine, as well as in the Renaissance period.
Collapse
Affiliation(s)
- Alessandro Blasimme
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland.
| |
Collapse
|
32
|
Kathuria D, Raul AD, Wanjari P, Bharatam PV. Biguanides: Species with versatile therapeutic applications. Eur J Med Chem 2021; 219:113378. [PMID: 33857729 DOI: 10.1016/j.ejmech.2021.113378] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022]
Abstract
Biguanides are compounds in which two guanidine moieties are fused to form a highly conjugated system. Biguanides are highly basic and hence they are available as salts mostly hydrochloride salts, these cationic species have been found to exhibit many therapeutic properties. This review covers the research and development carried out on biguanides and accounts the various therapeutic applications of drugs containing biguanide group-such as antimalarial, antidiabetic, antiviral, anticancer, antibacterial, antifungal, anti-tubercular, antifilarial, anti-HIV, as well as other biological activities. The aim of this review is to compile all the medicinal chemistry applications of this class of compounds so as to pave way for the accelerated efforts in finding the drug action mechanisms associated with this class of compounds. Importance has been given to the organic chemistry of these biguanide derivatives also.
Collapse
Affiliation(s)
- Deepika Kathuria
- University Center for Research and Development, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Akshay D Raul
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, 160 062, Punjab, India
| | - Pravin Wanjari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, 160 062, Punjab, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, 160 062, Punjab, India.
| |
Collapse
|
33
|
Sharma S, Nozohouri S, Vaidya B, Abbruscato T. Repurposing metformin to treat age-related neurodegenerative disorders and ischemic stroke. Life Sci 2021; 274:119343. [PMID: 33716063 DOI: 10.1016/j.lfs.2021.119343] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
Aging is a risk factor for major central nervous system (CNS) disorders. More specifically, aging can be inked to neurodegenerative diseases (NDs) because of its deteriorating impact on neurovascular unit (NVU). Metformin, a first line FDA-approved anti-diabetic drug, has gained increasing interest among researchers for its role in improving aging-related neurodegenerative disorders. Additionally, numerous studies have illustrated metformin's role in ischemic stroke, a cerebrovascular disorder in which the NVU becomes dysfunctional which can lead to permanent life-threatening disabilities. Considering metformin's beneficial preclinical actions on various disorders, and the drug's role in alleviating severity of these conditions through involvement in commonly characterized cellular pathways, we discuss the potential of metformin as a suitable drug candidate for repurposing in CNS disorders.
Collapse
Affiliation(s)
- Sejal Sharma
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Saeideh Nozohouri
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Bhuvaneshwar Vaidya
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Thomas Abbruscato
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA.
| |
Collapse
|
34
|
Drzewoski J, Hanefeld M. The Current and Potential Therapeutic Use of Metformin-The Good Old Drug. Pharmaceuticals (Basel) 2021; 14:122. [PMID: 33562458 PMCID: PMC7915435 DOI: 10.3390/ph14020122] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Metformin, one of the oldest oral antidiabetic agents and still recommended by almost all current guidelines as the first-line treatment for type 2 diabetes mellitus (T2DM), has become the medication with steadily increasing potential therapeutic indications. A broad spectrum of experimental and clinical studies showed that metformin has a pleiotropic activity and favorable effect in different pathological conditions, including prediabetes, type 1 diabetes mellitus (T1DM) and gestational diabetes mellitus (GDM). Moreover, there are numerous studies, meta-analyses and population studies indicating that metformin is safe and well tolerated and may be associated with cardioprotective and nephroprotective effect. Recently, it has also been reported in some studies, but not all, that metformin, besides improvement of glucose homeostasis, may possibly reduce the risk of cancer development, inhibit the incidence of neurodegenerative disease and prolong the lifespan. This paper presents some arguments supporting the initiation of metformin in patients with newly diagnosed T2DM, especially those without cardiovascular risk factors or without established cardiovascular disease or advanced kidney insufficiency at the time of new guidelines favoring new drugs with pleotropic effects complimentary to glucose control. Moreover, it focuses on the potential beneficial effects of metformin in patients with T2DM and coexisting chronic diseases.
Collapse
Affiliation(s)
- Józef Drzewoski
- Central Teaching Hospital of Medical University of Lodz, 92-213 Lodz, Poland
| | - Markolf Hanefeld
- Medical Clinic III, Department of Medicine Technical University Dresden, 01307 Dresden, Germany;
| |
Collapse
|
35
|
Chuan L, Zhang L, Fu H, Yang Y, Wang Q, Jiang X, Li Z, Ni K, Ding L. Metformin prevents brain injury after cardiopulmonary resuscitation by inhibiting the endoplasmic reticulum stress response and activating AMPK-mediated autophagy. Scott Med J 2021; 66:16-22. [PMID: 32990500 DOI: 10.1177/0036933020961543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND AIMS The neurological damage caused by cardiac arrest (CA) can seriously affect quality of life. We investigated the effect of metformin pretreatment on brain injury and survival in a rat CA/cardiopulmonary resuscitation (CPR) model. METHODS AND RESULTS After 14 days of pretreatment with metformin, rats underwent 9 minutes of asphyxia CA/CPR. Survival was evaluated 7 days after restoration of spontaneous circulation; neurological deficit scale (NDS) score was evaluated at days 1, 3, and 7. Proteins related to the endoplasmic reticulum (ER) stress response and autophagy were measured using immunoblotting. Seven-day survival was significantly improved and NDS score was significantly improved in rats pretreated with metformin. Metformin enhanced AMPK-induced autophagy activation. AMPK and autophagy inhibitors removed the metformin neuroprotective effect. Although metformin inhibited the ER stress response, its inhibitory effect was weaker than 4-PBA. CONCLUSION In a CA/CPR rat model, 14-day pretreatment with metformin has a neuroprotective effect. This effect is closely related to the activation of AMPK-induced autophagy and inhibition of the ER stress response. Long-term use of metformin can reduce brain damage following CA/CPR.
Collapse
Affiliation(s)
- Libo Chuan
- Attending Physician, Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, P.R. China
| | - Lei Zhang
- Associate Chief Physician, Department of Neurology, The Affiliated Hospital of Kunming University of Science and Technology, P.R. China
| | - Hao Fu
- Attending Physician, Department of Neurology, The Affiliated Hospital of Kunming University of Science and Technology, P.R. China
| | - Ying Yang
- Attending Physician, Department of Neurology, The Affiliated Hospital of Kunming University of Science and Technology, P.R. China
| | - Quanyu Wang
- Attending Physician, Department of Neurology, The Affiliated Hospital of Kunming University of Science and Technology, P.R. China
| | - Xingpeng Jiang
- Attending Physician, ICU, The Affiliated Hospital of Kunming University of Science and Technology, P.R. China
| | - Zhengchao Li
- Resident Physician, ICU, The Affiliated Hospital of Kunming University of Science and Technology, P.R. China
| | - Kuang Ni
- Resident Physician, ICU, The Affiliated Hospital of Kunming University of Science and Technology, P.R. China
| | - Li Ding
- Chief Physician, Department of Neurology, The Affiliated Hospital of Kunming University of Science and Technology, P.R. China
| |
Collapse
|
36
|
Lu G, Wu Z, Shang J, Xie Z, Chen C, Zhang C. The effects of metformin on autophagy. Biomed Pharmacother 2021; 137:111286. [PMID: 33524789 DOI: 10.1016/j.biopha.2021.111286] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Metformin is the first-line option for treating newly diagnosed diabetic patients and also involved in other pharmacological actions, including antitumor effect, anti-aging effect, polycystic ovarian syndrome prevention, cardiovascular action, and neuroprotective effect, etc. However, the mechanisms of metformin actions were not fully illuminated. Recently, increasing researches showed that autophagy is a vital medium of metformin playing pharmacological actions. Nevertheless, results on the effects of metformin on autophagy were inconsistent. Apart from few clinical evidences, more data focused on kinds of no-clinical models. First, many studies showed that metformin could induce autophagy via a number of signaling pathways, including AMPK-related signaling pathways (e.g. AMPK/mTOR, AMPK/CEBPD, MiTF/TFE, AMPK/ULK1, and AMPK/miR-221), Redd1/mTOR, STAT, SIRT, Na+/H+ exchangers, MAPK/ERK, PK2/PKR/AKT/ GSK3β, and TRIB3. Secondly, some signaling pathways were involved in the process of metformin inhibiting autophagy, such as AMPK-related signaling pathways (AMPK/NF-κB and other undetermined AMPK-related signaling pathways), Hedgehog, miR-570-3p, miR-142-3p, and MiR-3127-5p. Thirdly, two types of signaling pathways including PI3K/AKT/mTOR and endoplasmic reticulum (ER) stress could bidirectionally impact the effectiveness of metformin on autophagy. Finally, multiple signal pathways were reviewed collectively in terms of affecting the effectiveness of metformin on autophagy. The pharmacological effects of metformin combining its actions on autophagy were also discussed. It would help better apply metformin to treat diseases in term of mediating autophagy.
Collapse
Affiliation(s)
- Guangli Lu
- School of Business, Henan University, Henan, Kaifeng, China
| | - Zhen Wu
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Henan, Kaifeng, China
| | - Jia Shang
- School of Kaifeng Culture and Tourism, Henan, Kaifeng, China
| | - Zhenxing Xie
- School of Basic Medicine, Henan University, Henan, Kaifeng, Jinming Avenue, 475004, China.
| | - Chaoran Chen
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Henan, Kaifeng, China.
| | - Chuning Zhang
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Henan, Kaifeng, China
| |
Collapse
|
37
|
Rottenberg H, Hoek JB. The Mitochondrial Permeability Transition: Nexus of Aging, Disease and Longevity. Cells 2021; 10:cells10010079. [PMID: 33418876 PMCID: PMC7825081 DOI: 10.3390/cells10010079] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/23/2020] [Accepted: 01/01/2021] [Indexed: 12/11/2022] Open
Abstract
The activity of the mitochondrial permeability transition pore, mPTP, a highly regulated multi-component mega-channel, is enhanced in aging and in aging-driven degenerative diseases. mPTP activity accelerates aging by releasing large amounts of cell-damaging reactive oxygen species, Ca2+ and NAD+. The various pathways that control the channel activity, directly or indirectly, can therefore either inhibit or accelerate aging or retard or enhance the progression of aging-driven degenerative diseases and determine lifespan and healthspan. Autophagy, a catabolic process that removes and digests damaged proteins and organelles, protects the cell against aging and disease. However, the protective effect of autophagy depends on mTORC2/SKG1 inhibition of mPTP. Autophagy is inhibited in aging cells. Mitophagy, a specialized form of autophagy, which retards aging by removing mitochondrial fragments with activated mPTP, is also inhibited in aging cells, and this inhibition leads to increased mPTP activation, which is a major contributor to neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. The increased activity of mPTP in aging turns autophagy/mitophagy into a destructive process leading to cell aging and death. Several drugs and lifestyle modifications that enhance healthspan and lifespan enhance autophagy and inhibit the activation of mPTP. Therefore, elucidating the intricate connections between pathways that activate and inhibit mPTP, in the context of aging and degenerative diseases, could enhance the discovery of new drugs and lifestyle modifications that slow aging and degenerative disease.
Collapse
Affiliation(s)
- Hagai Rottenberg
- New Hope Biomedical R&D, 23 W. Bridge street, New Hope, PA 18938, USA
- Correspondence: ; Tel.: +1-267-614-5588
| | - Jan B. Hoek
- MitoCare Center, Department of Anatomy, Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| |
Collapse
|
38
|
Lushchak O, Piskovatska V, Strilbytska O, Kindrat I, Stefanyshyn N, Koliada A, Bubalo V, Storey KB, Vaiserman A. Aspirin as a Potential Geroprotector: Experimental Data and Clinical Evidence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1286:145-161. [PMID: 33725352 DOI: 10.1007/978-3-030-55035-6_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aging is a biological process with effects at the molecular, cellular, tissue, organ, system, and organismal levels and is characterized by decline in physical function and higher risks of age-related diseases. The use of anti-aging drugs for disease prevention has become a high priority for science and is a new biomedicine trend. Geroprotectors are compounds which slow aging and increase lifespan of the organism in question. The common painkiller aspirin, a member of the non-steroidal anti-inflammatory drug (NSAID) family, is one of the potential geroprotective agents. Aspirin is often used in treatment of mild to moderate pain. It has anti-inflammatory and anti-pyretic properties and acts as an inhibitor of cyclooxygenase which results in inhibition of prostaglandin. Acetylsalicylic acid as an active compound of aspirin also inhibits platelet aggregation and is used in the prevention of arterial and venous thrombosis. Aspirin has shown life-extending effects in numerous model organisms. This chapter reviews the evidence for clinical efficacy of aspirin including cardiovascular disease prevention, anti-cancer effects, and improvement of cognitive function. However, there are some limitations of these therapies, including the risk of excessive bleeding. We have also summarized numerous experimental and analytical data that support health and longevity benefits of aspirin treatment by affecting pro-longevity pathways.
Collapse
Affiliation(s)
- Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine.
| | - Veronika Piskovatska
- Clinic for Heart Surgery, University clinic of Martin Luther University, Halle, Germany
| | - Olha Strilbytska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | | | - Nadya Stefanyshyn
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Alexander Koliada
- Laboratory of Epigenetics, D.F. Chebotarev Institute of Gerontology, NAMS, Kyiv, Ukraine
| | - Volodymyr Bubalo
- Laboratory of Experimental Toxicology and Mutagenesis L.I. Medved's Research Center of Preventive Toxicology, Food and Chemical Safety, MHU, Kyiv, Ukraine
| | | | - Alexander Vaiserman
- Laboratory of Epigenetics, D.F. Chebotarev Institute of Gerontology, NAMS, Kyiv, Ukraine
| |
Collapse
|
39
|
Decline in biological resilience as key manifestation of aging: Potential mechanisms and role in health and longevity. Mech Ageing Dev 2020; 194:111418. [PMID: 33340523 DOI: 10.1016/j.mad.2020.111418] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
Decline in biological resilience (ability to recover) is a key manifestation of aging that contributes to increase in vulnerability to death with age eventually limiting longevity even in people without major chronic diseases. Understanding the mechanisms of this decline is essential for developing efficient anti-aging and pro-longevity interventions. In this paper we discuss: a) mechanisms of the decline in resilience with age, and aging components that contribute to this decline, including depletion of body reserves, imperfect repair mechanisms, and slowdown of physiological processes and responses with age; b) anti-aging interventions that may improve resilience or attenuate its decline; c) biomarkers of resilience available in human and experimental studies; and d) genetic factors that could influence resilience. There are open questions about optimal anti-aging interventions that would oppose the decline in resilience along with extending longevity limits. However, the area develops quickly, and prospects are exciting.
Collapse
|
40
|
Vaiserman A, Koliada A, Lushchak O, Castillo MJ. Repurposing drugs to fight aging: The difficult path from bench to bedside. Med Res Rev 2020; 41:1676-1700. [PMID: 33314257 DOI: 10.1002/med.21773] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 11/15/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022]
Abstract
The steady rise in life expectancy occurred across all developed countries during the last century. This demographic trend is, however, not accompanied by the same healthspan extension. This is since aging is the main risk factor for all age-associated pathological conditions. Therefore, slowing the rate of aging is suggested to be more efficient in preventing or delaying age-related diseases than treat them one by one, which is the common approach in a current pharmacological disease-oriented paradigm. To date, a variety of medications designed to treat particular pathological conditions have been shown to exhibit pro-longevity effects in different experimental models. Among them, there are many commonly used prescription and over-the-counter pharmaceuticals such as metformin, rapamycin, aspirin, statins, melatonin, vitamin antioxidants, etc. All of them are being increasingly investigated in preclinical and clinical trials with the aim of determine whether they have potential for extension of human healthspan. The results from these trials are frequently inconclusive and fall short of initial expectations, suggesting that innovative research ideas and additional translational steps are required to overcome obstacles for implementation of such approaches in clinical practice. In this review, recent advances and challenges in the field of repurposing widely used conventional pharmaceuticals to target the aging process are summarized and discussed.
Collapse
Affiliation(s)
| | | | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Manuel J Castillo
- Department of Medical Physiology, School of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
41
|
Fall-related mortality trends in Australia and the United Kingdom: Implications for research and practice. Maturitas 2020; 142:68-72. [DOI: 10.1016/j.maturitas.2020.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/29/2022]
|
42
|
Effects of inflammatory and anti-inflammatory environments on the macrophage mitochondrial function. Sci Rep 2020; 10:20324. [PMID: 33230189 PMCID: PMC7684315 DOI: 10.1038/s41598-020-77370-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/09/2020] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial response to inflammation is crucial in the metabolic adaptation to infection. This study aimed to explore the mitochondrial response under inflammatory and anti-inflammatory environments, with a focus on the tricarboxylic acid (TCA) cycle. Expression levels of key TCA cycle enzymes and the autophagy-related protein light chain 3b (LC3b) were determined in raw 264.7 cells treated with lipopolysaccharide (LPS) and metformin (Met). Additionally, reactive oxygen species (ROS) levels and mitochondrial membrane potential were assessed using flow cytometry. Moreover, 8-week-old C57BL/6J mice were intraperitoneally injected with LPS and Met to assess the mitochondrial response in vivo. Upon LPS stimulation, the expression of key TCA enzymes, including citrate synthase, α-ketoglutarate dehydrogenase, and isocitrate dehydrogenase 2, and the mitochondrial membrane potential decreased, whereas the levels of LC3b and ROS increased. However, treatment with Met inhibited the reduction of LPS-induced enzyme levels as well as the elevation of LC3b and ROS levels. In conclusion, the mitochondrial TCA cycle is affected by the inflammatory environment, and the LPS-induced effects can be reversed by Met treatment.
Collapse
|
43
|
Pignatti C, D’Adamo S, Stefanelli C, Flamigni F, Cetrullo S. Nutrients and Pathways that Regulate Health Span and Life Span. Geriatrics (Basel) 2020; 5:geriatrics5040095. [PMID: 33228041 PMCID: PMC7709628 DOI: 10.3390/geriatrics5040095] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Both life span and health span are influenced by genetic, environmental and lifestyle factors. With the genetic influence on human life span estimated to be about 20–25%, epigenetic changes play an important role in modulating individual health status and aging. Thus, a main part of life expectance and healthy aging is determined by dietary habits and nutritional factors. Excessive or restricted food consumption have direct effects on health status. Moreover, some dietary interventions including a reduced intake of dietary calories without malnutrition, or a restriction of specific dietary component may promote health benefits and decrease the incidence of aging-related comorbidities, thus representing intriguing potential approaches to improve healthy aging. However, the relationship between nutrition, health and aging is still not fully understood as well as the mechanisms by which nutrients and nutritional status may affect health span and longevity in model organisms. The broad effect of different nutritional conditions on health span and longevity occurs through multiple mechanisms that involve evolutionary conserved nutrient-sensing pathways in tissues and organs. These pathways interacting each other include the evolutionary conserved key regulators mammalian target of rapamycin, AMP-activated protein kinase, insulin/insulin-like growth factor 1 pathway and sirtuins. In this review we provide a summary of the main molecular mechanisms by which different nutritional conditions, i.e., specific nutrient abundance or restriction, may affect health span and life span.
Collapse
Affiliation(s)
- Carla Pignatti
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (C.P.); (F.F.)
| | - Stefania D’Adamo
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40136 Bologna, Italy;
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Claudio Stefanelli
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47921 Rimini, Italy;
| | - Flavio Flamigni
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (C.P.); (F.F.)
| | - Silvia Cetrullo
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (C.P.); (F.F.)
- Correspondence: ; Tel.: +39-051-209-1241
| |
Collapse
|
44
|
Wang L, Liu S, Pan B, Cai H, Zhou H, Yang P, Wang W. The role of autophagy in abdominal aortic aneurysm: protective but dysfunctional. Cell Cycle 2020; 19:2749-2759. [PMID: 32960711 PMCID: PMC7714418 DOI: 10.1080/15384101.2020.1823731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/17/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Autophagy, an evolutionarily conserved mechanism that promotes cell survival by recycling nutrients and degrading long-lived proteins and dysfunctional organelles, is an important defense mechanism, and its attenuation has been well documented in senescence and aging-related diseases. Abdominal aortic aneurysm (AAA), a well-known aging-related disease, has been defined as a chronic degenerative process in the abdominal aortic wall; however, the complete mechanism is unknown, and a clinical treatment is lacking. Accumulating evidence has recently revealed that numerous drugs that can induce autophagy are effective in the treatment of AAA. The purpose of this systematic review was to focus on the cross-talk between autophagy and high-risk factors and the potential pathogenesis of AAA to understand not only the host defense and pathogenesis but also potential treatments.
Collapse
Affiliation(s)
- Lei Wang
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuai Liu
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Baihong Pan
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huoying Cai
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haiyang Zhou
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Pu Yang
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Wang
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
45
|
TSAI YC, CHENG LH, LIU YW, JENG OJ, LEE YK. Gerobiotics: probiotics targeting fundamental aging processes. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2020; 40:1-11. [PMID: 33520563 PMCID: PMC7817508 DOI: 10.12938/bmfh.2020-026] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022]
Abstract
Aging is recognized as a common risk factor for many chronic diseases and functional decline. The newly emerging field of geroscience is an interdisciplinary field that aims to understand the molecular and cellular mechanisms of aging. Several fundamental biological processes have been proposed as hallmarks of aging. The proposition of the geroscience hypothesis is that targeting holistically these highly integrated hallmarks could be an effective approach to preventing the pathogenesis of age-related diseases jointly, thereby improving the health span of most individuals. There is a growing awareness concerning the benefits of the prophylactic use of probiotics in maintaining health and improving quality of life in the elderly population. In view of the rapid progress in geroscience research, a new emphasis on geroscience-based probiotics is in high demand, and such probiotics require extensive preclinical and clinical research to support their functional efficacy. Here we propose a new term, "gerobiotics", to define those probiotic strains and their derived postbiotics and para-probiotics that are able to beneficially attenuate the fundamental mechanisms of aging, reduce physiological aging processes, and thereby expand the health span of the host. We provide a thorough discussion of why the coining of a new term is warranted instead of just referring to these probiotics as anti-aging probiotics or with other similar terms. In this review, we highlight the needs and importance of the new field of gerobiotics, past and currently on-going research and development in the field, biomarkers for potential targets, and recommended steps for the development of gerobiotic products. Use of gerobiotics could be a promising intervention strategy to improve health span and longevity of humans in the future.
Collapse
Affiliation(s)
- Ying-Chieh TSAI
- Institute of Biochemistry and Molecular Biology, National
Yang-Ming University, Taipei 11221, Taiwan
| | - Li-Hao CHENG
- Bened Biomedical Co., Ltd., Taipei 10448, Taiwan
| | - Yen-Wenn LIU
- Institute of Biochemistry and Molecular Biology, National
Yang-Ming University, Taipei 11221, Taiwan
| | | | - Yuan-Kun LEE
- Department of Microbiology & Immunology, National
University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
46
|
Is metformin a geroprotector? A peek into the current clinical and experimental data. Mech Ageing Dev 2020; 191:111350. [DOI: 10.1016/j.mad.2020.111350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/25/2020] [Accepted: 09/01/2020] [Indexed: 02/08/2023]
|
47
|
Easter M, Bollenbecker S, Barnes JW, Krick S. Targeting Aging Pathways in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2020; 21:E6924. [PMID: 32967225 PMCID: PMC7555616 DOI: 10.3390/ijms21186924] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/05/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) has become a global epidemic and is the third leading cause of death worldwide. COPD is characterized by chronic airway inflammation, loss of alveolar-capillary units, and progressive decline in lung function. Major risk factors for COPD are cigarette smoking and aging. COPD-associated pathomechanisms include multiple aging pathways such as telomere attrition, epigenetic alterations, altered nutrient sensing, mitochondrial dysfunction, cell senescence, stem cell exhaustion and chronic inflammation. In this review, we will highlight the current literature that focuses on the role of age and aging-associated signaling pathways as well as their impact on current treatment strategies in the pathogenesis of COPD. Furthermore, we will discuss established and experimental COPD treatments including senolytic and anti-aging therapies and their potential use as novel treatment strategies in COPD.
Collapse
Affiliation(s)
- Molly Easter
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.E.); (S.B.); (J.W.B.)
| | - Seth Bollenbecker
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.E.); (S.B.); (J.W.B.)
| | - Jarrod W. Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.E.); (S.B.); (J.W.B.)
- Gregory Fleming James Cystic Fibrosis Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Stefanie Krick
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.E.); (S.B.); (J.W.B.)
- Gregory Fleming James Cystic Fibrosis Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
48
|
Kulkarni AS, Gubbi S, Barzilai N. Benefits of Metformin in Attenuating the Hallmarks of Aging. Cell Metab 2020; 32:15-30. [PMID: 32333835 PMCID: PMC7347426 DOI: 10.1016/j.cmet.2020.04.001] [Citation(s) in RCA: 396] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/04/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
Biological aging involves an interplay of conserved and targetable molecular mechanisms, summarized as the hallmarks of aging. Metformin, a biguanide that combats age-related disorders and improves health span, is the first drug to be tested for its age-targeting effects in the large clinical trial-TAME (targeting aging by metformin). This review focuses on metformin's mechanisms in attenuating hallmarks of aging and their interconnectivity, by improving nutrient sensing, enhancing autophagy and intercellular communication, protecting against macromolecular damage, delaying stem cell aging, modulating mitochondrial function, regulating transcription, and lowering telomere attrition and senescence. These characteristics make metformin an attractive gerotherapeutic to translate to human trials.
Collapse
Affiliation(s)
- Ameya S Kulkarni
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, NY, USA; Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, New York, NY, USA.
| | - Sriram Gubbi
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nir Barzilai
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, NY, USA; Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, New York, NY, USA.
| |
Collapse
|
49
|
Bayliak MM, Demianchuk OI, Gospodaryov DV, Abrat OB, Lylyk MP, Storey KB, Lushchak VI. Mutations in genes cnc or dKeap1 modulate stress resistance and metabolic processes in Drosophila melanogaster. Comp Biochem Physiol A Mol Integr Physiol 2020; 248:110746. [PMID: 32579905 DOI: 10.1016/j.cbpa.2020.110746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 11/29/2022]
Abstract
The transcription factor Nrf2 and its negative regulator Keap1 play important roles in the maintenance of redox homeostasis in animal cells. Nrf2 activates defenses against oxidative stress and xenobiotics. Homologs of Nrf2 and Keap1 are present in Drosophila melanogaster (CncC and dKeap1, respectively). The aim of this study was to explore effects of CncC deficiency (due to mutation in the cnc gene) or enhanced activity (due to mutation in the dKeap1 gene) on redox status and energy metabolism of young adult flies in relation to behavioral traits and resistance to a number of stressors. Deficiency in either CncC or dKeap1 delayed pupation and increased climbing activity and heat stress resistance in 2-day-old adult flies. Males and females of the ∆keap1 line shared some similarities such as elevated antioxidant defense as well as lower triacylglyceride and higher glucose levels. Males of the ∆keap1 line also had a higher activity of hexokinase, whereas ∆keap1 females showed higher glycogen levels and lower values of respiratory control and ATP production than flies of the control line. Mutation of cnc gene in allele cncEY08884 caused by insertion of P{EPgy2} transposon in cnc promotor did not affect significantly the levels of metabolites and redox parameters, and even activated some components of antioxidant defense. These data suggest that the mutation can be hypomorphic as well as CncC protein can be dispensable for adult fruit flies under physiological conditions. In females, CncC mutation led to lower mitochondrial respiration, higher hexokinase activity and higher fecundity as compared with the control line. Either CncC activation or its deficiency affected stress resistance of flies.
Collapse
Affiliation(s)
- Maria M Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine.
| | - Oleh I Demianchuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine.
| | - Oleksandra B Abrat
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Maria P Lylyk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine.
| |
Collapse
|
50
|
Baskaran D, Aparicio-Ugarriza R, Ferri-Guerra J, Milyani R, Florez H, Ruiz JG. Is There an Association Between Metformin Exposure and Frailty? Gerontol Geriatr Med 2020; 6:2333721420924956. [PMID: 32596419 PMCID: PMC7297486 DOI: 10.1177/2333721420924956] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/19/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022] Open
Abstract
Frailty is a state of vulnerability to stressors resulting in higher morbidity, mortality, and utilization in older adults. Frailty and type 2 diabetes mellitus share similar pathophysiological mechanisms which metformin may target. The purpose of this study was to determine whether exposure to metformin is associated with frailty in veterans. This is a cross-sectional study of veterans 65 years and older with type 2 diabetes who were screened for frailty between January 2016 and August 2017. We constructed a 44-item Frailty Index including multiple variables using a deficit accumulation framework. After adjustment for covariates, the association was calculated using binomial logistic regression models with frailty status as the outcome variable, and metformin exposure as the independent variable. Patients were 98.3% male and 56.7% White with a mean age of 72.9 (SD = 6.8) years. The proportion of robust, prefrail and frail patients was 2.9% (n = 22), 46.7 % (n = 356) and 50.5% (n = 385), respectively. In binomial logistic regression, exposure to metformin was associated with lower risk for frailty, adjusted odds ratio (OR) = .55 (95% confidence interval [CI] = .39–.77), p ≤ .001. This study shows that exposure to metformin was associated with lower risk for frailty in community-dwelling veterans.
Collapse
Affiliation(s)
- Dhanya Baskaran
- Miami VAHS Geriatric Research Education and Clinical Center (GRECC), FL, USA
| | - Raquel Aparicio-Ugarriza
- Miami VAHS Geriatric Research Education and Clinical Center (GRECC), FL, USA.,Miller School of Medicine, University of Miami, FL, USA
| | - Juliana Ferri-Guerra
- Miami VAHS Geriatric Research Education and Clinical Center (GRECC), FL, USA.,Miller School of Medicine, University of Miami, FL, USA
| | | | - Hermes Florez
- Miami VAHS Geriatric Research Education and Clinical Center (GRECC), FL, USA.,Miller School of Medicine, University of Miami, FL, USA
| | - Jorge G Ruiz
- Miami VAHS Geriatric Research Education and Clinical Center (GRECC), FL, USA.,Miller School of Medicine, University of Miami, FL, USA
| |
Collapse
|