1
|
Liu S, Liu Y, Zhou Y, Xia G, Liu H, Zeng Y, Pei Z, Cao J, Jing G, Zou H, Liao C. NSUN5 promotes tumorigenic phenotypes through the WNT signaling pathway and immunosuppression of CD8+ T cells in gastric cancer. Cell Signal 2024; 124:111475. [PMID: 39428025 DOI: 10.1016/j.cellsig.2024.111475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
NSUN5, a key member of the M5C methylation family, plays a significant role in fundamental biological processes like cell proliferation and differentiation. However, its specific function and mechanisms in gastric cancer remain insufficiently understood. Initially, we examined NSUN5's differential expression in gastric cancer versus normal tissues, along with survival trends, associated signaling pathways, and immune infiltration using the TCGA database. Subsequently, we conducted immunohistochemistry experiments to assess NSUN5 expression in gastric cancer tissues. Gain-and loss-of-function experiments were carried out to investigate NSUN5's impact on the proliferation, stemness, and migratory capabilities of gastric cancer cells, as well as the expression of vital proteins in pertinent signaling pathways. Our findings demonstrate that NSUN5 is not only overexpressed in gastric cancer tissues, but also positively associated with tumor stage and inversely linked with patient prognosis. NSUN5 promotes the in vitro proliferation, stemness, and migration of gastric cancer cells, and the in vivo growth of these cells, chiefly through the activation of the WNT/β-catenin signaling pathway. Additionally, NSUN5 appears to diminish the infiltration of CD8+ T cells in gastric cancer, contributing to immune evasion. In conclusion, NSUN5 functions as a proto-oncogene in the progression of gastric cancer and may serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Shuhao Liu
- Gastrointestinal Hernia Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No.152 Aiguo Road, Nanchang City 330006, Jiangxi Province, PR China
| | - Yong Liu
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, PR China.; Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, PR China
| | - Yijun Zhou
- School of Medicine, Sun Yat-sen University (Shenzhen), Shenzhen 518107, China
| | - Gaoshui Xia
- Nanchang Medical College. No. 689, Huiren Avenue, Nanchang Xiaolan Economic And Technological Development Zone, Nanchang City 330052, Jiangxi Province, PR China
| | - Haibo Liu
- Gastrointestinal Hernia Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No.152 Aiguo Road, Nanchang City 330006, Jiangxi Province, PR China
| | - Yu Zeng
- Gastrointestinal Hernia Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No.152 Aiguo Road, Nanchang City 330006, Jiangxi Province, PR China; Jiangxi Medical College, Nanchang University, No. 461, Bayi Avenue, Nanchang City 330006, Jiangxi Province, PR China
| | - Zhihui Pei
- Gastrointestinal Hernia Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No.152 Aiguo Road, Nanchang City 330006, Jiangxi Province, PR China; Jiangxi Medical College, Nanchang University, No. 461, Bayi Avenue, Nanchang City 330006, Jiangxi Province, PR China
| | - Jing Cao
- Gastrointestinal Hernia Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No.152 Aiguo Road, Nanchang City 330006, Jiangxi Province, PR China
| | - Guifang Jing
- Gastrointestinal Hernia Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No.152 Aiguo Road, Nanchang City 330006, Jiangxi Province, PR China
| | - Hailin Zou
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, PR China.
| | - Chuanwen Liao
- Gastrointestinal Hernia Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No.152 Aiguo Road, Nanchang City 330006, Jiangxi Province, PR China
| |
Collapse
|
2
|
Chen Y, Liu Y, Tu W, Chen Y, Xu C, Huang C. m6A demethylase FTO transcriptionally activated by SP1 improves ischemia reperfusion-triggered acute kidney injury by activating Ambra1/ULK1-mediated autophagy. FASEB J 2024; 38:e70118. [PMID: 39439252 DOI: 10.1096/fj.202400132rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Ischemia reperfusion (I/R) was considered as one of main causes of acute kidney injury (AKI). However, the exact mechanism remains unclear. Here, this study aimed to investigate the role and mechanism of the m6A demethylase fat mass and obesity-associated (FTO) protein in I/R-induced AKI. HK-2 cells and SD rats were utilized to establish hypoxia/reoxygenation (H/R) or I/R induced AKI models. The changes of RNAs and proteins were quantified using RT-qPCR, western blot, and immunofluorescence assays, respectively. Cell proliferation and apoptosis were assessed by CCK-8 and flow cytometry. Interactions between molecules were investigated using RIP, ChIP, Co-IP, RNA pull-down, and dual luciferase reporter assays. Global m6A quantification was evaluated by kits. TUNEL and HE staining were employed for histopathological examinations. Oxidative stress-related indicators and renal function were determined using ELISA assays. The FTO expression was downregulated in H/R-induced HK-2 cells and renal tissues from I/R-induced rats. Overexpression of FTO improved the cell viability but repressed apoptosis and oxidative stress in H/R-treated HK-2 cells, as well as enhanced renal function and alleviated kidney injury in I/R rats. Notably, the FTO overexpression significantly increased autophagy-related LC3 and ULK1 levels. When autophagy was inhibited, the protective effects of FTO in AKI were diminished. Notably, Ambra1, a crucial regulator of autophagy, was repressed in H/R-induced HK-2 cells. However, the FTO overexpression restored the Ambra1 expression by reducing m6A modification of its mRNA. SP1, acting as an upstream transcription factor, directly interacts with the FTO promoter to enhance FTO expression. Knockdown of SP1 or Ambra1 suppressed the beneficial effects of FTO upregulation on autophagy and oxidative stress injury in H/R-stimulated cells. FTO, transcriptionally activated by SP1, promoted autophagy by upregulating Ambra1/ULK1 signaling, thereby inhibiting oxidative stress and kidney injury. These findings may provide some novel insights for AKI treatment.
Collapse
Affiliation(s)
- Yan Chen
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Yuanfei Liu
- Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Weiping Tu
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Yanxia Chen
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Chengyun Xu
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Chong Huang
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, P.R. China
| |
Collapse
|
3
|
Li R, Li S, Shen L, Li J, Zhang D, Yu J, Huang L, Liu N, Lu H, Xu M. LINC00618 facilitates growth and metastasis of hepatocellular carcinoma via elevating cholesterol synthesis by promoting NSUN2-mediated SREBP2 m5C modification. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117064. [PMID: 39299205 DOI: 10.1016/j.ecoenv.2024.117064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/03/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Dysregulation of cholesterol metabolism is an important feature of cancer development. There are limited reports on the involvement of lncRNAs in hepatocellular carcinoma (HCC) progression via the cholesterol metabolism pathway. The present study explored the effect of LINC00618 on HCC growth and metastasis, and elucidated the underlying mechanisms involved in cholesterol metabolism. Here, we found that LINC00618 expression was upregulated in cancerous tissues from 30 patients with HCC compared to that in adjacent normal tissues. High expression of LINC00618 was detected in metastatic HCC tissues. LINC00618 is predominantly localized in the nucleus and overexpression of LINC00618 facilitated HCC cell proliferation, migration and EMT progression by promoting cholesterol biosynthesis. Mechanistically, the 1-101nt region of LINC00618 bound to NSUN2. LINC00618 inhibited ubiquitin-proteasome pathway-induced NSUN2 degradation. NSUN2 stabilized by LINC00618 increased m5C modification of SREBP2 and promoted SREBP2 mRNA stability in a YBX1-dependent manner, thereby promoting cholesterol biosynthesis in HCC cells. Moreover, mouse HCC xenograft and lung metastasis models were established by subcutaneous and tail vein injections of MHCC97 cells transfected with or without sh-LINC00618. Silencing LINC00618 impeded HCC growth and metastasis. In conclusion, LINC00618 promoted HCC growth and metastasis by elevating cholesterol synthesis by stabilizing NSUN2 to enhance SREBP2 mRNA stability in an m5C-dependent manner.
Collapse
Affiliation(s)
- Rong Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, China
| | - Shunle Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, China
| | - Lin Shen
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, China
| | - Junhui Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, China
| | - Di Zhang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, China
| | - Jinmin Yu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, China
| | - Lanxuan Huang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Na Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, China.
| | - Hongwei Lu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, China.
| | - Meng Xu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, China.
| |
Collapse
|
4
|
Rupareliya M, Shende P. Influence of RNA Methylation on Cancerous Cells: A Prospective Approach for Alteration of In Vivo Cellular Composition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39259424 DOI: 10.1007/5584_2024_820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
RNA methylation is a dynamic and ubiquitous post-transcriptional modification that plays a pivotal role in regulating gene expression in various conditions like cancer, neurological disorders, cardiovascular diseases, viral infections, metabolic disorders, and autoimmune diseases. RNA methylation manifests across diverse RNA species including messenger RNA (mRNA), ribosomal RNA (rRNA), and transfer RNA (tRNA), exerting pivotal roles in gene expression regulation and various biological phenomena. Aberrant activity of writer, eraser, and reader proteins enables dysregulated methylation landscape across diverse malignancy transcriptomes, frequently promoting cancer pathogenesis. Numerous oncogenic drivers, tumour suppressors, invasion/metastasis factors, and signalling cascade components undergo methylation changes that modulate respective mRNA stability, translation, splicing, transport, and protein-RNA interactions accordingly. Functional studies confirm methylation-dependent alterations drive proliferation, survival, motility, angiogenesis, stemness, metabolism, and therapeutic evasion programs systemically. Methyltransferase overexpression typifies certain breast, liver, gastric, and other carcinomas correlating with adverse clinical outcomes like diminished overall survival. Mapping efforts uncover nodal transcripts for targeted drug development against hyperactivated regulators including METTL3. Some erasers and readers also suitable lead candidates based on apparent synthetic lethality. Proteomic screens additionally highlight relevant methylation-sensitive effector pathways amenable to combinatorial blockade, reversing compensatory signalling mechanisms that facilitate solid tumour progression. Quantifying global methylation burdens and responsible enzymes clinically predicts patient prognosis, risk stratification for adjuvant therapy, and overall therapeutic responsiveness.
Collapse
Affiliation(s)
- Manali Rupareliya
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, India.
| |
Collapse
|
5
|
Tian J, Gao J, Cheng C, Xu Z, Chen X, Wu Y, Fu G, Jin B. NOP2-mediated 5-methylcytosine modification of APOL1 messenger RNA activates PI3K-Akt and facilitates clear cell renal cell carcinoma progression. Int J Biol Sci 2024; 20:4853-4871. [PMID: 39309431 PMCID: PMC11414376 DOI: 10.7150/ijbs.97503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Background: By regulating the functions of multiple RNAs, 5-methylcytosine (m5C) RNA methylation, particularly mediated by NOP2, is involved in tumorigenesis and developments. However, the specific functions and potential mechanisms of m5C, especially involving NOP2, in clear-cell renal cell carcinoma (ccRCC), remain unclear. Methods: NOP2 expression in cell lines and patient tissues was detected using western blotting, quantitative real-time polymerase chain reaction (RT-qPCR), and immunohistochemistry. The biological effects of NOP2 on ccRCC cells were investigated through a series of in vitro and in vivo experiments. To explore the potential regulatory mechanisms by which NOP2 affects ccRCC progression, m5C bisulfite sequencing, RNA-sequencing, RNA immunoprecipitation and methylated RNA immunoprecipitation (RIP/MeRIP) RT-qPCR assay, luciferase reporter assay, RNA stability assay, and bioinformatic analysis were performed. Results: NOP2 expression was significantly upregulated in ccRCC tissues and was associated with poor prognosis. Moreover, loss-of-function and gain-of-function assays demonstrated that NOP2 altered ccRCC cell proliferation, migration, and invasion. Mechanistically, NOP2 stimulated m5C modification of apolipoprotein L1 (APOL1) mRNA, and m5C reader YBX1 stabilized APOL1 mRNA through recognizing and binding to m5C site in the 3'-untranslated regions. Silencing APOL1 expression inhibited ccRCC cell proliferation in vitro and tumor formation in vivo. Furthermore, NOP2/APOL1 affected ccRCC progression via the PI3K-Akt signaling pathway. Conclusion: NOP2 functions as an oncogene in ccRCC by promoting tumor progression through the m5C-dependent stabilization of APOL1, which in turn regulates the PI3K-Akt signaling pathway, suggesting a potential therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Junjie Tian
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jianguo Gao
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou 310003, China
| | - Cheng Cheng
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou 310003, China
| | - Zhijie Xu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou 310003, China
| | - Xiaoyi Chen
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou 310003, China
| | - Yunfei Wu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou 310003, China
| | - Guanghou Fu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou 310003, China
| | - Baiye Jin
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou 310003, China
| |
Collapse
|
6
|
Wei L, Xie Y, Yu P, Zhu Q, Lan X, Xiao J. Bioinformatics analysis and validation of RNA methylation-related genes in osteogenic and adipogenic differentiation of rat bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 2024; 739:150570. [PMID: 39181069 DOI: 10.1016/j.bbrc.2024.150570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND The regulatory mechanisms of RNA methylation during the processes of osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) have yet to be fully understood. The objective of our study was to analyze and validate the contribution of RNA methylation regulators to the mechanisms underlying the osteogenic and adipogenic differentiation of rat BMSCs. METHODS We downloaded the GSE186026 from the Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were screened using the DESeq2 package in R software (version 3.6.3). A total of 50 RNA methylation genes obtained from literature review and summary were intersected with the previous DEGs to obtain RNA methylation genes, which have different expressions (RM-DEGs). Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were utilized to reveal the functional enrichment. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to validate RM-DEGs. Protein-protein interaction network (PPI) analysis and visual analysis were performed using STRING and Cytoscape. RM-DEGs regulatory network was constructed to analyze the top 10 hub genes. The relationship between RM-DEGs, some enriched GO and pathways was also been analyzed. The miRNAs and RM-DEGs regulatory networks were established by using miRWalk and TargetScan. RESULTS As part of our research, we detected varying levels of expression for m6A regulators Mettl3 and Rbm15, as well as m7G regulators Mettl1 and Wdr4, in relation to osteogenic differentiation, along with m6A regulator Fmr1 in adipogenic differentiation. The protein-protein interaction (PPI) networks were constructed for 49 differentially expressed genes (DEGs) related to RNA methylation during the process of osteogenic differentiation, and 13 DEGs for adipogenic differentiation. Moreover, top10 hub genes were calculated. In osteogenic differentiation, Mettl3 regulated the Wnt pathway and Hippo pathway by regulating Smad3, Rbm15 regulated the Notch pathway by Notch1, Mettl1 regulated the PI3K-Akt pathway by Gnb4. In adipogenic differentiation, Fmr1 regulated the PI3K-Akt pathway by Egfr. M6A methylation sites of Smad3, Notch1 and Gnb4 were predicted, and the results showed that all three genes were possibly methylated by m6A, and more than 9 sites per gene were possibly methylated. Finally, we constructed the regulatory networks of Mettl3, Rbm15, Mettl1, and Wdr4 and 109 miRNAs in osteogenic differentiation, Fmr1 and 118 miRNAs in adipogenic differentiation. CONCLUSIONS Mettl3(m6A), Rbm15(m6A), Wdr4 and Mettl1(m7G) were differentially expressed in osteogenic differentiation, while Fmr1(m6A) was differentially expressed in adipogenic differentiation. These findings offered potential candidates for further research on the involvement of RNA methylation in the osteogenic and adipogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Li Wei
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Yuping Xie
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Peiyang Yu
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Qiang Zhu
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Jingang Xiao
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
7
|
He W, Cong Z, Niu C, Cheng F, Yi T, Yao Z, Zhang Y, Jiang X, Sun X, Niu Z, Fu Q. A prognostic signature based on genes associated with m6A/m5C/m1A/m7G modifications and its immunological characteristics in clear cell renal cell carcinoma. Sci Rep 2024; 14:18708. [PMID: 39134681 PMCID: PMC11319670 DOI: 10.1038/s41598-024-69639-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by a high incidence and mortality rate. Despite advancements in therapeutic interventions, the prognosis for renal cancer patients remains suboptimal. Of late, methylation modifications have emerged as promising molecular targets for tumor assessment and treatment, yet their potential has not been fully investigated in the context of ccRCC. Transcriptomic and clinical data were extracted from The Cancer Genome Atlas, Gene Expression Omnibus, and ArrayExpress databases, leading to the identification of 57 methylation-related genes (MRGs). Utilizing DESeq2 analysis, Cox regression analysis, and the LASSO regression algorithm, a Methylation-Related Risk Score (MARS) was constructed. Cluster analysis, Gene Ontology (GO) analysis, clinical feature analysis, immune infiltration analysis, and mutation analysis were further employed to evaluate the model. Our investigation identified six pivotal prognostic MRGs and established a risk score predicated on m6A/m5C/m1A/m7G regulatory factors. This score was validated across two external cohorts and can be utilized to assess individual immune infiltration statuses and predict responses to immunotherapy. Moreover, cluster analysis delineated two distinct m6A/m5C/m1A/m7G gene clusters. We have developed and validated a robust prognostic signature based on genes associated with m6A, m5C, m1A, and m7G modifications. This gene signature demonstrates significant prognostic value in assessing survival outcomes, clinical characteristics, immune infiltration, and responses to immunotherapy in ccRCC patients. This finding provides valuable insights for refining precision treatment strategies.
Collapse
Affiliation(s)
- Wei He
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zixiang Cong
- Department of Urology, Weihai Municipal Hospital Affiliated to Shandong University, Weihai, Shandong, China
| | - Chengtao Niu
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Fajuan Cheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Tinghai Yi
- Department of Urology, Traditional Chinese Hospital of Yiyuan County, Zibo, Shandong, China
| | - Zhongshun Yao
- Department of Emergency, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Yiming Zhang
- Department of Urology, People's Hospital of Changle County, Weifang, Shandong, China
| | - Xue Jiang
- Medical School, Shandong Xiehe University, Jinan, Shandong, China
| | - Xintong Sun
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhihong Niu
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Qiang Fu
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
8
|
Zhao L, Li Q, Zhou T, Liu X, Guo J, Fang Q, Cao X, Geng Q, Yu Y, Zhang S, Deng T, Wang X, Jiao Y, Zhang M, Liu H, Tan H, Xiao C. Role of N6-methyladenosine in tumor neovascularization. Cell Death Dis 2024; 15:563. [PMID: 39098905 PMCID: PMC11298539 DOI: 10.1038/s41419-024-06931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Tumor neovascularization is essential for the growth, invasion, and metastasis of tumors. Recent studies have highlighted the significant role of N6-methyladenosine (m6A) modification in regulating these processes. This review explores the mechanisms by which m6A influences tumor neovascularization, focusing on its impact on angiogenesis and vasculogenic mimicry (VM). We discuss the roles of m6A writers, erasers, and readers in modulating the stability and translation of angiogenic factors like vascular endothelial growth factor (VEGF), and their involvement in key signaling pathways such as PI3K/AKT, MAPK, and Hippo. Additionally, we outline the role of m6A in vascular-immune crosstalk. Finally, we discuss the current development of m6A inhibitors and their potential applications, along with the contribution of m6A to anti-angiogenic therapy resistance. Highlighting the therapeutic potential of targeting m6A regulators, this review provides novel insights into anti-angiogenic strategies and underscores the need for further research to fully exploit m6A modulation in cancer treatment. By understanding the intricate role of m6A in tumor neovascularization, we can develop more effective therapeutic approaches to inhibit tumor growth and overcome treatment resistance. Targeting m6A offers a novel approach to interfere with the tumor's ability to manipulate its microenvironment, enhancing the efficacy of existing treatments and providing new avenues for combating cancer progression.
Collapse
Affiliation(s)
- Lu Zhao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Qinshan Li
- Institute of Precision Medicine of Guizhou Province, Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
- Department of Clinical Biochemistry, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Tongliang Zhou
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xuan Liu
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jing Guo
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qing Fang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoxue Cao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Qishun Geng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Yang Yu
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Songjie Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Tingting Deng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xing Wang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Jiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Honglin Liu
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China.
| | - Haidong Tan
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
9
|
Liu L, Chen Z, Zhang K, Hao H, Ma L, Liu H, Yu B, Ding S, Zhang X, Zhu M, Guo X, Liu Y, Liu H, Huang F, Peng K, Guan W. NSUN2 mediates distinct pathways to regulate enterovirus 71 replication. Virol Sin 2024; 39:574-586. [PMID: 38768712 PMCID: PMC11401462 DOI: 10.1016/j.virs.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/03/2024] [Indexed: 05/22/2024] Open
Abstract
Increasing evidences suggest that the methyltransferase NSUN2 catalyzes 5-methylcytosine (m5C) modifications on viral RNAs, which are essential for the replication of various viruses. Despite the function of m5C deposition is well characterized, other potential roles of NSUN2 in regulating viral replication remain largely unknown. In this study, the m5C modified residues catalyzed by NSUN2 on enterovirus 71 (EV71) RNAs were mapped. NSUN2, along with m5C modifications, played multiple roles during the EV71 life cycle. Functional m5C modified nucleotides increased the translational efficiency and stability of EV71 RNAs. Additionally, NSUN2 was found to target the viral protein VP1 for binding and promote its stability by inhibiting the ubiquitination. Furthermore, both viral replication and pathogenicity in mice were largely attenuated when functional m5C residues were mutated. Taken together, this study characterizes distinct pathways mediated by NSUN2 in regulating EV71 replication, and highlights the importance of its catalyzed m5C modifications on EV71 RNAs for the viral replication and pathogenicity.
Collapse
Affiliation(s)
- Lishi Liu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Chen
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Kui Zhang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haojie Hao
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Li Ma
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haizhou Liu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Baocheng Yu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang Ding
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Xueyan Zhang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Miao Zhu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang Guo
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Liu
- Hubei Jiangxia Laboratory, Wuhan, Hubei, 430200, China
| | - Haibin Liu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Fang Huang
- Hubei Jiangxia Laboratory, Wuhan, Hubei, 430200, China.
| | - Ke Peng
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China; Hubei Jiangxia Laboratory, Wuhan, Hubei, 430200, China.
| | - Wuxiang Guan
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China; Hubei Jiangxia Laboratory, Wuhan, Hubei, 430200, China.
| |
Collapse
|
10
|
Xie Y, Xie J, Li L. The Role of Methylation in Ferroptosis. J Cardiovasc Transl Res 2024:10.1007/s12265-024-10539-1. [PMID: 39075241 DOI: 10.1007/s12265-024-10539-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/21/2024] [Indexed: 07/31/2024]
Abstract
Methylation modification is a crucial epigenetic alteration encompassing RNA methylation, DNA methylation, and histone methylation. Ferroptosis represents a newly discovered form of programmed cell death (PCD) in 2012, which is characterized by iron-dependent lipid peroxidation. The comprehensive investigation of ferroptosis is therefore imperative for a more profound comprehension of the pathological and pathophysiological mechanisms implicated in a wide array of diseases. Researches show that methylation modifications can exert either promotive or inhibitory effects on cell ferroptosis. Consequently, this review offers a comprehensive overview of the pivotal role played by methylation in ferroptosis, elucidating its associated factors and underlying mechanisms.
Collapse
Affiliation(s)
- Yushu Xie
- Class of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jie Xie
- Class of Excellent Doctor, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Liang Li
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
11
|
Chen K, Li WD, Li XQ. The role of m6A in angiogenesis and vascular diseases. iScience 2024; 27:110082. [PMID: 39055919 PMCID: PMC11269316 DOI: 10.1016/j.isci.2024.110082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
Angiogenesis, whether physiological or pathological, plays a pivotal role in various physiological and disease conditions. This intricate process relies on a complex and meticulously orchestrated signal transduction network that connects endothelial cells, their associated parietal cells (VSMCs and pericytes), and various other cell types, including immune cells. Given the significance of m6A and its connection to angiogenesis and vascular disease, researchers must adopt a comprehensive and ongoing approach to their investigations. This study aims to ascertain whether a common key mechanism of m6A exists in angiogenesis and vascular diseases and to elucidate the potential application of m6A in treating vascular diseases.
Collapse
Affiliation(s)
- Ke Chen
- Department of Vascular Surgery, The Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Wen-Dong Li
- Department of Vascular Surgery, The Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Xiao-Qiang Li
- Department of Vascular Surgery, The Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
12
|
Xing Y, Tang Y, Chen Q, Chen S, Li W, Mi S, Yu Y. The role of RNA epigenetic modification-related genes in the immune response of cattle to mastitis induced by Staphylococcus aureus. Anim Biosci 2024; 37:1141-1155. [PMID: 38271969 PMCID: PMC11222847 DOI: 10.5713/ab.23.0323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/13/2023] [Accepted: 11/28/2023] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVE RNA epigenetic modifications play an important role in regulating immune response of mammals. Bovine mastitis induced by Staphylococcus aureus (S. aureus) is a threat to the health of dairy cattle. There are numerous RNA modifications, and how these modification-associated enzymes systematically coordinate their immunomodulatory effects during bovine mastitis is not well reported. Therefore, the role of common RNA modificationrelated genes (RMRGs) in bovine S. aureus mastitis was investigated in this study. METHODS In total, 80 RMRGs were selected for this study. Four public RNA-seq data sets about bovine S. aureus mastitis were collected and one additional RNA-seq data set was generated by this study. Firstly, quantitative trait locus (QTL) database, transcriptome-wide association studies (TWAS) database and differential expression analyses were employed to characterize the potential functions of selected enzyme genes in bovine S. aureus mastitis. Correlation analysis and weighted gene co-expression network analysis (WGCNA) were used to further investigate the relationships of RMRGs from different types at the mRNA expression level. Interference experiments targeting the m6A demethylase FTO and utilizing public MeRIP-seq dataset from bovine Mac-T cells were used to investigate the potential interaction mechanisms among various RNA modifications. RESULTS Bovine QTL and TWAS database in cattle revealed associations between RMRGs and immune-related complex traits. S. aureus challenged and control groups were effectively distinguished by principal component analysis based on the expression of selected RMRGs. WGCNA and correlation analysis identified modules grouping different RMRGs, with highly correlated mRNA expression. The m6A modification gene FTO showed significant effects on the expression of m6A and other RMRGs (such as NSUN2, CPSF2, and METTLE), indicating complex co-expression relationships among different RNA modifications in the regulation of bovine S. aureus mastitis. CONCLUSION RNA epigenetic modification genes play important immunoregulatory roles in bovine S. aureus mastitis, and there are extensive interactions of mRNA expression among different RMRGs. It is necessary to investigate the interactions between RNA modification genes regulating complex traits in the future.
Collapse
Affiliation(s)
- Yue Xing
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193,
China
| | - Yongjie Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193,
China
| | - Quanzhen Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193,
China
| | - Siqian Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193,
China
| | - Wenlong Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193,
China
| | - Siyuan Mi
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193,
China
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193,
China
| |
Collapse
|
13
|
Li Y, Jin H, Li Q, Shi L, Mao Y, Zhao L. The role of RNA methylation in tumor immunity and its potential in immunotherapy. Mol Cancer 2024; 23:130. [PMID: 38902779 PMCID: PMC11188252 DOI: 10.1186/s12943-024-02041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
RNA methylation, a prevalent post-transcriptional modification, has garnered considerable attention in research circles. It exerts regulatory control over diverse biological functions by modulating RNA splicing, translation, transport, and stability. Notably, studies have illuminated the substantial impact of RNA methylation on tumor immunity. The primary types of RNA methylation encompass N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), and N7-methylguanosine (m7G), and 3-methylcytidine (m3C). Compelling evidence underscores the involvement of RNA methylation in regulating the tumor microenvironment (TME). By affecting RNA translation and stability through the "writers", "erasers" and "readers", RNA methylation exerts influence over the dysregulation of immune cells and immune factors. Consequently, RNA methylation plays a pivotal role in modulating tumor immunity and mediating various biological behaviors, encompassing proliferation, invasion, metastasis, etc. In this review, we discussed the mechanisms and functions of several RNA methylations, providing a comprehensive overview of their biological roles and underlying mechanisms within the tumor microenvironment and among immunocytes. By exploring how these RNA modifications mediate tumor immune evasion, we also examine their potential applications in immunotherapy. This review aims to provide novel insights and strategies for identifying novel targets in RNA methylation and advancing cancer immunotherapy efficacy.
Collapse
Affiliation(s)
- Yan Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Haoer Jin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qingling Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Liangrong Shi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yitao Mao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Luqing Zhao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
14
|
Quan S, Huang H. Epigenetic contribution to cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:1-25. [PMID: 39179345 DOI: 10.1016/bs.ircmb.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Epigenetics has transformed our understanding of cancer by revealing how changes in gene activity, which do not alter the DNA itself, can initiate and progress the disease. These changes include adjustments in DNA methylation, histone configuration, and non-coding RNA activity. For instance, DNA methylation can inactivate genes that typically protect against cancer, leading to broader genomic instability. Histone modifications can alter how tightly DNA is wound, influencing which genes are active or silenced; while non-coding RNAs can interfere with the messages that direct protein production, impacting cancer-related processes. Unlike genetic mutations, which are permanent and irreversible, epigenetic changes provide a malleable target for therapeutic intervention, allowing potentially reversible adjustments to gene expression patterns. This flexibility is essential in the complex landscape of cancer where static genetic solutions may be insufficient. Additionally, epigenetics bridges the gap between genetic predispositions and environmental influences on cancer, offering a comprehensive framework for understanding how lifestyle factors and external exposures impact cancer risk and progression. The integration of epigenetics into cancer research not only enhances our understanding of the disease but also opens innovative avenues for intervention that were previously unexplored in traditional genetic-focused studies. Technologies like advanced sequencing and precise epigenetic modification are paving the way for early cancer detection and more personalized treatment approaches, highlighting the critical role of epigenetics in modern cancer care.
Collapse
Affiliation(s)
- Songhua Quan
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hao Huang
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| |
Collapse
|
15
|
Zhang X, An K, Ge X, Sun Y, Wei J, Ren W, Wang H, Wang Y, Du Y, He L, Li O, Zhou S, Shi Y, Ren T, Yang YG, Kan Q, Tian X. NSUN2/YBX1 promotes the progression of breast cancer by enhancing HGH1 mRNA stability through m 5C methylation. Breast Cancer Res 2024; 26:94. [PMID: 38844963 PMCID: PMC11155144 DOI: 10.1186/s13058-024-01847-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/21/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND RNA m5C methylation has been extensively implicated in the occurrence and development of tumors. As the main methyltransferase, NSUN2 plays a crucial regulatory role across diverse tumor types. However, the precise impact of NSUN2-mediated m5C modification on breast cancer (BC) remains unclear. Our study aims to elucidate the molecular mechanism underlying how NSUN2 regulates the target gene HGH1 (also known as FAM203) through m5C modification, thereby promoting BC progression. Additionally, this study targets at preliminarily clarifying the biological roles of NSUN2 and HGH1 in BC. METHODS Tumor and adjacent tissues from 5 BC patients were collected, and the m5C modification target HGH1 in BC was screened through RNA sequencing (RNA-seq) and single-base resolution m5C methylation sequencing (RNA-BisSeq). Methylation RNA immunoprecipitation-qPCR (MeRIP-qPCR) and RNA-binding protein immunoprecipitation-qPCR (RIP-qPCR) confirmed that the methylation molecules NSUN2 and YBX1 specifically recognized and bound to HGH1 through m5C modification. In addition, proteomics, co-immunoprecipitation (co-IP), and Ribosome sequencing (Ribo-Seq) were used to explore the biological role of HGH1 in BC. RESULTS As the main m5C methylation molecule, NSUN2 is abnormally overexpressed in BC and increases the overall level of RNA m5C. Knocking down NSUN2 can inhibit BC progression in vitro or in vivo. Combined RNA-seq and RNA-BisSeq analysis identified HGH1 as a potential target of abnormal m5C modifications. We clarified the mechanism by which NSUN2 regulates HGH1 expression through m5C modification, a process that involves interactions with the YBX1 protein, which collectively impacts mRNA stability and protein synthesis. Furthermore, this study is the first to reveal the binding interaction between HGH1 and the translation elongation factor EEF2, providing a comprehensive understanding of its ability to regulate transcript translation efficiency and protein synthesis in BC cells. CONCLUSIONS This study preliminarily clarifies the regulatory role of the NSUN2-YBX1-m5C-HGH1 axis from post-transcriptional modification to protein translation, revealing the key role of abnormal RNA m5C modification in BC and suggesting that HGH1 may be a new epigenetic biomarker and potential therapeutic target for BC.
Collapse
Affiliation(s)
- Xuran Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ke An
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xin Ge
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuanyuan Sun
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jingyao Wei
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Weihong Ren
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, China
| | - Han Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yueqin Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yue Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Lulu He
- Biobank of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ouwen Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shaoxuan Zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yong Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Tong Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yun-Gui Yang
- China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Quancheng Kan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China.
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Rd, Zhengzhou, Henan, 450052, China.
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
16
|
Li TF, Xu Z, Zhang K, Yang X, Thakur A, Zeng S, Yan Y, Liu W, Gao M. Effects and mechanisms of N6-methyladenosine RNA methylation in environmental pollutant-induced carcinogenesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116372. [PMID: 38669875 DOI: 10.1016/j.ecoenv.2024.116372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/20/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Environmental pollution, including air pollution, plastic contamination, and heavy metal exposure, is a pressing global issue. This crisis contributes significantly to pollution-related diseases and is a critical risk factor for chronic health conditions, including cancer. Mounting evidence underscores the pivotal role of N6-methyladenosine (m6A) as a crucial regulatory mechanism in pathological processes and cancer progression. Governed by m6A writers, erasers, and readers, m6A orchestrates alterations in target gene expression, consequently playing a vital role in a spectrum of RNA processes, covering mRNA processing, translation, degradation, splicing, nuclear export, and folding. Thus, there is a growing need to pinpoint specific m6A-regulated targets in environmental pollutant-induced carcinogenesis, an emerging area of research in cancer prevention. This review consolidates the understanding of m6A modification in environmental pollutant-induced tumorigenesis, explicitly examining its implications in lung, skin, and bladder cancer. We also investigate the biological mechanisms that underlie carcinogenesis originating from pollution. Specific m6A methylation pathways, such as the HIF1A/METTL3/IGF2BP3/BIRC5 network, METTL3/YTHDF1-mediated m6A modification of IL 24, METTL3/YTHDF2 dynamically catalyzed m6A modification of AKT1, METTL3-mediated m6A-modified oxidative stress, METTL16-mediated m6A modification, site-specific ATG13 methylation-mediated autophagy, and the role of m6A in up-regulating ribosome biogenesis, all come into play in this intricate process. Furthermore, we discuss the direction regarding the interplay between pollutants and RNA metabolism, particularly in immune response, providing new information on RNA modifications for future exploration.
Collapse
Affiliation(s)
- Tong-Fei Li
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Kui Zhang
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Xiaoxin Yang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Wangrui Liu
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Ming Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
17
|
Wang X, Gan M, Wang Y, Wang S, Lei Y, Wang K, Zhang X, Chen L, Zhao Y, Niu L, Zhang S, Zhu L, Shen L. Comprehensive review on lipid metabolism and RNA methylation: Biological mechanisms, perspectives and challenges. Int J Biol Macromol 2024; 270:132057. [PMID: 38710243 DOI: 10.1016/j.ijbiomac.2024.132057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/08/2024]
Abstract
Adipose tissue plays a crucial role in maintaining energy balance, regulating hormones, and promoting metabolic health. To address disorders related to obesity and develop effective therapies, it is essential to have a deep understanding of adipose tissue biology. In recent years, RNA methylation has emerged as a significant epigenetic modification involved in various cellular functions and metabolic pathways. Particularly in the realm of adipogenesis and lipid metabolism, extensive research is ongoing to uncover the mechanisms and functional importance of RNA methylation. Increasing evidence suggests that RNA methylation plays a regulatory role in adipocyte development, metabolism, and lipid utilization across different organs. This comprehensive review aims to provide an overview of common RNA methylation modifications, their occurrences, and regulatory mechanisms, focusing specifically on their intricate connections to fat metabolism. Additionally, we discuss the research methodologies used in studying RNA methylation and highlight relevant databases that can aid researchers in this rapidly advancing field.
Collapse
Affiliation(s)
- Xingyu Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Saihao Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuhang Lei
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Kai Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Linyuan Shen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
18
|
Meng S, Jiangtao B, Haisong W, Mei L, Long Z, Shanfeng L. RNA m 5C methylation: a potential modulator of innate immune pathways in hepatocellular carcinoma. Front Immunol 2024; 15:1362159. [PMID: 38807595 PMCID: PMC11131105 DOI: 10.3389/fimmu.2024.1362159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/26/2024] [Indexed: 05/30/2024] Open
Abstract
RNA 5-methylcytosine (m5C) methylation plays a crucial role in hepatocellular carcinoma (HCC). As reported, aberrant m5C methylation is closely associated with the progression, therapeutic efficacy, and prognosis of HCC. The innate immune system functions as the primary defense mechanism in the body against pathogenic infections and tumors since it can activate innate immune pathways through pattern recognition receptors to exert anti-infection and anti-tumor effects. Recently, m5C methylation has been demonstrated to affect the activation of innate immune pathways including TLR, cGAS-STING, and RIG-I pathways by modulating RNA function, unveiling new mechanisms underlying the regulation of innate immune responses by tumor cells. However, research on m5C methylation and its interplay with innate immune pathways is still in its infancy. Therefore, this review details the biological significance of RNA m5C methylation in HCC and discusses its potential regulatory relationship with TLR, cGAS-STING, and RIG-I pathways, thereby providing fresh insights into the role of RNA methylation in the innate immune mechanisms and treatment of HCC.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Shanfeng
- Department of Interventional Vascular Surgery, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
19
|
Zhang Z, Liu J, Wu Y, Gu Z, Zou L, Liu Y, Geng J, Mao S, Luo M, Guo C, Zhang W, Yao X. The functions and mechanisms of RNA modification in prostate: Current status and future perspectives. Front Genet 2024; 15:1380746. [PMID: 38798700 PMCID: PMC11116725 DOI: 10.3389/fgene.2024.1380746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/11/2024] [Indexed: 05/29/2024] Open
Abstract
The increasing incidence and mortality of prostate cancer worldwide significantly impact the life span of male patients, emphasizing the urgency of understanding its pathogenic mechanism and associated molecular changes that regulate tumor progression for effective prevention and treatment. RNA modification, an important post-transcriptional regulatory process, profoundly influences tumor cell growth and metabolism, shaping cell fate. Over 170 RNA modification methods are known, with prominent research focusing on N6-methyladenosine, N7-methylguanosine, N1-methyladenosine, 5-methylcytidine, pseudouridine, and N4-acetylcytidine modifications. These alterations intricately regulate coding and non-coding RNA post-transcriptionally, affecting the stability of RNA and protein expression levels. This article delves into the latest advancements and challenges associated with various RNA modifications in prostate cancer tumor cells, tumor microenvironment, and core signaling molecule androgen receptors. It aims to provide new research targets and avenues for molecular diagnosis, treatment strategies, and improvement of the prognosis in prostate cancer.
Collapse
Affiliation(s)
- Zhijin Zhang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Ji Liu
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yang Wu
- School of Medicine, Tongji University, Shanghai, China
| | - Zhuoran Gu
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Libin Zou
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yingdi Liu
- Department of Pathology, Shanghai Tenth People’s Hospital, Shanghai, China
| | - Jiang Geng
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Shiyu Mao
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Ming Luo
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Changcheng Guo
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Wentao Zhang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
20
|
Uddin IA, Stec E, Papadantonakis GA. Ionization Patterns and Chemical Reactivity of Cytosine-Guanine Watson-Crick Pairs. Chemphyschem 2024; 25:e202300946. [PMID: 38381922 DOI: 10.1002/cphc.202300946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 02/23/2024]
Abstract
Gas-phase and aqueous vertical ionization potentials, vIPgas and vIPaq respectively and measurements of the molecular electrostatic and local ionization maps calculated at the DFT/B3LYP-D3/ 6-311+G** level of theory and the C-PCM reaction field model for single- and double-stranded CpG and 5MeCpG pairs show that the vIPaq for single- and double-stranded pairs of C-G and 5MeC-G are practically the same, in the range of 5.79 to 5.81 eV. The aqueous adiabatic ionization potentials for single-stranded CpG and 5MeCpG are 5.52 eV and 5.51 eV respectively and they reflect the nuclear reorganization that takes place after the abstraction of the electron. The aqueous adiabatic ionization energy values that correspond to the CpG+. radical cation and the hydrated electron, e-,, being at infinite distance, adIPaq+Vo, are 3.92 eV and 3.91 eV respectively with (Vo=-1.6 eV) Analysis of data suggest that the HOMO-LUMO energy gap in the hard/soft-acid/base (HSAB) concept cannot be used a priori to determine the effect of cytosine methylation on the guanine enhanced oxidative damage in DNA.
Collapse
Affiliation(s)
- Ismihan A Uddin
- University of Illinois Chicago, Department of Chemistry, 845 W. Taylor St. Room 4506 SES, Chicago, IL. 60607
- Midwestern University Chicago, College of Osteopathic Medicine and formerly at University of Illinois Chicago, Department of Chemistry, 555 31st St., Downers Grove, IL 60515
- Midwestern University Chicago, College of Osteopathic Medicine and formerly at University of Illinois Chicago, Department of Chemistry, 555 31st St., Downers Grove, IL 60515
| | - Ewa Stec
- University of Illinois Chicago, Department of Chemistry, 845 W. Taylor St. Room 4506 SES, Chicago, IL. 60607
- Midwestern University Chicago, College of Osteopathic Medicine and formerly at University of Illinois Chicago, Department of Chemistry, 555 31st St., Downers Grove, IL 60515
| | - George A Papadantonakis
- University of Illinois Chicago, Department of Chemistry, 845 W. Taylor St. Room 4506 SES, Chicago, IL. 60607
- Midwestern University Chicago, College of Osteopathic Medicine and formerly at University of Illinois Chicago, Department of Chemistry, 555 31st St., Downers Grove, IL 60515
| |
Collapse
|
21
|
Li B, Wang Z, Zhou H, Tan W, Zou J, Li Y, Yoshida S, Zhou Y. Bibliometric evaluation of global trends and characteristics of RNA methylation during angiogenesis. Heliyon 2024; 10:e29817. [PMID: 38681586 PMCID: PMC11046201 DOI: 10.1016/j.heliyon.2024.e29817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
Background RNA methylation is involved in major life processes. Angiogenesis is a normal phenomenon that occurs constantly in the bodies of all mammals, once it is aberrant or something goes wrong, it may lead to pathological changes. The bibliometric analysis could produce a comprehensive overview of RNA methylation during angiogenesis. Methods The Web of Science Core Collection (WoSCC) database was used to screen publications about RNA methylation during angiogenesis from Jan 1, 2000 to Nov 24, 2022. Bibliometric and visualization analyses were conducted to understand publication trends by CiteSpace and VOSviewer. Results In total, 382 publications from 2000 to 2022 were included in the bibliometric and visualization analyses. On the whole, the number of publications had exponential growth. China was the country and Sun Yat-Sen University was the university associated with the largest number of publications, although publications from the United Kingdom and Soochow University were currently having the strongest impact. Cancer was the most studied topic in this field, and N6-methyladenosine is the most studied RNA methylation type. Conclusion There is a continuously increasing trend in publications related to RNA methylation and angiogenesis, which has attracted much attention, particularly since 2011. RNA methylation might be a promising target in the investigation of pathological angiogenesis and related disorders, which deserves further investigation.
Collapse
Affiliation(s)
- Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Haixiang Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jingling Zou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yun Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
22
|
Xiong Y, Li Y, Qian W, Zhang Q. RNA m5C methylation modification: a potential therapeutic target for SARS-CoV-2-associated myocarditis. Front Immunol 2024; 15:1380697. [PMID: 38715608 PMCID: PMC11074473 DOI: 10.3389/fimmu.2024.1380697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/03/2024] [Indexed: 05/23/2024] Open
Abstract
The Corona Virus Disease (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), has quickly spread worldwide and resulted in significant morbidity and mortality. Although most infections are mild, some patients can also develop severe and fatal myocarditis. In eukaryotic RNAs, 5-methylcytosine (m5C) is a common kind of post-transcriptional modification, which is involved in regulating various biological processes (such as RNA export, translation, and stability maintenance). With the rapid development of m5C modification detection technology, studies related to viral m5C modification are ever-increasing. These studies have revealed that m5C modification plays an important role in various stages of viral replication, including transcription and translation. According to recent studies, m5C methylation modification can regulate SARS-CoV-2 infection by modulating innate immune signaling pathways. However, the specific role of m5C modification in SARS-CoV-2-induced myocarditis remains unclear. Therefore, this review aims to provide insights into the molecular mechanisms of m5C methylation in SARS-CoV-2 infection. Moreover, the regulatory role of NSUN2 in viral infection and host innate immune response was also highlighted. This review may provide new directions for developing therapeutic strategies for SARS-CoV-2-associated myocarditis.
Collapse
Affiliation(s)
- Yan Xiong
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Cardiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Yanan Li
- Emergency Department, Shangjinnanfu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weiwei Qian
- Emergency Department, Shangjinnanfu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, and Disaster Medical Center, Sichuan University, Chengdu, Sichuan, China
| | - Qing Zhang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
23
|
Song P, Cai Z, Jia G. Principles, functions, and biological implications of m 6A in plants. RNA (NEW YORK, N.Y.) 2024; 30:491-499. [PMID: 38531642 PMCID: PMC11019739 DOI: 10.1261/rna.079951.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Over the past decade, N 6-methyladenosine (m6A) has emerged as a prevalent and dynamically regulated modification across the transcriptome; it has been reversibly installed, removed, and interpreted by specific binding proteins, and has played crucial roles in molecular and biological processes. Within this scope, we consolidate recent advancements of m6A research in plants regarding gene expression regulation, diverse physiologic and pathogenic processes, as well as crop trial implications, to guide discussions on challenges associated with and leveraging epitranscriptome editing for crop improvement.
Collapse
Affiliation(s)
- Peizhe Song
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhihe Cai
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- PKU-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Center of RNA Biology, Peking University, Beijing 100871, China
| |
Collapse
|
24
|
Tian X, Hu D, Wang N, Zhang L, Wang X. LINC01614 is a promising diagnostic and prognostic marker in HNSC linked to the tumor microenvironment and oncogenic function. Front Genet 2024; 15:1337525. [PMID: 38655053 PMCID: PMC11035733 DOI: 10.3389/fgene.2024.1337525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Background Tumor initiation and metastasis influence tumor immune exclusion and immunosuppression. Long non-coding RNA (lncRNA) LINC01614 is associated with the prognosis and metastasis of several cancers. However, the relationship between LINC01614 and cancer immune infiltration and the biofunction of LINC01614 in head and neck squamous cell carcinoma (HNSC) remain unclear. Methods The Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) datasets were used to analyze the expression difference and diagnostic value of LINC01614 in normal and tumor tissues. The correlation of pan-cancer prognosis and tumor stage of LINC01614 was analyzed based on the TCGA database. The pan-cancer association of LINC01614 expression with the tumor microenvironment (TME) including immune infiltration, expression of immune-related genes, and genomic instability parameters, was analyzed using the Spearman correlation method. The correlation between LINC01614 and tumor stemness evaluation indicators, RNA methylation-related genes, and drug resistance was also analyzed. The functional analysis of LINC01614 was performed using the clusterProfiler R package. The protein-protein interaction (PPI) network and ceRNA network of LINC01614 co-expressed genes and miRNA were constructed and visualized by STRING and Cytoscape, respectively. Finally, the cell location and influence of LINC01614 on cell proliferation and metastasis of HNSC cell lines were evaluated using FISH, CCK-8, wound-healing assay, and transwell assay. Results LINC01614 was found to be overexpressed in 23 cancers and showed a highly sensitive prediction value in nine cancers (AUC >0.85). LINC01614 dysregulation was associated with tumor stage in 12 cancers and significantly influenced the survival outcomes of 26 cancer types, with only Lymphoid Neoplasm Diffuse Large B-cell Lymphoma (DLBC), uterine corpus endometrial carcinoma (UCEC), and bladder urothelial carcinoma (BLCA) showing a benign influence. LINC01614 was also associated with immune cell infiltration, tumor heterogeneity, cancer stemness, RNA methylation modification, and drug resistance. The potential biological function of LINC01614 was verified in HNSC, and it was found to play important roles in proliferation, immune infiltration, immunotherapy response, and metastasis of HNSC. Conclusion LINC01614 may serve as a cancer diagnosis and prognosis biomarker and an immunotherapy target for specific cancers.
Collapse
Affiliation(s)
- Xiong Tian
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Dali Hu
- Department of Plastic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Na Wang
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Lele Zhang
- Department of Radiation Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xuequan Wang
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
- Department of Radiation Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
25
|
Bai Y, Chang D, Ren H, Ju M, Wang Y, Chen B, Li H, Liu X, Li D, Huo X, Guo X, Tong M, Tan Y, Yao H, Han B. Engagement of N6-methyladenisine methylation of Gng4 mRNA in astrocyte dysfunction regulated by CircHECW2. Acta Pharm Sin B 2024; 14:1644-1660. [PMID: 38572093 PMCID: PMC10985031 DOI: 10.1016/j.apsb.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 04/05/2024] Open
Abstract
The N6-methyladenosine (m6A) modification is the most prevalent modification of eukaryotic mRNAs and plays a crucial role in various physiological processes by regulating the stability or function of target mRNAs. Accumulating evidence has suggested that m6A methylation may be involved in the pathological process of major depressive disorder (MDD), a common neuropsychiatric disorder with an unclear aetiology. Here, we found that the levels of the circular RNA HECW2 (circHECW2) were significantly increased in the plasma of both MDD patients and the chronic unpredictable stress (CUS) mouse model. Notably, the downregulation of circHECW2 attenuated astrocyte dysfunction and depression-like behaviors induced by CUS. Furthermore, we demonstrated that the downregulation of circHECW2 increased the expression of the methylase WTAP, leading to an increase in Gng4 expression via m6A modifications. Our findings provide functional insight into the correlation between circHECW2 and m6A methylation, suggesting that circHECW2 may represent a potential target for MDD treatment.
Collapse
Affiliation(s)
- Ying Bai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Di Chang
- Department of Radiology, Zhongda Hospital, Jiangsu Key Laboratory of Molecular and Functional Imaging, Medical School of Southeast University, Nanjing 210009, China
| | - Hui Ren
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Minzi Ju
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yu Wang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Biling Chen
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Han Li
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xue Liu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Daxing Li
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xinchen Huo
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xiaofei Guo
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Mengze Tong
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ying Tan
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Honghong Yao
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Bing Han
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
26
|
Quan Y, Zhou M, Li J, Yang Y, Guo J, Tang T, Liu P. The m6A methyltransferase RBM15 affects tumor cell stemness and progression of cervical cancer by regulating the stability of lncRNA HEIH. Exp Cell Res 2024; 436:113924. [PMID: 38280435 DOI: 10.1016/j.yexcr.2024.113924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/24/2023] [Accepted: 01/04/2024] [Indexed: 01/29/2024]
Abstract
Cervical cancer (CC), as a common female malignant tumor in the world, is an important risk factor endangering women's health worldwide. The purpose of this study was to investigate the role of RBM15 in CC. The TCGA database was used to screen differentially expressed m6A genes in normal and tumor tissues. QRT-PCR was used to quantify HEIH, miR-802, EGFR, cell stemness, and epithelial-mesenchymal transition (EMT)-related genes. The interaction between HEIH and miR-802 was verified by dual-luciferase reporter assay and RIP assay. The occurrence of tumor cells after different treatments was detected by CCK-8, transwell and EdU staining. BALB/c nude mice were used to examine the effects of different treatments on tumor growth and cell stemness in vivo. RBM15 was upregulated in tumor tissues and cells. M6A was highly enriched in HEIH and enhances its RNA stability. HEIH acts as an oncogenic lncRNA to promote CC cell proliferation, migration and tumor growth. Mechanistically, HEIH regulates tumor cell stemness and promotes the proliferation and migration of CC cells by competitively adsorbing miR-802 and up-regulating the expression of EGFR. In short, our data shown that the m6A methyltransferase RBM15 could affect tumor cell proliferation, metastasis and cell stemness by stabilizing HEIH expression.
Collapse
Affiliation(s)
- Yi Quan
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, PR China; Sichuan Provincial Key Laboratory of Development and Related Diseases of Women and Children, Chengdu, 610041, Sichuan, PR China
| | - Muchuan Zhou
- Department of Anesthesia, Sichuan Integrative Medicine Hospital, Sichuan Academy of Chinese Medicine Science (SACMS), Chengdu, 610000, PR China; Sichuan Provincial Key Laboratory of Quality of Chinese Medicinal Materials and Research on Innovative Chinese Medicine, Chengdu, 610041, Sichuan, PR China
| | - Jinhong Li
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, PR China; Sichuan Provincial Key Laboratory of Development and Related Diseases of Women and Children, Chengdu, 610041, Sichuan, PR China
| | - Yihong Yang
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, PR China; Sichuan Provincial Key Laboratory of Development and Related Diseases of Women and Children, Chengdu, 610041, Sichuan, PR China
| | - Junliang Guo
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, PR China; Sichuan Provincial Key Laboratory of Development and Related Diseases of Women and Children, Chengdu, 610041, Sichuan, PR China.
| | - Tian Tang
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, PR China; Sichuan Provincial Key Laboratory of Development and Related Diseases of Women and Children, Chengdu, 610041, Sichuan, PR China
| | - Ping Liu
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, PR China; Sichuan Provincial Key Laboratory of Development and Related Diseases of Women and Children, Chengdu, 610041, Sichuan, PR China
| |
Collapse
|
27
|
Shen JJ, Li MC, Tian SQ, Chen WM. Long non-coding RNA GATA6-AS1 is mediated by N6-methyladenosine methylation and inhibits the proliferation and metastasis of gastric cancer. World J Gastrointest Oncol 2024; 16:1019-1028. [PMID: 38577476 PMCID: PMC10989367 DOI: 10.4251/wjgo.v16.i3.1019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/16/2023] [Accepted: 01/17/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Through experimental research on the biological function of GATA6-AS1, it was confirmed that GATA6-AS1 can inhibit the proliferation, invasion, and migration of gastric cancer cells, suggesting that GATA6-AS1 plays a role as an anti-oncogene in the occurrence and development of gastric cancer. Further experiments confirmed that the overexpression of fat mass and obesity-associated protein (FTO) inhibited the expression of GATA6-AS1, thereby promoting the occurrence and development of gastric cancer. AIM To investigate the effects of GATA6-AS1 on the proliferation, invasion and migration of gastric cancer cells and its mechanism of action. METHODS We used bioinformatics methods to analyze the Cancer Genome Atlas (https://portal.gdc.cancer.gov/. The Cancer Genome Atlas) and download expression data for GATA6-AS1 in gastric cancer tissue and normal tissue. We also constructed a GATA6-AS1 lentivirus overexpression vector which was transfected into gastric cancer cells to investigate its effects on proliferation, migration and invasion, and thereby clarify the expression of GATA6-AS1 in gastric cancer and its biological role in the genesis and development of gastric cancer. Next, we used a database (http://starbase.sysu.edu.cn/starbase2/) to analysis GATA6-AS1 whether by m6A methylation modify regulation and predict the methyltransferases that may methylate GATA6-AS1. Furthermore, RNA immunoprecipitation experiments confirmed that GATA6-AS1 was able to bind to the m6A methylation modification enzyme. These data allowed us to clarify the ability of m6A methylase to influence the action of GATA6-AS1 and its role in the occurrence and development of gastric cancer. RESULTS Low expression levels of GATA6-AS1 were detected in gastric cancer. We also determined the effects of GATA6-AS1 overexpression on the biological function of gastric cancer cells. GATA6-AS1 had strong binding ability with the m6A demethylase FTO, which was expressed at high levels in gastric cancer and negatively correlated with the expression of GATA6-AS1. Following transfection with siRNA to knock down the expression of FTO, the expression levels of GATA6-AS1 were up-regulated. Finally, the proliferation, migration and invasion of gastric cancer cells were all inhibited following the knockdown of FTO expression. CONCLUSION During the occurrence and development of gastric cancer, the overexpression of FTO may inhibit the expression of GATA6-AS1, thus promoting the proliferation and metastasis of gastric cancer.
Collapse
Affiliation(s)
- Jun-Jie Shen
- Department of Oncology, Jiangxi Hospital of Integrated Chinese and Western Medicine, Nanchang 330000, Jiangxi Province, China
| | - Min-Chang Li
- Department of Hepatopancreatobiliary Surgery, Jiangxi Hospital of Integrated Chinese and Western Medicine, Nanchang 330000, Jiangxi Province, China
| | - Shao-Qi Tian
- Clinical Medical School, Jining Medical University, Jining 272000, Shandong Province, China
| | - Wen-Ming Chen
- Department of Oncology, Jining No.1 People’s Hospital, Jining 272011, Shandong Province, China
| |
Collapse
|
28
|
Xia Q, Shen J, Wang Q, Chen R, Zheng X, Yan Q, Du L, Li H, Duan S. Cuproptosis-associated ncRNAs predict breast cancer subtypes. PLoS One 2024; 19:e0299138. [PMID: 38408075 PMCID: PMC10896520 DOI: 10.1371/journal.pone.0299138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/05/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Cuproptosis is a novel copper-dependent mode of cell death that has recently been discovered. The relationship between Cuproptosis-related ncRNAs and breast cancer subtypes, however, remains to be studied. METHODS The aim of this study was to construct a breast cancer subtype prediction model associated with Cuproptosis. This model could be used to determine the subtype of breast cancer patients. To achieve this aim, 21 Cuproptosis-related genes were obtained from published articles and correlation analysis was performed with ncRNAs differentially expressed in breast cancer. Random forest algorithms were subsequently utilized to select important ncRNAs and build breast cancer subtype prediction models. RESULTS A total of 94 ncRNAs significantly associated with Cuproptosis were obtained and the top five essential features were chosen to build a predictive model. These five biomarkers were differentially expressed in the five breast cancer subtypes and were closely associated with immune infiltration, RNA modification, and angiogenesis. CONCLUSION The random forest model constructed based on Cuproptosis-related ncRNAs was able to accurately predict breast cancer subtypes, providing a new direction for the study of clinical therapeutic targets.
Collapse
Affiliation(s)
- Qing Xia
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Qurui Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Ruixiu Chen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Xinying Zheng
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Qibin Yan
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Lihua Du
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Hanbing Li
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| |
Collapse
|
29
|
Zhang F, Ignatova VV, Ming GL, Song H. Advances in brain epitranscriptomics research and translational opportunities. Mol Psychiatry 2024; 29:449-463. [PMID: 38123727 PMCID: PMC11116067 DOI: 10.1038/s41380-023-02339-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
Various chemical modifications of all RNA transcripts, or epitranscriptomics, have emerged as crucial regulators of RNA metabolism, attracting significant interest from both basic and clinical researchers due to their diverse functions in biological processes and immense clinical potential as highlighted by the recent profound success of RNA modifications in improving COVID-19 mRNA vaccines. Rapid accumulation of evidence underscores the critical involvement of various RNA modifications in governing normal neural development and brain functions as well as pathogenesis of brain disorders. Here we provide an overview of RNA modifications and recent advancements in epitranscriptomic studies utilizing animal models to elucidate important roles of RNA modifications in regulating mammalian neurogenesis, gliogenesis, synaptic formation, and brain function. Moreover, we emphasize the pivotal involvement of RNA modifications and their regulators in the pathogenesis of various human brain disorders, encompassing neurodevelopmental disorders, brain tumors, psychiatric and neurodegenerative disorders. Furthermore, we discuss potential translational opportunities afforded by RNA modifications in combatting brain disorders, including their use as biomarkers, in the development of drugs or gene therapies targeting epitranscriptomic pathways, and in applications for mRNA-based vaccines and therapies. We also address current limitations and challenges hindering the widespread clinical application of epitranscriptomic research, along with the improvements necessary for future progress.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Valentina V Ignatova
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
30
|
Zhao Y, Xing C, Peng H. ALYREF (Aly/REF export factor): A potential biomarker for predicting cancer occurrence and therapeutic efficacy. Life Sci 2024; 338:122372. [PMID: 38135116 DOI: 10.1016/j.lfs.2023.122372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
5-Methylcytosine (m5C) methylation is present in almost all types of RNA as an essential epigenetic modification. It is dynamically modulated by its associated enzymes, including m5C methyltransferases (NSUN, DNMT and TRDMT family members), demethylases (TET family and ALKBH1) and binding proteins (YTHDF2, ALYREF and YBX1). Among them, aberrant expression of the RNA-binding protein ALYREF can facilitate a variety of malignant phenotypes such as maintenance of proliferation, malignant heterogeneity, metastasis, and drug resistance to cell death through different regulatory mechanisms, including pre-mRNA processing, mRNA stability, and nuclear-cytoplasmic shuttling. The induction of these cellular processes by ALYREF results in treatment resistance and poor outcomes for patients. However, there are currently few reports of clinical applications or drug trials related to ALYREF. In addition, the looming observations on the role of ALYREF in the mechanisms of carcinogenesis and disease prognosis have triggered considerable interest, but critical evidence is not available. For example, animal experiments and ALYREF small molecule inhibitor trials. In this review, we, therefore, revisit the literature on ALYREF and highlight its importance as a prognostic biomarker for early prevention and as a therapeutic target.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Cheng Xing
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsha, Hunan 410011, China; Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, Hunan 410011, China.
| |
Collapse
|
31
|
Mi S, Cai S, Xue M, Wu W. HIF-1α/METTL1/m 7G axis is involved in CRC response to hypoxia. Biochem Biophys Res Commun 2024; 693:149385. [PMID: 38118310 DOI: 10.1016/j.bbrc.2023.149385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/22/2023]
Abstract
BACKGROUND In recent years, many studies have confirmed that hypoxia and hypoxia inducible factor (HIF)-1α drive the development of colorectal cancer (CRC). HIF-1α also modulates epitranscriptomic remodeling to regulate cancer development. However, the mechanism by which RNA methylation is altered under hypoxic conditions and the underlying regulatory mechanisms in CRC remain unclear. METHODS Here, seven common types of modifications of mRNA and tRNA were quantitated using liquid chromatography-tandem mass spectrometry. To validate the robustness of the profiling data, modifications that were consistently altered across the three CRC cell lines under hypoxia were validated via dot blot analysis. Then, 10 enzymes that could regulate the abundance of three RNA modifications in tRNA were measured in CRC cells after hypoxia treatment using quantitative real-time polymerase chain reaction. Furthermore, the regulatory role of HIF-1α in the expression of methyltransferase 1 (METTL1) under hypoxic conditions was confirmed using METTL1 promoter activity assays and HIF-1α small interfering RNA (siRNA). The binding capacity of HIF-1α to each hypoxia response element (HRE) in the promoter of METTL1 was investigated by performing Chromatin immunoprecipitation assay (ChIP). RESULTS Abundance of RNA modifications was altered more consistently and significantly in tRNA than in mRNA under hypoxic conditions. In addition, the abundance of N7-methyleguanosine (m7G) modification in tRNA decreased significantly under hypoxic conditions. As a methyltransferase of the m7G modification in tRNA, the expression of METTL1 mRNA was drastically downregulated under hypoxic conditions. Mechanistically, suppression of HIF-1α by siRNA upregulated the METTL1 promoter activity. Furthermore, ChIP showed that HIF-1α could bind with an HRE in the promoter region of METTL1, indicating that METTL1 is a direct target of HIF-1α in CRC cells under hypoxic conditions. CONCLUSIONS Our study revealed that the abundance of the m7G modification in tRNA was drastically reduced in CRC cells dependent on the HIF-1α-mediated inhibition of METTL1 transcription under hypoxic conditions.
Collapse
Affiliation(s)
- Shuyi Mi
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Shangwen Cai
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Meng Xue
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China.
| | - Weiquan Wu
- Cancer Center, Department of Gastroenterology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
32
|
Zhang Y, Lei Y, Dong Y, Chen S, Sun S, Zhou F, Zhao Z, Chen B, Wei L, Chen J, Meng Z. Emerging roles of RNA ac4C modification and NAT10 in mammalian development and human diseases. Pharmacol Ther 2024; 253:108576. [PMID: 38065232 DOI: 10.1016/j.pharmthera.2023.108576] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024]
Abstract
RNA ac4C modification is a novel and rare chemical modification observed in mRNA. Traditional biochemical studies had primarily associated ac4C modification with tRNA and rRNA until in 2018, Arango D et al. first reported the presence of ac4C modification on mRNA and demonstrated its critical role in mRNA stability and translation regulation. Furthermore, they established that the ac4C modification on mRNA is mediated by the classical N-acetyltransferase NAT10. Subsequent studies have underscored the essential implications of NAT10 and mRNA ac4C modification across both physiological and pathological regulatory processes. In this review, we aimed to explore the discovery history of RNA ac4C modification, its detection methods, and its regulatory mechanisms in disease and physiological development. We offer a forward-looking examination and discourse concerning the employment of RNA ac4C modification as a prospective therapeutic strategy across diverse diseases. Furthermore, we comprehensively summarize the functions and mechanisms of NAT10 in gene expression regulation and pathogenesis independent of RNA ac4C modification.
Collapse
Affiliation(s)
- Yigan Zhang
- Institute of Biomedical Research, Department of Infectious Diseases, Regulatory Mechanism and Targeted Therapy for Liver Cancer Shiyan Key Laboratory, Hubei rovincial Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Yumei Lei
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yanbin Dong
- Institute of Biophysics, Chinese Academy of Sciences, Key Laboratory of Nucleic Acid Biology, Chinese Academy of Sciences, Beijing, China
| | - Shuwen Chen
- School of Biomedical Engineering, Hubei University of Medicine, Shiyan, China
| | - Siyuan Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Fange Zhou
- The First Clinical School of Hubei University of Medicine, Shiyan, China
| | - Zhiwen Zhao
- Department of Emergency Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Lv Wei
- Institute of Biophysics, Chinese Academy of Sciences, Key Laboratory of Nucleic Acid Biology, Chinese Academy of Sciences, Beijing, China.
| | - Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China.
| | - Zhongji Meng
- Institute of Biomedical Research, Department of Infectious Diseases, Regulatory Mechanism and Targeted Therapy for Liver Cancer Shiyan Key Laboratory, Hubei rovincial Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
| |
Collapse
|
33
|
Wang Y, Chen C, Yan W, Fu Y. Epigenetic modification of m 6A methylation: Regulatory factors, functions and mechanism in inflammatory bowel disease. Int J Biochem Cell Biol 2024; 166:106502. [PMID: 38030117 DOI: 10.1016/j.biocel.2023.106502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Although the exact cause of inflammatory bowel disease (IBD) is still unknown, there is a lot of evidence to support the notion that it results from a combination of environmental factors, immune system issues, gut microbial changes, and genetic susceptibility. In recent years, the role of epigenetics in the pathogenesis of IBD has drawn increasing attention. The regulation of IBD-related immunity, the preservation of the intestinal epithelial barrier, and autophagy are all significantly influenced by epigenetic factors. The most extensive epigenetic methylation modification of mammalian mRNA among them is N6-methyladenosine (m6A). It summarizes the general structure and function of the m6A regulating factors, as well as their complex effects on IBD by regulating the intestinal mucous barrier, intestine mucosal immunity, epidermal cell death, and intestinal microorganisms.This paper provides key insights for the future identification of potential new targets for the diagnosis and treatment of IBD.
Collapse
Affiliation(s)
- Yanping Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoyue Chen
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yu Fu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
34
|
Cao C, Luo Z, Zhang H, Yao S, Lu H, Zheng K, Wang Y, Zou M, Qin W, Xiong H, Yuan X, Wang Y, Pinheiro RN, Peixoto RD, Zou Y, Xiong H. A methylation-related signature for predicting prognosis and sensitivity to first-line therapies in gastric cancer. J Gastrointest Oncol 2023; 14:2354-2372. [PMID: 38196539 PMCID: PMC10772674 DOI: 10.21037/jgo-23-770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/16/2023] [Indexed: 01/11/2024] Open
Abstract
Background Methylation modification patterns play a crucial role in human cancer progression, especially in gastrointestinal cancers. We aimed to use methylation regulators to classify patients with gastric adenocarcinoma and build a model to predict prognosis, promoting the application of precision medicine. Methods We obtained RNA sequencing data and clinical data from The Cancer Genome Atlas (TCGA) database (n=335) and Gene Expression Omnibus (GEO) database (n=865). Unsupervised consensus clustering was used to identify subtypes of gastric adenocarcinoma. We performed functional enrichment analysis, immune infiltration analysis, drug sensitivity analysis, and molecular feature analysis to determine the clinical application for different subtypes. The univariate Cox regression analysis and the LASSO regression analysis were subsequently used to identify prognosis-related methylation regulators and construct a risk model. Results Through unsupervised consensus clustering, patients were divided into two subtypes (cluster A and cluster B) with different clinical outcomes. Cluster B included patients with a better prognosis outcome and who were more likely to respond to immunotherapy. We then successfully built a predictive model and found five methylation-related genes (CHAF1A, CPNE8, PHLDA3, SPARC, and EHF) potentially significant to the prognosis of patients. The 1-, 3-, and 5-year areas under the curve of the risk model were 0.712, 0.696, and 0.759, respectively. The risk score was an independent prognostic factor and had the highest concordance index among common clinical indicators. Meanwhile, the tumor microenvironment, sensitivity of chemotherapeutic drugs, molecular features, and oncogenic dedifferentiation differed significantly across the risk groups and subtypes. Conclusions We classified patients with gastric adenocarcinoma based on methylation regulators, which has positive implications for first-line clinical treatment. The prognostic model could predict the prognosis of patients and help to promote the development of precision medicine.
Collapse
Affiliation(s)
- Chenlin Cao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of the Second Clinical College, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyong Luo
- Division of Breast and Thyroid Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuo Yao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Lu
- Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Zheng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Yali Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Zou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wan Qin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | | | - Renata D’Alpino Peixoto
- Department of Gastrointestinal Medical Oncology, Oncoclinicas, Av. Brigadeiro Faria Lima, São Paulo, Brazil
| | - Yanmei Zou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Chen Y, Jiang Z, Yang Y, Zhang C, Liu H, Wan J. The functions and mechanisms of post-translational modification in protein regulators of RNA methylation: Current status and future perspectives. Int J Biol Macromol 2023; 253:126773. [PMID: 37690652 DOI: 10.1016/j.ijbiomac.2023.126773] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
RNA methylation, an epigenetic modification that does not alter gene sequence, may be important to diverse biological processes. Protein regulators of RNA methylation include "writers," "erasers," and "readers," which respectively deposit, remove, and recognize methylated RNA. RNA methylation, particularly N6-methyladenosine (m6A), 5-methylcytosine (m5C), N3-methylcytosine (m3C), N1-methyladenosine (m1A) and N7-methylguanosine (m7G), has been suggested as disease therapeutic targets. Despite advances in the structure and pharmacology of RNA methylation regulators that have improved drug discovery, regulating these proteins by various post-translational modifications (PTMs) has received little attention. PTM modifies protein structure and function, affecting all aspects of normal biology and pathogenesis, including immunology, cell differentiation, DNA damage repair, and tumors. It is becoming evident that RNA methylation regulators are also regulated by diverse PTMs. PTM of RNA methylation regulators induces their covalent linkage to new functional groups, hence modifying their activity and function. Mass spectrometry has identified many PTMs on protein regulators of RNA methylation. In this review, we describe the functions and PTM of protein regulators of RNA methylation and summarize the recent advances in the regulatory mode of human disease and its underlying mechanisms.
Collapse
Affiliation(s)
- Youming Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zuli Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chenxing Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongyang Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
36
|
Liu HT, Rau CS, Liu YW, Hsieh TM, Huang CY, Chien PC, Lin HP, Wu CJ, Chuang PC, Hsieh CH. Deciphering the Divergent Gene Expression Landscapes of m6A/m5C/m1A Methylation Regulators in Hepatocellular Carcinoma Through Single-Cell and Bulk RNA Transcriptomic Analysis. J Hepatocell Carcinoma 2023; 10:2383-2395. [PMID: 38164510 PMCID: PMC10758181 DOI: 10.2147/jhc.s448047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction RNA modifications mediated by the m6A, m1A, and m5C regulatory genes are crucial for the progression of malignancy. This study aimed to explore the expression of regulator genes for m6A/m5C/m1A methylation at the single-cell level and to validate their expression in cancerous and adjacent para-cancerous liver tissues of adult patients with HCC who underwent tumor resection. Methods The bulk sequencing from The Cancer Genome Atlas (TCGA) database and the single-cell RNA sequencing (scRNA-seq) data obtained from the Gene Expression Omnibus (GEO) database were used to identify the dysregulated m6A/m5C/m1A genes for hepatocellular carcinoma (HCC). A real-time polymerase chain reaction (real-time PCR) was used to measure the expression of dysregulated m6A/m5C/m1A genes in collected human HCC tissues and compared with adjacent para-cancerous liver tissues. Immune cell infiltration with these significantly expressed methylation-related genes was evaluated using Timer2.0. Results A discrepancy in m6A/m5C/m1A gene expression was observed between bulk sequencing and scRNA-seq. The clustered heatmap of the scRNA-seq-identified dysregulated m6A/m5C/m1A genes in TCGA cohort revealed heterogeneous expression of these methylation regulators within the cancer, whereas their expression in the adjacent liver tissues was more homogeneous. The real-time PCR validated the significant overexpression of DNMT1, NSUN5, TRMT6, IGF2BP1, and IGFBP3, which were identified using scRNA-seq, and IGFBP2, which was identified using bulk sequencing. These dysregulated methylation genes are mainly correlated with the infiltration of natural killer cells. Discussion This study suggests that cellular diversity inside tumors contributes to the discrepancy in the expression of methylation regulator genes between traditional bulk sequencing and scRNA-seq. This study identified five regulatory genes that will be the focus of further studies regarding the function of m6A/m5C/m1A in HCC.
Collapse
Affiliation(s)
- Hang-Tsung Liu
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Cheng-Shyuan Rau
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Yueh-Wei Liu
- Department of General Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Ting-Min Hsieh
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Chun-Ying Huang
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Peng-Chen Chien
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Hui-Ping Lin
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Chia-Jung Wu
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Pei-Chin Chuang
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - Ching-Hua Hsieh
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| |
Collapse
|
37
|
Zhang J, Song J, Liu S, Zhang Y, Qiu T, Jiang L, Bai J, Yao X, Wang N, Yang G, Sun X. m 6A methylation-mediated PGC-1α contributes to ferroptosis via regulating GSTK1 in arsenic-induced hepatic insulin resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167202. [PMID: 37730054 DOI: 10.1016/j.scitotenv.2023.167202] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/12/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
Arsenic exposure has been closely linked to hepatic insulin resistance (IR) and ferroptosis with the mechanism elusive. Peroxisome proliferator γ-activated receptor coactivator 1-α (PGC-1α) is essential for glucose metabolism as well as for the production of reactive oxygen species (ROS). However, it was unclear whether there is a regulatory connection between PGC-1α and ferroptosis. Besides, the definitive mechanism of arsenic-induced hepatic IR progression remains to be determined. Here, we found that hepatic insulin sensitivity impaired by sodium arsenite (NaAsO2) could be reversed by inhibiting ferroptosis. Mechanistically, we found that PGC-1α suppression inhibited the protein expression of glutathione s-transferase kappa 1 (GSTK1) via nuclear respiratory factor 1 (NRF1), thereby increasing ROS accumulation and promoting ferroptosis. Furthermore, we showed that NaAsO2 induced hepatic IR and ferroptosis via methyltransferase-like 14 (METTL14) and YTH domain-containing family protein 2 (YTHDF2)-mediated N6-methyladenosine (m6A) of PGC-1α mRNA. In conclusion, NaAsO2-mediated PGC-1α suppression was m6A methylation-dependent and induced ferroptosis via the PGC-1α/NRF1/GSTK1 pathway in hepatic IR. The data might provide insight into potential targets for diabetes prevention and treatment.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Jinwei Song
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Shuang Liu
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Yuhan Zhang
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Tianming Qiu
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Liping Jiang
- Experimental Teaching Center of Public Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Jie Bai
- Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Xiaofeng Yao
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Ningning Wang
- Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Guang Yang
- Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Xiance Sun
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China; Global Health Research Center, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| |
Collapse
|
38
|
Zheng L, Duan Y, Li M, Wei J, Xue C, Chen S, Wei Q, Tang F, Xiong W, Zhou M, Deng H. Deciphering the vital roles and mechanism of m5C modification on RNA in cancers. Am J Cancer Res 2023; 13:6125-6146. [PMID: 38187052 PMCID: PMC10767349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
5-methylcytosine (m5C modification) plays an essential role in tumors, which affects different types of RNA, the expression of downstream target genes, and downstream pathways, thus participating in the tumor process. However, the effect of m5C modification on RNA in tumors and the exact mechanism have not been systematically reviewed. Therefore, we reviewed the status and sites of m5C modification, as well as the expression pattern and biological functions of m5C regulators in tumors, and further summarized the effects and regulation mechanism of m5C modification on messenger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), long non-coding RNA (lncRNA) and other RNA in tumors. Finally, we summed up the interaction network, potential application, and value in clinical diagnosis and treatment of tumors. Taken together, this review benefits revealing the mechanism of m5C modification in tumor progression and provides new strategies for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Lemei Zheng
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha, Hunan, China
| | - Yumei Duan
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha, Hunan, China
| | - Mengna Li
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha, Hunan, China
| | - Jianxia Wei
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha, Hunan, China
| | - Changning Xue
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha, Hunan, China
| | - Shipeng Chen
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha, Hunan, China
| | - Qingqing Wei
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha, Hunan, China
| | - Faqing Tang
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha, Hunan, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha, Hunan, China
| | - Hongyu Deng
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
| |
Collapse
|
39
|
Zhu G, Wang W, Yao H, Li H, Zhang C, Meng Y, Wang J, Zhu M, Zheng H. Identification and validation of novel prognostic signatures based on m5C methylation patterns and tumor EMT profiles in head and neck squamous cell carcinoma. Sci Rep 2023; 13:18763. [PMID: 37907576 PMCID: PMC10618291 DOI: 10.1038/s41598-023-45976-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023] Open
Abstract
The role of 5-methylcytosine (m5C) in tumor initiation and progression has been increasingly recognized. However, the precise association between the regulation of m5C and the progression, metastasis, and prognosis of head and neck squamous cell carcinoma (HNSCC) has not yet been fully explored. Data from 545 HNSCC patients obtained from The Cancer Genome Atlas (TCGA) database were analyzed. Unsupervised cluster analysis was conducted using the expression levels of m5C regulatory genes. Additionally, gene set variation analysis (GSVA), single-sample gene set enrichment analysis (ssGSEA), and Cox regression analysis were utilized. Quantitative reverse transcription polymerase chain reaction (RT-qPCR), colony formation assay, transwell experiments and western blots were performed in the HNSCC cell line UM-SCC-17B to assess the expression and functional role of one of the novel signatures, CNFN. Significant expression differences were found in m5C regulatory genes between tumor and normal tissues in HNSCC. Two distinct m5C modification patterns, characterized by substantial prognostic differences, were identified. Cluster-2, which exhibited a strong association with epithelial-mesenchymal transition (EMT), was found to be associated with a poorer prognosis. Based on the m5C clusters and EMT status, differentially expressed genes (DEGs) were identified. Using DEGs, an 8-gene signature (CAMK2N1, WNT7A, F2RL1, AREG, DEFB1, CNFN, TGFBI, and CAV1) was established to develop a prognostic model. The performance of this signature was validated in both the training and external validation datasets, demonstrating its promising efficacy. Furthermore, additional investigations using RT-qPCR on clinical specimens and experimental assays in cell lines provided compelling evidence suggesting that CNFN, one of the genes in the signature, could play a role in HNSCC progression and metastasis through the EMT pathway. This study highlighted the role of m5C in HNSCC progression and metastasis. The relationship between m5C and EMT has been elucidated for the first time. A robust prognostic model was developed for accurately predicting HNSCC patients' survival outcomes. Potential molecular mechanisms underlying these associations have been illuminated through this research.
Collapse
Affiliation(s)
- Guanghao Zhu
- Department of Otolaryngology Head and Neck Surgery, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Wei Wang
- Department of Otolaryngology Head and Neck Surgery, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Hui Yao
- Department of Otolaryngology Head and Neck Surgery, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Haopu Li
- Department of Otolaryngology Head and Neck Surgery, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Caiyun Zhang
- Department of Otolaryngology Head and Neck Surgery, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Yindi Meng
- Department of Otolaryngology Head and Neck Surgery, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Jingjie Wang
- Department of Otolaryngology Head and Neck Surgery, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Minhui Zhu
- Department of Otolaryngology Head and Neck Surgery, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China.
| | - Hongliang Zheng
- Department of Otolaryngology Head and Neck Surgery, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China.
| |
Collapse
|
40
|
Xie J, Gan L, Xue B, Wang X, Pei X. Emerging roles of interactions between ncRNAs and other epigenetic modifications in breast cancer. Front Oncol 2023; 13:1264090. [PMID: 37901333 PMCID: PMC10602744 DOI: 10.3389/fonc.2023.1264090] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Up till the present moment, breast cancer is still the leading cause of cancer-related death in women worldwide. Although the treatment methods and protocols for breast cancer are constantly improving, the long-term prognosis of patients is still not optimistic due to the complex heterogeneity of the disease, multi-organ metastasis, chemotherapy and radiotherapy resistance. As a newly discovered class of non-coding RNAs, ncRNAs play an important role in various cancers. Especially in breast cancer, lncRNAs have received extensive attention and have been confirmed to regulate cancer progression through a variety of pathways. Meanwhile, the study of epigenetic modification, including DNA methylation, RNA methylation and histone modification, has developed rapidly in recent years, which has greatly promoted the attention to the important role of non-coding RNAs in breast cancer. In this review, we carefully and comprehensively describe the interactions between several major classes of epigenetic modifications and ncRNAs, as well as their different subsequent biological effects, and discuss their potential for practical clinical applications.
Collapse
Affiliation(s)
| | | | | | | | - Xinhong Pei
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
41
|
Jiawen W, Jinfu W, Jianyong L, Yaoguang Z, Jianye W. Comprehensive landscape of the miRNA-regulated prognostic marker LAYN with immune infiltration and stemness in pan-cancer. J Cancer Res Clin Oncol 2023; 149:10989-11011. [PMID: 37335337 DOI: 10.1007/s00432-023-04986-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND COVID-19 has created a significant risk to worldwide public health. According to recent research, C-type lectins may be SARS-CoV-2 receptors. Layilin (LAYN), a broadly expressed integral membrane hyaluronan receptor with a C-type lectin structural domain, is a gene related to cell senescence. There are a few studies on C-type lectins in pan-cancer, and no pan-cancer analysis has been conducted for LAYN. METHODS The genotype tissue expression (GTEx) portal and the cancer genome map (TCGA) database were used to collect samples from healthy and cancer patients. Bioinformatics methods are used to construct immune landscape, mutation landscape, and stemness landscape of LAYN. The single-cell sequencing data were used from the CancerSEA website to analyze the functions of LAYN. The prognosis potential of LAYN was discussed based on machine learning. RESULTS LAYN is differentially expressed among cancers. Survival analysis indicated that LAYN was related to a poor overall survival (OS) rate in cancers, like HNSC, MESO, and OV. Mutational landscapes of LAYN in SKCM and STAD were constructed. LAYN was negatively related to Tumor Mutation Burden (TMB) in THCA, PRAD, and UCEC, and with the Microsatellite Instability (MSI) in STAD, LUAD, and UCEC. The immune landscape in pan-cancer suggested that LAYN may be involved in tumor immune escape. LAYN plays a crucial role in the infiltration of immune cells in malignant tumors. LAYN participates in methylation modifications and affects tumor proliferation and metastasis by regulating stemness. Analysis of single-cell sequencing data suggests that LAYN may participate in several biological processes, like stemness, apoptosis, and DNA repair. LAYN transcript was predicted as a liquid-liquid phase separation (LLPS)-related RNA. The results of KIRC were verified in the GEO and ArrayExpress databases. Furthermore, prognostic models based on machine learning of LAYN-related genes were established. Hsa-miR-153-5p and hsa-miR-505-3p may be the upstream miRNAs of LAYN and have a high value for tumor prognosis. CONCLUSION This study elucidated the functional mechanisms of LAYN from a pan-cancer perspective and provided novel insights into cancer prognosis, metastasis, and immunotherapy. LAYN has the potential to become a new target of mRNA vaccines and molecular therapies in tumors.
Collapse
Affiliation(s)
- Wang Jiawen
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wang Jinfu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Liu Jianyong
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhang Yaoguang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Wang Jianye
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
42
|
Xia Q, Yan Q, Wang Z, Huang Q, Zheng X, Shen J, Du L, Li H, Duan S. Disulfidptosis-associated lncRNAs predict breast cancer subtypes. Sci Rep 2023; 13:16268. [PMID: 37758759 PMCID: PMC10533517 DOI: 10.1038/s41598-023-43414-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/23/2023] [Indexed: 09/29/2023] Open
Abstract
Disulfidptosis is a newly discovered mode of cell death. However, its relationship with breast cancer subtypes remains unclear. In this study, we aimed to construct a disulfidptosis-associated breast cancer subtype prediction model. We obtained 19 disulfidptosis-related genes from published articles and performed correlation analysis with lncRNAs differentially expressed in breast cancer. We then used the random forest algorithm to select important lncRNAs and establish a breast cancer subtype prediction model. We identified 132 lncRNAs significantly associated with disulfidptosis (FDR < 0.01, |R|> 0.15) and selected the first four important lncRNAs to build a prediction model (training set AUC = 0.992). The model accurately predicted breast cancer subtypes (test set AUC = 0.842). Among the key lncRNAs, LINC02188 had the highest expression in the Basal subtype, while LINC01488 and GATA3-AS1 had the lowest expression in Basal. In the Her2 subtype, LINC00511 had the highest expression level compared to other key lncRNAs. GATA3-AS1 had the highest expression in LumA and LumB subtypes, while LINC00511 had the lowest expression in these subtypes. In the Normal subtype, GATA3-AS1 had the highest expression level compared to other key lncRNAs. Our study also found that key lncRNAs were closely related to RNA methylation modification and angiogenesis (FDR < 0.05, |R|> 0.1), as well as immune infiltrating cells (P.adj < 0.01, |R|> 0.1). Our random forest model based on disulfidptosis-related lncRNAs can accurately predict breast cancer subtypes and provide a new direction for research on clinical therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Qing Xia
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Qibin Yan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Zehua Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China
| | - Qinyuan Huang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China
| | - Xinying Zheng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China
| | - Lihua Du
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Hanbing Li
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China.
| |
Collapse
|
43
|
Zhou X, Jin L, Li Y, Wang Y, Li W, Shen X. Comprehensive analysis of N6-methyladenosine-related RNA methylation in the mouse hippocampus after acquired hearing loss. BMC Genomics 2023; 24:577. [PMID: 37759187 PMCID: PMC10537436 DOI: 10.1186/s12864-023-09697-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The mechanism underlying cognitive impairment after hearing loss (HL) remains unclear. N6-methyladenosine (m6A) is involved in many neurodegenerative diseases; however, its role in cognitive impairment after HL has not yet been investigated. Therefore, we aimed to analyze the m6A modification profile of the mouse hippocampus after HL exposure. A mouse model of neomycin-induced HL was established. An auditory brainstem-response test was utilized for detecting hearing threshold. The passive avoidance test was served as the mean for evaluating cognitive function. The m6A-regulated enzyme expression levels were analyzed by using reverse transcription quantitative real-time polymerase chain reaction and western blot analyses. RNA sequencing (RNA-Seq) and methylated RNA immunoprecipitation sequencing (MeRIP-Seq) were performed with the aim of investigating gene expression differences and m6A modification in the mouse hippocampus. RESULTS Neomycin administration induced severe HL in mice. At four months of age, the mice in the HL group showed poorer cognitive performance than the mice in the control group. METTL14, WTAP, and YTHDF2 mRNA levels were downregulated in the hippocampi of HL mice, whereas ALKBH5 and FTO mRNA levels were significantly upregulated. At the protein level, METTL3 and FTO were significantly upregulated. Methylated RNA immunoprecipitation sequencing analysis revealed 387 and 361 m6A hypermethylation and hypomethylation peaks, respectively. Moreover, combined analysis of mRNA expression levels and m6A peaks revealed eight mRNAs with significantly changed expression levels and methylation. CONCLUSIONS Our findings revealed the m6A transcriptome-wide profile in the hippocampus of HL mice, which may provide a basis for understanding the association between HL and cognitive impairment from the perspective of epigenetic modifications.
Collapse
Affiliation(s)
- Xuehua Zhou
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, 200031, Shanghai, China
| | - Lin Jin
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, 200031, Shanghai, China
| | - Yufeng Li
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, 200031, Shanghai, China
| | - Yiru Wang
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, 200031, Shanghai, China
| | - Wen Li
- ENT Institute, Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, 200031, Shanghai, China
| | - Xia Shen
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, 200031, Shanghai, China.
| |
Collapse
|
44
|
Zeng Y, Lv C, Wan B, Gong B. The current landscape of m6A modification in urological cancers. PeerJ 2023; 11:e16023. [PMID: 37701836 PMCID: PMC10493088 DOI: 10.7717/peerj.16023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023] Open
Abstract
N6-methyladenosine (m6A) methylation is a dynamic and reversible procession of epigenetic modifications. It is increasingly recognized that m6A modification has been involved in the tumorigenesis, development, and progression of urological tumors. Emerging research explored the role of m6A modification in urological cancer. In this review, we will summarize the relationship between m6A modification, renal cell carcinoma, bladder cancer, and prostate cancer, and discover the biological function of m6A regulators in tumor cells. We will also discuss the possible mechanism and future application value used as a potential biomarker or therapeutic target to benefit patients with urological cancers.
Collapse
Affiliation(s)
- Yaohui Zeng
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Cai Lv
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Bangbei Wan
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Binghao Gong
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| |
Collapse
|
45
|
Zhang M, Kan D, Zhang B, Chen X, Wang C, Chen S, Gao W, Yang Z, Li Y, Chen Y, Zhu S, Wen S, Niu Y, Shang Z. P300/SP1 complex mediating elevated METTL1 regulates CDK14 mRNA stability via internal m7G modification in CRPC. J Exp Clin Cancer Res 2023; 42:215. [PMID: 37599359 PMCID: PMC10440916 DOI: 10.1186/s13046-023-02777-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND N7-methylguanosine (m7G) modification is, a more common epigenetic modification in addition to m6A modification, mainly found in mRNA capsids, mRNA interiors, transfer RNA (tRNA), pri-miRNA, and ribosomal RNA (rRNA). It has been found that m7G modifications play an important role in mRNA transcription, tRNA stability, rRNA processing maturation, and miRNA biosynthesis. However, the role of m7G modifications within mRNA and its "writer" methyltransferase 1(METTL1) in tumors, particularly prostate cancer (PCa), has not been revealed. METHODS The differential expression level of METTL1 between hormone-sensitive prostate cancer (HSPC) and castrate-resistant prostate cancer (CRPC) was evaluated via RNA-seq and in vitro experiments. The effects of METTL1 on CRPC progression were investigated through in vitro and in vivo assays. The upstream molecular mechanism of METTL1 expression upregulation and the downstream mechanism of its action were explored via Chromatin Immunoprecipitation quantitative reverse transcription polymerase chain reaction (CHIP-qPCR), Co-immunoprecipitation (Co-IP), luciferase reporter assay, transcriptome-sequencing, m7G AlkAniline-Seq, and mRNA degradation experiments, etc. RESULTS AND CONCLUSION: Here, we found that METTL1 was elevated in CRPC and that patients with METTL1 elevation tended to have a poor prognosis. Functionally, the knockdown of METTL1 in CRPC cells significantly limited cell proliferation and invasive capacity. Mechanistically, we unveiled that P300 can form a complex with SP1 and bind to the promoter region of the METTL1 gene via SP1, thereby mediating METTL1 transcriptional upregulation in CRPC. Subsequently, our findings indicated that METTL1 leads to enhanced mRNA stability of CDK14 by adding m7G modifications inside its mRNA, ultimately promoting CRPC progression.
Collapse
Affiliation(s)
- Mingpeng Zhang
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Duo Kan
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Boya Zhang
- Bone and Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450000, China
| | - Xueqiao Chen
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Chun Wang
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Songmao Chen
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Wenlong Gao
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Zhao Yang
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yang Li
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yutong Chen
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Shimiao Zhu
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Simeng Wen
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yuanjie Niu
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| | - Zhiqun Shang
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| |
Collapse
|
46
|
Chen Y, Wang L, Guo F, Dai X, Zhang X. Epigenetic reprogramming during the maternal-to-zygotic transition. MedComm (Beijing) 2023; 4:e331. [PMID: 37547174 PMCID: PMC10397483 DOI: 10.1002/mco2.331] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 08/08/2023] Open
Abstract
After fertilization, sperm and oocyte fused and gave rise to a zygote which is the beginning of a new life. Then the embryonic development is monitored and regulated precisely from the transition of oocyte to the embryo at the early stage of embryogenesis, and this process is termed maternal-to-zygotic transition (MZT). MZT involves two major events that are maternal components degradation and zygotic genome activation. The epigenetic reprogramming plays crucial roles in regulating the process of MZT and supervising the normal development of early development of embryos. In recent years, benefited from the rapid development of low-input epigenome profiling technologies, new epigenetic modifications are found to be reprogrammed dramatically and may play different roles during MZT whose dysregulation will cause an abnormal development of embryos even abortion at various stages. In this review, we summarized and discussed the important novel findings on epigenetic reprogramming and the underlying molecular mechanisms regulating MZT in mammalian embryos. Our work provided comprehensive and detailed references for the in deep understanding of epigenetic regulatory network in this key biological process and also shed light on the critical roles for epigenetic reprogramming on embryonic failure during artificial reproductive technology and nature fertilization.
Collapse
Affiliation(s)
- Yurong Chen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| | - Luyao Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| | - Fucheng Guo
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| |
Collapse
|
47
|
Han J, Liu Q, Zhou Y, Li D, Wang R. Landscape of internal N7-methylguanosine of long non-coding RNA modifications in resistant acute myeloid leukemia. BMC Genomics 2023; 24:425. [PMID: 37501118 PMCID: PMC10375699 DOI: 10.1186/s12864-023-09526-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Growing evidence indicates that RNA methylation plays a fundamental role in epigenetic regulation, which is associated with the tumorigenesis and drug resistance. Among them, acute myeloid leukemia (AML), as the top acute leukemia for adults, is a deadly disease threatening human health. Although N7-methylguanosine (m7G) has been identified as an important regulatory modification, its distribution has still remained elusive. METHODS The present study aimed to explore the long non-coding RNA (lncRNA) functional profile of m7G in AML and drug-resistant AML cells. The transcriptome-wide m7G methylation of lncRNA was analyzed in AML and drug-resistant AML cells. RNA MeRIP-seq was performed to identify m7G peaks on lncRNA and differences in m7G distribution between AML and drug-resistant AML cells. The Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted to predict the possible roles and m7G-associated pathway. RESULTS Using m7G peak sequencing, it was found that a sequence motif was necessary for m7G methylation in drug-resistant AML lncRNA. Unsupervised hierarchical cluster analysis confirmed that lncRNA m7G methylation occurred more frequently in drug-resistant AML cells than in AML cells. RNA sequencing demonstrated that more genes were upregulated by methylation in drug-resistant AML cells, while methylation downregulated more genes in AML cells. The GO and KEGG pathway enrichment analyses revealed that genes having a significant correlation with m7G sites in lncRNA were involved in drug-resistant AML signaling pathways. CONCLUSION Significant differences in the levels and patterns of m7G methylation between drug-resistant AML cells and AML cells were revealed. Furthermore, the cellular functions potentially influenced by m7G in drug-resistant AML cells were predicted, providing evidence implicating m7G-mediated lncRNA epigenetic regulation in the progression of drug resistance in AML. These findings highlight the involvement of m7G in the development of drug resistance in AML.
Collapse
Affiliation(s)
- Jingyi Han
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qinqin Liu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yao Zhou
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Dong Li
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ran Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
48
|
Dong X, Liu T, Li Z, Zhai Y. Non-SMC condensin I complex subunit D2 (NCAPD2) reveals its prognostic and immunologic features in human cancers. Aging (Albany NY) 2023; 15:7237-7257. [PMID: 37498296 PMCID: PMC10415567 DOI: 10.18632/aging.204904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/06/2023] [Indexed: 07/28/2023]
Abstract
Non-SMC condensin I complex subunit D2 (NCAPD2) is overexpressed in some malignant tumors. However, there are few studies on the function of NCAPD2 in pan-cancer. We used the Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), Human Protein Atlas (HPA), and UALCAN to analyze NCAPD2 expression and promoter methylation levels in 33 tumors and normal samples. We performed immunohistochemistry (IHC) on liver cancer and corresponding normal tissues to examine NCAPD2 protein expression in LIHC. Kaplan-Meier survival and univariate regression analyses were performed to explore the pan-cancer clinical significance of NCAPD2. Moreover, correlative analysis between NCAPD2 expression and clinical characteristics, immune cell infiltration, immune checkpoints, immune regulators, tumor mutation burden (TMB), microsatellite instability (MSI), ribonucleic acid (RNA) methylation regulators, and drug sensitivity was conducted using data from TCGA. We also investigated the effects of NCAPD2 expression on immunotherapy efficacy and prognosis. Gene set enrichment analysis (GSEA) was conducted using NCAPD2. Bioinformatic analysis showed that NCAPD2 was overexpressed in most tumors and correlated with the clinical characteristics of some cancers. IHC results demonstrated that NCAPD2 protein expression was higher in LIHC than in normal liver. NCAPD2 expression was linked with T stage, clinical stage, and histologic grade in LIHC. Overexpression of NCAPD2 resulted in poor overall survival, and disease-specific survival in adrenocortical carcinoma, kidney renal papillary cell carcinoma, brain lower grade glioma, liver hepatocellular carcinoma, lung adenocarcinoma, mesothelioma, pancreatic adenocarcinoma, sarcoma, skin cutaneous melanoma, and uterine corpus endometrial carcinoma. NCAPD2 was considered an independent biomarker by Cox regression in LIHC. The time ROC curve demonstrated that the survival rate of 1-, 3-, and 5-year OS and DSS in LIHC was above 0.6. The expression of NCAPD2 was significantly correlated with immune cell infiltration, immune checkpoints, TMB, MSI, and RNA methylation regulators in several tumors. NCAPD2 had a high predictive value for immunotherapy efficiency in certain tumors. In our study, drugs sensitive to NCAPD2 protein were screened by sensitivity analysis. GSEA analysis showed that NCAPD2 mainly participated in the G2M checkpoint, mitotic spindle, and KRAS-signaling. NCAPD2 may act as a prognostic molecular marker in most cancers.
Collapse
Affiliation(s)
- Xiaoying Dong
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang 110004, People’s Republic of China
| | - Ting Liu
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Chaoyang 100015, Beijing, People’s Republic of China
| | - Zhizhao Li
- Department of Cardiovascular, Beijing Ditan Hospital, Capital Medical University, Chaoyang 100015, Beijing, People’s Republic of China
| | - Yongzhen Zhai
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang 110004, People’s Republic of China
| |
Collapse
|
49
|
Zhang H, Gu Y, Gang Q, Huang J, Xiao Q, Ha X. N6-methyladenosine RNA modification: an emerging molecule in type 2 diabetes metabolism. Front Endocrinol (Lausanne) 2023; 14:1166756. [PMID: 37484964 PMCID: PMC10360191 DOI: 10.3389/fendo.2023.1166756] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Type 2 diabetes (T2D) is a metabolic disease with an increasing rate of incidence worldwide. Despite the considerable progress in the prevention and intervention, T2D and its complications cannot be reversed easily after diagnosis, thereby necessitating an in-depth investigation of the pathophysiology. In recent years, the role of epigenetics has been increasingly demonstrated in the disease, of which N6-methyladenosine (m6A) is one of the most common post-transcriptional modifications. Interestingly, patients with T2D show a low m6A abundance. Thus, a comprehensive analysis and understanding of this phenomenon would improve our understanding of the pathophysiology, as well as the search for new biomarkers and therapeutic approaches for T2D. In this review, we systematically introduced the metabolic roles of m6A modification in organs, the metabolic signaling pathways involved, and the effects of clinical drugs on T2D.
Collapse
Affiliation(s)
- Haocheng Zhang
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- Department of Clinical Laboratory, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, Gansu, China
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, Lanzhou, Gansu, China
| | - Yan Gu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Qiaojian Gang
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Jing Huang
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Qian Xiao
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Xiaoqin Ha
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- Department of Clinical Laboratory, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, Gansu, China
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, Lanzhou, Gansu, China
| |
Collapse
|
50
|
Zhang H, Zhai X, Liu Y, Xia Z, Xia T, Du G, Zhou H, Franziska Strohmer D, Bazhin AV, Li Z, Wang X, Jin B, Guo D. NOP2-mediated m5C Modification of c-Myc in an EIF3A-Dependent Manner to Reprogram Glucose Metabolism and Promote Hepatocellular Carcinoma Progression. RESEARCH (WASHINGTON, D.C.) 2023; 6:0184. [PMID: 37398932 PMCID: PMC10313139 DOI: 10.34133/research.0184] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023]
Abstract
Mitochondrial dysfunction and glycolysis activation are improtant hallmarks of hepatocellular carcinoma (HCC). NOP2 is an S-adenosyl-L-methionine-dependent methyltransferase that regulates the cell cycle and proliferation activities. In this study, found that NOP2 contributes to HCC progression by promoting aerobic glycolysis. Our results revealed that NOP2 was highly expressed in HCC and that it was associated with unfavorable prognosis. NOP2 knockout in combination with sorafenib enhanced sorafenib sensitivity, which, in turn, led to marked tumor growth inhibition. Mechanistically, we identified that NOP2 regulates the c-Myc expression in an m5C-modification manner to promote glycolysis. Moreover, our results revealed that m5C methylation induced c-Myc mRNA degradation in an eukaryotic translation initiation factor 3 subunit A (EIF3A)-dependent manner. In addition, NOP2 was found to increase the expression of the glycolytic genes LDHA, TPI1, PKM2, and ENO1. Furthermore, MYC associated zinc finger protein (MAZ) was identified as the major transcription factor that directly controlled the expression of NOP2 in HCC. Notably, in a patient-derived tumor xenograft (PDX) model, adenovirus-mediated knockout of NOP2 maximized the antitumor effect and prolonged the survival of PDX-bearing mice. Our cumulative findings revealed the novel signaling pathway MAZ/NOP2/c-Myc in HCC and uncovered the important roles of NOP2 and m5C modifications in metabolic reprogramming. Therefore, targeting the MAZ/NOP2/c-Myc signaling pathway is suggested to be a potential therapeutic strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Hepatobiliary and Pancreatic Surgery,
Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Hepatobiliary Surgery,
The Second Hospital of Shandong University, Jinan, China
- Organ Transplant Department,
Qilu Hospital of Shandong University, Jinan, China
| | - Xiangyu Zhai
- Department of Hepatobiliary Surgery,
The Second Hospital of Shandong University, Jinan, China
- Organ Transplant Department,
Qilu Hospital of Shandong University, Jinan, China
| | - Yanfeng Liu
- Department of Hepatobiliary Surgery,
Qilu Hospital of Shandong University, Jinan, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery,
Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tong Xia
- Organ Transplant Department,
Qilu Hospital of Shandong University, Jinan, China
| | - Gang Du
- Organ Transplant Department,
Qilu Hospital of Shandong University, Jinan, China
| | - Huaxin Zhou
- Department of Hepatobiliary Surgery,
The Second Hospital of Shandong University, Jinan, China
| | - Dorothee Franziska Strohmer
- Department of General, Visceral, and Transplant Surgery,
Ludwig-Maximilians-University Munich, Munich, Germany
| | - Alexandr V. Bazhin
- Department of General, Visceral, and Transplant Surgery,
Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ziqiang Li
- Department of Hepatobiliary and Pancreatic Surgery,
Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xianqiang Wang
- Department of Pediatrics Surgery,
The Seventh Medical Center of PLA General Hospital, National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Bin Jin
- Department of Hepatobiliary Surgery,
The Second Hospital of Shandong University, Jinan, China
- Organ Transplant Department,
Qilu Hospital of Shandong University, Jinan, China
| | - Deliang Guo
- Department of Hepatobiliary and Pancreatic Surgery,
Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|