1
|
Chang SL, Tsai YJ, Shieh JM, Wu WB. The novel thromboxane prostanoid receptor mediates CTGF production to drive human nasal fibroblast self-migration through NF-κB and PKCδ-CREB signaling pathways. J Cell Physiol 2024; 239:e31390. [PMID: 39104040 DOI: 10.1002/jcp.31390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
Chronic rhinosinusitis without nasal polyp (CRSsNP) is characterized by tissue repair/remodeling and the subepithelial stroma region in whose nasal mucosa has been reported by us to have thromboxane A2 (TXA2) prostanoid (TP) receptor and overexpress connective tissue growth factor (CTGF). Therefore, this study aimed to investigate the relationship between TP receptor activation and CTGF production/function in human CRSsNP nasal mucosa stromal fibroblasts. We found that TP agonists including U46619 and IBOP ([1S-[1α,2α(Z),3β(1E,3 S*),4α]]-7-[3-[3-hydroxy-4-(4-iodophenoxy)-1-butenyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid) could promote CTGF protein/messenger RNA expression and secretion. The pharmacological intervention and TP activation assay with U46619 identified the possible participation of PKCμ, PKCδ, nuclear factor-κB (NF-κB), and cyclic AMP response element-binding protein (CREB) phosphorylation/activation in the CTGF induction. Moreover, a phorbol ester-phorbol-12-myristate 13-acetate (PMA) exhibited a similar cellular signaling and CTGF production profile to that elicited by TP activation. However, further small interfering RNA interference analysis revealed that only NF-κB and PKCδ-CREB pathways were necessarily required for TP-mediated CTGF production, which could not be completely supported by those findings from PMA. Finally, in a functional assay, although CTGF did not affect fibroblast proliferation, TP-mediated CTGF could drive novel self-migration in fibroblasts both in the scratch/wound healing and transwell apparatus assays. Meanwhile, the overall staining for stress fibers and formation of the lamellipodia and filopodia-like structures was concomitantly increased in the treated migrating cells. Collectively, we provided here that novel TP mediates CTGF production and self-migration in human nasal fibroblasts through NF-κB and PKCδ-CREB signaling pathways. More importantly, we also demonstrated that thromboxane, TP receptor, CTGF, and stromal fibroblasts may act in concert in the tissue remodeling/repair process during CRSsNP development and progression.
Collapse
Affiliation(s)
- Shih-Lun Chang
- Department of Otorhinolaryngology, Chi Mei Medical Center, Yongkang District, Tainan, Taiwan
- Department of Pet Care and Grooming, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Yih-Jeng Tsai
- Department of Otolaryngology Head and Neck Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Jiunn-Min Shieh
- Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Wen-Bin Wu
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
2
|
Rischke S, Schäfer SMG, König A, Ickelsheimer T, Köhm M, Hahnefeld L, Zaliani A, Scholich K, Pinter A, Geisslinger G, Behrens F, Gurke R. Metabolomic and lipidomic fingerprints in inflammatory skin diseases - Systemic illumination of atopic dermatitis, hidradenitis suppurativa and plaque psoriasis. Clin Immunol 2024; 265:110305. [PMID: 38972618 DOI: 10.1016/j.clim.2024.110305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/17/2024] [Accepted: 06/26/2024] [Indexed: 07/09/2024]
Abstract
Auto-inflammatory skin diseases place considerable symptomatic and emotional burden on the affected and put pressure on healthcare expenditures. Although most apparent symptoms manifest on the skin, the systemic inflammation merits a deeper analysis beyond the surface. We set out to identify systemic commonalities, as well as differences in the metabolome and lipidome when comparing between diseases and healthy controls. Lipidomic and metabolomic LC-MS profiling was applied, using plasma samples collected from patients suffering from atopic dermatitis, plaque-type psoriasis or hidradenitis suppurativa or healthy controls. Plasma profiles revealed a notable shift in the non-enzymatic anti-oxidant defense in all three inflammatory disorders, placing cysteine metabolism at the center of potential dysregulation. Lipid network enrichment additionally indicated the disease-specific provision of lipid mediators associated with key roles in inflammation signaling. These findings will help to disentangle the systemic components of autoimmune dermatological diseases, paving the way to individualized therapy and improved prognosis.
Collapse
Affiliation(s)
- S Rischke
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - S M G Schäfer
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - A König
- Goethe University Frankfurt, University Hospital, Department of Dermatology, Venereology, and Allergology, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - T Ickelsheimer
- Goethe University Frankfurt, University Hospital, Department of Dermatology, Venereology, and Allergology, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - M Köhm
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Goethe University Frankfurt, University Hospital, Division of Rheumatology, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - L Hahnefeld
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - A Zaliani
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - K Scholich
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - A Pinter
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Goethe University Frankfurt, University Hospital, Department of Dermatology, Venereology, and Allergology, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - G Geisslinger
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - F Behrens
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Goethe University Frankfurt, University Hospital, Division of Rheumatology, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - R Gurke
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
3
|
Petrucci G, Buck GA, Rocca B, Parish S, Baigent C, Hatem D, Mafham M, Habib A, Bowman L, Armitage J, Patrono C. Thromboxane biosynthesis and future events in diabetes: the ASCEND trial. Eur Heart J 2024; 45:1355-1367. [PMID: 38385506 PMCID: PMC11015956 DOI: 10.1093/eurheartj/ehad868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/09/2023] [Accepted: 12/19/2023] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND AND AIMS Thromboxane (TX) A2, released by activated platelets, plays an important role in atherothrombosis. Urinary 11-dehydro-TXB2 (U-TXM), a stable metabolite reflecting the whole-body TXA2 biosynthesis, is reduced by ∼70% by daily low-dose aspirin. The U-TXM represents a non-invasive biomarker of in vivo platelet activation and is enhanced in patients with diabetes. This study assessed whether U-TXM is associated with the risk of future serious vascular events or revascularizations (SVE-R), major bleeding, or cancer in patients with diabetes. METHODS The U-TXM was measured pre-randomization to aspirin or placebo in 5948 people with type 1 or 2 diabetes and no cardiovascular disease, in the ASCEND trial. Associations between log U-TXM and SVE-R (n = 618), major bleed (n = 206), and cancer (n = 700) during 6.6 years of follow-up were investigated by Cox regression; comparisons of these associations with the effects of randomization to aspirin were made. RESULTS Higher U-TXM was associated with older age, female sex, current smoking, type 2 diabetes, higher body size, urinary albumin/creatinine ratio of ≥3 mg/mmol, and higher estimated glomerular filtration rate. After adjustment for these, U-TXM was marginally statistically significantly associated with SVE-R and major bleed but not cancer [hazard ratios per 1 SD higher log U-TXM (95% confidence interval): 1.09 (1.00-1.18), 1.16 (1.01-1.34), and 1.06 (0.98-1.14)]. The hazard ratio was similar to that implied by the clinical effects of randomization to aspirin for SVE-R but not for major bleed. CONCLUSIONS The U-TXM was log-linearly independently associated with SVE-R in diabetes. This is consistent with the involvement of platelet TXA2 in diabetic atherothrombosis.
Collapse
Affiliation(s)
- Giovanna Petrucci
- Section of Pharmacology, Catholic University School of Medicine, Largo F. Vito 1, Rome 00168, Italy
| | - Georgina A Buck
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford OX3 7LF, UK
| | - Bianca Rocca
- Section of Pharmacology, Catholic University School of Medicine, Largo F. Vito 1, Rome 00168, Italy
| | - Sarah Parish
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford OX3 7LF, UK
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford OX3 7LF, UK
| | - Colin Baigent
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford OX3 7LF, UK
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford OX3 7LF, UK
| | - Duaa Hatem
- Section of Pharmacology, Catholic University School of Medicine, Largo F. Vito 1, Rome 00168, Italy
| | - Marion Mafham
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford OX3 7LF, UK
| | - Aida Habib
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Louise Bowman
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford OX3 7LF, UK
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford OX3 7LF, UK
| | - Jane Armitage
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford OX3 7LF, UK
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford OX3 7LF, UK
| | - Carlo Patrono
- Section of Pharmacology, Catholic University School of Medicine, Largo F. Vito 1, Rome 00168, Italy
| |
Collapse
|
4
|
Meng YW, Liu JY. Pathological and pharmacological functions of the metabolites of polyunsaturated fatty acids mediated by cyclooxygenases, lipoxygenases, and cytochrome P450s in cancers. Pharmacol Ther 2024; 256:108612. [PMID: 38369063 DOI: 10.1016/j.pharmthera.2024.108612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
Oxylipins have garnered increasing attention because they were consistently shown to play pathological and/or pharmacological roles in the development of multiple cancers. Oxylipins are the metabolites of polyunsaturated fatty acids via both enzymatic and nonenzymatic pathways. The enzymes mediating the metabolism of PUFAs include but not limited to lipoxygenases (LOXs), cyclooxygenases (COXs), and cytochrome P450s (CYPs) pathways, as well as the down-stream enzymes. Here, we systematically summarized the pleiotropic effects of oxylipins in different cancers through pathological and pharmacological aspects, with specific reference to the enzyme-mediated oxylipins. We discussed the specific roles of oxylipins on cancer onset, growth, invasion, and metastasis, as well as the expression changes in the associated metabolic enzymes and the associated underlying mechanisms. In addition, we also discussed the clinical application and potential of oxylipins and related metabolic enzymes as the targets for cancer prevention and treatment. We found the specific function of most oxylipins in cancers, especially the underlying mechanisms and clinic applications, deserves and needs further investigation. We believe that research on oxylipins will provide not only more therapeutic targets for various cancers but also dietary guidance for both cancer patients and healthy humans.
Collapse
Affiliation(s)
- Yi-Wen Meng
- CNTTI of the Institute of Life Sciences & Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing 400016, China
| | - Jun-Yan Liu
- CNTTI of the Institute of Life Sciences & Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing 400016, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
5
|
Poustforoosh A, Faramarz S, Negahdaripour M, Tüzün B, Hashemipour H. Tracing the pathways and mechanisms involved in the anti-breast cancer activity of glycyrrhizin using bioinformatics tools and computational methods. J Biomol Struct Dyn 2024; 42:819-833. [PMID: 37042955 DOI: 10.1080/07391102.2023.2196347] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/22/2023] [Indexed: 04/13/2023]
Abstract
A complete investigation to understand the pathways that could be affected by glycyrrhizin (licorice), as anti-breast cancer (BC) agent, has not been performed to date. This study aims to investigate the pathways involved in the anti-cancer activity of glycyrrhizin against BC. For this purpose, the target genes of glycyrrhizin were obtained from the ChEMBL database. The BC-associated genes for three types of BC (breast carcinoma, malignant neoplasm of breast, and triple-negative breast neoplasms) were retrieved from DisGeNET. The target genes of glycyrrhizin and the BC-associated genes were compared, and the genes with disease specificity index (DSI) > 0.6 were selected for further evaluation using in silico methods. The protein-protein interaction (PPI) network was constructed, and the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed. The potential complexes were further evaluated using molecular dynamics (MD) simulation. The results revealed that among 80 common genes, ten genes had DSI greater than 0.6, which included POLK, TACR2, MC3R, TBXAS1, HH1R, SLCO4A1, NPY2R, ADRA2C, ADRA1A, and SLCO2B1. The binding affinity of glycyrrhizin to the cognate proteins and binding characteristics were assessed using molecular docking and binding free energy calculations (MM/GBSA). POLK, TBXAS1, and ADRA1A showed the highest binding affinity with -8.9, -9.3, and -9.6 kcal/mol, respectively. The final targets had an association with BC at several stages of tumor growth. By affecting these targets, glycyrrhizin could influence and control BC efficiently. MD simulation suggested the pathways triggered by the complex glycyrrhizin-ADRA1A were more likely to happen.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Alireza Poustforoosh
- Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Faramarz
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Turkey
| | - Hassan Hashemipour
- Chemical Engineering Department, Faculty of Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
6
|
Majima M, Hosono K, Ito Y, Amano H, Nagashima Y, Matsuda Y, Watanabe SI, Nishimura H. A biologically active lipid, thromboxane, as a regulator of angiogenesis and lymphangiogenesis. Biomed Pharmacother 2023; 163:114831. [PMID: 37150029 DOI: 10.1016/j.biopha.2023.114831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/13/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023] Open
Abstract
Thromboxane (TX) and prostaglandins are metabolites of arachidonic acid, a twenty-carbon unsaturated fatty acid, and have a variety of actions that are exerted via specific receptors. Angiogenesis is defined as the formation of new blood vessels from pre-existing vascular beds and is a critical component of pathological conditions, including inflammation and cancer. Lymphatic vessels play crucial roles in the regulation of interstitial fluid, immune surveillance, and the absorption of dietary fat from the intestine; and they are also involved in the pathogenesis of various diseases. Similar to angiogenesis, lymphangiogenesis, the formation of new lymphatic vessels, is a critical component of pathological conditions. The TP-dependent accumulation of platelets in microvessels has been reported to enhance angiogenesis under pathological conditions. Although the roles of some growth factors and cytokines in angiogenesis and lymphangiogenesis have been well characterized, accumulating evidence suggests that TX induces the production of proangiogenic and prolymphangiogenic factors through the activation of adenylate cyclase, and upregulates angiogenesis and lymphangiogenesis under disease conditions. In this review, we discuss the role of TX as a regulator of angiogenesis and lymphangiogenesis, and its emerging importance as a therapeutic target.
Collapse
Affiliation(s)
- Masataka Majima
- Department of Medical Therapeutics, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan; Department of Pharmacology, Kitasato University School of Medicine and Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan.
| | - Kanako Hosono
- Department of Pharmacology, Kitasato University School of Medicine and Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Yoshiya Ito
- Department of Pharmacology, Kitasato University School of Medicine and Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Hideki Amano
- Department of Pharmacology, Kitasato University School of Medicine and Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Yoshinao Nagashima
- Department of Medical Therapeutics, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan; Tokyo Research Laboratories, Kao Corporation, 2-1-3, Bunka, Sumida-ku, Tokyo 131-8501, Japan
| | - Yasuhiro Matsuda
- Department of Life Support Engineering, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Shin-Ichi Watanabe
- Department of Exercise Physiology and Health Sciences, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Hironobu Nishimura
- Department of Biological Information, Faculty of Health and Medical Sciences, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
| |
Collapse
|
7
|
Mulvaney EP, Renzo F, Adão R, Dupre E, Bialesova L, Salvatore V, Reid HM, Conceição G, Grynblat J, Llucià-Valldeperas A, Michel JB, Brás-Silva C, Laurent CE, Howard LS, Montani D, Humbert M, Vonk Noordegraaf A, Perros F, Mendes-Ferreira P, Kinsella BT. The thromboxane receptor antagonist NTP42 promotes beneficial adaptation and preserves cardiac function in experimental models of right heart overload. Front Cardiovasc Med 2022; 9:1063967. [PMID: 36588576 PMCID: PMC9794752 DOI: 10.3389/fcvm.2022.1063967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Background Pulmonary arterial hypertension (PAH) is a progressive disease characterized by increased pulmonary artery pressure leading to right ventricular (RV) failure. While current PAH therapies improve patient outlook, they show limited benefit in attenuating RV dysfunction. Recent investigations demonstrated that the thromboxane (TX) A2 receptor (TP) antagonist NTP42 attenuates experimental PAH across key hemodynamic parameters in the lungs and heart. This study aimed to validate the efficacy of NTP42:KVA4, a novel oral formulation of NTP42 in clinical development, in preclinical models of PAH while also, critically, investigating its direct effects on RV dysfunction. Methods The effects of NTP42:KVA4 were evaluated in the monocrotaline (MCT) and pulmonary artery banding (PAB) models of PAH and RV dysfunction, respectively, and when compared with leading standard-of-care (SOC) PAH drugs. In addition, the expression of the TP, the target for NTP42, was investigated in cardiac tissue from several other related disease models, and from subjects with PAH and dilated cardiomyopathy (DCM). Results In the MCT-PAH model, NTP42:KVA4 alleviated disease-induced changes in cardiopulmonary hemodynamics, pulmonary vascular remodeling, inflammation, and fibrosis, to a similar or greater extent than the PAH SOCs tested. In the PAB model, NTP42:KVA4 improved RV geometries and contractility, normalized RV stiffness, and significantly increased RV ejection fraction. In both models, NTP42:KVA4 promoted beneficial RV adaptation, decreasing cellular hypertrophy, and increasing vascularization. Notably, elevated expression of the TP target was observed both in RV tissue from these and related disease models, and in clinical RV specimens of PAH and DCM. Conclusion This study shows that, through antagonism of TP signaling, NTP42:KVA4 attenuates experimental PAH pathophysiology, not only alleviating pulmonary pathologies but also reducing RV remodeling, promoting beneficial hypertrophy, and improving cardiac function. The findings suggest a direct cardioprotective effect for NTP42:KVA4, and its potential to be a disease-modifying therapy in PAH and other cardiac conditions.
Collapse
Affiliation(s)
- Eamon P. Mulvaney
- ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Fabiana Renzo
- ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Rui Adão
- Department of Surgery and Physiology, Cardiovascular R&D Centre—UnIC@RISE, Faculty of Medicine of the University of Porto, Porto, Portugal
| | | | - Lucia Bialesova
- ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Viviana Salvatore
- ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Helen M. Reid
- ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Glória Conceição
- Department of Surgery and Physiology, Cardiovascular R&D Centre—UnIC@RISE, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Julien Grynblat
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France,INSERM UMR_S 999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Aida Llucià-Valldeperas
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC (Location VUMC), Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands,Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, Netherlands
| | | | - Carmen Brás-Silva
- Department of Surgery and Physiology, Cardiovascular R&D Centre—UnIC@RISE, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Charles E. Laurent
- IPS Therapeutique Inc., Sherbrooke, QC, Canada,ToxiPharm Laboratories Inc., Ste-Catherine-de-Hatley, QC, Canada
| | - Luke S. Howard
- Imperial College London, National Heart and Lung Institute, London, United Kingdom
| | - David Montani
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France,INSERM UMR_S 999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France,AP-HP, Dept of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Marc Humbert
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France,INSERM UMR_S 999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France,AP-HP, Dept of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Anton Vonk Noordegraaf
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC (Location VUMC), Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Frédéric Perros
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France,INSERM UMR_S 999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France,Paris-Porto Pulmonary Hypertension Collaborative Laboratory (3PH), INSERM UMR_S 999, Université Paris-Saclay, Le Kremlin-Bicêtre, France,INSERM, INRAE, CarMeN Laboratory and Centre de Recherche en Nutrition Humaine Rhône-Alpes (CRNH-RA), Claude Bernard University Lyon 1, University of Lyon, Lyon, France
| | - Pedro Mendes-Ferreira
- Department of Surgery and Physiology, Cardiovascular R&D Centre—UnIC@RISE, Faculty of Medicine of the University of Porto, Porto, Portugal,Paris-Porto Pulmonary Hypertension Collaborative Laboratory (3PH), INSERM UMR_S 999, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - B. Therese Kinsella
- ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland,UCD School of Biomolecular and Biomedical Research, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland,*Correspondence: B. Therese Kinsella,
| |
Collapse
|
8
|
The Role and Regulation of Thromboxane A2 Signaling in Cancer-Trojan Horses and Misdirection. Molecules 2022; 27:molecules27196234. [PMID: 36234768 PMCID: PMC9573598 DOI: 10.3390/molecules27196234] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
Over the last two decades, there has been an increasing awareness of the role of eicosanoids in the development and progression of several types of cancer, including breast, prostate, lung, and colorectal cancers. Several processes involved in cancer development, such as cell growth, migration, and angiogenesis, are regulated by the arachidonic acid derivative thromboxane A2 (TXA2). Higher levels of circulating TXA2 are observed in patients with multiple cancers, and this is accompanied by overexpression of TXA2 synthase (TBXAS1, TXA2S) and/or TXA2 receptors (TBXA2R, TP). Overexpression of TXA2S or TP in tumor cells is generally associated with poor prognosis, reduced survival, and metastatic disease. However, the role of TXA2 signaling in the stroma during oncogenesis has been underappreciated. TXA2 signaling regulates the tumor microenvironment by modulating angiogenic potential, tumor ECM stiffness, and host immune response. Moreover, the by-products of TXA2S are highly mutagenic and oncogenic, adding to the overall phenotype where TXA2 synthesis promotes tumor formation at various levels. The stability of synthetic enzymes and receptors in this pathway in most cancers (with few mutations reported) suggests that TXA2 signaling is a viable target for adjunct therapy in various tumors to reduce immune evasion, primary tumor growth, and metastasis.
Collapse
|
9
|
Lin H, Xu Y, Zheng Y, Wu D, Ye Z, Xiao J. The association of urinary prostaglandins with uric acid in hyperuricemia patients. BMC Nephrol 2022; 23:302. [PMID: 36057582 PMCID: PMC9441060 DOI: 10.1186/s12882-022-02928-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose To explore the association between uric acid and urinary prostaglandins in male patients with hyperuricemia. Methods A total of 38 male patients with hyperuricemia in outpatients of Huadong Hospital from July 2018 to January 2020 were recruited. Serum uric acid (SUA), 24 h urinary uric acid excretion and other indicators were detected respectively. 10 ml urine was taken to determine prostaglandin prostaglandin D (PGD), prostaglandin E1 (PGE1), prostaglandin E2 (PGE2), 6-keto-PGF1α, thromboxane A2 (TXA2) and thromboxane B2 (TXB2). Fraction of uric acid excretion (FEua) and uric acid clearance rate (Cua) were calculated. According to the mean value of FEua and Cua, patients were divided into two groups, respectively. The independent-samples t test and the Mann–Whitney U test were applied for normally and non-normally distributed data, respectively. Results After adjusting confounding factors (age, BMI, eGFR, TG, TC, HDL and LDL), SUA was negatively correlated with urinary PGE1(r = -0.615, P = 0.009) and PGE2(r = -0.824, P < 0.001). Compared with SUA1 group (SUA < 482.6 mg/dl), SUA2 (SUA \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\ge$$\end{document}≥ 482.6 mg/dl) had lower urinary PGE1(P = 0.022) and PGE2(P = 0.019) levels. Cua was positively correlated with PGE2 (r = 0.436, P = 0.01). The correlation persisted after adjustment for age, BMI, eGFR, TG, TC, HDL and LDL by multiple linear regression analysis. In the Cua1 group (Cua < 4.869 mL /min/1.73 m2), PGE2 were lower than that in Cua2 (Cua \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\ge$$\end{document}≥ 4.869 mL /min/1.73 m2) group (P = 0.011). Conclusions In male patients with hyperuricemia, SUA was negatively correlated with urinary PGE2, Cua was positively correlated with urinary PGE2. Urinary PGE2 were significantly different between different SUA and Cua groups.
Collapse
Affiliation(s)
- Huagang Lin
- Department of Nephrology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, P.R. China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, P.R. China
| | - Ying Xu
- Department of Nephrology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, P.R. China
| | - Yuqi Zheng
- Department of Nephrology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, P.R. China
| | - Deping Wu
- Department of Nephrology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, P.R. China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, P.R. China
| | - Zhibin Ye
- Department of Nephrology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, P.R. China. .,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, P.R. China.
| | - Jing Xiao
- Department of Nephrology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, P.R. China. .,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, P.R. China.
| |
Collapse
|
10
|
Gubbala VB, Jytosana N, Trinh VQ, Maurer HC, Naeem RF, Lytle NK, Ma Z, Zhao S, Lin W, Han H, Shi Y, Hunter T, Singh PK, Olive KP, Tan MC, Kaech SM, Wahl GM, DelGiorno KE. Eicosanoids in the pancreatic tumor microenvironment - a multicellular, multifaceted progression. GASTRO HEP ADVANCES 2022; 1:682-697. [PMID: 36277993 PMCID: PMC9583893 DOI: 10.1016/j.gastha.2022.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND AIMS Eicosanoids, oxidized fatty acids that serve as cell-signaling molecules, have been broadly implicated in tumorigenesis. Here, we aimed to identify eicosanoids associated with pancreatic tumorigenesis and the cell types responsible for their synthesis. METHODS We profiled normal pancreas and pancreatic ductal adenocarcinoma (PDAC) in mouse models and patient samples using mass spectrometry. We interrogated RNA sequencing datasets for eicosanoid synthase or receptor expression. Findings were confirmed by immunostaining. RESULTS In murine models, we identified elevated levels of PGD2, prostacyclin, and thromboxanes in neoplasia while PGE2, 12-HHTre, HETEs, and HDoHEs are elevated specifically in tumors. Analysis of scRNA-seq datasets suggests that PGE2 and prostacyclins are derived from fibroblasts, PGD2 and thromboxanes from myeloid cells, and PGD2 and 5-HETE from tuft cells. In patient samples, we identified a transition from PGD2 to PGE2-producing enzymes in the epithelium during the transition to PDAC, fibroblast/tumor expression of PTGIS, and myeloid/tumor cell expression of TBXAS1. CONCLUSIONS Our analyses identify key changes in eicosanoid species during pancreatic tumorigenesis and the cell types that contribute to their synthesis. Thromboxane and prostacyclin expression is conserved between animal models and human disease and may represent new druggable targets.
Collapse
Affiliation(s)
- Vikas B. Gubbala
- Gene Expression Laboratory, Salk Institute for Biological
Studies, La Jolla, CA, 92037
| | - Nidhi Jytosana
- Department of Cell and Developmental Biology, Vanderbilt
University, Nashville, TN, 37232
| | - Vincent Q. Trinh
- Department of Surgery, Vanderbilt University Medical
Center, Nashville, TN, 37232
| | - H. Carlo Maurer
- Department of Medicine, Herbert Irving Comprehensive Cancer
Center, Columbia University Irving Medical Center, New York, NY, 10032
- Internal Medicine II, School of Medicine, Technische
Universität München, Munich, Germany
| | - Razia F. Naeem
- Gene Expression Laboratory, Salk Institute for Biological
Studies, La Jolla, CA, 92037
| | - Nikki K. Lytle
- Gene Expression Laboratory, Salk Institute for Biological
Studies, La Jolla, CA, 92037
| | - Zhibo Ma
- Gene Expression Laboratory, Salk Institute for Biological
Studies, La Jolla, CA, 92037
| | - Steven Zhao
- Immunobiology and Microbial Pathogenesis Laboratory, Salk
Institute for Biological Studies, La Jolla, CA, 92037
| | - Wei Lin
- Molecular Medicine Division, Translational Genomics
Research Institute, Phoenix, AZ, 85004
| | - Haiyong Han
- Molecular Medicine Division, Translational Genomics
Research Institute, Phoenix, AZ, 85004
| | - Yu Shi
- Molecular and Cell Biology Laboratory, Salk Institute for
Biological Studies, La Jolla, CA, 92037
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for
Biological Studies, La Jolla, CA, 92037
| | - Pankaj K. Singh
- Eppley Institute for Research in Cancer, University of
Nebraska Medical Center, Omaha, NE, 68198
| | - Kenneth P. Olive
- Department of Medicine, Herbert Irving Comprehensive Cancer
Center, Columbia University Irving Medical Center, New York, NY, 10032
| | - Marcus C.B. Tan
- Department of Surgery, Vanderbilt University Medical
Center, Nashville, TN, 37232
- Vanderbilt Digestive Disease Research Center, Vanderbilt
University Medical Center, Nashville, TN, 37232
- Vanderbilt Ingram Cancer Center, Nashville, TN,
37232
| | - Susan M. Kaech
- Immunobiology and Microbial Pathogenesis Laboratory, Salk
Institute for Biological Studies, La Jolla, CA, 92037
| | - Geoffrey M. Wahl
- Gene Expression Laboratory, Salk Institute for Biological
Studies, La Jolla, CA, 92037
| | - Kathleen E. DelGiorno
- Department of Cell and Developmental Biology, Vanderbilt
University, Nashville, TN, 37232
- Vanderbilt Digestive Disease Research Center, Vanderbilt
University Medical Center, Nashville, TN, 37232
- Vanderbilt Ingram Cancer Center, Nashville, TN,
37232
| |
Collapse
|
11
|
Wang X, Zhao S, Wang Z, Gao T. Platelets involved tumor cell EMT during circulation: communications and interventions. Cell Commun Signal 2022; 20:82. [PMID: 35659308 PMCID: PMC9166407 DOI: 10.1186/s12964-022-00887-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/24/2022] [Indexed: 12/18/2022] Open
Abstract
AbstractDistant spreading of metastatic tumor cells is still the leading cause of tumor death. Metastatic spreading is a complex process, in which epithelial-mesenchymal transition (EMT) is the primary and key event to promote it. Presently, extensive reviews have given insights on the occurrence of EMT at the primary tumor site that depends on invasive properties of tumor cells and the tumor-associated microenvironment. However, essential roles of circulation environment involved in tumor cell EMT is not well summarized. As a main constituent of the blood, platelet is increasingly found to work as an important activator to induce EMT. Therefore, this review aims to emphasize the novel role of platelet in EMT through signal communications between platelets and circulation tumor cells, and illustrate potent interventions aiming at their communications. It may give a complementary view of EMT in addition to the tissue microenvironment, help for better understand the hematogenous metastasis, and also illustrate theoretical and practical basis for the targeted inhibition.
Collapse
|
12
|
Ji Y, Li R, Tian Y, Chen G, Yan A. Classification models and SAR analysis on thromboxane A 2 synthase inhibitors by machine learning methods. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:429-462. [PMID: 35678125 DOI: 10.1080/1062936x.2022.2078880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Thromboxane A2 synthase (TXS) is a promising drug target for cardiovascular diseases and cancer. In this work, we conducted a structure-activity relationship (SAR) study on 526 TXS inhibitors for bioactivity prediction. Three types of descriptors (MACCS fingerprints, ECFP4 fingerprints, and MOE descriptors) were utilized to characterize inhibitors, 24 classification models were developed by support vector machine (SVM), random forest (RF), extreme gradient boosting (XGBoost), and deep neural networks (DNN). Then we reduced the number of fingerprints according to the contribution of descriptors to the models, and constructed 16 extra models on simplified fingerprints. In general, Model_4D built by DNN algorithm and 67 bits MACCS fingerprints performs best. The prediction accuracy of the model on the test set is 0.969, and Matthews correlation coefficient (MCC) is 0.936. The distance between compound and model (dSTD-PRO) was used to characterize the application domain of the model. In the test set of Model_4D, dSTD-PRO of 91.5% compounds is lower than the corresponding training set threshold (threshold0.90 = 0.1055), and the accuracy of these compounds is 0.983. In addition, the important descriptors were summarized and further analyzed. It showed that aromatic nitrogenous heterocyclic groups were beneficial to improve the bioactivity of TXS inhibitors.
Collapse
Affiliation(s)
- Y Ji
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - R Li
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Y Tian
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - G Chen
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - A Yan
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| |
Collapse
|
13
|
Rade JJ, Barton BA, Vasan RS, Kronsberg SS, Xanthakis V, Keaney JF, Hamburg NM, Kakouros N, Kickler TA. Association of Thromboxane Generation With Survival in Aspirin Users and Nonusers. J Am Coll Cardiol 2022; 80:233-250. [PMID: 35660296 DOI: 10.1016/j.jacc.2022.04.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Persistent systemic thromboxane generation, predominantly from nonplatelet sources, in aspirin (ASA) users with cardiovascular disease (CVD) is a mortality risk factor. OBJECTIVES This study sought to determine the mortality risk associated with systemic thromboxane generation in an unselected population irrespective of ASA use. METHODS Stable thromboxane B2 metabolites (TXB2-M) were measured by enzyme-linked immunosorbent assay in banked urine from 3,044 participants (mean age 66 ± 9 years, 53.8% women) in the Framingham Heart Study. The association of TXB2-M to survival over a median observation period of 11.9 years (IQR: 10.6-12.7 years) was determined by multivariable modeling. RESULTS In 1,363 (44.8%) participants taking ASA at the index examination, median TXB2-M were lower than in ASA nonusers (1,147 pg/mg creatinine vs 4,179 pg/mg creatinine; P < 0.0001). TXB2-M were significantly associated with all-cause and cardiovascular mortality irrespective of ASA use (HR: 1.96 and 2.41, respectively; P < 0.0001 for both) for TXB2-M in the highest quartile based on ASA use compared with lower quartiles, and remained significant after adjustment for mortality risk factors for similarly aged individuals (HR: 1.49 and 1.82, respectively; P ≤ 0.005 for both). In 2,353 participants without CVD, TXB2-M were associated with cardiovascular mortality in ASA nonusers (adjusted HR: 3.04; 95% CI: 1.29-7.16) but not in ASA users, while ASA use was associated with all-cause mortality in those with low (adjusted HR: 1.46; 95% CI: 1.14-1.87) but not elevated TXB2-M. CONCLUSIONS Systemic thromboxane generation is an independent risk factor for all-cause and cardiovascular mortality irrespective of ASA use, and its measurement may be useful for therapy modification, particularly in those without CVD.
Collapse
Affiliation(s)
- Jeffrey J Rade
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; Johns Hopkins School of Medicine, Baltimore, Maryland, USA.
| | - Bruce A Barton
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | | | - Shari S Kronsberg
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | | | - John F Keaney
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; Boston University School of Medicine, Boston, Massachusetts, USA
| | - Naomi M Hamburg
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Nikolaos Kakouros
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | | |
Collapse
|
14
|
Tunca Koyun M, Sirin S, Aslim B, Taner G, Nigdelioglu Dolanbay S. Characterization of prodigiosin pigment by Serratia marcescens and the evaluation of its bioactivities. Toxicol In Vitro 2022; 82:105368. [PMID: 35476923 DOI: 10.1016/j.tiv.2022.105368] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 11/19/2022]
Abstract
The aim of the present study is to discover a bacterial pigment providing protection and prevention of neurological damage and cancer development, which can have a role as a non-synthetic food additive in the food industry as well as an active drug ingredient of anticancer drugs and pharmaceuticals for neural injury. Within this scope, Serratia marcescens MB703 strain was used to produce prodigiosin. Characterization of the prodigiosin was carried out using UV-VIS, and FT-IR. In addition, its inhibitory action on AChE and antioxidant activities were determined. The cytotoxic, genotoxic and antigenotoxic activities of the prodigiosin as well as its antiproliferative activities were detected. It was determined that the maximum production of the prodigiosin (72 mg/L). The prodigiosin was found to cause no significant difference in its inhibitory effect on AChE. The prodigiosin was found effective on all antioxidant parameters tested. The IC50 values of the prodigiosin on SK-MEL-30 and HT-29 cells were calculated as 70 and 47 μM, respectively. This IC50 values of the prodigiosin showed no cytotoxic effect on L929 cells. Prodigiosin did not have genotoxic effect alone and also seem to decrease DNA damage induced by H2O2 in L929 cells. The findings of in vitro experimental studies suggest that using the prodigiosin pigment as a drug candidate for cancer and neurodegenerative disease therapy is both effective and safe.
Collapse
Affiliation(s)
- Merve Tunca Koyun
- Department of Biology, Faculty of Science, Gazi University, 06500 Teknikokullar, Ankara, Turkey; Department of Bioengineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Turkey.
| | - Seda Sirin
- Department of Biology, Faculty of Science, Gazi University, 06500 Teknikokullar, Ankara, Turkey
| | - Belma Aslim
- Department of Biology, Faculty of Science, Gazi University, 06500 Teknikokullar, Ankara, Turkey
| | - Gokce Taner
- Department of Bioengineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Turkey
| | | |
Collapse
|
15
|
Kida T, Yamazaki A, Kobayashi K, Nakamura T, Nakagawa T, Nishimura R, Murata T. The profile of urinary lipid metabolites in healthy dogs. J Vet Med Sci 2022; 84:644-647. [PMID: 35321995 PMCID: PMC9177396 DOI: 10.1292/jvms.22-0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Polyunsaturated fatty acids, including arachidonic acid (AA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA), are converted to hundreds of lipid mediators by cyclooxygenases
(COX), lipoxygenases (LOX), and cytochrome P450 (CYP), or through non-enzymatic processes, and they reflect inflammatory states of the body. We comprehensively analyzed lipid metabolites in
dog urine using a liquid chromatograph-mass spectrometry (LC-MS/MS) to describe their metabolic characteristics. We detected 31 AA-derived metabolites, four EPA-derived metabolites, and a
DHA-derived metabolite in all urine samples. Among AA-derived metabolites, 15, 5, 3, and 8 were generated by COX, LOX, CYP, and non-enzymatic oxidation respectively. This study will be the
first step to use profiles of urinary lipid metabolites for better understanding and diagnosis of canine diseases.
Collapse
Affiliation(s)
- Taiki Kida
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Arisa Yamazaki
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Koji Kobayashi
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Tatsuro Nakamura
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Ryohei Nishimura
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Takahisa Murata
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| |
Collapse
|
16
|
Carlile GW, Yang Q, Matthes E, Liao J, Birault V, Sneddon HF, Poole DL, Hall CJ, Hanrahan JW, Thomas DY. The NSAID glafenine rescues class 2 CFTR mutants via cyclooxygenase 2 inhibition of the arachidonic acid pathway. Sci Rep 2022; 12:4595. [PMID: 35302062 PMCID: PMC8930988 DOI: 10.1038/s41598-022-08661-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/09/2022] [Indexed: 12/12/2022] Open
Abstract
Most cases of cystic fibrosis (CF) are caused by class 2 mutations in the cystic fibrosis transmembrane regulator (CFTR). These proteins preserve some channel function but are retained in the endoplasmic reticulum (ER). Partial rescue of the most common CFTR class 2 mutant, F508del-CFTR, has been achieved through the development of pharmacological chaperones (Tezacaftor and Elexacaftor) that bind CFTR directly. However, it is not clear whether these drugs will rescue all class 2 CFTR mutants to a medically relevant level. We have previously shown that the nonsteroidal anti-inflammatory drug (NSAID) ibuprofen can correct F508del-CFTR trafficking. Here, we utilized RNAi and pharmacological inhibitors to determine the mechanism of action of the NSAID glafenine. Using cellular thermal stability assays (CETSAs), we show that it is a proteostasis modulator. Using medicinal chemistry, we identified a derivative with a fourfold increase in CFTR corrector potency. Furthermore, we show that these novel arachidonic acid pathway inhibitors can rescue difficult-to-correct class 2 mutants, such as G85E-CFTR > 13%, that of non-CF cells in well-differentiated HBE cells. Thus, the results suggest that targeting the arachidonic acid pathway may be a profitable way of developing correctors of certain previously hard-to-correct class 2 CFTR mutations.
Collapse
Affiliation(s)
- Graeme W Carlile
- Department of Biochemistry, Cystic Fibrosis Translational Research Centre, McGill University, McIntyre Medical Sciences Building, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada.
- Department of Human Genetics, Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, H3G 1Y6, Canada.
| | - Qi Yang
- Department of Biochemistry, Cystic Fibrosis Translational Research Centre, McGill University, McIntyre Medical Sciences Building, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada
- Department of Human Genetics, Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Elizabeth Matthes
- Department of Physiology, McGill Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Jie Liao
- Department of Physiology, McGill Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Véronique Birault
- Translation Department, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Helen F Sneddon
- Department of Chemistry, Green Chemistry Centre of Excellence, University of York, Heslington, York, YO10 5DD, UK
| | - Darren L Poole
- Medicinal Chemistry, GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Callum J Hall
- Medicinal Chemistry, GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - John W Hanrahan
- Department of Physiology, McGill Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - David Y Thomas
- Department of Biochemistry, Cystic Fibrosis Translational Research Centre, McGill University, McIntyre Medical Sciences Building, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada
- Department of Human Genetics, Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, H3G 1Y6, Canada
| |
Collapse
|
17
|
Rovati G, Contursi A, Bruno A, Tacconelli S, Ballerini P, Patrignani P. Antiplatelet Agents Affecting GPCR Signaling Implicated in Tumor Metastasis. Cells 2022; 11:725. [PMID: 35203374 PMCID: PMC8870128 DOI: 10.3390/cells11040725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
Metastasis requires that cancer cells survive in the circulation, colonize distant organs, and grow. Despite platelets being central contributors to hemostasis, leukocyte trafficking during inflammation, and vessel stability maintenance, there is significant evidence to support their essential role in supporting metastasis through different mechanisms. In addition to their direct interaction with cancer cells, thus forming heteroaggregates such as leukocytes, platelets release molecules that are necessary to promote a disseminating phenotype in cancer cells via the induction of an epithelial-mesenchymal-like transition. Therefore, agents that affect platelet activation can potentially restrain these prometastatic mechanisms. Although the primary adhesion of platelets to cancer cells is mainly independent of G protein-mediated signaling, soluble mediators released from platelets, such as ADP, thromboxane (TX) A2, and prostaglandin (PG) E2, act through G protein-coupled receptors (GPCRs) to cause the activation of more additional platelets and drive metastatic signaling pathways in cancer cells. In this review, we examine the contribution of the GPCRs of platelets and cancer cells in the development of cancer metastasis. Finally, the possible use of agents affecting GPCR signaling pathways as antimetastatic agents is discussed.
Collapse
Affiliation(s)
- Gianenrico Rovati
- Department of Pharmaceutical Sciences, University of Milan, 20122 Milan, Italy;
| | - Annalisa Contursi
- Laboratory of Systems Pharmacology and Translational Therapies, Center for Advanced Studies and Technology (CAST), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.C.); (A.B.); (S.T.); (P.B.)
- Department of Neuroscience, Imaging and Clinical Science, School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Annalisa Bruno
- Laboratory of Systems Pharmacology and Translational Therapies, Center for Advanced Studies and Technology (CAST), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.C.); (A.B.); (S.T.); (P.B.)
- Department of Neuroscience, Imaging and Clinical Science, School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Stefania Tacconelli
- Laboratory of Systems Pharmacology and Translational Therapies, Center for Advanced Studies and Technology (CAST), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.C.); (A.B.); (S.T.); (P.B.)
- Department of Neuroscience, Imaging and Clinical Science, School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Patrizia Ballerini
- Laboratory of Systems Pharmacology and Translational Therapies, Center for Advanced Studies and Technology (CAST), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.C.); (A.B.); (S.T.); (P.B.)
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Paola Patrignani
- Laboratory of Systems Pharmacology and Translational Therapies, Center for Advanced Studies and Technology (CAST), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.C.); (A.B.); (S.T.); (P.B.)
- Department of Neuroscience, Imaging and Clinical Science, School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy
| |
Collapse
|
18
|
Inflammation, Fibrosis and Cancer: Mechanisms, Therapeutic Options and Challenges. Cancers (Basel) 2022; 14:cancers14030552. [PMID: 35158821 PMCID: PMC8833582 DOI: 10.3390/cancers14030552] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 01/09/2023] Open
Abstract
Uncontrolled inflammation is a salient factor in multiple chronic inflammatory diseases and cancers. In this review, we provided an in-depth analysis of the relationships and distinctions between uncontrolled inflammation, fibrosis and cancers, while emphasizing the challenges and opportunities of developing novel therapies for the treatment and/or management of these diseases. We described how drug delivery systems, combination therapy and the integration of tissue-targeted and/or pathways selective strategies could overcome the challenges of current agents for managing and/or treating chronic inflammatory diseases and cancers. We also recognized the value of the re-evaluation of the disease-specific roles of multiple pathways implicated in the pathophysiology of chronic inflammatory diseases and cancers-as well as the application of data from single-cell RNA sequencing in the success of future drug discovery endeavors.
Collapse
|
19
|
KIDA T, YAMAZAKI A, NAKAMURA T, KOBAYASHI K, YOSHIMOTO S, MAEDA S, NAKAGAWA T, NISHIMURA R, MURATA T. Comprehensive profiling of lipid metabolites in urine of canine patients with liver mass. J Vet Med Sci 2022; 84:1074-1078. [PMID: 35675982 PMCID: PMC9412059 DOI: 10.1292/jvms.22-0191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Fatty acids are an essential component of mammalian bodies. They go through different
metabolic pathways depending on physiological states and inflammatory stimuli. In this
study, we conducted a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based
comprehensive analysis of lipid metabolites in urine of canine patients with liver mass.
There were significant differences in quantity of some lipid metabolites that may be
closely associated with the disease and/or general inflammatory responses, including
increased metabolites of prostaglandin E2 and/or PGF2α. We
demonstrated that our approach of profiling lipid metabolites in the urine is useful in
gaining insights into the disease. These findings may also have an application as a
screening test or a diagnosis tool for canine liver mass.
Collapse
Affiliation(s)
- Taiki KIDA
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Arisa YAMAZAKI
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Tatsuro NAKAMURA
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Koji KOBAYASHI
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Sho YOSHIMOTO
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Shingo MAEDA
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Takayuki NAKAGAWA
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Ryohei NISHIMURA
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Takahisa MURATA
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| |
Collapse
|
20
|
Kdimati S, Mullins CS, Linnebacher M. Cancer-Cell-Derived IgG and Its Potential Role in Tumor Development. Int J Mol Sci 2021; 22:ijms222111597. [PMID: 34769026 PMCID: PMC8583861 DOI: 10.3390/ijms222111597] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/13/2021] [Accepted: 10/23/2021] [Indexed: 12/18/2022] Open
Abstract
Human immunoglobulin G (IgG) is the primary component of the human serum antibody fraction, representing about 75% of the immunoglobulins and 10-20% of the total circulating plasma proteins. Generally, IgG sequences are highly conserved, yet the four subclasses, IgG1, IgG2, IgG3, and IgG4, differ in their physiological effector functions by binding to different IgG-Fc receptors (FcγR). Thus, despite a similarity of about 90% on the amino acid level, each subclass possesses a unique manner of antigen binding and immune complex formation. Triggering FcγR-expressing cells results in a wide range of responses, including phagocytosis, antibody-dependent cell-mediated cytotoxicity, and complement activation. Textbook knowledge implies that only B lymphocytes are capable of producing antibodies, which recognize specific antigenic structures derived from pathogens and infected endogenous or tumorigenic cells. Here, we review recent discoveries, including our own observations, about misplaced IgG expression in tumor cells. Various studies described the presence of IgG in tumor cells using immunohistology and established correlations between high antibody levels and promotion of cancer cell proliferation, invasion, and poor clinical prognosis for the respective tumor patients. Furthermore, blocking tumor-cell-derived IgG inhibited tumor cells. Tumor-cell-derived IgG might impede antigen-dependent cellular cytotoxicity by binding antigens while, at the same time, lacking the capacity for complement activation. These findings recommend tumor-cell-derived IgG as a potential therapeutic target. The observed uniqueness of Ig heavy chains expressed by tumor cells, using PCR with V(D)J rearrangement specific primers, suggests that this specific part of IgG may additionally play a role as a potential tumor marker and, thus, also qualify for the neoantigen category.
Collapse
|
21
|
Guo Y, Yu H, Song H, He J, Oyebamiji O, Kang H, Ping J, Ness S, Shyr Y, Ye F. MetaGSCA: A tool for meta-analysis of gene set differential coexpression. PLoS Comput Biol 2021; 17:e1008976. [PMID: 33945541 PMCID: PMC8121311 DOI: 10.1371/journal.pcbi.1008976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/14/2021] [Accepted: 04/18/2021] [Indexed: 01/24/2023] Open
Abstract
Analyses of gene set differential coexpression may shed light on molecular mechanisms underlying phenotypes and diseases. However, differential coexpression analyses of conceptually similar individual studies are often inconsistent and underpowered to provide definitive results. Researchers can greatly benefit from an open-source application facilitating the aggregation of evidence of differential coexpression across studies and the estimation of more robust common effects. We developed Meta Gene Set Coexpression Analysis (MetaGSCA), an analytical tool to systematically assess differential coexpression of an a priori defined gene set by aggregating evidence across studies to provide a definitive result. In the kernel, a nonparametric approach that accounts for the gene-gene correlation structure is used to test whether the gene set is differentially coexpressed between two comparative conditions, from which a permutation test p-statistic is computed for each individual study. A meta-analysis is then performed to combine individual study results with one of two options: a random-intercept logistic regression model or the inverse variance method. We demonstrated MetaGSCA in case studies investigating two human diseases and identified pathways highly relevant to each disease across studies. We further applied MetaGSCA in a pan-cancer analysis with hundreds of major cellular pathways in 11 cancer types. The results indicated that a majority of the pathways identified were dysregulated in the pan-cancer scenario, many of which have been previously reported in the cancer literature. Our analysis with randomly generated gene sets showed excellent specificity, indicating that the significant pathways/gene sets identified by MetaGSCA are unlikely false positives. MetaGSCA is a user-friendly tool implemented in both forms of a Web-based application and an R package "MetaGSCA". It enables comprehensive meta-analyses of gene set differential coexpression data, with an optional module of post hoc pathway crosstalk network analysis to identify and visualize pathways having similar coexpression profiles.
Collapse
Affiliation(s)
- Yan Guo
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Hui Yu
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Haocan Song
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jiapeng He
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Olufunmilola Oyebamiji
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Huining Kang
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Jie Ping
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Scott Ness
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Yu Shyr
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Fei Ye
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
22
|
Álvarez-Maestro M, Eguibar A, Chanca P, Klett-Mingo M, Gómez Rivas J, Buño-Soto A, de Bethencourt FR, Ferrer M. Androgen Deprivation Therapy in Patients With Prostate Cancer Increases Serum Levels of Thromboxane A 2: Cardiovascular Implications. Front Cardiovasc Med 2021; 8:653126. [PMID: 33928136 PMCID: PMC8076684 DOI: 10.3389/fcvm.2021.653126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Androgens have been described as important players in the regulation of vascular function/structure through their action on the release and effect of vasoactive factors, such as prostanoids. Patients with prostate cancer (PCa) under androgen deprivation therapies (ADTs) present increased risk of cardiovascular mortality. Since thromboxane A2 (TXA2) is one of the most studied prostanoids and its involvement in different cardiovascular diseases has been described, the aim of this study was to investigate: (i) the effect of ADT on the serum levels of TXA2 in PCa patients and its possible link to the redox status and (ii) the effect of the non-hydrolyzable TXA2 analog U-46619 on the function of the aorta of male rats. Methods: The levels of TXA2 and total antioxidant status in 50 healthy subjects, 54 PCa patients, and 57 PCa under ADT were evaluated. These determinations were accompanied by levels of testosterone and C-reactive protein as an inflammation marker. In aortic segments from male rats, the U46619-induced effects on: (i) the vasomotor responses to acetylcholine (ACh), to the NO donor sodium nitroprusside (SNP), to the carbon monoxide-releasing molecule-3 (CORM-3), and to noradrenaline (NA) and (ii) the expression of cyclooxygenase-2 (COX-2), heme oxygenase-1 (HO-1), and phosphorylated ERK1/2 were analyzed. Results: The serum level of TXA2 in patients with PCa was increased with respect to healthy subjects, which was further increased by ADT. There was no modification in the total antioxidant status among the three experimental groups. In aortic segments from male rats, the TXA2 analog decreased the endothelium-dependent relaxation and the sensitivity of smooth muscle cells to NO, while it increased the vasoconstriction induced by NA; the expression of COX-2, HO-1, and pERK1/2 was also increased. Conclusions: ADT increased, along with other inflammatory/oxidative markers, the serum levels of TXA2. The fact that TXA2 negatively impacts the vascular function of the aorta of healthy male rats suggests that inhibition of TXA2-mediated events could be considered a potential strategy to protect the cardiovascular system.
Collapse
Affiliation(s)
- Mario Álvarez-Maestro
- Servicio de Urología, Hospital Universitario La Paz, Madrid, Spain.,Grupo de Investigación en Urología, IdiPAZ, Madrid, Spain
| | - Aritz Eguibar
- Servicio de Urología, Hospital Universitario La Paz, Madrid, Spain
| | - Patricia Chanca
- Servicio de Análisis Clínicos, Hospital Universitario La Paz, Madrid, Spain
| | | | - Juan Gómez Rivas
- Departamento de Urología, Hospital Clínico San Carlos, Madrid, Spain
| | - Antonio Buño-Soto
- Servicio de Análisis Clínicos, Hospital Universitario La Paz, Madrid, Spain.,Grupo de Investigación en Neonatología, IdiPAZ, Madrid, Spain
| | - Fermín R de Bethencourt
- Servicio de Urología, Hospital Universitario La Paz, Madrid, Spain.,Grupo de Investigación en Urología, IdiPAZ, Madrid, Spain
| | - Mercedes Ferrer
- Grupo de Investigación en Urología, IdiPAZ, Madrid, Spain.,Departamento de Fisiología, Facultad de Medicina, UAM, Madrid, Spain
| |
Collapse
|
23
|
Ershov PV, Yablokov E, Zgoda V, Mezentsev Y, Gnedenko O, Kaluzhskiy L, Svirid A, Gilep A, Usanov SA, Ivanov A. A new insight into subinteractomes of functional antagonists: Thromboxane (CYP5A1) and prostacyclin (CYP8A1) synthases. Cell Biol Int 2021; 45:1175-1182. [PMID: 33527589 DOI: 10.1002/cbin.11564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 11/10/2020] [Accepted: 01/31/2021] [Indexed: 12/14/2022]
Abstract
The current article aims to summarize all possible spectrum of protein-protein interactions for thromboxane A synthase (CYP5A1) and prostacyclin synthase (CYP8A1). These enzymes metabolize the same substrate (prostaglandin H2 ) and can participate in cardiovascular, inflammatory, immune processes, and apoptosis modulation, as well as significantly influence the risk of cancers. Binary protein-protein and multiprotein complexes are of great importance in enzyme-regulating and signal-transduction pathways. However, protein partners of CYP5A1 and CYP8A1 are not yet fully identified, although both synthases are considered as prospective drug targets. At least 36 novel protein partners of CYP5A1 and CYP8A1 were revealed from different tissue types using an approach based on affinity isolation and mass spectrometry. Enrichment analysis showed that these proteins have different molecular functions: folding (refolding), unfolded protein and chaperon binding, protein transport (export/import), posttranslational modification, protein domain-specific binding, antioxidant activity, and glutathione homeostasis. A significant part of them, belonging to molecular chaperones, were common partners for CYP5A1 and CYP8A1, while other proteins were unique with the tissue-dependent distribution. New aspects of CYP5A1 and CYP8A1 interactomics and hetero-complex formation with different protein partners, including cytochrome P450s are discussed.
Collapse
Affiliation(s)
- Pavel V Ershov
- Federal State Budgetary Institution "V.N. Orekhovich Research Institute of Biomedical Chemistry", Moscow, Russia.,Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks, The Federal Medical Biological Agency, Moscow, Russia
| | - Evgeniy Yablokov
- Federal State Budgetary Institution "V.N. Orekhovich Research Institute of Biomedical Chemistry", Moscow, Russia
| | - Victor Zgoda
- Federal State Budgetary Institution "V.N. Orekhovich Research Institute of Biomedical Chemistry", Moscow, Russia
| | - Yuri Mezentsev
- Federal State Budgetary Institution "V.N. Orekhovich Research Institute of Biomedical Chemistry", Moscow, Russia
| | - Oksana Gnedenko
- Federal State Budgetary Institution "V.N. Orekhovich Research Institute of Biomedical Chemistry", Moscow, Russia
| | - Leonid Kaluzhskiy
- Federal State Budgetary Institution "V.N. Orekhovich Research Institute of Biomedical Chemistry", Moscow, Russia
| | - Andrey Svirid
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
| | - Andrei Gilep
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
| | - Sergey A Usanov
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
| | - Alexis Ivanov
- Federal State Budgetary Institution "V.N. Orekhovich Research Institute of Biomedical Chemistry", Moscow, Russia
| |
Collapse
|
24
|
Eicosanoids. Essays Biochem 2021; 64:423-441. [PMID: 32808658 DOI: 10.1042/ebc20190083] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 01/08/2023]
Abstract
This article describes the pathways of eicosanoid synthesis, eicosanoid receptors, the action of eicosanoids in different physiological systems, the roles of eicosanoids in selected diseases, and the major inhibitors of eicosanoid synthesis and action. Eicosanoids are oxidised derivatives of 20-carbon polyunsaturated fatty acids (PUFAs) formed by the cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 (cytP450) pathways. Arachidonic acid (ARA) is the usual substrate for eicosanoid synthesis. The COX pathways form prostaglandins (PGs) and thromboxanes (TXs), the LOX pathways form leukotrienes (LTs) and lipoxins (LXs), and the cytP450 pathways form various epoxy, hydroxy and dihydroxy derivatives. Eicosanoids are highly bioactive acting on many cell types through cell membrane G-protein coupled receptors, although some eicosanoids are also ligands for nuclear receptors. Because they are rapidly catabolised, eicosanoids mainly act locally to the site of their production. Many eicosanoids have multiple, sometimes pleiotropic, effects on inflammation and immunity. The most widely studied is PGE2. Many eicosanoids have roles in the regulation of the vascular, renal, gastrointestinal and female reproductive systems. Despite their vital role in physiology, eicosanoids are often associated with disease, including inflammatory disease and cancer. Inhibitors have been developed that interfere with the synthesis or action of various eicosanoids and some of these are used in disease treatment, especially for inflammation.
Collapse
|
25
|
Surgical Stress Promotes Tumor Progression: A Focus on the Impact of the Immune Response. J Clin Med 2020; 9:jcm9124096. [PMID: 33353113 PMCID: PMC7766515 DOI: 10.3390/jcm9124096] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Despite advances in systemic therapies, surgery is crucial for the management of solid malignancy. There is increasing evidence suggesting that the body's response to surgical stress resulting from tumor resection has direct effects on tumor cells or can alter the tumor microenvironment. Surgery can lead to the activation of early and key components of the innate and adaptative immune systems. Platelet activation and the subsequent pro-coagulation state can accelerate the growth of micrometastases. Neutrophil extracellular traps (NETs), an extracellular network of DNA released by neutrophils in response to inflammation, promote the adhesion of circulating tumor cells and the growth of existing micrometastatic disease. In addition, the immune response following cancer surgery can modulate the tumor immune microenvironment by promoting an immunosuppressive state leading to impaired recruitment of natural killer (NK) cells and regulatory T cells (Tregs). In this review, we will summarize the current understanding of mechanisms of tumor progression secondary to surgical stress. Furthermore, we will describe emerging and novel peri-operative solutions to decrease pro-tumorigenic effects from surgery.
Collapse
|
26
|
Lucotti S, Muschel RJ. Platelets and Metastasis: New Implications of an Old Interplay. Front Oncol 2020; 10:1350. [PMID: 33042789 PMCID: PMC7530207 DOI: 10.3389/fonc.2020.01350] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/26/2020] [Indexed: 12/17/2022] Open
Abstract
During the process of hematogenous metastasis, tumor cells interact with platelets and their precursors megakaryocytes, providing a selection driver for the metastatic phenotype. Cancer cells have evolved a plethora of mechanisms to engage platelet activation and aggregation. Platelet coating of tumor cells in the blood stream promotes the successful completion of multiple steps of the metastatic cascade. Along the same lines, clinical evidence suggests that anti-coagulant therapy might be associated with reduced risk of metastatic disease and better prognosis in cancer patients. Here, we review experimental and clinical literature concerning the contribution of platelets and megakaryocytes to cancer metastasis and provide insights into the clinical relevance of anti-coagulant therapy in cancer treatment.
Collapse
Affiliation(s)
- Serena Lucotti
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Ruth J Muschel
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
27
|
Gaur P, Saini S, Ray K, Asanbekovna KN, Akunov A, Maripov A, Sarybaev A, Singh SB, Kumar B, Vats P. Temporal transcriptome analysis suggest modulation of multiple pathways and gene network involved in cell-cell interaction during early phase of high altitude exposure. PLoS One 2020; 15:e0238117. [PMID: 32911517 PMCID: PMC7482924 DOI: 10.1371/journal.pone.0238117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/09/2020] [Indexed: 11/19/2022] Open
Abstract
High altitude (HA) conditions induce several physiological and molecular changes, prevalent in individuals who are unexposed to this environment. Individuals exposed towards HA hypoxia yields physiological and molecular orchestration to maintain adequate tissue oxygen delivery and supply at altitude. This study aimed to understand the temporal changes at altitude of 4,111m. Physiological parameters and transcriptome study was conducted at high altitude day 3, 7, 14 and 21. We observed changes in differentially expressed gene (DEG) at high altitude time points along with altered BP, HR, SpO2, mPAP. Physiological changes and unsupervised learning of DEG's discloses high altitude day 3 as distinct time point. Gene enrichment analysis of ontologies and pathways indicate cellular dynamics and immune response involvement in early day exposure and later stable response. Major clustering of genes involved in cellular dynamics deployed into broad categories: cell-cell interaction, blood signaling, coagulation system, and cellular process. Our data reveals genes and pathways perturbed for conditions like vascular remodeling, cellular homeostasis. In this study we found the nodal point of the gene interactive network and candidate gene controlling many cellular interactive pathways VIM, CORO1A, CD37, STMN1, RHOC, PDE7B, NELL1, NRP1 and TAGLN and the most significant among them i.e. VIM gene was identified as top hub gene. This study suggests a unique physiological and molecular perturbation likely to play a critical role in high altitude associated pathophysiological condition during early exposure compared to later time points.
Collapse
Affiliation(s)
- Priya Gaur
- Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Supriya Saini
- Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Koushik Ray
- Defence Institute of Physiology and Allied Sciences, Delhi, India
| | | | - Almaz Akunov
- Kyrgyz Indian Mountain Biomedical Research Centre, Bishkek, Kyrgyz Republic, Kyrgyzstan
| | - Abdirashit Maripov
- Kyrgyz Indian Mountain Biomedical Research Centre, Bishkek, Kyrgyz Republic, Kyrgyzstan
| | - Akpay Sarybaev
- Kyrgyz Indian Mountain Biomedical Research Centre, Bishkek, Kyrgyz Republic, Kyrgyzstan
- * E-mail: , (PV); (AS)
| | - Shashi Bala Singh
- National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, India
| | - Bhuvnesh Kumar
- Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Praveen Vats
- Defence Institute of Physiology and Allied Sciences, Delhi, India
- * E-mail: , (PV); (AS)
| |
Collapse
|
28
|
Hermanowicz JM, Kwiatkowska I, Pawlak D. Important players in carcinogenesis as potential targets in cancer therapy: an update. Oncotarget 2020; 11:3078-3101. [PMID: 32850012 PMCID: PMC7429179 DOI: 10.18632/oncotarget.27689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
The development of cancer is a problem that has accompanied mankind for years. The growing number of cases, emerging drug resistance, and the need to reduce the serious side effects of pharmacotherapy are forcing scientists to better understand the complex mechanisms responsible for the initiation, promotion, and progression of the disease. This paper discusses the modulation of the particular stages of carcinogenesis by selected physiological factors, including: acetylcholine (ACh), peroxisome proliferator-activated receptors (PPAR), fatty acid-binding proteins (FABPs), Bruton's tyrosine kinase (Btk), aquaporins (AQPs), insulin-like growth factor-2 (IGF-2), and exosomes. Understanding their role may contribute to the development of more effective and safer therapies based on new binding sites.
Collapse
Affiliation(s)
- Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza, Bialystok, Poland
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza, Bialystok, Poland
| | - Iwona Kwiatkowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza, Bialystok, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza, Bialystok, Poland
| |
Collapse
|
29
|
Hidalgo-Estévez AM, Stamatakis K, Jiménez-Martínez M, López-Pérez R, Fresno M. Cyclooxygenase 2-Regulated Genes an Alternative Avenue to the Development of New Therapeutic Drugs for Colorectal Cancer. Front Pharmacol 2020; 11:533. [PMID: 32410997 PMCID: PMC7201075 DOI: 10.3389/fphar.2020.00533] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common and recurrent types of cancer, with high mortality rates. Several clinical trials and meta-analyses have determined that the use of pharmacological inhibitors of cyclooxygenase 2 (COX-2), the enzyme that catalyses the rate-limiting step in the synthesis of prostaglandins (PG) from arachidonic acid, can reduce the incidence of CRC as well as the risk of recurrence of this disease, when used together with commonly used chemotherapeutic agents. These observations suggest that inhibition of COX-2 may be useful in the treatment of CRC, although the current drugs targeting COX-2 are not widely used since they increase the risk of health complications. To overcome this difficulty, a possibility is to identify genes regulated by COX-2 activity that could give an advantage to the cells to form tumors and/or metastasize. The modulation of those genes as effectors of COX-2 may cancel the beneficial effects of COX-2 in tumor transformation and metastasis. A review of the available databases and literature and our own data have identified some interesting molecules induced by prostaglandins or COX-2 that have been also described to play a role in colon cancer, being thus potential pharmacological targets in colon cancer. Among those mPGES-1, DUSP4, and 10, Programmed cell death 4, Trop2, and many from the TGFβ and p53 pathways have been identified as genes upregulated in response to COX-2 overexpression or PGs in colon carcinoma lines and overexpressed in colon tumor tissue. Here, we review the available evidence of the potential roles of those molecules in colon cancer in the context of PG/COX signaling pathways that could be critical mediators of some of the tumor growth and metastasis advantage induced by COX-2. At the end, this may allow defining new therapeutic targets/drugs against CRC that could act specifically against tumor cells and would be effective in the prevention and treatment of CRC, lacking the unwanted side effects of COX-2 pharmacological inhibitors, providing alternative approaches in colon cancer.
Collapse
Affiliation(s)
| | - Konstantinos Stamatakis
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto Sanitario de Investigación Princesa, Madrid, Spain
| | - Marta Jiménez-Martínez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ricardo López-Pérez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto Sanitario de Investigación Princesa, Madrid, Spain
| |
Collapse
|
30
|
Mulvaney EP, Reid HM, Bialesova L, Bouchard A, Salvail D, Kinsella BT. NTP42, a novel antagonist of the thromboxane receptor, attenuates experimentally induced pulmonary arterial hypertension. BMC Pulm Med 2020; 20:85. [PMID: 32252727 PMCID: PMC7132963 DOI: 10.1186/s12890-020-1113-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/12/2020] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND NTP42 is a novel antagonist of the thromboxane prostanoid receptor (TP), currently in development for the treatment of pulmonary arterial hypertension (PAH). PAH is a devastating disease with multiple pathophysiological hallmarks including excessive pulmonary vasoconstriction, vascular remodelling, inflammation, fibrosis, in situ thrombosis and right ventricular hypertrophy. Signalling through the TP, thromboxane (TX) A2 is a potent vasoconstrictor and mediator of platelet aggregation. It is also a pro-mitogenic, pro-inflammatory and pro-fibrotic agent. Moreover, the TP also mediates the adverse actions of the isoprostane 8-iso-prostaglandin F2α, a free-radical-derived product of arachidonic acid produced in abundance during oxidative injury. Mechanistically, TP antagonists should treat most of the hallmarks of PAH, including inhibiting the excessive vasoconstriction and pulmonary artery remodelling, in situ thrombosis, inflammation and fibrosis. This study aimed to investigate the efficacy of NTP42 in the monocrotaline (MCT)-induced PAH rat model, alongside current standard-of-care drugs. METHODS PAH was induced by subcutaneous injection of 60 mg/kg MCT in male Wistar-Kyoto rats. Animals were assigned into groups: 1. 'No MCT'; 2. 'MCT Only'; 3. MCT + NTP42 (0.25 mg/kg BID); 4. MCT + Sildenafil (50 mg/kg BID), and 5. MCT + Selexipag (1 mg/kg BID), where 28-day drug treatment was initiated within 24 h post-MCT. RESULTS From haemodynamic assessments, NTP42 reduced the MCT-induced PAH, including mean pulmonary arterial pressure (mPAP) and right systolic ventricular pressure (RSVP), being at least comparable to the standard-of-care drugs Sildenafil or Selexipag in bringing about these effects. Moreover, NTP42 was superior to Sildenafil and Selexipag in significantly reducing pulmonary vascular remodelling, inflammatory mast cell infiltration and fibrosis in MCT-treated animals. CONCLUSIONS These findings suggest that NTP42 and antagonism of the TP signalling pathway have a relevant role in alleviating the pathophysiology of PAH, representing a novel therapeutic target with marked benefits over existing standard-of-care therapies.
Collapse
Affiliation(s)
- Eamon P Mulvaney
- ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Helen M Reid
- ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.,UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lucia Bialesova
- ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Annie Bouchard
- IPS Therapeutique Inc., 3035 Boulevard Industriel, Sherbrooke, QC, J1L 2T9, Canada
| | - Dany Salvail
- IPS Therapeutique Inc., 3035 Boulevard Industriel, Sherbrooke, QC, J1L 2T9, Canada
| | - B Therese Kinsella
- ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland. .,UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
31
|
Maksymchuk O, Kashuba V. Dietary lipids and environmental xenobiotics as risk factors for prostate cancer: The role of cytochrome P450. Pharmacol Rep 2019; 71:826-832. [PMID: 31382168 DOI: 10.1016/j.pharep.2019.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/08/2019] [Accepted: 04/13/2019] [Indexed: 01/31/2023]
Abstract
Prostate cancer is one of the most common malignant neoplasms in men. Because of the increase in the number of cases as well as development of cancers resistant to conventional therapy, identification of the new molecular targets for the treatment and prevention is of great importance. For this purpose, many studies are aimed on revealing of molecular mechanisms of prostate cancer development. In this process, dietary lipids and environmental xenobiotics are largely involved and are considered as risk factors. A wide range of endogenous (cholesterol, polyunsaturated fatty acids, etc.) and exogenous (pollutants, drugs) compounds are metabolized in the human organism by cytochrome P450. From other hand, these compounds may alter cytochrome P450 expression levels, especially in prostate, which, in turn, affects cell metabolism. Cytochrome P450 is a member of signaling pathways, regulating cell cycle, apoptosis, invasion and adhesion. Hence, cytochrome P450 most probably plays the important role in initiation and progression of prostate cancer. Based on that, cytochrome P450 enzymes are considered as potential targets for the targeted therapy and prevention, and might serve as specific markers of malignant growth.
Collapse
Affiliation(s)
- Oksana Maksymchuk
- Department of Molecular Oncogenetics, Institute of Molecular Biology and Genetics NAS Ukraine, Kyiv, Ukraine.
| | - Vladimir Kashuba
- Department of Molecular Oncogenetics, Institute of Molecular Biology and Genetics NAS Ukraine, Kyiv, Ukraine; Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
32
|
Arachidonic Acid Metabolism and Kidney Inflammation. Int J Mol Sci 2019; 20:ijms20153683. [PMID: 31357612 PMCID: PMC6695795 DOI: 10.3390/ijms20153683] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 12/17/2022] Open
Abstract
As a major component of cell membrane lipids, Arachidonic acid (AA), being a major component of the cell membrane lipid content, is mainly metabolized by three kinds of enzymes: cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP450) enzymes. Based on these three metabolic pathways, AA could be converted into various metabolites that trigger different inflammatory responses. In the kidney, prostaglandins (PG), thromboxane (Tx), leukotrienes (LTs) and hydroxyeicosatetraenoic acids (HETEs) are the major metabolites generated from AA. An increased level of prostaglandins (PGs), TxA2 and leukotriene B4 (LTB4) results in inflammatory damage to the kidney. Moreover, the LTB4-leukotriene B4 receptor 1 (BLT1) axis participates in the acute kidney injury via mediating the recruitment of renal neutrophils. In addition, AA can regulate renal ion transport through 19-hydroxystilbenetetraenoic acid (19-HETE) and 20-HETE, both of which are produced by cytochrome P450 monooxygenase. Epoxyeicosatrienoic acids (EETs) generated by the CYP450 enzyme also plays a paramount role in the kidney damage during the inflammation process. For example, 14 and 15-EET mitigated ischemia/reperfusion-caused renal tubular epithelial cell damage. Many drug candidates that target the AA metabolism pathways are being developed to treat kidney inflammation. These observations support an extraordinary interest in a wide range of studies on drug interventions aiming to control AA metabolism and kidney inflammation.
Collapse
|
33
|
Mulvaney EP, O'Sullivan ÁG, Eivers SB, Reid HM, Kinsella BT. Differential expression of the TPα and TPβ isoforms of the human T Prostanoid receptor during chronic inflammation of the prostate: Role for FOXP1 in the transcriptional regulation of TPβ during monocyte-macrophage differentiation. Exp Mol Pathol 2019; 110:104277. [PMID: 31271729 DOI: 10.1016/j.yexmp.2019.104277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/21/2019] [Accepted: 06/22/2019] [Indexed: 11/16/2022]
Abstract
Inflammation is linked to prostate cancer (PCa) and to other diseases of the prostate. The prostanoid thromboxane (TX)A2 is a pro-inflammatory mediator implicated in several prostatic diseases, including PCa. TXA2 signals through the TPα and TPβ isoforms of the T Prostanoid receptor (TP) which exhibit several functional differences and transcriptionally regulated by distinct promoters Prm1 and Prm3, respectively, within the TBXA2R gene. This study examined the expression of TPα and TPβ in inflammatory infiltrates within human prostate tissue. Strikingly, TPβ expression was detected in 94% of infiltrates, including in B- and T-lymphocytes and macrophages. In contrast, TPα was more variably expressed and, where present, expression was mainly confined to macrophages. To gain molecular insight into these findings, expression of TPα and TPβ was evaluated as a function of monocyte-to-macrophage differentiation in THP-1 cells. Expression of both TPα and TPβ was upregulated following phorbol-12-myristate-13-acetate (PMA)-induced differentiation of monocytic THP-1 to their macrophage lineage. Furthermore, FOXP1, an essential transcriptional regulator down-regulated during monocyte-to-macrophage differentiation, was identified as a key trans-acting factor regulating TPβ expression through Prm3 in THP-1 cells. Knockdown of FOXP1 increased TPβ, but not TPα, expression in THP-1 cells, while genetic reporter and chromatin immunoprecipitation (ChIP) analyses established that FOXP1 exerts its repressive effect on TPβ through binding to four cis-elements within Prm3. Collectively, FOXP1 functions as a transcriptional repressor of TPβ in monocytes. This repression is lifted in differentiated macrophages, allowing for upregulation of TPβ expression and possibly accounting for the prominent expression of TPβ in prostate tissue-resident macrophages.
Collapse
Affiliation(s)
- Eamon P Mulvaney
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Áine G O'Sullivan
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sarah B Eivers
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Helen M Reid
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - B Therese Kinsella
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
34
|
Zhou X, Shang YN, Lu R, Fan CW, Mo XM. High ANKZF1 expression is associated with poor overall survival and recurrence-free survival in colon cancer. Future Oncol 2019; 15:2093-2106. [PMID: 31257922 DOI: 10.2217/fon-2018-0920] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aim: To investigate the association and prognostic value of ANKZF1 gene for survival in colorectal cancer, the mechanism of ANKZF1 level alteration and correlated signaling pathways ANKZF1 is involved. Patients & methods: The Cancer Genome Atlas COREAD dataset was analyzed by bioinformatical investigation. Results: High ANKZF1 expression is associated with poor overall survival (hazard ratio [HR]: 2.094; 95% CI: 1.188-3.689; p = 0.011) and recurrence-free survival (HR: 1.762; 95% CI: 1.021-3.042; p = 0.042) in colon cancer. Bioinformatical analysis showed ANKZF1 was upregulated by amplification and exon expression. ANKZF1 was associated with angiogenesis and cancer signaling pathways. Conclusion: High ANKZF1 is an independent factor of poor survival (overall survival and recurrence-free survival) in colon cancer by taking part in angiogenesis and some cancer signaling pathways.
Collapse
Affiliation(s)
- Xin Zhou
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yan-Na Shang
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Ran Lu
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Chuan-Wen Fan
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China.,Institute of Digestive Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China.,Department of Clinical & Experimental Medicine, Division of Oncology, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Xian-Ming Mo
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| |
Collapse
|
35
|
Panigrahy D, Gartung A, Yang J, Yang H, Gilligan MM, Sulciner ML, Bhasin SS, Bielenberg DR, Chang J, Schmidt BA, Piwowarski J, Fishbein A, Soler-Ferran D, Sparks MA, Staffa SJ, Sukhatme V, Hammock BD, Kieran MW, Huang S, Bhasin M, Serhan CN, Sukhatme VP. Preoperative stimulation of resolution and inflammation blockade eradicates micrometastases. J Clin Invest 2019; 129:2964-2979. [PMID: 31205032 DOI: 10.1172/jci127282] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022] Open
Abstract
Cancer therapy is a double-edged sword, as surgery and chemotherapy can induce an inflammatory/immunosuppressive injury response that promotes dormancy escape and tumor recurrence. We hypothesized that these events could be altered by early blockade of the inflammatory cascade and/or by accelerating the resolution of inflammation. Preoperative, but not postoperative, administration of the nonsteroidal antiinflammatory drug ketorolac and/or resolvins, a family of specialized proresolving autacoid mediators, eliminated micrometastases in multiple tumor-resection models, resulting in long-term survival. Ketorolac unleashed anticancer T cell immunity that was augmented by immune checkpoint blockade, negated by adjuvant chemotherapy, and dependent on inhibition of the COX-1/thromboxane A2 (TXA2) pathway. Preoperative stimulation of inflammation resolution via resolvins (RvD2, RvD3, and RvD4) inhibited metastases and induced T cell responses. Ketorolac and resolvins exhibited synergistic antitumor activity and prevented surgery- or chemotherapy-induced dormancy escape. Thus, simultaneously blocking the ensuing proinflammatory response and activating endogenous resolution programs before surgery may eliminate micrometastases and reduce tumor recurrence.
Collapse
Affiliation(s)
- Dipak Panigrahy
- Center for Vascular Biology Research.,Department of Pathology, and.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Allison Gartung
- Center for Vascular Biology Research.,Department of Pathology, and.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jun Yang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, California, USA
| | - Haixia Yang
- Center for Vascular Biology Research.,Department of Pathology, and.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Molly M Gilligan
- Center for Vascular Biology Research.,Department of Pathology, and.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Megan L Sulciner
- Center for Vascular Biology Research.,Department of Pathology, and.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Swati S Bhasin
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Jaimie Chang
- Center for Vascular Biology Research.,Department of Pathology, and.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Birgitta A Schmidt
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Julia Piwowarski
- Center for Vascular Biology Research.,Department of Pathology, and.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Anna Fishbein
- Center for Vascular Biology Research.,Department of Pathology, and.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Dulce Soler-Ferran
- Center for Vascular Biology Research.,Department of Pathology, and.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| | - Steven J Staffa
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Bruce D Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, California, USA
| | - Mark W Kieran
- Division of Pediatric Oncology, Dana-Farber Cancer Institute, and.,Department of Pediatric Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sui Huang
- Institute for Systems Biology, Seattle, Washington, USA
| | - Manoj Bhasin
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Vikas P Sukhatme
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine and Center for Affordable Medical Innovation, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
36
|
Bergqvist F, Ossipova E, Idborg H, Raouf J, Checa A, Englund K, Englund P, Khoonsari PE, Kultima K, Wheelock CE, Larsson K, Korotkova M, Jakobsson PJ. Inhibition of mPGES-1 or COX-2 Results in Different Proteomic and Lipidomic Profiles in A549 Lung Cancer Cells. Front Pharmacol 2019; 10:636. [PMID: 31231223 PMCID: PMC6567928 DOI: 10.3389/fphar.2019.00636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/17/2019] [Indexed: 12/23/2022] Open
Abstract
Pharmacological inhibition of microsomal prostaglandin E synthase (mPGES)-1 for selective reduction in prostaglandin E2 (PGE2) biosynthesis is protective in experimental models of cancer and inflammation. Targeting mPGES-1 is envisioned as a safer alternative to traditional non-steroidal anti-inflammatory drugs (NSAIDs). Herein, we compared the effects of mPGES-1 inhibitor Compound III (CIII) with the cyclooxygenase (COX)-2 inhibitor NS-398 on protein and lipid profiles in interleukin (IL)-1β-induced A549 lung cancer cells using mass spectrometry. Inhibition of mPGES-1 decreased PGE2 production and increased PGF2α and thromboxane B2 (TXB2) formation, while inhibition of COX-2 decreased the production of all three prostanoids. Our proteomics results revealed that CIII downregulated multiple canonical pathways including eIF2, eIF4/P70S6K, and mTOR signaling, compared to NS-398 that activated these pathways. Moreover, pathway analysis predicted that CIII increased cell death of cancer cells (Z = 3.8, p = 5.1E-41) while NS-398 decreased the same function (Z = -5.0, p = 6.5E-35). In our lipidomics analyses, we found alterations in nine phospholipids between the two inhibitors, with a stronger alteration in the lysophospholipid (LPC) profile with NS-398 compared to CIII. Inhibition of mPGES-1 increased the concentration of sphinganine and dihydroceramide (C16:0DhCer), while inhibition of COX-2 caused a general decrease in most ceramides, again suggesting different effects on cell death between the two inhibitors. We showed that CIII decreased proliferation and potentiated the cytotoxic effect of the cytostatic drugs cisplatin, etoposide, and vincristine when investigated in a live cell imaging system. Our results demonstrate differences in protein and lipid profiles after inhibition of mPGES-1 or COX-2 with important implications on the therapeutic potential of mPGES-1 inhibitors as adjuvant treatment in cancer. We encourage further investigations to illuminate the clinical benefit of mPGES-1 inhibitors in cancer.
Collapse
Affiliation(s)
- Filip Bergqvist
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Elena Ossipova
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Helena Idborg
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Joan Raouf
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Antonio Checa
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Karin Englund
- Department of Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Petter Englund
- Department of Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Payam Emami Khoonsari
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Kim Kultima
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Karin Larsson
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Marina Korotkova
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Per-Johan Jakobsson
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
37
|
Heteromerization fingerprints between bradykinin B2 and thromboxane TP receptors in native cells. PLoS One 2019; 14:e0216908. [PMID: 31086419 PMCID: PMC6516669 DOI: 10.1371/journal.pone.0216908] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022] Open
Abstract
Bradykinin (BK) and thromboxane-A2 (TX-A2) are two vasoactive mediators that modulate vascular tone and inflammation via binding to their cognate "class A" G-protein coupled receptors (GPCRs), BK-B2 receptors (B2R) and TX-prostanoid receptors (TP), respectively. Both BK and TX-A2 lead to ERK1/2-mediated vascular smooth muscle cell (VSMC) proliferation and/or hypertrophy. While each of B2R and TP could form functional dimers with various GPCRs, the likelihood that B2R-TP heteromerization could contribute to their co-regulation has never been investigated. The main objective of this study was to investigate the mode of B2R and TP interaction in VSMC, and its possible impact on downstream signaling. Our findings revealed synergistically activated ERK1/2 following co-stimulation of rat VSMC with a subthreshold dose of BK and effective doses of the TP stable agonist, IBOP, possibly involving biased agonist signaling. Single detection of each of B2R and TP in VSMC, using in-situ proximity ligation assay (PLA), provided evidence of the constitutive expression of nuclear and extranuclear B2R and TP. Moreover, inspection of B2R-TP PLA signals in VSMC revealed agonist-modulated nuclear and extranuclear proximity between B2R and TP, whose quantification varied substantially following single versus dual agonist stimulations. B2R-TP interaction was further verified by the findings of co-immunoprecipitation (co-IP) analysis of VSMC lysates. To our knowledge, this is the first study that provides evidence supporting the existence of B2R-TP heteromerization fingerprints in primary cultured VSMC.
Collapse
|
38
|
Abstract
Bioactive lipids are essential components of human cells and tissues. As discussed in this review, the cancer lipidome is diverse and malleable, with the ability to promote or inhibit cancer pathogenesis. Targeting lipids within the tumor and surrounding microenvironment may be a novel therapeutic approach for treating cancer patients. Additionally, the emergence of a novel super-family of lipid mediators termed specialized pro-resolving mediators (SPMs) has revealed a new role for bioactive lipid mediators in the resolution of inflammation in cancer biology. The role of SPMs in cancer holds great promise in our understanding of cancer pathogenesis and can ultimately be used in future cancer diagnostics and therapy.
Collapse
Affiliation(s)
- Megan L Sulciner
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Allison Gartung
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Molly M Gilligan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Charles N Serhan
- Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
39
|
Qiu J, Lingna W, Jinghong H, Yongqing Z. Oral administration of leeches (Shuizhi): A review of the mechanisms of action on antiplatelet aggregation. JOURNAL OF ETHNOPHARMACOLOGY 2019; 232:103-109. [PMID: 30543914 DOI: 10.1016/j.jep.2018.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/08/2018] [Accepted: 12/08/2018] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The leeches (Shuizhi) comprise approximately 680 species distributed throughout the world. As recorded, they have been used as traditional Chinese medicines since the Eastern Han Dynasty, where they were claimed for promote blood circulation and eliminate blood stasis. And have been used to prevent CVDs by exerting multiple effects when orally administered, one of which is the significant inhibition of platelet aggregation. Its ability to exert this effect has been extensively investigated in vivo and in clinical practice. AIM OF STUDY The aim of this review is to summarize and analyse the antiplatelet aggregation mechanisms of leeches by oral administration, support their therapeutic potential and uncover opportunities for future research. MATERIALS AND METHODS Relevant studies from 1980 to 2018 on leeches and platelet aggregation were collected from ancient books, pharmacopoeia, reports and theses via library and internet databases (PubMed, CNKI, Google Scholar, Web of science, SciFinder, Springer and Elsevier). RESULTS Leeches is a unique animal medicine, they can prevent platelet aggregation by inhibiting ADP-induced platelet aggregation, increasing PGI2, decreasing TXA2 and Ca2+, and possibly recovering endothelial cell dysfunction. Leeches also exhibit a strong ability to activate eNOS, leading to an increase in platelet-derived NO. Additionally, the pteridine compounds obtained and identified from leeches have sulfur structure similar to those of other antiplatelet aggregation agents, such as ticlopidine, clopidogrel and ticagrelor. CONCLUSION The present review has focused on the related antiplatelet aggregation mechanisms, dipyridine compounds and toxicological information of leeches. According to the reported data, leeches have emerged as a good source of natural medicine for the treatment of antiplatelet aggregation agents and also make educated guesses for material basis of effects on antiplatelet aggregation. This review can help provide new insights for further studies in association with the development of effective antiplatelet aggregation drugs from natural medicines, especially leeches.
Collapse
Affiliation(s)
- Jiang Qiu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Wang Lingna
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Hu Jinghong
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Zhang Yongqing
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
40
|
Asghar S, Parvaiz F, Manzoor S. Multifaceted role of cancer educated platelets in survival of cancer cells. Thromb Res 2019; 177:42-50. [PMID: 30849514 DOI: 10.1016/j.thromres.2019.02.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/24/2019] [Accepted: 02/22/2019] [Indexed: 11/20/2022]
Abstract
Platelets, the derivatives of megakaryocytes, pose dynamic biological functions such as homeostasis and wound healing. The mechanisms involved in these processes are utilized by cancerous cells for proliferation and metastasis. Platelets through their activation establish an aggregate termed as Tumor cell induced platelet aggregation (TCIPA) that aids in establishing a niche for the primary tumor at secondary site while recruiting granulocytes and monocytes. The study of these close interactions between the tumor and the platelets can be exploited as biomarkers in liquid biopsy for early cancer detection, thereby increasing the life expectancy of cancer patients.
Collapse
Affiliation(s)
- Sidra Asghar
- Atta-ur -Rahman School of Applied Biosciences, National University of Sciences and Technology, Pakistan
| | - Fahed Parvaiz
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Sobia Manzoor
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, H12, 44000 Islamabad, Pakistan.
| |
Collapse
|
41
|
Miao S, Shu D, Zhu Y, Lu M, Zhang Q, Pei Y, He AD, Ma R, Zhang B, Ming ZY. Cancer cell-derived immunoglobulin G activates platelets by binding to platelet FcγRIIa. Cell Death Dis 2019; 10:87. [PMID: 30692520 PMCID: PMC6349849 DOI: 10.1038/s41419-019-1367-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 12/14/2022]
Abstract
Tumor-associated thrombosis is the second leading risk factor for cancer patient death, and platelets activity is abnormal in cancer patients. Discovering the mechanism of platelet activation and providing effective targets for therapy are urgently needed. Cancer cell- derived IgG has been reported to regulate development of tumors. However, studies on the functions of cancer cell-derived IgG are quite limited. Here we investigated the potential role of cancer cell-derived IgG in platelet activation. We detected the expression of CD62P on platelets by flow cytometry and analyzed platelet function by platelets aggregation and ATP release. The content of IgG in cancer cell supernatants was detected by enzyme-linked immune sorbent assay. The distribution of cancer-derived IgG in cancer cells was analyzed by immunofluorescence assay. Western blot was performed to quantify the relative expression of FcγRIIa, syk, PLCγ2. The interaction between cancer cell-derived IgG and platelet FcγRIIa was analyzed by co-immunoprecipitation. The results showed that higher levels of CD62P were observed in cancer patients' platelets compared with that of healthy volunteers. Cancer cell culture supernatants increased platelet CD62P and PAC-1 expression, sensitive platelet aggregation and ATP release in response to agonists, while blocking FcγRIIa or knocking down IgG reduced the activation of platelets. Coimmunoprecipitation results showed that cancer cell-derived IgG interacted directly with platelet FcγRIIa. In addition, platelet FcγRIIa was highly expressed in liver cancer patients. In summary, cancer cell-derived IgG interacted directly with FcγRIIa and activated platelets; targeting this interaction may be an approach to prevent and treat tumor-associated thrombosis.
Collapse
Affiliation(s)
- Shuo Miao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Dan Shu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Meng Lu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Qingsong Zhang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Youliang Pei
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ao-Di He
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Rong Ma
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Bixiang Zhang
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang-Yin Ming
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.
- The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.
| |
Collapse
|
42
|
Sala A, Proschak E, Steinhilber D, Rovati GE. Two-pronged approach to anti-inflammatory therapy through the modulation of the arachidonic acid cascade. Biochem Pharmacol 2018; 158:161-173. [DOI: 10.1016/j.bcp.2018.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/09/2018] [Indexed: 12/11/2022]
|
43
|
|
44
|
Serhan K, Gartung A, Panigrahy D. Drawing a link between the thromboxane A 2 pathway and the role of platelets and tumor cells in ovarian cancer. Prostaglandins Other Lipid Mediat 2018; 137:40-45. [PMID: 29933028 DOI: 10.1016/j.prostaglandins.2018.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/13/2018] [Accepted: 06/18/2018] [Indexed: 12/21/2022]
Abstract
Ovarian cancer is the most lethal gynecologic malignancy among women. Due to the heterogeneity and complexity of the disease, as well as the insidious onset of symptoms, timely diagnosis remains extremely challenging. Despite recent advances in chemotherapy regimens for ovarian cancer patients, many still suffer from recurrence and ultimately succumb to the disease; thus, there is an urgent need for the identification of novel therapeutic targets. Within this rapidly evolving field, the role of platelets in the ovarian cancer tumor microenvironment has garnered increased attention. It is well-established that platelets and tumor cells exhibit bidirectional communication in which platelets enhance tumor cell invasion, extravasation, and protection from host system defenses, while tumor cells serve as platelet agonists, increasing platelet adhesion, aggregation, and degranulation. This mini-review focuses on the platelet-tumor cell relationship in ovarian cancer, specifically highlighting the essential role of bioactive lipid mediators at this interface.
Collapse
Affiliation(s)
- Karolina Serhan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| | - Allison Gartung
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
45
|
Wu B, Bai C, Du Z, Zou H, Wu J, Xie W, Zhang P, Xu L, Li E. The arachidonic acid metabolism protein-protein interaction network and its expression pattern in esophageal diseases. Am J Transl Res 2018; 10:907-924. [PMID: 29636881 PMCID: PMC5883132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/10/2018] [Indexed: 06/08/2023]
Abstract
Arachidonic acid (AA) and its metabolites are involved in the development and progression of inflammation and tumors in various tissues. We investigated the protein-protein interaction network (PPIN) of key enzymes in AA metabolism and their interacting proteins, as well as their expression patterns in different types of esophageal disease, involving esophagitis, Barrett's esophagus, adenocarcinoma and squamous cell carcinoma. PPINs were constructed to illustrate the key enzymes and their interacting proteins along the metabolic cascade. The network also showed key enzymes that could connect or cross-talk with at least one partner protein. The inflammation-related gene RELA (NF-kB) was found to interact with both PLA2G4A and ALOX5. Expression levels of the PPIN proteins, as well as their expression correlations, in different esophageal diseases were analyzed and integrated into the PPIN to illustrate a dynamic change. At least six significant pairs of expression relationships were identified across different esophageal diseases. The expression levels of eight enzymes (ALOX5, ALOX5AP, CYP2C8, CYP4F11, LTA4H, PLA2G4A, CYP2D6, PTGES2) correlated with the survival time of ESCC patients. In summary, we constructed an AA metabolic PPIN to explore AA metabolism-related gene expression patterns in esophageal diseases, showing their dynamic change and potential for therapeutic targeting from inflammation to cancer.
Collapse
Affiliation(s)
- Bingli Wu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical CollegeShantou 515041, P. R. China
- Department of Biochemistry and Molecular Biology, Shantou University Medical CollegeShantou 515041, P. R. China
| | - Chunying Bai
- Molecular Medicine Research Center, School of Medical Science, Chifeng UniversityChifeng 024000, Neimenggu, P. R. China
| | - Zepeng Du
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen UniversityShantou 515041, Guangdong, P. R. China
| | - Haiying Zou
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical CollegeShantou 515041, P. R. China
- Department of Biochemistry and Molecular Biology, Shantou University Medical CollegeShantou 515041, P. R. China
| | - Jianyi Wu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical CollegeShantou 515041, P. R. China
- Department of Biochemistry and Molecular Biology, Shantou University Medical CollegeShantou 515041, P. R. China
| | - Wenming Xie
- Network and Information Center, Shantou University Medical CollegeShantou 515041, P. R. China
| | - Pixian Zhang
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical CollegeShantou 515041, P. R. China
- Department of Biochemistry and Molecular Biology, Shantou University Medical CollegeShantou 515041, P. R. China
| | - Liyan Xu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical CollegeShantou 515041, P. R. China
- Institute of Oncologic Pathology, Shantou University Medical CollegeShantou 515041, China
| | - Enmin Li
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical CollegeShantou 515041, P. R. China
- Department of Biochemistry and Molecular Biology, Shantou University Medical CollegeShantou 515041, P. R. China
| |
Collapse
|
46
|
Mulvaney EP, Shilling C, Eivers SB, Perry AS, Bjartell A, Kay EW, Watson RW, Kinsella BT. Expression of the TPα and TPβ isoforms of the thromboxane prostanoid receptor (TP) in prostate cancer: clinical significance and diagnostic potential. Oncotarget 2018; 7:73171-73187. [PMID: 27689401 PMCID: PMC5341971 DOI: 10.18632/oncotarget.12256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/19/2016] [Indexed: 12/21/2022] Open
Abstract
The prostanoid thromboxane (TX) A2 plays a central role in haemostasis and is increasingly implicated in cancer progression. TXA2 signals through two T Prostanoid receptor (TP) isoforms termed TPα and TPβ, with both encoded by the TBXA2R gene. Despite exhibiting several functional and regulatory differences, the role of the individual TP isoforms in neoplastic diseases is largely unknown. This study evaluated expression of the TPα and TPβ isoforms in tumour microarrays of the benign prostate and different pathological (Gleason) grades of prostate cancer (PCa). Expression of TPβ was significantly increased in PCa relative to benign tissue and strongly correlated with increasing Gleason grade. Furthermore, higher TPβ expression was associated with increased risk of biochemical recurrence (BCR) and significantly shorter disease-free survival time in patients post-surgery. While TPα was more variably expressed than TPβ in PCa, increased/high TPα expression within the tumour also trended toward increased BCR and shorter disease-free survival time. Comparative genomic CpG DNA methylation analysis revealed substantial differences in the extent of methylation of the promoter regions of the TBXA2R that specifically regulate expression of TPα and TPβ, respectively, both in benign prostate and in clinically-derived tissue representative of precursor lesions and progressive stages of PCa. Collectively, TPα and TPβ expression is differentially regulated both in the benign and tumourigenic prostate, and coincides with clinical pathology and altered CpG methylation of the TBXA2R gene. Analysis of TPβ, or a combination of TPα/TPβ, expression levels may have significant clinical potential as a diagnostic biomarker and predictor of PCa disease recurrence.
Collapse
Affiliation(s)
- Eamon P Mulvaney
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Christine Shilling
- Department of Pathology, Beaumont Hospital and Royal College of Surgeons, Dublin, Ireland
| | - Sarah B Eivers
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Antoinette S Perry
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Anders Bjartell
- Department of Translational Medicine, Division of Urological Cancers, Skåne University Hospital Malmö, Lund University, Lund, Sweden
| | - Elaine W Kay
- Department of Pathology, Beaumont Hospital and Royal College of Surgeons, Dublin, Ireland
| | - R William Watson
- UCD School of Medicine, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - B Therese Kinsella
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
47
|
Hsia CH, Lu WJ, Lin KH, Chou DS, Geraldine P, Jayakuma T, Chang NC, Sheu JR. Norcantharidin, a clinical used chemotherapeutic agent, acts as a powerful inhibitor by interfering with fibrinogen-integrin α IIb β 3 binding in human platelets. J Cell Mol Med 2018; 22:2142-2152. [PMID: 29369482 PMCID: PMC5867116 DOI: 10.1111/jcmm.13488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/08/2017] [Indexed: 12/31/2022] Open
Abstract
During platelet activation, fibrinogen binds to its specific platelet receptor, integrin αIIb β3 , thus completing the final common pathway for platelet aggregation. Norcantharidin (NCTD) is a promising anticancer agent in China from medicinal insect blister beetle. In this study, we provided the evidence to demonstrate NCTD (0.1-1.0 μM) possesses very powerful antiplatelet activity in human platelets; nevertheless, it had no effects on surface P-selectin expression and only slight inhibition on ATP-release reaction in activated platelets. Moreover, NCTD markedly hindered integrin αIIb β3 activation by interfering with the binding of FITC-labelled PAC-1. It also markedly reduced the number of adherent platelets and the single platelet spreading area on immobilized fibrinogen as well as clot retraction. Additionally, NCTD attenuated phosphorylation of proteins such as integrin β3 , Src and FAK in platelets spreading on immobilized fibrinogen. These results indicate that NCTD restricts integrin αIIb β3 -mediated outside-in signalling in human platelets. Besides, NCTD substantially prolonged the closure time in human whole blood and increased the occlusion time of thrombotic platelet plug formation and prolonged the bleeding time in mice. In conclusion, NCTD has dual activities, it can be a chemotherapeutic agent for cancer treatment, and the other side it possesses powerful antiplatelet activity for treating thromboembolic disorders.
Collapse
Affiliation(s)
- Chih-Hsuan Hsia
- Graduate Institute of Medical Sciences and Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wan-Jung Lu
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan
| | - Kuan-Hung Lin
- Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Duen-Suey Chou
- Graduate Institute of Medical Sciences and Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pitchairaj Geraldine
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Thanasekaran Jayakuma
- Graduate Institute of Medical Sciences and Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Nen-Chung Chang
- Department of Cardiology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences and Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
48
|
Marín de Mas I, Aguilar E, Zodda E, Balcells C, Marin S, Dallmann G, Thomson TM, Papp B, Cascante M. Model-driven discovery of long-chain fatty acid metabolic reprogramming in heterogeneous prostate cancer cells. PLoS Comput Biol 2018; 14:e1005914. [PMID: 29293497 PMCID: PMC5766231 DOI: 10.1371/journal.pcbi.1005914] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 01/12/2018] [Accepted: 12/01/2017] [Indexed: 12/17/2022] Open
Abstract
Epithelial-mesenchymal-transition promotes intra-tumoral heterogeneity, by enhancing tumor cell invasiveness and promoting drug resistance. We integrated transcriptomic data for two clonal subpopulations from a prostate cancer cell line (PC-3) into a genome-scale metabolic network model to explore their metabolic differences and potential vulnerabilities. In this dual cell model, PC-3/S cells express Epithelial-mesenchymal-transition markers and display high invasiveness and low metastatic potential, while PC-3/M cells present the opposite phenotype and higher proliferative rate. Model-driven analysis and experimental validations unveiled a marked metabolic reprogramming in long-chain fatty acids metabolism. While PC-3/M cells showed an enhanced entry of long-chain fatty acids into the mitochondria, PC-3/S cells used long-chain fatty acids as precursors of eicosanoid metabolism. We suggest that this metabolic reprogramming endows PC-3/M cells with augmented energy metabolism for fast proliferation and PC-3/S cells with increased eicosanoid production impacting angiogenesis, cell adhesion and invasion. PC-3/S metabolism also promotes the accumulation of docosahexaenoic acid, a long-chain fatty acid with antiproliferative effects. The potential therapeutic significance of our model was supported by a differential sensitivity of PC-3/M cells to etomoxir, an inhibitor of long-chain fatty acid transport to the mitochondria. The coexistence within the same tumor of a variety of subpopulations, featuring different phenotypes (intra-tumoral heterogeneity) represents a challenge for diagnosis, prognosis and targeted therapies. In this work, we have explored the metabolic differences underlying tumor heterogeneity by building cell-type-specific genome-scale metabolic models that integrate transcriptome and metabolome data of two clonal subpopulations derived from the same prostate cancer cell line (PC-3). These subpopulations display either highly proliferative, cancer stem cell (PC-3/M) or highly invasive, epithelial-mesenchymal-transition-like phenotypes (PC-3/S). Our model-driven analysis and experimental validations have unveiled a differential utilization of the long-chain fatty acids pool in both subpopulations. More specifically, our findings show an enhanced entry of long-chain fatty acids into the mitochondria in PC-3/M cells, while in PC-3/S cells, long-chain fatty acids are used as precursors of eicosanoid metabolism. The different utilization of long-chain fatty acids between subpopulations endows PC-3/M cells with a highly proliferative phenotype while enhances PC-3/S invasive phenotype. The present work provides a tool to unveil key metabolic nodes associated with tumor heterogeneity and highlights potential subpopulation-specific targets with important therapeutic implications.
Collapse
Affiliation(s)
- Igor Marín de Mas
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine of University of Barcelona (IBUB) and Associated Unit with CSIC, Barcelona, Spain
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Esther Aguilar
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine of University of Barcelona (IBUB) and Associated Unit with CSIC, Barcelona, Spain
| | - Erika Zodda
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine of University of Barcelona (IBUB) and Associated Unit with CSIC, Barcelona, Spain
- Department of Cell Biology, Barcelona Institute for Molecular Biology (IBMB), National Research Council (CSIC), Barcelona, Spain
| | - Cristina Balcells
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine of University of Barcelona (IBUB) and Associated Unit with CSIC, Barcelona, Spain
| | - Silvia Marin
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine of University of Barcelona (IBUB) and Associated Unit with CSIC, Barcelona, Spain
| | | | - Timothy M. Thomson
- Department of Cell Biology, Barcelona Institute for Molecular Biology (IBMB), National Research Council (CSIC), Barcelona, Spain
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
- * E-mail: (BP); (MC)
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine of University of Barcelona (IBUB) and Associated Unit with CSIC, Barcelona, Spain
- * E-mail: (BP); (MC)
| |
Collapse
|
49
|
O'Sullivan AG, Eivers SB, Mulvaney EP, Kinsella BT. Regulated expression of the TPβ isoform of the human T prostanoid receptor by the tumour suppressors FOXP1 and NKX3.1: Implications for the role of thromboxane in prostate cancer. Biochim Biophys Acta Mol Basis Dis 2017; 1863:3153-3169. [PMID: 28890397 DOI: 10.1016/j.bbadis.2017.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/16/2017] [Accepted: 09/07/2017] [Indexed: 12/13/2022]
Abstract
The prostanoid thromboxane (TX)A2 signals through the TPα and TPβ isoforms of T Prostanoid receptor (TP) that are transcriptionally regulated by distinct promoters termed Prm1 and Prm3, respectively, within the TBXA2R gene. We recently demonstrated that expression of TPα and TPβ is increased in PCa, differentially correlating with Gleason grade and with altered CpG methylation of the individual Prm1/Prm3 regions within the TBXA2R. The current study sought to localise the sites of CpG methylation within Prm1 and Prm3, and to identify the main transcription factors regulating TPβ expression through Prm3 in the prostate adenocarcinoma PC-3 and LNCaP cell lines. Bisulfite sequencing revealed extensive differences in the pattern and status of CpG methylation of the individual Prm1 and Prm3 regions that regulate TPα and TPβ expression, respectively, within the TBXA2R. More specifically, Prm1 is predominantly hypomethylated while Prm3 is hypermethylated across its entire sequence in PC-3 and LNCaP cells. Furthermore, the tumour suppressors FOXP1 and NKX3.1, strongly implicated in PCa development, were identified as key transcription factors regulating TPβ expression through Prm3 in both PCa cell lines. Specific siRNA-disruption of FOXP1 and NKX3.1 each coincided with up-regulated TPβ protein and mRNA expression, while genetic-reporter and chromatin immunoprecipitation (ChIP) analyses confirmed that both FOXP1 and NKX3.1 bind to cis‑elements within Prm3 to transcriptionally repress TPβ in the PCa lines. Collectively these data identify Prm3/TPβ as a bona fide target of FOXP1 and NKX3.1 regulation, providing a mechanistic basis, at least in part, for the highly significant upregulation of TPβ expression in PCa.
Collapse
Affiliation(s)
- Aine G O'Sullivan
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sarah B Eivers
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eamon P Mulvaney
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - B Therese Kinsella
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
50
|
Che D, Zhang S, Jing Z, Shang L, Jin S, Liu F, Shen J, Li Y, Hu J, Meng Q, Yu Y. Macrophages induce EMT to promote invasion of lung cancer cells through the IL-6-mediated COX-2/PGE 2/β-catenin signalling pathway. Mol Immunol 2017; 90:197-210. [PMID: 28837884 DOI: 10.1016/j.molimm.2017.06.018] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 05/27/2017] [Accepted: 06/03/2017] [Indexed: 01/21/2023]
Abstract
Infiltration of macrophages plays a critical role in the connection between inflammation and cancer invasion; however, the molecular mechanism that enables this crosstalk remains unclear. This paper investigates a molecular link between infiltration of macrophages and metastasis of lung cancer cells. In this study, the macrophage density and cyclooxygenase-2 (COX-2) protein were examined in surgical specimens by immunohistochemistry (IHC), and the prostaglandin E2 (PGE2) levels were determined in the blood of 30 non-small cell lung cancer (NSCLC) patients using enzyme-linked immunosorbent assay (ELISA). We demonstrated that macrophage infiltration was significantly associated with elevated tumour COX-2 expression and serum PGE2 levels in NSCLC patients. Interestingly, the COX-2 and PGE2 levels as well as macrophages were poor predictors of NSCLC patient survival. THP-1-derived macrophages were co-cultured in vitro with A549 and H1299 lung cancer cells. In the co-culture process, interleukin-6 (IL-6) induced the COX-2/PGE2 pathway in lung cancer cells, which subsequently promoted β-catenin translocation from the cytoplasm to the nucleus, resulting in epithelial-mesenchymal transition (EMT) and lung cancer cell invasion. Our findings show that the IL-6-dependent COX-2/PGE2 pathway induces EMT to promote invasion of tumour cells through β-catenin activation during the interaction between macrophages and lung cancer cells, which suggests that inhibition of COX-2/PGE2 or macrophages has the potential to suppress metastasis of lung cancer cells.
Collapse
Affiliation(s)
- Dehai Che
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150 of Nangang District, Harbin, Heilongjiang Province 150081, PR China
| | - Shuai Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150 of Nangang District, Harbin, Heilongjiang Province 150081, PR China
| | - Zihan Jing
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150 of Nangang District, Harbin, Heilongjiang Province 150081, PR China
| | - Lihua Shang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150 of Nangang District, Harbin, Heilongjiang Province 150081, PR China
| | - Shi Jin
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150 of Nangang District, Harbin, Heilongjiang Province 150081, PR China
| | - Fang Liu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150 of Nangang District, Harbin, Heilongjiang Province 150081, PR China
| | - Jing Shen
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150 of Nangang District, Harbin, Heilongjiang Province 150081, PR China
| | - Yue Li
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150 of Nangang District, Harbin, Heilongjiang Province 150081, PR China
| | - Jing Hu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150 of Nangang District, Harbin, Heilongjiang Province 150081, PR China
| | - Qingwei Meng
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150 of Nangang District, Harbin, Heilongjiang Province 150081, PR China.
| | - Yan Yu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150 of Nangang District, Harbin, Heilongjiang Province 150081, PR China.
| |
Collapse
|