1
|
Meza-Morelos D, Johnson Restrepo B, Braga Castro Í, Fillmann G, Fernández Maestre R. Imposex incidence in gastropod species from the Colombian Caribbean Coast reveals continued and widespread tributyltin contamination after its global ban. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125010. [PMID: 39313126 DOI: 10.1016/j.envpol.2024.125010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Organotin compounds (OTCs), such as tributyltin (TBT) and triphenyltin (TPhT), are released in aquatic environments from antifouling coatings and can cause imposex, an abnormal condition where female snails develop male sexual characteristics. This study investigates temporal variations in imposex incidence along the Colombian Caribbean coast following the 2008 global ban on TBT-based antifouling paints. Over a 12-year period, we assessed imposex in 1,384 adults snails from six species (58% female and 42% male) during 2012, 2016, and 2023. In 2012, just four years after the ban, imposex incidence in some sites reached 100% in the neogastropods Purpura patula, Stramonita haemastoma, Stramonita rustica, and Thais deltoideia. In 2016, imposex in some sites reached 81% for the mesogastropod Strombus pugilis and 39% for the neogastropod Melongena melongena. By 2023, imposex decreased for the first four neogastropods, persisted for S. pugilis, and increased for M. melongena only in Cartagena Bay and the Tolú marina. These findings indicate a general decline in imposex over time, aligning with the ban, but also suggest potential new sources of contamination as imposex rates increased in some previously unaffected areas.
Collapse
Affiliation(s)
- Dairo Meza-Morelos
- Environmental Chemistry Research Group, School of Exact and Natural Sciences, Chemistry Program, Campus of San Pablo, University of Cartagena, Carrera 50 No. 24-99, Cartagena, 130015, Colombia.
| | - Boris Johnson Restrepo
- Environmental Chemistry Research Group, School of Exact and Natural Sciences, Chemistry Program, Campus of San Pablo, University of Cartagena, Carrera 50 No. 24-99, Cartagena, 130015, Colombia
| | - Ítalo Braga Castro
- Instituto do Mar, Universidade Federal de São Paulo (IMAR-UNIFESP), Rua Maria Máximo, 11030-100, Santos, SP, Brazil
| | - Gilberto Fillmann
- Laboratório de Microcontaminantes Orgânicos E Ecotoxicologia Aquática, Instituto de Oceanografia, Universidade Federal Do Rio Grande, Av. Itália, km 8, s/n, Rio Grande, 96201-900, Brazil
| | - Roberto Fernández Maestre
- Environmental Chemistry Research Group, School of Exact and Natural Sciences, Chemistry Program, Campus of San Pablo, University of Cartagena, Carrera 50 No. 24-99, Cartagena, 130015, Colombia
| |
Collapse
|
2
|
Rodríguez EM. Endocrine disruption in crustaceans: New findings and perspectives. Mol Cell Endocrinol 2024; 585:112189. [PMID: 38365065 DOI: 10.1016/j.mce.2024.112189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
A significant advance has been made, especially during the last two decades, in the knowledge of the effects on crustacean species of pollutants proven to be endocrine disruptors in vertebrates. Such effects have been also interpreted in the light of recent studies on crustacean endocrinology. Year after year, the increased number of reports refer to the effects of endocrine disruptors on several processes hormonally controlled. This review is aimed at summarizing and discussing the effects of several kinds of endocrine disruptors on the hormonal control of reproduction (including gonadal growth, sexual differentiation, and offspring development), molting, and intermediate metabolism of crustaceans. A final discussion about the state of the art, as well as the perspective of this toxicological research line is given.
Collapse
Affiliation(s)
- Enrique M Rodríguez
- Universidad de Buenos Aires. CONICET. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA). Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Abd Elkader HTAE, Al-Shami AS. Chronic exposure to bisphenol A induces behavioural, neurochemical, histological, and ultrastructural alterations in the ganglia tissue of the date mussels Lithophaga lithophaga. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109041-109062. [PMID: 37768489 PMCID: PMC10622395 DOI: 10.1007/s11356-023-29853-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
Bisphenol A (BPA), a common plastic additive, has been demonstrated mechanistically to be a potential endocrine disruptor and to affect a variety of body functions in organisms. Although previous research has shown that BPA is toxic to aquatic organisms, the mechanism of neurotoxic effects in marine bivalves remains unknown. The current study aimed to elucidate the neurotoxic effects of BPA when administered at different concentrations (0.25, 1, 2, and 5 µg/L) for twenty-eight days in the ganglia of a bivalve model, the Mediterranean mussel (Lithophaga lithophaga), which is an ecologically and economically important human food source of bivalve species in the Mediterranean Sea. Our findings revealed an increase in behavioural disturbances and malondialdehyde levels in treated mussel ganglia compared to the control group. Furthermore, superoxide dismutase activity increased in the ganglia of L. lithophaga treated with 0.25 and 2 µg/L. However, at BPA concentrations of 1 and 5 µg/L, SOD activity was significantly reduced, as was total glutathione concentration. BPA causes neurotoxicity, as evidenced by concentration-dependent inhibition of acetylcholinesterase, dopamine, and serotonin. After chronic exposure to BPA, neurons showed distortion of the neuronal cell body and varying degrees of pyknosis. The ultrastructure changes in BPA-treated groups revealed the lightening of the nucleoplasm and a shrunken nuclear envelope. Overall, our findings suggest that BPA exposure altered antioxidation, neurochemical biomarkers, histopathological, and ultrastructural properties, resulting in behavioural changes. As a result, our findings provide a basis for further study into the toxicity of BPA in marine bivalves.
Collapse
Affiliation(s)
| | - Ahmed S Al-Shami
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Alonso Á. Previous stress causes a contrasting response to cadmium toxicity in the aquatic snail Potamopyrgus antipodarum: lethal and behavioral endpoints. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41348-41358. [PMID: 36630038 PMCID: PMC10067653 DOI: 10.1007/s11356-022-24932-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
In aquatic ecosystems, animals are often exposed to a combination of stressors, including both natural and anthropogenic factors. Combined stressors may have additive or interactive effects on animals, either magnifying or reducing the effects caused by each stressor alone. Therefore, standardized bioassays can lead to overestimations or underestimations of the risk of toxicants if natural stressors are not bear in mind. The inclusion of natural stress in laboratory bioassays may help to extrapolate the laboratory results to ecosystems. This study assesses the effects of successive exposure to two sources of stress (high water conductivity and cadmium toxicity) on the behavior and survival of the aquatic snail Potamopyrgus antipodarum (Tateidae, Mollusca). I conducted a bioassay consisting on exposure to high conductivity (5000 mg NaCl/L, 7 days), followed by exposure to cadmium (0.03, 0.125, and 0.25 mg Cd/L for 7 days) and by a post-exposure period (7 days). Mortality, inactivity, and the time to start activity of active animals were monitored in each animal. In general, cadmium lethality was higher in animals previously undergoing high conductivity than in non-stressed ones. Previously stressed animals showed longer time to start activity, with a noticeable effect at the two highest cadmium concentrations. Animals submitted to the two highest cadmium concentration both, stressed and non-stressed, showed a moderate recovery during the post-exposure period. It is concluded that previous stress caused a worsening of the cadmium toxicity on the aquatic snail Potamopyrgus antipodarum, which is especially noticeable for mortality. However, there was no interactive effect between cadmium and conductivity on snail activity, which may be indicative of recovery after cadmium exposure regardless the previous stress suffered by the snails.
Collapse
Affiliation(s)
- Álvaro Alonso
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida, Unidad de Ecología, Biological Invasions Research Group, Universidad de Alcalá, Plaza de San Diego S/N, Madrid, 28801, Alcalá de Henares, Spain.
| |
Collapse
|
5
|
Pandey AK, Sharma V, Ravi Ram K. Drosophila ecdysone receptor activity-based ex vivo assay to assess the endocrine disruption potential of environmental chemicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56430-56441. [PMID: 35338461 DOI: 10.1007/s11356-022-19789-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Insect pollinators, critical for both agricultural output and the ecosystem, are declining at an alarming levels partly due to human-made chemicals. Majority of environmental chemicals hamper the endocrine function and studies on the same in insects remain neglected. Here, we report a Drosophila-based ex vivo assay system that employs a reproductive tissue from transgenic males carrying a reporter gene (lacZ) downstream of ecdysone receptor response element (EcRE) and permits the evaluation of chemical-mediated activity modulation of all three isoforms of ecdysone receptor, which are critical for male fertility. We show agonistic [plasticizers, cypermethrin, atrazine, methyl parathion, imidacloprid, cadmium chloride, mercuric chloride or 3-(4-methylbenzylidene) camphor] or antagonistic (apigenin, tributyltin chloride) effects or lack of effect thereof (rutin hydrate, dichlorvos, lead acetate, parabens) for seven different classes of environmental chemicals on ecdysone receptor activity reflecting the specificity and sensitivity of the developed ex vivo assay. Exposure to a few of these chemicals in vivo hampers the fertility of Drosophila males, thus linking the observed endocrine disruption to a quantifiable reproductive phenotype. The developed ex vivo assay offers a quick Drosophila-based screening tool for throughput monitoring of environmental chemicals for their ability to hamper the endocrine function of insect pollinators and other invertebrates.
Collapse
Affiliation(s)
- Anuj Kumar Pandey
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Department of Respiratory Medicine, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India
| | - Vandana Sharma
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad , 201002, India
| | - Kristipati Ravi Ram
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad , 201002, India.
| |
Collapse
|
6
|
Beyer J, Song Y, Tollefsen KE, Berge JA, Tveiten L, Helland A, Øxnevad S, Schøyen M. The ecotoxicology of marine tributyltin (TBT) hotspots: A review. MARINE ENVIRONMENTAL RESEARCH 2022; 179:105689. [PMID: 35777303 DOI: 10.1016/j.marenvres.2022.105689] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Tributyltin (TBT) was widely used as a highly efficient biocide in antifouling paints for ship and boat hulls. Eventually, TBT containing paints became globally banned when TBT was found to cause widespread contamination and non-target adverse effects in sensitive species, with induced pseudohermaphroditism in female neogastropods (imposex) being the best-known example. In this review, we address the history and the status of knowledge regarding TBT pollution and marine TBT hotspots, with a special emphasis on the Norwegian coastline. The review also presents a brief update on knowledge of TBT toxicity in various marine species and humans, highlighting the current understanding of toxicity mechanisms relevant for causing endocrine disruption in marine species. Despite observations of reduced TBT sediment concentrations in many marine sediments over the recent decades, contaminant hotspots are still prevalent worldwide. Consequently, efforts to monitor TBT levels and assessment of potential effects in sentinel species being potentially susceptible to TBT in these locations are still highly warranted.
Collapse
Affiliation(s)
- Jonny Beyer
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway.
| | - You Song
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | - John Arthur Berge
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | - Lise Tveiten
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | | | - Sigurd Øxnevad
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | - Merete Schøyen
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| |
Collapse
|
7
|
Duis K, Junker T, Coors A. Review of the environmental fate and effects of two UV filter substances used in cosmetic products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151931. [PMID: 34863752 DOI: 10.1016/j.scitotenv.2021.151931] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Sunscreens containing UV filters, such as octocrylene (OCR) and butyl-methoxydibenzoylmethane (BMDBM), have been increasingly used to protect human skin against UV radiation. Both substances have been detected in monitoring studies in the freshwater and marine environment, and there has been concern about potential effects on aquatic organisms. In the present work, the environmental fate and occurrence, bioaccumulation and ecotoxicity including endocrine effects of OCR and BMDBM are reviewed focusing on the aquatic environment. The two UV filters have low water solubilities and a high sorption potential. The available data indicate that OCR is poorly biodegradable. BMDBM lacks anaerobic and inherent biodegradability. However, it was biodegraded to variable degrees in simulation studies. Measured concentrations in the freshwater and marine environment were found to vary considerably between sites, depending on the extent of recreational activities or wastewater discharges. While the bioconcentration factor of OCR in fish is below the threshold value for bioaccumulation according to EU REACH, the available data for BMDBM do not allow a definitive conclusion on its bioaccumulation potential. Analysis of the aquatic toxicity data showed that data quality was often limited, e.g. in the case of effect concentrations substantially exceeding maximum achievable dissolved concentrations. Up to their limit of water solubility, OCR and BMDBM showed no toxicity to microorganisms, algae, and corals, and no acute toxicity to daphnids and fish. In chronic daphnid tests, OCR was highly toxic, whereas BMDBM lacked toxicity. Reliable water-sediment toxicity tests are required to further evaluate possible effects on benthic invertebrates. The available data do not provide evidence for endocrine effects of the two UV filters on fish. In order to assess potential environmental risks caused by OCR and BMDBM, a validated exposure model for estimating direct emission of UV filters into the aquatic environment and data from systematic, longer-term monitoring studies are needed.
Collapse
Affiliation(s)
- Karen Duis
- ECT Oekotoxikologie GmbH, Böttgerstraße 2-14, 65439 Flörsheim, Germany.
| | - Thomas Junker
- ECT Oekotoxikologie GmbH, Böttgerstraße 2-14, 65439 Flörsheim, Germany
| | - Anja Coors
- ECT Oekotoxikologie GmbH, Böttgerstraße 2-14, 65439 Flörsheim, Germany
| |
Collapse
|
8
|
Brack W, Barcelo Culleres D, Boxall ABA, Budzinski H, Castiglioni S, Covaci A, Dulio V, Escher BI, Fantke P, Kandie F, Fatta-Kassinos D, Hernández FJ, Hilscherová K, Hollender J, Hollert H, Jahnke A, Kasprzyk-Hordern B, Khan SJ, Kortenkamp A, Kümmerer K, Lalonde B, Lamoree MH, Levi Y, Lara Martín PA, Montagner CC, Mougin C, Msagati T, Oehlmann J, Posthuma L, Reid M, Reinhard M, Richardson SD, Rostkowski P, Schymanski E, Schneider F, Slobodnik J, Shibata Y, Snyder SA, Fabriz Sodré F, Teodorovic I, Thomas KV, Umbuzeiro GA, Viet PH, Yew-Hoong KG, Zhang X, Zuccato E. One planet: one health. A call to support the initiative on a global science-policy body on chemicals and waste. ENVIRONMENTAL SCIENCES EUROPE 2022; 34:21. [PMID: 35281760 PMCID: PMC8902847 DOI: 10.1186/s12302-022-00602-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/25/2022] [Indexed: 05/08/2023]
Abstract
The chemical pollution crisis severely threatens human and environmental health globally. To tackle this challenge the establishment of an overarching international science-policy body has recently been suggested. We strongly support this initiative based on the awareness that humanity has already likely left the safe operating space within planetary boundaries for novel entities including chemical pollution. Immediate action is essential and needs to be informed by sound scientific knowledge and data compiled and critically evaluated by an overarching science-policy interface body. Major challenges for such a body are (i) to foster global knowledge production on exposure, impacts and governance going beyond data-rich regions (e.g., Europe and North America), (ii) to cover the entirety of hazardous chemicals, mixtures and wastes, (iii) to follow a one-health perspective considering the risks posed by chemicals and waste on ecosystem and human health, and (iv) to strive for solution-oriented assessments based on systems thinking. Based on multiple evidence on urgent action on a global scale, we call scientists and practitioners to mobilize their scientific networks and to intensify science-policy interaction with national governments to support the negotiations on the establishment of an intergovernmental body based on scientific knowledge explaining the anticipated benefit for human and environmental health.
Collapse
Affiliation(s)
- Werner Brack
- UFZ Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany
- Faculty Biological Sciences, Goethe University Frankfurt, Max-von-der-Laue-Straße 13, 60438 Frankfurt, Germany
| | - Damia Barcelo Culleres
- Catalan Institute of Water Research, Carrer Emili Grahit 101, 17003 Girona, Spain
- Spanish National Research Council, Institute for Environmental Assessment & Water Research, Water & Soil Quality Research Group, Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | - Hélène Budzinski
- Université de Bordeaux, 351 crs de la Libération, 33405 Talence, France
| | - Sara Castiglioni
- Department of Environmental Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplen 1, 2610 Wilrijk, Belgium
| | - Valeria Dulio
- INERIS - Direction Milieu et Impacts sur le Vivant (MIV), Parc technologique ALATA, 60550 Verneuil-en-Halatte, France
| | - Beate I. Escher
- UFZ Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Technology, Management and Economics, Technical University of Denmark, Produktionstorvet 424, 2800 Kgs. Lyngby, Denmark
| | - Faith Kandie
- Department of Biological Sciences, Moi University, 3900-30100 Eldoret, Kenya
| | - Despo Fatta-Kassinos
- Department of Civil and Environmental Engineering and Nireas-International Water Research Center, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Félix J. Hernández
- Research Institute for Pesticides and Water, University Jaume I, 12006 Castellon, Spain
| | - Klara Hilscherová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - Henner Hollert
- Faculty Biological Sciences, Goethe University Frankfurt, Max-von-der-Laue-Straße 13, 60438 Frankfurt, Germany
| | - Annika Jahnke
- UFZ Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany
- RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | | | - Stuart J. Khan
- School of Civil & Environmental Engineering, University of New South Wales, Sydney, NSW 2052 Australia
| | - Andreas Kortenkamp
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH UK
| | - Klaus Kümmerer
- Institute for Sustainable Chemistry, Leuphana University Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany
| | - Brice Lalonde
- The French Water Academy, 51 rue Salvador-Allende, 92027 Nanterre, France
| | - Marja H. Lamoree
- Department Environment & Health, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Yves Levi
- The French Water Academy, 51 rue Salvador-Allende, 92027 Nanterre, France
| | - Pablo Antonio Lara Martín
- Departamento de Química Física, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz – European Universities of the Seas, Campus Río San Pedro, 11510 Puerto Real, Cádiz Spain
| | | | - Christian Mougin
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 78026 Versailles, France
| | - Titus Msagati
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology (CSET), University of South Africa, Pretoria, South Africa
| | - Jörg Oehlmann
- Faculty Biological Sciences, Goethe University Frankfurt, Max-von-der-Laue-Straße 13, 60438 Frankfurt, Germany
| | - Leo Posthuma
- RIVM-National Institute for Public Health and the Environment, PO Box 1, 3720 BA Bilthoven, The Netherlands
- Department of Environmental Science, Radbound University Nijmegen, Nijmegen, The Netherlands
| | - Malcolm Reid
- Norwegian Institute for Water Research, Environmental Chemistry and Technology, Oslo, Norway
| | | | - Susan D. Richardson
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, SC 29208 USA
| | - Pawel Rostkowski
- NILU-Norwegian Institute for Air Research, P.O. Box 100, 2027 Kjeller, Norway
| | - Emma Schymanski
- University of Luxembourg, 6 avenue du Swing, 4367 Belvaux, Luxembourg
| | - Flurina Schneider
- Faculty Biological Sciences, Goethe University Frankfurt, Max-von-der-Laue-Straße 13, 60438 Frankfurt, Germany
- Institute for Social-Ecological Research (ISOE), Hamburger Alee 45, 60486 Frankfurt, Germany
| | | | - Yasuyuki Shibata
- Environmental Safety Center, Tokyo University of Science, 12-1 Ichigaya-Funagawara, Shinjuku, Tokyo 162-0826 Japan
| | - Shane Allen Snyder
- Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, Singapore
| | | | | | - Kevin V. Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102 Australia
| | | | - Pham Hung Viet
- VNU Key Laboratory of Analytical Technology for Environmental Quality, Vietnam National University, 334 Nguyen Trai, Hanoi, Vietnam
| | - Karina Gin Yew-Hoong
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, Singapore
| | - Xiaowei Zhang
- Centre of Chemical Safety and Risks, School of the Environment, Nanjing University, Nanjing, China
| | - Ettore Zuccato
- Department of Environmental Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| |
Collapse
|
9
|
Cuvillier-Hot V, Lenoir A. Invertebrates facing environmental contamination by endocrine disruptors: Novel evidences and recent insights. Mol Cell Endocrinol 2020; 504:110712. [PMID: 31962147 DOI: 10.1016/j.mce.2020.110712] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 02/08/2023]
Abstract
The crisis of biodiversity we currently experience raises the question of the impact of anthropogenic chemicals on wild life health. Endocrine disruptors are notably incriminated because of their possible effects on development and reproduction, including at very low doses. As commonly recorded in the field, the burden they impose on wild species also concerns invertebrates, with possible specificities linked with the specific physiology of these animals. A better understanding of chemically-mediated endocrine disruption in these species has clearly gained from knowledge accumulated on vertebrate models. But the molecular pathways specific to invertebrates also need to be reckoned, which implies dedicated research efforts to decipher their basic functioning in order to be able to assess its possible disruption. The recent rising of omics technologies opens the way to an intensification of these efforts on both aspects, even in species almost uninvestigated so far.
Collapse
Affiliation(s)
| | - Alain Lenoir
- IRBI, Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS, Faculté des Sciences, Parc de Grandmont, Université de Tours, Tours, France
| |
Collapse
|
10
|
Johann S, Esser M, Nüßer L, Altin D, Hollert H, Seiler TB. Receptor-mediated estrogenicity of native and chemically dispersed crude oil determined using adapted microscale reporter gene assays. ENVIRONMENT INTERNATIONAL 2020; 134:105320. [PMID: 31739133 DOI: 10.1016/j.envint.2019.105320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/11/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Endocrine disrupting compounds (EDCs) emerged as a major concern for water quality in the last decade and have been studied extensively since. Besides typical natural and synthetic estrogens also petroleum product compounds such as some PAHs have been identified as potential EDCs, revealing endocrine disruption to be a relevant mode of action for crude oil toxicity. Hence, in the context of a comprehensive retro- or prospective risk assessment of oil spills the implementation of mechanism-specific toxicity such as endocrine disruption is of high importance. To evaluate the exposure risk for the aquatic biota, research focuses on water-soluble fractions underlying an oil slick that could be simulated via water-accommodated fractions (WAF). Against this background human (ERα-CALUX®) and yeast based (A-YES®) reporter gene bioassays were successfully optimized for the application in estrogenicity evaluation of the water-accommodated fraction (WAF) from a crude oil. Combining different approaches, the estrogenicity of the WAFs from a naphthenic North Sea crude oil was tested with and without the addition of a chemical dispersant addressing specific aspects of estrogenicity including the influence of biotransformation capacities and different salinity conditions. Both the WAF free from droplets (LEWAF) as well as the chemically dispersed WAF (CEWAF) gave indications of an ER-mediated estrogenicity with much stronger ERα agonists in the CEWAF treatment. Resulting estradiol equivalents of the WAFs were above the established effect-based trigger values for both bioassays. Results indicate that the dispersant rather increased the fraction of ER-activating crude oil compounds instead of interacting with the receptor itself. Only slight changes in estrogenic responses were observed when cells capable of active metabolism (T47D) were used instead of cells without endogenous metabolism (U2-OS) in the recombinant ER transactivation CALUX assay. With the yeast cells a higher estrogenic activity was observed in the experiments under elevated salinity conditions (6‰), which was in contrast to previous expectations due to typical decrease in dissolved PAH fraction with increasing salinity (salting-out effect) but might be related to increased cell sensitivity.
Collapse
Affiliation(s)
- Sarah Johann
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Milena Esser
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Leonie Nüßer
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | | | - Henner Hollert
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Thomas-Benjamin Seiler
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| |
Collapse
|
11
|
Baag S, Mahapatra S, Mandal S. Unravelling the effects of elevated temperature on the physiological energetics of Bellamya bengalensis. J Therm Biol 2019; 88:102494. [PMID: 32125982 DOI: 10.1016/j.jtherbio.2019.102494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/02/2019] [Accepted: 12/23/2019] [Indexed: 01/12/2023]
Abstract
Temperature is one of the key environmental factors affecting the eco-physiological responses of living organisms and is considered one of the utmost crucial factors in shaping the fundamental niche of a species. The purpose of the present study is to delineate the physiological response and changes in energy allocation strategy of Bellamya bengalensis, a freshwater gastropod in the anticipated summer elevated temperature in the future by measuring the growth, body conditions (change in total weight, change in organ to flesh weight ratio), physiological energetics (ingestion rate, absorption rate, respiration rate, excretion rate and Scope for Growth) and thermal performance, Arrhenius breakpoint temperature (ABT), thermal critical maxima (CTmax), warming tolerance (WT) as well as thermal safety margin (TSM) through a mesocosm experiment. We exposed the animals to three different temperatures, 25 °C (average habitat temperature for this animal) and elevated temperatures 30 °C, 35 °C for 30 days and changes in energy budget were measured twice (on 15th and 30th day). Significant changes were observed in body conditions as well as physiological energetics. The total body weight as well as the organ/flesh weight ratio, ingestion followed by absorption rate decreased whereas, respiration and excretion rate increased with elevated temperature treatments resulting in a negative Scope for Growth in adverse conditions. Though no profound impact was found on ABT/CTmax, the peak of thermal curve was considerably declined for animals that were reared in higher temperature treatments. Our data reflects that thermal stress greatly impact the physiological functioning and growth patterns of B. bengalensis which might jeopardize the freshwater ecosystem functioning in future climate change scenario.
Collapse
Affiliation(s)
- Sritama Baag
- Marine Ecology Laboratory, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700 073, India
| | - Sayantan Mahapatra
- Marine Ecology Laboratory, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700 073, India
| | - Sumit Mandal
- Marine Ecology Laboratory, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700 073, India.
| |
Collapse
|
12
|
A liquid chromatography detector based on continuous-flow chemical vapor generation coupled glow discharge atomic emission spectrometry: Determination of organotin compounds in food samples. J Chromatogr A 2019; 1608:460406. [DOI: 10.1016/j.chroma.2019.460406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 11/17/2022]
|
13
|
López-Doval JC, Freixa A, Santos LHMLM, Sanchís J, Rodríguez-Mozaz S, Farré M, Barceló D, Sabater S. Exposure to single and binary mixtures of fullerenes and triclosan: Reproductive and behavioral effects in the freshwater snail Radix balthica. ENVIRONMENTAL RESEARCH 2019; 176:108565. [PMID: 31280028 DOI: 10.1016/j.envres.2019.108565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/28/2019] [Accepted: 06/28/2019] [Indexed: 05/22/2023]
Abstract
Emerging pollutants occur in complex mixtures in rivers and have the potential to interact with freshwater organisms. The chronic effects of nominal exposure to 3 μg/L of fullerenes (C60) and 1 μg/L of triclosan (TCS) alone and in a binary mixture, were evaluated using the freshwater snail Radix balthica. Pollutants accumulation, reproductive output and feeding behavior were selected as sublethal endpoints. After 21 days of exposure, we did not observe interactive effects between TCS and C60 on the studied endpoints, except for the accumulation of C60 in R. balthica in TCS + C60 treatment, which was lower than when the fullerenes were alone. Neither TCS nor C60 caused significant effects on reproduction, expressed as number of eggs per individual, but an increase in the clutch size was observed in treatments with TCS at the third week of exposure, independently of the presence of C60 (16.15 ± 1.67 and 18.9 ± 4.01 eggs/egg mass in TCS and TCS + C60 treatments, respectively, vs. 13.17 ± 4.01 in control). The presence of C60 significantly enhanced the grazing activity of R. balthica during the first seven days (4.95 ± 1.35 and 3.91 ± 0.59% of the area grazed per individual in C60 and TCS + C60 treatments, respectively, vs 2.6 ± 0.39% in control). The accumulation of TCS was quite similar in treatments where this pollutant was present (BAF ≈ 1007 L/kg d.w.); however, the accumulation of C60 was higher when the nanoparticles were alone (BAF = 254.88 L/kg d.w.) than when it was in the binary mixture (BAF = 7.79 L/kg d.w). Overall, although TCS has been listed as an endocrine disrupter compound, no significant effects on reproduction were observed in the assayed conditions. Regarding C60, the limited effects on feeding activity and the low BAF obtained in this experiment indicate that fullerenes do not have ecological consequences of relevance at the studied environmental concentrations in freshwater snails.
Collapse
Affiliation(s)
- J C López-Doval
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain; University of Girona, 17071, Girona, Catalonia, Spain.
| | - A Freixa
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain; University of Girona, 17071, Girona, Catalonia, Spain
| | - L H M L M Santos
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain; University of Girona, 17071, Girona, Catalonia, Spain
| | - J Sanchís
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain; University of Girona, 17071, Girona, Catalonia, Spain; Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA- CSIC), C/Jordi Girona, 18-26, 08034, Barcelona, Catalonia, Spain
| | - S Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain; University of Girona, 17071, Girona, Catalonia, Spain
| | - M Farré
- Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA- CSIC), C/Jordi Girona, 18-26, 08034, Barcelona, Catalonia, Spain
| | - D Barceló
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain; Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA- CSIC), C/Jordi Girona, 18-26, 08034, Barcelona, Catalonia, Spain
| | - S Sabater
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain; Institute of Aquatic Ecology, University of Girona, Campus de Montivili, 17071, Girona, Catalonia, Spain
| |
Collapse
|
14
|
Ma F, Han X, An L, Lei K, Qi H, LeBlanc GA. Freshwater snail Parafossarulus striatulus estrogen receptor: Characteristics and expression profiles under lab and field exposure. CHEMOSPHERE 2019; 220:611-619. [PMID: 30597369 DOI: 10.1016/j.chemosphere.2018.12.176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
The modes of action by which putative endocrine disrupting chemicals (EDCs) elicit toxicity in mollusks remains unclear due to our limited understanding of the molluscan endocrine system. We identified and partially characterised the estrogen receptor (ER) of the mollusk Parafossarulus striatulus. The full-length cDNA of the ER of P. striatulus (psER) was isolated and found to have an ORF of 1386 bp which corresponded to 461 amino acids. Phylogenetic analysis revealed that psER is an orthologue of ER of other mollusks. Moreover, the DNA-binding domain, ligand-binding domain, P-box, D-box, and AF2 domain were also identified in psER. Exposure of females and males to 17β-estradiol (E2, 100 ng/L) for 24 h and 72 h did not alter psER transcription, but exposure to 17α-methyltestosterone (MT, 100 μg/L) for 72 h significantly decreased ER transcription in females only (p < 0.05). psER transcription was surveyed in males and females seeded in different regions in Taihu Lake, China. psER transcription were elevated among females and males maintained at site ML. This elevation was statistically significant (p < 0.05) among male snails as compared to snails held at the more pristine site of SZ. This was different to the results from lab, implying that some unknown chemicals or other environmental factors in field could affect psER transcription level in snails. Furthermore, females and males held at site ML also exhibited a significant elevation in vitellogenin transcription as compared to snails held at site SZ, suggesting that vitellogenin production may be directly regulated by psER or co-regulated with psER in this species.
Collapse
Affiliation(s)
- Fujun Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xuemei Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Lihui An
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Kun Lei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Hongli Qi
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Gerald A LeBlanc
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
15
|
Agrelo M, Rivadeneira PR, Cossi PF, Cacciatore LC, Kristoff G. Azinphos-methyl causes in Planorbarius corneus toxic effects on reproduction, offspring survival and B-esterases depending on the exposure time. Comp Biochem Physiol C Toxicol Pharmacol 2019; 217:114-121. [PMID: 30528701 DOI: 10.1016/j.cbpc.2018.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/01/2018] [Accepted: 12/02/2018] [Indexed: 12/30/2022]
Abstract
This work aimed to study in the freshwater gastropod Planorbarius corneus the effects of acute (2 days) and subchronic (14 days) exposures to an environmental concentration of the organophosphate azinphos-methyl on different reproductive parameters, offspring survival and B-esterase activities in gonads and in the whole organism soft tissue. The acute exposure inhibited only carboxylesterase activity in both tissues while the subchronic exposure also inhibited cholinesterase activity, decreased the number of hatched-eggs and increased offspring lethality (92%). On the other hand, B-esterases in gonads were more effective biomarkers than B-esterases in the whole organism due their inhibition appeared earlier in time (cholinesterase activity) and their activity remained inhibited for a longer time (carboxylesterase activity) when recovery studies were performed. We concluded that B-esterases and reproductive parameters can be used as effect biomarkers of aquatic contamination with azinphos-methyl. Our studies showed that a 14 days exposure to an environmental concentration of azinphos-methyl produced severe signs of toxicity in adult organisms, egg masses and juveniles that could cause negative effects at the population level in contaminated environments.
Collapse
Affiliation(s)
- Macarena Agrelo
- Laboratorio de Ecotoxicología Acuática: Invertebrados Nativos (EAIN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Nuñez, 1428 Buenos Aires, Argentina; Laboratório de Mamíferos Aquáticos, Universidade Federal de Santa Catarina, SC, Brazil; Programa de Pós-graduação em Ecologia, Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina, SC, Brazil
| | - Pamela R Rivadeneira
- Laboratorio de Ecotoxicología Acuática: Invertebrados Nativos (EAIN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Nuñez, 1428 Buenos Aires, Argentina; Laboratorio de Ecosistemas Costeros, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" (CONICET), Buenos Aires, Argentina
| | - Paula F Cossi
- Laboratorio de Ecotoxicología Acuática: Invertebrados Nativos (EAIN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Nuñez, 1428 Buenos Aires, Argentina; Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Luis C Cacciatore
- Laboratorio de Ecotoxicología Acuática: Invertebrados Nativos (EAIN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Nuñez, 1428 Buenos Aires, Argentina; Universidad de Morón, Buenos Aires, Argentina
| | - Gisela Kristoff
- Laboratorio de Ecotoxicología Acuática: Invertebrados Nativos (EAIN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Nuñez, 1428 Buenos Aires, Argentina; Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.
| |
Collapse
|
16
|
Ibrahim AM, Ghoname SI. Molluscicidal impacts of Anagallis arvensis aqueous extract on biological, hormonal, histological and molecular aspects of Biomphalaria alexandrina snails. Exp Parasitol 2018; 192:36-41. [DOI: 10.1016/j.exppara.2018.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 06/02/2018] [Accepted: 07/20/2018] [Indexed: 12/23/2022]
|
17
|
Gouveia D, Bonneton F, Almunia C, Armengaud J, Quéau H, Degli-Esposti D, Geffard O, Chaumot A. Identification, expression, and endocrine-disruption of three ecdysone-responsive genes in the sentinel species Gammarus fossarum. Sci Rep 2018; 8:3793. [PMID: 29491422 PMCID: PMC5830573 DOI: 10.1038/s41598-018-22235-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/14/2018] [Indexed: 11/17/2022] Open
Abstract
Taking advantage of a large transcriptomic dataset recently obtained in the sentinel crustacean amphipod Gammarus fossarum, we developed an approach based on sequence similarity and phylogenetic reconstruction to identify key players involved in the endocrine regulation of G. fossarum. Our work identified three genes of interest: the nuclear receptors RXR and E75, and the regulator broad-complex (BR). Their involvement in the regulation of molting and reproduction, along with their sensitivity to chemical contamination were experimentally assessed by studying gene expression during the female reproductive cycle, and after laboratory exposure to model endocrine disrupting compounds (EDCs): pyriproxyfen, tebufenozide and piperonyl butoxide. RXR expression suggested a role of this gene in ecdysis and post-molting processes. E75 presented two expression peaks that suggested a role in vitellogenesis, and molting. BR expression showed no variation during molting/reproductive cycle. After exposure to the three EDCs, a strong inhibition of the inter-molt E75 peak was observed with tebufenozide, and an induction of RXR after exposure to pyriproxyfen and piperonyl butoxide. These results confirm the implication of RXR and E75 in hormonal regulation of female reproductive cycles in G. fossarum and their sensitivity towards EDCs opens the possibility of using them as specific endocrine disruption biomarkers.
Collapse
Affiliation(s)
- D Gouveia
- Irstea, UR RiverLy, Laboratoire d'écotoxicologie, centre de Lyon-Villeurbanne, 5 rue de la Doua CS 20244, F-69625, Villeurbanne, France
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207, Bagnols sur Cèze, France
| | - F Bonneton
- IGFL, Université de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie, F-69364, Lyon, France
| | - C Almunia
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207, Bagnols sur Cèze, France
| | - J Armengaud
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207, Bagnols sur Cèze, France
| | - H Quéau
- Irstea, UR RiverLy, Laboratoire d'écotoxicologie, centre de Lyon-Villeurbanne, 5 rue de la Doua CS 20244, F-69625, Villeurbanne, France
| | - D Degli-Esposti
- Irstea, UR RiverLy, Laboratoire d'écotoxicologie, centre de Lyon-Villeurbanne, 5 rue de la Doua CS 20244, F-69625, Villeurbanne, France
| | - O Geffard
- Irstea, UR RiverLy, Laboratoire d'écotoxicologie, centre de Lyon-Villeurbanne, 5 rue de la Doua CS 20244, F-69625, Villeurbanne, France
| | - A Chaumot
- Irstea, UR RiverLy, Laboratoire d'écotoxicologie, centre de Lyon-Villeurbanne, 5 rue de la Doua CS 20244, F-69625, Villeurbanne, France.
| |
Collapse
|
18
|
Alonso Á, Valle-Torres G. Feeding Behavior of an Aquatic Snail as a Simple Endpoint to Assess the Exposure to Cadmium. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 100:82-88. [PMID: 29209857 DOI: 10.1007/s00128-017-2230-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
One of the aims of ecotoxicology is the assessment of the effects of chemicals on the ecosystems. Bioassays assessing lethality are frequently used in ecotoxicology, however they usually employ supra-environmental toxic concentrations. Toxicity tests employing behavioral endpoints may present a balance between simplicity (i.e., laboratory bioassays) and complexity (i.e., relevant ecological effects). The aim of this study was to develop a feeding behavioral bioassay with the aquatic snail, Potamopyrgus antipodarum, which included a 2 days exposure to cadmium, followed by a 9 days post-exposure observational period. Several behavioral feeding endpoints were monitored, including percentage of actively feeding animals, percentage of animals in food quadrants and a mobility index. The percentage of actively feeding animals was reduced by the four cadmium treatments (0.009, 0.026, 0.091 and 0.230 mg Cd/L) with the stronger effect in the highest concentration. The two highest cadmium concentrations significantly reduced the percentage of animals in food quadrants and the mobility index. Therefore, the percentage of actively feeding animals was the most sensitive endpoint to cadmium toxicity as the four cadmium concentrations caused a significant decrease in this endpoint. It is concluded that feeding behavior is a useful endpoint to detect the exposure of aquatic snails to cadmium.
Collapse
Affiliation(s)
- Álvaro Alonso
- Departamento de Ciencias de la Vida, Unidad Docente de Ecología, Facultad de Ciencias, Universidad de Alcalá, 28805, Alcalá de Henares, Madrid, Spain.
| | - Guillermo Valle-Torres
- Departamento de Ciencias de la Vida, Unidad Docente de Ecología, Facultad de Ciencias, Universidad de Alcalá, 28805, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
19
|
Harth FUR, Arras C, Brettschneider DJ, Misovic A, Oehlmann J, Schulte-Oehlmann U, Oetken M. Small but with big impact? Ecotoxicological effects of a municipal wastewater effluent on a small creek. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:1149-1160. [PMID: 30623699 DOI: 10.1080/10934529.2018.1530328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Municipal wastewater treatment plants (WWTPs) discharge micropollutants like pharmaceuticals, pesticides, personal care products or endocrine disrupting chemicals but also nutrients. Both can adversely influence the freshwater ecosystem and may finally affect the ecological conditions. Many studies focus on the potential impact of large WWTPs even if smaller ones are more common, often less efficient and discharge into small creeks or the upper reaches of rivers. As a result, the receiving waters are characterized by relatively high shares of treated wastewater. Thus, the primary objective of this study was to investigate the ecotoxicological effects of a small WWTP on freshwater amphipods and mollusks in a small creek using an active and passive monitoring approach, accompanied by laboratory experiments (LE). In vitro assays with recombinant yeasts and the microtox assay with Aliivibrio fischeri were performed in parallel to determine the endocrine potential and the baseline toxicity. The evaluation of the effects of the analysed WWTP was possible due to its shutdown during our study and the application of the same in vivo and in vitro assays before and after the shutdown. During the operation of the WWTP the discharge of treated wastewater caused significantly higher mortalities and lower reproduction of the anaylsed invertebrates in the active and passive montoring as well as in the LEs. Furthermore, the amphipod species assemblage in the creek was affected downstream of the WWTP effluent. Besides, the endocrine activity and baseline toxicity were significantly higher downstream of the effluent. After the shutdown of the WWTP, the in vitro activity levels and adverse in vivo effects in the receiving water recovered quickly with no significant differences downstream of the former WWTP effluent compared to the upstream station. Furthermore, the previously disturbed amphipod species assemblage recovered significantly with a shift in favor of Gammarus fossarum downstream of the effluent. These biological results are consistent with a marked decline by 81.5% for the detected micropollutants in the receiving creek after the shutdown which points to a prominent role of micropollutants for the observed effects.
Collapse
Affiliation(s)
- Felix U R Harth
- a Department Aquatic Ecotoxicology , Goethe University Frankfurt am Main , Germany
| | - Carolin Arras
- a Department Aquatic Ecotoxicology , Goethe University Frankfurt am Main , Germany
| | | | - Andrea Misovic
- a Department Aquatic Ecotoxicology , Goethe University Frankfurt am Main , Germany
| | - Jörg Oehlmann
- a Department Aquatic Ecotoxicology , Goethe University Frankfurt am Main , Germany
| | | | - Matthias Oetken
- a Department Aquatic Ecotoxicology , Goethe University Frankfurt am Main , Germany
| |
Collapse
|
20
|
Lagadic L, Katsiadaki I, Biever R, Guiney PD, Karouna-Renier N, Schwarz T, Meador JP. Tributyltin: Advancing the Science on Assessing Endocrine Disruption with an Unconventional Endocrine-Disrupting Compound. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 245:65-127. [PMID: 29119384 DOI: 10.1007/398_2017_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tributyltin (TBT) has been recognized as an endocrine disrupting chemical (EDC) for several decades. However, only in the last decade, was its primary endocrine mechanism of action (MeOA) elucidated-interactions with the nuclear retinoid-X receptor (RXR), peroxisome proliferator-activated receptor γ (PPARγ), and their heterodimers. This molecular initiating event (MIE) alters a range of reproductive, developmental, and metabolic pathways at the organism level. It is noteworthy that a variety of MeOAs have been proposed over the years for the observed endocrine-type effects of TBT; however, convincing data for the MIE was provided only recently and now several researchers have confirmed and refined the information on this MeOA. One of the most important lessons learned from years of research on TBT concerns apparent species sensitivity. Several aspects such as the rates of uptake and elimination, chemical potency, and metabolic capacity are all important for identifying the most sensitive species for a given chemical, including EDCs. For TBT, much of this was discovered by trial and error, hence important relationships and important sensitive taxa were not identified until several decades after its introduction to the environment. As recognized for many years, TBT-induced responses are known to occur at very low concentrations for molluscs, a fact that has more recently also been observed in fish species. This review explores the MeOA and effects of TBT in different species (aquatic molluscs and other invertebrates, fish, amphibians, birds, and mammals) according to the OECD Conceptual Framework for Endocrine Disruptor Testing and Assessment (CFEDTA). The information gathered on biological effects that are relevant for populations of aquatic animals was used to construct Species Sensitivity Distributions (SSDs) based on No Observed Effect Concentrations (NOECs) and Lowest Observed Effect Concentrations (LOECs). Fish appear at the lower end of these distributions, showing that they are as sensitive as molluscs, and for some species, even more sensitive. Concentrations in the range of 1 ng/L for water exposure (10 ng/g for whole-body burden) have been shown to elicit endocrine-type responses, whereas mortality occurs at water concentrations ten times higher. Current screening and assessment methodologies as compiled in the OECD CFEDTA are able to identify TBT as a potent endocrine disruptor with a high environmental risk for the original use pattern. If those approaches had been available when TBT was introduced to the market, it is likely that its use would have been regulated sooner, thus avoiding the detrimental effects on marine gastropod populations and communities as documented over several decades.
Collapse
Affiliation(s)
- Laurent Lagadic
- Bayer AG, Research and Development, Crop Science Division, Environmental Safety, Alfred-Nobel-Straße 50, Monheim am Rhein, 40789, Germany.
| | - Ioanna Katsiadaki
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, UK
| | - Ron Biever
- Smithers Viscient, 790 Main Street, Wareham, MA, 02571, USA
| | - Patrick D Guiney
- University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705-2222, USA
| | - Natalie Karouna-Renier
- USGS Patuxent Wildlife Research Center, BARC East Bldg 308, 10300 Baltimore Avenue, Beltsville, MD, 20705, USA
| | - Tamar Schwarz
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, UK
| | - James P Meador
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, 98112, USA
| |
Collapse
|
21
|
Matthiessen P, Wheeler JR, Weltje L. A review of the evidence for endocrine disrupting effects of current-use chemicals on wildlife populations. Crit Rev Toxicol 2017; 48:195-216. [DOI: 10.1080/10408444.2017.1397099] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Lennart Weltje
- BASF SE, Crop Protection – Ecotoxicology, Limburgerhof, Germany
| |
Collapse
|
22
|
Averbuj A, Primost MA, Giulianelli S, Bigatti G. Acute toxicity of tributyltin to encapsulated embryos of a marine gastropod. MOLLUSCAN RESEARCH 2017. [DOI: 10.1080/13235818.2017.1357671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Andrés Averbuj
- LARBIM (IBIOMAR-CONICET), Puerto Madryn, Chubut, Argentina
| | | | | | - Gregorio Bigatti
- LARBIM (IBIOMAR-CONICET), Puerto Madryn, Chubut, Argentina
- Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Puerto Madryn, Chubut, Argentina
| |
Collapse
|
23
|
Ruppert K, Geiß C, Askem C, Benstead R, Brown R, Coke M, Ducrot V, Egeler P, Holbech H, Hutchinson TH, Kinnberg KL, Lagadic L, Le Page G, Macken A, Matthiessen P, Ostermann S, Schimera A, Schmitt C, Seeland-Fremer A, Smith AJ, Weltje L, Oehlmann J. Development and validation of an OECD reproductive toxicity test guideline with the mudsnail Potamopyrgus antipodarum (Mollusca, Gastropoda). CHEMOSPHERE 2017; 181:589-599. [PMID: 28472747 DOI: 10.1016/j.chemosphere.2017.04.114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/10/2017] [Accepted: 04/23/2017] [Indexed: 06/07/2023]
Abstract
Mollusks are known to be uniquely sensitive to a number of reproductive toxicants including some vertebrate endocrine disrupting chemicals. However, they have widely been ignored in environmental risk assessment procedures for chemicals. This study describes the validation of the Potamopyrgus antipodarum reproduction test within the OECD Conceptual Framework for Endocrine Disrupters Testing and Assessment. The number of embryos in the brood pouch and adult mortality serve as main endpoints. The experiments are conducted as static systems in beakers filled with artificial medium, which is aerated trough glass pipettes. The test chemical is dispersed into the medium, and adult snails are subsequently introduced into the beakers. After 28 days the reproductive success is determined by opening the brood pouch and embryo counting. This study presents the results of two validation studies of the reproduction test with eleven laboratories and the chemicals tributyltin (TBT) with nominal concentrations ranging from 10 to 1000 ng TBT-Sn/L and cadmium with concentrations from 1.56 to 25 μg/L. The test design could be implemented by all laboratories resulting in comparable effect concentrations for the endpoint number of embryos in the brood pouch. After TBT exposure mean EC10, EC50, NOEC and LOEC were 35.6, 127, 39.2 and 75.7 ng Sn/L, respectively. Mean effect concentrations in cadmium exposed snails were, respectively, 6.53, 14.2, 6.45 and 12.6 μg/L. The effect concentrations are in good accordance with already published data. Both validation studies show that the reproduction test with P. antipodarum is a well-suited tool to assess reproductive effects of chemicals.
Collapse
Affiliation(s)
- Katharina Ruppert
- Goethe University Frankfurt am Main, Department Aquatic Ecotoxicology, Biological Sciences Division, Max-von-Laue-Str. 13, 60348, Frankfurt, Germany.
| | - Cornelia Geiß
- Goethe University Frankfurt am Main, Department Aquatic Ecotoxicology, Biological Sciences Division, Max-von-Laue-Str. 13, 60348, Frankfurt, Germany
| | - Clare Askem
- CEFAS Lowestoft Laboratory Pakefield Road, Lowestoft, NR33 0HT, United Kingdom
| | | | - Rebecca Brown
- AstraZeneca, Brixham Environmental Laboratory, Ecotoxicology, Freshwater Quarry, Brixham, Devon, TQ5 8BA, United Kingdom
| | - Maira Coke
- INRA, Unité Expérimentale d'Ecologie et d'Ecotoxicologie, 65 rue de Saint-Brieuc, CS 84215, F-35042, Rennes Cedex, France
| | - Virginie Ducrot
- UMR Ecologie et Santé des Ecosystèmes, Agrocampus Ouest, 65 rue de Saint-Brieuc, CS 84215, F-35042, Rennes Cedex, France
| | - Philipp Egeler
- ECT Oekotoxikologie GmbH, Böttgerstraße 2 - 14, 65439, Flörsheim, Germany
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Thomas H Hutchinson
- CEFAS Lowestoft Laboratory Pakefield Road, Lowestoft, NR33 0HT, United Kingdom
| | - Karin L Kinnberg
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Laurent Lagadic
- UMR Ecologie et Santé des Ecosystèmes, Agrocampus Ouest, 65 rue de Saint-Brieuc, CS 84215, F-35042, Rennes Cedex, France
| | - Gareth Le Page
- AstraZeneca, Brixham Environmental Laboratory, Ecotoxicology, Freshwater Quarry, Brixham, Devon, TQ5 8BA, United Kingdom
| | - Ailbhe Macken
- Norwegian Institute for Water Research, Ecotoxicology and Risk Assessment, Gaustadalléen 21, Oslo, Norway
| | - Peter Matthiessen
- Independent Consultant, Dolfan Barn, Beulah, Llanwrtyd Wells, Powys, LD5 4UE, United Kingdom
| | - Sina Ostermann
- Goethe University Frankfurt am Main, Department Aquatic Ecotoxicology, Biological Sciences Division, Max-von-Laue-Str. 13, 60348, Frankfurt, Germany
| | - Agnes Schimera
- Goethe University Frankfurt am Main, Department Aquatic Ecotoxicology, Biological Sciences Division, Max-von-Laue-Str. 13, 60348, Frankfurt, Germany
| | - Claudia Schmitt
- University of Antwerp, Ecosystem Management Research Group, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Anne Seeland-Fremer
- Ibacon GmbH, Institut für Biologische Analytik und Consulting, Arheilger Weg 17, 64380, Rossdorf, Germany
| | - Andy J Smith
- CEFAS Lowestoft Laboratory Pakefield Road, Lowestoft, NR33 0HT, United Kingdom
| | - Lennart Weltje
- BASF SE, Crop Protection - Ecotoxicology, Speyerer Strasse 2, D-67117, Limburgerhof, Germany
| | - Jörg Oehlmann
- Goethe University Frankfurt am Main, Department Aquatic Ecotoxicology, Biological Sciences Division, Max-von-Laue-Str. 13, 60348, Frankfurt, Germany
| |
Collapse
|
24
|
Metal contamination in harbours impacts life-history traits and metallothionein levels in snails. PLoS One 2017; 12:e0180157. [PMID: 28671998 PMCID: PMC5495383 DOI: 10.1371/journal.pone.0180157] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 06/10/2017] [Indexed: 11/30/2022] Open
Abstract
Harbours with limited water exchange are hotspots of contaminant accumulation. Antifouling paints (AF) contribute to this accumulation by leaching biocides that may affect non-target species. In several leisure boat harbours and reference areas in the Baltic Sea, chronic exposure effects were evaluated using caging experiments with the snail Theodoxus fluviatilis. We analysed variations in ecologically relevant endpoints (mortality, growth and reproduction) in concert with variation in metallothionein-like proteins (MTLP) levels. The latter is a biomarker of exposure to metals, such as copper (Cu) and zinc (Zn), which are used in AF paints as active ingredient and stabilizer, respectively. In addition, environmental samples (water, sediment) were analysed for metal (Cu and Zn) and nutrient (total phosphorous and nitrogen) concentrations. All life-history endpoints were negatively affected by the exposure, with higher mortality, reduced growth and lower fecundity in the harbours compared to the reference sites. Metal concentrations were the key explanatory variables for all observed adverse effects, suggesting that metal-driven toxicity, which is likely to stem from AF paints, is a source of anthropogenic stress for biota in the harbours.
Collapse
|
25
|
Schwarz TI, Katsiadaki I, Maskrey BH, Scott AP. Rapid uptake, biotransformation, esterification and lack of depuration of testosterone and its metabolites by the common mussel, Mytilus spp. J Steroid Biochem Mol Biol 2017; 171:54-65. [PMID: 28245981 DOI: 10.1016/j.jsbmb.2017.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/11/2017] [Accepted: 02/23/2017] [Indexed: 01/02/2023]
Abstract
The presence of the vertebrate steroids, testosterone (T) and 17β-estradiol in mollusks is often cited as evidence that they are involved in the control of their reproduction. In this paper, we show that a likely source of T in at least one species, the common mussel (Mytilus spp.), is from uptake from water. When mussels were exposed to waterborne tritiated T ([3H]-T) in a closed container, the radioactivity decreased rapidly and exponentially until, by 24h, approximately 35% remained in the water. The rate of uptake of radiolabel could not be saturated by concentrations as high as 16.5μgL-1 (mean measured) of non-radiolabeled T, showing that the animals have a very high capacity for uptake of T. At least 30% of the applied radioactivity could be extracted from the tissues of the animals with organic solvents and most of this (26% of the total applied radioactivity) was in the fatty acid ester fraction. Following alkaline hydrolysis, reverse phase HPLC and TLC, this fraction was shown to consist predominantly of 5α-dihydrotestosterone and 5α-androstane-3β,17β-diol, while T was a minor component. These steroids were definitively identified in the fatty acid ester fraction by mass spectrometry. Overall, less than 5% of the [3H]-T applied to the system remained untransformed at the end of exposure. After ten days of depuration there was no reduction in the total amount of radioactivity in the tissues, nor any changes in the ratio of the metabolites in the ester fraction. These findings show that any association between T presence and reproductive status or sex is confounded by their significant capacity for uptake, and that T undergoes extensive metabolism in mussels in vivo and therefore may not be representative of the androgenic burden of the animals. Consequently, measurements of T in mussel tissue offer little utility as an indicator of reproductive status or sex.
Collapse
Affiliation(s)
- Tamar I Schwarz
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, UK
| | - Ioanna Katsiadaki
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Benjamin H Maskrey
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, UK
| | - Alexander P Scott
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, UK
| |
Collapse
|
26
|
Geiß C, Ruppert K, Askem C, Barroso C, Faber D, Ducrot V, Holbech H, Hutchinson TH, Kajankari P, Kinnberg KL, Lagadic L, Matthiessen P, Morris S, Neiman M, Penttinen OP, Sanchez-Marin P, Teigeler M, Weltje L, Oehlmann J. Validation of the OECD reproduction test guideline with the New Zealand mudsnail Potamopyrgus antipodarum using trenbolone and prochloraz. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:370-382. [PMID: 28168557 DOI: 10.1007/s10646-017-1770-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/18/2017] [Indexed: 06/06/2023]
Abstract
The Organisation for Economic Cooperation and Development (OECD) provides several standard test methods for the environmental hazard assessment of chemicals, mainly based on primary producers, arthropods, and fish. In April 2016, two new test guidelines with two mollusc species representing different reproductive strategies were approved by OECD member countries. One test guideline describes a 28-day reproduction test with the parthenogenetic New Zealand mudsnail Potamopyrgus antipodarum. The main endpoint of the test is reproduction, reflected by the embryo number in the brood pouch per female. The development of a new OECD test guideline involves several phases including inter-laboratory validation studies to demonstrate the robustness of the proposed test design and the reproducibility of the test results. Therefore, a ring test of the reproduction test with P. antipodarum was conducted including eight laboratories with the test substances trenbolone and prochloraz and results are presented here. Most laboratories could meet test validity criteria, thus demonstrating the robustness of the proposed test protocol. Trenbolone did not have an effect on the reproduction of the snails at the tested concentration range (nominal: 10-1000 ng/L). For prochloraz, laboratories produced similar EC10 and NOEC values, showing the inter-laboratory reproducibility of results. The average EC10 and NOEC values for reproduction (with coefficient of variation) were 26.2 µg/L (61.7%) and 29.7 µg/L (32.9%), respectively. This ring test shows that the mudsnail reproduction test is a well-suited tool for use in the chronic aquatic hazard and risk assessment of chemicals.
Collapse
Affiliation(s)
- Cornelia Geiß
- Department Aquatic Ecotoxicology, Goethe University Frankfurt am Main, Max-von-Laue-Str. 13, Frankfurt am Main, 60438, Germany.
| | - Katharina Ruppert
- Department Aquatic Ecotoxicology, Goethe University Frankfurt am Main, Max-von-Laue-Str. 13, Frankfurt am Main, 60438, Germany
| | - Clare Askem
- Centre for Environment Fisheries and Aquaculture Science Lowestoft Laboratory, Pakefield Road, Lowestoft, NR33 OHT, UK
| | - Carlos Barroso
- Department of Biology and CESAM, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Daniel Faber
- Bayer CropScience AG, Environmental Safety/Ecotoxicology, Alfred-Nobel-Str. 50, Monheim am Rhein, 40789, Germany
| | - Virginie Ducrot
- INRA, UMR Ecologie et Santé des Ecosystèmes, Agrocampus Ouest, 65 rue de Saint-Brieuc, CS 84215, Rennes Cedex, F-35042, France
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | | | - Paula Kajankari
- Department of Environmental Sciences, University of Helsinki, Niemenkatu 73, Lahti, 15140, Finland
| | - Karin Lund Kinnberg
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Laurent Lagadic
- INRA, UMR Ecologie et Santé des Ecosystèmes, Agrocampus Ouest, 65 rue de Saint-Brieuc, CS 84215, Rennes Cedex, F-35042, France
| | - Peter Matthiessen
- Old School House, Brow Edge, Backbarrow, Ulverston, Cumbria, LA128QX, UK
| | - Steve Morris
- Centre for Environment Fisheries and Aquaculture Science Lowestoft Laboratory, Pakefield Road, Lowestoft, NR33 OHT, UK
| | - Maurine Neiman
- Department of Biology, University of Iowa, 143 Biology Building, Iowa City, 52242, IA, USA
| | - Olli-Pekka Penttinen
- Department of Environmental Sciences, University of Helsinki, Niemenkatu 73, Lahti, 15140, Finland
| | - Paula Sanchez-Marin
- Department of Biology and CESAM, University of Aveiro, Aveiro, 3810-193, Portugal
- University of Vigo, ECIMAT, Illa de Toralla s/n, 36331 Coruxo-Vigo, Galicia, Spain
| | - Matthias Teigeler
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Auf dem Aberg 1, Schmallenberg, 57392, Germany
| | - Lennart Weltje
- BASF SE, Crop Protection - Ecotoxicology, Speyerer Straße 2, Limburgerhof, 67117, Germany
| | - Jörg Oehlmann
- Department Aquatic Ecotoxicology, Goethe University Frankfurt am Main, Max-von-Laue-Str. 13, Frankfurt am Main, 60438, Germany
| |
Collapse
|
27
|
Zheng S, Zhou Q. Intoxication and biochemical responses of freshwater snail Bellamya aeruginosa to ethylbenzene. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:189-198. [PMID: 27709428 DOI: 10.1007/s11356-016-7716-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 09/14/2016] [Indexed: 06/06/2023]
Abstract
No acute toxic data of ethylbenzene on gastropod is available in literature. In the present study, the acute toxicity of ethylbenzene was assessed on a freshwater snail Bellamya aeruginosa, which was exposed to ethylbenzene concentration from 1 to 100 mg/L for 96 h. No mortality occurred, but a manifestation of intoxication (distress syndrome) was observed in part of exposed snails, and meanwhile, another part was moved normally. The distress syndrome showed clear dose- and time-dependent effects, and the 96-h EC50 value for distress syndrome was 13.3 mg/L in snail. The biochemical responses induced by ethylbenzene to the snail, including acetylcholinesterase (AChE) in the whole body and superoxide dismutase (SOD), catalase (CAT), glutathione S-transferases (GST), and reduced glutathione (GSH) in the hepatopancreas, were evaluated both for distressed snail and moved snail. The AChE activity of distressed snail was all inhibited more than 45 %, and the inhibition of AChE activity in the moved snail was all less than 30 % and more than 20 %, demonstrating that ethylbenzene exerted nervous toxicity to both distressed snail and moved snail. Meanwhile, the difference for AChE activity between the two different response snails was significant. Among the antioxidant biomarkers (SOD, CAT, GST, and GSH), only GST displayed significant difference between the distressed snail and moved snail. However, the activities of enzymes (SOD, CAT, and GST) in the moved snail were greater than those in the distressed snail, no matter significantly or insignificantly, which indicated that the ability of antioxidant defense in the distressed snail was weaker than that in the moved snail. The findings here reported manifest that ethylbenzene exerted nervous toxicity to snail, and the snail with intoxication response (distress syndrome) presented larger inhibition on AChE activity and weaker antioxidant ability in comparison with the moved snail.
Collapse
Affiliation(s)
- Shimei Zheng
- College of Chemistry and Chemical and Environmental Engineering, Weifang University, Weifang, 261061, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
28
|
Endocrine Disruption and In Vitro Ecotoxicology: Recent Advances and Approaches. IN VITRO ENVIRONMENTAL TOXICOLOGY - CONCEPTS, APPLICATION AND ASSESSMENT 2017; 157:1-58. [DOI: 10.1007/10_2016_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Knapp S, Schweiger O, Kraberg A, Asmus H, Asmus R, Brey T, Frickenhaus S, Gutt J, Kühn I, Liess M, Musche M, Pörtner HO, Seppelt R, Klotz S, Krause G. Do drivers of biodiversity change differ in importance across marine and terrestrial systems - Or is it just different research communities' perspectives? THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 574:191-203. [PMID: 27636004 DOI: 10.1016/j.scitotenv.2016.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/26/2016] [Accepted: 09/01/2016] [Indexed: 06/06/2023]
Abstract
Cross-system studies on the response of different ecosystems to global change will support our understanding of ecological changes. Synoptic views on the planet's two main realms, the marine and terrestrial, however, are rare, owing to the development of rather disparate research communities. We combined questionnaires and a literature review to investigate how the importance of anthropogenic drivers of biodiversity change differs among marine and terrestrial systems and whether differences perceived by marine vs. terrestrial researchers are reflected by the scientific literature. This included asking marine and terrestrial researchers to rate the relevance of different drivers of global change for either marine or terrestrial biodiversity. Land use and the associated loss of natural habitats were rated as most important in the terrestrial realm, while the exploitation of the sea by fishing was rated as most important in the marine realm. The relevance of chemicals, climate change and the increasing atmospheric concentration of CO2 were rated differently for marine and terrestrial biodiversity respectively. Yet, our literature review provided less evidence for such differences leading to the conclusion that while the history of the use of land and sea differs, impacts of global change are likely to become increasingly similar.
Collapse
Affiliation(s)
- Sonja Knapp
- UFZ - Helmholtz-Centre for Environmental Research, Department Community Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany.
| | - Oliver Schweiger
- UFZ - Helmholtz-Centre for Environmental Research, Department Community Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany.
| | - Alexandra Kraberg
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Division Biosciences/Shelf Sea System Ecology, Kurpromenade 201, Helgoland, Germany.
| | - Harald Asmus
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Wadden Sea Station Sylt, 25992 List, Germany.
| | - Ragnhild Asmus
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Wadden Sea Station Sylt, 25992 List, Germany.
| | - Thomas Brey
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Division Biosciences/Functional Ecology, Am Handelshafen 12, 27570 Bremerhaven, Germany; University Bremen, Germany.
| | - Stephan Frickenhaus
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Division Biosciences/Scientific Computing, Am Handelshafen 12, 27570 Bremerhaven, Germany; University of Applied Sciences Bremerhaven, An der Karlstadt 8, 27568 Bremerhaven, Germany.
| | - Julian Gutt
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Division Biosciences/Bentho-Pelagic Processes, Am Alten Hafen 26, 27568 Bremerhaven, Germany.
| | - Ingolf Kühn
- UFZ - Helmholtz-Centre for Environmental Research, Department Community Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany.
| | - Matthias Liess
- UFZ - Helmholtz-Centre for Environmental Research, Department System-Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany.
| | - Martin Musche
- UFZ - Helmholtz-Centre for Environmental Research, Department Community Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany.
| | - Hans-O Pörtner
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Division Biosciences/Integrative Ecophysiology, Am Handelshafen 12, 27570 Bremerhaven, Germany.
| | - Ralf Seppelt
- UFZ - Helmholtz-Centre for Environmental Research, Department Computational Landscape Ecology, Permoserstr. 15, 04318 Leipzig, Germany.
| | - Stefan Klotz
- UFZ - Helmholtz-Centre for Environmental Research, Department Community Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany.
| | - Gesche Krause
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Division Climate Sciences/Climate Dynamics, Bussestr. 24, 27570 Bremerhaven, Germany.
| |
Collapse
|
30
|
Geiß C, Ruppert K, Heidelbach T, Oehlmann J. The antimicrobial agents triclocarban and triclosan as potent modulators of reproduction in Potamopyrgus antipodarum (Mollusca: Hydrobiidae). JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2016; 51:1173-1179. [PMID: 27459681 DOI: 10.1080/10934529.2016.1206388] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this study, we assessed the chronic effects of the two antimicrobial substances triclocarban (TCC) and triclosan (TCS) on reproduction of a mollusk species by using the reproduction test with the New Zealand mudsnail Potamopyrgus antipodarum. Snails coming from a laboratory culture were exposed for 28 days to nominal concentrations ranging from 0.1 up to 10 µg/L for both chemicals (measured 0.082-8.85 µg TCC/L; 0.068-6.26 µg TCS/L). At the end of the experiment, snails were dissected and embryos in the brood pouch were counted to assess the individualized reproductive success of adult snails. Exposure to TCC resulted in an inverted u-shaped concentration-response relationship, with a stimulation of reproduction at low concentrations followed by an inhibition at higher concentrations. The no observed effect concentration (NOEC) and the lowest observed effect concentration (LOEC) were 0.082 and 0.287 µg/L, respectively. TCS caused significantly increased embryo numbers at all tested concentrations, except in the group of 0.170 µg/L. Therefore, the NOEC for TCS was 0.170 µg/L and the LOEC was 0.660 µg/L. These results indicate that TCC and TCS may cause reproductive effects at environmentally relevant concentrations indicating a potential risk for aquatic organisms in the environment.
Collapse
Affiliation(s)
- Cornelia Geiß
- a Department of Aquatic Ecotoxicology , Goethe University Frankfurt am Main , Frankfurt , Germany
| | - Katharina Ruppert
- a Department of Aquatic Ecotoxicology , Goethe University Frankfurt am Main , Frankfurt , Germany
| | - Tanja Heidelbach
- a Department of Aquatic Ecotoxicology , Goethe University Frankfurt am Main , Frankfurt , Germany
| | - Jörg Oehlmann
- a Department of Aquatic Ecotoxicology , Goethe University Frankfurt am Main , Frankfurt , Germany
| |
Collapse
|
31
|
Omran NE, Salama WM. The endocrine disruptor effect of the herbicides atrazine and glyphosate on Biomphalaria alexandrina snails. Toxicol Ind Health 2016; 32:656-65. [PMID: 24215068 DOI: 10.1177/0748233713506959] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Atrazine (AZ) and glyphosate (GL) are herbicides that are widely applied to cereal crops in Egypt. The present study was designed to investigate the response of the snailBiomphalaria alexandrina(Mollusca: Gastropoda) as a bioindicator for endocrine disrupters in terms of steroid levels (testosterone (T) and 17β-estradiol (E)), alteration of microsomal CYP4501B1-like immunoreactivity, total protein (TP) level, and gonadal structure after exposure to sublethal concentrations of AZ or GL for 3 weeks. In order to study the ability of the snails' recuperation, the exposed snails were subjected to a recovery period for 2 weeks. The results showed that the level of T, E, and TP contents were significantly decreased (p ≤ 0.05) in both AZ- and GL-exposed groups compared with control (unexposed) group. The level of microsomal CYP4501B1-like immunoreactivity increased significantly (p ≤ 0.05) in GL- and AZ-exposed snails and reach nearly a 50% increase in AZ-exposed group. Histological investigation of the ovotestis showed that AZ and GL caused degenerative changes including azoospermia and oocytes deformation. Interestingly, all the recovered groups did not return back to their normal state. It can be concluded that both herbicides are endocrine disrupters and cause cellular toxicity indicated by the decrease of protein content and the increase in CYP4501B1-like immunoreactivity. This toxicity is irreversible and the snail is not able to recover its normal state. The fluctuation of CYP4501B1 suggests that this vertebrate-like enzyme may be functional also in the snail and may be used as a biomarker for insecticide toxicity.
Collapse
|
32
|
Zuliani T, Mladenovič A, Ščančar J, Milačič R. Chemical characterisation of dredged sediments in relation to their potential use in civil engineering. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:234. [PMID: 27000319 DOI: 10.1007/s10661-016-5239-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 03/14/2016] [Indexed: 06/05/2023]
Abstract
During capital and/or maintenance dredging operations, large amounts of material are produced. Instead of their discharge, dredged sediments may be a valuable natural resource if not contaminated. One of the possible areas of application is civil engineering. In the present work, the environmental status of seaport dredged sediment was evaluated in order to investigate its potential applicability as a secondary raw material. Sediments were analysed for element concentrations in digested samples, aqueous extracts and fractions from sequential extraction; for fluoride, chloride and sulphate concentrations in aqueous extracts; and for tributyltin (TBT). Granulometric and mineralogical compositions were also analysed. The elemental impact was evaluated by calculation of the enrichment factors. The total element concentrations determined showed moderate contamination of the dredged sediments as was confirmed also by their moderate enrichment factors, presumably as a result of industrial and port activities. Elemental concentrations in the aqueous extract were very low and therefore do not represent any hazard for the environment. The water-soluble element concentrations were under the threshold levels set by the EU Directive on the landfill of waste, on the basis of which the applicability of dredged sediments in civil engineering is evaluated, while the content of chloride and sulphate were above the threshold levels. It was found out that due to the large amounts of sediment available, civil engineering applications such as the construction of embankments and backfilling is the most beneficial recycling solution at present.
Collapse
Affiliation(s)
- Tea Zuliani
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.
| | - Ana Mladenovič
- Slovenian National Building and Civil Engineering Institute, Dimičeva 12, 1000, Ljubljana, Slovenia
| | - Janez Ščančar
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova 39, 1000, Ljubljana, Slovenia
| | - Radmila Milačič
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova 39, 1000, Ljubljana, Slovenia
| |
Collapse
|
33
|
Lee JW, Won EJ, Raisuddin S, Lee JS. Significance of adverse outcome pathways in biomarker-based environmental risk assessment in aquatic organisms. J Environ Sci (China) 2015; 35:115-127. [PMID: 26354700 DOI: 10.1016/j.jes.2015.05.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 05/22/2015] [Accepted: 05/28/2015] [Indexed: 06/05/2023]
Abstract
In environmental risk assessments (ERA), biomarkers have been widely used as an early warning signal of environmental contamination. However, biomarker responses have limitation due to its low relevance to adverse outcomes (e.g., fluctuations in community structure, decreases in population size, and other similar ecobiologically relevant indicators of community structure and function). To mitigate these limitations, the concept of adverse outcome pathways (AOPs) was developed. An AOP is an analytical, sequentially progressive pathway that links a molecular initiating event (MIE) to an adverse outcome. Recently, AOPs have been recognized as a potential informational tool by which the implications of molecular biomarkers in ERA can be better understood. To demonstrate the utility of AOPs in biomarker-based ERA, here we discuss a series of three different biological repercussions caused by exposure to benzo(a)pyrene (BaP), silver nanoparticles (AgNPs), and selenium (Se). Using mainly aquatic invertebrates and selected vertebrates as model species, we focus on the development of the AOP concept. Aquatic organisms are suitable bioindicator species whose entire lifespans can be observed over a short period; moreover, these species can be studied on the molecular and population levels. Also, interspecific differences between aquatic organisms are important to consider in an AOP framework, since these differences are an integral part of the natural environment. The development of an environmental pollutant-mediated AOP may enable a better understanding of the effects of environmental pollutants in different scenarios in the diverse community of an ecosystem.
Collapse
Affiliation(s)
- Jin Wuk Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Eun-Ji Won
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Sheikh Raisuddin
- Department of Medical Elementology and Toxicology, Hamdard University, New Delhi 110062, India
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea.
| |
Collapse
|
34
|
Morishita F, Furukawa Y, Kodani Y, Minakata H, Horiguchi T, Matsushima O. Molecular cloning of precursors for TEP-1 and TEP-2: The GGNG peptide-related peptides of a prosobranch gastropod, Thais clavigera. Peptides 2015; 68:72-82. [PMID: 25451871 DOI: 10.1016/j.peptides.2014.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/17/2014] [Accepted: 10/17/2014] [Indexed: 11/15/2022]
Abstract
TEP (Thais excitatory peptide)-1 and TEP-2 are molluscan counterparts of annelidan GGNG-peptides, identified in a neogastropod, Thais clavigera (Morishita et al., 2006). We have cloned two cDNAs encoding TEP-1 and TEP-2 precursor protein, respectively, by the standard molecular cloning techniques. Predicted TEP-1 precursor protein consists of 161 amino acids, while predicted TEP-2 precursor protein has 118 amino acids. Only a single copy of TEP was found on the respective precursor. The semi-quantitative RT-PCR showed that expression of TEP-1 was high in sub-esophageal, pleural, pedal and visceral ganglia, while it was low in supra-esophageal ganglion. By contrast, expression level of TEP-2 was high in pedal and visceral ganglia. In situ hybridization visualized different subsets of TEP-1 and TEP-2 expressing neurons in Thais ganglia. For example, supra-esophageal ganglion contained many TEP-2 expressing neuron, but not TEP-1 expressing ones. These results suggest that expression of TEP-1 and TEP-2 is differently regulated in the Thais ganglia.
Collapse
Affiliation(s)
- Fumihiro Morishita
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| | - Yasuo Furukawa
- Division of Human Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Yu Kodani
- Division of Human Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Hiroyuki Minakata
- Suntory Foundation for Life Sciences, 1-1-1 Wakayamadai, Shimamoto, Osaka 618-8503, Japan
| | - Toshihiro Horiguchi
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan
| | - Osamu Matsushima
- Department of Global Environment Studies, Faculty of Environmental Studies, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan
| |
Collapse
|
35
|
Hayes KA, Burks RL, Castro-Vazquez A, Darby PC, Heras H, Martín PR, Qiu JW, Thiengo SC, Vega IA, Wada T, Yusa Y, Burela S, Cadierno MP, Cueto JA, Dellagnola FA, Dreon MS, Frassa MV, Giraud-Billoud M, Godoy MS, Ituarte S, Koch E, Matsukura K, Pasquevich MY, Rodriguez C, Saveanu L, Seuffert ME, Strong EE, Sun J, Tamburi NE, Tiecher MJ, Turner RL, Valentine-Darby PL, Cowie RH. Insights from an Integrated View of the Biology of Apple Snails (Caenogastropoda: Ampullariidae). MALACOLOGIA 2015. [DOI: 10.4002/040.058.0209] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Park JJ, Shin YK, Hung SS, Romano N, Cheon YP, Kim JW. Reproductive impairment and intersexuality inGomphina veneriformis(Bivalvia: Veneridae) by the tributyltin compound. Anim Cells Syst (Seoul) 2015. [DOI: 10.1080/19768354.2014.995225] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
37
|
Liu T, Li Y, Zhao X, Zhang M, Gu W. Ethylparaben affects lifespan, fecundity, and the expression levels of ERR, EcR and YPR in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2014; 71:1-7. [PMID: 25265034 DOI: 10.1016/j.jinsphys.2014.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 09/12/2014] [Accepted: 09/18/2014] [Indexed: 06/03/2023]
Abstract
Parabens, which mainly include methylparaben (MP), ethylparaben (EP), propylparaben (PP), and butylparaben (BP), are widely used as cosmetic and food preservatives. Although these chemicals, when used as preservatives, are thought to be safe for humans, many studies have demonstrated that they have estrogenic effects, and can affect the normal development and functions of the reproductive systems in a number of animal species. By treating fruit flies (Drosophila melanogaster) with EP, here we show that lower concentration of EP (0.02%) enhanced fertility while higher concentration of EP (0.10% and 0.20%) shortened the lifespan and reduced the fecundity of fruit flies. When we analyzed the expression levels of the estrogen-related receptor gene (ERR), ecdysone receptor gene (EcR) and Yolk protein receptor gene (YPR) from control and EP-treated fruit flies by using quantitative real-time PCR, we found that the expression levels of all three genes were significantly changed by EP treatment, and that female fruit flies are more sensitive to EP than males. Our data suggests that the estrogenic and the toxic effects of EP to fruit flies may have a molecular basis through the hormonal effect of EP.
Collapse
Affiliation(s)
- Ting Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, PR China
| | - Yajuan Li
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, PR China
| | - Xiaojun Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, PR China
| | - Min Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, PR China
| | - Wei Gu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, PR China.
| |
Collapse
|
38
|
Falfushynska HI, Gnatyshyna LL, Osadchuk OY, Farkas A, Vehovszky A, Carpenter DO, Gyori J, Stoliar OB. Diversity of the molecular responses to separate wastewater effluents in freshwater mussels. Comp Biochem Physiol C Toxicol Pharmacol 2014; 164:51-8. [PMID: 24816276 DOI: 10.1016/j.cbpc.2014.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/22/2014] [Accepted: 04/29/2014] [Indexed: 01/14/2023]
Abstract
The environmental safety of pharmaceutical and personal care products (PPCPs) requires a crucial examination. The aim of this study was to evaluate the responses of biomarkers of stress and toxicity in freshwater mussels to the effect of commonly found PPCPs in wastewater. We treated male mussels Unio tumidus, from an undisturbed site with ibuprofen (IBU, 250 ng L(-1)), triclosan (TCS, 500 ng L(-1)), or estrone (E1, 100 ng L(-1)) for 14 days. Untreated mussels from this site (C) and mussels inhabiting a polluted area (P) were also examined after a similar time of being kept in the laboratory. The consequences of chronic exposure of the mussels in the P-group were reflected in elevated concentrations of oxyradicals (1.4 times), oxidized glutathione (4.3 times), lipofuscin (2.2 times), and DNA-strand breaks in the digestive gland (DG) in comparison to the C-group, higher levels of caspase-3 activity in the DG, and vitellogenin-like proteins in gonads among all studied groups. Exposed mussels demonstrated some common responses with mussels in the P-group: elevated levels of lactate/pyruvate ratio, lipofuscin (IBU and E1), DNA fragmentation (TCS and E1), and caspase-3 activity (TCS and E1). Exposed to PPCPs mussels also showed elevation of ethoxyresorufin-O-deethylase and/or glutathione-S-transferase activity in the DG and a decrease in lysosomal stability in hemocytes (TCS and E1). The TCS group was distinguished by having the highest level of DNA-fragmentation and the lowest concentrations of total glutathione, oxyradicals, lipofuscin, pyruvate, and lactate, reflecting total metabolic depression. These results show that selected PPCPs at low concentrations alter a variety of physiological processes in this animal model system.
Collapse
Affiliation(s)
- Halina I Falfushynska
- Research Laboratory of Comparative Biochemistry and Molecular Biology, Ternopil National Pedagogical University, M. Kryvonosa Str., 2, Ternopil, 46027, Ukraine
| | - Lesya L Gnatyshyna
- Research Laboratory of Comparative Biochemistry and Molecular Biology, Ternopil National Pedagogical University, M. Kryvonosa Str., 2, Ternopil, 46027, Ukraine
| | - Olesya Y Osadchuk
- Research Laboratory of Comparative Biochemistry and Molecular Biology, Ternopil National Pedagogical University, M. Kryvonosa Str., 2, Ternopil, 46027, Ukraine
| | - Anna Farkas
- Balaton Limnological Institute, Centre for Ecological Research, Hungarian Academy of Sciences, Klebelsberg str. 3, Tihany 8237, Hungary
| | - Agnes Vehovszky
- Balaton Limnological Institute, Centre for Ecological Research, Hungarian Academy of Sciences, Klebelsberg str. 3, Tihany 8237, Hungary
| | - David O Carpenter
- Institute for Health and the Environment, University at Albany, Rensselaer, NY 12144, USA
| | - Janos Gyori
- Balaton Limnological Institute, Centre for Ecological Research, Hungarian Academy of Sciences, Klebelsberg str. 3, Tihany 8237, Hungary
| | - Oksana B Stoliar
- Research Laboratory of Comparative Biochemistry and Molecular Biology, Ternopil National Pedagogical University, M. Kryvonosa Str., 2, Ternopil, 46027, Ukraine.
| |
Collapse
|
39
|
Leonard JA, Cope WG, Barnhart MC, Bringolf RB. Metabolomic, behavioral, and reproductive effects of the synthetic estrogen 17 α-ethinylestradiol on the unionid mussel Lampsilis fasciola. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 150:103-116. [PMID: 24667233 DOI: 10.1016/j.aquatox.2014.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/27/2014] [Accepted: 03/04/2014] [Indexed: 06/03/2023]
Abstract
The endocrine disrupting effects of estrogenic compounds in surface waters on fish, such as feminization of males and altered sex ratios, may also occur in aquatic invertebrates. However, the underlying mechanisms of action and toxicity, especially in native freshwater mussels (Order Unionoida), remain undefined. This study evaluated the effects of a 12-day exposure of 17 α-ethinylestradiol (EE2), a synthetic estrogen in oral contraceptives commonly found in surface waters, on the behavior, condition, metabolism, and reproductive status of Lampsilis fasciola. Adult mussels of both sexes were exposed to a control and two concentrations of EE2 (0 ng/L, 5 ng/L considered to be environmentally relevant, and 1,000 ng/L designed to provide a positive metabolic response), and samples of gill tissue were taken on days 4 and 12; gills were used because of the variety of critical processes they mediate, such as feeding, ion exchange, and siphoning. Observations of mussel behavior (mantle display, siphoning, and foot movement) were made daily, and condition of conglutinates (packets of eggs and/or glochidia) released by females was examined. No significant effects of EE2 on glochidia mortality, conglutinate condition, female marsupial gill condition, or mussel foot extension were observed. However, exposure to both concentrations of EE2 significantly reduced male siphoning and mantle display behavior of females. Metabolomics analyses identified 207 known biochemicals in mussel gill tissue and showed that environmentally relevant EE2 concentrations led to decreases in glycogen metabolism end products, glucose, and several essential fatty acids in females after 12 days, indicating reductions in energy reserves that could otherwise be used for growth or reproduction. Moreover, males and females showed significant alterations in metabolites involved in signal transduction, immune response, and neuromodulation. Most of these changes were apparent at 1,000 ng/L EE2, but similar metabolites and pathways were also affected at 5 ng/L EE2. Components of the extracellular matrix of gill tissue were also altered. These results demonstrate the utility of metabolomics when used in conjunction with traditional physiological and behavioral toxicity test endpoints and establish the usefulness of this approach in determining possible underlying toxicological mechanisms of EE2 in exposed freshwater mussels.
Collapse
Affiliation(s)
- Jeremy A Leonard
- Department of Applied Ecology, North Carolina State University, Box 7617, Raleigh, NC 27695, United States.
| | - W Gregory Cope
- Department of Applied Ecology, North Carolina State University, Box 7617, Raleigh, NC 27695, United States
| | - M Christopher Barnhart
- Department of Biology, Missouri State University, 901 South Avenue, Springfield, MO 65897, United States
| | - Robert B Bringolf
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 East Green Street, Athens, GA 30602, United States
| |
Collapse
|
40
|
Zounkova R, Jalova V, Janisova M, Ocelka T, Jurcikova J, Halirova J, Giesy JP, Hilscherova K. In situ effects of urban river pollution on the mudsnail Potamopyrgus antipodarum as part of an integrated assessment. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 150:83-92. [PMID: 24658013 DOI: 10.1016/j.aquatox.2014.02.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/07/2014] [Accepted: 02/27/2014] [Indexed: 06/03/2023]
Abstract
The freshwater mudsnail (Potamopyrgus antipodarum) is sensitive to toxicity of both sediment and water and also to the endocrine disrupting compounds (EDC) at environmentally relevant concentrations. This study determined effects of in situ exposure of P. antipodarum as a part of a complex assessment of the impact of a city metropolitan area with large waste water treatment plant (WWTP) for 0.5 million population equivalents on two urban rivers. The study combined the in situ biotest with detailed chemical analyses and a battery of in vitro bioassays of both sediment and water. Passive sampling of river water was conducted during the course of exposure of the mudsnail. P. antipodarum was exposed for 8 weeks in cages permeable to sediment and water at localities up- and down-stream of the city of Brno, Czech Republic and downstream of the WWTP in two rivers. Greater mortality and significantly decreased embryo production of P. antipodarum were observed immediately downstream of the city of Brno. P. antipodarum exposed at locations downstream of the metropolitan area and WWTP exhibited greater mortality, while numbers of embryos produced by surviving individuals were comparable or slightly greater than for individuals held at the least polluted location. Comparisons with results of chemical analysis and in vitro assays indicate occurrence of groups of compounds contributing to observed effects. Differences in mortalities of mudsnails among sites corresponded well with in vitro cytotoxicity and concentrations of metals. The results of this study confirm the applicability of this novel field biotest with P. antipodarum for the evaluation of the effects of river pollution on metazoans, especially as suitable in situ part of integrative contamination assessment.
Collapse
Affiliation(s)
- Radka Zounkova
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Veronika Jalova
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Martina Janisova
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Tomas Ocelka
- Institute of Public Health, Partyzánské nám. 7, 70200 Ostrava, Czech Republic
| | - Jana Jurcikova
- Institute of Public Health, Partyzánské nám. 7, 70200 Ostrava, Czech Republic
| | - Jarmila Halirova
- Czech Hydrometeorological Institute, Kroftova 2578/43, 61600 Brno, Czech Republic
| | - John P Giesy
- Department Biomedical Veterinary Sciences and Toxicology Centre, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4 Saskatchewan, Canada; Department of Zoology, and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA; Department of Biology and Chemistry and State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region; School of Biological Sciences, University of Hong Kong, Hong Kong Special Administrative Region; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Klara Hilscherova
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 62500 Brno, Czech Republic.
| |
Collapse
|
41
|
Zhang Y, Wang Q, Ji Y, Zhang Q, Wu H, Xie J, Zhao J. Identification and mRNA expression of two 17β-hydroxysteroid dehydrogenase genes in the marine mussel Mytilus galloprovincialis following exposure to endocrine disrupting chemicals. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:1243-1255. [PMID: 24835553 DOI: 10.1016/j.etap.2014.04.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 06/03/2023]
Abstract
17β-Hydroxysteroid dehydrogenases (17β-HSDs) are multifunctional enzymes involved in the metabolism of steroids, fatty acids, retinoids and bile acid. In this study, two novel types of 17β-HSDs (named as MgHsd17b10 and MgHsd17b12) were cloned from Mytilus galloprovincialis by using rapid amplification of cDNA ends (RACE) approaches. Sequence analysis showed that MgHsd17b10 and MgHsd17b12 encoded a polypeptide of 259 and 325 amino acids, respectively. Phylogenetic analysis revealed that MgHsd17b10 and MgHsd17b12 were evolutionarily clustered with other invertebrate 17β-HSD type 10 and 17β-HSD type 12 homologues. The MgHsd17b10 and MgHsd17b12 transcripts could be detected in all examined tissues with higher expression levels in digestive glands and gonad. After exposed to endocrine disrupting chemicals (Bisphenol A or 2,2',4,4'-tetrabromodiphenyl ether), the expression of MgHsd17b10 and MgHsd17b12 transcripts was both down-regulated in digestive glands. These findings suggest that MgHsd17b10 and MgHsd17b12 perhaps play an important role in the endocrine regulation of M. galloprovincialis.
Collapse
Affiliation(s)
- Yingying Zhang
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qing Wang
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Yinglu Ji
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Qian Zhang
- China Agriculture University (Yantai), Yantai 264670, PR China
| | - Huifeng Wu
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| | - Jia Xie
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jianmin Zhao
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| |
Collapse
|
42
|
Hultin CL, Hallgren P, Persson A, Hansson MC. Identification of an estrogen receptor gene in the natural freshwater snail Bithynia tentaculata. Gene 2014; 540:26-31. [DOI: 10.1016/j.gene.2014.02.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 01/29/2014] [Accepted: 02/24/2014] [Indexed: 12/29/2022]
|
43
|
Assessing the Continuous Impact of Tributyltin from Antifouling Paints in a Brazilian Mangrove Area Using Intersex in Littoraria angulifera (Lamarck, 1822) as Biomarker. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/769415] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Intersex is a sensitive biomarker of TBT exposure and effects in littorinid gastropods and described for the mangrove periwinkle Littoraria angulifera for the first time in this study. The objective was to describe the occurrence of intersex in L. angulifera, to propose the species as a sentinel organism to assess TBT contamination, and to characterize the contamination in mangroves. The study was carried out in 2009 by sampling at 20 stations near harbors and marinas and at a reference station on the coast of Espírito Santo Estate, Brazil. At the reference station, no intersex specimens were found, while at 20 sampling stations 51% of the females exhibited different degrees of intersex development, including the occurrence of functionally sterilized females. The highest incidence of intersex and greatest intersex intensities was found in areas close to marinas and shipyards indicating that vessel-related activities are still the main source of TBT contamination. L. angulifera collected from stations in areas with well-preserved mangroves was larger than specimens collected from other areas. These differences are attributed to environmental quality and not to occurrence of intersex. The results indicate that this region is still affected by TBT contamination and that L. angulifera has the required sensitivity to be used as a bioindicator.
Collapse
|
44
|
De Castro-Català N, López-Doval J, Gorga M, Petrovic M, Muñoz I. Is reproduction of the snail Physella acuta affected by endocrine disrupting compounds? An in situ bioassay in three Iberian basins. JOURNAL OF HAZARDOUS MATERIALS 2013; 263 Pt 1:248-255. [PMID: 23972665 DOI: 10.1016/j.jhazmat.2013.07.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/24/2013] [Accepted: 07/25/2013] [Indexed: 06/02/2023]
Abstract
An in situ bioassay was conducted in three Iberian basins (Ebro, Llobregat and Júcar Rivers) to study the reproductive effects on the freshwater snail Physella acuta. Adult individuals were transplanted in specially designed cylindrical cages. Endpoints included mortality, number of eggs and clutches, number of eggs per clutch and embryo development after 8 days. The results were contrasted with laboratory controls. Significant changes in P. acuta reproduction parameters were detected in all of the rivers: the number of clutches or eggs per snail decreased in the Ebro and Llobregat basins downstream but the number of eggs per clutch increased. The complete development of snails was delayed at some sites downstream in the Júcar and the Ebro basins. The results were contrasted with concentrations of Endocrine Disrupting Compounds (EDCs) and their Estrogenic Equivalent Quotients (EEQs). Positive relationships (Pearson correlations) were identified between the number of eggs per clutch and the total EDC concentration, bisphenol A (BPA) and their EEQs, lipid regulators and diuretics. These endocrine-disrupting chemicals may constitute a toxicological risk for the reproductive performance of snails in the studied basins.
Collapse
Affiliation(s)
- N De Castro-Català
- Department of Ecology, University of Barcelona, Av. Diagonal, 643, 08028 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
45
|
Luna TO, Plautz SC, Salice CJ. Effects of 17α-ethynylestradiol, fluoxetine, and the mixture on life history traits and population growth rates in a freshwater gastropod. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:2771-2778. [PMID: 23983099 DOI: 10.1002/etc.2372] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/17/2013] [Accepted: 08/15/2013] [Indexed: 06/02/2023]
Abstract
Pharmaceutical and personal care products (PPCPs), some of which have endocrine-disrupting effects at environmentally relevant concentrations, have been detected in many surface waters. The authors evaluated the effects of 2 common endocrine disrupting PPCPs on the life history traits of the snail, Physa pomilia, using a life table response experiment with snails raised in environmentally relevant concentrations of 17α-ethynylestradiol (EE2), fluoxetine, or their mixture. Exposure to fluoxetine or the mixture reduced snail reproduction, but EE2 did not. Generally, individual life history traits were affected minimally by the PPCPs, but when integrated using a demographic model, all 3 chemical exposure scenarios decreased population growth rates, with the EE2 and fluoxetine mixture causing the most adverse effects. Overall, the results provide additional insight into the effects of PPCPs on freshwater invertebrates and point to the importance of testing simultaneous exposures to multiple PPCPs. In addition, using a demographic model to integrate individual endpoints provided insights into effects that were not apparent from individual life history traits alone and suggest at least a potential for adverse ecological effects under realistic environmental exposures concentrations.
Collapse
Affiliation(s)
- Tamara O Luna
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, USA
| | | | | |
Collapse
|
46
|
Zachar N, Neiman M. Profound effects of population density on fitness-related traits in an invasive freshwater snail. PLoS One 2013; 8:e80067. [PMID: 24278240 PMCID: PMC3836992 DOI: 10.1371/journal.pone.0080067] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/05/2013] [Indexed: 11/18/2022] Open
Abstract
Population density can profoundly influence fitness-related traits and population dynamics, and density dependence plays a key role in many prominent ecological and evolutionary hypotheses. Here, we evaluated how individual-level changes in population density affect growth rate and embryo production early in reproductive maturity in two different asexual lineages of Potamopyrgus antipodarum, a New Zealand freshwater snail that is an important model system for ecotoxicology and the evolution of sexual reproduction as well as a potentially destructive worldwide invader. We showed that population density had a major influence on individual growth rate and early-maturity embryo production, effects that were often apparent even when comparing treatments that differed in population density by only one individual. While individual growth rate generally decreased as population density increased, we detected a hump-shaped relationship between embryo production and density, with females from intermediate-density treatments producing the most embryos and females from low- and high-density treatments producing the fewest embryos. The two lineages responded similarly to the treatments, indicating that these effects of population density might apply more broadly across P. antipodarum. These results indicate that there are profound and complex relationships between population density, growth rate, and early-maturity embryo production in at least two lineages of this important model system, with potential implications for the study of invasive populations, research on the maintenance of sex, and approaches used in ecotoxicology.
Collapse
Affiliation(s)
- Nicholas Zachar
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Maurine Neiman
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
47
|
Giraud-Billoud M, Vega IA, Wuilloud RG, Clément ME, Castro-Vazquez A. Imposex and novel mechanisms of reproductive failure induced by tributyltin (TBT) in the freshwater snail Pomacea canaliculata. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:2365-2371. [PMID: 23775621 DOI: 10.1002/etc.2310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 01/28/2013] [Accepted: 06/12/2013] [Indexed: 06/02/2023]
Abstract
The effects of tributyltin (TBT) on mortality and reproduction were studied in the invasive snail Pomacea canaliculata. The nominal median lethal concentration (LC50) was 9 µg TBT/L, after 28 d. The nominal no-observed effect on lethality concentration (NOECL) was 6 µg TBT/L after the same period. Male-female couples and females that had been group-mated but were isolated from males during the experiment (isolated females) were exposed (for 28 d) to either 0 µg/L or 6 µg/L of TBT (nominal NOECL-exposed). Copulation and oviposition frequencies, egg clutch mass, and percentage of egg fertility were recorded. Gonads (both sexes) and the seminal receptacle (females) were studied histologically at the end of the experiment. A significant decrease in copulation frequency was observed in mated-exposed females. Exposure also decreased oviposition frequency of mated-exposed and isolated-exposed females, but only the latter reached significance. No differences in either egg clutch mass or percentage of fertility were observed at first oviposition, but both parameters were drastically reduced in subsequent egg clutches of exposed females. No histological alterations were observed in gonads of TBT-exposed animals; however, sperm storage in the seminal receptacle was drastically decreased in exposed females. Imposex but no oviductal obstruction was observed in all exposed females. It is concluded that TBT induces reproductive failure in P. canaliculata by decreasing copulation frequency and by severely affecting sperm storage by the female.
Collapse
|
48
|
De Lisa E, Carella F, De Vico G, Di Cosmo A. The gonadotropin releasing hormone (GnRH)-like molecule in prosobranch Patella caerulea: potential biomarker of endocrine-disrupting compounds in marine environments. Zoolog Sci 2013; 30:135-40. [PMID: 23387848 DOI: 10.2108/zsj.30.135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It has been reported that endocrine disrupter compounds (EDCs) interfere with the endocrine system, mimicking the action of sex steroid hormones in different species of mollusks. Prosobranchs are frequently used as a reliable bioindicator to evaluate EDC exposure. In this article, we evaluate the effects of the xenoestrogen 4-n-nonylphenol (NP) in the prosobranch gastropod Patella caerulea, which exhibits protandrous hermaphroditism as its reproductive strategy. We isolated a partial sequence of a GnRH-like molecule from the gonads of Patella caerulea. The deduced amino acid sequence is highly homologous to that reported for the Lottia gigantea GnRH. Patella caerulea GnRH (pGnRH) mRNA expression is widespread in both male and female germ lines during gametogenesis. We suggest pGnRH as a novel biomarker for the early assessment of presence of EDCs and monitoring short and long-term impacts on Patella caerulea community structure.
Collapse
Affiliation(s)
- Emilia De Lisa
- Department of Structural and Functional Biology, University of Napoli "Federico II", via Cinthia, 80126 Napoli, Italy
| | | | | | | |
Collapse
|
49
|
Seeland A, Albrand J, Oehlmann J, Müller R. Life stage-specific effects of the fungicide pyrimethanil and temperature on the snail Physella acuta (Draparnaud, 1805) disclose the pitfalls for the aquatic risk assessment under global climate change. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 174:1-9. [PMID: 23246620 DOI: 10.1016/j.envpol.2012.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 10/08/2012] [Accepted: 10/10/2012] [Indexed: 06/01/2023]
Abstract
It can be suggested that the combined stress of pesticide pollution and suboptimal temperature influences the sensitivity of life stages of aquatic invertebrates differently. The embryo, juvenile, half- and full-life-cycle toxicity tests performed with the snail Physella acuta at different concentrations (0.06-0.5 or 1.0 mg L(-1)) of the model fungicide pyrimethanil at 15, 20 and 25 °C revealed, that pyrimethanil caused concentration-dependent effects at all test temperatures. Interestingly, the ecotoxicity of pyrimethanil was higher at lower (suboptimal) temperature for embryo hatching and F(1) reproduction, but its ecotoxicity for juvenile growth and F(0) reproduction increased with increasing temperature. The life-stage specific temperature-dependent ecotoxicity of pyrimethanil and the high fungicide susceptibility of the invasive snail clearly demonstrate the complexity of pesticide-temperature interactions and the challenge to draw conclusions for the risk of pesticides under the impact of global climate change.
Collapse
Affiliation(s)
- Anne Seeland
- Goethe University Frankfurt am Main, Department Aquatic Ecotoxicology, Max-von-Laue-Strasse 13, D-60438 Frankfurt, Germany.
| | | | | | | |
Collapse
|
50
|
Scott AP. Do mollusks use vertebrate sex steroids as reproductive hormones? II. Critical review of the evidence that steroids have biological effects. Steroids 2013; 78:268-81. [PMID: 23219696 DOI: 10.1016/j.steroids.2012.11.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 10/22/2012] [Accepted: 11/02/2012] [Indexed: 01/02/2023]
Abstract
In assessing the evidence as to whether vertebrate sex steroids (e.g. testosterone, estradiol, progesterone) have hormonal actions in mollusks, ca. 85% of research papers report at least one biological effect; and 18 out of 21 review papers (published between 1970 and 2012) express a positive view. However, just under half of the research studies can be rejected on the grounds that they did not actually test steroids, but compounds or mixtures that were only presumed to behave as steroids (or modulators of steroids) on the basis of their effects in vertebrates (e.g. Bisphenol-A, nonylphenol and sewage treatment effluents). Of the remaining 55 papers, some can be criticized for having no statistical analysis; some for using only a single dose of steroid; others for having irregular dose-response curves; 40 out of the 55 for not replicating the treatments; and 50 out of 55 for having no within-study repetition. Furthermore, most studies had very low effect sizes in comparison to fish-based bioassays for steroids (i.e. they had a very weak 'signal-to-noise' ratio). When these facts are combined with the fact that none of the studies were conducted with rigorous randomization or 'blinding' procedures (implying the possibility of 'operator bias') one must conclude that there is no indisputable bioassay evidence that vertebrate sex steroids have endocrinological or reproductive roles in mollusks. The only observation that has been independently validated is the ability of estradiol to trigger rapid (1-5 min) lysosomal membrane breakdown in hemocytes of Mytilus spp. This is a typical 'inflammatory' response, however, and is not proof that estradiol is a hormone - especially when taken in conjunction with the evidence (discussed in a previous review) that mollusks have neither the enzymes necessary to synthesize vertebrate steroids nor nuclear receptors with which to respond to them.
Collapse
Affiliation(s)
- Alexander P Scott
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, UK.
| |
Collapse
|