1
|
Torices S, Moreno T, Ramaswamy S, Naranjo O, Teglas T, Osborne OM, Park M, Sun E, Toborek M. MITOCHONDRIAL ANTIVIRAL PATHWAYS CONTROL ANTI-HIV RESPONSES AND ISCHEMIC STROKE OUTCOMES VIA THE RIG-1 SIGNALING AND INNATE IMMUNITY MECHANISMS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.598027. [PMID: 38895303 PMCID: PMC11185786 DOI: 10.1101/2024.06.07.598027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Occludin (ocln) is one of the main regulatory cells of the blood-brain barrier (BBB). Ocln silencing resulted in alterations of the gene expression signatures of a variety of genes of the innate immunity system, including IFN-stimulated genes (ISGs) and the antiviral retinoic acid-inducible gene-1 (RIG-1) signaling pathway, which functions as a regulator of the cytoplasmic sensors upstream of the mitochondrial antiviral signaling protein (MAVS). Indeed, we observed dysfunctional mitochondrial bioenergetics, dynamics, and autophagy in our system. Alterations of mitochondrial bioenergetics and innate immune protection translated into worsened ischemic stroke outcomes in EcoHIV-infected ocln deficient mice. Overall, these results allow for a better understanding of the molecular mechanisms of viral infection in the brain and describe a previously unrecognized role of ocln as a key factor in the control of innate immune responses and mitochondrial dynamics, which affect cerebral vascular diseases such as ischemic stroke.
Collapse
Affiliation(s)
- Silvia Torices
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Thaidy Moreno
- Department of Radiation Oncology, UCSF, San Francisco, California, USA
| | - Sita Ramaswamy
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Oandy Naranjo
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Timea Teglas
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Olivia M. Osborne
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Minseon Park
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Enze Sun
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Michal Toborek
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| |
Collapse
|
2
|
Torices S, Teglas T, Naranjo O, Fattakhov N, Frydlova K, Cabrera R, Osborne OM, Sun E, Kluttz A, Toborek M. Occludin Regulates HIV-1 Infection by Modulation of the Interferon Stimulated OAS Gene Family. Mol Neurobiol 2023; 60:4966-4982. [PMID: 37209263 PMCID: PMC10199280 DOI: 10.1007/s12035-023-03381-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/04/2023] [Indexed: 05/22/2023]
Abstract
HIV-1-associated blood brain barrier (BBB) alterations and neurocognitive disorders are frequent clinical manifestations in HIV-1 infected patients. The BBB is formed by cells of the neurovascular unit (NVU) and sealed together by tight junction proteins, such as occludin (ocln). Pericytes are a key cell type of NVU that can harbor HIV-1 infection via a mechanism that is regulated, at least in part, by ocln. After viral infection, the immune system starts the production of interferons, which induce the expression of the 2'-5'-oligoadenylate synthetase (OAS) family of interferon stimulated genes and activate the endoribonuclease RNaseL that provides antiviral protection by viral RNA degradation. The current study evaluated the involvement of the OAS genes in HIV-1 infection of cells of NVU and the role of ocln in controlling OAS antiviral signaling pathway. We identified that ocln modulates the expression levels of the OAS1, OAS2, OAS3, and OASL genes and proteins and, in turn, that the members of the OAS family can influence HIV replication in human brain pericytes. Mechanistically, this effect was regulated via the STAT signaling. HIV-1 infection of pericytes significantly upregulated expression of all OAS genes at the mRNA level but selectively OAS1, OAS2, and OAS3 at the protein level. Interestingly no changes were found in RNaseL after HIV-1 infection. Overall, these results contribute to a better understanding of the molecular mechanisms implicated in the regulation of HIV-1 infection in human brain pericytes and suggest a novel role for ocln in controlling of this process.
Collapse
Affiliation(s)
- Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA.
| | - Timea Teglas
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA
| | - Oandy Naranjo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA
| | - Nikolai Fattakhov
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA
| | - Kristyna Frydlova
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA
| | - Rosalba Cabrera
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA
| | - Olivia M Osborne
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA
| | - Enze Sun
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA
| | - Allan Kluttz
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA.
| |
Collapse
|
3
|
Torices S, Teglas T, Naranjo O, Fattakhov N, Frydlova K, Cabrera R, Osborne OM, Sun E, Kluttz A, Toborek M. Occludin regulates HIV-1 infection by modulation of the interferon stimulated OAS gene family. RESEARCH SQUARE 2023:rs.3.rs-2501091. [PMID: 36778388 PMCID: PMC9915789 DOI: 10.21203/rs.3.rs-2501091/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
HIV-1-associated blood brain barrier (BBB) alterations and neurocognitive disorders are frequent clinical manifestations in HIV-1 infected patients. The BBB is formed by cells of the neurovascular unit (NVU) and sealed together by tight junction (TJ) proteins, such as occludin (ocln). Pericytes are a key cell type of NVU that can harbor HIV-1 infection via a mechanism that is regulated, at least in part, by ocln. After viral infection, the immune system starts the production of interferons, which induce the expression of the 2'-5'-oligoadenylate synthetase (OAS) family of interferon stimulated genes and activate the endoribonuclease RNaseL that provides antiviral protection by viral RNA degradation. The current study evaluated the involvement of the OAS genes in HIV-1 infection of cells of NVU and the role of ocln in controlling OAS antiviral signaling pathway. We identified that ocln modulates the expression levels of the OAS1, OAS2, OAS3, and OASL genes and proteins and, in turn, that the members of the OAS family can influence HIV replication in human brain pericytes. Mechanistically, this effect was regulated via the STAT signaling. HIV-1 infection of pericytes significantly upregulated expression of all OAS genes at the mRNA level but selectively OAS1, OAS2 and OAS3 at the protein level. Interestingly no changes were found in RNaseL after HIV-1 infection. Overall, these results contribute to a better understanding of the molecular mechanisms implicated in the regulation of HIV-1 infection in human brain pericytes and suggest a novel role for ocln in controlling of this process.
Collapse
Affiliation(s)
- Silvia Torices
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Timea Teglas
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Oandy Naranjo
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Nikolai Fattakhov
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Kristyna Frydlova
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Rosalba Cabrera
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Olivia M Osborne
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Enze Sun
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Allan Kluttz
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | | |
Collapse
|
4
|
Naranjo O, Torices S, Clifford PR, Daftari MT, Osborne OM, Fattakhov N, Toborek M. Pericyte infection by HIV-1: a fatal attraction. Retrovirology 2022; 19:27. [PMID: 36476484 PMCID: PMC9730689 DOI: 10.1186/s12977-022-00614-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
While HIV-1 is primarily an infection of CD4 + T cells, there is an emerging interest towards understanding how infection of other cell types can contribute to HIV-associated comorbidities. For HIV-1 to cross from the blood stream into tissues, the virus must come in direct contact with the vascular endothelium, including pericytes that envelope vascular endothelial cells. Pericytes are multifunctional cells that have been recognized for their essential role in angiogenesis, vessel maintenance, and blood flow rate. Most importantly, recent evidence has shown that pericytes can be a target of HIV-1 infection and support an active stage of the viral life cycle, with latency also suggested by in vitro data. Pericyte infection by HIV-1 has been confirmed in the postmortem human brains and in lungs from SIV-infected macaques. Moreover, pericyte dysfunction has been implicated in a variety of pathologies ranging from ischemic stroke to diabetes, which are common comorbidities among people with HIV-1. In this review, we discuss the role of pericytes during HIV-1 infection and their contribution to the progression of HIV-associated comorbidities.
Collapse
Affiliation(s)
- Oandy Naranjo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 11336 USA
| | - Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 11336 USA
| | - Paul R. Clifford
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 11336 USA
| | - Manav T. Daftari
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 11336 USA
| | - Olivia M. Osborne
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 11336 USA
| | - Nikolai Fattakhov
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 11336 USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 11336 USA
| |
Collapse
|
5
|
Cerri F, Gentile F, Clarelli F, Santoro S, Falzone YM, Dina G, Romano A, Domi T, Pozzi L, Fazio R, Podini P, Sorosina M, Carrera P, Esposito F, Riva N, Briani C, Cavallaro T, Filippi M, Quattrini A. Clinical and pathological findings in neurolymphomatosis: Preliminary association with gene expression profiles in sural nerves. Front Oncol 2022; 12:974751. [PMID: 36226068 PMCID: PMC9549065 DOI: 10.3389/fonc.2022.974751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Although inflammation appears to play a role in neurolymphomatosis (NL), the mechanisms leading to degeneration in the peripheral nervous system are poorly understood. The purpose of this exploratory study was to identify molecular pathways underlying NL pathogenesis, combining clinical and neuropathological investigation with gene expression (GE) studies. We characterized the clinical and pathological features of eight patients with NL. We further analysed GE changes in sural nerve biopsies obtained from a subgroup of NL patients (n=3) and thirteen patients with inflammatory neuropathies as neuropathic controls. Based on the neuropathic symptoms and signs, NL patients were classified into three forms of neuropathy: chronic symmetrical sensorimotor polyneuropathy (SMPN, n=3), multiple mononeuropathy (MN, n=4) and acute motor-sensory axonal neuropathy (AMSAN, n=1). Predominantly diffuse malignant cells infiltration of epineurium was present in chronic SMPN, whereas endoneurial perivascular cells invasion was observed in MN. In contrast, diffuse endoneurium malignant cells localization occurred in AMSAN. We identified alterations in the expression of 1266 genes, with 115 up-regulated and 1151 down-regulated genes, which were mainly associated with ribosomal proteins (RP) and olfactory receptors (OR) signaling pathways, respectively. Among the top up-regulated genes were actin alpha 1 skeletal muscle (ACTA1) and desmin (DES). Similarly, in NL nerves ACTA1, DES and several RPs were highly expressed, associated with endothelial cells and pericytes abnormalities. Peripheral nerve involvement may be due to conversion towards a more aggressive phenotype, potentially explaining the poor prognosis. The candidate genes reported in this study may be a source of clinical biomarkers for NL.
Collapse
Affiliation(s)
- Federica Cerri
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Gentile
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Ferdinando Clarelli
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Santoro
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Yuri Matteo Falzone
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Giorgia Dina
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Romano
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Teuta Domi
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Laura Pozzi
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Raffaella Fazio
- Department of Neurology, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Paola Podini
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Melissa Sorosina
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Paola Carrera
- Division of Genetics and Cell Biology and Laboratory of Clinical Molecular Biology and Cytogenetics, Unit of Genomics for Human Disease Diagnosis, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Federica Esposito
- Department of Neurology, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Nilo Riva
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
- *Correspondence: Nilo Riva, ; Angelo Quattrini,
| | - Chiara Briani
- Department of Neuroscience , University of Padova, Padova, Italy
| | - Tiziana Cavallaro
- Department of Neurology, Azienda Ospedaliera Universitaria Integrata, University Hospital G.B. Rossi, Verona, Italy
| | - Massimo Filippi
- Department of Neurology, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
- *Correspondence: Nilo Riva, ; Angelo Quattrini,
| |
Collapse
|
6
|
Girolamo F, Errede M, Bizzoca A, Virgintino D, Ribatti D. Central Nervous System Pericytes Contribute to Health and Disease. Cells 2022; 11:1707. [PMID: 35626743 PMCID: PMC9139243 DOI: 10.3390/cells11101707] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 12/11/2022] Open
Abstract
Successful neuroprotection is only possible with contemporary microvascular protection. The prevention of disease-induced vascular modifications that accelerate brain damage remains largely elusive. An improved understanding of pericyte (PC) signalling could provide important insight into the function of the neurovascular unit (NVU), and into the injury-provoked responses that modify cell-cell interactions and crosstalk. Due to sharing the same basement membrane with endothelial cells, PCs have a crucial role in the control of endothelial, astrocyte, and oligodendrocyte precursor functions and hence blood-brain barrier stability. Both cerebrovascular and neurodegenerative diseases impair oxygen delivery and functionally impair the NVU. In this review, the role of PCs in central nervous system health and disease is discussed, considering their origin, multipotency, functions and also dysfunction, focusing on new possible avenues to modulate neuroprotection. Dysfunctional PC signalling could also be considered as a potential biomarker of NVU pathology, allowing us to individualize therapeutic interventions, monitor responses, or predict outcomes.
Collapse
Affiliation(s)
- Francesco Girolamo
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (M.E.); (D.V.); (D.R.)
| | - Mariella Errede
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (M.E.); (D.V.); (D.R.)
| | - Antonella Bizzoca
- Physiology Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy;
| | - Daniela Virgintino
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (M.E.); (D.V.); (D.R.)
| | - Domenico Ribatti
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (M.E.); (D.V.); (D.R.)
| |
Collapse
|
7
|
Bernardes SS, Pinto MCX, Amorim JH, Azevedo VADC, Resende RR, Mintz A, Birbrair A. Glioma Pericytes Promote Angiogenesis by Producing Periostin. Cell Mol Neurobiol 2022; 42:557-564. [PMID: 33010018 PMCID: PMC8018985 DOI: 10.1007/s10571-020-00975-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/27/2020] [Indexed: 12/14/2022]
Abstract
Glioma is the prevalent aggressive primary brain tumor, with a very poor prognosis. The absence of advanced understanding of the roles played by the cells within the glioma microenvironment limits the development of effective drugs. A recent study indicates that periostin expressed by pericytes is crucial for glioma angiogenesis. Here, we describe succinctly the results and implications of this discovery in what we know about pericytes within the glioma microenvironment. The emerging knowledge from this work will benefit the development of therapies for gliomas.
Collapse
Affiliation(s)
- Sara Santos Bernardes
- Tissue Microenvironment Laboratory, Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro Cunha Xavier Pinto
- Laboratory of Neuropharmacology and Neurochemistry, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Jaime Henrique Amorim
- Center of Biological Sciences and Health, Federal University of West Bahia, Barreiras, BA, Brazil
| | - Vasco Ariston de Carvalho Azevedo
- Cellular and Molecular Genetics Laboratory, Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo Ribeiro Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Tissue Microenvironment Laboratory, Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
- Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
8
|
Huang S, Huang F, Zhang H, Yang Y, Lu J, Chen J, Shen L, Pei G. In vivo development and single-cell transcriptome profiling of human brain organoids. Cell Prolif 2022; 55:e13201. [PMID: 35141969 PMCID: PMC8891563 DOI: 10.1111/cpr.13201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/16/2021] [Accepted: 01/05/2022] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVES Human brain organoids can provide not only promising models for physiological and pathological neurogenesis but also potential therapies in neurological diseases. However, technical issues such as surgical lesions due to transplantation still limit their applications. MATERIALS AND METHODS Instead of applying mature organoids, we innovatively developed human brain organoids in vivo by injecting small premature organoids into corpus striatum of adult SCID mice. Two months after injection, single-cell transcriptome analysis was performed on 6131 GFP-labeled human cells from transplanted mouse brains. RESULTS Eight subsets of cells (including neuronal cells expressing striatal markers) were identified in these in vivo developed organoids (IVD-organoids) by unbiased clustering. Compared with in vitro cultured human cortical organoids, we found that IVD-organoids developed more supporting cells including pericyte-like and choroid plexus cells, which are important for maintaining organoid homeostasis. Furthermore, IVD-organoids showed lower levels of cellular stress and apoptosis. CONCLUSIONS Our study thus provides a novel method to generate human brain organoids, which is promising in various applications of disease models and therapies.
Collapse
Affiliation(s)
- Shichao Huang
- State Key Laboratory of Cell BiologyCenter for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghaiChina
| | - Fei Huang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Huiying Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Yongfeng Yang
- State Key Laboratory of Cell BiologyCenter for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghaiChina
| | - Juan Lu
- State Key Laboratory of Cell BiologyCenter for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghaiChina
| | - Jiadong Chen
- NHC and CAMS Key Laboratory of Medical NeurobiologyCenter for Neuroscience and Department of Neurology of Second Affiliated HospitalMOE Frontier Science Center for Brain Research and Brain‐Machine IntegrationSchool of Brain Science and Brain MedicineZhejiang University School of MedicineHangzhouChina
| | - Li Shen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouChina
- Department of Orthopedics SurgerySchool of MedicineThe Second Affiliated HospitalZhejiang UniversityHangzhouChina
- Hangzhou Global Scientific and Technological Innovation CenterZhejiang University (HIC‐ZJU)HangzhouChina
| | - Gang Pei
- State Key Laboratory of Cell BiologyCenter for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghaiChina
- Shanghai Key Laboratory of Signaling and Disease ResearchLaboratory of Receptor‐based BiomedicineThe Collaborative Innovation Center for Brain ScienceSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
| |
Collapse
|
9
|
Effect of Pericytes on Cerebral Microvasculature at Different Time Points of Stroke. BIOMED RESEARCH INTERNATIONAL 2022; 2021:5281182. [PMID: 34977241 PMCID: PMC8716223 DOI: 10.1155/2021/5281182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/30/2021] [Indexed: 02/04/2023]
Abstract
Pericyte, as an important component of the blood-brain barrier, has received increasing attention in the study of cerebrovascular diseases. However, the mechanism of pericytes after the occurrence of cerebral ischemia is controversial. On the one hand, the expression of pericytes increases after cerebral ischemia, constricting the blood vessels to restrict blood supply and aggravating the damage caused by ischemia; on the other hand, pericytes participate in capillary angiogenesis in the ischemic area, which facilitates the repair of the ischemic injury area. The multifunctionality of pericytes is an important reason for this phenomenon, but the different time points of observation for the outcome indicators in each study are also an important factor that leads to the controversy of pericytes. Based on the review of a large database of original studies, the authors' team summarized the effects of pericytes on cerebral microvasculature at different time points after stroke, searched the possible markers, and explored possible therapeutic.
Collapse
|
10
|
Beneficial Effects of Transplanted Human Bone Marrow Endothelial Progenitors on Functional and Cellular Components of Blood-Spinal Cord Barrier in ALS Mice. eNeuro 2021; 8:ENEURO.0314-21.2021. [PMID: 34479980 PMCID: PMC8451202 DOI: 10.1523/eneuro.0314-21.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
Convincing evidence of blood-spinal cord barrier (BSCB) alterations has been demonstrated in amyotrophic lateral sclerosis (ALS) and barrier repair is imperative to prevent motor neuron dysfunction. We showed benefits of human bone marrow-derived CD34+ cells (hBM34+) and endothelial progenitor cells (hBM-EPCs) intravenous transplantation into symptomatic G93A SOD1 mutant mice on barrier reparative processes. These gains likely occurred by replacement of damaged endothelial cells, prolonging motor neuron survival. However, additional investigations are needed to confirm the effects of administered cells on integrity of the microvascular endothelium. The aim of this study was to determine tight junction protein levels, capillary pericyte coverage, microvascular basement membrane, and endothelial filamentous actin (F-actin) status in spinal cord capillaries of G93A SOD1 mutant mice treated with human bone marrow-derived stem cells. Tight junction proteins were detected in the spinal cords of cell-treated versus non-treated mice via Western blotting at four weeks after transplant. Capillary pericyte, basement membrane laminin, and endothelial F-actin magnitudes were determined in cervical/lumbar spinal cord tissues in ALS mice, including controls, by immunohistochemistry and fluorescent staining. Results showed that cell-treated versus media-treated ALS mice substantially increased tight junction protein levels, capillary pericyte coverage, basement membrane laminin immunoexpressions, and endothelial cytoskeletal F-actin fluorescent expressions. The greatest benefits were detected in mice receiving hBM-EPCs versus hBM34+ cells. These study results support treatment with a specific cell type derived from human bone marrow toward BSCB repair in ALS. Thus, hBM-EPCs may be advanced for clinical applications as a cell-specific approach for ALS therapy through restored barrier integrity.
Collapse
|
11
|
Ding R, Hase Y, Burke M, Foster V, Stevenson W, Polvikoski T, Kalaria RN. Loss with ageing but preservation of frontal cortical capillary pericytes in post-stroke dementia, vascular dementia and Alzheimer's disease. Acta Neuropathol Commun 2021; 9:130. [PMID: 34340718 PMCID: PMC8330023 DOI: 10.1186/s40478-021-01230-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/16/2021] [Indexed: 01/19/2023] Open
Abstract
Cerebral pericytes are an integral component of the neurovascular unit, which governs the blood–brain barrier. There is paucity of knowledge on cortical pericytes across different dementias. We quantified cortical pericytes in capillaries in 124 post-mortem brains from subjects with post-stroke dementia (PSD), vascular dementia (VaD), Alzheimer’s disease (AD) and AD-VaD (Mixed) and, post-stroke non-demented (PSND) stroke survivors as well as normal ageing controls. Collagen 4 (COL4)-positive nucleated pericyte soma were identified as protrusions on capillaries of the frontal cortex. The COL4-positive somata or nodule-like cell bodies were also verified by platelet derived growth factor receptor-β (PDGFR-β) immunohistochemistry. The mean (± SEM) pericyte somata in frontal cortical capillaries in normal young controls (46–65 years of age) was estimated as 5.2 ± 0.2 per mm capillary length. This number was reduced by 45% in older controls (> 78 years) to 2.9 ± 0.1 per mm capillary length (P < 0.001). We further found that the numbers of pericyte cell bodies per COL4 mm2 area or per mm capillary length were not decreased but rather preserved or increased in PSD, AD and Mixed dementia groups compared to similar age older controls (P < 0.01). Consistent with this, we noted that capillary length densities identified by the endothelial marker glucose transporter 1 or COL4 were not different across the dementias compared to older controls. There was a negative correlation with age (P < 0.001) suggesting fewer pericyte somata in older age, although the % COL4 immunoreactive capillary area was increased in older controls compared to young controls. Using a proven reliable method to quantify COL4-positive nucleated pericytes, our observations demonstrate ageing related loss but mostly preserved pericytes in the frontal cortex of vascular and AD dementias. We suggest there is differential regulation of capillary pericytes in the frontal lobe between the cortex and white matter in ageing-related dementias.
Collapse
|
12
|
Girolamo F, de Trizio I, Errede M, Longo G, d'Amati A, Virgintino D. Neural crest cell-derived pericytes act as pro-angiogenic cells in human neocortex development and gliomas. Fluids Barriers CNS 2021; 18:14. [PMID: 33743764 PMCID: PMC7980348 DOI: 10.1186/s12987-021-00242-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/13/2021] [Indexed: 02/07/2023] Open
Abstract
Central nervous system diseases involving the parenchymal microvessels are frequently associated with a ‘microvasculopathy’, which includes different levels of neurovascular unit (NVU) dysfunction, including blood–brain barrier alterations. To contribute to the understanding of NVU responses to pathological noxae, we have focused on one of its cellular components, the microvascular pericytes, highlighting unique features of brain pericytes with the aid of the analyses carried out during vascularization of human developing neocortex and in human gliomas. Thanks to their position, centred within the endothelial/glial partition of the vessel basal lamina and therefore inserted between endothelial cells and the perivascular and vessel-associated components (astrocytes, oligodendrocyte precursor cells (OPCs)/NG2-glia, microglia, macrophages, nerve terminals), pericytes fulfil a central role within the microvessel NVU. Indeed, at this critical site, pericytes have a number of direct and extracellular matrix molecule- and soluble factor-mediated functions, displaying marked phenotypical and functional heterogeneity and carrying out multitasking services. This pericytes heterogeneity is primarily linked to their position in specific tissue and organ microenvironments and, most importantly, to their ontogeny. During ontogenesis, pericyte subtypes belong to two main embryonic germ layers, mesoderm and (neuro)ectoderm, and are therefore expected to be found in organs ontogenetically different, nonetheless, pericytes of different origin may converge and colonize neighbouring areas of the same organ/apparatus. Here, we provide a brief overview of the unusual roles played by forebrain pericytes in the processes of angiogenesis and barriergenesis by virtue of their origin from midbrain neural crest stem cells. A better knowledge of the ontogenetic subpopulations may support the understanding of specific interactions and mechanisms involved in pericyte function/dysfunction, including normal and pathological angiogenesis, thereby offering an alternative perspective on cell subtype-specific therapeutic approaches. ![]()
Collapse
Affiliation(s)
- Francesco Girolamo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy.
| | - Ignazio de Trizio
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy.,Intensive Care Unit, Department of Intensive Care, Regional Hospital of Lugano, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Mariella Errede
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy
| | - Giovanna Longo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Molecular Biology Unit, University of Bari School of Medicine, Bari, Italy
| | - Antonio d'Amati
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy.,Department of Emergency and Organ Transplantation, Pathology Section, University of Bari School of Medicine, Bari, Italy
| | - Daniela Virgintino
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy
| |
Collapse
|
13
|
Girolamo F, de Trizio I, Errede M, Longo G, d’Amati A, Virgintino D. Neural crest cell-derived pericytes act as pro-angiogenic cells in human neocortex development and gliomas. Fluids Barriers CNS 2021. [DOI: 10.1186/s12987-021-00242-7 union select null--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractCentral nervous system diseases involving the parenchymal microvessels are frequently associated with a ‘microvasculopathy’, which includes different levels of neurovascular unit (NVU) dysfunction, including blood–brain barrier alterations. To contribute to the understanding of NVU responses to pathological noxae, we have focused on one of its cellular components, the microvascular pericytes, highlighting unique features of brain pericytes with the aid of the analyses carried out during vascularization of human developing neocortex and in human gliomas. Thanks to their position, centred within the endothelial/glial partition of the vessel basal lamina and therefore inserted between endothelial cells and the perivascular and vessel-associated components (astrocytes, oligodendrocyte precursor cells (OPCs)/NG2-glia, microglia, macrophages, nerve terminals), pericytes fulfil a central role within the microvessel NVU. Indeed, at this critical site, pericytes have a number of direct and extracellular matrix molecule- and soluble factor-mediated functions, displaying marked phenotypical and functional heterogeneity and carrying out multitasking services. This pericytes heterogeneity is primarily linked to their position in specific tissue and organ microenvironments and, most importantly, to their ontogeny. During ontogenesis, pericyte subtypes belong to two main embryonic germ layers, mesoderm and (neuro)ectoderm, and are therefore expected to be found in organs ontogenetically different, nonetheless, pericytes of different origin may converge and colonize neighbouring areas of the same organ/apparatus. Here, we provide a brief overview of the unusual roles played by forebrain pericytes in the processes of angiogenesis and barriergenesis by virtue of their origin from midbrain neural crest stem cells. A better knowledge of the ontogenetic subpopulations may support the understanding of specific interactions and mechanisms involved in pericyte function/dysfunction, including normal and pathological angiogenesis, thereby offering an alternative perspective on cell subtype-specific therapeutic approaches.
Collapse
|
14
|
Bennett HC, Kim Y. Pericytes Across the Lifetime in the Central Nervous System. Front Cell Neurosci 2021; 15:627291. [PMID: 33776651 PMCID: PMC7994897 DOI: 10.3389/fncel.2021.627291] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/23/2021] [Indexed: 12/25/2022] Open
Abstract
The pericyte is a perivascular cell type that encapsulates the microvasculature of the brain and spinal cord. Pericytes play a crucial role in the development and maintenance of the blood-brain barrier (BBB) and have a multitude of important functions in the brain. Recent evidence indicates that pericyte impairment has been implicated in neurovascular pathology associated with various human diseases such as diabetes mellitus, Alzheimer's disease (AD), and stroke. Although the pericyte is essential for normal brain function, knowledge about its developmental trajectory and anatomical distribution is limited. This review article summarizes the scientific community's current understanding of pericytes' regional heterogeneity in the brain and their changes during major life stages. More specifically, this review article focuses on pericyte differentiation and migration during brain development, regional population differences in the adult brain, and changes during normal and pathological aging. Most of what is known about pericytes come from studies of the cerebral cortex and hippocampus. Therefore, we highlight the need to expand our understanding of pericyte distribution and function in the whole brain to better delineate this cell type's role in the normal brain and pathological conditions.
Collapse
Affiliation(s)
- Hannah C Bennett
- Department of Neural and Behavioral Sciences, Penn State University, Hershey, PA, United States
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, Penn State University, Hershey, PA, United States
| |
Collapse
|
15
|
Torices S, Roberts SA, Park M, Malhotra A, Toborek M. Occludin, caveolin-1, and Alix form a multi-protein complex and regulate HIV-1 infection of brain pericytes. FASEB J 2020; 34:16319-16332. [PMID: 33058236 PMCID: PMC7686148 DOI: 10.1096/fj.202001562r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/18/2020] [Accepted: 10/02/2020] [Indexed: 12/24/2022]
Abstract
HIV-1 enters the brain by altering properties of the blood-brain barrier (BBB). Recent evidence indicates that among cells of the BBB, pericytes are prone to HIV-1 infection. Occludin (ocln) and caveolin-1 (cav-1) are critical determinants of BBB integrity that can regulate barrier properties of the BBB in response to HIV-1 infection. Additionally, Alix is an early acting endosomal factor involved in HIV-1 budding from the cells. The aim of the present study was to evaluate the role of cav-1, ocln, and Alix in HIV-1 infection of brain pericytes. Our results indicated that cav-1, ocln, and Alix form a multi-protein complex in which they cross-regulate each other's expression. Importantly, the stability of this complex was affected by HIV-1 infection. Modifications of the complex resulted in diminished HIV-1 infection and alterations of the cytokine profile produced by brain pericytes. These results identify a novel mechanism involved in HIV-1 infection contributing to a better understanding of the HIV-1 pathology and the associated neuroinflammatory responses.
Collapse
Affiliation(s)
- Silvia Torices
- Department of Biochemistry and Molecular BiologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Samantha A. Roberts
- Department of Biochemistry and Molecular BiologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Minseon Park
- Department of Biochemistry and Molecular BiologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Arun Malhotra
- Department of Biochemistry and Molecular BiologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Michal Toborek
- Department of Biochemistry and Molecular BiologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| |
Collapse
|
16
|
Ding R, Hase Y, Ameen-Ali KE, Ndung'u M, Stevenson W, Barsby J, Gourlay R, Akinyemi T, Akinyemi R, Uemura MT, Polvikoski T, Mukaetova-Ladinska E, Ihara M, Kalaria RN. Loss of capillary pericytes and the blood-brain barrier in white matter in poststroke and vascular dementias and Alzheimer's disease. Brain Pathol 2020; 30:1087-1101. [PMID: 32705757 PMCID: PMC8018063 DOI: 10.1111/bpa.12888] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/29/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023] Open
Abstract
White matter (WM) disease is associated with disruption of the gliovascular unit, which involves breach of the blood–brain barrier (BBB). We quantified pericytes as components of the gliovascular unit and assessed their status in vascular and other common dementias. Immunohistochemical and immunofluorescent methods were developed to assess the distribution and quantification of pericytes connected to the frontal lobe WM capillaries. Pericytes with a nucleus were identified by collagen 4 (COL4) and platelet‐derived growth factor receptor‐β (PDGFR‐β) antibodies with further verification using PDGFR‐β‐specific ELISA. We evaluated a total of 124 post‐mortem brains from subjects with post‐stroke dementia (PSD), vascular dementia (VaD), Alzheimer’s disease (AD), AD‐VaD (Mixed) and post‐stroke non‐demented (PSND) stroke survivors as well as normal aging controls. COL4 and PDGFR‐β reactive pericytes adopted the characteristic “crescent” or nodule‐like shapes around capillary walls. We estimated densities of pericyte somata to be 225 ±38 and 200 ±13 (SEM) per COL4 mm2 area or 2.0 ± 0.1 and 1.7 ± 0.1 per mm capillary length in young and older aging controls. Remarkably, WM pericytes were reduced by ~35%–45% in the frontal lobe of PSD, VaD, Mixed and AD subjects compared to PSND and controls subjects (P < 0.001). We also found pericyte numbers were correlated with PDGFR‐β reactivity in the WM. Our results first demonstrate a reliable method to quantify COL4‐positive pericytes and then, indicate that deep WM pericytes are decreased across different dementias including PSD, VaD, Mixed and AD. Our findings suggest that downregulation of pericytes is associated with the disruption of the BBB in the deep WM in several aging‐related dementias.
Collapse
Affiliation(s)
- Ren Ding
- Neurovascular Research Group, Translational and Clinical Research Institute, Newcastle University, Campus for Ageing & Vitality, Newcastle Upon Tyne, UK
| | - Yoshiki Hase
- Neurovascular Research Group, Translational and Clinical Research Institute, Newcastle University, Campus for Ageing & Vitality, Newcastle Upon Tyne, UK
| | - Kamar E Ameen-Ali
- Neurovascular Research Group, Translational and Clinical Research Institute, Newcastle University, Campus for Ageing & Vitality, Newcastle Upon Tyne, UK
| | - Michael Ndung'u
- Neurovascular Research Group, Translational and Clinical Research Institute, Newcastle University, Campus for Ageing & Vitality, Newcastle Upon Tyne, UK
| | - William Stevenson
- Neurovascular Research Group, Translational and Clinical Research Institute, Newcastle University, Campus for Ageing & Vitality, Newcastle Upon Tyne, UK
| | - Joseph Barsby
- Neurovascular Research Group, Translational and Clinical Research Institute, Newcastle University, Campus for Ageing & Vitality, Newcastle Upon Tyne, UK
| | - Ryan Gourlay
- Neurovascular Research Group, Translational and Clinical Research Institute, Newcastle University, Campus for Ageing & Vitality, Newcastle Upon Tyne, UK
| | - Tolulope Akinyemi
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Rufus Akinyemi
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Maiko T Uemura
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Tuomo Polvikoski
- Neurovascular Research Group, Translational and Clinical Research Institute, Newcastle University, Campus for Ageing & Vitality, Newcastle Upon Tyne, UK
| | | | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Raj N Kalaria
- Neurovascular Research Group, Translational and Clinical Research Institute, Newcastle University, Campus for Ageing & Vitality, Newcastle Upon Tyne, UK
| |
Collapse
|
17
|
Herland A, Maoz BM, FitzGerald EA, Grevesse T, Vidoudez C, Sheehy SP, Budnik N, Dauth S, Mannix R, Budnik B, Parker KK, Ingber DE. Proteomic and Metabolomic Characterization of Human Neurovascular Unit Cells in Response to Methamphetamine. ACTA ACUST UNITED AC 2020; 4:e1900230. [PMID: 32744807 DOI: 10.1002/adbi.201900230] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 07/02/2020] [Indexed: 01/31/2023]
Abstract
The functional state of the neurovascular unit (NVU), composed of the blood-brain barrier and the perivasculature that forms a dynamic interface between the blood and the central nervous system (CNS), plays a central role in the control of brain homeostasis and is strongly affected by CNS drugs. Human primary brain microvascular endothelium, astrocyte, pericyte, and neural cell cultures are often used to study NVU barrier functions as well as drug transport and efficacy; however, the proteomic and metabolomic responses of these different cell types are not well characterized. Culturing each cell type separately, using deep coverage proteomic analysis and characterization of the secreted metabolome, as well as measurements of mitochondrial activity, the responses of these cells under baseline conditions and when exposed to the NVU-impairing stimulant methamphetamine (Meth) are analyzed. These studies define the previously unknown metabolic and proteomic profiles of human brain pericytes and lead to improved characterization of the phenotype of each of the NVU cell types as well as cell-specific metabolic and proteomic responses to Meth.
Collapse
Affiliation(s)
- Anna Herland
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA.,Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, 10044, Sweden.,AIMES, Center for the Advancement of Integrated Engineering and Medical Sciences, Department of Neuroscience, Karolinska Institute, Stockholm, 17177, Sweden
| | - Ben M Maoz
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA.,Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.,Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel.,Department of Biomedical Engineering, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Edward A FitzGerald
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
| | - Thomas Grevesse
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA.,Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Charles Vidoudez
- Small Molecule Mass Spectrometry Facility, Harvard University, Cambridge, MA, 02138, USA
| | - Sean P Sheehy
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA.,Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Nikita Budnik
- Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Stephanie Dauth
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA.,Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Robert Mannix
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
| | - Bogdan Budnik
- Mass Spectrometry and Proteomics Resource Laboratory, Harvard University, Cambridge, MA, 02138, USA
| | - Kevin Kit Parker
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA.,Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA.,Vascular Biology Program and Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
18
|
Ago T. [Why are pericytes important for brain functions?]. Rinsho Shinkeigaku 2019; 59:707-715. [PMID: 31656270 DOI: 10.5692/clinicalneurol.cn-001357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pericytes are mural cells embedded in the basal membrane surrounding endothelial cells in capillary and small vessels (from precapillary arterioles to postcapillary venules). They exist with a high coverage ratio to endothelial cells in the brain and play crucial roles in the formation and maintenance of the blood-brain barrier and the control of blood flow through a close interaction with endothelial cells. Thus, intactness of pericyte is absolutely needed for neuronal/brain functions. Ageing, life-style diseases, hypoperfusion/ischemia, drugs, and genetic factors can primarily cause pericyte dysfunctions, thereby leading to the development or progression of various brain disorders, including cerebrovascular diseases. Because pericytes also play an important role in tissue repair after brain injuries, they have received much attention as a therapeutic target even from the standpoint of functional recovery.
Collapse
Affiliation(s)
- Tetsuro Ago
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University
| |
Collapse
|
19
|
Santos GSP, Magno LAV, Romano-Silva MA, Mintz A, Birbrair A. Pericyte Plasticity in the Brain. Neurosci Bull 2019; 35:551-560. [PMID: 30367336 PMCID: PMC6527663 DOI: 10.1007/s12264-018-0296-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 08/06/2018] [Indexed: 12/16/2022] Open
Abstract
Cerebral pericytes are perivascular cells that stabilize blood vessels. Little is known about the plasticity of pericytes in the adult brain in vivo. Recently, using state-of-the-art technologies, including two-photon microscopy in combination with sophisticated Cre/loxP in vivo tracing techniques, a novel role of pericytes was revealed in vascular remodeling in the adult brain. Strikingly, after pericyte ablation, neighboring pericytes expand their processes and prevent vascular dilatation. This new knowledge provides insights into pericyte plasticity in the adult brain.
Collapse
Affiliation(s)
- Gabryella S P Santos
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Luiz A V Magno
- Department of Mental Health, Federal University of Minas Gerais, Belo Horizonte, MG, 30130-100, Brazil
| | - Marco A Romano-Silva
- Department of Mental Health, Federal University of Minas Gerais, Belo Horizonte, MG, 30130-100, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Alexander Birbrair
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
- Department of Radiology, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
20
|
Picoli CC, Coimbra-Campos LMC, Guerra DAP, Silva WN, Prazeres PHDM, Costa AC, Magno LAV, Romano-Silva MA, Mintz A, Birbrair A. Pericytes Act as Key Players in Spinal Cord Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1327-1337. [PMID: 31014955 DOI: 10.1016/j.ajpath.2019.03.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 03/08/2019] [Accepted: 03/28/2019] [Indexed: 02/06/2023]
Abstract
Spinal cord injury results in locomotor impairment attributable to the formation of an inhibitory fibrous scar, which prevents axonal regeneration after trauma. The scarcity of knowledge about the molecular and cellular mechanisms involved in scar formation after spinal cord lesion impede the design of effective therapies. Recent studies, by using state-of-the-art technologies, including genetic tracking and blockage of pericytes in combination with optogenetics, reveal that pericyte blockage facilitates axonal regeneration and neuronal integration into the local neural circuitry. Strikingly, a pericyte subset is essential during scarring after spinal cord injury, and its arrest results in motor performance improvement. The arising knowledge from current research will contribute to novel approaches to develop therapies for spinal cord injury. We review novel advances in our understanding of pericyte biology in the spinal cord.
Collapse
Affiliation(s)
- Caroline C Picoli
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Daniel A P Guerra
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Walison N Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Pedro H D M Prazeres
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alinne C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luiz A V Magno
- Department of Mental Health, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Marco A Romano-Silva
- Department of Mental Health, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, New York
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil; Department of Radiology, Columbia University Medical Center, New York, New York.
| |
Collapse
|
21
|
Ding L, Zhu Z, Wang Y, Zeng L, Wang T, Luo J, Zou TB, Li R, Sun X, Zhou G, Liu X, Wu HF. LINGO-1 shRNA Loaded by Pluronic F-127 Promotes Functional Recovery After Ventral Root Avulsion. Tissue Eng Part A 2019; 25:1381-1395. [PMID: 30794055 DOI: 10.1089/ten.tea.2018.0282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spinal root avulsion typically leads to massive motoneuron death and severe functional deficits of the target muscles. Multiple pathological factors such as severe neuron loss, induction of inhibitory molecules, and insufficient regeneration are responsible for the poor functional recovery. Leucine-rich repeat and immunoglobulin-like domain-containing Nogo receptor-interacting protein 1 (LINGO-1), a central nervous system (CNS)-specific transmembrane protein that is selectively expressed on neurons and oligodendrocytes, serves as a potent negative mediator of axonal regeneration and myelination in CNS injuries and diseases. Although accumulating evidence has demonstrated improvement in axonal regeneration and neurological functions by LINGO-1 antagonism in CNS damage, the possible effects of LINGO-1 in spinal root avulsion remain undiscovered. In this study, a LINGO-1 knockdown strategy using lentiviral vectors encoding LINGO-1 short hairpin interfering RNA (shRNA) delivered by the Pluronic F-127 (PF-127) hydrogel was described after brachial plexus avulsion (BPA). We provide evidence that following BPA and immediate reimplantation, transplantation of LINGO-1 shRNA lentiviral vectors encapsulated by PF-127 rescued the injured motoneurons, enhanced axonal outgrowth and myelination, rebuilt motor endplates, facilitated the reinnervation of terminal muscles, improved angiogenesis, and promoted recovery of avulsed forelimbs. Altogether, these data suggest that delivery of LINGO-1 shRNA by a gel scaffold is a potential therapeutic approach for root avulsion. Impact Statement In this study, we attempted transplantation of lentivirus (LV)/leucine-rich repeat and immunoglobulin-like domain-containing Nogo receptor-interacting protein 1 (LINGO-1)-short hairpin interfering RNA (shRNA) encapsulated by the Pluronic F-127 (PF-127) hydrogel into a brachial plexus avulsion (BPA)-reimplantation model. We found that administration of LV/LINGO-1 shRNA facilitates neuron survival and axonal regeneration, attenuates muscle atrophy and motor endplate (MEP) loss, enhances neovascularization, and promotes functional recovery in BPA rats. Co-transplantation of LV/LINGO-1 shRNA and gel reinforces the survival-promoting effect, axonal outgrowth, and angiogenesis in comparison with LV/LINGO-1 shRNA application alone. Our research provides evidence that LV /LINGO-1 shRNA delivered by PF-127 represents a new treatment strategy for BPA repair.
Collapse
Affiliation(s)
- Lu Ding
- Department of Physiology, Institute of Stem Cells and Regenerative Medicine, Guangdong Medical University, Dongguan, China
| | - Zhe Zhu
- Hand and Foot Surgery and Reparative and Reconstruction Surgery Center, The Second Hospital of Jilin University, Changchun, China
| | - Yuhui Wang
- Department of Surgery, The Third Affiliated Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan, Guangdong, China
| | - Lini Zeng
- Department of Physiology, Institute of Stem Cells and Regenerative Medicine, Guangdong Medical University, Dongguan, China
| | - Tao Wang
- Department of Surgery, The Third Affiliated Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan, Guangdong, China
| | - Jiang Luo
- Department of Surgery, The Third Affiliated Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan, Guangdong, China
| | - Tang-Bin Zou
- Department of Nutrition and Food Hygiene, Guangdong Medical University, Dongguan, China
| | - Rui Li
- Hand and Foot Surgery and Reparative and Reconstruction Surgery Center, The Second Hospital of Jilin University, Changchun, China
| | - Xuerong Sun
- Institute of Aging Research, Guangdong Medical University, Dongguan, China
| | - Guangji Zhou
- Department of Physiology, Institute of Stem Cells and Regenerative Medicine, Guangdong Medical University, Dongguan, China
| | - Xiaoqian Liu
- Department of Physiology, Institute of Stem Cells and Regenerative Medicine, Guangdong Medical University, Dongguan, China
| | - Hong-Fu Wu
- Department of Physiology, Institute of Stem Cells and Regenerative Medicine, Guangdong Medical University, Dongguan, China
| |
Collapse
|
22
|
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory demyelinating disease that affects the central nervous system (CNS), particularly, in young adults. Current MS treatments aim to reduce demyelination; however, these have limited efficacy, display side effects and lack of regenerative activities. Oligodendrocyte progenitor cells (OPCs) represents the major source for new myelin. Upon demyelination, OPCs get activated, proliferate, migrate towards the lesion, and differentiate into remyelinating oligodendrocytes. Although myelin repair (remyelination) represents a robust response to myelin damage, during MS, this regenerative phenomenon decays in efficiency or even fails. CNS-resident pericytes (CNS-PCs) are essential for vascular homeostasis regulating blood-brain barrier (BBB) permeability and stability as well as endothelial cells (ECs) function during angiogenesis and neovascularization. Recent studies indicate that CNS-PCs also play a crucial role regulating OPC function during remyelination, and very importantly, these cells are substantially affected in MS. This chapter summarizes important aspects of MS and CNS remyelination as well as it provides new insights supporting the contribution of CNS-PCs to myelin regeneration and to MS pathology. Currently, there is evidence arguing in favor of CNS-PCs as novel therapeutic targets for the development of future treatments for MS.
Collapse
|
23
|
The Role of Pericytes in Amyotrophic Lateral Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:137-146. [PMID: 31147876 DOI: 10.1007/978-3-030-16908-4_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In amyotrophic lateral sclerosis (ALS), motor neurons die selectively. Therefore, initial symptoms that include fasciculation, spasticity, muscle atrophy, and weakness emerge following axons retraction and consequent muscles' denervation. Patients lose the ability to talk and swallow and rely on parenteral nutrition and assisted ventilation to survive. The degeneration caused by ALS is progressive and irreversible. In addition to the autonomous mechanism of neuronal cell death, non-autonomous mechanisms have been proved to be toxic for motor neurons, such as the activation of astrocytes and microglia. Among the cells being studied to unveil these toxic mechanisms are pericytes, cells that help keep the integrity of the blood-brain barrier and blood-spinal cord barrier. In this chapter, we aim to discuss the role of pericytes in ALS.
Collapse
|
24
|
Abstract
Recent stroke research has shifted the focus to the microvasculature from neuron-centric views. It is increasingly recognized that a successful neuroprotection is not feasible without microvascular protection. On the other hand, recent studies on pericytes, long-neglected cells on microvessels have provided insight into the regulation of microcirculation. Pericytes play an essential role in matching the metabolic demand of nervous tissue with the blood flow in addition to regulating the development and maintenance of the blood-brain barrier (BBB), leukocyte trafficking across the BBB and angiogenesis. Pericytes appears to be highly vulnerable to injury. Ischemic injury to pericytes on cerebral microvasculature unfavorably impacts the stroke-induced tissue damage and brain edema by disrupting microvascular blood flow and BBB integrity. Strongly supporting this, clinical imaging studies show that tissue reperfusion is not always obtained after recanalization. Therefore, prevention of pericyte dysfunction may improve the outcome of recanalization therapies by promoting microcirculatory reperfusion and preventing hemorrhage and edema. In the peri-infarct tissue, pericytes are detached from microvessels and promote angiogenesis and neurogenesis, and hence positively effect stroke outcome. Expectedly, we will learn more about the place of pericytes in CNS pathologies including stroke and devise approaches to treat them in the next decades.
Collapse
|
25
|
Barreto RSN, Romagnolli P, Cereta AD, Coimbra-Campos LMC, Birbrair A, Miglino MA. Pericytes in the Placenta: Role in Placental Development and Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1122:125-151. [PMID: 30937867 DOI: 10.1007/978-3-030-11093-2_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The placenta is the most variable organ, in terms of structure, among the species. Besides it, all placental types have the same function: production of viable offspring, independent of pregnancy length, litter number, or invasion level. The angiogenesis is a central mechanism for placental functionality, due to proper maternal-fetal communication and exchanges. Much is known about the vasculature structure, but little is known about vasculature development and cellular interactions. Pericytes are perivascular cells that were described to control vasculature stability and permeability. Nowadays there are several new functions discovered, such as lymphocyte modulation and activation, macrophage-like phagocytic properties, tissue regenerative and repair processes, and also the ability to modulate stem cells, majorly the hematopoietic. In parallel, placental tissues are known to be a particularly immune microenvironment and a rich stem cell niche. The pericyte function plethora could be similar in the placental microenvironment and could have a central role in placental development and homeostasis.
Collapse
Affiliation(s)
- Rodrigo S N Barreto
- School of Veterinary Medicine and Animal Sciences, University of São Paulo, Butantã, Sao Paulo, Brazil
| | - Patricia Romagnolli
- School of Veterinary Medicine and Animal Sciences, University of São Paulo, Butantã, Sao Paulo, Brazil
| | - Andressa Daronco Cereta
- School of Veterinary Medicine and Animal Sciences, University of São Paulo, Butantã, Sao Paulo, Brazil
| | - Leda M C Coimbra-Campos
- Department of Pathology, Federal University of Minas Gerais, Pampulha, Belo Horizonte, Brazil
| | - Alexander Birbrair
- Department of Radiology, Columbia University Medical Center, New York, NY, USA.,Department of Pathology, Federal University of Minas Gerais, Pampulha, Belo Horizonte, Brazil
| | - Maria Angelica Miglino
- School of Veterinary Medicine and Animal Sciences, University of São Paulo, Butantã, Sao Paulo, Brazil.
| |
Collapse
|
26
|
Khennouf L, Gesslein B, Brazhe A, Octeau JC, Kutuzov N, Khakh BS, Lauritzen M. Active role of capillary pericytes during stimulation-induced activity and spreading depolarization. Brain 2018; 141:2032-2046. [PMID: 30053174 PMCID: PMC6022680 DOI: 10.1093/brain/awy143] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/05/2018] [Accepted: 04/07/2018] [Indexed: 12/27/2022] Open
Abstract
Spreading depolarization is assumed to be the mechanism of migraine with aura, which is accompanied by an initial predominant hyperaemic response followed by persistent vasoconstriction. Cerebral blood flow responses are impaired in patients and in experimental animals after spreading depolarization. Understanding the regulation of cortical blood vessels during and after spreading depolarization could help patients with migraine attacks, but our knowledge of these vascular mechanisms is still incomplete. Recent findings show that control of cerebral blood flow does not only occur at the arteriole level but also at capillaries. Pericytes are vascular mural cells that can constrict or relax around capillaries, mediating local cerebral blood flow control. They participate in the constriction observed during brain ischaemia and might be involved the disruption of the microcirculation during spreading depolarization. To further understand the regulation of cerebral blood flow in spreading depolarization, we examined penetrating arterioles and capillaries with respect to vascular branching order, pericyte location and pericyte calcium responses during somatosensory stimulation and spreading depolarization. Mice expressing a red fluorescent indicator and intravenous injections of FITC-dextran were used to visualize pericytes and vessels, respectively, under two-photon microscopy. By engineering a genetically encoded calcium indicator we could record calcium changes in both pericytes around capillaries and vascular smooth muscle cells around arterioles. We show that somatosensory stimulation evoked a decrease in cytosolic calcium in pericytes located on dilating capillaries, up to the second order capillaries. Furthermore, we show that prolonged vasoconstriction following spreading depolarization is strongest in first order capillaries, with a persistent increase in pericyte calcium. We suggest that the persistence of the 'spreading cortical oligaemia' in migraine could be caused by this constriction of cortical capillaries. After spreading depolarization, somatosensory stimulation no longer evoked changes in capillary diameter and pericyte calcium. Thus, calcium changes in pericytes located on first order capillaries may be a key determinant in local blood flow control and a novel vascular mechanism in migraine. We suggest that prevention or treatment of capillary constriction in migraine with aura, which is an independent risk factor for stroke, may be clinically useful.
Collapse
Affiliation(s)
- Lila Khennouf
- Department of Neuroscience and Center for Healthy Aging, University of Copenhagen, Copenhagen N, Denmark
| | - Bodil Gesslein
- Department of Neuroscience and Center for Healthy Aging, University of Copenhagen, Copenhagen N, Denmark
| | - Alexey Brazhe
- Department of Neuroscience and Center for Healthy Aging, University of Copenhagen, Copenhagen N, Denmark
- Department of Biophysics, Faculty of Biology, Moscow State University, Moscow, Russia
| | - J Christopher Octeau
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Nikolay Kutuzov
- Department of Neuroscience and Center for Healthy Aging, University of Copenhagen, Copenhagen N, Denmark
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Martin Lauritzen
- Department of Neuroscience and Center for Healthy Aging, University of Copenhagen, Copenhagen N, Denmark
- Department of Clinical Neurophysiology, Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
27
|
Prazeres PHDM, Turquetti AOM, Azevedo PO, Barreto RSN, Miglino MA, Mintz A, Delbono O, Birbrair A. Perivascular cell αv integrins as a target to treat skeletal muscle fibrosis. Int J Biochem Cell Biol 2018; 99:109-113. [PMID: 29627438 PMCID: PMC6159891 DOI: 10.1016/j.biocel.2018.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 02/06/2023]
Abstract
Fibrosis following injury leads to aberrant regeneration and incomplete functional recovery of skeletal muscle, but the lack of detailed knowledge about the cellular and molecular mechanisms involved hampers the design of effective treatments. Using state-of-the-art technologies, Murray et al. (2017) found that perivascular PDGFRβ-expressing cells generate fibrotic cells in the skeletal muscle. Strikingly, genetic deletion of αv integrins from perivascular PDGFRβ-expressing cells significantly inhibited skeletal muscle fibrosis without affecting muscle vascularization or regeneration. In addition, the authors showed that a small molecule inhibitor of αv integrins, CWHM 12, attenuates skeletal muscle fibrosis. From a drug-development perspective, this study identifies a new cellular and molecular target to treat skeletal muscle fibrosis.
Collapse
Affiliation(s)
- Pedro H D M Prazeres
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anaelise O M Turquetti
- Anatomy of Domestic and Wild Animals Program, Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Patrick O Azevedo
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo S N Barreto
- Anatomy of Domestic and Wild Animals Program, Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Maria A Miglino
- Anatomy of Domestic and Wild Animals Program, Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Osvaldo Delbono
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Anatomy of Domestic and Wild Animals Program, Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil; Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
28
|
Sena IFG, Paiva AE, Prazeres PHDM, Azevedo PO, Lousado L, Bhutia SK, Salmina AB, Mintz A, Birbrair A. Glioblastoma-activated pericytes support tumor growth via immunosuppression. Cancer Med 2018; 7:1232-1239. [PMID: 29479841 PMCID: PMC5911609 DOI: 10.1002/cam4.1375] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 12/26/2017] [Accepted: 01/10/2018] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme is the most common and aggressive primary brain tumor, with an extremely poor prognosis. The lack of detailed knowledge about the cellular and molecular mechanisms involved in glioblastoma development restricts the design of efficient therapies. A recent study using state-of-art technologies explores the role of pericytes in the glioblastoma microenvironment. Glioblastoma-activated pericytes develop an immunosuppressive phenotype, reducing T-cell activation through the induction of an anti-inflammatory response. Strikingly, pericytes support glioblastoma growth in vitro and in vivo. Here, we describe succinctly the results and implications of the findings reported in pericytes' and glioblastomas' biology. The emerging knowledge from this study will be essential for the treatment of brain tumors.
Collapse
Affiliation(s)
- Isadora F. G. Sena
- Department of PathologyFederal University of Minas Gerais (UFMG)Belo HorizonteMGBrazil
| | - Ana E. Paiva
- Department of PathologyFederal University of Minas Gerais (UFMG)Belo HorizonteMGBrazil
| | | | - Patrick O. Azevedo
- Department of PathologyFederal University of Minas Gerais (UFMG)Belo HorizonteMGBrazil
| | - Luiza Lousado
- Department of PathologyFederal University of Minas Gerais (UFMG)Belo HorizonteMGBrazil
| | - Sujit K. Bhutia
- Department of Life ScienceNational Institute of TechnologyRourkelaOdishaIndia
| | - Alla B. Salmina
- Department of BiochemistryKrasnoyarsk State Medical UniversityKrasnoyarskRussia
| | - Akiva Mintz
- Department of RadiologyColumbia University Medical CenterNew YorkNew York
| | - Alexander Birbrair
- Department of PathologyFederal University of Minas Gerais (UFMG)Belo HorizonteMGBrazil
| |
Collapse
|
29
|
Azevedo PO, Sena IFG, Andreotti JP, Carvalho-Tavares J, Alves-Filho JC, Cunha TM, Cunha FQ, Mintz A, Birbrair A. Pericytes modulate myelination in the central nervous system. J Cell Physiol 2018; 233:5523-5529. [PMID: 29215724 DOI: 10.1002/jcp.26348] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/30/2017] [Indexed: 02/06/2023]
Abstract
Multiple sclerosis is a highly prevalent chronic demyelinating disease of the central nervous system. Remyelination is the major therapeutic goal for this disorder. The lack of detailed knowledge about the cellular and molecular mechanisms involved in myelination restricts the design of effective treatments. A recent study by using [De La Fuente et al. (2017) Cell Reports, 20(8): 1755-1764] by using state-of-the-art techniques, including pericyte-deficient mice in combination with induced demyelination, reveal that pericytes participate in central nervous system regeneration. Strikingly, pericytes presence is essential for oligodendrocyte progenitors differentiation and myelin formation during remyelination in the brain. The emerging knowledge from this research will be important for the treatment of multiple sclerosis.
Collapse
Affiliation(s)
- Patrick O Azevedo
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerias, Brazil
| | - Isadora F G Sena
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerias, Brazil
| | - Julia P Andreotti
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerias, Brazil
| | - Juliana Carvalho-Tavares
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerias, Brazil
| | - José C Alves-Filho
- Department of Pharmacology, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, New York
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerias, Brazil.,Department of Radiology, Columbia University Medical Center, New York, New York
| |
Collapse
|
30
|
Iacobaeus E, Sugars RV, Törnqvist Andrén A, Alm JJ, Qian H, Frantzen J, Newcombe J, Alkass K, Druid H, Bottai M, Röyttä M, Le Blanc K. Dynamic Changes in Brain Mesenchymal Perivascular Cells Associate with Multiple Sclerosis Disease Duration, Active Inflammation, and Demyelination. Stem Cells Transl Med 2017; 6:1840-1851. [PMID: 28941240 PMCID: PMC6430046 DOI: 10.1002/sctm.17-0028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/05/2017] [Indexed: 12/22/2022] Open
Abstract
Vascular changes, including blood brain barrier destabilization, are common pathological features in multiple sclerosis (MS) lesions. Blood vessels within adult organs are reported to harbor mesenchymal stromal cells (MSCs) with phenotypical and functional characteristics similar to pericytes. We performed an immunohistochemical study of MSCs/pericytes in brain tissue from MS and healthy persons. Post‐mortem brain tissue from patients with early progressive MS (EPMS), late stage progressive MS (LPMS), and healthy persons were analyzed for the MSC and pericyte markers CD146, platelet‐derived growth factor receptor beta (PDGFRβ), CD73, CD271, alpha‐smooth muscle actin, and Ki67. The MS samples included active, chronic active, chronic inactive lesions, and normal‐appearing white matter. MSC and pericyte marker localization were detected in association with blood vessels, including subendothelial CD146+PDGFRβ+Ki67+ cells and CD73+CD271+PDGFRβ+Ki67– cells within the adventitia and perivascular areas. Both immunostained cell subpopulations were termed mesenchymal perivascular cells (MPCs). Quantitative analyses of immunostainings showed active lesions containing increased regions of CD146+PDGFRβ+Ki67+ and CD73+CD271+PDGFRβ+Ki67– MPC subpopulations compared to inactive lesions. Chronic lesions presented with decreased levels of CD146+PDGFRβ+Ki67+ MPC cells compared to control tissue. Furthermore, LPMS lesions displayed increased numbers of blood vessels harboring greatly enlarged CD73+CD271+ adventitial and perivascular areas compared to control and EPMS tissue. In conclusion, we demonstrate the presence of MPC subgroups in control human brain vasculature, and their phenotypic changes in MS brain, which correlated with inflammation, demyelination and MS disease duration. Our findings demonstrate that brain‐derived MPCs respond to pathologic mechanisms involved in MS disease progression and suggest that vessel‐targeted therapeutics may benefit patients with progressive MS. Stem Cells Translational Medicine2017;6:1840–1851
Collapse
Affiliation(s)
- Ellen Iacobaeus
- Division of Clinical Immunology, Department of Laboratory Medicine, Finland.,Department of Clinical Neuroscience, Finland
| | - Rachael V Sugars
- Division of Oral Facial Diagnostics and Surgery, Department of Dental Medicine, Finland
| | | | - Jessica J Alm
- Division of Clinical Immunology, Department of Laboratory Medicine, Finland.,Department of Pathology, University of Turku and Turku University Hospital, Finland
| | - Hong Qian
- Center for Hematology and Regenerative Medicine, Department of Medicine, Stockholm, Sweden
| | - Janek Frantzen
- Division of Clinical Neuroscience, Department of Neurosurgery, University of Turku and Turku University Hospital, Finland
| | - Jia Newcombe
- NeuroResource, UCL Institute of Neurology, University College London, London, England, United Kingdom
| | - Kanar Alkass
- KI Donatum, Department of Forensic Medicine, Stockholm, Sweden
| | - Henrik Druid
- KI Donatum, Department of Forensic Medicine, Stockholm, Sweden
| | - Matteo Bottai
- Unit of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Matias Röyttä
- Department of Pathology, University of Turku and Turku University Hospital, Finland
| | - Katarina Le Blanc
- Division of Clinical Immunology, Department of Laboratory Medicine, Finland.,Hematology Centre, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
31
|
Birbrair A, Borges IDT, Gilson Sena IF, Almeida GG, da Silva Meirelles L, Gonçalves R, Mintz A, Delbono O. How Plastic Are Pericytes? Stem Cells Dev 2017; 26:1013-1019. [PMID: 28490256 PMCID: PMC5512298 DOI: 10.1089/scd.2017.0044] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/27/2017] [Indexed: 01/18/2023] Open
Abstract
Pericytes are defined by both their anatomical location and molecular markers. Numerous publications have reported their role as stem cells, contributing to the formation of tissues other than blood vessels. However, using cell-lineage tracing in a new transgenic mouse model, a recent study shows that in the context of aging and some pathologies, Tbx18+ pericytes do not function as stem cells in vivo. This study challenges the current view that pericytes can differentiate into other cells and reopen questions about their plasticity. This emerging knowledge is important not only for our understanding of development but may also inform treatments for diseases.
Collapse
Affiliation(s)
- Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York
| | | | | | | | | | - Ricardo Gonçalves
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Akiva Mintz
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Osvaldo Delbono
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
32
|
Dias Moura Prazeres PH, Sena IFG, Borges IDT, de Azevedo PO, Andreotti JP, de Paiva AE, de Almeida VM, de Paula Guerra DA, Pinheiro Dos Santos GS, Mintz A, Delbono O, Birbrair A. Pericytes are heterogeneous in their origin within the same tissue. Dev Biol 2017; 427:6-11. [PMID: 28479340 PMCID: PMC6076854 DOI: 10.1016/j.ydbio.2017.05.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/03/2017] [Accepted: 05/03/2017] [Indexed: 12/16/2022]
Abstract
Pericytes heterogeneity is based on their morphology, distribution, and markers. It is well known that pericytes from different organs may have distinct embryonic sources. Yamazaki et al. (2017) using several transgenic mouse model reveal by cell-lineage tracing that pericytes are even more heterogeneous than previously appreciated. This study shows that pericytes from within the same tissue may be heterogeneous in their origin. Remarkably, a subpopulation of embryonic dermal pericytes derives from the hematopoietic lineage, an unexpected source. Reconstructing the lineage of pericytes is central to understanding development, and also for the diagnosis and treatment of diseases in which pericytes play important roles.
Collapse
Affiliation(s)
| | | | | | | | - Julia Peres Andreotti
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Emília de Paiva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | - Akiva Mintz
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Osvaldo Delbono
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
33
|
Gao Y, Bielohuby M, Fleming T, Grabner GF, Foppen E, Bernhard W, Guzmán-Ruiz M, Layritz C, Legutko B, Zinser E, García-Cáceres C, Buijs RM, Woods SC, Kalsbeek A, Seeley RJ, Nawroth PP, Bidlingmaier M, Tschöp MH, Yi CX. Dietary sugars, not lipids, drive hypothalamic inflammation. Mol Metab 2017; 6:897-908. [PMID: 28752053 PMCID: PMC5518723 DOI: 10.1016/j.molmet.2017.06.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/08/2017] [Accepted: 06/14/2017] [Indexed: 01/04/2023] Open
Abstract
Objective The hypothalamus of hypercaloric diet-induced obese animals is featured by a significant increase of microglial reactivity and its associated cytokine production. However, the role of dietary components, in particular fat and carbohydrate, with respect to the hypothalamic inflammatory response and the consequent impact on hypothalamic control of energy homeostasis is yet not clear. Methods We dissected the different effects of high-carbohydrate high-fat (HCHF) diets and low-carbohydrate high-fat (LCHF) diets on hypothalamic inflammatory responses in neurons and non-neuronal cells and tested the hypothesis that HCHF diets induce hypothalamic inflammation via advanced glycation end-products (AGEs) using mice lacking advanced glycation end-products (AGEs) receptor (RAGE) and/or the activated leukocyte cell-adhesion molecule (ALCAM). Results We found that consumption of HCHF diets, but not of LCHF diets, increases microgliosis as well as the presence of N(ε)-(Carboxymethyl)-Lysine (CML), a major AGE, in POMC and NPY neurons of the arcuate nucleus. Neuron-secreted CML binds to both RAGE and ALCAM, which are expressed on endothelial cells, microglia, and pericytes. On a HCHF diet, mice lacking the RAGE and ALCAM genes displayed less microglial reactivity and less neovasculature formation in the hypothalamic ARC, and this was associated with significant improvements of metabolic disorders induced by the HCHF diet. Conclusions Combined overconsumption of fat and sugar, but not the overconsumption of fat per se, leads to excessive CML production in hypothalamic neurons, which, in turn, stimulates hypothalamic inflammatory responses such as microgliosis and eventually leads to neuronal dysfunction in the control of energy metabolism. HCHF, but not LCHF diets, induce obesity and increase the hypothalamic inflammatory response. A HCHF diet increases N-epsilon-(carboxymethyl)lysine content in hypothalamic neurons in the ARC. Obesity and metabolic symptoms induced by a HCHF diet are improved in mice lacking functional RAGE and ALCAM genes. Lacking RAGE and ALCAM prevents the hypothalamic inflammatory response and angiogenesis that occur on a HCHF diet.
Collapse
Affiliation(s)
- Yuanqing Gao
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München and German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Maximilian Bielohuby
- Endocrine Research Unit, Klinikum der Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas Fleming
- Department of Medicine and Clinical Chemistry, University Hospital of Heidelberg, Germany
| | | | - Ewout Foppen
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | - Clarita Layritz
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München and German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Beata Legutko
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München and German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Erwin Zinser
- FH JOANNEUM University for Applied Sciences, Graz, Austria
| | - Cristina García-Cáceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München and German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | | | - Stephen C Woods
- Institute for Metabolic Diseases, University of Cincinnati, USA
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, The Netherlands; Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | | | - Peter P Nawroth
- Department of Medicine and Clinical Chemistry, University Hospital of Heidelberg, Germany
| | - Martin Bidlingmaier
- Endocrine Research Unit, Klinikum der Ludwig-Maximilians-Universität, Munich, Germany.
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München and German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Division of Metabolic Diseases, Technische Universität München, Munich, Germany.
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, The Netherlands.
| |
Collapse
|
34
|
Inhibition of Lysyl Oxidases Impairs Migration and Angiogenic Properties of Tumor-Associated Pericytes. Stem Cells Int 2017; 2017:4972078. [PMID: 28553358 PMCID: PMC5434472 DOI: 10.1155/2017/4972078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/05/2017] [Indexed: 12/30/2022] Open
Abstract
Pericytes are important cellular components of the tumor microenviroment with established roles in angiogenesis and metastasis. These two cancer hallmarks are modulated by enzymes of the LOX family, but thus far, information about LOX relevance in tumor-associated pericytes is lacking. Here, we performed a comparative characterization of normal and tumoral pericytes and report for the first time the modulatory effects of LOX enzymes on activated pericyte properties. Tumoral pericytes isolated from childhood ependymoma and neuroblastoma specimens displayed angiogenic properties in vitro and expressed typical markers, including CD146, NG2, and PDGFRβ. Expression of all LOX family members could be detected in both normal and tumor-associated pericytes. In most pericyte samples, LOXL3 was the family member displaying the highest transcript levels. Inhibition of LOX/LOXL activity with the inhibitor β-aminopropionitrile (βAPN) significantly reduced migration of pericytes, while proliferation rates were kept unaltered. Formation of tube-like structures in vitro by pericytes was also significantly impaired upon inhibition of LOX/LOXL activity with βAPN, which induced more prominent effects in tumor-associated pericytes. These findings reveal a novel involvement of the LOX family of enzymes in migration and angiogenic properties of pericytes, with implications in tumor development and in therapeutic targeting tumor microenvironment constituents.
Collapse
|
35
|
Zhao W, Chai Y, Hou Y, Wang DW, Xing JQ, Yang C, Fang QM. Mechanisms responsible for the inhibitory effects of epothilone B on scar formation after spinal cord injury. Neural Regen Res 2017; 12:478-485. [PMID: 28469665 PMCID: PMC5399728 DOI: 10.4103/1673-5374.202921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Scar formation after spinal cord injury is regarded as an obstacle to axonal regeneration and functional recovery. Epothilone B provides moderate microtubule stabilization and is mainly used for anti-tumor therapy. It also reduces scar tissue formation and promotes axonal regeneration after spinal cord injury. The aim of the present study was to investigate the effect and mechanism of the microtubule-stabilizing reagent epothilone B in decreasing fibrotic scarring through its action on pericytes after spinal cord injury. A rat model of spinal cord injury was established via dorsal complete transection at the T10 vertebra. The rats received an intraperitoneal injection of epothilone B (0.75 mg/kg) at 1 and 15 days post-injury in the epothilone B group or normal saline in the vehicle group. Neuron-glial antigen 2, platelet-derived growth factor receptor β, and fibronectin protein expression were dramatically lower in the epothilone B group than in the vehicle group, but β-tubulin protein expression was greater. Glial fibrillary acidic protein at the injury site was not affected by epothilone B treatment. The Basso, Beattie, and Bresnahan locomotor scores were significantly higher in the epothilone B group than in the vehicle group. The results of this study demonstrated that epothilone B reduced the number of pericytes, inhibited extracellular matrix formation, and suppressed scar formation after spinal cord injury.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Spinal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Yong Chai
- Department of Anatomy, Binzhou Medical University, Yantai, Shandong Province, China
| | - Yun Hou
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong Province, China
| | - Da-Wei Wang
- Department of Spinal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Jian-Qiang Xing
- Department of Spinal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Cheng Yang
- Department of Anatomy, Binzhou Medical University, Yantai, Shandong Province, China
| | - Qing-Min Fang
- Department of Spinal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| |
Collapse
|
36
|
Pericytes: The Role of Multipotent Stem Cells in Vascular Maintenance and Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1079:69-86. [PMID: 29282647 DOI: 10.1007/5584_2017_138] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Blood vessels consist of an inner endothelial cell layer lining the vessel wall and perivascular pericytes, also known as mural cells, which envelop the vascular tube surface. Pericytes have recently been recognized for their central role in blood vessel formation. Pericytes are multipotent cells that are heterogeneous in their origin, function, morphology and surface markers. Similar to other types of stem cells, pericytes act as a repair system in response to injury by maintaining the structural integrity of blood vessels. Several studies have shown that blood vessels lacking pericytes become hyperdilated and haemorrhagic, leading to vascular complications ranging from diabetic retinopathy to embryonic death. The role of pericytes is not restricted to the formation and development of the vasculature: they have been shown to possess stem cell-like characteristics and may differentiate into cell types from different lineages. Recent discoveries regarding the contribution of pericytes to tumour metastasis and the maintenance of tumour vascular supply and angiogenesis have led researchers to propose targeting pericytes with anti-angiogenic therapies. In this review, we will examine the different physiological roles of pericytes, their differentiation potential, and how they interact with surrounding cells to ensure the integrity of blood vessel formation and maintenance.
Collapse
|
37
|
De Silva TM, Faraci FM. Reactive Oxygen Species and the Regulation of Cerebral Vascular Tone. STUDIES ON ATHEROSCLEROSIS 2017. [DOI: 10.1007/978-1-4899-7693-2_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
38
|
Wakisaka M, Nagao T, Yoshinari M. Sodium Glucose Cotransporter 2 (SGLT2) Plays as a Physiological Glucose Sensor and Regulates Cellular Contractility in Rat Mesangial Cells. PLoS One 2016; 11:e0151585. [PMID: 26999015 PMCID: PMC4801351 DOI: 10.1371/journal.pone.0151585] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 03/01/2016] [Indexed: 01/10/2023] Open
Abstract
PURPOSE Mesangial cells play an important role in regulating glomerular filtration by altering their cellular tone. We report the presence of a sodium glucose cotransporter (SGLT) in rat mesangial cells. This study in rat mesangial cells aimed to evaluate the expression and role of SGLT2. METHODS The SGLT2 expression in rat mesangial cells was assessed by Western blotting and reverse transcription-polymerase chain reaction (RT-PCR). Changes in the mesangial cell surface area at different glucose concentrations and the effects of extracellular Na+ and Ca2+ and of SGLT and Na+/Ca2+ exchanger (NCX) inhibitors on cellular size were determined. The cellular sizes and the contractile response were examined during a 6-day incubation with high glucose with or without phlorizin, an SGLT inhibitor. RESULTS Western blotting revealed an SGLT2 band, and RT-PCR analysis of SGLT2 revealed the predicted 422-bp band in both rat mesangial and renal proximal tubular epithelial cells. The cell surface area changed according to the extracellular glucose concentration. The glucose-induced contraction was abolished by the absence of either extracellular Na+ or Ca2+ and by SGLT and NCX inhibitors. Under the high glucose condition, the cell size decreased for 2 days and increased afterwards; these cells did not contract in response to angiotensin II, and the SGLT inhibitor restored the abolished contraction. CONCLUSIONS These data suggest that SGLT2 is expressed in rat mesangial cells, acts as a normal physiological glucose sensor and regulates cellular contractility in rat mesangial cells.
Collapse
Affiliation(s)
- Masanori Wakisaka
- Wakisaka Naika (Clinic of Internal Medicine), Fukuoka City, Japan
- * E-mail:
| | | | | |
Collapse
|
39
|
Bowyer JF, Sarkar S, Tranter KM, Hanig JP, Miller DB, O'Callaghan JP. Vascular-directed responses of microglia produced by methamphetamine exposure: indirect evidence that microglia are involved in vascular repair? J Neuroinflammation 2016; 13:64. [PMID: 26970737 PMCID: PMC4789274 DOI: 10.1186/s12974-016-0526-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 03/03/2016] [Indexed: 11/24/2022] Open
Abstract
Background Brain microglial activations and damage responses are most commonly associated with neurodegeneration or systemic innate immune system activation. Here, we used histological methods to focus on microglial responses that are directed towards brain vasculature, previously undescribed, after a neurotoxic exposure to methamphetamine. Methods Male rats were given doses of methamphetamine that produce pronounced hyperthermia, hypertension, and toxicity. Identification of microglia and microglia-like cells (pericytes and possibly perivascular cells) was done using immunoreactivity to allograft inflammatory factor 1 (Aif1 a.k.a Iba1) and alpha M integrin (Itgam a.k.a. Cd11b) while vasculature endothelium was identified using rat endothelial cell antigen 1 (RECA-1). Regions of neuronal, axonal, and nerve terminal degeneration were determined using Fluoro-Jade C. Results Dual labeling of vasculature (RECA-1) and microglia (Iba1) showed a strong association of hypertrophied cells surrounding and juxtaposed to vasculature in the septum, medial dorsal hippocampus, piriform cortex, and thalamus. The Iba1 labeling was more pronounced in the cell body while Cd11b more so in the processes of activated microglia. These regions have been previously identified to have vascular leakage after neurotoxic methamphetamine exposure. Dual labeling with Fluoro-Jade C and Iba1 indicated that there was minimal or no evidence of neuronal damage in the septum and hippocampus where many hypertrophied Iba1-labeled cells were found to be associated with vasculature. Although microglial activation around the prominent neurodegeneration was found in the thalamus, there were also many examples of activated microglia associated with vasculature. Conclusions The data implicate microglia, and possibly related cell types, in playing a major role in responding to methamphetamine-induced vascular damage, and possibly repair, in the absence of neurodegeneration. Identifying brain regions with hypertrophied/activated microglial-like cells associated with vasculature has the potential for identifying regions of more subtle examples of vascular damage and BBB compromise. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0526-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John F Bowyer
- Division of Neurotoxicology, National Center for Toxicology/FDA, Jefferson, AR, 72079, USA. .,National Center for Toxicological Research/FDA, 3900 NCTR Road, HFT-132, Jefferson, AR, 72079, USA.
| | - Sumit Sarkar
- Division of Neurotoxicology, National Center for Toxicology/FDA, Jefferson, AR, 72079, USA
| | - Karen M Tranter
- Division of Neurotoxicology, National Center for Toxicology/FDA, Jefferson, AR, 72079, USA
| | - Joseph P Hanig
- Center for Drug Evaluation and Research/FDA, Silver Spring, MD, 20993, USA
| | - Diane B Miller
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| | - James P O'Callaghan
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| |
Collapse
|
40
|
Nakamura K, Arimura K, Nishimura A, Tachibana M, Yoshikawa Y, Makihara N, Wakisaka Y, Kuroda J, Kamouchi M, Ooboshi H, Kitazono T, Ago T. Possible involvement of basic FGF in the upregulation of PDGFRβ in pericytes after ischemic stroke. Brain Res 2015; 1630:98-108. [PMID: 26569132 DOI: 10.1016/j.brainres.2015.11.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 10/20/2015] [Accepted: 11/02/2015] [Indexed: 12/17/2022]
Abstract
Central nervous system (CNS) pericytes have been recognized as an indispensable component of the neurovascular unit. The expression of platelet-derived growth factor receptor β (PDGFRβ) is markedly increased in CNS pericytes after brain ischemia. It has been elucidated that PDGFRβ, expressed in pericytes and pericyte-derived fibroblast-like cells, plays important roles in the maintenance of the blood-brain barrier (BBB) and in the repair process in infarct areas. The aim of this study was to uncover how the PDGFRβ expression is regulated in pericytes after brain ischemia. We found that basic fibroblast growth factor (bFGF), but neither hypoxia at 1% O2 nor acidification at pH 6.5, significantly upregulated the PDGFRβ expression in human cultured CNS pericytes. SU5402, an inhibitor of FGF receptor (FGFR), and inhibitors of its downstream effectors Akt and Erk abolished the bFGF-induced upregulation of PDGFRβ. On the other hand, acidification significantly upregulated the expression of bFGF, while hypoxia upregulated the expression of FGFR1 in the pericytes. The expression of bFGF and FGFR1 was markedly induced in the ischemic hemisphere after ischemic insult in a middle cerebral artery occlusion stroke model. Immunofluorescent double labeling demonstrated that the expression of bFGF and FGFR1 was co-localized with PDGFRβ-positive cells in peri-infarct areas. Moreover, treatment with bFGF enhanced cell growth and the PDGF-BB-induced migratory activity of cultured pericytes, which were significantly suppressed by SU5402 or Sunitinib, an inhibitor of PDGFR. These data suggested that increased bFGF upregulates the expression of PDGFRβ and may enhance PDGFRβ-mediated pericyte functions after brain ischemia.
Collapse
Affiliation(s)
- Kuniyuki Nakamura
- Department of Internal Medicine, Fukuoka Dental College Medical and Dental Hospital, Tamura, Fukuoka 814-0193, Japan; Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maidashi, Fukuoka 812-8582, Japan.
| | - Koichi Arimura
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maidashi, Fukuoka 812-8582, Japan; Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Maidashi, Fukuoka 812-8582, Japan
| | - Ataru Nishimura
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maidashi, Fukuoka 812-8582, Japan; Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Maidashi, Fukuoka 812-8582, Japan
| | - Masaki Tachibana
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maidashi, Fukuoka 812-8582, Japan
| | - Yoji Yoshikawa
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maidashi, Fukuoka 812-8582, Japan
| | - Noriko Makihara
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maidashi, Fukuoka 812-8582, Japan
| | - Yoshinobu Wakisaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maidashi, Fukuoka 812-8582, Japan
| | - Junya Kuroda
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maidashi, Fukuoka 812-8582, Japan
| | - Masahiro Kamouchi
- Department of Health Care Administration and Management, Graduate School of Medical Sciences, Kyushu University, Maidashi, Fukuoka 812-8582, Japan
| | - Hiroaki Ooboshi
- Department of Internal Medicine, Fukuoka Dental College Medical and Dental Hospital, Tamura, Fukuoka 814-0193, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maidashi, Fukuoka 812-8582, Japan
| | - Tetsuro Ago
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maidashi, Fukuoka 812-8582, Japan.
| |
Collapse
|
41
|
The evolving roles of pericyte in early brain injury after subarachnoid hemorrhage. Brain Res 2015; 1623:110-22. [PMID: 25982598 DOI: 10.1016/j.brainres.2015.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 05/02/2015] [Accepted: 05/04/2015] [Indexed: 12/21/2022]
Abstract
Despite accumulated understanding on the mechanisms of early brain injury and improved management of subarachnoid hemorrhage (SAH), it is still one of the serious and refractory health problems around the world. Traditionally, pericyte, served as capillary contraction handler, is recently considered as the main participant of microcirculation regulation in SAH pathophysiology. However, accumulate evidences indicate that pericyte is much more than we already know. Therefore, we briefly review the characteristics, regulation pathways and functions of pericyte, aim to summarize the evolving new pathophysiological roles of pericyte that are implicated in early brain injury after SAH and to improve our understanding in order to explore potential novel therapeutic options for patients with SAH. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.
Collapse
|
42
|
Craggs LJL, Fenwick R, Oakley AE, Ihara M, Kalaria RN. Immunolocalization of platelet-derived growth factor receptor-β (PDGFR-β) and pericytes in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Neuropathol Appl Neurobiol 2015; 41:557-70. [PMID: 25303037 PMCID: PMC5098250 DOI: 10.1111/nan.12188] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/07/2014] [Indexed: 12/14/2022]
Abstract
Aims Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is identified by aggregates of NOTCH3 extracellular domain (N3ECD) along capillaries and the deposition of granular osmiophilic material (GOM). We assessed the pattern of distribution of pericytes in relation to N3ECD deposits in cerebral microvessels of CADASIL subjects. Methods We assessed post mortem brains from (n = 50) subjects with CADASIL, cerebral small vessel disease, and similar‐age cognitively normal and older controls. Immunohistochemical and immunofluorescent staining methods were used to study the distribution and quantify immunoreactivities of the platelet‐derived growth factor receptor‐β (PDGFR‐β) (for pericytes) and microvascular markers in the frontal cortex and white matter. Results PDGFR‐β antibody stained cells typical of pericytes in capillaries and small arterioles in both the grey and white matter. PDGFR‐β reactive pericytes adopted ‘crescent’ morphology wrapped closely around capillary walls readily evident in cross‐sections. We noted considerable overlap between PDGFR‐β and N3ECD imunoreactivities in capillaries. Quantitative analysis of PDGFR‐β immunoreactivity revealed significant differences in PDGFR‐β %A in CADASIL compared with young controls (P < 0.05). PDGFR‐β %A was further positively correlated with the basement membrane marker collagen IV (r = 0.529, P = 0.009), but was not associated with GLUT‐1, the marker for endothelial cells. Conclusions Our results suggest increased expression of PDGFR‐β immunoreactive pericytes in cerebral microvessels in CADASIL compared with similar age controls. While we cannot confirm whether PDGFR‐β‐expressing pericytes produce N3ECD and hence GOM, our findings demonstrate that up‐regulation of pericyte‐like cells is associated with microvascular changes, including loss of vascular smooth muscle cells in CADASIL.
Collapse
Affiliation(s)
- Lucinda J L Craggs
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing & Vitality, Newcastle Upon Tyne, UK
| | - Richard Fenwick
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing & Vitality, Newcastle Upon Tyne, UK
| | - Arthur E Oakley
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing & Vitality, Newcastle Upon Tyne, UK
| | - Masafumi Ihara
- Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Raj N Kalaria
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing & Vitality, Newcastle Upon Tyne, UK
| |
Collapse
|
43
|
van Dijk CGM, Nieuweboer FE, Pei JY, Xu YJ, Burgisser P, van Mulligen E, el Azzouzi H, Duncker DJ, Verhaar MC, Cheng C. The complex mural cell: pericyte function in health and disease. Int J Cardiol 2015; 190:75-89. [PMID: 25918055 DOI: 10.1016/j.ijcard.2015.03.258] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 02/06/2023]
Abstract
Pericytes are perivascular cells that can be distinguished from vascular smooth muscle cells by their specific morphology and expression of distinct molecular markers. Found in the microvascular beds distributed throughout the body, they are well known for their regulation of a healthy vasculature. In this review, we examine the mechanism of pericyte support to vasomotion, and the known pathways that regulate pericyte response in angiogenesis and neovascular stabilization. We will also discuss the role of pericytes in vascular basement membrane and endothelial barrier function regulation. In contrast, recent findings have indicated that pericyte dysfunction, characterized by changes in pericyte contractility or pericyte loss of microvascular coverage, plays an important role in onset and progression of vascular-related and fibrogenic diseases. From a therapeutic point of view, pericytes have recently been identified as a putative pool of endogenous mesenchymal stem cells that could be activated in response to tissue injury to contribute to the regenerative process on multiple levels. We will discuss the mechanisms via which pericytes are involved in disease onset and development in a number of pathophysiological conditions, as well as present the evidence that supports a role for multipotent pericytes in tissue regeneration. The emerging field of pericyte research will not only contribute to the identification of new drug targets in pericyte dysfunction associated diseases, but may also boost the use of this cell type in future cell-based regenerative strategies.
Collapse
Affiliation(s)
- Christian G M van Dijk
- Laboratory of Renal and Vascular Biology, Department of Nephrology and Hypertension, University Medical Center Utrecht, The Netherlands
| | - Frederieke E Nieuweboer
- Laboratory of Renal and Vascular Biology, Department of Nephrology and Hypertension, University Medical Center Utrecht, The Netherlands
| | - Jia Yi Pei
- Laboratory of Renal and Vascular Biology, Department of Nephrology and Hypertension, University Medical Center Utrecht, The Netherlands
| | - Yan Juan Xu
- Laboratory of Renal and Vascular Biology, Department of Nephrology and Hypertension, University Medical Center Utrecht, The Netherlands
| | - Petra Burgisser
- Department of Cardiology, University Medical Center Utrecht, The Netherlands
| | - Elise van Mulligen
- Laboratory of Renal and Vascular Biology, Department of Nephrology and Hypertension, University Medical Center Utrecht, The Netherlands
| | - Hamid el Azzouzi
- Department of Cardiology, University Medical Center Utrecht, The Netherlands
| | - Dirk J Duncker
- Department of Cardiology, Cardiovascular Research School COEUR, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Marianne C Verhaar
- Laboratory of Renal and Vascular Biology, Department of Nephrology and Hypertension, University Medical Center Utrecht, The Netherlands
| | - Caroline Cheng
- Laboratory of Renal and Vascular Biology, Department of Nephrology and Hypertension, University Medical Center Utrecht, The Netherlands; Department of Cardiology, Cardiovascular Research School COEUR, Erasmus University Medical Center Rotterdam, The Netherlands.
| |
Collapse
|
44
|
Kuroda J, Ago T, Nishimura A, Nakamura K, Matsuo R, Wakisaka Y, Kamouchi M, Kitazono T. Nox4 is a major source of superoxide production in human brain pericytes. J Vasc Res 2015; 51:429-38. [PMID: 25612841 DOI: 10.1159/000369930] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 11/12/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Pericytes are multifunctional cells surrounding capillaries and postcapillary venules. In brain microvasculature, pericytes play a pivotal role under physiological and pathological conditions by producing reactive oxygen species (ROS). The aims of this study were to elucidate the source of ROS and its regulation in human brain pericytes. METHODS The expression of Nox enzymes in the cells was evaluated using RT-PCR and western blot. Superoxide production was determined by superoxide dismutase-inhibitable chemiluminescence. Silencing of Nox4 was performed using RNAi, and cell proliferation was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. RESULTS Nox4 was predominant among the Nox family in human brain pericytes. Membrane fractions of cells produced superoxide in the presence of NAD(P)H. Superoxide production was almost abolished with diphenileneiodonium, a Nox inhibitor; however, inhibitors of other possible superoxide-producing enzymes had no effect on NAD(P)H-dependent superoxide production. Pericytes expressed angiotensin II (Ang II) receptors, and Ang II upregulated Nox4 expression. Hypoxic conditions also increased the Nox4 expression. Silencing of Nox4 significantly reduced ROS production and attenuated cell proliferation. CONCLUSION Our study showed that Nox4 is a major superoxide-producing enzyme and that its expression is regulated by Ang II and hypoxic stress in human brain pericytes. In addition, Nox4 may promote cell growth.
Collapse
Affiliation(s)
- Junya Kuroda
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O. Pericytes at the intersection between tissue regeneration and pathology. Clin Sci (Lond) 2015; 128:81-93. [PMID: 25236972 PMCID: PMC4200531 DOI: 10.1042/cs20140278] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Perivascular multipotent cells, pericytes, contribute to the generation and repair of various tissues in response to injury. They are heterogeneous in their morphology, distribution, origin and markers, and elucidating their molecular and cellular differences may inform novel treatments for disorders in which tissue regeneration is either impaired or excessive. Moreover, these discoveries offer novel cellular targets for therapeutic approaches to many diseases. This review discusses recent studies that support the concept that pericyte subtypes play a distinctive role in myogenesis, neurogenesis, adipogenesis, fibrogenesis and angiogenesis.
Collapse
Affiliation(s)
- Alexander Birbrair
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina, Medical Center Boulevard, Winston Salem, NC 27157, U.S.A
- Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, North Carolina, Medical Center Boulevard, Winston Salem, NC 27157, U.S.A
| | - Tan Zhang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina, Medical Center Boulevard, Winston Salem, NC 27157, U.S.A
| | - Zhong-Min Wang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina, Medical Center Boulevard, Winston Salem, NC 27157, U.S.A
| | - Maria Laura Messi
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina, Medical Center Boulevard, Winston Salem, NC 27157, U.S.A
| | - Akiva Mintz
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, Medical Center Boulevard, Winston Salem, NC 27157, U.S.A
| | - Osvaldo Delbono
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina, Medical Center Boulevard, Winston Salem, NC 27157, U.S.A
- Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, North Carolina, Medical Center Boulevard, Winston Salem, NC 27157, U.S.A
| |
Collapse
|
46
|
Makihara N, Arimura K, Ago T, Tachibana M, Nishimura A, Nakamura K, Matsuo R, Wakisaka Y, Kuroda J, Sugimori H, Kamouchi M, Kitazono T. Involvement of platelet-derived growth factor receptor β in fibrosis through extracellular matrix protein production after ischemic stroke. Exp Neurol 2014; 264:127-34. [PMID: 25510317 DOI: 10.1016/j.expneurol.2014.12.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 12/04/2014] [Accepted: 12/07/2014] [Indexed: 02/06/2023]
Abstract
Fibrosis is concomitant with repair processes following injuries in the central nervous system (CNS). Pericytes are considered as an origin of fibrosis-forming cells in the CNS. Here, we examined whether platelet-derived growth factor receptor β (PDGFRβ), a well-known indispensable molecule for migration, proliferation, and survival of pericytes, was involved in the production of extracellular matrix proteins, fibronectin and collagen type I, which is crucial for fibrosis after ischemic stroke. Immunohistochemistry demonstrated induction of PDGFRβ expression in vascular cells of peri-infarct areas at 3-7days in a mouse stroke model. The PDGFRβ-expressing cells extended from peri-infarct areas toward the ischemic core after day 7 while expressing fibronectin and collagen type I in the infarct areas. In contrast, desmin and α-smooth muscle actin, markers of pericytes, were only expressed in vascular cells. In PDGFRβ heterozygous knockout mice, the expression of fibronectin and collagen type I was attenuated at both mRNA and protein levels with an enlargement of the infarct volume after ischemic stroke compared with that in wild-type littermates. In cultured brain pericytes, the expression of PDGF-B, PDGFRβ, fibronectin, and collagen type I, but not desmin, was significantly increased by serum depletion (SD). The SD-induced upregulation of fibronectin and collagen type I was suppressed by SU11652, an inhibitor of PDGFRβ, while PDGF-B further increased the SD-induced upregulation. In conclusion, the expression level of PDGFRβ may be a crucial determinant of fibrosis after ischemic stroke. Moreover, PDGFRβ signaling participates in the production of fibronectin and collagen type I after ischemic stroke.
Collapse
Affiliation(s)
- Noriko Makihara
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Koichi Arimura
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan; Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Tetsuro Ago
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan.
| | - Masaki Tachibana
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Ataru Nishimura
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan; Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Kuniyuki Nakamura
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Ryu Matsuo
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan; Department of Health Care Administration and Management, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Yoshinobu Wakisaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Junya Kuroda
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Hiroshi Sugimori
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Masahiro Kamouchi
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan; Department of Health Care Administration and Management, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| |
Collapse
|
47
|
Park YS, Cho JH, Kim IH, Cho GS, Cho JH, Park JH, Ahn JH, Chen BH, Shin BN, Shin MC, Tae HJ, Cho YS, Lee YL, Kim YM, Won MH, Lee JC. Effects of ischemic preconditioning on VEGF and pFlk-1 immunoreactivities in the gerbil ischemic hippocampus after transient cerebral ischemia. J Neurol Sci 2014; 347:179-87. [PMID: 25300771 DOI: 10.1016/j.jns.2014.09.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/01/2014] [Accepted: 09/23/2014] [Indexed: 01/19/2023]
Abstract
Ischemia preconditioning (IPC) displays an important adaptation of the CNS to sub-lethal ischemia. In the present study, we examined the effect of IPC on immunoreactivities of VEGF-, and phospho-Flk-1 (pFlk-1) following transient cerebral ischemia in gerbils. The animals were randomly assigned to four groups (sham-operated-group, ischemia-operated-group, IPC plus (+) sham-operated-group, and IPC+ischemia-operated-group). IPC was induced by subjecting gerbils to 2 min of ischemia followed by 1 day of recovery. In the ischemia-operated-group, a significant loss of neurons was observed in the stratum pyramidale (SP) of the hippocampal CA1 region (CA1) alone 5 days after ischemia-reperfusion, however, in all the IPC+ischemia-operated-groups, pyramidal neurons in the SP were well protected. In immunohistochemical study, VEGF immunoreactivity in the ischemia-operated-group was increased in the SP at 1 day post-ischemia and decreased with time. Five days after ischemia-reperfusion, strong VEGF immunoreactivity was found in non-pyramidal cells, which were identified as pericytes, in the stratum oriens (SO) and radiatum (SR). In the IPC+sham-operated- and IPC+ischemia-operated-groups, VEGF immunoreactivity was significantly increased in the SP. pFlk-1 immunoreactivity in the sham-operated- and ischemia-operated-groups was hardly found in the SP, and, from 2 days post-ischemia, pFlk-1 immunoreactivity was strongly increased in non-pyramidal cells, which were identified as pericytes. In the IPC+sham-operated-group, pFlk-1 immunoreactivity was significantly increased in both pyramidal and non-pyramidal cells; in the IPC+ischemia-operated-groups, the similar pattern of VEGF immunoreactivity was found in the ischemic CA1, although the VEGF immunoreactivity was strong in non-pyramidal cells at 5 days post-ischemia. In brief, our findings show that IPC dramatically augmented the induction of VEGF and pFlk-1 immunoreactivity in the pyramidal cells of the CA1 after ischemia-reperfusion, and these findings suggest that the increases of VEGF and Flk-1 expressions may be necessary for neurons to survive from transient ischemic damage.
Collapse
Affiliation(s)
- Yoo Seok Park
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea; Department of Emergency Medicine, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Geum-Sil Cho
- Department of Neuroscience, College of Medicine, Korea University, Seoul 136-705, South Korea
| | - Jeong-Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Bai Hui Chen
- Department of Physiology, College of Medicine and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon 200-702, South Korea
| | - Bich-Na Shin
- Department of Physiology, College of Medicine and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon 200-702, South Korea
| | - Myoung Cheol Shin
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Hyun-Jin Tae
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, South Korea
| | - Young Shin Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea; Department of Emergency Medicine, Seoul Hospital, College of Medicine, Sooncheonhyang University, Seoul 140-743, South Korea
| | - Yun Lyul Lee
- Department of Physiology, College of Medicine and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon 200-702, South Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea.
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea.
| |
Collapse
|
48
|
Youn SW, Jung KH, Chu K, Lee JY, Lee ST, Bahn JJ, Park DK, Yu JS, Kim SY, Kim M, Lee SK, Han MH, Roh JK. Feasibility and Safety of Intra-arterial Pericyte Progenitor Cell Delivery Following Mannitol-Induced Transient Blood-Brain Barrier Opening in a Canine Model. Cell Transplant 2014; 24:1469-79. [PMID: 24932854 DOI: 10.3727/096368914x682413] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Stem cell therapy is currently being studied with a view to rescuing various neurological diseases. Such studies require not only the discovery of potent candidate cells but also the development of methods that allow optimal delivery of those candidates to the brain tissues. Given that the blood-brain barrier (BBB) precludes cells from entering the brain, the present study was designed to test whether hyperosmolar mannitol securely opens the BBB and enhances intra-arterial cell delivery. A noninjured normal canine model in which the BBB was presumed to be closed was used to evaluate the feasibility and safety of the tested protocol. Autologous adipose tissue-derived pericytes with platelet-derived growth factor receptor β positivity were utilized. Cells were administered 5 min after mannitol pretreatment using one of following techniques: (1) bolus injection of a concentrated suspension, (2) continuous infusion of a diluted suspension, or (3) bolus injection of a concentrated suspension that had been shaken by repeated syringe pumping. Animals administered a concentrated cell suspension without mannitol pretreatment served as a control group. Vital signs, blood parameters, neurologic status, and major artery patency were kept stable throughout the experiment and the 1-month posttreatment period. Although ischemic lesions were noted on magnetic resonance imaging in several mongrel dogs with concentrated cell suspension, the injection technique using repeated syringe shaking could avert this complication. The cells were detected in both ipsilateral and contralateral cortices and were more frequent at the ipsilateral and frontal locations, whereas very few cells were observed anywhere in the brain when mannitol was not preinjected. These data suggest that intra-arterial cell infusion with mannitol pretreatment is a feasible and safe therapeutic approach in stable brain diseases such as chronic stroke.
Collapse
Affiliation(s)
- Sung Won Youn
- Department of Neuroradiology, Catholic University of Daegu Medical Center, School of Medicine, Catholic University of Daegu, Daegu, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Nakagawa S, Castro V, Toborek M. Infection of human pericytes by HIV-1 disrupts the integrity of the blood-brain barrier. J Cell Mol Med 2014; 16:2950-7. [PMID: 22947176 PMCID: PMC3524391 DOI: 10.1111/j.1582-4934.2012.01622.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 08/23/2012] [Indexed: 12/24/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system (CNS) affects cross-talk between the individual cell types of the neurovascular unit, which then contributes to disruption of the blood-brain barrier (BBB) and the development of neurological dysfunctions. Although the toxicity of HIV-1 on neurons, astrocytes and brain endothelial cells has been widely studied, there are no reports addressing the influence of HIV-1 on pericytes. Therefore, the purpose of this study was to evaluate whether or not pericytes can be infected with HIV-1 and how such an infection affects the barrier function of brain endothelial cells. Our results indicate that human brain pericytes express the major HIV-1 receptor CD4 and co-receptors CXCR4 and CCR5. We also determined that HIV-1 can replicate, although at a low level, in human brain pericytes as detected by HIV-1 p24 ELISA. Pericytes were susceptible to infection with both the X4-tropic NL4-3 and R5-tropic JR-CSF HIV-1 strains. Moreover, HIV-1 infection of pericytes resulted in compromised integrity of an in vitro model of the BBB. These findings indicate that human brain pericytes can be infected with HIV-1 and suggest that infected pericytes are involved in the progression of HIV-1-induced CNS damage.
Collapse
Affiliation(s)
- Shinsuke Nakagawa
- Molecular Neuroscience and Vascular Biology Laboratory, Department of Neurosurgery, University of Kentucky Medical Center, Lexington, KY, USA
| | | | | |
Collapse
|
50
|
Hurtado-Alvarado G, Cabañas-Morales AM, Gómez-Gónzalez B. Pericytes: brain-immune interface modulators. Front Integr Neurosci 2014; 7:80. [PMID: 24454281 PMCID: PMC3887314 DOI: 10.3389/fnint.2013.00080] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 12/26/2013] [Indexed: 01/08/2023] Open
Abstract
The premise that the central nervous system is immune-privileged arose from the fact that direct contact between immune and nervous cells is hindered by the blood-brain barrier. However, the blood-brain barrier also comprises the interface between the immune and nervous systems by secreting chemo-attractant molecules and by modulating immune cell entry into the brain. The majority of published studies on the blood-brain barrier focus on endothelial cells (ECs), which are a critical component, but not the only one; other cellular components include astroglia, microglia, and pericytes. Pericytes are poorly studied in comparison with astrocytes or ECs; they are mesenchymal cells that can modify their ultrastructure and gene expression in response to changes in the central nervous system microenvironment. Pericytes have a unique synergistic relationship with brain ECs in the regulation of capillary permeability through secretion of cytokines, chemokines, nitric oxide, matrix metalloproteinases, and by means of capillary contraction. Those pericyte manifestations are related to changes in blood-brain barrier permeability by an increase in endocytosis-mediated transport and by tight junction disruption. In addition, recent reports demonstrate that pericytes control the migration of leukocytes in response to inflammatory mediators by up-regulating the expression of adhesion molecules and releasing chemo-attractants; however, under physiological conditions they appear to be immune-suppressors. Better understanding of the immune properties of pericytes and their participation in the effects of brain infections, neurodegenerative diseases, and sleep loss will be achieved by analyzing pericyte ultrastructure, capillary coverage, and protein expression. That knowledge may provide a mechanism by which pericytes participate in the maintenance of the proper function of the brain-immune interface.
Collapse
Affiliation(s)
| | | | - Beatriz Gómez-Gónzalez
- Area of Neurosciences, Department of Biology of Reproduction, Unidad Iztapalapa, Universidad Autónoma MetropolitanaMexico City, Mexico
| |
Collapse
|