1
|
Ye JJ, Lin XY, Yang ZX, Wang YQ, Liang YR, Wang KR, Lu JL, Lu P, Zheng XQ. The light-harvesting chlorophyll a/b-binding proteins of photosystem II family members are responsible for temperature sensitivity and leaf color phenotype in albino tea plant. J Adv Res 2024; 66:87-104. [PMID: 38151116 DOI: 10.1016/j.jare.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/11/2023] [Accepted: 12/24/2023] [Indexed: 12/29/2023] Open
Abstract
INTRODUCTION Light-harvesting chlorophyll a/b-binding (LHCB) protein complexes of photosystem II are integral to the formation of thylakoid structure and the photosynthetic process. They play an important role in photoprotection, a crucial process in leaf development under low-temperature stress. Nonetheless, potential key genes directly related to low-temperature response and albino phenotype have not been precisely identified in tea plant. Moreover, there are no studies simultaneously investigating multiple albino tea cultivars with different temperature sensitivity. OBJECTIVES The study aimed to clarify the basic characteristics of CsLHCB gene family members, and identify critical CsLHCB genes potentially influential in leaf color phenotypic variation and low-temperature stress response by contrasting green and albino tea cultivars. Concurrently, exploring the differential expression of the CsLHCB gene family across diverse temperature-sensitive albino tea cultivars. METHODS We identified 20 putative CsLHCB genes according to phylogenetic analysis. Evolutionary relationships, gene duplication, chromosomal localization, and structures were analyzed by TBtools; the physiological and biochemical characteristics were analyzed by protein analysis websites; the differences in coding sequences and protein accumulation in green and albino tea cultivars, gene expression with maturity were tested by molecular biology technology; and protein interaction was analyzed in the STRING database. RESULTS All genes were categorized into seven groups, mapping onto 7 chromosomes, including three tandem and one segmental duplications. They all own a conserved chlorophyll A/B binding protein domain. The expression of CsLHCB genes was tissue-specific, predominantly in leaves. CsLHCB5 may play a key role in the process of leaf maturation and senescence. In contrast to CsLHCB5, CsLHCB1.1, CsLHCB2, and CsLHCB3.2 were highly conserved in amino acid sequence between green and albino tea cultivars. In albino tea cultivars, unlike in green cultivars, the expression of CsLHCB1.1, CsLHCB1.2, and CsLHCB2 was down-regulated under low-temperature stress. The accumulation of CsLHCB1 and CsLHCB5 proteins was lower in albino tea cultivars. Greater accumulation of CsLHCB2 protein was detected in RX1 and RX2 compared to other albino cultivars. CONCLUSIONS CsLHCB1.1, CsLHCB1.2, and CsLHCB2 played a role in the response to low-temperature stress. The amino acid sequence site mutation of CsLHCB5 would distinguish the green and albino tea cultivars. The less accumulation of CsLHCB1 and CsLHCB5 had a Chl influence on albino leaves. Albino cultivars more sensitive to temperature exhibited lower CsLHCB gene expression. CsLHCB2 may serve as an indicator of temperature sensitivity differences in albino tea cultivars. This study could provide a reference for further studies of the functions of the CsLHCB family and contribute to research on the mechanism of the albino in tea plant.
Collapse
Affiliation(s)
- Jing-Jing Ye
- Zhejiang University Tea Research Institute, Hangzhou, Zhejiang 310058, China
| | - Xin-Yi Lin
- Zhejiang University Tea Research Institute, Hangzhou, Zhejiang 310058, China
| | - Zi-Xian Yang
- Zhejiang University Tea Research Institute, Hangzhou, Zhejiang 310058, China
| | - Ying-Qi Wang
- Zhejiang A&F University College of Tea Science and Tea Culture, Hangzhou, Zhejiang 311300, China
| | - Yue-Rong Liang
- Zhejiang University Tea Research Institute, Hangzhou, Zhejiang 310058, China
| | - Kai-Rong Wang
- General Agrotechnical Extension Station of Ningbo City, Ningbo, Zhejiang 315000, China
| | - Jian-Liang Lu
- Zhejiang University Tea Research Institute, Hangzhou, Zhejiang 310058, China
| | - Peng Lu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Xin-Qiang Zheng
- Zhejiang University Tea Research Institute, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
2
|
Aggarwal PR, Mehanathan M, Choudhary P. Exploring genetics and genomics trends to understand the link between secondary metabolic genes and agronomic traits in cereals under stress. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154379. [PMID: 39549316 DOI: 10.1016/j.jplph.2024.154379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
The plant metabolome is considered an important interface between the genome and its phenome, where it plays a significant role in regulating plant growth in response to various environmental cues. A wide array of specialized metabolites is produced by plants, which are essential for mediating environmental interactions and their adaptation. Notably, enhanced accumulation of these specialized metabolites, particularly plant secondary metabolites (PSMs), is a part of the chemical defense response that is directly linked to improved stress tolerance. Therefore, exploring the genetic diversity underlying the immense variation of the secondary metabolite pool could unravel the adaptation mechanisms in plants against different environmental stresses. The post-genomic profiling platforms have enabled the exploration of the link between metabolic diversity and important agronomic traits. The current review focuses on the major achievements and future challenges associated with plant secondary metabolite (PSM) research in graminaceous crops using advanced omics approaches. Given this, we briefly summarize different strategies adopted to explore the genetic diversity and evolution of PSMs in cereal crops. Further, we have discussed the recent technological advancements to integrate multi-omics approaches linking the metabolome diversity with the genome, transcriptome, and proteome of these crops under stress. Combining these data with phenomics (the omics of phenotypes) provides a holistic view of how plants respond to stress. Next, we outlined the genetic manipulation studies performed so far in cereals to engineer secondary metabolic pathways for enhanced stress tolerance. In summary, our review provides new insight into developing genetic and genomic trends in exploring the secondary metabolite diversity in graminaceous crops and discusses how this information can be utilized in designing strategies to generate future stress-resilient crops.
Collapse
Affiliation(s)
- Pooja R Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Muthamilarasan Mehanathan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Pooja Choudhary
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India.
| |
Collapse
|
3
|
Zhao X, Zhang X, Wang L, Huang Q, Dai H, Liu L, Zhu Y, El-Sappah AH, Wu H. Foliar application of iron impacts flavonoid glycosylation and promotes flavonoid metabolism in coloured rice. Food Chem 2024; 444:138454. [PMID: 38330616 DOI: 10.1016/j.foodchem.2024.138454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/07/2024] [Accepted: 01/13/2024] [Indexed: 02/10/2024]
Abstract
Coloured rice is known as a healthcare food owing its rich flavonoid content. To better understand the effects of iron on the flavonoid metabolism of coloured rice grains, different concentrations of FeSO4 were foliar sprayed on to red rice Yuhongdao 5815 (RR) and black rice Nanheinuo (BR). The results revealed the association of iron with the increased accumulation of anthocyanins in BR and proanthocyanins in RR along with enhancements in their antioxidant capacities and total flavonoid contents. Metabolomic analysis revealed that the differential metabolites between the iron treated coloured rice and the control primarily occurred because of the O-linked glycosylation of aglycones, which are involved in the flavonoid pathway. RR exhibited a significantly higher number of differential metabolites compared with BR. Thus, foliar FeSO4 application affects the O-linked glycosylation and positively regulates flavonoid metabolism.
Collapse
Affiliation(s)
- Xia Zhao
- Yibin University, Faculty of Agriculture, Forestry and Food Engineering, Yibin 644000, China.
| | - Xianwei Zhang
- Chongqing Academy of Agriculture Science, Chongqing 401329, China.
| | - Linghui Wang
- Yibin University, Faculty of Agriculture, Forestry and Food Engineering, Yibin 644000, China.
| | - Qiulan Huang
- Yibin University, Faculty of Agriculture, Forestry and Food Engineering, Yibin 644000, China.
| | - Haifang Dai
- Yibin University, Faculty of Agriculture, Forestry and Food Engineering, Yibin 644000, China.
| | - Ling Liu
- Yibin University, Faculty of Agriculture, Forestry and Food Engineering, Yibin 644000, China.
| | - Yumin Zhu
- Yibin University, Faculty of Agriculture, Forestry and Food Engineering, Yibin 644000, China.
| | - Ahmed H El-Sappah
- Yibin University, Faculty of Agriculture, Forestry and Food Engineering, Yibin 644000, China; Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Hui Wu
- Yibin University, Faculty of Agriculture, Forestry and Food Engineering, Yibin 644000, China.
| |
Collapse
|
4
|
Shan T, Xu J, Zhong X, Zhang J, He B, Tao Y, Wu J. Full-length transcriptome sequencing provides new insights into the complexity of flavonoid biosynthesis in Glechoma longituba. PHYSIOLOGIA PLANTARUM 2023; 175:e14104. [PMID: 38148235 DOI: 10.1111/ppl.14104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 12/28/2023]
Abstract
Glechoma longituba has been frequently used in treating urolithiasis and cholelithiasis due to the presence of flavonoids, which are its major bioactive constituents. However, research on the molecular background of flavonoid biosynthesis in G. longituba is limited. In this study, we used single-molecule real-time combined with next-generation sequencing technologies to construct the complete transcriptome of G. longituba. We identified 404,648 non-redundant transcripts, including 249,697 coding sequences, 197,811 simple sequence repeats, 174,846 long noncoding RNA, and 176,554 coding RNA. Moreover, we functionally annotated 346,218 isoforms (85.56%) and identified 86,528 differentially expressed genes. We also identified 55 non-redundant full-length isoforms related to the flavonoid biosynthetic pathway. Pearson correlation analysis revealed that the expression levels of some key genes of the flavonoid biosynthesis pathway were significantly positively correlated with the flavonoid metabolites. Furthermore, we performed bioinformatics analysis (sequence and structural) of isoform_47029 (encoding flavanone 3-hydroxylase) and isoform_53692 (encoding flavonol synthase) to evaluate their potential biological functions. Finally, we validated gene expression levels of 12 flavonoid-related key enzyme genes using quantitative real-time PCR. Overall, this study provides full-length transcriptome information on G. longituba for the first time and valuable molecular resources for further research on the medicinal properties of this plant.
Collapse
Affiliation(s)
- Tingyu Shan
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Jingyao Xu
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Xinxin Zhong
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Jingjing Zhang
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Bing He
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, China
| | - Yijia Tao
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, China
| | - Jiawen Wu
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
- Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China
| |
Collapse
|
5
|
Obadi M, Xu B. Effect of processing methods and storage on the bioactive compounds of black rice ( Oryza sativa L.): a review. Food Funct 2023; 14:9100-9122. [PMID: 37766517 DOI: 10.1039/d3fo02977h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Compared to brown and white rice, black rice contains more nutrients and numerous unique bioactive substances, such as essential amino acids, dietary fiber, γ-oryzanols, γ-aminobutyric acid, phenolic compounds, and anthocyanins, which makes it highly valuable for development and use. Whole-grain black rice typically requires a certain amount of processing prior to consumption, with the primary goal of enhancing the taste and texture of whole grains and their products. However, various new processing technologies have been effectively applied to the processing of black rice and the enhancement of its qualitative characteristics, but they also have both positive and negative effects on its nutritional quality. Therefore, evaluation of changes in concentrations of the bioactive substances as natural antioxidants due to processing and storage conditions is critical for establishing dietary guidelines for rice. This review highlights the primary bioactive components of black rice and provides a discussion of the impact of processing methods and storage on the bioactive components of black rice. Furthermore, we summarized the issues that currently exist in the processing and storage of black rice.
Collapse
Affiliation(s)
- Mohammed Obadi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
6
|
Liu M, Kang B, Wu H, Aranda MA, Peng B, Liu L, Fei Z, Hong N, Gu Q. Transcriptomic and metabolic profiling of watermelon uncovers the role of salicylic acid and flavonoids in the resistance to cucumber green mottle mosaic virus. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5218-5235. [PMID: 37235634 DOI: 10.1093/jxb/erad197] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/24/2023] [Indexed: 05/28/2023]
Abstract
Understanding the mechanisms underlying plant resistance to virus infections is crucial for viral disease management in agriculture. However, the defense mechanism of watermelon (Citrullus lanatus) against cucumber green mottle mosaic virus (CGMMV) infection remains largely unknown. In this study, we performed transcriptomic, metabolomic, and phytohormone analyses of a CGMMV susceptible watermelon cultivar 'Zhengkang No.2' ('ZK') and a CGMMV resistant wild watermelon accession PI 220778 (PI) to identify the key regulatory genes, metabolites, and phytohormones responsible for CGMMV resistance. We then tested several phytohormones and metabolites for their roles in watermelon CGMMV resistance via foliar application, followed by CGMMV inoculation. Several phenylpropanoid metabolism-associated genes and metabolites, especially those involved in the flavonoid biosynthesis pathway, were found to be significantly enriched in the CGMMV-infected PI plants compared with the CGMMV-infected 'ZK' plants. We also identified a gene encoding UDP-glycosyltransferase (UGT) that is involved in kaempferol-3-O-sophoroside biosynthesis and controls disease resistance, as well as plant height. Additionally, salicylic acid (SA) biogenesis increased in the CGMMV-infected 'ZK' plants, resulting in the activation of a downstream signaling cascade. SA levels in the tested watermelon plants correlated with that of total flavonoids, and SA pre-treatment up-regulated the expression of flavonoid biosynthesis genes, thus increasing the total flavonoid content. Furthermore, application of exogenous SA or flavonoids extracted from watermelon leaves suppressed CGMMV infection. In summary, our study demonstrates the role of SA-induced flavonoid biosynthesis in plant development and CGMMV resistance, which could be used to breed for CGMMV resistance in watermelon.
Collapse
Affiliation(s)
- Mei Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Baoshan Kang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Huijie Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Miguel A Aranda
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)- CSIC, Apdo. correos 164, 30100 Espinardo, Murcia, Spain
| | - Bin Peng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Liming Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| | - Ni Hong
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qinsheng Gu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| |
Collapse
|
7
|
Liu H, Sun J, Zou J, Li B, Jin H. MeJA-mediated enhancement of salt-tolerance of Populus wutunensis by 5-aminolevulinic acid. BMC PLANT BIOLOGY 2023; 23:185. [PMID: 37024791 PMCID: PMC10077631 DOI: 10.1186/s12870-023-04161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND 5-Aminolevulinic acid (ALA) is a natural and environmentally benign multifunctional plant growth regulator involved in the regulation of plant tolerance to various environmental stresses. This research aimed to explore the molecular mechanisms of salt tolerance in Populus wutunensis induced by exogenous ALA using physiological and transcriptomic analyses. RESULTS Physiological results showed that 50 mg·L- 1 ALA-treatment significantly reduced the malondialdehyde (MDA) content and the relative electrical conductivity (REC) and enhanced antioxidant activities of enzymes such as SOD, POD and CAT in salt-stressed P. wutunensis seedlings. Transcriptome analysis identified ALA-induced differentially expressed genes (DEGs) associating with increased salt-tolerance in P. wutunensis. GO and KEGG enrichment analyses showed that ALA activated the jasmonic acid signaling and significantly enhanced the protein processing in endoplasmic reticulum and the flavonoid biosynthesis pathways. Results of the hormone-quantification by LC-MS/MS-based assays showed that ALA could increase the accumulation of methyl jasmonate (MeJA) in salt-stressed P. wutunensis. Induced contents of soluble proteins and flavonoids by exogenous ALA in salt-treated seedlings were also correlated with the MeJA content. CONCLUSION 5-aminolevulinic acid improved the protein-folding efficiency in the endoplasmic reticulum and the flavonoid-accumulation through the MeJA-activated jasmonic acid signaling, thereby increased salt-tolerance in P. wutunensis.
Collapse
Affiliation(s)
- Huan Liu
- College of Environment and Bioresource, Dalian Minzu University, No 18, Liaohexi Road, 116600 Dalian, Liaoning China
| | - Jingliang Sun
- College of Environment and Bioresource, Dalian Minzu University, No 18, Liaohexi Road, 116600 Dalian, Liaoning China
| | - Jixiang Zou
- College of Environment and Bioresource, Dalian Minzu University, No 18, Liaohexi Road, 116600 Dalian, Liaoning China
| | - Baisheng Li
- College of Environment and Bioresource, Dalian Minzu University, No 18, Liaohexi Road, 116600 Dalian, Liaoning China
| | - Hua Jin
- College of Environment and Bioresource, Dalian Minzu University, No 18, Liaohexi Road, 116600 Dalian, Liaoning China
| |
Collapse
|
8
|
Wang L, Guo D, Zhao G, Wang J, Zhang S, Wang C, Guo X. Group IIc WRKY transcription factors regulate cotton resistance to Fusarium oxysporum by promoting GhMKK2-mediated flavonoid biosynthesis. THE NEW PHYTOLOGIST 2022; 236:249-265. [PMID: 35727190 DOI: 10.1111/nph.18329] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/09/2022] [Indexed: 05/20/2023]
Abstract
WRKY transcription factors (TFs) are crucial regulators in response to pathogen infection. However, the regulatory mechanisms of WRKY TFs in response to Fusarium oxysporum f. sp. vasinfectum (Fov), the most devastating pathogen of cotton, remain unclear. Here, transcriptome sequencing indicated that the group IIc WRKY TF subfamily was the most important TF subfamily in response to Fov. Gain-of-function and loss-of-function analyses showed that group IIc WRKY TFs positively regulated cotton resistance to Fov. A series of chromatin immunoprecipitation sequencing, yeast one-hybrid assay and electrophoresis mobility shift assay experiments indicated that group IIc WRKY TFs directly bound to the promoter of GhMKK2 and regulated its expression. Importantly, a novel mitogen-activated protein kinase (MAPK) cascade composed of GhMKK2, GhNTF6 and GhMYC2 was identified. The functional analysis indicated that group IIc WRKY TFs induced the GhMKK2-GhNTF6 pathway to increase resistance to Fov by upregulating the GhMYC2-mediated expression of several flavonoid biosynthesis-related genes, which led to flavonoid accumulation. In conclusion, our study demonstrated a novel disease defense mechanism by which the WRKY-MAPK pathway promotes flavonoid biosynthesis to defend against pathogen infection. This pathway improves our understanding of the interaction mode between WRKY TFs and MAPK cascades in plant immunity and the vital role of plant flavonoids in pathogen defense.
Collapse
Affiliation(s)
- Lijun Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Dezheng Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Guangdong Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Jiayu Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Shuxin Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| |
Collapse
|
9
|
Integrative Analysis of the Metabolome and Transcriptome Provides Insights into the Mechanisms of Flavonoid Biosynthesis in Quinoa Seeds at Different Developmental Stages. Metabolites 2022; 12:metabo12100887. [PMID: 36295789 PMCID: PMC9609036 DOI: 10.3390/metabo12100887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022] Open
Abstract
Quinoa (Chenopodium quinoa Willd.) is a crop with high nutritional and health benefits. Quinoa seeds are rich in flavonoid compounds; however, the mechanisms behind quinoa flavonoid biosynthesis remain unclear. We independently selected the high-generation quinoa strain ‘Dianli-3260′, and used its seeds at the filling, milk ripening, wax ripening, and mature stages for extensive targeted metabolome analysis combined with joint transcriptome analysis. The results showed that the molecular mechanism of flavonoid biosynthesis in quinoa seeds was mainly concentrated in two pathways: “flavonoid biosynthesis pathway” and “flavone and flavonol biosynthesis pathway”. Totally, 154 flavonoid-related metabolites, mainly flavones and flavonols, were detected in the four development stages. Moreover, 39,738 genes were annotated with KEGG functions, and most structural genes of flavonoid biosynthesis were differentially expressed during grain development. We analyzed the differential flavonoid metabolites and transcriptome changes between the four development stages of quinoa seeds and found that 11 differential flavonoid metabolites and 22 differential genes were the key factors for the difference in flavonoid biosynthesis. This study provides important information on the mechanisms underlying quinoa flavonoid biosynthesis, the screening of potential quinoa flavonoid biosynthesis regulation target genes, and the development of quinoa products.
Collapse
|
10
|
Abdel-Aal ESM, Rabalski I. Changes in Phenolic Acids and Antioxidant Properties during Baking of Bread and Muffin Made from Blends of Hairless Canary Seed, Wheat, and Corn. Antioxidants (Basel) 2022; 11:antiox11061059. [PMID: 35739956 PMCID: PMC9220130 DOI: 10.3390/antiox11061059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/28/2022] Open
Abstract
Phenolic acids are the major polyphenols in cereal grains and they undergo changes in their composition and structure during processing. This study investigated changes in phenolic acids and antioxidant properties during baking of bread and muffin made from hairless canary seed (HCS), Phalaris canariensis L., alone or in blends with corn and wheat. The changes were monitored after dry mixing, dough/batter formation, and oven baking. Phenolic acids were quantified in products using HPLC and antioxidant activity was based on DPPH, ABTS, and ORAC assays. Eight phenolic acids were primarily present in the bound fraction extracts, while only a few phenolic acids were detected in the free or unbound fraction extracts. Ferulic was the dominant phenolic acid in wheat, corn, and HCS followed by p-coumaric acid but the latter was extremely high in HCS compared to wheat and corn. After baking, bound phenolic acids decreased in breads and muffins, while the unbound phenolic acids increased. Dough preparation resulted in about 5–13% reductions in bound ferulic acid in addition to 2–9% after oven baking with a total reduction of about 10–20% subject to bread formulation. On the contrary unbound ferulic acid increased by 48–307% after dough preparation and 138–225% after oven baking with a total increase 273–495%. Similarly, muffin-making process resulted in 26–30% reductions in bound ferulic acid after batter preparation and 4–7% after oven baking with reductions of 34–37% in muffins, while the unbound ferulic acid increased by about 35–105% and 9–29%, respectively, with a total increase 47–116%. The baking process resulted in improved DPPH, ABTS, and ORAC antioxidant activities in breads and muffins despite the initial reductions after dough preparation. In general, baking process resulted in tangible increases in unbound phenolic acids which eventually could improve their bioavailability and bioactivity.
Collapse
|
11
|
Wang A, Ma L, Shu X, Jiang Y, Liang J, Zheng A. Rice (Oryza sativa L.) cytochrome P450 protein 716A subfamily CYP716A16 regulates disease resistance. BMC Genomics 2022; 23:343. [PMID: 35505282 PMCID: PMC9066777 DOI: 10.1186/s12864-022-08568-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/19/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The sustainable development of rice production is facing severe threats by a variety of pathogens, such as necrotrophic Rhizoctonia solani and hemibiotrophic Xanthomonas oryzae pv. oryzae (Xoo). Mining and applying resistance genes to increase the durable resistance of rice is an effective method that can be used to control these diseases. RESULTS In this research, we isolated and characterized CYP716A16, which is a positive regulator of rice to R. solani AG1-IA and Xoo, and belongs to the cytochrome P450 (CYP450) protein 716A subfamily. Overexpression (OE) of CYP716A16 resulted in enhanced resistance to R. solani AG1-IA and Xoo, while RNA interference (RNAi) of CYP716A16 resulted in increased susceptibility compared with wild-type (WT) plants. Additionally, jasmonic acid (JA)-dependent defense responses and reactive oxygen species (ROS) were activated in the CYP716A16-OE lines after R. solani AG1-IA inoculation. The comparative transcriptomic and metabolomics analysis of CYP716A16-OE and the WT lines showed that OE of CYP716A16 activated the biosynthesis of flavonoids and increased the amounts of narcissoside, methylophiopogonanone A, oroxin A, and amentoflavone in plants. CONCLUSION Based on these results, we suggest that JA-dependent response, ROS level, multiple resistance-related proteins, and flavonoid contents play an important role in CYP716A16-regulated R. solani AG1-IA and Xoo resistance. Our results broaden our knowledge regarding the function of a P450 protein 716A subfamily in disease resistance and provide new insight into the molecular mechanism of rice immune response.
Collapse
Affiliation(s)
- Aijun Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Li Ma
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Xinyue Shu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yuqi Jiang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Juan Liang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Aiping Zheng
- College of Agronomy, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
12
|
Chen H, Zhang S, He S, A R, Wang M, Liu S. The necrotroph Botrytis cinerea promotes disease development in Panax ginseng by manipulating plant defense signals and antifungal metabolites degradation. J Ginseng Res 2022; 46:790-800. [PMID: 36312732 PMCID: PMC9597437 DOI: 10.1016/j.jgr.2022.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 01/04/2023] Open
Abstract
Background Panax ginseng Meyer is one of the most valuable medicinal plants which is enriched in anti-microbe secondary metabolites and widely used in traditional medicine. Botrytis cinerea is a necrotrophic fungus that causes gray mold disease in a broad range of hosts. B. cinerea could overcome the ginseng defense and cause serious leaf and root diseases with unknown mechanism. Methods We conducted simultaneous transcriptomic and metabolomic analysis of the host to investigate the defense response of ginseng affected by B. cinerea. The gene deletion and replacement were then performed to study the pathogenic gene in B. cinerea during ginseng - fungi interaction. Results Upon B. cinerea infection, ginseng defense responses were switched from the activation to repression, thus the expression of many defense genes decreased and the biosynthesis of antifungal metabolites were reduced. Particularly, ginseng metabolites like kaempferol, quercetin and luteolin which could inhibit fungi growth were decreased after B. cinerea infection. B. cinerea quercetin dioxygenase (Qdo) involved in catalyzing flavonoids degradation and △BcQdo mutants showed increased substrates accumulation and reduced disease development. Conclusion This work indicates the flavonoids play a role in ginseng defense and BcQdo involves in B. cinerea virulence towards the P. ginseng. B. cinerea promotes disease development in ginseng by suppressing of defense related genes expression and reduction of antifungal metabolites biosynthesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Shouan Liu
- Corresponding author. Laboratory of Tea and Medicinal Plant Pathology, Jilin University, Changchun, 130062, China.
| |
Collapse
|
13
|
Abstract
Rye (Secale cereale L.) is abundantly cultivated in countries like Europe and North America, particularly in regions where soil and climate conditions are unfavorable for the growth of other cereals. Among all the cereals generally consumed by human beings, rye grains are characterized by the presence of the highest content of fiber. They are also a rich source of many phytochemical compounds, which are mainly distributed in the outer parts of the grain. This review focuses on the current knowledge regarding the characteristics of rye bran and wholemeal rye flour, as well as their applications in the production of both food and nonfood products. Previous studies have shown that the physicochemical properties of ground rye products are determined by the type of milling technique used to grind the grains. In addition, the essential biologically active compounds found in rye grains were isolated and characterized. Subsequently, the possibility of incorporating wholemeal rye flour, rye bran, and other compounds extracted from rye bran into different industrial products is discussed.
Collapse
|
14
|
Cheng J, Jin H, Zhang J, Xu Z, Yang X, Liu H, Xu X, Min D, Lu D, Qin B. Effects of Allelochemicals, Soil Enzyme Activities, and Environmental Factors on Rhizosphere Soil Microbial Community of Stellera chamaejasme L. along a Growth-Coverage Gradient. Microorganisms 2022; 10:microorganisms10010158. [PMID: 35056607 PMCID: PMC8781187 DOI: 10.3390/microorganisms10010158] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 02/06/2023] Open
Abstract
Allelochemicals released from the root of Stellera chamaejasme L. into rhizosphere soil are an important factor for its invasion of natural grasslands. The aim of this study is to explore the interactions among allelochemicals, soil physicochemical properties, soil enzyme activities, and the rhizosphere soil microbial communities of S. chamaejasme along a growth-coverage gradient. High-throughput sequencing was used to determine the microbial composition of the rhizosphere soil sample, and high-performance liquid chromatography was used to detect allelopathic substances. The main fungal phyla in the rhizosphere soil with a growth coverage of 0% was Basidiomycetes, and the other sample plots were Ascomycetes. Proteobacteria and Acidobacteria were the dominant bacterial phyla in all sites. RDA analysis showed that neochamaejasmin B, chamaechromone, and dihydrodaphnetin B were positively correlated with Ascomycota and Glomeromycota and negatively correlated with Basidiomycota. Neochamaejasmin B and chamaechromone were positively correlated with Proteobacteria and Actinobacteria and negatively correlated with Acidobacteria and Planctomycetes. Allelochemicals, soil physicochemical properties, and enzyme activity affected the composition and diversity of the rhizosphere soil microbial community to some extent. When the growth coverage of S. chamaejasme reached the primary stage, it had the greatest impact on soil physicochemical properties and enzyme activities.
Collapse
Affiliation(s)
- Jinan Cheng
- Key Laboratory of Chemistry of Northwestern Plant Resources of Chinese Academy of Sciences/Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (J.C.); (X.Y.); (H.L.); (X.X.); (D.M.)
- Center of Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730000, China;
| | - Hui Jin
- Key Laboratory of Chemistry of Northwestern Plant Resources of Chinese Academy of Sciences/Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (J.C.); (X.Y.); (H.L.); (X.X.); (D.M.)
- Correspondence: (H.J.); (B.Q.); Tel.: +86-931-4968371 (H.J.); +86-931-4968372 (B.Q.)
| | - Jinlin Zhang
- Center of Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730000, China;
| | - Zhongxiang Xu
- Animal, Plant & Food Inspection Center of Nanjing Customs, Nanjing 210000, China;
| | - Xiaoyan Yang
- Key Laboratory of Chemistry of Northwestern Plant Resources of Chinese Academy of Sciences/Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (J.C.); (X.Y.); (H.L.); (X.X.); (D.M.)
| | - Haoyue Liu
- Key Laboratory of Chemistry of Northwestern Plant Resources of Chinese Academy of Sciences/Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (J.C.); (X.Y.); (H.L.); (X.X.); (D.M.)
| | - Xinxin Xu
- Key Laboratory of Chemistry of Northwestern Plant Resources of Chinese Academy of Sciences/Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (J.C.); (X.Y.); (H.L.); (X.X.); (D.M.)
| | - Deng Min
- Key Laboratory of Chemistry of Northwestern Plant Resources of Chinese Academy of Sciences/Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (J.C.); (X.Y.); (H.L.); (X.X.); (D.M.)
| | - Dengxue Lu
- Institute of Biology, Gansu Academy of Sciences, Lanzhou 730000, China;
| | - Bo Qin
- Key Laboratory of Chemistry of Northwestern Plant Resources of Chinese Academy of Sciences/Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (J.C.); (X.Y.); (H.L.); (X.X.); (D.M.)
- Correspondence: (H.J.); (B.Q.); Tel.: +86-931-4968371 (H.J.); +86-931-4968372 (B.Q.)
| |
Collapse
|
15
|
Glagoleva A, Kukoeva T, Mursalimov S, Khlestkina E, Shoeva O. Effects of Combining the Genes Controlling Anthocyanin and Melanin Synthesis in the Barley Grain on Pigment Accumulation and Plant Development. AGRONOMY 2022; 12:112. [PMID: 0 DOI: 10.3390/agronomy12010112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Anthocyanins and melanins are phenolic pigments of plants and accumulate in seed envelopes of the barley grain, thereby giving them a blue, purple, or black color. To explore the effects of combined accumulation of anthocyanins and melanins in the grain, a barley near-isogenic line (NIL), characterized by simultaneous accumulation in both pigments, was developed using a marker-assisted approach. The presence of both pigments in the grain pericarp was evaluated by light microscopy. Emergence of anthocyanin pigmentation proved to be temporally separated from that of melanin, and the formation of anthocyanin pigments began at an earlier stage of spike maturation. During spike maturation, a significantly higher total anthocyanin content was noted in the created NIL than in the parental anthocyanin-accumulating NIL, indicating a positive influence of the Blp1 gene on the anthocyanin content at some developmental stages. In a comparative analysis of yield components, it was found that the observed differences between the barley NILs are possibly caused by environmental factors, and the presence of pigments does not decrease plant productivity. Our results should facilitate investigation into genetic mechanisms underlying overlaps in the biosynthesis of pigments and into breeding strategies aimed at the enrichment of barley varieties with polyphenols.
Collapse
|
16
|
Ma D, Wang C, Feng J, Xu B. Wheat grain phenolics: a review on composition, bioactivity, and influencing factors. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6167-6185. [PMID: 34312865 DOI: 10.1002/jsfa.11428] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/13/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Wheat (Triticum aestivum L.) is a widely cultivated crop and one of the most commonly consumed food grains in the world. It possesses several nutritional elements. Increasing attention to wheat grain phenolics bioactivity is due to the increasing demand for foods with natural antioxidants. To provide a comprehensive understanding of phenolics in wheat grain, this review first summarizes the phenolics' form and distribution and the phenolic components identified in wheat grain. In particular, the biosynthesis path for phenolics is discussed, identifying some candidate genes involved in the biosynthesis of phenolic acids and flavonoids. After discussing the methods for determining antioxidant activity, the effect of genotypes, environmental conditions, and cultivation systems on grain phenolic component content are explored. Finally, the bioavailability of phenolics under different food processing method are reported and discussed. Future research is recommended to increase wheat grain phenolic content by genetic engineering, and to improve its bioavailability through proper food processing. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dongyun Ma
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
- The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Chenyang Wang
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
- The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Jianchao Feng
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
| | - Beiming Xu
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
17
|
Wang M, Zhang Y, Zhu C, Yao X, Zheng Z, Tian Z, Cai X. EkFLS overexpression promotes flavonoid accumulation and abiotic stress tolerance in plant. PHYSIOLOGIA PLANTARUM 2021; 172:1966-1982. [PMID: 33774830 DOI: 10.1111/ppl.13407] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/03/2021] [Accepted: 03/23/2021] [Indexed: 05/27/2023]
Abstract
Flavonoids with great medicinal value play an important role in plant individual growth and stress resistance. Flavonol synthetase (FLS) is one of the key enzymes to synthesize flavonoids. However, the role of the FLS gene in flavonoid accumulation and tolerance to abiotic stresses, as well as its mechanism has not yet been investigated systematically in plants. The aim of this research is to evaluate the effect of FLS overexpression on the accumulation of active ingredients and stress resistance in Euphorbia kansui Liou. The results showed that when the EkFLS gene was overexpressed in Arabidopsis thaliana, the accumulation of flavonoids was improved. In addition, when the wild-type and EkFLS overexpressed Arabidopsis plants were treated with ABA and MeJA, compared with WT Arabidopsis, EkFLS overexpressed Arabidopsis promoted stomatal aperture to influence photosynthesis of the plants, which in turn can promote stress resistance. Meanwhile, under MeJA, NaCl, and PEG treatment, EkFLS overexpressed in Arabidopsis induced higher accumulation of flavonoids, which significantly enhanced peroxidase (POD) and superoxide dismutase (SOD) activities that can scavenge reactive oxygen species in cells to protect the plant. These results indicated that EkFLS overexpression is strongly correlated to the increase of flavonoid synthesis and therefore the tolerance to abiotic stresses in plants, providing a theoretical basis for further improving the quality of medicinal plants and their resistance to abiotic stresses simultaneously.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Yue Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Chenyu Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Xiangyu Yao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Zhe Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Zheni Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Xia Cai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| |
Collapse
|
18
|
Hu H, Li H, Hao M, Ren Y, Zhang M, Liu R, Zhang Y, Li G, Chen J, Ning T, Kuzyakov Y. Nitrogen fixation and crop productivity enhancements co‐driven by intercrop root exudates and key rhizosphere bacteria. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13964] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Heng‐Yu Hu
- State Key Laboratory of Crop Biology College of Agronomy Shandong Agricultural University Taian China
| | - Hong Li
- Key Laboratory of Plant and Soil Interactions Ministry of Education Beijing China
- College of Resources and Environmental Sciences China Agricultural University Beijing China
| | - Min‐Min Hao
- State Key Laboratory of Crop Biology College of Agronomy Shandong Agricultural University Taian China
| | - Ya‐Nan Ren
- State Key Laboratory of Crop Biology College of Agronomy Shandong Agricultural University Taian China
| | - Meng‐Kun Zhang
- State Key Laboratory of Crop Biology College of Agronomy Shandong Agricultural University Taian China
| | - Ru‐Yue Liu
- State Key Laboratory of Crop Biology College of Agronomy Shandong Agricultural University Taian China
| | - Yin Zhang
- State Key Laboratory of Crop Biology College of Agronomy Shandong Agricultural University Taian China
| | - Geng Li
- State Key Laboratory of Crop Biology College of Agronomy Shandong Agricultural University Taian China
| | - Jian‐Sheng Chen
- State Key Laboratory of Crop Biology College of Agronomy Shandong Agricultural University Taian China
| | - Tang‐Yuan Ning
- State Key Laboratory of Crop Biology College of Agronomy Shandong Agricultural University Taian China
- Department of Agricultural Soil Science Department of Soil Science of Temperate Ecosystems University of Gottingen Gottingen Germany
| | - Yakov Kuzyakov
- Department of Agricultural Soil Science Department of Soil Science of Temperate Ecosystems University of Gottingen Gottingen Germany
- Institute of Environmental Sciences Kazan Federal University Kazan Russia
- Agro‐Technological InstituteRUDN University Moscow Russia
- College of Resources and Environment Huazhong Agricultural University Wuhan China
| |
Collapse
|
19
|
Chang Z, Wang Y, Liu C, Smith W, Kong L. Natural Products for Regulating Macrophages M2 Polarization. Curr Stem Cell Res Ther 2021; 15:559-569. [PMID: 31120001 DOI: 10.2174/1574888x14666190523093535] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 02/23/2019] [Accepted: 04/26/2019] [Indexed: 02/06/2023]
Abstract
Macrophages M2 polarization have been taken as an anti-inflammatory progression during inflammation. Natural plant-derived products, with potential therapeutic and preventive activities against inflammatory diseases, have received increasing attention in recent years because of their whole regulative effects and specific pharmacological activities. However, the molecular mechanisms about how different kinds of natural compounds regulate macrophages polarization still unclear. Therefore, in the current review, we summarized the detailed research progress on the active compounds derived from herbal plants with regulating effects on macrophages, especially M2 polarization. These natural occurring compounds including flavonoids, terpenoids, glycosides, lignans, coumarins, alkaloids, polyphenols and quinones. In addition, we extensively discussed the cellular mechanisms underlying the M2 polarization for each compound, which could provide potential therapeutic strategies aiming macrophages M2 polarization.
Collapse
Affiliation(s)
- Zhen Chang
- Department of Spine Surgery, Honghui-hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China
| | - Youhan Wang
- Department of Spine Surgery, Honghui-hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China.,Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Chang Liu
- Department of Spine Surgery, Honghui-hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China.,Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Wanli Smith
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lingbo Kong
- Department of Spine Surgery, Honghui-hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China
| |
Collapse
|
20
|
Zhou S, Yan X, Yang J, Qian C, Yin X, Fan X, Fang T, Gao Y, Chang Y, Liu W, Ma XF. Variations in Flavonoid Metabolites Along Altitudinal Gradient in a Desert Medicinal Plant Agriophyllum squarrosum. FRONTIERS IN PLANT SCIENCE 2021; 12:683265. [PMID: 34354722 PMCID: PMC8329721 DOI: 10.3389/fpls.2021.683265] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/07/2021] [Indexed: 06/10/2023]
Abstract
Agriophyllum squarrosum (L.) Moq., a pioneer plant endemic to the temperate deserts of Asia, could be domesticated into an ideal crop with outstanding ecological and medicinal characteristics. A previous study showed differential flavonoid accumulation between two in situ altitudinal ecotypes. To verify whether this accumulation was determined by environmental or genetic factors, we conducted flavonoid-targeted metabolic profiling among 14 populations of A. squarrosum collected from regions with different altitudes based on a common garden experiment. Results showed that the most abundant flavonoid in A. squarrosum was isorhamnetin (48.40%, 557.45 μg/g), followed by quercetin (13.04%, 150.15 μg/g), tricin (11.17%, 128.70 μg/g), isoquercitrin (7.59%, 87.42 μg/g), isovitexin (7.20%, 82.94 μg/g), and rutin (7.00%, 80.62 μg/g). However, based on a common garden at middle-altitude environment, almost none of the flavonoids was enriched in the high-altitude populations, and even some flavonoids, such as quercetin, tricin, and rutin, were significantly enriched in low-altitude populations. This phenomenon indicated that the accumulation of flavonoids was not a result of local adaptation to high altitude. Furthermore, association analysis with in situ environmental variables showed that the contents of quercetin, tricin, and rutin were strongly positively correlated with latitude, longitude, and precipitation gradients and negatively correlated with temperature gradients. Thus, we could conclude that the accumulations of flavonoids in A. squarrosum were more likely as a result of local adaption to environmental heterogeneity combined with precipitation and temperature other than high altitude. This study not only provides an example to understand the molecular ecological basis of pharmacognosy, but also supplies methodologies for developing a new industrial crop with ecological and agricultural importance.
Collapse
Affiliation(s)
- Shanshan Zhou
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xia Yan
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- School of Life Sciences, Nantong University, Nantong, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chaoju Qian
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xiaoyue Yin
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xingke Fan
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Tingzhou Fang
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Gao
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, China
| | - Yuxiao Chang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Weimin Liu
- Zhongnong Haidao (Shenzhen) Biotech Co., Ltd., Shenzhen, China
| | - Xiao-Fei Ma
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
21
|
Urbanavičiūtė I, Bonfiglioli L, Pagnotta MA. One Hundred Candidate Genes and Their Roles in Drought and Salt Tolerance in Wheat. Int J Mol Sci 2021; 22:ijms22126378. [PMID: 34203629 PMCID: PMC8232269 DOI: 10.3390/ijms22126378] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/31/2022] Open
Abstract
Drought and salinity are major constraints to agriculture. In this review, we present an overview of the global situation and the consequences of drought and salt stress connected to climatic changes. We provide a list of possible genetic resources as sources of resistance or tolerant traits, together with the previous studies that focused on transferring genes from the germplasm to cultivated varieties. We explained the morphological and physiological aspects connected to hydric stresses, described the mechanisms that induce tolerance, and discussed the results of the main studies. Finally, we described more than 100 genes associated with tolerance to hydric stresses in the Triticeae. These were divided in agreement with their main function into osmotic adjustment and ionic and redox homeostasis. The understanding of a given gene function and expression pattern according to hydric stress is particularly important for the efficient selection of new tolerant genotypes in classical breeding. For this reason, the current review provides a crucial reference for future studies on the mechanism involved in hydric stress tolerance and the use of these genes in mark assistance selection (MAS) to select the wheat germplasm to face the climatic changes.
Collapse
|
22
|
Hussain A, Ali S, Hussain A, Hussain Z, Manzoor MF, Hussain A, Ali A, Mahmood T, Abbasi KS, Karrar E, Hussain M, T. Compositional profile of barley landlines grown in different regions of Gilgit-Baltistan. Food Sci Nutr 2021; 9:2605-2611. [PMID: 34029360 PMCID: PMC8116868 DOI: 10.1002/fsn3.2215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 11/11/2022] Open
Abstract
The current investigation was performed to explore the nutritional and functional composition of four landlines of barley denoted as LB1 (Gilgit), LB2 (Nagar), LB3 (Skardu), and LB4 (Shigar) from different regions of Gilgit-Baltistan. The samples were examined for nutritional profile and antioxidant attributes. Total phenolic values and total flavonoid results were in the range of 1.2 to 3.1 mg/g and 0.41 to 0.55 mg/g, respectively. Nutritional profile as crude starch, fiber, protein, ash, and fat ranged from 56.3%-50.80%, 16.50%-11.73%, 16.20%-11.53%, 2.8%-2.1%, and 2.63%-1.63%, respectively. The mineral composition in terms of Mg (527-616 mg/kg) was higher in the landlines followed by Ca (312-368 mg/kg), Na (122.6-146.6 mg/kg), Fe (43.3-65.6 mg/kg), and Zn (22.5-26.6 mg/kg). It was concluded that the indigenous barley landlines had immense nutritional potential and functional attributes. Thus, it can be used for value-added food products and the development of cottage industry in the region.
Collapse
Affiliation(s)
- Abid Hussain
- Department of Agriculture and Food ScienceKarakorum International UniversityGilgitPakistan
| | - Sartaj Ali
- Department of Agriculture and Food ScienceKarakorum International UniversityGilgitPakistan
| | - Azhar Hussain
- Department of Agriculture and Food ScienceKarakorum International UniversityGilgitPakistan
| | - Zubair Hussain
- Department of Agriculture and Food ScienceKarakorum International UniversityGilgitPakistan
| | | | - Abid Hussain
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhouChina
| | - Amjad Ali
- Department of Agriculture and Food ScienceKarakorum International UniversityGilgitPakistan
| | - Talat Mahmood
- Nuclear Institute of Food and AgricultureTarnab PeshwarPakistan
| | - Kashif Sarfraz Abbasi
- Institute of Food &Nutritional Sciences PMAS‐Arid Agriculture UniversityRawalpindiPakistan
| | - Emad Karrar
- Department of Food Engineering and TechnologyFaculty of Engineering and TechnologyUniversity of GeziraWad MedaniSudan
| | - Maqsood Hussain
- Department of Agriculture and Food ScienceKarakorum International UniversityGilgitPakistan
| | - Tajudin
- Mountain Agriculture Research Center (MARC)Juglote, GilgitPakistan
| |
Collapse
|
23
|
Tullio V, Gasperi V, Catani MV, Savini I. The Impact of Whole Grain Intake on Gastrointestinal Tumors: A Focus on Colorectal, Gastric, and Esophageal Cancers. Nutrients 2020; 13:E81. [PMID: 33383776 PMCID: PMC7824588 DOI: 10.3390/nu13010081] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 02/08/2023] Open
Abstract
Cereals are one of staple foods in human diet, mainly consumed as refined grains. Nonetheless, epidemiological data indicate that whole grain (WG) intake is inversely related to risk of type 2 diabetes, cardiovascular disease, and several cancer types, as well as to all-cause mortality. Particularly responsive to WG positive action is the gastrointestinal tract, daily exposed to bioactive food components. Herein, we shall provide an up-to-date overview on relationship between WG intake and prevention of gastrointestinal tumors, with a particular focus on colorectal, stomach, and esophagus cancers. Unlike refined counterparts, WG consumption is inversely associated with risk of these gastrointestinal cancers, most consistently with the risk of colorectal tumor. Some WG effects may be mediated by beneficial constituents (such as fiber and polyphenols) that are reduced/lost during milling process. Beside health-promoting action, WGs are still under-consumed in most countries; therefore, World Health Organization and other public/private stakeholders should cooperate to implement WG consumption in the whole population, in order to reach nutritionally effective intakes.
Collapse
|
24
|
Zhang S, Cheng M, Li Z, Guan S, Cai B, Li Q, Rong S. Composition and biological activity of rose and jujube kernel after fermentation with kombucha SCOBY. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shuo Zhang
- Department of Biological Engineering Shanghai Institute of Technology Shanghai China
| | - Mengqin Cheng
- Department of Biological Engineering Shanghai Institute of Technology Shanghai China
| | - Zhidi Li
- Department of Biological Engineering Shanghai Institute of Technology Shanghai China
| | - Shimin Guan
- Department of Biological Engineering Shanghai Institute of Technology Shanghai China
| | - Baoguo Cai
- Department of Biological Engineering Shanghai Institute of Technology Shanghai China
| | - Qianqian Li
- Department of Biological Engineering Shanghai Institute of Technology Shanghai China
| | - Shaofeng Rong
- Department of Biological Engineering Shanghai Institute of Technology Shanghai China
| |
Collapse
|
25
|
Fedenia L, Klein RR, Dykes L, Rooney WL, Klein PE. Phenotypic, Phytochemical, and Transcriptomic Analysis of Black Sorghum (Sorghum bicolor L. ) Pericarp in Response to Light Quality. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9917-9929. [PMID: 32822185 DOI: 10.1021/acs.jafc.0c02657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Black sorghum [Sorghum bicolor (L.) Moench] is characterized by the black appearance of the pericarp and production of 3-deoxyanthocyanidins (3-DOA), which are valued for their cytotoxicity to cancer cells and as natural food colorants and antioxidant additives. The black pericarp phenotype is not fully penetrant in all environments, which implicates the light spectrum and/or photoperiod as the critical factor for trait expression. In this study, black- or red-pericarp genotypes were grown under regimes of visible light, visible light supplemented with UVA or supplemented with UVA plus UVB (or dark control). Pericarp 3-DOAs and pericarp pigmentation were maximized in the black genotype exposed to a light regime supplemented with UVB. Changes in gene expression during black pericarp development revealed that ultraviolet light activates genes related to plant defense, reactive oxygen species, and secondary metabolism, suggesting that 3-DOA accumulation is associated with activation of flavonoid biosynthesis and several overlapping defense and stress signaling pathways.
Collapse
Affiliation(s)
- Lauren Fedenia
- Department of Horticultural Sciences, Texas A&M University, 2133 TAMU, College Station, Texas 77843, United States
| | - Robert R Klein
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, Texas 77845, United States
| | - Linda Dykes
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, North Dakota 58102, United States
| | - William L Rooney
- Department of Soil and Crop Sciences, Texas A&M University, 2474 TAMU, College Station, Texas 77843, United States
| | - Patricia E Klein
- Department of Horticultural Sciences, Texas A&M University, 2133 TAMU, College Station, Texas 77843, United States
| |
Collapse
|
26
|
Nayak SN, Hebbal V, Bharati P, Nadaf HL, Naidu GK, Bhat RS. Profiling of Nutraceuticals and Proximates in Peanut Genotypes Differing for Seed Coat Color and Seed Size. Front Nutr 2020; 7:45. [PMID: 32351969 PMCID: PMC7174653 DOI: 10.3389/fnut.2020.00045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 03/23/2020] [Indexed: 11/13/2022] Open
Abstract
A total of 60 genotypes of peanut comprising 46 genotypes selected from ICRISAT mini core collection and 14 elite cultivars with differing kernel color and size were used to profile the nutritional parameters such as proximates (moisture, fat, ash, crude protein, crude fiber, carbohydrate content) and nutraceuticals (total polyphenol content and total antioxidant activity). The genotypes showed varied kernel color ranging from white to purple. Kernel skin color was quantified using colorimetry, and the color parameters were expressed as CIELAB color parameters. In total, nine morphological traits, six yield related traits, eight nutritional traits and eleven color parameters were observed across 60 genotypes. The sixty genotypes were grouped into ten clusters based on the color strength. Among them, Cluster-III with dark red seeds had the maximum fat content and total polyphenol content (TPC). Cluster-VI with light pink colored seeds had high antioxidant activity (AOA) and Cluster-X with white colored seeds had highest moisture and crude protein content. Color strength (K/S) was found to be positively correlated with TPC. Another color parameter, redness/greenness (a*) was found to be positively correlated with AOA. However, seed size was positively correlated with the crude protein content, but not with any other nutritional traits under study. The population studies based on the genotypic data indicated two distinct groups pertaining to botanical types of peanut. The marker-trait association (MTA) using single marker analysis indicated 75 major MTAs for most of the nutritional traits except for moisture content. The markers associated with nutritional parameters and other important yield related traits can further be utilized for genomics-assisted breeding for nutrient-rich peanuts.
Collapse
Affiliation(s)
- Spurthi N Nayak
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Viresh Hebbal
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Pushpa Bharati
- Department of Food Science and Nutrition, University of Agricultural Sciences, Dharwad, India
| | - Hajisab L Nadaf
- Department of Genetics and Plant Breeding, University of Agricultural Sciences, Dharwad, India
| | - Gopalkrishna K Naidu
- Department of Genetics and Plant Breeding, University of Agricultural Sciences, Dharwad, India
| | - Ramesh S Bhat
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| |
Collapse
|
27
|
Fu J, Zhang Y, Hu Y, Zhao G, Tang Y, Zou L. Concise review: Coarse cereals exert multiple beneficial effects on human health. Food Chem 2020; 325:126761. [PMID: 32387947 DOI: 10.1016/j.foodchem.2020.126761] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/23/2020] [Accepted: 04/05/2020] [Indexed: 02/08/2023]
Abstract
Coarse cereals (CC) refer to cereal grains except for rice and wheat which are highly-valued as functional foods with nutritional and pharmacological properties. Owing to their diverse positive effect on chronic diseases, coarse cereals exert a vital role in food industry. CC and the main contents prevent tumor pathogenesis through promoting apoptosis, inducing cell cycle arrest as well as modulating metastasis initiation. Meanwhile, CC ameliorates cardiovascular diseases through affecting multiple pathways, such as CaMKII/p-BFAF-3, NF-κB, MAPK, PI3K/Akt, etc. Besides, CC and the main contents have potential as prebiotics which facilitating the activities and growth of probiotics such as Bifidobacteria and Lactobacillus. However, there's a lack of report on CC' beneficial properties and the underlying mechanisms are not fully understood. Here this article explains in detail, the effect and mechanism of CC on chronic diseases like tumor, inflammation and cardiovascular diseases.
Collapse
Affiliation(s)
- Jia Fu
- School of Medicine, Chengdu University, No. 2025, Cheng Luo Road, Chengdu 610106, Sichuan, China
| | - Yan Zhang
- School of Medicine, Chengdu University, No. 2025, Cheng Luo Road, Chengdu 610106, Sichuan, China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, No. 2025, Cheng Luo Road, Chengdu 610106, Sichuan, China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, No. 2025, Cheng Luo Road, Chengdu 610106, Sichuan, China
| | - Yong Tang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Avenue, Wenjiang District, Chengdu 611137, Sichuan, China.
| | - Liang Zou
- School of Medicine, Chengdu University, No. 2025, Cheng Luo Road, Chengdu 610106, Sichuan, China.
| |
Collapse
|
28
|
Vanhaelewyn L, Bernula P, Van Der Straeten D, Vandenbussche F, Viczián A. UVR8-dependent reporters reveal spatial characteristics of signal spreading in plant tissues. Photochem Photobiol Sci 2019; 18:1030-1045. [PMID: 30838366 DOI: 10.1039/c8pp00492g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The UV Resistance Locus 8 (UVR8) photoreceptor controls UV-B mediated photomorphogenesis in Arabidopsis. The aim of this work is to collect and characterize different molecular reporters of photomorphogenic UV-B responses. Browsing available transcriptome databases, we identified sets of genes responding specifically to this radiation and are controlled by pathways initiated from the UVR8 photoreceptor. We tested the transcriptional changes of several reporters and found that they are regulated differently in different parts of the plant. Our experimental system led us to conclude that the examined genes are not controlled by light piping of UV-B from the shoot to the root or signalling molecules which may travel between different parts of the plant body but by local UVR8 signalling. The initiation of these universal signalling steps can be the induction of Elongated Hypocotyl 5 (HY5) and its homologue, HYH transcription factors. We found that their transcript and protein accumulation strictly depends on UVR8 and happens in a tissue autonomous manner. Whereas HY5 accumulation correlates well with the UVR8 signal across cell layers, the induction of flavonoids depends on both UVR8 signal and a yet to be identified tissue-dependent or developmental determinant.
Collapse
Affiliation(s)
- Lucas Vanhaelewyn
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, KL Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | | | | | |
Collapse
|
29
|
Suriano S, Savino M, Codianni P, Iannucci A, Caternolo G, Russo M, Pecchioni N, Troccoli A. Anthocyanin profile and antioxidant capacity in coloured barley. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Serafino Suriano
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria ‐ Centro di Ricerca Cerealicoltura e Colture Industriali (CREA‐CI) S.S. 673 km 25 + 200 71122 Foggia Italy
| | - Michele Savino
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria ‐ Centro di Ricerca Cerealicoltura e Colture Industriali (CREA‐CI) S.S. 673 km 25 + 200 71122 Foggia Italy
| | - Pasquale Codianni
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria ‐ Centro di Ricerca Cerealicoltura e Colture Industriali (CREA‐CI) S.S. 673 km 25 + 200 71122 Foggia Italy
| | - Anna Iannucci
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria ‐ Centro di Ricerca Cerealicoltura e Colture Industriali (CREA‐CI) S.S. 673 km 25 + 200 71122 Foggia Italy
| | - Giovanni Caternolo
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria ‐ Centro di Ricerca Cerealicoltura e Colture Industriali (CREA‐CI) S.S. 673 km 25 + 200 71122 Foggia Italy
| | - Mario Russo
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria ‐ Centro di Ricerca Cerealicoltura e Colture Industriali (CREA‐CI) S.S. 673 km 25 + 200 71122 Foggia Italy
| | - Nicola Pecchioni
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria ‐ Centro di Ricerca Cerealicoltura e Colture Industriali (CREA‐CI) S.S. 673 km 25 + 200 71122 Foggia Italy
| | - Antonio Troccoli
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria ‐ Centro di Ricerca Cerealicoltura e Colture Industriali (CREA‐CI) S.S. 673 km 25 + 200 71122 Foggia Italy
| |
Collapse
|
30
|
Yin YC, Zhang XD, Gao ZQ, Hu T, Liu Y. The Research Progress of Chalcone Isomerase (CHI) in Plants. Mol Biotechnol 2019; 61:32-52. [PMID: 30324542 DOI: 10.1007/s12033-018-0130-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Chalcone isomerase (CHI) is the second rate-limiting and the first reported enzyme involved in the biosynthetic pathway of flavonoids. It catalyzes the intramolecular cyclization reaction, converting the bicyclic chalcone into tricyclic (2S)-flavanone. In this paper, we obtained and analyzed 916 DNA sequences, 1310 mRNA sequences, and 2403 amino acid sequences of CHI registered in NCBI by Jan 2018. The full length of CHI DNA sequences ranges from 218 to 3758 bp, CHI mRNA sequences ranges from 265 to 1436 bp, and CHI amino acid sequences ranges from 35 to 465 amino acid residues. Forty representative species were selected from each family to construct the maximum likelihood tree and analyze the evolutionary relationship. According to the medicinal and agricultural use, 13 specific species were selected, and their physicochemical properties were analyzed. The molecular weight of CHI ranges from 23 to 26 kD, and the isoelectric point of CHI ranges from 4.93 to 5.85. All the half-life periods of CHI are 30 h in mammalian reticulocytes in vitro, 20 h in yeast, and 10 h in E. coli in vivo, theoretically. The consistency of the 13 CHI amino acid sequences is 63.55%. According to the similarity between each sequence, we selected four CHI sequences of Paeonia suffruticosa, Paeonia lactiflora, Taxus wallichiana, and Tradescantia hirsutiflora for secondary structure, three-dimensional protein models, conserved domains, transmembrane structure, and signal peptide prediction analysis. It was found that CHI sequences of Paeonia suffruticosa and Paeonia lactiflora owned a higher similarity; they both share the template 4doi.1.A. The four CHI all have no signal peptides, and they exert their activities in cytoplasm. Then, PubMed, Web of Science, Science Direct, and Research Gate were used as information sources through the search terms 'chalcone isomerase', 'biosynthesis', 'expression', and their combinations to get the latest and comprehensive information of CHI, mainly from the year 2010 to 2018. More than 300 papers were searched and 116 papers were reviewed in the present work. We summarized the classification of CHI, catalytic reaction mechanism of CHI, and progress of genetic engineering regarding CHI clone, expression, and exogenous stimulator regulation. This paper will lay a foundation for further studies of CHI and other functional genes involved in flavonoids biosynthetic pathway.
Collapse
Affiliation(s)
- Yan-Chao Yin
- School of Life Sciences, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan District, Beijing, 102401, China
| | - Xiao-Dong Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan District, Beijing, 102401, China
| | - Zhi-Qiang Gao
- School of Life Sciences, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan District, Beijing, 102401, China
| | - Ting Hu
- School of Life Sciences, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan District, Beijing, 102401, China
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan District, Beijing, 102401, China.
| |
Collapse
|
31
|
Wang N, Liu W, Zhang T, Jiang S, Xu H, Wang Y, Zhang Z, Wang C, Chen X. Transcriptomic Analysis of Red-Fleshed Apples Reveals the Novel Role of MdWRKY11 in Flavonoid and Anthocyanin Biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7076-7086. [PMID: 29909630 DOI: 10.1021/acs.jafc.8b01273] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In plants, flavonoids are important secondary metabolites that contribute to the nutritional quality of many foods. Apple is a popular and frequently consumed food because of its high flavonoid content. In this study, flavonoid composition and content were detected and compared between red- and white-fleshed apples in a BC1 hybrid population using ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry. Transcriptomic analysis of the red- and white-fleshed apples was then performed using RNA-seq technology. By screening differentially expressed genes encoding transcription factors, we unearthed a WRKY-family transcription factor designated MdWRKY11. Overexpression of MdWRKY11 promoted the expression of F3H, FLS, DFR, ANS, and UFGT and increased the accumulation of flavonoids and anthocyanin in apple calli. Our findings explored the novel role of MdWRKY11 in flavonoid biosynthesis and suggest several other genes that may also be potentially involved. This provides valuable information on flavonoid synthesis for the breeding of elite red-fleshed apples.
Collapse
Affiliation(s)
- Nan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering , Shandong Agricultural University , Tai'an , Shandong 271018 , China
| | - Wenjun Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering , Shandong Agricultural University , Tai'an , Shandong 271018 , China
| | - Tianliang Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering , Shandong Agricultural University , Tai'an , Shandong 271018 , China
| | - Shenghui Jiang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering , Shandong Agricultural University , Tai'an , Shandong 271018 , China
| | - Haifeng Xu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering , Shandong Agricultural University , Tai'an , Shandong 271018 , China
| | - Yicheng Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering , Shandong Agricultural University , Tai'an , Shandong 271018 , China
| | - Zongying Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering , Shandong Agricultural University , Tai'an , Shandong 271018 , China
| | - Chuanzeng Wang
- Shandong Institute of Pomology , Tai'an , Shandong 271000 , China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering , Shandong Agricultural University , Tai'an , Shandong 271018 , China
| |
Collapse
|
32
|
Meristem Plant Cells as a Sustainable Source of Redox Actives for Skin Rejuvenation. Biomolecules 2017; 7:biom7020040. [PMID: 28498360 PMCID: PMC5485729 DOI: 10.3390/biom7020040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/03/2017] [Accepted: 05/08/2017] [Indexed: 12/30/2022] Open
Abstract
Recently, aggressive advertisement claimed a “magic role” for plant stem cells in human skin rejuvenation. This review aims to shed light on the scientific background suggesting feasibility of using plant cells as a basis of anti-age cosmetics. When meristem cell cultures obtained from medicinal plants are exposed to appropriate elicitors/stressors (ultraviolet, ultrasound ultraviolet (UV), ultrasonic waves, microbial/insect metabolites, heavy metals, organic toxins, nutrient deprivation, etc.), a protective/adaptive response initiates the biosynthesis of secondary metabolites. Highly bioavailable and biocompatible to human cells, low-molecular weight plant secondary metabolites share structural/functional similarities with human non-protein regulatory hormones, neurotransmitters, pigments, polyamines, amino-/fatty acids. Their redox-regulated biosynthesis triggers in turn plant cell antioxidant and detoxification molecular mechanisms resembling human cell pathways. Easily isolated in relatively large quantities from contaminant-free cell cultures, plant metabolites target skin ageing mechanisms, above all redox imbalance. Perfect modulators of cutaneous oxidative state via direct/indirect antioxidant action, free radical scavenging, UV protection, and transition-metal chelation, they are ideal candidates to restore photochemical/redox/immune/metabolic barriers, gradually deteriorating in the ageing skin. The industrial production of plant meristem cell metabolites is toxicologically and ecologically sustainable for fully “biological” anti-age cosmetics.
Collapse
|
33
|
Singh B, Kumar A, Malik AK. Flavonoids biosynthesis in plants and its further analysis by capillary electrophoresis. Electrophoresis 2017; 38:820-832. [DOI: 10.1002/elps.201600334] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 01/16/2023]
Affiliation(s)
- Baljinder Singh
- Department of Biotechnology; Panjab University; Chandigarh India
| | - Ashwini Kumar
- Department of Chemistry; Government Post-Graduate College Una; Himachal Pradesh India
| | | |
Collapse
|
34
|
Bioactive phytochemicals in barley. J Food Drug Anal 2017; 25:148-161. [PMID: 28911532 PMCID: PMC9333424 DOI: 10.1016/j.jfda.2016.08.002] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/03/2016] [Accepted: 08/09/2016] [Indexed: 02/08/2023] Open
Abstract
Epidemiological studies have consistently shown that regular consumption of whole grain barley reduces the risk of developing chronic diseases. The presence of barley fiber, especially β-glucan in whole grain barley, has been largely credited for these health benefits. However, it is now widely believed that the actions of the fiber component alone do not explain the observed health benefits associated with the consumption of whole grain barley. Whole grain barley also contains phytochemicals including phenolic acids, flavonoids, lignans, tocols, phytosterols, and folate. These phytochemicals exhibit strong anti-oxidant, antiproliferative, and cholesterol lowering abilities, which are potentially useful in lowering the risk of certain diseases. Therefore, the high concentration of phytochemicals in barley may be largely responsible for its health benefits. This paper reviews available information regarding barley phytochemicals and their potential to combat common nutrition-related diseases including cancer, cardiovascular disease, diabetes, and obesity.
Collapse
|
35
|
Lv Y, Zhang S, Wang J, Hu Y. Quantitative Proteomic Analysis of Wheat Seeds during Artificial Ageing and Priming Using the Isobaric Tandem Mass Tag Labeling. PLoS One 2016; 11:e0162851. [PMID: 27632285 PMCID: PMC5025167 DOI: 10.1371/journal.pone.0162851] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/28/2016] [Indexed: 12/11/2022] Open
Abstract
Wheat (Triticum aestivum L.) is an important crop worldwide. The physiological deterioration of seeds during storage and seed priming is closely associated with germination, and thus contributes to plant growth and subsequent grain yields. In this study, wheat seeds during different stages of artificial ageing (45°C; 50% relative humidity; 98%, 50%, 20%, and 1% Germination rates) and priming (hydro-priming treatment) were subjected to proteomics analysis through a proteomic approach based on the isobaric tandem mass tag labeling. A total of 162 differentially expressed proteins (DEPs) mainly involved in metabolism, energy supply, and defense/stress responses, were identified during artificial ageing and thus validated previous physiological and biochemical studies. These DEPs indicated that the inability to protect against ageing leads to the incremental decomposition of the stored substance, impairment of metabolism and energy supply, and ultimately resulted in seed deterioration. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the up-regulated proteins involved in seed ageing were mainly enriched in ribosome, whereas the down-regulated proteins were mainly accumulated in energy supply (starch and sucrose metabolism) and stress defense (ascorbate and aldarate metabolism). Proteins, including hemoglobin 1, oleosin, agglutinin, and non-specific lipid-transfer proteins, were first identified in aged seeds and might be regarded as new markers of seed deterioration. Of the identified proteins, 531 DEPs were recognized during seed priming compared with unprimed seeds. In contrast to the up-regulated DEPs in seed ageing, several up-regulated DEPs in priming were involved in energy supply (tricarboxylic acid cycle, glycolysis, and fatty acid oxidation), anabolism (amino acids, and fatty acid synthesis), and cell growth/division. KEGG and protein-protein interaction analysis indicated that the up-regulated proteins in seed priming were mainly enriched in amino acid synthesis, stress defense (plant-pathogen interactions, and ascorbate and aldarate metabolism), and energy supply (oxidative phosphorylation and carbon metabolism). Therefore, DEPs associated with seed ageing and priming can be used to characterize seed vigor and optimize germination enhancement treatments. This work reveals new proteomic insights into protein changes that occur during seed deterioration and priming.
Collapse
Affiliation(s)
- Yangyong Lv
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Shuaibing Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Yuansen Hu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
36
|
Li B, Li YY, Wu HM, Zhang FF, Li CJ, Li XX, Lambers H, Li L. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proc Natl Acad Sci U S A 2016; 113:6496-501. [PMID: 27217575 PMCID: PMC4988560 DOI: 10.1073/pnas.1523580113] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant diversity in experimental systems often enhances ecosystem productivity, but the mechanisms causing this overyielding are only partly understood. Intercropping faba beans (Vicia faba L.) and maize (Zea mays L.) result in overyielding and also, enhanced nodulation by faba beans. By using permeable and impermeable root barriers in a 2-y field experiment, we show that root-root interactions between faba bean and maize significantly increase both nodulation and symbiotic N2 fixation in intercropped faba bean. Furthermore, root exudates from maize promote faba bean nodulation, whereas root exudates from wheat and barley do not. Thus, a decline of soil nitrate concentrations caused by intercropped cereals is not the sole mechanism for maize promoting faba bean nodulation. Intercropped maize also caused a twofold increase in exudation of flavonoids (signaling compounds for rhizobia) in the systems. Roots of faba bean treated with maize root exudates exhibited an immediate 11-fold increase in the expression of chalcone-flavanone isomerase (involved in flavonoid synthesis) gene together with a significantly increased expression of genes mediating nodulation and auxin response. After 35 d, faba beans treated with maize root exudate continued to show up-regulation of key nodulation genes, such as early nodulin 93 (ENOD93), and promoted nitrogen fixation. Our results reveal a mechanism for how intercropped maize promotes nitrogen fixation of faba bean, where maize root exudates promote flavonoid synthesis in faba bean, increase nodulation, and stimulate nitrogen fixation after enhanced gene expression. These results indicate facilitative root-root interactions and provide a mechanism for a positive relationship between species diversity and ecosystem productivity.
Collapse
Affiliation(s)
- Bai Li
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yu-Ying Li
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Hua-Mao Wu
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Fang-Fang Zhang
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Chun-Jie Li
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xue-Xian Li
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Hans Lambers
- School of Plant Biology and Institute of Agriculture, University of Western Australia, Crawley, Perth, WA 6009, Australia
| | - Long Li
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China;
| |
Collapse
|
37
|
Dwivedi SL, Upadhyaya HD, Chung IM, De Vita P, García-Lara S, Guajardo-Flores D, Gutiérrez-Uribe JA, Serna-Saldívar SO, Rajakumar G, Sahrawat KL, Kumar J, Ortiz R. Exploiting Phenylpropanoid Derivatives to Enhance the Nutraceutical Values of Cereals and Legumes. FRONTIERS IN PLANT SCIENCE 2016; 7:763. [PMID: 27375635 PMCID: PMC4891577 DOI: 10.3389/fpls.2016.00763] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/17/2016] [Indexed: 05/29/2023]
Abstract
Phenylpropanoids are a diverse chemical class with immense health benefits that are biosynthesized from the aromatic amino acid L-phenylalanine. This article reviews the progress for accessing variation in phenylpropanoids in germplasm collections, the genetic and molecular basis of phenylpropanoid biosynthesis, and the development of cultivars dense in seed-phenylpropanoids. Progress is also reviewed on high-throughput assays, factors that influence phenylpropanoids, the site of phenylpropanoids accumulation in seed, Genotype × Environment interactions, and on consumer attitudes for the acceptance of staple foods rich in phenylpropanoids. A paradigm shift was noted in barley, maize, rice, sorghum, soybean, and wheat, wherein cultivars rich in phenylpropanoids are grown in Europe and North and Central America. Studies have highlighted some biological constraints that need to be addressed for development of high-yielding cultivars that are rich in phenylpropanoids. Genomics-assisted breeding is expected to facilitate rapid introgression into improved genetic backgrounds by minimizing linkage drag. More research is needed to systematically characterize germplasm pools for assessing variation to support crop genetic enhancement, and assess consumer attitudes to foods rich in phenylpropanoids.
Collapse
Affiliation(s)
- Sangam L. Dwivedi
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | - Hari D. Upadhyaya
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
- Department of Agronomy, Kansas State UniversityManhattan, KS, USA
- UWA Institute of Agriculture, University of Western AustraliaCrawley, WA, Australia
| | - Ill-Min Chung
- Department of Applied Life Science, College of Life and Environmental Science, Konkuk UniversitySeoul, Korea
| | - Pasquale De Vita
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per la CerealicolturaFoggia, Italy
| | - Silverio García-Lara
- Tecnológico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y CienciasMonterrey, Mexico
| | - Daniel Guajardo-Flores
- Tecnológico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y CienciasMonterrey, Mexico
| | - Janet A. Gutiérrez-Uribe
- Tecnológico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y CienciasMonterrey, Mexico
| | - Sergio O. Serna-Saldívar
- Tecnológico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y CienciasMonterrey, Mexico
| | - Govindasamy Rajakumar
- Department of Applied Life Science, College of Life and Environmental Science, Konkuk UniversitySeoul, Korea
| | - Kanwar L. Sahrawat
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | | | - Rodomiro Ortiz
- Swedish University of Agricultural SciencesAlnarp, Sweden
| |
Collapse
|
38
|
Lv Y, Zhang S, Wang J, Hu Y. Quantitative Proteomic Analysis of Wheat Seeds during Artificial Ageing and Priming Using the Isobaric Tandem Mass Tag Labeling. PLoS One 2016. [PMID: 27632285 DOI: 10.1371/journal.pone.016285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Wheat (Triticum aestivum L.) is an important crop worldwide. The physiological deterioration of seeds during storage and seed priming is closely associated with germination, and thus contributes to plant growth and subsequent grain yields. In this study, wheat seeds during different stages of artificial ageing (45°C; 50% relative humidity; 98%, 50%, 20%, and 1% Germination rates) and priming (hydro-priming treatment) were subjected to proteomics analysis through a proteomic approach based on the isobaric tandem mass tag labeling. A total of 162 differentially expressed proteins (DEPs) mainly involved in metabolism, energy supply, and defense/stress responses, were identified during artificial ageing and thus validated previous physiological and biochemical studies. These DEPs indicated that the inability to protect against ageing leads to the incremental decomposition of the stored substance, impairment of metabolism and energy supply, and ultimately resulted in seed deterioration. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the up-regulated proteins involved in seed ageing were mainly enriched in ribosome, whereas the down-regulated proteins were mainly accumulated in energy supply (starch and sucrose metabolism) and stress defense (ascorbate and aldarate metabolism). Proteins, including hemoglobin 1, oleosin, agglutinin, and non-specific lipid-transfer proteins, were first identified in aged seeds and might be regarded as new markers of seed deterioration. Of the identified proteins, 531 DEPs were recognized during seed priming compared with unprimed seeds. In contrast to the up-regulated DEPs in seed ageing, several up-regulated DEPs in priming were involved in energy supply (tricarboxylic acid cycle, glycolysis, and fatty acid oxidation), anabolism (amino acids, and fatty acid synthesis), and cell growth/division. KEGG and protein-protein interaction analysis indicated that the up-regulated proteins in seed priming were mainly enriched in amino acid synthesis, stress defense (plant-pathogen interactions, and ascorbate and aldarate metabolism), and energy supply (oxidative phosphorylation and carbon metabolism). Therefore, DEPs associated with seed ageing and priming can be used to characterize seed vigor and optimize germination enhancement treatments. This work reveals new proteomic insights into protein changes that occur during seed deterioration and priming.
Collapse
Affiliation(s)
- Yangyong Lv
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Shuaibing Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Yuansen Hu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
39
|
Schmidt J. Negative ion electrospray high-resolution tandem mass spectrometry of polyphenols. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:33-43. [PMID: 26757070 DOI: 10.1002/jms.3712] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/14/2015] [Accepted: 09/27/2015] [Indexed: 06/05/2023]
Abstract
Representative compounds with a 1,3-dihydroxybenzene substructure belonging to different important polyphenol classes (stilbenes, flavones, isoflavones, flavonols, flavanones, flavanols, phloroglucinols, anthraquinones and bisanthraquinones) were investigated based on detailed high-resolution tandem mass spectrometry measurements with an Orbitrap system under negative ion electrospray conditions. The mass spectral behaviour of these compound classes was compared among each other not only with respect to previously described losses of CO, CH2 CO and C3 O2 but also concerning the loss of CO2 and successive specific fragmentations. Furthermore, some unusual fragmentations such as the loss of a methyl radical during mass spectral decomposition are discussed. The obtained results demonstrate both similarities and differences in their mass spectral fragmentation under MS(n) conditions, allowing a characterization of the corresponding compound type. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jürgen Schmidt
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle/Saale, Germany
| |
Collapse
|
40
|
Wang N, Zheng Y, Duan N, Zhang Z, Ji X, Jiang S, Sun S, Yang L, Bai Y, Fei Z, Chen X. Comparative Transcriptomes Analysis of Red- and White-Fleshed Apples in an F1 Population of Malus sieversii f. niedzwetzkyana Crossed with M. domestica 'Fuji'. PLoS One 2015. [PMID: 26207813 PMCID: PMC4514764 DOI: 10.1371/journal.pone.0133468] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Transcriptome profiles of the red- and white-fleshed apples in an F1 segregating population of Malus sieversii f.Niedzwetzkyana and M.domestica ‘Fuji’ were generated using the next-generation high-throughput RNA sequencing (RNA-Seq) technology and compared. A total of 114 differentially expressed genes (DEGs) were obtained, of which 88 were up-regulated and 26 were down-regulated in red-fleshed apples. The 88 up-regulated genes were enriched with those related to flavonoid biosynthetic process and stress responses. Further analysis identified 22 genes associated with flavonoid biosynthetic process and 68 genes that may be related to stress responses. Furthermore, the expression of 20 up-regulated candidate genes (10 related to flavonoid biosynthesis, two encoding MYB transcription factors and eight related to stress responses) and 10 down-regulated genes were validated by quantitative real-time PCR. After exploring the possible regulatory network, we speculated that flavonoid metabolism might be involved in stress responses in red-fleshed apple. Our findings provide a theoretical basis for further enriching gene resources associated with flavonoid synthesis and stress responses of fruit trees and for breeding elite apples with high flavonoid content and/or increased stress tolerances.
Collapse
Affiliation(s)
- Nan Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| | - Yi Zheng
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, United States of America
| | - Naibin Duan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Centre of Crop Germ-plasm Resources, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Zongying Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| | - Xiaohao Ji
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| | - Shenghui Jiang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| | - Shasha Sun
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| | - Long Yang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai’an, Shandong, China
- Tobacco Laboratory, Shandong Agricultural University, Tai’An, Shandong, China
| | - Yang Bai
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, United States of America
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, United States of America
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai’an, Shandong, China
- * E-mail:
| |
Collapse
|
41
|
Rhodes DH, Hoffmann L, Rooney WL, Ramu P, Morris GP, Kresovich S. Genome-wide association study of grain polyphenol concentrations in global sorghum [Sorghum bicolor (L.) Moench] germplasm. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:10916-27. [PMID: 25272193 DOI: 10.1021/jf503651t] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Identifying natural variation of health-promoting compounds in staple crops and characterizing its genetic basis can help improve human nutrition through crop biofortification. Some varieties of sorghum, a staple cereal crop grown worldwide, have high concentrations of proanthocyanidins and 3-deoxyanthocyanidins, polyphenols with antioxidant and anti-inflammatory properties. We quantified total phenols, proanthocyanidins, and 3-deoxyanthocyanidins in a global sorghum diversity panel (n = 381) using near-infrared spectroscopy (NIRS), and characterized the patterns of variation with respect to geographic origin and botanical race. A genome-wide association study (GWAS) with 404,628 SNP markers identified novel quantitative trait loci for sorghum polyphenols, some of which colocalized with homologues of flavonoid pathway genes from other plants, including an orthologue of maize (Zea mays) Pr1 and a homologue of Arabidopsis (Arabidopsis thaliana) TT16. This survey of grain polyphenol variation in sorghum germplasm and catalog of flavonoid pathway loci may be useful to guide future enhancement of cereal polyphenols.
Collapse
Affiliation(s)
- Davina H Rhodes
- Department of Biological Sciences, University of South Carolina , Columbia, South Carolina 29208, United States
| | | | | | | | | | | |
Collapse
|
42
|
Galland M, Boutet-Mercey S, Lounifi I, Godin B, Balzergue S, Grandjean O, Morin H, Perreau F, Debeaujon I, Rajjou L. Compartmentation and Dynamics of Flavone Metabolism in Dry and Germinated Rice Seeds. ACTA ACUST UNITED AC 2014; 55:1646-59. [DOI: 10.1093/pcp/pcu095] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
The homoeologous genes encoding chalcone–flavanone isomerase in Triticum aestivum L.: Structural characterization and expression in different parts of wheat plant. Gene 2014; 538:334-41. [DOI: 10.1016/j.gene.2014.01.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 11/27/2013] [Accepted: 01/04/2014] [Indexed: 11/18/2022]
|
44
|
Zhang JJ, Li XQ, Sun JW, Jin SH. Nitric oxide functions as a signal in ultraviolet-B-induced baicalin accumulation in Scutellaria baicalensis suspension cultures. Int J Mol Sci 2014; 15:4733-46. [PMID: 24646913 PMCID: PMC3975422 DOI: 10.3390/ijms15034733] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 02/26/2014] [Accepted: 03/11/2014] [Indexed: 01/05/2023] Open
Abstract
Stress induced by ultraviolet-B (UV-B) irradiation stimulates the accumulation of various secondary metabolites in plants. Nitric oxide (NO) serves as an important secondary messenger in UV-B stress-induced signal transduction pathways. NO can be synthesized in plants by either enzymatic catalysis or an inorganic nitrogen pathway. The effects of UV-B irradiation on the production of baicalin and the associated molecular pathways in plant cells are poorly understood. In this study, nitric oxide synthase (NOS) activity, NO release and the generation of baicalin were investigated in cell suspension cultures of Scutellaria baicalensis exposed to UV-B irradiation. UV-B irradiation significantly increased NOS activity, NO release and baicalin biosynthesis in S. baicalensis cells. Additionally, exogenous NO supplied by the NO donor, sodium nitroprusside (SNP), led to a similar increase in the baicalin content as the UV-B treatment. The NOS inhibitor, Nω-nitro-l-arginine (LNNA), and NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) partially inhibited UV-B-induced NO release and baicalin accumulation. These results suggest that NO is generated by NOS or NOS-like enzymes and plays an important role in baicalin biosynthesis as part of the defense response of S. baicalensis cells to UV-B irradiation.
Collapse
Affiliation(s)
- Jin-Jie Zhang
- School of Marine Science, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Xue-Qin Li
- Tianmu College, Zhejiang A&F University, Zhuji 311800, Zhejiang, China.
| | - Jun-Wei Sun
- Department of Biology, College of Life Sciences, China Jiliang University, No. 258 Xueyuan Road, Hangzhou 310018, Zhejiang, China.
| | - Song-Heng Jin
- Tianmu College, Zhejiang A&F University, Zhuji 311800, Zhejiang, China.
| |
Collapse
|