1
|
Cheng X, Tan Y, Li H, Zhang Z, Hui S, Zhang Z, Peng W. Mechanistic Insights and Potential Therapeutic Implications of NRF2 in Diabetic Encephalopathy. Mol Neurobiol 2024; 61:8253-8278. [PMID: 38483656 DOI: 10.1007/s12035-024-04097-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/04/2024] [Indexed: 09/21/2024]
Abstract
Diabetic encephalopathy (DE) is a complication of diabetes, especially type 2 diabetes (T2D), characterized by damage in the central nervous system and cognitive impairment, which has gained global attention. Despite the extensive research aimed at enhancing our understanding of DE, the underlying mechanism of occurrence and development of DE has not been established. Mounting evidence has demonstrated a close correlation between DE and various factors, such as Alzheimer's disease-like pathological changes, insulin resistance, inflammation, and oxidative stress. Of interest, nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor with antioxidant properties that is crucial in maintaining redox homeostasis and regulating inflammatory responses. The activation and regulatory mechanisms of NRF2 are a relatively complex process. NRF2 is involved in the regulation of multiple metabolic pathways and confers neuroprotective functions. Multiple studies have provided evidence demonstrating the significant involvement of NRF2 as a critical transcription factor in the progression of DE. Additionally, various molecules capable of activating NRF2 expression have shown potential in ameliorating DE. Therefore, it is intriguing to consider NRF2 as a potential target for the treatment of DE. In this review, we aim to shed light on the role and the possible underlying mechanism of NRF2 in DE. Furthermore, we provide an overview of the current research landscape and address the challenges associated with using NRF2 activators as potential treatment options for DE.
Collapse
Affiliation(s)
- Xin Cheng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China
| | - Yejun Tan
- School of Mathematics, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Hongli Li
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China
| | - Zhen Zhang
- YangSheng College of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Shan Hui
- Department of Geratology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China.
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China.
| |
Collapse
|
2
|
Joers V, Murray BC, McLaughlin C, Oliver D, Staley HE, Coronado J, Achat-Mendes C, Golshani S, Kelly SD, Goodson M, Lee D, Manfredsson FP, Moore Ii BM, Tansey MG. Modulation of cannabinoid receptor 2 alters neuroinflammation and reduces formation of alpha-synuclein aggregates in a rat model of nigral synucleinopathy. J Neuroinflammation 2024; 21:240. [PMID: 39334169 PMCID: PMC11438102 DOI: 10.1186/s12974-024-03221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Research into the disequilibrium of microglial phenotypes has become an area of intense focus in neurodegenerative disease as a potential mechanism that contributes to chronic neuroinflammation and neuronal loss in Parkinson's disease (PD). There is growing evidence that neuroinflammation accompanies and may promote progression of alpha-synuclein (Asyn)-induced nigral dopaminergic (DA) degeneration. From a therapeutic perspective, development of immunomodulatory strategies that dampen overproduction of pro-inflammatory cytokines from chronically activated immune cells and induce a pro-phagocytic phenotype is expected to promote Asyn removal and protect vulnerable neurons. Cannabinoid receptor-2 (CB2) is highly expressed on activated microglia and peripheral immune cells, is upregulated in the substantia nigra of individuals with PD and in mouse models of nigral degeneration. Furthermore, modulation of CB2 protects against rotenone-induced nigral degeneration; however, CB2 has not been pharmacologically and selectively targeted in an Asyn model of PD. Here, we report that 7 weeks of peripheral administration of CB2 inverse agonist SMM-189 reduced phosphorylated (pSer129) Asyn in the substantia nigra compared to vehicle treatment. Additionally, SMM-189 delayed Asyn-induced immune cell infiltration into the brain as determined by flow cytometry, increased CD68 protein expression, and elevated wound-healing-immune-mediator gene expression. Additionally, peripheral immune cells increased wound-healing non-classical monocytes and decreased pro-inflammatory classical monocytes. In vitro analysis of RAW264.7 macrophages treated with lipopolysaccharide (LPS) and SMM-189 revealed increased phagocytosis as measured by the uptake of fluorescence of pHrodo E. coli bioparticles. Together, results suggest that targeting CB2 with SMM-189 skews immune cell function toward a phagocytic phenotype and reduces toxic aggregated species of Asyn. Our novel findings demonstrate that CB2 may be a target to modulate inflammatory and immune responses in proteinopathies.
Collapse
Affiliation(s)
- Valerie Joers
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA.
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| | | | | | - Danielle Oliver
- Department of Physiology, Emory University, Atlanta, GA, USA
| | - Hannah E Staley
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Jazmyn Coronado
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | | | - Sanam Golshani
- Department of Physiology, Emory University, Atlanta, GA, USA
| | - Sean D Kelly
- Department of Physiology, Emory University, Atlanta, GA, USA
| | - Matthew Goodson
- Department of Physiology, Emory University, Atlanta, GA, USA
| | - Danica Lee
- Department of Physiology, Emory University, Atlanta, GA, USA
| | - Fredric P Manfredsson
- Parkinson's Disease Research Unit, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Bob M Moore Ii
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| |
Collapse
|
3
|
He XF, Yang XF, Li G, Zhao Y, Luo J, Xu JH, Zheng HQ, Zhang LY, Hu XQ. Physical Exercise Improves the Neuronal Function in Ischemic Stroke Via Microglial CB 2R/P2Y12 Signaling. Mol Neurobiol 2024:10.1007/s12035-024-04391-2. [PMID: 39066973 DOI: 10.1007/s12035-024-04391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
Physical exercise (PE) may be the single most important and accessible lifestyle habit throughout life, it inhibits the neuroinflammatory response and protects the brain against damage. As the innate cells in brain, microglia undergo morphological and functional changes to communicate with neurons protecting the neurons from injury. Herein, aiming at exploring the effects of PE on the communication between microglia-neuron during acute ischemic cerebral infarction, we carried out running wheel training before the conduction of transient middle cerebral artery occlusion (tMCAO) in C57BL/6 J and Cx3cr1-GFP mice. We found that microglial P2Y12 expression in the peri-infarct area was decreased, microglial dynamics and microglia-neuron communications were impaired, using in vivo two-photon imaging. PE up-regulated the microglial P2Y12 expression, increased the microglial dynamics, and promoted the contacts of microglia with neurons. As a result, PE inhibited neuronal Ca2+ overloads and protected against damage of the neuronal mitochondria in acute tMCAO. Mechanistically, PE increased the cannabinoid receptor 2 (CB2R) in microglia, promoted the phosphorylation of Nrf2 (NF-E2-related factor 2) at ser-344, increased the transcription factor level of Mafk, and up-regulated the level of P2Y12, whereby PE increased the levels of CB2R to promote microglia-neuron contacts to monitor and protect neuronal function.
Collapse
Affiliation(s)
- Xiao-Fei He
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Xiao-Feng Yang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Ge Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510663, Guangdong, China
| | - Yun Zhao
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Jing Luo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Jing-Hui Xu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Hai-Qing Zheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Li-Ying Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| | - Xi-Quan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
4
|
Marini P, Maccarrone M, Saso L, Tucci P. The Effect of Phytocannabinoids and Endocannabinoids on Nrf2 Activity in the Central Nervous System and Periphery. Neurol Int 2024; 16:776-789. [PMID: 39051218 PMCID: PMC11270200 DOI: 10.3390/neurolint16040057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
The relationship between nuclear factor erythroid 2-related factor 2 (Nrf2) and phytocannabinoids/endocannabinoids (pCBs/eCBs) has been investigated in a variety of models of peripheral illnesses, with little clarification on their interaction within the central nervous system (CNS). In this context, evidence suggests that the Nrf2-pCBs/eCBS interaction is relevant in modulating peroxidation processes and the antioxidant system. Nrf2, one of the regulators of cellular redox homeostasis, appears to have a protective role toward damaging insults to neurons and glia by enhancing those genes involved in the regulation of homeostatic processes. Specifically in microglia and macroglia cells, Nrf2 can be activated, and its signaling pathway modulated, by both pCBs and eCBs. However, the precise effects of pCBs and eCBs on the Nrf2 signaling pathway are not completely elucidated yet, making their potential clinical employment still not fully understood.
Collapse
Affiliation(s)
- Pietro Marini
- Institute of Education in Healthcare and Medical Sciences, Foresterhill Campus, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio snc, Coppito, 67100 L’Aquila, Italy
- European Center for Brain Research (CERC), Santa Lucia Foundation IRCCS, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
5
|
Armeli F, Mengoni B, Laskin DL, Businaro R. Interplay among Oxidative Stress, Autophagy, and the Endocannabinoid System in Neurodegenerative Diseases: Role of the Nrf2- p62/SQSTM1 Pathway and Nutraceutical Activation. Curr Issues Mol Biol 2024; 46:6868-6884. [PMID: 39057052 PMCID: PMC11276139 DOI: 10.3390/cimb46070410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
The onset of neurodegenerative diseases involves a complex interplay of pathological mechanisms, including protein aggregation, oxidative stress, and impaired autophagy. This review focuses on the intricate connection between oxidative stress and autophagy in neurodegenerative disorders, highlighting autophagy as pivotal in disease pathogenesis. Reactive oxygen species (ROS) play dual roles in cellular homeostasis and autophagy regulation, with disruptions of redox signaling contributing to neurodegeneration. The activation of the Nrf2 pathway represents a critical antioxidant mechanism, while autophagy maintains cellular homeostasis by degrading altered cell components. The interaction among p62/SQSTM1, Nrf2, and Keap1 forms a regulatory pathway essential for cellular stress response, whose dysregulation leads to impaired autophagy and aggregate accumulation. Targeting the Nrf2-p62/SQSTM1 pathway holds promise for therapeutic intervention, mitigating oxidative stress and preserving cellular functions. Additionally, this review explores the potential synergy between the endocannabinoid system and Nrf2 signaling for neuroprotection. Further research is needed to elucidate the involved molecular mechanisms and develop effective therapeutic strategies against neurodegeneration.
Collapse
Affiliation(s)
- Federica Armeli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (B.M.)
| | - Beatrice Mengoni
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (B.M.)
| | - Debra L. Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA;
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (B.M.)
| |
Collapse
|
6
|
Joers V, Murray BC, McLaughlin C, Oliver D, Staley H, Coronado J, Achat-Mendes C, Golshani S, Kelly SD, Goodson M, Lee D, Manfredsson FP, Moore BM, Tansey MG. Modulation of cannabinoid receptor 2 alters neuroinflammation and reduces formation of alpha-synuclein aggregates in a rat model of nigral synucleinopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.25.554814. [PMID: 38562842 PMCID: PMC10983852 DOI: 10.1101/2023.08.25.554814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Research into the disequilibrium of microglial phenotypes has become an area of intense focus in neurodegenerative disease as a potential mechanism that contributes to chronic neuroinflammation and neuronal loss in Parkinson's disease (PD). There is growing evidence that neuroinflammation accompanies and may promote progression of alpha-synuclein (Asyn)-induced nigral dopaminergic (DA) degeneration. From a therapeutic perspective, development of immunomodulatory strategies that dampen overproduction of pro-inflammatory cytokines from chronically activated immune cells and induce a pro-phagocytic phenotype is expected to promote Asyn removal and protect vulnerable neurons. Cannabinoid receptor-2 (CB2) is highly expressed on activated microglia and peripheral immune cells, is upregulated in the substantia nigra of individuals with PD and in mouse models of nigral degeneration. Furthermore, modulation of CB2 protects against rotenone-induced nigral degeneration; however, CB2 has not been pharmacologically and selectively targeted in an Asyn model of PD. Here, we report that 7 weeks of peripheral administration of CB2 inverse agonist SMM-189 reduced phosphorylated (pSer129) alpha-synuclein in the substantia nigra compared to vehicle treatment. Additionally, SMM-189 delayed Asyn-induced immune cell infiltration into the brain as determined by flow cytometry, increased CD68 protein expression, and elevated wound-healing-immune-mediator gene expression. Additionally, peripheral immune cells increased wound-healing non-classical monocytes and decreased pro-inflammatory classical monocytes. In vitro analysis of RAW264.7 macrophages treated with lipopolysaccharide (LPS) and SMM-189 revealed increased phagocytosis as measured by the uptake of fluorescence of pHrodo E. coli bioparticles. Together, results suggest that targeting CB2 with SMM-189 skews immune cell function toward a phagocytic phenotype and reduces toxic aggregated species of Asyn. Our novel findings demonstrate that CB2 may be a target to modulate inflammatory and immune responses in proteinopathies.
Collapse
Affiliation(s)
- Valerie Joers
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| | | | | | - Danielle Oliver
- Department of Physiology, Emory University, Atlanta, Georgia
| | - Hannah Staley
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Jazmyn Coronado
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| | | | - Sanam Golshani
- Department of Physiology, Emory University, Atlanta, Georgia
| | - Sean D Kelly
- Department of Physiology, Emory University, Atlanta, Georgia
| | - Matthew Goodson
- Department of Physiology, Emory University, Atlanta, Georgia
| | - Danica Lee
- Department of Physiology, Emory University, Atlanta, Georgia
| | - Fredric P Manfredsson
- Parkinson's Disease Research Unit, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, Arizona
| | - Bob M Moore
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Malú Gámez Tansey
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, Florida
| |
Collapse
|
7
|
Canseco-Alba A, Tabata K, Momoki Y, Tabassum T, Horiuchi Y, Arinami T, Onaivi ES, Ishiguro H. Cannabinoid CB2 receptors and hypersensitivity to methamphetamine: Vulnerability to schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2024; 130:110924. [PMID: 38135096 PMCID: PMC10872318 DOI: 10.1016/j.pnpbp.2023.110924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/19/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
The human cannabinoid receptor 2 (CB2R) gene CNR2 has been associated with schizophrenia development. Inbred mice treated with the CB2R inverse agonist AM630 and challenged with methamphetamine (MAP) showed reduced prepulse inhibition (%PPI) response and locomotor hyperactivity, both behavioral measures in rodents that correlate with psychosis. Mice lacking CB2R on striatal dopaminergic neurons exhibit a hyperdopaminergic tone and a hyperactivity phenotype. Hyperdopaminergia plays a role in the etiology of schizophrenia. This study aimed to determine the direct role of CB2R, heterozygous Cnr2 gene knockout (Het) mice treated with MAP to induce behavioral sensitivity mimicking a schizophrenia-like human phenotype. Additionally, the study aims to explore the unique modulation of dopamine activity by neuronal CB2R. Conditional knockout DAT-Cnr2-/- mice were evaluated in response to MAP treatments for this purpose. Sensorimotor gating deficits in DAT-Cnr2-/- mice were also evaluated. Het mice developed reverse tolerance (RT) to MAP-enhanced locomotor activity, and RT reduced the %PPI compared to wild-type (WT) mice. DAT-Cnr2-/- mice showed an increased sensitivity to stereotypical behavior induced by MAP and developed RT to MAP. DAT-Cnr2-/- mice exhibit a reduction in %PPI and alter social interaction, another core symptom of schizophrenia. These results demonstrate that there is an interaction between neuronal CB2R and MAP treatment, which increases the risk of schizophrenia-like behavior in this mouse model. This finding provides evidence for further studies targeting CB2R as a potential schizophrenia therapy.
Collapse
Affiliation(s)
- Ana Canseco-Alba
- Laboratory of Reticular Formation Physiology, National Institute of Neurology and Neurosurgery, Mexico City 14269, Mexico; Department of Biology, William Paterson University, Wayne, NJ 07470, USA
| | - Koichi Tabata
- Department of Neuropsychiatry, Graduate School of Medical Science, University of Yamanashi, Chuo, Yamanashi 409-3821, Japan
| | - Yukihiko Momoki
- Department of Neuropsychiatry, Graduate School of Medical Science, University of Yamanashi, Chuo, Yamanashi 409-3821, Japan
| | - Taharima Tabassum
- Department of Clinical Genetics, Graduate School of Medical Science, University of Yamanashi, Chuo, Yamanashi 409-3821, Japan
| | - Yasue Horiuchi
- Department of Clinical Genetics, Graduate School of Medical Science, University of Yamanashi, Chuo, Yamanashi 409-3821, Japan; Department of Genomic Medicine, Shizuoka Graduate University of Public Health, Shizuoka, Shizuoka 420-0881, Japan
| | - Tadao Arinami
- Department of Medical Genetics, Graduate School of Comprehensive Human Sciences, University of Yamanashi, Chuo, Yamanashi 409-3821, Japan
| | - Emmanuel S Onaivi
- Department of Biology, William Paterson University, Wayne, NJ 07470, USA
| | - Hiroki Ishiguro
- Department of Neuropsychiatry, Graduate School of Medical Science, University of Yamanashi, Chuo, Yamanashi 409-3821, Japan; Department of Clinical Genetics, Graduate School of Medical Science, University of Yamanashi, Chuo, Yamanashi 409-3821, Japan.
| |
Collapse
|
8
|
Monsalvo-Maraver LA, Ovalle-Noguez EA, Nava-Osorio J, Maya-López M, Rangel-López E, Túnez I, Tinkov AA, Tizabi Y, Aschner M, Santamaría A. Interactions Between the Ubiquitin-Proteasome System, Nrf2, and the Cannabinoidome as Protective Strategies to Combat Neurodegeneration: Review on Experimental Evidence. Neurotox Res 2024; 42:18. [PMID: 38393521 PMCID: PMC10891226 DOI: 10.1007/s12640-024-00694-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/13/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024]
Abstract
Neurodegenerative disorders are chronic brain diseases that affect humans worldwide. Although many different factors are thought to be involved in the pathogenesis of these disorders, alterations in several key elements such as the ubiquitin-proteasome system (UPS), the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, and the endocannabinoid system (ECS or endocannabinoidome) have been implicated in their etiology. Impairment of these elements has been linked to the origin and progression of neurodegenerative disorders, while their potentiation is thought to promote neuronal survival and overall neuroprotection, as proved with several experimental models. These key neuroprotective pathways can interact and indirectly activate each other. In this review, we summarize the neuroprotective potential of the UPS, ECS, and Nrf2 signaling, both separately and combined, pinpointing their role as a potential therapeutic approach against several hallmarks of neurodegeneration.
Collapse
Affiliation(s)
- Luis Angel Monsalvo-Maraver
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U. Coyoacán, 04510, Mexico City, Mexico.
| | - Enid A Ovalle-Noguez
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U. Coyoacán, 04510, Mexico City, Mexico
| | - Jade Nava-Osorio
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U. Coyoacán, 04510, Mexico City, Mexico
| | - Marisol Maya-López
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U. Coyoacán, 04510, Mexico City, Mexico
- Doctorado en Ciencias Biológicas y de La Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Edgar Rangel-López
- Instituto Nacional de Neurología y Neurocirugía, S.S.A., Mexico City, Mexico
| | - Isaac Túnez
- Instituto de Investigaciones Biomédicas Maimonides de Córdoba (IMIBIC), Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Universidad de Córdoba, Red Española de Excelencia en Estimulación Cerebral (REDESTIM), Córdoba, Spain
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Yaroslavl State University, Yaroslavl, Russia
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Abel Santamaría
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U. Coyoacán, 04510, Mexico City, Mexico.
| |
Collapse
|
9
|
Wang M, Liu M, Ma Z. Cannabinoid type 2 receptor activation inhibits MPP +-induced M1 differentiation of microglia through activating PI3K/Akt/Nrf2 signal pathway. Mol Biol Rep 2023; 50:4423-4433. [PMID: 36977807 DOI: 10.1007/s11033-023-08395-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND Growing evidence indicates that cannabinoid type 2 (CB2) receptor activation inhibits neuroinflammation in the pathogenesis of Parkinson's disease (PD). Nonetheless, the precise mechanisms of CB2 receptor-mediated neuroprotection have not been fully elucidated. The differentiation of microglia from the M1 to M2 phenotype plays a vital role in neuroinflammation. METHODS In the present study, we investigated the effect of CB2 receptor activation on the M1/M2 phenotypic transformation of microglia treated with 1-methyl-4-phenylpyridinium (MPP+). The M1 phenotype microglia markers, including inducible nitric oxide (iNOS), interleukin 6 (IL-6), and CD86, and the M2 phenotype microglia markers, including arginase-1 (Arg-1), IL-10, and CD206, were detected by western blots and flow cytometry. The levels of phosphoinositide-3-kinase (PI3K)/Akt and nuclear factor erythroid 2-related factor 2 (Nrf2) were determined by Western blots. Subsequent addition of Nrf2 inhibitors initially revealed the specific mechanism by which CB2 receptors affect phenotypic changes in microglia. RESULTS Our results showed that pretreatment with JWH133 significantly inhibited the MPP+-induced up-regulation of M1 phenotype microglia markers. Meanwhile, JWH133 increased the levels of M2 phenotype microglia markers. JWH133-mediated effects were blocked by co-treatment with AM630. Mechanism studies found that MPP+ treatment downregulated PI3K, Akt phosphorylated proteins, and nuclear Nrf2 protein. JWH133 pretreatment promoted PI3K/Akt activation and facilitated nuclear translocation of Nrf2, which was reversed by the PI3K inhibitor. Further studies showed that Nrf2 inhibitors inverted the effect of JWH133 on microglia polarization. CONCLUSION The results indicate that CB2 receptor activation promotes MPP+-induced microglia transformation from M1 to M2 phenotype through PI3K/Akt/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Mengya Wang
- Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disorders, Qingdao University, Qingdao, 266071, China
| | - Man Liu
- Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disorders, Qingdao University, Qingdao, 266071, China
| | - Zegang Ma
- Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disorders, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
10
|
Khavandi M, Rao PPN, Beazely MA. Differential Effects of Endocannabinoids on Amyloid-Beta Aggregation and Toxicity. Int J Mol Sci 2023; 24:911. [PMID: 36674424 PMCID: PMC9861930 DOI: 10.3390/ijms24020911] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/13/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
The regulation and metabolism of the endocannabinoid system has received extensive attention for their potential neuroprotective effect in neurodegenerative diseases such as Alzheimer's disease (AD), which is characterized by amyloid β (Aβ) -induced cell toxicity, inflammation, and oxidative stress. Using in vitro techniques and two cell lines, the mouse hippocampus-derived HT22 cells and Chinese hamster ovary (CHO) cells expressing human cannabinoid receptor type 1 (CB1), we investigated the ability of endocannabinoids to inhibit Aβ aggregation and protect cells against Aβ toxicity. The present study provides evidence that endocannabinoids N-arachidonoyl ethanol amide (AEA), noladin and O-arachidonoyl ethanolamine (OAE) inhibit Aβ42 aggregation. They were able to provide protection against Aβ42 induced cytotoxicity via receptor-mediated and non-receptor-mediated mechanisms in CB1-CHO and HT22 cells, respectively. The aggregation kinetic experiments demonstrate the anti-Aβ aggregation activity of some endocannabinoids (AEA, noladin). These data demonstrate the potential role and application of endocannabinoids in AD pathology and treatment.
Collapse
Affiliation(s)
| | | | - Michael A. Beazely
- School of Pharmacy, Health Sciences Campus, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
11
|
Martinez Ramirez CE, Ruiz-Pérez G, Stollenwerk TM, Behlke C, Doherty A, Hillard CJ. Endocannabinoid signaling in the central nervous system. Glia 2023; 71:5-35. [PMID: 36308424 PMCID: PMC10167744 DOI: 10.1002/glia.24280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/02/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
It is hard to overestimate the influence of the endocannabinoid signaling (ECS) system on central nervous system (CNS) function. In the 40 years since cannabinoids were found to trigger specific cell signaling cascades, studies of the ECS system continue to cause amazement, surprise, and confusion! CB1 cannabinoid receptors are expressed widely in the CNS and regulate cell-cell communication via effects on the release of both neurotransmitters and gliotransmitters. CB2 cannabinoid receptors are difficult to detect in the CNS but seem to "punch above their weight" as compounds targeting these receptors have significant effects on inflammatory state and behavior. Positive and negative allosteric modulators for both receptors have been identified and examined in preclinical studies. Concentrations of the endocannabinoid ligands, N-arachidonoylethanolamine and 2-arachidonoylglycerol (2-AG), are regulated by a combination of enzymatic synthesis and degradation and inhibitors of these processes are available and making their way into clinical trials. Importantly, ECS regulates many essential brain functions, including regulation of reward, anxiety, inflammation, motor control, and cellular development. While the field is on the cusp of preclinical discoveries providing impactful clinical and therapeutic insights into many CNS disorders, there is still much to be learned about this remarkable and versatile modulatory system.
Collapse
Affiliation(s)
- César E Martinez Ramirez
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Gonzalo Ruiz-Pérez
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Todd M Stollenwerk
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christina Behlke
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ashley Doherty
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Cecilia J Hillard
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
12
|
Sánchez-Sanz A, Posada-Ayala M, Sabín-Muñoz J, Fernández-Miranda I, Aladro-Benito Y, Álvarez-Lafuente R, Royuela A, García-Hernández R, la Fuente ORD, Romero J, García-Merino A, Sánchez-López AJ. Endocannabinoid levels in peripheral blood mononuclear cells of multiple sclerosis patients treated with dimethyl fumarate. Sci Rep 2022; 12:20300. [PMID: 36434122 PMCID: PMC9700785 DOI: 10.1038/s41598-022-21807-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 10/04/2022] [Indexed: 11/27/2022] Open
Abstract
The endocannabinoid system (ECS), a signalling network with immunomodulatory properties, is a potential therapeutic target in multiple sclerosis (MS). Dimethyl fumarate (DMF) is an approved drug for MS whose mechanism of action has not been fully elucidated; the possibility exists that its therapeutic effects could imply the ECS. With the aim of studying if DMF can modulate the ECS, the endocannabinoids 2-arachidonoylglycerol (2-AG), anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) were determined by liquid chromatography-mass spectrometry in peripheral blood mononuclear cells from 21 healthy donors (HD) and 32 MS patients at baseline and after 12 and 24 months of DMF treatment. MS patients presented lower levels of 2-AG and PEA compared to HD. 2-AG increased at 24 months, reaching HD levels. AEA and PEA remained stable at 12 and 24 months. OEA increased at 12 months and returned to initial levels at 24 months. Patients who achieved no evidence of disease activity (NEDA3) presented the same modulation over time as EDA3 patients. PEA was modulated differentially between females and males. Our results show that the ECS is dysregulated in MS patients. The increase in 2-AG and OEA during DMF treatment suggests a possible role of DMF in ECS modulation.
Collapse
Affiliation(s)
- Alicia Sánchez-Sanz
- Neuroimmunology Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain ,grid.5515.40000000119578126PhD Program in Molecular Biosciences, Doctoral School, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Posada-Ayala
- grid.449795.20000 0001 2193 453XFaculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Julia Sabín-Muñoz
- grid.73221.350000 0004 1767 8416Department of Neurology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Ismael Fernández-Miranda
- grid.5515.40000000119578126PhD Program in Molecular Biosciences, Doctoral School, Universidad Autónoma de Madrid, Madrid, Spain ,Lymphoma Research Group, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - Yolanda Aladro-Benito
- grid.411244.60000 0000 9691 6072Department of Neurology, Hospital Universitario de Getafe, Madrid, Spain
| | - Roberto Álvarez-Lafuente
- grid.414780.eGrupo de Investigación de Factores Ambientales en Enfermedades Degenerativas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain ,grid.483890.e0000 0004 6095 7779Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain
| | - Ana Royuela
- Clinical Biostatistics Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - Ruth García-Hernández
- Neuroimmunology Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - Ofir Rodríguez-De la Fuente
- grid.73221.350000 0004 1767 8416Department of Neurology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Julián Romero
- grid.449795.20000 0001 2193 453XFaculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Antonio García-Merino
- Neuroimmunology Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain ,grid.73221.350000 0004 1767 8416Department of Neurology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain ,grid.483890.e0000 0004 6095 7779Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain ,grid.5515.40000000119578126Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio José Sánchez-López
- Neuroimmunology Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain ,grid.483890.e0000 0004 6095 7779Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain ,Biobank, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
| |
Collapse
|
13
|
Basavarajappa BS, Subbanna S. Molecular Insights into Epigenetics and Cannabinoid Receptors. Biomolecules 2022; 12:1560. [PMID: 36358910 PMCID: PMC9687363 DOI: 10.3390/biom12111560] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/29/2022] [Accepted: 10/22/2022] [Indexed: 09/22/2023] Open
Abstract
The actions of cannabis are mediated by G protein-coupled receptors that are part of an endogenous cannabinoid system (ECS). ECS consists of the naturally occurring ligands N-arachidonylethanolamine (anandamide) and 2-arachidonoylglycerol (2-AG), their biosynthetic and degradative enzymes, and the CB1 and CB2 cannabinoid receptors. Epigenetics are heritable changes that affect gene expression without changing the DNA sequence, transducing external stimuli in stable alterations of the DNA or chromatin structure. Cannabinoid receptors are crucial candidates for exploring their functions through epigenetic approaches due to their significant roles in health and diseases. Epigenetic changes usually promote alterations in the expression of genes and proteins that can be evaluated by various transcriptomic and proteomic analyses. Despite the exponential growth of new evidence on the critical functions of cannabinoid receptors, much is still unknown regarding the contribution of various genetic and epigenetic factors that regulate cannabinoid receptor gene expression. Recent studies have identified several immediate and long-lasting epigenetic changes, such as DNA methylation, DNA-associated histone proteins, and RNA regulatory networks, in cannabinoid receptor function. Thus, they can offer solutions to many cellular, molecular, and behavioral impairments found after modulation of cannabinoid receptor activities. In this review, we discuss the significant research advances in different epigenetic factors contributing to the regulation of cannabinoid receptors and their functions under both physiological and pathological conditions. Increasing our understanding of the epigenetics of cannabinoid receptors will significantly advance our knowledge and could lead to the identification of novel therapeutic targets and innovative treatment strategies for diseases associated with altered cannabinoid receptor functions.
Collapse
Affiliation(s)
- Balapal S. Basavarajappa
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, NY 10032, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Shivakumar Subbanna
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| |
Collapse
|
14
|
Duncan RS, Riordan SM, Hall CW, Payne AJ, Chapman KD, Koulen P. N-acylethanolamide metabolizing enzymes are upregulated in human neural progenitor-derived neurons exposed to sub-lethal oxidative stress. Front Cell Neurosci 2022; 16:902278. [PMID: 36003139 PMCID: PMC9393304 DOI: 10.3389/fncel.2022.902278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022] Open
Abstract
N-acyl amides (NAAs) are a class of lipids that consist of an acyl group N-linked to an amino acid, neurotransmitter, taurine or ethanolamide group (N-acylethanolamines or NAEs) and include some endocannabinoids (eCB) such as anandamide. These lipids are synthesized in a wide variety of organisms and in multiple cell types, including neurons. NAEs are involved in numerous cellular and physiological processes and their concentrations are elevated in response to ischemia and physical trauma to play a role in neuroprotection. The neuroprotective properties of eCB NAEs make the protein targets of these compounds attractive targets for clinical intervention for a variety of conditions. The most promising of these targets include cannabinoid receptor type 1 (CB1), cannabinoid receptor type 2 (CB2), fatty acid amide hydrolase (FAAH), N-acylethanolamine acid amidase (NAAA), and N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD). Further characterization of these targets in a more contemporary model system of neurodegeneration and neuroprotection will allow us to fully describe their role and mechanism of action in neuroprotection against oxidative stress leading to better utilization in the clinical setting. Human stem cell-derived or human neural progenitor cell-derived cells, such as ReN cells, have become more utilized for the study of human neuronal development and neurodegenerative diseases. ReN cells can be easily differentiated thereby circumventing the need for using transformed cell lines and primary neurons as cell model systems. In this study, we determined whether ReN cells, a superior cell model system for studying neurodevelopment, differentiation, and neuroprotection, express proteins involved in canonical eCB NAE signaling and whether oxidative stress can induce their expression. We determined that sublethal oxidative stress upregulates the expression of all eCB proteins tested. In addition, we determined that oxidative stress increases the nuclear localization of FAAH, and to a lesser extent, NAAA and NAPE-PLD. This study is a first step toward determining how oxidative stress affects CB1, CB2, FAAH, NAAA, and NAPE-PLD expression and their potential defense against oxidative stress. As such, our data is important for further determining the role of eCB metabolizing proteins and eCB receptors against oxidative stress.
Collapse
Affiliation(s)
- R. Scott Duncan
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri–Kansas City, Kansas City, MO, United States
| | - Sean M. Riordan
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri–Kansas City, Kansas City, MO, United States
| | - Conner W. Hall
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri–Kansas City, Kansas City, MO, United States
| | - Andrew J. Payne
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri–Kansas City, Kansas City, MO, United States
| | - Kent D. Chapman
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, TX, United States
| | - Peter Koulen
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri–Kansas City, Kansas City, MO, United States
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, TX, United States
- Department of Biomedical Sciences, School of Medicine, University of Missouri–Kansas City, Kansas City, MO, United States
- *Correspondence: Peter Koulen,
| |
Collapse
|
15
|
Activating cannabinoid receptor 2 preserves axonal health through GSK-3β/NRF2 axis in adrenoleukodystrophy. Acta Neuropathol 2022; 144:241-258. [PMID: 35778568 DOI: 10.1007/s00401-022-02451-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/04/2022] [Accepted: 06/05/2022] [Indexed: 11/01/2022]
Abstract
Aberrant endocannabinoid signaling accompanies several neurodegenerative disorders, including multiple sclerosis. Here, we report altered endocannabinoid signaling in X-linked adrenoleukodystrophy (X-ALD), a rare neurometabolic demyelinating syndrome caused by malfunction of the peroxisomal ABCD1 transporter, resulting in the accumulation of very long-chain fatty acids (VLCFAs). We found abnormal levels of cannabinoid receptor 2 (CB2r) and related endocannabinoid enzymes in the brain and peripheral blood mononuclear cells (PBMCs) of X-ALD patients and in the spinal cord of a murine model of X-ALD. Preclinical treatment with a selective agonist of CB2r (JWH133) halted axonal degeneration and associated locomotor deficits, along with normalization of microgliosis. Moreover, the drug improved the main metabolic disturbances underlying this model, particularly in redox and lipid homeostatic pathways, including increased lipid droplets in motor neurons, through the modulation of the GSK-3β/NRF2 axis. JWH133 inhibited Reactive Oxygen Species elicited by excess VLCFAs in primary microglial cultures of Abcd1-null mice. Furthermore, we uncovered intertwined redox and CB2r signaling in the murine spinal cords and in patient PBMC samples obtained from a phase II clinical trial with antioxidants (NCT01495260). These findings highlight CB2r signaling as a potential therapeutic target for X-ALD and perhaps other neurodegenerative disorders that present with dysregulated redox and lipid homeostasis.
Collapse
|
16
|
Inflammation and Nitro-oxidative Stress as Drivers of Endocannabinoid System Aberrations in Mood Disorders and Schizophrenia. Mol Neurobiol 2022; 59:3485-3503. [PMID: 35347586 DOI: 10.1007/s12035-022-02800-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/13/2022] [Indexed: 01/02/2023]
Abstract
The endocannabinoid system (ECS) is composed of the endocannabinoid ligands anandamide (AEA) and 2-arachidonoylgycerol (2-AG), their target cannabinoid receptors (CB1 and CB2) and the enzymes involved in their synthesis and metabolism (N-acyltransferase and fatty acid amide hydrolase (FAAH) in the case of AEA and diacylglycerol lipase (DAGL) and monoacylglycerol lipase (MAGL) in the case of 2-AG). The origins of ECS dysfunction in major neuropsychiatric disorders remain to be determined, and this paper explores the possibility that they may be associated with chronically increased nitro-oxidative stress and activated immune-inflammatory pathways, and it examines the mechanisms which might be involved. Inflammation and nitro-oxidative stress are associated with both increased CB1 expression, via increased activity of the NADPH oxidases NOX4 and NOX1, and increased CNR1 expression and DNA methylation; and CB2 upregulation via increased pro-inflammatory cytokine levels, binding of the transcription factor Nrf2 to an antioxidant response element in the CNR2 promoter region and the action of miR-139. CB1 and CB2 have antagonistic effects on redox signalling, which may result from a miRNA-enabled negative feedback loop. The effects of inflammation and oxidative stress are detailed in respect of AEA and 2-AG levels, via effects on calcium homeostasis and phospholipase A2 activity; on FAAH activity, via nitrosylation/nitration of functional cysteine and/or tyrosine residues; and on 2-AG activity via effects on MGLL expression and MAGL. Finally, based on these detailed molecular neurobiological mechanisms, it is suggested that cannabidiol and dimethyl fumarate may have therapeutic potential for major depressive disorder, bipolar disorder and schizophrenia.
Collapse
|
17
|
Morcuende A, García-Gutiérrez MS, Tambaro S, Nieto E, Manzanares J, Femenia T. Immunomodulatory Role of CB2 Receptors in Emotional and Cognitive Disorders. Front Psychiatry 2022; 13:866052. [PMID: 35492718 PMCID: PMC9051035 DOI: 10.3389/fpsyt.2022.866052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
Emotional behavior, memory, and learning have been associated with alterations in the immune system in neuropsychiatric and neurodegenerative diseases. In recent years, several studies pointed out the involvement of the cannabinoid receptor 2 (CB2r) in the immune system and the regulation of inflammation. This receptor is widely distributed in different tissues and organs with higher expression in spleen and immune system cells. However, CB2r has also been detected in several brain areas and different brain cell types, such as neurons and glia. These findings suggest that CB2r may closely relate the immune system and the brain circuits regulating inflammation, mood, and cognitive functions. Therefore, we review the studies that may help elucidate the molecular bases of CB2r in regulating inflammation in different brain cells and its role in the pathophysiology of psychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Alvaro Morcuende
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (CSIC), Alicante, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (CSIC), Alicante, Spain.,Redes de Investigación Cooperativa Orientada a Resultados en Salud, Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación (MICINN) and Fondo Europeo de Desarrollo Regional (FEDER), Madrid, Spain.,Instituto de Investigación Sanitaria y Biomédica de Alicante, Alicante, Spain
| | - Simone Tambaro
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Elena Nieto
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (CSIC), Alicante, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (CSIC), Alicante, Spain.,Redes de Investigación Cooperativa Orientada a Resultados en Salud, Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación (MICINN) and Fondo Europeo de Desarrollo Regional (FEDER), Madrid, Spain.,Instituto de Investigación Sanitaria y Biomédica de Alicante, Alicante, Spain
| | - Teresa Femenia
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (CSIC), Alicante, Spain.,Redes de Investigación Cooperativa Orientada a Resultados en Salud, Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación (MICINN) and Fondo Europeo de Desarrollo Regional (FEDER), Madrid, Spain
| |
Collapse
|
18
|
Gu C, Chen Y, Chen Y, Liu CF, Zhu Z, Wang M. Role of G Protein-Coupled Receptors in Microglial Activation: Implication in Parkinson's Disease. Front Aging Neurosci 2021; 13:768156. [PMID: 34867296 PMCID: PMC8635063 DOI: 10.3389/fnagi.2021.768156] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/23/2021] [Indexed: 12/26/2022] Open
Abstract
Parkinson's disease (PD) is one of the prevalent neurodegenerative diseases associated with preferential loss of dopaminergic (DA) neurons in the substantia nigra compacta (SNc) and accumulation of α-synuclein in DA neurons. Even though the precise pathogenesis of PD is not clear, a large number of studies have shown that microglia-mediated neuroinflammation plays a vital role in the process of PD development. G protein-coupled receptors (GPCRs) are widely expressed in microglia and several of them act as regulators of microglial activation upon corresponding ligands stimulations. Upon α-synuclein insults, microglia would become excessively activated through some innate immune receptors. Presently, as lack of ideal drugs for treating PD, certain GPCR which is highly expressed in microglia of PD brain and mediates neuroinflammation effectively could be a prospective source for PD therapeutic intervention. Here, six kinds of GPCRs and two types of innate immune receptors were introduced, containing adenosine receptors, purinergic receptors, metabotropic glutamate receptors, adrenergic receptors, cannabinoid receptors, and melatonin receptors and their roles in neuroinflammation; we highlighted the relationship between these six GPCRs and microglial activation in PD. Based on the existing findings, we tried to expound the implication of microglial GPCRs-regulated neuroinflammation to the pathophysiology of PD and their potential to become a new expectation for clinical therapeutics.
Collapse
Affiliation(s)
- Chao Gu
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
| | - Yajing Chen
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
| | - Yan Chen
- Department of Child and Adolescent Healthcare, Children’s Hospital of Soochow University, Suzhou, China
| | - Chun-Feng Liu
- Department of Neurology, Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zengyan Zhu
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
| | - Mei Wang
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
| |
Collapse
|
19
|
De Meij J, Alfanek Z, Morel L, Decoeur F, Leyrolle Q, Picard K, Carrier M, Aubert A, Séré A, Lucas C, Laforest G, Helbling JC, Tremblay ME, Cota D, Moisan MP, Marsicano G, Layé S, Nadjar A. Microglial Cannabinoid Type 1 Receptor Regulates Brain Inflammation in a Sex-Specific Manner. Cannabis Cannabinoid Res 2021; 6:488-507. [PMID: 34591647 DOI: 10.1089/can.2020.0170] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: Neuroinflammation is a key feature shared by most, if not all, neuropathologies. It involves complex biological processes that act as a protective mechanism to fight against the injurious stimuli, but it can lead to tissue damage if self-perpetuating. In this context, microglia, the main cellular actor of neuroinflammation in the brain, are seen as a double-edged sword. By phagocyting neuronal debris, these cells can not only provide tissue repair but can also contribute to neuronal damage by releasing harmful substances, including inflammatory cytokines. The mechanisms guiding these apparent opposing actions are poorly known. The endocannabinoid system modulates the release of inflammatory factors such as cytokines and could represent a functional link between microglia and neuroinflammatory processes. According to transcriptomic databases and in vitro studies, microglia, the main source of cytokines in pathological conditions, express the cannabinoid type 1 receptor (CB1R). Methods: We thus developed a conditional mouse model of CB1R deletion specifically in microglia, which was subjected to an immune challenge (peripheral lipopolysaccharide injection). Results: Our results reveal that microglial CB1R differentially controls sickness behavior in males and females. Conclusion: These findings add to the comprehension of neuroinflammatory processes and might be of great interest for future studies aimed at developing therapeutic strategies for brain disorders with higher prevalence in men.
Collapse
Affiliation(s)
- Julia De Meij
- NutriNeuro, INRAE, Bordeaux INP, University of Bordeaux, Bordeaux, France
| | - Zain Alfanek
- NutriNeuro, INRAE, Bordeaux INP, University of Bordeaux, Bordeaux, France
| | - Lydie Morel
- NutriNeuro, INRAE, Bordeaux INP, University of Bordeaux, Bordeaux, France
| | - Fanny Decoeur
- NutriNeuro, INRAE, Bordeaux INP, University of Bordeaux, Bordeaux, France
| | - Quentin Leyrolle
- NutriNeuro, INRAE, Bordeaux INP, University of Bordeaux, Bordeaux, France
| | - Katherine Picard
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Canada.,Division of Medical Sciences, University of Victoria, Victoria, Canada.,Department of Molecular Medicine, Université Laval, Québec City, Canada
| | - Micael Carrier
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Canada.,Division of Medical Sciences, University of Victoria, Victoria, Canada
| | - Agnes Aubert
- NutriNeuro, INRAE, Bordeaux INP, University of Bordeaux, Bordeaux, France
| | - Alexandra Séré
- NutriNeuro, INRAE, Bordeaux INP, University of Bordeaux, Bordeaux, France
| | - Céline Lucas
- NutriNeuro, INRAE, Bordeaux INP, University of Bordeaux, Bordeaux, France
| | - Gerald Laforest
- NutriNeuro, INRAE, Bordeaux INP, University of Bordeaux, Bordeaux, France
| | | | - Marie-Eve Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Canada.,Division of Medical Sciences, University of Victoria, Victoria, Canada.,Department of Molecular Medicine, Université Laval, Québec City, Canada.,Neurology and Neurosurgery Department, McGill University, Montreal, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, Canada
| | - Daniela Cota
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Bordeaux, France
| | | | - Giovanni Marsicano
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Bordeaux, France
| | - Sophie Layé
- NutriNeuro, INRAE, Bordeaux INP, University of Bordeaux, Bordeaux, France
| | - Agnès Nadjar
- NutriNeuro, INRAE, Bordeaux INP, University of Bordeaux, Bordeaux, France.,INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Bordeaux, France
| |
Collapse
|
20
|
Morris G, Walder K, Kloiber S, Amminger P, Berk M, Bortolasci CC, Maes M, Puri BK, Carvalho AF. The endocannabinoidome in neuropsychiatry: Opportunities and potential risks. Pharmacol Res 2021; 170:105729. [PMID: 34119623 DOI: 10.1016/j.phrs.2021.105729] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023]
Abstract
The endocannabinoid system (ECS) comprises two cognate endocannabinoid receptors referred to as CB1R and CB2R. ECS dysregulation is apparent in neurodegenerative/neuro-psychiatric disorders including but not limited to schizophrenia, major depressive disorder and potentially bipolar disorder. The aim of this paper is to review mechanisms whereby both receptors may interact with neuro-immune and neuro-oxidative pathways, which play a pathophysiological role in these disorders. CB1R is located in the presynaptic terminals of GABAergic, glutamatergic, cholinergic, noradrenergic and serotonergic neurons where it regulates the retrograde suppression of neurotransmission. CB1R plays a key role in long-term depression, and, to a lesser extent, long-term potentiation, thereby modulating synaptic transmission and mediating learning and memory. Optimal CB1R activity plays an essential neuroprotective role by providing a defense against the development of glutamate-mediated excitotoxicity, which is achieved, at least in part, by impeding AMPA-mediated increase in intracellular calcium overload and oxidative stress. Moreover, CB1R activity enables optimal neuron-glial communication and the function of the neurovascular unit. CB2R receptors are detected in peripheral immune cells and also in central nervous system regions including the striatum, basal ganglia, frontal cortex, hippocampus, amygdala as well as the ventral tegmental area. CB2R upregulation inhibits the presynaptic release of glutamate in several brain regions. CB2R activation also decreases neuroinflammation partly by mediating the transition from a predominantly neurotoxic "M1" microglial phenotype to a more neuroprotective "M2" phenotype. CB1R and CB2R are thus novel drug targets for the treatment of neuro-immune and neuro-oxidative disorders including schizophrenia and affective disorders.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia
| | - Stefan Kloiber
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 33 Ursula Franklin Street, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Paul Amminger
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| | | | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| |
Collapse
|
21
|
Yang N, Sun H, Xue Y, Zhang W, Wang H, Tao H, Liang X, Li M, Xu Y, Chen L, Zhang L, Huang L, Geng D. Inhibition of MAGL activates the Keap1/Nrf2 pathway to attenuate glucocorticoid-induced osteonecrosis of the femoral head. Clin Transl Med 2021; 11:e447. [PMID: 34185425 PMCID: PMC8167863 DOI: 10.1002/ctm2.447] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 04/29/2021] [Accepted: 05/17/2021] [Indexed: 01/12/2023] Open
Abstract
Glucocorticoids (GCs) are used in treating viral infections, acute spinal cord injury, autoimmune diseases, and shock. Several patients develop GC-induced osteonecrosis of the femoral head (ONFH). However, the pathogenic mechanisms underlying GC-induced ONFH remain poorly understood. GC-directed bone marrow mesenchymal stem cells (BMSCs) fate is an important factor that determines GC-induced ONFH. At high concentrations, GCs induce BMSC apoptosis by promoting oxidative stress. In the present study, we aimed to elucidate the molecular mechanisms that relieve GC-induced oxidative stress in BMSCs, which would be vital for treating ONFH. The endocannabinoid system regulates oxidative stress in multiple organs. Here, we found that monoacylglycerol lipase (MAGL), a key molecule in the endocannabinoid system, was significantly upregulated during GC treatment in osteoblasts both in vitro and in vivo. MAGL expression was positively correlated with expression of the NADPH oxidase family and apoptosis-related proteins. Functional analysis showed that MAGL inhibition markedly reduced oxidative stress and partially rescued BMSC apoptosis. Additionally, in vivo studies indicated that MAGL inhibition effectively attenuated GC-induced ONFH. Pathway analysis showed that MAGL inhibition regulated oxidative stress in BMSCs via the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. The expression of Nrf2, a major regulator of intracellular antioxidants, was upregulated by inhibiting MAGL. Nrf2 activation can mimic the effect of MAGL inhibition and significantly reduce GC-induced oxidative damage in BMSCs. The beneficial effects of MAGL inhibition were attenuated after the blockade of the Keap1/Nrf2 antioxidant signaling pathway. Notably, pharmacological blockade of MAGL conferred femoral head protection in GC-induced ONFH, even after oxidative stress responses were initiated. Therefore, MAGL may represent a novel target for the prevention and treatment of GC-induced ONFH.
Collapse
Affiliation(s)
- Ning Yang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Houyi Sun
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Yi Xue
- Department of OrthopaedicsChangshu Hospital Affiliated to Nanjing University of Traditional Chinese MedicineChangshuChina
| | - Weicheng Zhang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Hongzhi Wang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Huaqiang Tao
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Xiaolong Liang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Meng Li
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Yaozeng Xu
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Liang Chen
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Liang Zhang
- Department of Orthopaedics, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Lixin Huang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Dechun Geng
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| |
Collapse
|
22
|
Armeli F, Bonucci A, Maggi E, Pinto A, Businaro R. Mediterranean Diet and Neurodegenerative Diseases: The Neglected Role of Nutrition in the Modulation of the Endocannabinoid System. Biomolecules 2021; 11:biom11060790. [PMID: 34073983 PMCID: PMC8225112 DOI: 10.3390/biom11060790] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022] Open
Abstract
Neurodegenerative disorders are a widespread cause of morbidity and mortality worldwide, characterized by neuroinflammation, oxidative stress and neuronal depletion. The broad-spectrum neuroprotective activity of the Mediterranean diet is widely documented, but it is not yet known whether its nutritional and caloric balance can induce a modulation of the endocannabinoid system. In recent decades, many studies have shown how endocannabinoid tone enhancement may be a promising new therapeutic strategy to counteract the main hallmarks of neurodegeneration. From a phylogenetic point of view, the human co-evolution between the endocannabinoid system and dietary habits could play a key role in the pro-homeostatic activity of the Mediterranean lifestyle: this adaptive balance among our ancestors has been compromised by the modern Western diet, resulting in a “clinical endocannabinoid deficiency syndrome”. This review aims to evaluate the evidence accumulated in the literature on the neuroprotective, immunomodulatory and antioxidant properties of the Mediterranean diet related to the modulation of the endocannabinoid system, suggesting new prospects for research and clinical interventions against neurodegenerative diseases in light of a nutraceutical paradigm.
Collapse
Affiliation(s)
- Federica Armeli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
| | - Alessio Bonucci
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
| | - Elisa Maggi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
| | - Alessandro Pinto
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
- Correspondence:
| |
Collapse
|
23
|
Galán-Ganga M, Rodríguez-Cueto C, Merchán-Rubira J, Hernández F, Ávila J, Posada-Ayala M, Lanciego JL, Luengo E, Lopez MG, Rábano A, Fernández-Ruiz J, Lastres-Becker I. Cannabinoid receptor CB2 ablation protects against TAU induced neurodegeneration. Acta Neuropathol Commun 2021; 9:90. [PMID: 34001284 PMCID: PMC8130522 DOI: 10.1186/s40478-021-01196-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
Tauopathies are a group of neurodegenerative diseases characterized by the alteration/aggregation of TAU protein, for which there is still no effective treatment. Therefore, new pharmacological targets are being sought, such as elements of the endocannabinoid system (ECS). We analysed the occurrence of changes in the ECS in tauopathies and their implication in the pathogenesis. By integrating gene expression analysis, immunofluorescence, genetic and adeno-associated virus expressing TAU mouse models, we found a TAU-dependent increase in CB2 receptor expression in hippocampal neurons, that occurs as an early event in the pathology and was maintained until late stages. These changes were accompanied by alterations in the endocannabinoid metabolism. Remarkably, CB2 ablation in mice protects from neurodegeneration induced by hTAUP301L overexpression, corroborated at the level of cognitive behaviour, synaptic plasticity, and aggregates of insoluble TAU. At the level of neuroinflammation, the absence of CB2 did not produce significant changes in concordance with a possible neuronal location rather than its classic glial expression in these models. These findings were corroborated in post-mortem samples of patients with Alzheimer's disease, the most common tauopathy. Our results show that neurons with accumulated TAU induce the expression of the CB2 receptor, which enhances neurodegeneration. These results are important for our understanding of disease mechanisms, providing a novel therapeutic strategy to be investigated in tauopathies.
Collapse
|
24
|
Song CG, Kang X, Yang F, Du WQ, Zhang JJ, Liu L, Kang JJ, Jia N, Yue H, Fan LY, Wu SX, Jiang W, Gao F. Endocannabinoid system in the neurodevelopment of GABAergic interneurons: implications for neurological and psychiatric disorders. Rev Neurosci 2021; 32:803-831. [PMID: 33781002 DOI: 10.1515/revneuro-2020-0134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/20/2021] [Indexed: 02/07/2023]
Abstract
In mature mammalian brains, the endocannabinoid system (ECS) plays an important role in the regulation of synaptic plasticity and the functioning of neural networks. Besides, the ECS also contributes to the neurodevelopment of the central nervous system. Due to the increase in the medical and recreational use of cannabis, it is inevitable and essential to elaborate the roles of the ECS on neurodevelopment. GABAergic interneurons represent a group of inhibitory neurons that are vital in controlling neural network activity. However, the role of the ECS in the neurodevelopment of GABAergic interneurons remains to be fully elucidated. In this review, we provide a brief introduction of the ECS and interneuron diversity. We focus on the process of interneuron development and the role of ECS in the modulation of interneuron development, from the expansion of the neural stem/progenitor cells to the migration, specification and maturation of interneurons. We further discuss the potential implications of the ECS and interneurons in the pathogenesis of neurological and psychiatric disorders, including epilepsy, schizophrenia, major depressive disorder and autism spectrum disorder.
Collapse
Affiliation(s)
- Chang-Geng Song
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China.,Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Xin Kang
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Fang Yang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Wan-Qing Du
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Jia-Jia Zhang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Long Liu
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Jun-Jun Kang
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Ning Jia
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Hui Yue
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Lu-Yu Fan
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Sheng-Xi Wu
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Fang Gao
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| |
Collapse
|
25
|
Olianas MC, Dedoni S, Onali P. Cannabinoid CB 1 and CB 2 receptors differentially regulate TNF-α-induced apoptosis and LPA 1-mediated pro-survival signaling in HT22 hippocampal cells. Life Sci 2021; 276:119407. [PMID: 33794254 DOI: 10.1016/j.lfs.2021.119407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/02/2021] [Accepted: 03/15/2021] [Indexed: 01/11/2023]
Abstract
AIMS The aim of the study was to investigate the interaction between cannabinoid CB1/CB2 and lysophosphatidic acid (LPA) receptors in controlling neuronal signaling and fate. METHODS HT22 hippocampal cells were treated with different cannabinoid and LPA receptor agonists and antagonists. Western blot and immunofluorescence microscopy were used to study intracellular signaling and the expression of apoptotic markers. Cell viability was determined by a luminescence assay. KEY FINDINGS Cannabinoid agonists induced activation of both ERK1/2 and p38 MAP kinases. The effects of the CB1/CB2 receptor agonist HU210 were antagonized by the CB1 antagonist rimonabant, whereas the responses to the CB2 agonist JWH133 were blocked by the CB2 antagonist SR144528. HU210 reduced the apoptotic cell death induced by the pro-inflammatory cytokine TNF-α, whereas JWH133 enhanced the cytokine cytotoxicity. Blockade of ERK1/2 and p38 MAPK activation abrogated the HU210 pro-survival and the JWH133 pro-apoptotic effects, respectively. HU210 and the endocannabinoid anandamide, but not JWH133, potentiated ERK1/2 stimulation by LPA and the tricyclic antidepressant amitriptyline acting through the LPA1 receptor. HU210 enhanced amitriptyline-stimulated CREB phosphorylation and protection against TNF-α-induced apoptosis, whereas JWH133 had no effect. ERK1/2 stimulation by either HU210 or amitriptyline was dependent on fibroblast growth factor receptor (FGF-R) kinase activity and the combination of the two stimulants induced FGF-R phosphorylation. Moreover, the CB1 receptor was found to co-immunoprecipitate with the LPA1 receptor. CONCLUSIONS In HT22 hippocampal cells CB1 and CB2 receptors differentially regulate TNF-α-induced apoptosis and CB1 receptors positively interact with amitriptyline-stimulated LPA1 in promoting FGF-R-mediated ERK1/2 signaling and neuroprotection.
Collapse
Affiliation(s)
- Maria C Olianas
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Simona Dedoni
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Pierluigi Onali
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
26
|
Modulation of Excitatory Synaptic Transmission During Cannabinoid Receptor Activation. Cell Mol Neurobiol 2021; 42:1933-1947. [PMID: 33723716 DOI: 10.1007/s10571-021-01074-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
The present research has reported that cannabinoid receptor 1 (CB1) agonist, delta-(9)-tetrahydrocannabinol (THC) modulates synaptogenesis during overexcitation. Microtubule and synaptic distribution, poly(ADP)-ribose (PAR) accumulation were estimated during overexcitation and in the presence of THC. Low concentration of THC (10 nM) increased synaptophysin expression and neurite length, while high concentration of THC (1 µM) induced neurotoxicity. Glutamate caused the loss of neurons, reducing the number and the length of neurites. The high concentration of THC in the presence of glutamate caused the PAR accumulation in the condensed nuclei. Glutamate upregulated genes that are involved in synaptogenesis and excitatory signal cascade. Glutamate downregulated transcription of beta3 tubulin and microtubule-associated protein 2. THC partially regulated gene expression that is implicated in the neurogenesis and excitatory pathways. This suggests that CB1 receptors play a role in neurite growth and the low concentration of THC protects neurons during overexcitation, whereas the high concentration of THC enhances the neurotoxicity.
Collapse
|
27
|
García-Baos A, Alegre-Zurano L, Cantacorps L, Martín-Sánchez A, Valverde O. Role of cannabinoids in alcohol-induced neuroinflammation. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110054. [PMID: 32758518 DOI: 10.1016/j.pnpbp.2020.110054] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
Alcohol is a psychoactive substance highly used worldwide, whose harmful use might cause a broad range of mental and behavioural disorders. Underlying brain impact, the neuroinflammatory response induced by alcohol is recognised as a key contributing factor in the progression of other neuropathological processes, such as neurodegeneration. These sequels are determined by multiple factors, including age of exposure. Strikingly, it seems that the endocannabinoid system modulation could regulate the alcohol-induced neuroinflammation. Although direct CB1 activation can worsen alcohol consequences, targeting other components of the expanded endocannabinoid system may counterbalance the pro-inflammatory response. Indeed, specific modulations of the expanded endocannabinoid system have been proved to exert anti-inflammatory effects, primarily through the CB2 and PPARγ signalling. Among them, some endo- and exogeneous cannabinoids can block certain pro-inflammatory mediators, such as NF-κB, thereby neutralizing the neuroinflammatory intracellular cascades. Furthermore, a number of cannabinoids are able to activate complementary anti-inflammatory pathways, which are necessary for the transition from chronically overactivated microglia to a regenerative microglial phenotype. Thus, cannabinoid modulation provides cooperative anti-inflammatory mechanisms that may be advantageous to resolve a pathological neuroinflammation in an alcohol-dependent context.
Collapse
Affiliation(s)
- Alba García-Baos
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Laia Alegre-Zurano
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Lídia Cantacorps
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ana Martín-Sánchez
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
28
|
Elmazoglu Z, Rangel-López E, Medina-Campos ON, Pedraza-Chaverri J, Túnez I, Aschner M, Santamaría A, Karasu Ç. Cannabinoid-profiled agents improve cell survival via reduction of oxidative stress and inflammation, and Nrf2 activation in a toxic model combining hyperglycemia+Aβ 1-42 peptide in rat hippocampal neurons. Neurochem Int 2020; 140:104817. [PMID: 32781098 PMCID: PMC7572748 DOI: 10.1016/j.neuint.2020.104817] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/29/2020] [Accepted: 07/20/2020] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder linked to various converging toxic mechanisms. Evidence suggests that hyperglycemia induces oxidative stress, mitochondrial dysfunction, inflammation and excitotoxicity, all of which play important roles in the onset and progression of AD pathogenesis. The endocannabinoid system (ECS) orchestrates major physiological responses, including neuronal plasticity, neuroprotection, and redox homeostasis, to name a few. The multi-targeted effectiveness of the ECS emerges as a potential approach to treat AD. Here we characterized the protective properties of the endocannabinoids arachidonylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG), the synthetic cannabinoids CP 55-940 and WIN 55,212-2, and the fatty acid amide hydrolase (FAAH) inhibitor URB597, on a combined hyperglycemia + oligomeric amyloid β peptide (Aβ1-42) neurotoxic model in primary hippocampal neurons which exhibit several AD features. Cells were treated with cannabinoid agents at increased concentrations (1 nM-1 μM) for 6 h, and then co-treated with 150 mM glucose (GLU, 24 h), followed by incubation with 500 nM Aβ1-42 (24 h). Cell viability/survival, reactive oxygen species (ROS) levels, antioxidant enzyme (SOD, CAT, GPx and GRx) activities, biological products of oxidative damage (AGE and HNE adducts) and nitrosative stress (3-NT), several endpoints of inflammation (iNOS, IL-1β and TNF-α), amyloid quantification, mitochondrial membrane potential, and the involvement of the Nrf2 pathway, were all evaluated. The combined high glucose + amyloid beta 1-42 (GLU + Aβ1-42) condition decreased cell viability and mitochondrial membrane potential, while augmenting oxidative damage and inflammation. All agents tested preserved cell viability and stimulated mitochondrial membrane potential, while reducing all the evaluated toxic endpoints in a differential manner, with URB597 showing the highest efficacy. The neuroprotective efficacy of all cannabinoid agents, except for URB597, led to partial recruitment of specific antioxidant activity and Nrf2 pathway regulation. Our results support the neuroprotective potential of these agents at low concentrations against the damaging effects of GLU + Aβ1-42, affording new potential modalities for the design of AD therapies.
Collapse
Affiliation(s)
- Zubeyir Elmazoglu
- Cellular Stress Response and Signal Transduction Research Laboratory, Faculty of Medicine, Department of Medical Pharmacology, Gazi University, Beşevler, 06500, Ankara, Turkey
| | - Edgar Rangel-López
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, S.S.A., Mexico City, 14269, Mexico
| | - Omar Noel Medina-Campos
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - José Pedraza-Chaverri
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Isaac Túnez
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Córdoba, 14004, Spain
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, S.S.A., Mexico City, 14269, Mexico.
| | - Çimen Karasu
- Cellular Stress Response and Signal Transduction Research Laboratory, Faculty of Medicine, Department of Medical Pharmacology, Gazi University, Beşevler, 06500, Ankara, Turkey.
| |
Collapse
|
29
|
CDDO-Me Inhibits Microglial Activation and Monocyte Infiltration by Abrogating NFκB- and p38 MAPK-Mediated Signaling Pathways Following Status Epilepticus. Cells 2020; 9:cells9051123. [PMID: 32370011 PMCID: PMC7290793 DOI: 10.3390/cells9051123] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Following status epilepticus (SE, a prolonged seizure activity), microglial activation, and monocyte infiltration result in the inflammatory responses in the brain that is involved in the epileptogenesis. Therefore, the regulation of microglia/monocyte-mediated neuroinflammation is one of the therapeutic strategies for avoidance of secondary brain injury induced by SE. 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid methyl ester (CDDO-Me; RTA 402) is an activator of nuclear factor-erythroid 2-related factor 2 (Nrf2), which regulates intracellular redox homeostasis. In addition, CDDO-Me has anti-inflammatory properties that suppress microglial proliferation and its activation, although the underlying mechanisms have not been clarified. In the present study, CDDO-Me ameliorated monocyte infiltration without vasogenic edema formation in the frontoparietal cortex (FPC) following SE, accompanied by abrogating monocyte chemotactic protein-1 (MCP-1)/tumor necrosis factor-α (TNF-α) expressions and p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation. Furthermore, CDDO-Me inhibited nuclear factor-κB (NFκB)-S276 phosphorylation and microglial transformation, independent of Nrf2 expression. Similar to CDDO-Me, SN50 (an NFκB inhibitor) mitigated monocyte infiltration by reducing MCP-1 and p38 MAPK phosphorylation in the FPC following SE. Therefore, these findings suggest, for the first time, that CDDO-Me may attenuate microglia/monocyte-mediated neuroinflammation via modulating NFκB- and p38 MAPK-MCP-1 signaling pathways following SE.
Collapse
|