1
|
Masanova V, Uhnakova I, Wimmerova S, Trnovec T, Sovcikova E, Patayova H, Murinova LP. As, Cd, Hg, and Pb Biological Concentrations and Anthropometry in Slovak Adolescents. Biol Trace Elem Res 2024:10.1007/s12011-024-04484-y. [PMID: 39699706 DOI: 10.1007/s12011-024-04484-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
Anthropometry provides a non-invasive technique for evaluating growth and obesity and serves as an indicator of health status. This cross-sectional study aims to investigate the association of internal arsenic (As), cadmium (Cd), total mercury (THg), methylmercury (MeHg), and lead (Pb) exposure with anthropometric parameters, including obesity, in adolescents. Participants (N = 320) were children aged 10-14 years (mean 11.8 years) from eastern Slovakia, at an early stage of adolescence characterized by growth acceleration. Metal concentrations in blood and urine were measured by ICP-MS (for As, Cd, and Pb), GC/ICP-MS (for MeHg) and amalgamation technique AAS (for THg). Median concentrations of the studied elements in whole blood (Cd: 0.16, Pb: 10.6, THg: 0.25, MeHg: 0.11 µg/L) and urine (Cd: 0.25, Pb: 0.73, As: 3.38 µg/g creatinine) were relatively low in our study group. The results showed that blood Cd and Pb concentrations were inversely associated with several anthropometric parameters (body weight, BMI, body fat percentage, chest circumference, and waist circumference) in both boys and girls. Conversely, blood THg concentration was positively associated with these parameters in boys. A positive relationship was also observed between blood MeHg concentration and height in boys, while negative associations between blood Cd and Pb concentrations and height were significant only in girls. No associations were found between metal concentrations (As, Cd, Pb) in urine and parameters of physical growth or obesity. This study demonstrates that even low-level exposure to Cd, Pb, and Hg can influence growth and obesity indicators in adolescents, with distinct sex-specific patterns, highlighting the need for ongoing monitoring and protection against environmental metal exposure.
Collapse
Affiliation(s)
- Vlasta Masanova
- Faculty of Medicine, Slovak Medical University, Bratislava, 833 03, Slovakia
| | - Iveta Uhnakova
- Faculty of Medicine, Slovak Medical University, Bratislava, 833 03, Slovakia.
| | - Sona Wimmerova
- Faculty of Public Health, Slovak Medical University, Bratislava, 833 03, Slovakia
| | - Tomas Trnovec
- Faculty of Public Health, Slovak Medical University, Bratislava, 833 03, Slovakia
| | - Eva Sovcikova
- Faculty of Public Health, Slovak Medical University, Bratislava, 833 03, Slovakia
| | - Henrieta Patayova
- Faculty of Public Health, Slovak Medical University, Bratislava, 833 03, Slovakia
| | | |
Collapse
|
2
|
Parvez SM, Huda MM, Rahman M, Jahan F, Fujimura M, Hasan SS, Aich N, Hares A, Islam Z, Raqib R, Knibbs LD, Sly PD. Hematological, cardiovascular and oxidative DNA damage markers associated with heavy metal exposure in electronic waste (e-waste) workers of Bangladesh. Toxicology 2024; 509:153978. [PMID: 39461408 DOI: 10.1016/j.tox.2024.153978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/11/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024]
Abstract
Electronic waste (e-waste) contains hazardous elements such as lead (Pb), cadmium (Cd), mercury (Hg), and other toxic elements that pose significant health risks to the population directly exposed. We recruited 199 e-waste recycling workers and 104 non-exposed workers in Bangladesh and analyzed heavy metals in blood and hair, as well as hematological and cardiovascular parameters including, blood lipids and blood pressure. We fitted quantile regression models at 0.5 quantile to evaluate the impact of blood Pb, Cd, and total hair Hg (THg) on hematological and cardiovascular parameters and the role of oxidative DNA damage (8-OHdG as a biomarker) in mediatin the relationship between exposures and outcomes. Exposed workers had elevated median blood Pb (11.89 vs. 3.63 µg/dL), moderate blood Cd (1.04 vs. 0.99 µg/L), and lower level of THg (0.38 vs. 0.57 ppm) in hair than non-exposed workers. Adjusted estimates showed that Pb was positively associated with red blood cell (RBC), eosinophil count, eosinophil percentage; and negatively associated with mean platelet volume (MPV), platelet large cell ratio (P-LCR) and platelet volume distribution width (PDW) (all p≤0.05). Cd was only associated with 0.57 units increase in red blood cell distribution width (RDW) percentage (95 % CI: 0.18, 0.95). In cardiovascular outcomes, Pb was associated with 1.42 units decrease in triglyceride, 1.58 units increase in low-density lipoprotein (LDL), 0.07 units increase in LDL/HDL and 0.49 units increase in systolic blood pressure (all p≤0.05). No associations were observed between THg and hematological or cardiovascular parameters. Urinary 8-OHdG concentrations were lower, and it did not mediate exposure-outcome relationships (all p≥0.05). Our data imply that e-waste exposure impairs hematological parameters, blood lipids, and blood pressure secondary to elevated Pb levels and poses a threat to exposed individuals. As such, continuous monitoring in longitudinal studies is warranted to assess the dose-response relationship and identify effective control measures.
Collapse
Affiliation(s)
- Sarker Masud Parvez
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, QLD 4101, Australia; Environmental Health and WASH, Health Systems and Population Studies Division, icddr,b, Dhaka 1212, Bangladesh.
| | - M Mamun Huda
- Rural Health Research Institute, Charles Sturt University, Orange, NSW 2800, Australia
| | - Mahbubur Rahman
- Environmental Health and WASH, Health Systems and Population Studies Division, icddr,b, Dhaka 1212, Bangladesh
| | - Farjana Jahan
- Environmental Health and WASH, Health Systems and Population Studies Division, icddr,b, Dhaka 1212, Bangladesh
| | - Masatake Fujimura
- Department of Basic Medical Sciences, National Institute for Minamata Disease, Minamata, Kumamoto 867-0008, Japan
| | - Shaikh Sharif Hasan
- Environmental Health and WASH, Health Systems and Population Studies Division, icddr,b, Dhaka 1212, Bangladesh
| | - Nirupam Aich
- Department of Civil and Environmental Engineering, University of Nebraska - Lincoln, Lincoln, NE 68588, USA
| | - Abul Hares
- Environmental Health and WASH, Health Systems and Population Studies Division, icddr,b, Dhaka 1212, Bangladesh
| | - Zahir Islam
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, QLD 4101, Australia
| | - Rubhana Raqib
- Immunobiology, Nutrition and Toxicology, Nutrition Research Division, icddr,b, Dhaka 1212, Bangladesh
| | - Luke D Knibbs
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia; Public Health Research Analytics and Methods for Evidence, Public Health Unit, Sydney Local Health District, Camperdown, NSW 2050, Australia
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, QLD 4101, Australia
| |
Collapse
|
3
|
Eze C, Vinken M. E-waste: mechanisms of toxicity and safety testing. FEBS Open Bio 2024; 14:1420-1440. [PMID: 38987214 PMCID: PMC11492355 DOI: 10.1002/2211-5463.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Currently, information on the toxicity profile of the majority of the identified e-waste chemicals, while extensive and growing, is admittedly fragmentary, particularly at the cellular and molecular levels. Furthermore, the toxicity of the chemical mixtures likely to be encountered by humans during and after informal e-waste recycling, as well as their underlying mechanisms of action, is largely unknown. This review paper summarizes state-of-the-art knowledge of the potential underlying toxicity mechanisms associated with e-waste exposures, with a focus on toxic responses connected to specific organs, organ systems, and overall effects on the organism. To overcome the complexities associated with assessing the possible adverse outcomes from exposure to chemicals, a growing number of new approach methodologies have emerged in recent years, with the long-term objective of providing a human-based and animal-free system that is scientifically superior to animal testing, more effective, and acceptable. This encompasses a variety of techniques, typically regarded as alternative approaches for determining chemical-induced toxicities and holds greater promise for a better understanding of key events in the metabolic pathways that mediate known adverse health outcomes in e-waste exposure scenarios. This is crucial to establishing accurate scientific knowledge on mixed e-waste chemical exposures in shorter time frames and with greater efficacy, as well as supporting the need for safe management of hazardous chemicals. The present review paper discusses important gaps in knowledge and shows promising directions for mechanistically anchored effect-based monitoring strategies that will contribute to the advancement of the methods currently used in characterizing and monitoring e-waste-impacted ecosystems.
Collapse
Affiliation(s)
- Chukwuebuka Eze
- Entity of In Vitro Toxicology and Dermato‐Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and PharmacyVrije Universiteit BrusselBrusselsBelgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato‐Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and PharmacyVrije Universiteit BrusselBrusselsBelgium
| |
Collapse
|
4
|
Li H, Luo J, Cao M, Luo W, Li X, Shao Z, Zhu L, Feng S. Influences of earthworm activity and mucus on Cd phytoremediation based on harvesting different leaf types of tall fescue (Festuca arundinacea). PLoS One 2024; 19:e0304689. [PMID: 38875285 PMCID: PMC11178194 DOI: 10.1371/journal.pone.0304689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/16/2024] [Indexed: 06/16/2024] Open
Abstract
To explore cost-effective and efficient phytoremediation strategies, this study investigated the distinct roles of earthworm activity and mucus in enhancing Cd phytoextraction from soils contaminated by Festuca arundinacea, focusing on the comparative advantages of selective leaf harvesting versus traditional whole-plant harvesting methods. Our study employed a horticultural trial to explore how earthworm activity and mucus affect Festuca arundinacea' s Cd phytoremediation in soils using control, earthworm, and mucus treatments to examine their respective effects on plant growth and Cd distribution. Earthworm activity increased the dry weight of leaves by 13.5% and significantly increased the dry weights of declining and senescent leaves, surpassing that of the control by more than 40%. Earthworm mucus had a similar, albeit less pronounced, effect on plant growth than earthworm activity. This study not only validated the significant role of earthworm activity in enhancing Cd phytoextraction by Festuca arundinacea, with earthworm activity leading to over 85% of Cd being allocated to senescent tissues that comprise only approximately 20% of the plant biomass, but also highlighted a sustainable and cost-effective approach to phytoremediation by emphasizing selective leaf harvesting supported by earthworm activity. By demonstrating that earthworm mucus alone can redistribute Cd with less efficiency compared to live earthworms, our findings offer practical insights into optimizing phytoremediation strategies and underscore the need for further research into the synergistic effects of biological agents in soil remediation processes.
Collapse
Affiliation(s)
- Hongwei Li
- YUNNAN CHIHONG Zn & Ge CO, Ltd., Qujing, China
| | - Jie Luo
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Min Cao
- University of Leicester, Leicester, United Kingdom
| | - Wenquan Luo
- YUNNAN CHIHONG Zn & Ge CO, Ltd., Qujing, China
| | - Xingying Li
- YUNNAN CHIHONG Zn & Ge CO, Ltd., Qujing, China
| | - Zongqi Shao
- YUNNAN CHIHONG Zn & Ge CO, Ltd., Qujing, China
| | | | - Siyao Feng
- College of Resources and Environment, Yangtze University, Wuhan, China
| |
Collapse
|
5
|
Granata S, Vivarelli F, Morosini C, Canistro D, Paolini M, Fairclough LC. Toxicological Aspects Associated with Consumption from Electronic Nicotine Delivery System (ENDS): Focus on Heavy Metals Exposure and Cancer Risk. Int J Mol Sci 2024; 25:2737. [PMID: 38473984 DOI: 10.3390/ijms25052737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Tobacco smoking remains one of the leading causes of premature death worldwide. Electronic Nicotine Delivery Systems (ENDSs) are proposed as a tool for smoking cessation. In the last few years, a growing number of different types of ENDSs were launched onto the market. Despite the manufacturing differences, ENDSs can be classified as "liquid e-cigarettes" (e-cigs) equipped with an atomizer that vaporizes a liquid composed of vegetable glycerin (VG), polypropylene glycol (PG), and nicotine, with the possible addition of flavorings; otherwise, the "heated tobacco products" (HTPs) heat tobacco sticks through contact with an electronic heating metal element. The presence of some metals in the heating systems, as well as in solder joints, involves the possibility that heavy metal ions can move from these components to the liquid, or they can be adsorbed into the tobacco stick from the heating blade in the case of HTPs. Recent evidence has indicated the presence of heavy metals in the refill liquids and in the mainstream such as arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), copper (Cu), and lead (Pb). The present review discusses the toxicological aspects associated with the exposition of heavy metals by consumption from ENDSs, focusing on metal carcinogenesis risk.
Collapse
Affiliation(s)
- Silvia Granata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Fabio Vivarelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Camilla Morosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Donatella Canistro
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Moreno Paolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Lucy C Fairclough
- School of Life Sciences, University of Nottingham, East Dr, Nottingham NG7 2TQ, UK
| |
Collapse
|
6
|
Wei YF, Gan CL, Xu F, Fang YY, Zhang B, Li WS, Nong K, Aschner M, Jiang YM. Clinical case analysis of 32 children aged 0-6 years with lead poisoning in Nanning, China. Toxicol Ind Health 2024; 40:41-51. [PMID: 37984499 PMCID: PMC11306939 DOI: 10.1177/07482337231215411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Lead is one of the heavy metals that is toxic and widely distributed in the environment, and children are more sensitive to the toxic effects of lead because the blood-brain barrier and immune system are not yet well developed. The objective of the study was to investigate the clinical characteristics of lead poisoning in children aged 0∼6 years in a hospital in Guangxi, and to provide scientific basis for the prevention and treatment of lead poisoning. We collected and analyzed the clinical data of 32 children with lead poisoning admitted to a hospital in Guangxi from 2010 to 2018. The results showed that most of the 32 cases presented with hyperactivity, irritability, poor appetite, abdominal pain, diarrhea, or constipation. The hemoglobin (HGB), mean corpusular volume (MCV), mean corpuscular hemoglobin (MCH), and hematocrit (HCT) of the lead-poisoned children were all decreased to different degrees and were below normal acceptable levels. Urinary β2-microglobulin was increased. Blood lead levels (BLL) decreased significantly after intravenous injection of the lead chelator, calcium disodium edetate (CaNa2-EDTA). In addition, HGB returned to normal levels, while MCV, MCH, and HCT increased but remained below normal levels. Urinary β2-microglobulin was reduced to normal levels. Therefore, in this cohort of children, the high-risk factors for lead poisoning are mainly Chinese medicines, such as baby powder. In conclusion, lead poisoning caused neurological damage and behavioral changes in children and decreased erythrocyte parameters, leading to digestive symptoms and renal impairment, which can be attenuated by CaNa2-EDTA treatment.
Collapse
Affiliation(s)
- Yi-fei Wei
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Cui-liu Gan
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Fang Xu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
- Liuzhou People’ Hospital, Liuzhou, China
| | - Yuan-yuan Fang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Baodan Zhang
- Department of Clinical Toxicology, Guangxi Zhuang Autonomous Region Workers’ Hospital, Nanning, China
| | - Wu-shu Li
- Department of Clinical Toxicology, Guangxi Zhuang Autonomous Region Workers’ Hospital, Nanning, China
| | - Kang Nong
- Department of Clinical Toxicology, Guangxi Zhuang Autonomous Region Workers’ Hospital, Nanning, China
| | - Michael Aschner
- Department of Molecular Pharmacology at Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yue-ming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| |
Collapse
|
7
|
Okeke ES, Enochoghene A, Ezeudoka BC, Kaka SD, Chen Y, Mao G, ThankGod Eze C, Feng W, Wu X. A review of heavy metal risks around e-waste sites and comparable municipal dumpsites in major African cities: Recommendations and future perspectives. Toxicology 2024; 501:153711. [PMID: 38123013 DOI: 10.1016/j.tox.2023.153711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
In Africa, the effects of informal e-waste recycling on the environment are escalating. It is regularly transported from developed to developing nations, where it is disassembled informally in search of precious metals, thus increasing human exposure to harmful compounds. Africa has a serious problem with e-waste, as there are significant facilities in Ghana and Nigeria where imported e-waste is unsafely dismantled. however, because they are in high demand and less expensive than new ones, old electronic and electrical items are imported in large quantities, just like in many developing nations. After that, these objects are frequently scavenged to recover important metals through heating, burning, incubation in acids, and other techniques. Serious health hazards are associated with these activities for workers and individuals close to recycling plants. At e-waste sites in Africa, there have been documented instances of elevated concentrations of hazardous elements, persistent organic pollutants, and heavy metals in dust, soils, and vegetation, including plants consumed as food. Individuals who handle and dispose of e-waste are exposed to highly hazardous chemical substances. This paper examines heavy metal risks around e-waste sites and comparable municipal dumpsites in major African cities. Elevated concentrations of these heavy metals metal in downstream aquatic and marine habitats have resulted in additional environmental impacts. These effects have been associated with unfavourable outcomes in marine ecosystems, such as reduced fish stocks characterized by smaller sizes, increased susceptibility to illness, and decreased population densities. The evidence from the examined studies shows how much e-waste affects human health and the environment in Africa. Sub-Saharan African nations require a regulatory framework that includes specialized laws, facilities, and procedures for the safe recycling and disposal of e-waste.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Safety, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China; Department of Biochemistry, Faculty of Biological Science & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | | | | | - Steve Dokpo Kaka
- Institute of Environmental Health and Ecological Safety, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China
| | - Yao Chen
- Institute of Environmental Health and Ecological Safety, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China
| | - Guanghua Mao
- Institute of Environmental Health and Ecological Safety, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China
| | | | - Weiwei Feng
- Institute of Environmental Health and Ecological Safety, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China.
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Safety, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China.
| |
Collapse
|
8
|
Pastor-Sierra K, Espitia-Pérez L, Espitia-Pérez P, Peñata-Taborda A, Brango H, Galeano-Páez C, Bru-Cordero OE, Palma-Parra M, Díaz SM, Trillos C, Briceño L, Idrovo ÁJ, Miranda-Pacheco J, Téllez E, Jiménez-Vidal L, Coneo-Pretelt A, Álvarez AH, Arteaga-Arroyo G, Ricardo-Caldera D, Salcedo-Arteaga S, Porras-Ramírez A, Varona-Uribe M. Micronuclei frequency and exposure to chemical mixtures in three Colombian mining populations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165789. [PMID: 37499817 DOI: 10.1016/j.scitotenv.2023.165789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/12/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
The Colombian mining industry has witnessed significant growth. Depending on the scale and mineral extracted, complex chemical mixtures are generated, impacting the health of occupationally exposed populations and communities near mining projects. Increasing evidence suggests that chromosomal instability (CIN) is an important link between the development of certain diseases and exposure to complex mixtures. To better understand the effects of exposure to complex mixtures we performed a biomonitoring study on 407 healthy individuals from four areas: three located in municipalities exploiting different-scale mining systems and a reference area with no mining activity. Large, medium, and small-scale mining systems were analyzed in Montelibano (Córdoba), artisanal and small-scale mining (ASGM) in Nechí (Antioquia), and a closed mining system in Aranzazu (Caldas). The reference area with no mining activity was established in Montería (Córdoba). ICP-MS measured multi-elemental exposure in hair, and CIN was evaluated using the cytokinesis-block micronucleus technique (MNBN). Exposure to mixtures of chemical elements was comparable in workers and residents of the mining areas but significantly higher compared to reference individuals. In Montelibano, increased MNBN frequencies were associated with combined exposure to Se, Hg, Mn, Pb, and Mg. This distinct pattern significantly differed from other areas. Specifically, in Nechí, Cr, Ni, Hg, Se, and Mg emerged as the primary contributors to elevated frequencies of MNBN. In contrast, a combination of Hg and Ni played a role in increasing MNBN in Aranzazu. Interestingly, Se consistently correlated with increased MNBN frequencies across all active mining areas. Chemical elements in Montelibano exhibit a broader range compared to other mining zones, reflecting the characteristics of the high-impact and large-scale mining in the area. This research provides valuable insights into the effects of exposure to chemical mixtures, underscoring the importance of employing this approach in the risk assessment of communities, especially those from residential areas.
Collapse
Affiliation(s)
- Karina Pastor-Sierra
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia; Programa de doctorado en Salud Pública, Universidad El Bosque, Bogotá, Colombia
| | - Lyda Espitia-Pérez
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia.
| | - Pedro Espitia-Pérez
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Ana Peñata-Taborda
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Hugo Brango
- Departamento de Matemáticas y Estadística, Universidad del Norte, Barranquilla, Colombia
| | - Claudia Galeano-Páez
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | | | - Marien Palma-Parra
- Dirección de Investigación en Salud Pública, Grupo de Salud Ambiental y Laboral, Instituto Nacional de Salud, Bogotá, Colombia
| | - Sonia M Díaz
- Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Carlos Trillos
- Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Leonardo Briceño
- Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Álvaro J Idrovo
- Departamento de Salud Pública, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Juan Miranda-Pacheco
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Eliana Téllez
- Dirección de Investigación en Salud Pública, Grupo de Salud Ambiental y Laboral, Instituto Nacional de Salud, Bogotá, Colombia
| | - Luisa Jiménez-Vidal
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Andrés Coneo-Pretelt
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Alicia Humanez Álvarez
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Gean Arteaga-Arroyo
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Dina Ricardo-Caldera
- Grupo de Investigación en Enfermedades Tropicales y Resistencia Bacteriana, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Shirley Salcedo-Arteaga
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | | | - Marcela Varona-Uribe
- Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
9
|
Zhang K, Ma Y, Luo Y, Song Y, Xiong G, Ma Y, Sun X, Kan C. Metabolic diseases and healthy aging: identifying environmental and behavioral risk factors and promoting public health. Front Public Health 2023; 11:1253506. [PMID: 37900047 PMCID: PMC10603303 DOI: 10.3389/fpubh.2023.1253506] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023] Open
Abstract
Aging is a progressive and irreversible pathophysiological process that manifests as the decline in tissue and cellular functions, along with a significant increase in the risk of various aging-related diseases, including metabolic diseases. While advances in modern medicine have significantly promoted human health and extended human lifespan, metabolic diseases such as obesity and type 2 diabetes among the older adults pose a major challenge to global public health as societies age. Therefore, understanding the complex interaction between risk factors and metabolic diseases is crucial for promoting well-being and healthy aging. This review article explores the environmental and behavioral risk factors associated with metabolic diseases and their impact on healthy aging. The environment, including an obesogenic environment and exposure to environmental toxins, is strongly correlated with the rising prevalence of obesity and its comorbidities. Behavioral factors, such as diet, physical activity, smoking, alcohol consumption, and sleep patterns, significantly influence the risk of metabolic diseases throughout aging. Public health interventions targeting modifiable risk factors can effectively promote healthier lifestyles and prevent metabolic diseases. Collaboration between government agencies, healthcare providers and community organizations is essential for implementing these interventions and creating supportive environments that foster healthy aging.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yujie Ma
- Department of Pathophysiology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Youhong Luo
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yixin Song
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Guoji Xiong
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yanhui Ma
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
10
|
Shehata SA, Toraih EA, Ismail EA, Hagras AM, Elmorsy E, Fawzy MS. Vaping, Environmental Toxicants Exposure, and Lung Cancer Risk. Cancers (Basel) 2023; 15:4525. [PMID: 37760496 PMCID: PMC10526315 DOI: 10.3390/cancers15184525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/18/2023] [Accepted: 06/22/2023] [Indexed: 09/29/2023] Open
Abstract
Lung cancer (LC) is the second-most prevalent tumor worldwide. According to the most recent GLOBOCAN data, over 2.2 million LC cases were reported in 2020, with an estimated new death incident of 1,796,144 lung cancer cases. Genetic, lifestyle, and environmental exposure play an important role as risk factors for LC. E-cigarette, or vaping, products (EVPs) use has been dramatically increasing world-wide. There is growing concern that EVPs consumption may increase the risk of LC because EVPs contain several proven carcinogenic compounds. However, the relationship between EVPs and LC is not well established. E-cigarette contains nicotine derivatives (e.g., nitrosnornicotine, nitrosamine ketone), heavy metals (including organometal compounds), polycyclic aromatic hydrocarbons, and flavorings (aldehydes and complex organics). Several environmental toxicants have been proven to contribute to LC. Proven and plausible environmental carcinogens could be physical (ionizing and non-ionizing radiation), chemicals (such as asbestos, formaldehyde, and dioxins), and heavy metals (such as cobalt, arsenic, cadmium, chromium, and nickel). Air pollution, especially particulate matter (PM) emitted from vehicles and industrial exhausts, is linked with LC. Although extensive environmental exposure prevention policies and smoking reduction strategies have been adopted globally, the dangers remain. Combined, both EVPs and toxic environmental exposures may demonstrate significant synergistic oncogenicity. This review aims to analyze the current publications on the importance of the relationship between EVPs consumption and environmental toxicants in the pathogenesis of LC.
Collapse
Affiliation(s)
- Shaimaa A. Shehata
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; (S.A.S.); (A.M.H.)
| | - Eman A. Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ezzat A. Ismail
- Department of Urology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Abeer M. Hagras
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; (S.A.S.); (A.M.H.)
| | - Ekramy Elmorsy
- Department of Pathology, Faculty of Medicine, Northern Border University, Arar 73213, Saudi Arabia;
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Manal S. Fawzy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 73213, Saudi Arabia
| |
Collapse
|
11
|
Wang W, Wang T, Gao Y, Liang G, Pu Y, Zhang J. Model of neural development by differentiating human induced pluripotent stem cells into neural progenitor cells to study the neurodevelopmental toxicity of lead. Food Chem Toxicol 2023; 179:113947. [PMID: 37467947 DOI: 10.1016/j.fct.2023.113947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Lead (Pb) exposure causes immeasurable damage to multiple human systems, particularly the central nervous system (CNS). In this study, human induced pluripotent stem cells (hiPSCs) were differentiated into neural progenitor cells (NPCs) to investigate the neurotoxic effects of Pb. The hiPSCs were treated with 0, 0.5, 1.0, 2.5, 5.0 and 10.0 μmol/L Pb for 7 days, whereas embryoid bodies (EBs) and NPCs were treated with 0, 0.1, 0.5, and 1.0 μmol/L Pb for 7 days. Pb exposure disrupted the cell cycle and caused apoptosis in hiPSCs, EBs, and NPCs. Besides, Pb inhibited the differentiation of NPCs and EBs. Whole exome sequencing revealed 2509, 2413, and 1984 single nucleotide variants (SNVs) caused by Pb in hiPSCs, EBs, and NPCs, respectively. The common mutation sites in the exon region were mostly nonsynonymous mutations. We identified 18, 19, and 18 common deleterious mutations in hiPSCs, EBs, and NPCs, respectively. Additionally, Online Mendelian Inheritance in Man database analysis revealed 30, 20, and 13 genes related to CNS disorders in hiPSCs, EBs, and NPCs, respectively. Our findings suggest that this in vitro model may supplement animal models and be applied to the study of neurodevelopmental toxicity in the future.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Tong Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yu Gao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, China; Jiangsu Institute for Sports and Health (JISH), Nanjing, 211100, China.
| |
Collapse
|
12
|
Pouyamanesh S, Kowsari E, Ramakrishna S, Chinnappan A. A review of various strategies in e-waste management in line with circular economics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93462-93490. [PMID: 37572248 DOI: 10.1007/s11356-023-29224-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 08/04/2023] [Indexed: 08/14/2023]
Abstract
Waste management of electrical and electronic equipment has become a key challenge for electronics manufacturers due to globalization and the rapid expansion of information technology. As the volume of e-waste grows, legal departments lack the infrastructure, technology, and ability to collect and manage it environmentally soundly. Government laws, economic reasons, and social issues are important considerations in e-waste management. The circular economy concept is built on reusing and recycling goods and resources. A novel idea called the circular economy might prevent the negative consequences brought on by the exploitation and processing of natural resources while also having good effects such as lowering the demand for raw materials, cutting down on the use of fundamental resources, and creating jobs. To demonstrate the significance of policy implementation, the necessity for technology, and the need for societal awareness to build a sustainable and circular economy, the study intends to showcase international best practices in e-waste management. This study uses circular economy participatory implementation methods to provide a variety of possible approaches to assist decision-makers in e-waste management. The purpose of this article is to review the most accepted methods for e-waste management to emphasize the importance of implementing policies, technology requirements, and social awareness in creating a circular economy. To conclude, this paper highlights the necessity of a common legal framework, reform of the informal sector, the responsibility of different stakeholders, and entrepreneurial perspectives.
Collapse
Affiliation(s)
- Soudabeh Pouyamanesh
- Department of Chemistry, Amirkabir University of Technology, No. 424, Hafez Avenue, Tehran, 1591634311, Iran
| | - Elaheh Kowsari
- Department of Chemistry, Amirkabir University of Technology, No. 424, Hafez Avenue, Tehran, 1591634311, Iran.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, 119260, Singapore
| | - Amutha Chinnappan
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, 119260, Singapore
| |
Collapse
|
13
|
Xiong YW, Li DX, Ling ZJ, Tan LL, Zhang YF, Zhang J, Li H, Chang W, Zhu HL, Zhang J, Gao L, Xu DX, Yang L, Wang H. Loss of Atg5 in Sertoli cells enhances the susceptibility of cadmium-impaired testicular spermatogenesis in mice. Food Chem Toxicol 2023; 179:113967. [PMID: 37506864 DOI: 10.1016/j.fct.2023.113967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Cadmium (Cd), one of the most common contaminants in diet and drinking water, impairs testicular germ cell development and spermatogenesis. Autophagy is essential for maintaining Sertoli cell function and Sertoli-germ cell communication. However, the role of Sertoli cell autophagy in Cd-caused spermatogenesis disorder remains unclear. Here, the mice of autophagy-related gene 5 (Atg5) knockouts in Sertoli cells were used to investigate the effect of autophagy deficiency on Cd-impaired spermatogenesis and its underlying mechanisms. Results showed that Sertoli cell-specific knockout of Atg5 exacerbated Cd-reduced sperm count and MVH (a specific marker for testicular germ cells) level in mice. Additionally, Sertoli cell Atg5 deficiency reduced the number of spermatocytes and decreased the level of meiosis-related proteins (SYCP3 and STRA8) in Cd-treated mouse testes. Loss of Atg5 in Sertoli cell exacerbated Cd-reduced the level of retinoic acid (RA) and retinal dehydrogenase (ALDH1A1 and ALDH1A) in mouse testes. Meanwhile, we found that the level of transcription factor WT1 was significantly downregulated in Atg5-/- plus Cd-treated testes. Further experiments showed that Wt1 overexpression restored Cd-decreased the levels of ALDH1A1 in Sertoli cells. Collectively, the above data suggest that knockout of Atg5 in Sertoli cell enhances the susceptibility of Cd-impaired testicular spermatogenesis. These findings provide new insights into autophagy of Sertoli cell preventing environmental toxicants-impaired testicular spermatogenesis.
Collapse
Affiliation(s)
- Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Dai-Xin Li
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Zheng-Jia Ling
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Prenatal Diagnosis Center, Wuxi Maternity and Child Health Care Hospital, 214002, Wuxi, China
| | - Lu-Lu Tan
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yu-Feng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Jin Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hao Li
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Wei Chang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China
| | - Jun Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Lan Gao
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China
| | - Lan Yang
- Prenatal Diagnosis Center, Wuxi Maternity and Child Health Care Hospital, 214002, Wuxi, China.
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China.
| |
Collapse
|
14
|
Andeobu L, Wibowo S, Grandhi S. Informal E-waste recycling practices and environmental pollution in Africa: What is the way forward? Int J Hyg Environ Health 2023; 252:114192. [PMID: 37348165 DOI: 10.1016/j.ijheh.2023.114192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023]
Abstract
Globally, e-waste is the fastest growing and most valuable waste-stream. While countries worldwide are increasingly acknowledging the e-waste problem and introducing policies and regulations that deal with e-waste, large quantities of e-waste still go undocumented. Much of these global e-wastes are accumulating in open-dumpsites and landfills in African-countries where they are recycled informally resulting in significant environmental and public-health concerns. Although, there is a plethora of studies on e-waste management and disposal, only a few-studies have focused on African-countries who are major recipients of e-waste. Moreover, despite the attempts to mitigate the problem of e-waste in African-countries, e-waste has remained a major-concern and there are currently very limited workable solutions. This study examines informal e-waste recycling, environmental pollution and the extent of environmental and health impacts in major countries of concern including Ghana, Nigeria, Egypt, Kenya and South Africa. The global e-waste Waste Atlas Report, 2020 identified these countries as major recipients of e-waste. To achieve the aims of this research, previous studies from 2005 to 2022 are collected from various databases and analyzed. Accordingly, this study focuses on environmental pollution and public-health impacts resulting from e-waste dumping and informal recycling practices, illegal transboundary shipment of e-waste to the selected countries, and the interventions of governments and international organizations in reducing the impact of e-waste pollution and informal recycling practices in Africa. Based on the outcomes of this study, practical approaches on the way-forward are recommended. The findings of this study contribute to a growing-body of research on informal e-waste recycling practices in Africa to document that individuals working within e-waste sites and residents in nearby communities are exposed to a number of toxic-substances, some at potentially concerning levels.
Collapse
Affiliation(s)
- Lynda Andeobu
- Central Queensland University, 120 Spencer Street, Melbourne 3000, Australia.
| | - Santoso Wibowo
- Central Queensland University, 120 Spencer Street, Melbourne 3000, Australia.
| | | |
Collapse
|
15
|
Huang J, Zeng Z, Xu X, Tian Q, Zheng K, Huo X. Blood lead levels of children exposed to e-waste: a systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64860-64871. [PMID: 37097575 DOI: 10.1007/s11356-023-27114-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
Blood lead levels (BLLs) have been decreasing worldwide for decades. However, systematic reviews and quantitative syntheses of BLLs in electronic waste (e-waste)-exposed children are lacking. To summarize temporal trend of BLLs among children in e-waste-recycling areas. Fifty-one studies met the inclusion criteria and included participants from six countries. Meta-analysis was performed using the random-effects model. Results showed that among e-waste-exposed children, the total geometric mean (GM) BLL was 7.54 μg/dL (95% CI: 6.77, 8.31). Children's BLLs displayed a decreasing temporal trend, from 11.77 μg/dL in phase I (2004-2006) to 4.63 μg/dL in phase V (2016-2018). Almost 95% of eligible studies found that children exposed to e-waste had significantly higher BLLs than reference groups. The difference of children's BLLs between the exposure group and the reference group was from 6.60 μg/dL (95% CI: 6.14, 7.05) in 2004 to 1.99 μg/dL (95% CI: 1.61, 2.36) in 2018. For subgroup analyses, except for Dhaka and Montevideo, the BLLs of children from Guiyu in the same survey year were higher than those of children from other regions. Our findings indicate that the gap between BLLs of children exposed to e-waste and those of reference group children is closing, and we appeal that the critical value for blood lead poisoning in children should be lowered in key e-waste-dismantling areas of developing countries, such as Guiyu.
Collapse
Affiliation(s)
- Jintao Huang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Zhijun Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Qianwen Tian
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Keyang Zheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China.
| |
Collapse
|
16
|
Srivastav AL, Markandeya, Patel N, Pandey M, Pandey AK, Dubey AK, Kumar A, Bhardwaj AK, Chaudhary VK. Concepts of circular economy for sustainable management of electronic wastes: challenges and management options. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48654-48675. [PMID: 36849690 PMCID: PMC9970861 DOI: 10.1007/s11356-023-26052-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/17/2023] [Indexed: 04/16/2023]
Abstract
The electronic and electrical industrial sector is exponentially growing throughout the globe, and sometimes, these wastes are being disposed of and discarded with a faster rate in comparison to the past era due to technology advancements. As the application of electronic devices is increasing due to the digitalization of the world (IT sector, medical, domestic, etc.), a heap of discarded e-waste is also being generated. Per-capita e-waste generation is very high in developed countries as compared to developing countries. Expansion of the global population and advancement of technologies are mainly responsible to increase the e-waste volume in our surroundings. E-waste is responsible for environmental threats as it may contain dangerous and toxic substances like metals which may have harmful effects on the biodiversity and environment. Furthermore, the life span and types of e-waste determine their harmful effects on nature, and unscientific practices of their disposal may elevate the level of threats as observed in most developing countries like India, Nigeria, Pakistan, and China. In the present review paper, many possible approaches have been discussed for effective e-waste management, such as recycling, recovery of precious metals, adopting the concepts of circular economy, formulating relevant policies, and use of advance computational techniques. On the other hand, it may also provide potential secondary resources valuable/critical materials whose primary sources are at significant supply risk. Furthermore, the use of machine learning approaches can also be useful in the monitoring and treatment/processing of e-wastes. HIGHLIGHTS: In 2019, ~ 53.6 million tons of e-wastes generated worldwide. Discarded e-wastes may be hazardous in nature due to presence of heavy metal compositions. Precious metals like gold, silver, and copper can also be procured from e-wastes. Advance tools like artificial intelligence/machine learning can be useful in the management of e-wastes.
Collapse
Affiliation(s)
- Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Solan, Himachal Pradesh, 174103, India
| | - Markandeya
- Ex-Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Naveen Patel
- Department of Civil Engineerin, IET, Dr. RammanoharLohia Avadh University, Uttar Pradesh, Ayodhya, India
| | - Mayank Pandey
- Department of Environmental Studies, P.G.D.A.V. College (Evening), University of Delhi, Delhi, 110065, India
| | - Ashutosh Kumar Pandey
- Department of Earth Sciences, Banasthali Vidyapith, Radha Kishnpura, P. O. Banasthali, Rajasthan, 304022, India
| | - Ashutosh Kumar Dubey
- Chitkara University School of Engineering and Technology, Chitkara University, Solan, Himachal Pradesh, 174103, India.
| | - Abhishek Kumar
- Department of Computer Science and Engineering, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Abhishek Kumar Bhardwaj
- Amity School of Life Sciences, Department of Environmental Science, Amity University, Madhya Pradesh, Gwalior, 474001, India
| | - Vinod Kumar Chaudhary
- Department of Environmental Sciences, Dr. Rammanohar Lohia Avadh University, Ayodhya, Uttar Pradesh, India
| |
Collapse
|
17
|
Issah I, Arko-Mensah J, Agyekum TP, Dwomoh D, Fobil JN. Electronic waste exposure and DNA damage: a systematic review and meta-analysis. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:15-31. [PMID: 34727591 DOI: 10.1515/reveh-2021-0074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES Inappropriate processing and disposal of electronic waste (e-waste) expose workers and surrounding populations to hazardous chemicals, including clastogens and aneugens. Recently, considerable literature has grown around e-waste recycling, associated chemical exposures and intermediate health outcomes, including DNA damage. Micronuclei (MN) frequency has been widely used as a biomarker to investigate DNA damage in human populations exposed to genotoxic agents. We conducted a systematic review of published studies to assess DNA damage in e-waste-exposed populations and performed a meta-analysis to evaluate the association between e-waste exposure and DNA damage. METHODS This systematic review with meta-analysis was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement checklist. Articles published in English from January 2000 through December 2020 investigating the associations between e-waste exposure and DNA damage were retrieved from the following three major databases: MEDLINE, ProQuest, and Scopus. Studies that reported the use of MN assay as a biomarker of DNA damage were included for meta-analysis. Studies that also reported other DNA damage biomarkers such as chromosomal aberrations, comet assay biomarkers, 8-hydroxy-2'-deoxyguanosine (8-OHdG), telomere length, apoptosis rate were reported using narrative synthesis. RESULTS A total of 20 publications were included in this review, of which seven studies were within the occupational setting, and the remaining 13 studies were ecological studies. The review found six biomarkers of DNA damage (micronuclei, comets assay parameters (tail length, % tail DNA, tail moment, and olive tail moment), 8-OHdG, telomere length, apoptosis rate and chromosomal aberrations) which were assessed using seven different biological matrices (buccal cells, blood, umbilical cord blood, placenta, urine and semen). Most studies showed elevated levels of DNA damage biomarkers among e-waste exposed populations than in control populations. The most commonly used biomarkers were micronuclei frequency (n=9) in peripheral blood lymphocytes or buccal cells and 8-OHdG (n=7) in urine. The results of the meta-analysis showed that electronic waste recycling has contributed to an increased risk of DNA damage measured using MN frequency with a pooled estimate of the standardized mean difference (SMD) of 2.30 (95% CI: 1.36, 3.24, p<0.001) based on 865 participants. CONCLUSIONS Taken together, evidence from this systematic review with meta-analysis suggest that occupational and non-occupational exposure to e-waste processing is associated with increased risk of DNA damage measured through MN assay and other types of DNA damage biomarkers. However, more studies from other developing countries in Africa, Latin America, and South Asia are needed to confirm and increase these results' generalizability.
Collapse
Affiliation(s)
- Ibrahim Issah
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Legon-Accra, Ghana
| | - John Arko-Mensah
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Legon-Accra, Ghana
| | - Thomas P Agyekum
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Legon-Accra, Ghana
| | - Duah Dwomoh
- Department of Biostatistics, School of Public Health, University of Ghana, Legon-Accra, Ghana
| | - Julius N Fobil
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Legon-Accra, Ghana
| |
Collapse
|
18
|
Li J, Tian X, Zhao J, Cui L, Wei L, Gao Y, Li B, Li YF. Temporal changes of blood mercury concentrations in Chinese newborns and the general public from 1980s to 2020s. J Trace Elem Med Biol 2023; 76:127126. [PMID: 36623421 DOI: 10.1016/j.jtemb.2023.127126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 12/01/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Mercury (Hg) is a global pollutant that threatens the environment and human health. As a major producer, emitter and consumer of Hg, China is currently taking different measures to curb mercury pollution in accordance with the requirements of the Minamata Convention on Mercury. Blood Hg can reflect the human body's recent exposure to Hg. This review summarized the temporal changes in blood Hg concentrations in newborns and the general public in China from 1980 s to 2020 s. It was shown that the blood Hg concentrations of newborns showed the downward trend, although it was not significant. The general public Hg concentrations showed a trend of first increase and then decrease trend. Most of the cord blood Hg and venous blood Hg concentrations in China were lower than the USEPA reference concentration of 5.8 µg/L. Since low-dose prenatal Hg exposure can affect fetal and neonatal development, continuous attention needs to be paid to reduce maternal and neonatal Hg exposure. The information provided in this review may lay a basis for the effectiveness evaluation on the implementation of Minamata Convention on Mercury.
Collapse
Affiliation(s)
- Jincheng Li
- College of Mechanical Engineering, & National Consortium for Excellence in Metallomics, Guangxi University, Nanning, Guangxi 530004, China; CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Tian
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jiating Zhao
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liwei Cui
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixia Wei
- College of Mechanical Engineering, & National Consortium for Excellence in Metallomics, Guangxi University, Nanning, Guangxi 530004, China
| | - Yuxi Gao
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bai Li
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Feng Li
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
19
|
Desye B, Tesfaye AH, Berihun G, Ademas A, Sewunet B. A systematic review of the health effects of lead exposure from electronic waste in children. Front Public Health 2023; 11:1113561. [PMID: 37124790 PMCID: PMC10130399 DOI: 10.3389/fpubh.2023.1113561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/22/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Electronic waste (e-waste) is an emerging human and environmental problem. Lead (Pb) is one of the most dangerous chemicals for human health, and it is the most prevalent heavy metal pollutant in e-waste. Despite the rapid growth of e-waste globally and the health effects of Pb, there is little information regarding the effects of Pb exposure from e-waste on children. Therefore, the aim of this review was to provide concise information on the health effects of Pb exposure from e-waste on children. Methods A comprehensive search of databases was undertaken using PubMed/MEDLINE, Cochrane Library, Science Direct, HINARI, African Journal Online (AJOL), and additional sources were searched up to November 25, 2022. Eligibility criteria were determined using Population, Exposure, Comparator, and Outcome (PECO). The guidelines for Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) were used during the article selection process. The protocol of this systematic review was registered in the International Prospective Register of Systematic Reviews (Registration ID: CRD42022377028). The Joanna Briggs Institute (JBI) quality appraisal checklist was used to assess the quality of the included studies. Results From a total of 1,150 identified studies, 20 full-text studies were included in the systematic review. All most included studies were conducted in China recycling area for e-waste. The included studies were conducted with an exposed group versus a reference group. The majority of the included studies found that blood Pb levels were ≥5 μg/dl and that Pb exposures from e-waste were affecting children's health, such as a decrease in serum cortisol levels, inhibition of hemoglobin synthesis, impact on neurobehavioral development, affect physical development, etc. Conclusion Lead exposure had a significant impact on children's health as a result of informal e-waste recycling. Therefore, formalizing the informal sector and raising public health awareness are important steps toward reducing Pb exposure from e-waste. Moreover, the concerned stakeholders, like national and international organizations, should work together to effectively manage e-waste.
Collapse
Affiliation(s)
- Belay Desye
- Department of Environmental Health, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
- *Correspondence: Belay Desye,
| | - Amensisa Hailu Tesfaye
- Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Gete Berihun
- Department of Environmental Health, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Ayechew Ademas
- Department of Environmental Health, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Birhanu Sewunet
- Department of Environmental Health, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| |
Collapse
|
20
|
Hang JG, Dong JJ, Feng H, Huang JZ, Wang Z, Shen B, Nakayama SF, Kido T, Jung CR, Ma C, Sun XL. Evaluating postnatal exposure to six heavy metals in a Chinese e-waste recycling area. CHEMOSPHERE 2022; 308:136444. [PMID: 36116633 DOI: 10.1016/j.chemosphere.2022.136444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/24/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
This study is the first to assess postnatal exposure to heavy metals using breast milk in an electronic waste (e-waste) recycling area. From January to April 2021, 102 and 97 breastfeeding women were recruited from an e-waste recycling area and a control area, respectively. Four weeks after delivery, medical staff collected 20 mL of breast milk from each participant. The breast milk was tested for six heavy metals (lead, cadmium, chromium, arsenic, copper, and manganese) using inductively coupled plasma mass spectrometry (ICP-MS). The estimated daily intake (EDI) of infants during breastfeeding was calculated to assess the impact of postnatal exposure to heavy metals on infant health. The concentrations of chromium and lead in the breast milk were significantly higher in the e-waste recycling area than in the control area. Chromium concentrations in breast milk was 34.3%, exceeding the permissible limits set by the World Health Organization (WHO), in the e-waste recycling area, which is 16 times higher than that in the control areas. The EDIs of lead and chromium in the e-waste area were twice as those in the control area. This strongly indicates that the potential impact of postnatal exposure to lead and chromium on infant and child health in e-waste recycling areas cannot be ignored. Infants and children in e-waste recycling areas are at risk of long-term exposure to heavy metals. Therefore, ongoing health monitoring is necessary.
Collapse
Affiliation(s)
- Jin Guo Hang
- School of Medicine, and the First Affiliated Hospital, Huzhou University, 759 2nd Ring East Road, Huzhou, 313000, China; Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, 318050, China
| | - Jing Jian Dong
- School of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Hao Feng
- School of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Jian Zhong Huang
- School of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Zheng Wang
- School of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Bin Shen
- School of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Shoji F Nakayama
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 3058506, Japan
| | - Teruhiko Kido
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical, And Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, 9200942, Japan
| | - Chau-Ren Jung
- Department of Public Health, College of Public Health, China Medical University, Taichung, 406040, Taiwan
| | - Chaochen Ma
- Cancer Control Center, Osaka International Cancer Institute, Osaka, 5418567, Japan
| | - Xian Liang Sun
- School of Medicine, and the First Affiliated Hospital, Huzhou University, 759 2nd Ring East Road, Huzhou, 313000, China; School of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China; Faculty of Health Sciences, Institute of Medical, Pharmaceutical, And Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, 9200942, Japan.
| |
Collapse
|
21
|
Sadiku OO, Rodríguez-Seijo A. Metabolic and genetic derangement: a review of mechanisms involved in arsenic and lead toxicity and genotoxicity. Arh Hig Rada Toksikol 2022; 73:244-255. [PMID: 36607725 PMCID: PMC9985351 DOI: 10.2478/aiht-2022-73-3669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/01/2022] [Accepted: 10/01/2022] [Indexed: 01/07/2023] Open
Abstract
Urbanisation and industrialisation are on the rise all over the world. Environmental contaminants such as potentially toxic elements (PTEs) are directly linked with both phenomena. Two PTEs that raise greatest concern are arsenic (As) and lead (Pb) as soil and drinking water contaminants, whether they are naturally occurring or the consequence of human activities. Both elements are potential carcinogens. This paper reviews the mechanisms by which As and Pb impair metabolic processes and cause genetic damage in humans. Despite efforts to ban or limit their use, due to high persistence both continue to pose a risk to human health, which justifies the need for further toxicological research.
Collapse
Affiliation(s)
- Olubusayo Olujimi Sadiku
- University of Lagos, College of Medicine, Faculty of Basic Medical Sciences, Department of Medical Laboratory Science, Lagos, Nigeria
| | - Andrés Rodríguez-Seijo
- University of Porto, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Matosinhos, Portugal
- University of Porto, Faculty of Sciences, Biology Department, Porto, Portugal
- University of Vigo, Department of Plant Biology and Soil Sciences, Ourense, Spain
| |
Collapse
|
22
|
Calderon-Segura ME, Ramírez-Guzmán A, Talavera-Mendoza O, Carbajal-López Y, Martínez-Valenzuela MDC, Mora-Herrera ME, Salinas-Alcántara L, Hurtado-Brito P. Genotoxic Biomonitoring in Children Living near the El Fraile Mine Tailings in Northern Guerrero State, Mexico. TOXICS 2022; 10:674. [PMID: 36355965 PMCID: PMC9694814 DOI: 10.3390/toxics10110674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
A genotoxic study was conducted with 101 elementary school children (56 girls and 45 boys) in the 6-7, 8-9, and 10-12 age ranges from El Fraile rural community, which is located beside the El Fraile mine tailings in Taxco of Alarcon City, in northern Guerrero State, Mexico. For this, we used the alkaline comet assay in exfoliated buccal mucosa cells, scoring three genotoxic parameters: tail intensity, tail moment, and tail length. Additionally, we detected oxidative DNA damage through urinary 8-OHdG levels by enzyme-linked immunosorbent assay. We also evaluated a control group consisting of 101 children in the same age ranges from Chilpancingo City, Guerrero, who had never lived near mining zones. Genotoxic results showed that there was a significant increase in three genotoxic parameters and urinary 8-OHdG levels in the exposed children group compared with the control group. Analysis of MANOVA revealed that boys aged 8 and 9 years had higher DNA damage than girls from the same exposure group, and Spearman's analysis identified a positive correlation between DNA damage and sex and age. This study provides the first valuable genotoxic data in children living in areas with environmental pollution.
Collapse
Affiliation(s)
- María Elena Calderon-Segura
- Laboratorio de Toxicología Ambiental, Departamento de Ciencias Ambientales, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria Coyoacán, Ciudad de México 04510, Mexico
| | - Alejandro Ramírez-Guzmán
- Escuela Superior de Ciencias de la Tierra, Universidad Autónoma de Guerrero, Ex Hacienda de San Juan Bautista s/n, Taxco el Viejo 40323, Mexico
| | - Oscar Talavera-Mendoza
- Escuela Superior de Ciencias de la Tierra, Universidad Autónoma de Guerrero, Ex Hacienda de San Juan Bautista s/n, Taxco el Viejo 40323, Mexico
| | - Yolanda Carbajal-López
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo de los Bravo 39087, Mexico
| | - María del Carmen Martínez-Valenzuela
- Instituto de Investigaciones en Ambiente y Salud, Universidad Autónoma de Occidente, Boulevar Macario Gaxiola, Carretera Internacional, Los Mochis 81200, Mexico
| | - Martha Elena Mora-Herrera
- Laboratorio de Fisiología y Biotecnología Vegetal, Centro Universitario Tenancingo, Universidad Autónoma, Tenancingo 52400, Mexico
| | - Liliana Salinas-Alcántara
- Laboratorio de Toxicología Ambiental, Departamento de Ciencias Ambientales, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria Coyoacán, Ciudad de México 04510, Mexico
| | - Patricia Hurtado-Brito
- Laboratorio de Toxicología Ambiental, Departamento de Ciencias Ambientales, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria Coyoacán, Ciudad de México 04510, Mexico
| |
Collapse
|
23
|
Aubrac G, Bastiansz A, Basu N. Systematic Review and Meta-Analysis of Mercury Exposure among Populations and Environments in Contact with Electronic Waste. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191911843. [PMID: 36231146 PMCID: PMC9564538 DOI: 10.3390/ijerph191911843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 05/12/2023]
Abstract
Electronic waste (e-waste) recycling releases mercury (Hg) into the environment, though to our knowledge Hg levels at such sites have yet to be examined on a worldwide basis. A systematic review of scientific studies was conducted to extract, analyze, and synthesize data on Hg levels in e-waste products, environments near recycling sites, and in people. Data were extracted from 78 studies from 20 countries, and these included Hg levels in 1103 electrical and electronic products, 2072 environmental samples (soil, air, plant, food, water, dust), and 2330 human biomarkers (blood, hair, urine). The average Hg level in products was 0.65 μg/g, with the highest levels found in lamps (578 μg/g). Average soil and sediment Hg levels (1.86 μg/g) at e-waste sites were at least eight times higher than at control sites. Average urinary Hg levels (0.93 μg/g creatinine) were approximately two-fold higher among e-waste workers versus control groups. Collectively, these findings demonstrate that e-waste recycling may lead to Hg contamination in environments and human populations in close proximity to processing sites. These findings contribute to a growing knowledge base of mercury exposure through diverse source-exposure pathways, and the work has potential policy implications in the context of the Minamata Convention.
Collapse
Affiliation(s)
- Gwen Aubrac
- Bieler School of Environment, McGill University, Montreal, QC H3A 2A7, Canada
| | - Ashley Bastiansz
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC H9X 3V9, Canada
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC H9X 3V9, Canada
- Correspondence:
| |
Collapse
|
24
|
Frazzoli C, Ruggieri F, Battistini B, Orisakwe OE, Igbo JK, Bocca B. E-WASTE threatens health: The scientific solution adopts the one health strategy. ENVIRONMENTAL RESEARCH 2022; 212:113227. [PMID: 35378120 DOI: 10.1016/j.envres.2022.113227] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
The aggressively extractive advanced technology industry thrives on intensive use of non-renewable resources and hyper-consumeristic culture. The environmental impact of its exponential growth means extreme mining, hazardous labour practices including child labour, and exposure burden to inorganic and organic hazardous chemicals for the environment and current and future human generations. Globally, processes such as in-country reduce, reuse and recycle have so far received less attention than outer-circle strategies like the uncontrolled dumping of e-waste in countries that are unprotected by regulatory frameworks. Here, in the absence of infrastructures for sound hazardous e-waste management, the crude recycling, open burning and dumping into landfills of e-waste severely expose people, animal and the environment. Along with economic, political, social, and cultural solutions to the e-waste global problem, the scientific approach based on risk analysis encompassing risk assessment, risk management and risk communication can foster a technical support to resist transgenerational e-waste exposure and health inequalities. This paper presents the latest public health strategies based on the use of integrated human and animal biomonitoring and appropriate biomarkers to assess and manage the risk of e-waste embracing the One Health approach. Advantages and challenges of integrated biomonitoring are described, along with ad-hoc biomarkers of exposure, effect and susceptibility with special focus on metals and metalloids. Indeed, the safe and sustainable management of novel technologies will benefit of the integration and coordination of human and animal biomonitoring.
Collapse
Affiliation(s)
- Chiara Frazzoli
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Ageing, Istituto Superiore di Sanità, Rome, Italy
| | - Flavia Ruggieri
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Beatrice Battistini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Orish E Orisakwe
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, Rivers State, Nigeria; African Centre of Excellence, Centre for Public Health and Toxicological Research, University of Port Harcourt, Rivers State, Nigeria
| | | | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
25
|
Wang Z, Xue K, Wang Z, Zhu X, Guo C, Qian Y, Li X, Li Z, Wei Y. Effects of e-waste exposure on biomarkers of coronary heart disease (CHD) and their associations with level of heavy metals in blood. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49850-49857. [PMID: 35218494 DOI: 10.1007/s11356-021-15656-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/22/2021] [Indexed: 06/14/2023]
Abstract
Excess heavy metals increase the risk of various diseases. Electronic waste (e-waste) is a potential route to heavy metal exposure, and Taizhou is a large e-waste dismantling area in China. In this study, we acquire blood samples from residents living near an e-waste recycling area (exposed group) and other residents in a selected reference area (reference group) for a comparative study in Taizhou in December 2017. Seven heavy metals, including cobalt (Co), nickel (Ni), cadmium (Cd), tin (Sn), copper (Cu), zinc (Zn), and lead (Pb), are quantitatively determined in all blood samples. It is discovered that the levels of Co, Ni, Sn, and Pb in the exposed group are higher than those in the reference group. Additionally, two crucial biomarkers of coronary heart disease (CHD), i.e., troponin (Tn) and myeloperoxidase (MPO), and two biomarkers of oxidative stress, i.e., malondialdehyde (MDA) and 8-isoprostane (8-I), are measured. We discovered that the levels of these indicators in the exposed group are significantly higher than those in the reference group. Meanwhile, both the Spearman correlation and multiple linear regression analysis show that Ni is positively correlated with Tn, MPO, 8-I, and MDA. Hence, we hypothesize that exposure to e-waste increases the risk of CHD and that Ni is an important contributor to the initiation of the disease.
Collapse
Affiliation(s)
- Ziye Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Kaibing Xue
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Zhanshan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xiaojing Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Chen Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yan Qian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xiaoqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Zhigang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China.
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Parvez SM, Hasan SS, Knibbs LD, Jahan F, Rahman M, Raqib R, Islam N, Aich N, Moniruzzaman M, Islam Z, Fujimura M, Sly PD. Ecological burden of e-waste in Bangladesh-an assessment to measure the exposure to e-waste and associated health outcomes: a cross-sectional study protocol (Preprint). JMIR Res Protoc 2022; 11:e38201. [PMID: 35972788 PMCID: PMC9428780 DOI: 10.2196/38201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sarker Masud Parvez
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, Brisbane, Australia
- Environmental Interventions Unit, Infectious Diseases Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Shaikh Sharif Hasan
- Environmental Interventions Unit, Infectious Diseases Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Luke D Knibbs
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Public Health Unit, Sydney Local Health District, Camperdown, Sydney, Australia
| | - Farjana Jahan
- Environmental Interventions Unit, Infectious Diseases Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Mahbubur Rahman
- Environmental Interventions Unit, Infectious Diseases Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Rubhana Raqib
- Environmental Interventions Unit, Infectious Diseases Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Nafisa Islam
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Nirupam Aich
- Department of Civil, Structural and Environmental Engineering, School of Engineering and Applied Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | | | - Zahir Islam
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, Brisbane, Australia
| | - Masatake Fujimura
- Department of Basic Medical Sciences, National Institute for Minamata Disease, Minamata City, Kumamoto, Japan
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, Brisbane, Australia
| |
Collapse
|
27
|
Tian M, Yan J, Zhang H, Wei Y, Zhang M, Rao Z, Zhang M, Wang H, Wang Y, Li X. Screening and validation of biomarkers for cadmium-induced liver injury based on targeted bile acid metabolomics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118837. [PMID: 35077840 DOI: 10.1016/j.envpol.2022.118837] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Although cadmium (Cd) is a toxic heavy metal that reportedly causes liver injury, few studies have investigated biomarkers of Cd-induced liver injury. The purpose of this study is to investigate the role of bile acid (BA) in Cd-induced liver injury and determine reliable and sensitive biochemical parameters for the diagnosis of Cd-induced liver injury. In this study, 48 Sprague-Dawley rats were randomly divided into six groups and administered either normal saline or 2.5, 5, 10, 20, and 40 mg/kg/d cadmium chloride for 12 weeks. A total of 403 subjects living in either a control area (n = 135) or Cd polluted area (n = 268) of Dongdagou-Xinglong (DDGXL) cohort were included, a population with long-term low Cd exposure. The BA profiles in rats' liver, serum, caecal contents, faeces, and subjects' serum were detected using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Changes in rats' and subjects' liver injury indices, rats' liver pathological degeneration, and rats' liver and subjects' blood Cd levels were also measured. Cadmium exposure caused cholestasis and an increase in toxic BAs, leading to liver injury in rats. Among them, glycoursodeoxycholic acid (GUDCA), glycolithocholic acid (GLCA), taurolithocholic acid (TLCA), and taurodeoxycholate acid (TDCA) are expected to be potential biomarkers for the early detect of Cd-induced liver injury. Serum BAs can be used to assess Cd-induced liver injury as a simple, feasible, and suitable method in rats. Serum GUDCA, GLCA, TDCA, and TLCA were verified to be of value to evaluate Cd-induced liver injury and Cd exposure in humans. These findings provided evidence for screening and validation of additional biomarkers for Cd-induced liver injury based on targeted BA metabolomics.
Collapse
Affiliation(s)
- Meng Tian
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Jun Yan
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, China
| | - Honglong Zhang
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yuhui Wei
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Mingtong Zhang
- GanSu Provincial Institute of Drug Control, Lanzhou, 730000, Gansu, China
| | - Zhi Rao
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Mingkang Zhang
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Haiping Wang
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, China
| | - Yanping Wang
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Xun Li
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
28
|
Hemmaphan S, Bordeerat NK. Genotoxic Effects of Lead and Their Impact on the Expression of DNA Repair Genes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074307. [PMID: 35409986 PMCID: PMC8998702 DOI: 10.3390/ijerph19074307] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023]
Abstract
Exposure to lead (Pb) continues to be a significant worldwide problem. Pb is a highly poisonous heavy metal affecting several organ systems in the body. Although Pb has been shown to be genotoxic to experimental animals and humans, the underlying mechanisms are still not understood. An indirect mechanism related to the inhibition of DNA repair systems by Pb has been suggested. Heavy metals can interfere with the activities of several proteins and gene expressions. Recent studies gathered in this review article demonstrated an altered expression of DNA repair genes due to Pb toxicity. However, their findings are conflicting. Furthermore, the interaction of Pb and epigenetic mechanisms regulating gene expression may have a crucial role in the inhibition of DNA repair systems. Therefore, additional studies are needed to evaluate these findings and to obtain a complete picture of the genotoxic properties of Pb and the underlying mechanisms that may have a crucial role in carcinogenesis.
Collapse
Affiliation(s)
- Sirirak Hemmaphan
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Rangsit 12121, Thailand;
| | - Narisa K. Bordeerat
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Rangsit 12121, Thailand
- Correspondence: ; Tel.: +66-81-912-2694
| |
Collapse
|
29
|
Zhou GX, Liu WB, Dai LM, Zhu HL, Xiong YW, Li DX, Xu DX, Wang H. Environmental cadmium impairs blood-testis barrier via activating HRI-responsive mitochondrial stress in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152247. [PMID: 34896485 DOI: 10.1016/j.scitotenv.2021.152247] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/13/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) is a well-known testicular toxicant. Blood-testis barrier (BTB), a vital part of testes, which has been reported to be damaged upon Cd exposure. However, the detailed mechanism about Cd-mediated disruption of BTB remains unclear. This study aims to investigate the role of Heme-Regulated Inhibitor (HRI)-responsive mitochondrial stress in Cd-mediated disruption of BTB. Male mice are intraperitoneally injected (i.p.) with melatonin (Mel, a cellular stress antagonist, 5.0 mg/kg) before Cd treatment (i.p., 2.0 mg/kg) for 8 h, and then treated with Cd for 0-48 h. Mouse Sertoli cells are pretreated with Mel (10 μM) for 1 h, and then treated with Cd (10 μM) for 0-24 h. We find that Cd damages the BTB and reduces the Occludin protein, a crucial BTB-related protein via activating p38/matrix metalloproteinase-2 (p38/MMP2) pathway and Integrated Stress Response (ISR). Further experiments reveal that the Heme-Regulated Inhibitor (HRI)-responsive mitochondrial stress is triggered in Cd-treated Sertoli cells. Most importantly, Cd-activated p38 signaling and ISR are regulated by HRI-responsive mitochondrial stress in Sertoli cells. Unexpectedly, we find that melatonin rescues the Cd-mediated disruption of BTB through blocking HRI-responsive mitochondrial stress in testes. Overall, these data indicate that environmental cadmium exposure impairs the BTB through activating HRI-responsive mitochondrial stress in Sertoli cells.
Collapse
Affiliation(s)
- Guo-Xiang Zhou
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Wei-Bo Liu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Li-Min Dai
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Dai-Xin Li
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China.
| |
Collapse
|
30
|
Jiang Y, Chen D, Yang P, Ning W, Cao M, Luo J. Influences of elevated O 3 and CO 2 on Cd distribution in different Festuca arundinacea tissues. CHEMOSPHERE 2022; 290:133343. [PMID: 34922963 DOI: 10.1016/j.chemosphere.2021.133343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
It is necessary to reveal the responses of the biomass production and metal accumulation capacity of different plants to the variations of atmospheric conditions and soil metals, with the acceleration of urbanization and industrialization. In the present study, a series of experiments were designed to study the individual and interactive influences of O3 and CO2 fumigation on the biomass yield, variation in different leaf types, distribution of cadmium (Cd) in various tissues, and phytoremediation efficiency of Festuca arundinacea using open top chambers. The results found that an elevated O3 content of 80 ppb, a potential O3 content predicted for 2050, decreased the total dry mass of F. arundinacea and increased the proportion of falling leaf tissues of the species significantly. Under the same ambient CO2 levels, O3 fumigation increased the Cd concentrations in the roots and the fresh, mature, senescent, and dead leaf tissues by 27.8%, 133.3%, 94.4%, 125.3%, and 48.6%, respectively. An elevated CO2 content (550 ppm) promoted the biomass yield of F. arundinacea, particularly in the falling leaf tissues. The results of the combined O3 and CO2 treatment showed that CO2 fumigation alleviated the negative effects of O3 on plant growth and increased the accumulation capacity in different plant tissues. Significantly more Cd was accumulated in senescent and dead leaves under the synergistic action of CO2 and O3, suggesting that the phytoremediation effect on F. arundinacea using the falling leaves harvesting method could be improved under the future atmospheric environment of high CO2 and O3 levels.
Collapse
Affiliation(s)
- Yang Jiang
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Dan Chen
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Pan Yang
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Wenjing Ning
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Min Cao
- University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom
| | - Jie Luo
- College of Resources and Environment, Yangtze University, Wuhan, China.
| |
Collapse
|
31
|
Zhang Z, Malik MZ, Khan A, Ali N, Malik S, Bilal M. Environmental impacts of hazardous waste, and management strategies to reconcile circular economy and eco-sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150856. [PMID: 34627923 DOI: 10.1016/j.scitotenv.2021.150856] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/22/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
The rise in living standards and the continuous development in the global economy led to the depletion of resources and increased waste generation per capita. This waste might posture a significant threat to human health or the environmental matrices (water, air, soil) when inadequately treated, transported, stored, or managed/disposed of. Therefore, effective waste management in an economically viable and environmentally friendly way has become meaningful. Prominent technology is the need of the day for circular economy and sustainable development to reduce the speed of depletion in resources and produce an alternative means for the future demands in the different sectors of science and technology. In order to meet the potential requirements for energy production or producing secondary raw material, solid waste may be the prime source. The activities of living organisms convert waste products in one form or another in which electronic waste (e-waste) is a modern-day problem that is growing by leaps and bounds. The disposal protocols of the e-waste management need to be given proper attention to avoid its hazardous impacts. The e-waste is obtained from any equipment or devices that run by electricity or batteries like laptops, palmtops, computers, televisions, mobile phones, digital video discs (DVD), and many more. E-waste is one of the rapidly growing causes of world pollution today. Plenty of research is available in the scientific literature, which shows different approaches being set up and followed to manage and dispose of waste products. These strategies to manage waste products designed by the states all over the globe revolves around minimal production, authentic techniques for the management of waste produced, reuse and recycling, etc. The virtual survey of the available literature on waste management shows that it lacks specificity regarding the management of waste products parallel to ecological sustainability. The presented review covers the sources, potential environmental impacts, and highlights the importance of waste management strategies to provide the latest and updated knowledge. The review also put forward the countermeasures that need to be taken on national and International levels addressing the sensitive issue of waste management.
Collapse
Affiliation(s)
- Zhen Zhang
- Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang Province 318000, China
| | - Muhammad Zeeshan Malik
- School of Electronics and Information Engineering, Taizhou University, Taizhou 318000, Zhejiang, China.
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Sumeet Malik
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| |
Collapse
|
32
|
Zeng X, Liu D, Wu W. PM 2.5 exposure and pediatric health in e-waste dismantling areas. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 89:103774. [PMID: 34800720 DOI: 10.1016/j.etap.2021.103774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Fine particulate matter (PM2.5) is the first leading environmental risk factor for death according to the Global Burden of Disease Study 2019. Children are in a pivotal window stage of growth and development, and one of the most sensitive and vulnerable groups when they are exposed to PM2.5. E-waste refers to the abandoned electrical or electronic equipment. Informal e-waste dismantling activities, such as heating, burning, and roasting, will release a large number PM2.5 into the local atmosphere. PM2.5 exposure levels are higher in e-waste dismantling areas than those in reference areas. PM2.5 derived from e-waste contains a variety of toxic and harmful components such as transition metals and persistent organic pollutants. Few studies have focused on the exposure levels of PM2.5 and its compositions in e-waste dismantling areas, but little is known about their effects on children's health. Therefore, this study will briefly summarize the impact of PM2.5 on children's health in e-waste dismantling areas.
Collapse
Affiliation(s)
- Xiang Zeng
- School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, Henan, China.
| | - Dongling Liu
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, Henan, China
| |
Collapse
|
33
|
Vélez JMB, Martínez JG, Ospina JT, Agudelo SO. Bioremediation potential of Pseudomonas genus isolates from residual water, capable of tolerating lead through mechanisms of exopolysaccharide production and biosorption. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 32:e00685. [PMID: 34765463 PMCID: PMC8569635 DOI: 10.1016/j.btre.2021.e00685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/07/2021] [Accepted: 10/20/2021] [Indexed: 05/13/2023]
Abstract
The mechanisms of tolerance to heavy metals used by some microorganisms identified by bioprospection processes are useful for the development and implementation of bioremediation strategies for contaminated environments with high toxic load caused by heavy metals. A total of seven native microbial isolates were obtained from wastewater bodies from an industrial zone in the municipality of Girardota, Antioquia, Colombia. Subsequently, they were selected to evaluate their lead tolerance capacity at different concentrations. In addition, some parameters were determined, such as the capacity to produce exopolysaccharides and their biosorption to understand potential mechanisms associated to lead tolerance. According to the biocehemical test (Vitek) and the molecular analysis of sequences of 16S rDNA, bacterial were identified as Pseudomonas aeruginosa, Pseudomonas nitroreducens, and Pseudomonas alcaligenes. We determined that the seven isolates had the capacity to tolerate concentrations higher than 50 mg/ml of lead, and that the concentration and exposure time (40 h) to this metal significantly affect the Pseudomonas spp. isolates. Statistically significant differences were detected (p < 0.05) in the production of the exopolysaccharide (EPS) among the isolates. P. aeruginosa (P16) was the strain with the maximum absorbance exopolysaccharide measured. We evidenced that P. aeruginosa (P14) and P. nitroreducens (P20) have 80% capacity to biosorber lead using live mass (minimum range from 80.9% to 87%). It is suggested that the tolerance to lead exhibited by the environmental isolates of Pseudomonas spp. can be attributed to the production of exopolysaccharides and biosorption, which are protection factors for its survival in contaminated places. Finally, it was determined that the adsorption measured from dead biomass was significant (p < 0.05) from 40 h of exposure to metal (Average 182.2 ± 7). We generated new knowledge about the potential use of the Pseudomonas spp. genus to bioremediate affluent contaminated with heavy metals.
Collapse
|
34
|
Parvez SM, Jahan F, Brune MN, Gorman JF, Rahman MJ, Carpenter D, Islam Z, Rahman M, Aich N, Knibbs LD, Sly PD. Health consequences of exposure to e-waste: an updated systematic review. Lancet Planet Health 2021; 5:e905-e920. [PMID: 34895498 PMCID: PMC8674120 DOI: 10.1016/s2542-5196(21)00263-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 05/28/2023]
Abstract
Electronic waste (e-waste) contains numerous chemicals harmful to human and ecological health. To update a 2013 review assessing adverse human health consequences of exposure to e-waste, we systematically reviewed studies reporting effects on humans related to e-waste exposure. We searched EMBASE, PsycNET, Web of Science, CINAHL, and PubMed for articles published between Dec 18, 2012, and Jan 28, 2020, restricting our search to publications in English. Of the 5645 records identified, we included 70 studies that met the preset criteria. People living in e-waste exposed regions had significantly elevated levels of heavy metals and persistent organic pollutants. Children and pregnant women were especially susceptible during the critical periods of exposure that detrimentally affect diverse biological systems and organs. Elevated toxic chemicals negatively impact on neonatal growth indices and hormone level alterations in e-waste exposed populations. We recorded possible connections between chronic exposure to e-waste and DNA lesions, telomere attrition, inhibited vaccine responsiveness, elevated oxidative stress, and altered immune function. The existence of various toxic chemicals in e-waste recycling areas impose plausible adverse health outcomes. Novel cost-effective methods for safe recycling operations need to be employed in e-waste sites to ensure the health and safety of vulnerable populations.
Collapse
Affiliation(s)
- Sarker M Parvez
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia; Environmental Intervention Unit, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Farjana Jahan
- Environmental Intervention Unit, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Marie-Noel Brune
- Department of Environment, Climate Change and Health, WHO, Geneva, Switzerland
| | - Julia F Gorman
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia
| | - Musarrat J Rahman
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - David Carpenter
- School of Public Health, Environmental Health Sciences, University at Albany, Albany, NY, USA
| | - Zahir Islam
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia
| | - Mahbubur Rahman
- Environmental Intervention Unit, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Nirupam Aich
- Department of Civil, Structural and Environmental Engineering, School of Engineering and Applied Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Luke D Knibbs
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia.
| |
Collapse
|
35
|
Khayal EES, Ibrahim HM, Shalaby AM, Alabiad MA, El-Sheikh AA. Combined lead and zinc oxide-nanoparticles induced thyroid toxicity through 8-OHdG oxidative stress-mediated inflammation, apoptosis, and Nrf2 activation in rats. ENVIRONMENTAL TOXICOLOGY 2021; 36:2589-2604. [PMID: 34553816 DOI: 10.1002/tox.23373] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/26/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
A human is exposed to a chemical mixture rather than a single chemical, particularly with the wide spread of nanomaterials. Therefore, the present study evaluated the combined exposure of lead acetate (Pb) and zinc oxide-nanoparticles (ZnO-NPs) compared to each metal alone on the thyroid gland of adult rats. A total of 30 adult male albino rats were divided into four groups, group I (control), group II received Pb (10 mg/kg), group III received ZnO-NPs (85 mg/kg) and group IV co-administrated the two metals in the same previous doses. The materials were gavaged for 8 weeks. The toxicity was assessed through several biochemical parameters. Our results revealed significant body weight reduction relative to increased thyroid weights, decreased both of serum-free triiodothyronine (FT3), tetra-iodothyronine (FT4), increased thyroid-stimulating hormone (TSH), increased serum and thyroid levels of Pb and zinc, significant elevation in tumor necrosis factor-α (TNF-α), reduction in interleukin 4 (IL4), upregulation of Bax, and downregulation of Bcl-2 genes. Additionally, there was significant overexpression of nuclear factor erythroid 2-related factor 2(Nrf2), 8-Hydroxydeoxyguanosine(8-OHdG), the elevation of tissues malondialdehyde (MDA), reduction of tissues total antioxidant capacity (TAC), and disruptive thyroid structural alterations in all metals groups with marked changes in the combined metals group. In conclusion, the combined exposure of Pb and ZnO-NPs induced pronounced toxic thyroid injury, pointing to additive effects in rats than the individual metal effects through different significant changes of disruptive thyroid structural alterations related to the loading of thyroid tissues with Pb and zinc metals producing oxidative stress that mediated inflammation and apoptosis.
Collapse
Affiliation(s)
- Eman El-Sayed Khayal
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Hanaa M Ibrahim
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amany Mohamed Shalaby
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohamed Ali Alabiad
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Arwa A El-Sheikh
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
36
|
Huang W, Shi X, Wu K. Human Body Burden of Heavy Metals and Health Consequences of Pb Exposure in Guiyu, an E-Waste Recycling Town in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312428. [PMID: 34886154 PMCID: PMC8657058 DOI: 10.3390/ijerph182312428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 02/05/2023]
Abstract
Guiyu accommodates millions of tons of e-waste from overseas and domestic sources each year and is notorious for its e-waste dismantling industry. As a consequence, Guiyu has been described as "the world's most toxic place" and "junk town". Informal e-waste recycling activities have caused severe pollution to the local environment and are associated with extensive health problems to the residents. This review provides updated insights on the body burden of heavy metals derived from e-waste and health outcomes resulted from lead (Pb) exposure. The review identified that Guiyu has been highly contaminated by heavy metals, especially Pb. Excessive exposure to Pb has been associated with multi-system and long-term effects in neonates and children, covering nervous, cardiovascular, adaptive immune, and hematologic systems as well as chromosome and DNA damage. Our review indicates strong associations that emphasize the need to develop strong regulations for prevention of exposure and health consequences in Guiyu and similar sites around the world.
Collapse
|
37
|
de Albuquerque CA, Mello CHP, de Freitas Gomes JH, Dos Santos VC. Bibliometric analysis of studies involving e-waste: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47773-47784. [PMID: 34296401 DOI: 10.1007/s11356-021-15420-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
The correct destination of waste is an essential factor for sustainable development. Electronic waste, which is very toxic, is the type of waste with the highest rate of increase in its generation. For these reasons, the amount of research on this topic increases year by year, as shown by the literature review carried out by this study. This review aims to identify the main characteristics and proposals of the main study on electronic waste and verify how Brazil is inserted globally in the research on e-waste. Another objective is to suggest a path for researchers who want to start research on e-waste by identifying the keywords most used in the analyzed articles. The results evidenced that the most published countries on the subject are China, the USA, and India. Brazil is in a position of little prominence concerning its research production on the subject. Most of the central studies we analyzed use case study and literature review as the research method. Among the 44 articles analyzed, only one proposed a destination for e-waste. It highlights the need for more research focusing on the environmentally correct destination of e-waste. A good way to start a search on electronic waste is to use the keywords identified in this study, especially those used most frequently in the analyzed articles.
Collapse
Affiliation(s)
- Carlos Alberto de Albuquerque
- Federal Institute of Education, Science and Technology of Southern Minas Gerais - IFSULDEMINAS, Avenida Vicente Simões, 1.111. Nova Pouso Alegre, Pouso Alegre, MG CEP 37553-465, Brazil.
| | - Carlos Henrique Pereira Mello
- Federal University of Itajubá - UNIFEI, Av. BPS, 1303, Bairro Pinheirinho, Itajubá, MG, Caixa Postal 50 CEP 37500 903, Brazil
| | - José Henrique de Freitas Gomes
- Federal University of Itajubá - UNIFEI, Av. BPS, 1303, Bairro Pinheirinho, Itajubá, MG, Caixa Postal 50 CEP 37500 903, Brazil
| | - Valquíria Claret Dos Santos
- Federal University of Itajubá - UNIFEI, Av. BPS, 1303, Bairro Pinheirinho, Itajubá, MG, Caixa Postal 50 CEP 37500 903, Brazil
| |
Collapse
|
38
|
Lebbie TS, Moyebi OD, Asante KA, Fobil J, Brune-Drisse MN, Suk WA, Sly PD, Gorman J, Carpenter DO. E-Waste in Africa: A Serious Threat to the Health of Children. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8488. [PMID: 34444234 PMCID: PMC8392572 DOI: 10.3390/ijerph18168488] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/22/2022]
Abstract
Waste electronic and electrical equipment (e-waste) consists of used and discarded electrical and electronic items ranging from refrigerators to cell phones and printed circuit boards. It is frequently moved from developed countries to developing countries where it is dismantled for valuable metals in informal settings, resulting in significant human exposure to toxic substances. E-waste is a major concern in Africa, with large sites in Ghana and Nigeria where imported e-waste is dismantled under unsafe conditions. However, as in many developing countries, used electronic and electrical devices are imported in large quantities because they are in great demand and are less expensive than new ones. Many of these used products are irreparable and are discarded with other solid waste to local landfills. These items are then often scavenged for the purpose of extracting valuable metals by heating and burning, incubating in acids and other methods. These activities pose significant health risks to workers and residents in communities near recycling sites. E-waste burning and dismantling activities are frequently undertaken at e-waste sites, often in or near homes. As a result, children and people living in the surrounding areas are exposed, even if they are not directly involved in the recycling. While toxic substances are dangerous to individuals at any age, children are more vulnerable as they are going through important developmental processes, and some adverse health impacts may have long-term impacts. We review the e-waste situation in Africa with a focus on threats to children's health.
Collapse
Affiliation(s)
- Tamba S. Lebbie
- Department of Environmental Health Sciences, School of Public Health, University at Albany, Rensselaer, NY 12144, USA; (T.S.L.); (O.D.M.)
| | - Omosehin D. Moyebi
- Department of Environmental Health Sciences, School of Public Health, University at Albany, Rensselaer, NY 12144, USA; (T.S.L.); (O.D.M.)
| | | | - Julius Fobil
- Department of Biological, Environmental & Occupational Health Sciences, School of Public Health, University of Ghana, Accra, Ghana;
| | - Marie Noel Brune-Drisse
- Department of Environment, Climate Change and Health, World Organization, 1211 Geneva, Switzerland;
| | - William A. Suk
- A World Health Organization Collaborating Center on Children’s Environmental Health, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA;
| | - Peter D. Sly
- A World Health Organization Collaborating Center for Children’s Health and the Environment, Child Health Research Center, The University of Queensland, South Brisbane 4101, Australia;
| | - Julia Gorman
- Graduate School of Humanities and Social Sciences, University of Melbourne, Melbourne 3010, Australia;
| | - David O. Carpenter
- Department of Environmental Health Sciences, School of Public Health, University at Albany, Rensselaer, NY 12144, USA; (T.S.L.); (O.D.M.)
- A World Health Organization Collaborating Center on Environmental Health, Institute for Health and the Environment, University at Albany, Rensselaer, NY 12144, USA
| |
Collapse
|
39
|
Anselm OH, Cavoura O, Davidson CM, Oluseyi TO, Oyeyiola AO, Togias K. Mobility, spatial variation and human health risk assessment of mercury in soil from an informal e-waste recycling site, Lagos, Nigeria. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:416. [PMID: 34120239 DOI: 10.1007/s10661-021-09165-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Spatial variations and mobility of mercury (Hg) and Hg associations with other potentially toxic elements (PTEs) were studied in soil samples from Alaba, the largest e-waste recycling site in Nigeria and West Africa. Total Hg concentration was determined in surface soil samples from various locations using cold vapour atomic absorption spectrometry (CVAAS) following microwave-assisted acid extraction, while sequential extraction was used to determine operationally defined mobility. The concentrations of the PTEs arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn) metals were determined using inductively coupled plasma mass spectrometry (ICP-MS) following microwave-assisted digestion with aqua regia. Total Hg concentration ranged from < 0.07 to 624 mg/kg and was largely dependent on the nature and intensity of e-waste recycling activities carried out. Mobile forms of Hg, which may be HgO (a known component of some forms of e-waste), accounted for between 3.2 and 23% of the total Hg concentration, and were observed to decrease with increasing organic matter (OM). Non-mobile forms accounted for >74% of the total Hg content. In the main recycling area, soil concentrations of Cd, Cd, Cu, Hg, Mn, Ni, Pb and Zn were above soil guideline values (Environment Agency in Science Report, 2009; Kamunda et al., 2016). Strong associations were observed between Hg and other PTEs (except for Fe and Zn) with the correlational coefficient ranging from 0.731 with Cr to 0.990 with As in April, but these correlations decreased in June except for Fe. Hazard quotient values > 1 at two locations suggest that Hg may pose health threats to people working at the e-waste recycling site. It is therefore recommended that workers should be investigated for symptoms of Hg exposure.
Collapse
Affiliation(s)
- Oluwaseun H Anselm
- Department of Chemistry, University of Lagos, Akoka, Lagos, Nigeria
- Department of Chemical Sciences, Tai Solarin University of Education, Ijagun, Ogun State, Nigeria
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Olga Cavoura
- Department of Public Health Policy, School of Public Health, University of West Attica, Athens, Greece.
| | - Christine M Davidson
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | | | | | | |
Collapse
|
40
|
Li Z, Wang Z, Xue K, Wang Z, Guo C, Qian Y, Li X, Wei Y. High concentration of blood cobalt is associated with the impairment of blood-brain barrier permeability. CHEMOSPHERE 2021; 273:129579. [PMID: 33493816 DOI: 10.1016/j.chemosphere.2021.129579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Excess heavy metals can lead to many kinds of adverse effects in human. The present study is designed to investigate whether the internal excess burden of heavy metals relate to the disturbance of the Blood-brain-barrier (BBB) and oxidative stress (OS) in subjects, and identify specific metallic constituents responsible for the disturbance. We collected the blood from recruited 122 subjects for our comparison study, 69 were living at an area near e-waste dismantling factories (exposed group), who have higher levels of heavy metals in the body; and others were in a chosen reference area (reference group), who were the general residents in city, in December 2017 in Taizhou, Zhejiang province. The analyses showed that the concentrations of altogether 4 metals, including nickel (Ni), cobalt (Co), mercury (Hg) and stannum (Sn), and the triggers of BBB disruption (Apolipoprotein E4 and matrix-metalloproteinase-9), indicators of BBB (Myelin basic protein, serotonin and dopamine) and biomarkers of OS (Malondialdehyde and 8-isoprostane) were statistically significant higher in exposed group than in reference group. Moreover, they are also significantly positively correlated with each other. Among all the metals, both Pearson correlation and multiple linear regression showed Co was positive correlated with almost all biomarkers. Considering the explicit correlation between Co and BBB permeability, we speculated that high burden of Co in blood may have a connection with neurodegenerative diseases, which propose a requirement for constructing the environmental criteria for Co and might provide a potential new hint for the intervention of dementia.
Collapse
Affiliation(s)
- Zhigang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ziye Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Kaibing Xue
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhanshan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chen Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yan Qian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaoqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Center for Global Health, School of Public Health, Nanjing Medical University, China.
| |
Collapse
|
41
|
E-waste management: A review of recycling process, environmental and occupational health hazards, and potential solutions. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.enmm.2020.100409] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Singh P, Mitra P, Goyal T, Sharma S, Sharma P. Evaluation of DNA Damage and Expressions of DNA Repair Gene in Occupationally Lead Exposed Workers (Jodhpur, India). Biol Trace Elem Res 2021; 199:1707-1714. [PMID: 32712906 DOI: 10.1007/s12011-020-02298-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/19/2020] [Indexed: 01/26/2023]
Abstract
Occupational exposure to lead (Pb) remains a significant concern for worker's health working in different factories. There are many discrepancies among the results regarding the studies of genotoxicity of Pb. The present study aimed to evaluate DNA damage and expressions of DNA repair genes (OGG1, XRCC1, and XPD) in occupationally Pb-exposed workers of Jodhpur, India. The study consisted of 100 occupationally Pb-exposed workers and 100 controls (non-exposed) with no history of occupational exposure. Pb levels were determined by atomic absorption spectrophotometry, serum 8-hydroxy-2-deoxyguanosine (8-OHdG) concentrations were measured by ELISA, and expressions of DNA repair genes (OGG1, XRCC1, and XPD) were estimated by RT-PCR. The results indicated significantly higher levels of Pb in the exposed group as compared with the non-exposed group (p < 0.0001). Serum 8-OHdG concentrations were significantly higher (p < 0.0083), and all three DNA repair genes were significantly downregulated (fold change: OGG1, 0.188; XRCC1, 0.125; XPD, 0.133) in the Pb-exposed group as compared with the non-exposed. In conclusion, the study findings suggest that Pb exposure is associated with increased DNA damage and reduced DNA repair capacity, which may lead to serious health issues in occupationally Pb-exposed workers.
Collapse
Affiliation(s)
- Preeti Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Prasenjit Mitra
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Taru Goyal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Shailja Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| |
Collapse
|
43
|
Zhou GX, Zhu HL, Shi XT, Nan Y, Liu WB, Dai LM, Xiong YW, Yi SJ, Cao XL, Xu DX, Wang H. Autophagy in Sertoli cell protects against environmental cadmium-induced germ cell apoptosis in mouse testes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116241. [PMID: 33321432 DOI: 10.1016/j.envpol.2020.116241] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 05/22/2023]
Abstract
Cadmium (Cd) was an environmental pollutant, which could result in germ cell apoptosis in testes. Sertoli-germ cell communication was vital for germ cell development and maturity. However, little was known about the effect of Sertoli cell autophagy on Cd-induced germ cell apoptosis. Here, we used male Amh-Cre+/Atg5flox/flox (Atg5-/-) mice, loss of autophagy-related gene 5 (Atg5) in testicular Sertoli cells, to explore the obscure effects. Atg5-/- and Wild-type (WT) mice were given with cadmium chloride (CdCl2, 2.0 mg/kg) for 0-24 h. Our results showed that Cd triggered testicular germ cell apoptosis, as evidenced by the increment of TUNEL-labeled germ cells, cleaved caspase3 and cleaved poly (ADP-ribose) polymerase protein level. Additionally, Cd induced testicular autophagy, as determined by elevating the level of autophagy-related proteins, including Atg5, Atg7, LC3B-II, and the gathering of LC3 puncta. 3-methyladenine, a specific autophagy inhibitor, exacerbated Cd-caused germ cell apoptosis. Inversely, rapamycin, an autophagy inducer, relieved Cd-stimulated germ cell apoptosis. Interestingly, we found that autophagy in Sertoli cells was activated in Cd-treated WT mouse testes as evidenced by the increment of LC3 puncta surrounding SOX9, a specific Sertoli cell marker. More importantly, loss of autophagy in Sertoli cells aggravated Cd-triggered germ cell apoptosis. Taken together, these data indicate that autophagy in Sertoli cells alleviates Cd-triggered germ cell apoptosis in mouse testes.
Collapse
Affiliation(s)
- Guo-Xiang Zhou
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xue-Ting Shi
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yuan Nan
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Wei-Bo Liu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Li-Min Dai
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Song-Jia Yi
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xue-Lin Cao
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China.
| |
Collapse
|
44
|
Zou H, Sun J, Wu B, Yuan Y, Gu J, Bian J, Liu X, Liu Z. Effects of Cadmium and/or Lead on Autophagy and Liver Injury in Rats. Biol Trace Elem Res 2020; 198:206-215. [PMID: 32006201 DOI: 10.1007/s12011-020-02045-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Abstract
Exposure to cadmium (Cd) and lead (Pb) can induce liver damage. However, the effects of the combined exposure to Cd and Pb on liver function have not been fully clarified. In the present study, we investigated the liver function in rats co-exposed to Cd and Pb. A total of 24 female SD rats were divided into 4 groups as follows: control group (DDW), Cd group (50 mg/l Cd), Pb group (300 mg/l Pb), Pb + Cd group (300 mg/l + 50 mg/l Cd). Following 12 weeks of continuous exposure, the results showed a large accumulation of Cd and Pb in the liver. The Liver weight and Liver coefficient were decreased, as well as liver structure and function was destroyed. In addition, Pb + Cd group exhibited additional pathological alterations. Moreover, the indices of oxidative stress and related trace elements were detected following treatment. The results showed that the single treatment of Pb or Cd and the combined Cd and Pb treatment could upregulate the contents of antioxidant enzymes and related trace elements. We further examined the expression levels of autophagy-related proteins and mRNAs, and we found that the single treatment of Pb or Cd and the combined Cd and Pb treatment could upregulate the expression of levels of autophagy-related proteins and mRNAs (Atg5, Atg7, Beclin-1, p62, and LC3). Transmission electron microscopy revealed the presence of autophagosomes in the exposed groups. All the results indicated that Cd and Pb may affect the level of oxidative stress and autophagy in hepatocytes, whereas the combination of Cd and Pb showed a tendency of escalation compared with the single treatment group.
Collapse
Affiliation(s)
- Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Jian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Bo Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.
| |
Collapse
|
45
|
Zeng X, Huo X, Xu X, Liu D, Wu W. E-waste lead exposure and children's health in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139286. [PMID: 32460072 DOI: 10.1016/j.scitotenv.2020.139286] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/20/2020] [Accepted: 05/06/2020] [Indexed: 02/05/2023]
Abstract
China is one of the countries worldwide confronted with serious e-waste pollution and associated detrimental health effects, which has aroused public, academic and governmental concerns. Most local residents are exposed to hazardous substances such as lead (Pb) and other persistent organic pollutants because of informal e-waste recycling activities. This study reviews recent studies on children exposed to e-waste Pb in China focusing on health-related effects in children (e.g. growth and development, cardiovascular, immune, nervous, respiratory, reproductive, skeletal, and urinary systems) and evaluating the evidence for the association between e-waste Pb exposure and the children health outcomes in China. Children are one of most sensitive and vulnerable groups when facing e-waste Pb exposure. Previous data indicate that exposure to e-waste Pb has adverse effect on human health such as delayed and damaged physical and nervous development. It is the time to take effective measures, such as upgrading e-waste recycling technology, enhancing government policy guidance and support, and strengthening environmental protection and health awareness of the local inhabitants, to prevent the adverse effects of e-waste.
Collapse
Affiliation(s)
- Xiang Zeng
- School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, Henan, China; Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China; Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Road, Shantou 515041, Guangdong, China.
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Road, Shantou 515041, Guangdong, China
| | - Dongling Liu
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, Henan, China
| |
Collapse
|
46
|
Genotoxic Effect of Lead and Cadmium on Workers at Wastewater Plant in Iraq. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2020; 2020:9171027. [PMID: 32774395 PMCID: PMC7397425 DOI: 10.1155/2020/9171027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/13/2020] [Accepted: 07/04/2020] [Indexed: 12/15/2022]
Abstract
Heavy metal poisoning is a worldwide problem that is caused by different human industrial activities such as battery and painting manufacturing and occupational exposure of those working at petrol stations. Wastewater is known to contain higher amounts of heavy metals such as lead (Pd) and cadmium (Cd) and might be sources of exposure for workers at the wastewater treatment plant. However, to our best knowledge, no studies were done to evaluate the level of cadmium and lead in blood of workers at wastewater treatment plants and evaluate the subsequent effect of lead and cadmium on delta-aminolevulinic acid dehydratase (δ-ALAD), urinary delta-aminolevulinic acid (Uδ-ALA), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) as markers of lead and cadmium toxicity. In this case-control study, 79 workers at the Al-Rustumiya wastewater plant in Baghdad, Iraq, and 40 control subjects were included. The levels of lead and cadmium were measured in blood of the study subjects using the atomic absorption spectroscopy (AAS) method. 8-OHdG was analysed using enzyme-linked immunosorbent assay (ELISA) technique. δ-ALAD and Uδ-ALA were estimated using spectrophotometry-based methods. Our work showed that workers had a significantly higher level of lead and cadmium when compared with the control group (P < 0.05), yet, still within the World Health Organization permissible limit. The level of both metals was positively associated with duration of work at the plant (P < 0.01). The activity of δ-ALAD was inversely associated with the lead level, while both Uδ-ALA and 8-OHdG were positively correlated with the lead level (P < 0.05). These three markers lacked any statistically significant association with the cadmium level (P > 0.05). To sum up, working at the wastewater treatment plant was associated with a higher blood level of lead and cadmium and their possible health hazard. Health and occupational safety authorities are required to set up tighter regulations and protocols to minimize these hazards and ensure a safe working environment.
Collapse
|
47
|
Li Z, Liu H, Qian Y, Li X, Guo C, Wang Z, Wei Y. Influence of metals from e-waste dismantling on telomerelength and mitochondrial DNA copy number in people living near recycling sites. ENVIRONMENT INTERNATIONAL 2020; 140:105769. [PMID: 32387852 DOI: 10.1016/j.envint.2020.105769] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Metals are the primary toxicants released by electronic waste (e-waste) recycling, but their adverse effects on people working in e-waste recycling or living near e-waste sites have not been studied well. Taizhou is one of the three largest e-waste recycling locations in China. Atpresent, to prevent the environmental problems stem from e-waste dismantling, the local government has shut down all the industries in 2015. In this study, we collected blood samples of residents living near e-waste dismantling factories, and in matched reference areas in Taizhou, in December 2017, after the factories have been shut down for two years. Seventeen metals were quantified in all blood samples. Among them, the concentrations of arsenic (As), nickel (Ni), silver (Ag), lanthanum (La), and Cerium (Ce) were statistically significant higher in individuals in e-waste recycling locations than those in reference location. Length of telomere (LOT) and mitochondrialDNA copy number (MCN) were measured in blood as a marker of human health. In the e-waste dismantling location, the level LOT and MCN were elevated in resident living near e-waste sites (RE) and former working in e-waste recycling (OE) than residents living in the reference area (RF). Furthermore, Pearson correlation and multiple linear regression analysis between the changed metals and LOT, MCN in blood were performed. In RE and OE, the concentration of Ni significantly positively correlated with MCN; in OE, the Ni level significantly positively correlated with MCN and LOT. Considering that the high level of Ni, TL and mtDNA were correlated with the risk of cancer, we speculated that e-waste exposure elevate the risk of cancer, and Ni that has long been present in the body was the potential hazardous element causing cancer.
Collapse
Affiliation(s)
- Zhigang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Huijie Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yan Qian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chen Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhanshan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Global Health, School of Public Health, Nanjing Medical University, China.
| |
Collapse
|
48
|
Killian B, Yuan TH, Tsai CH, Chiu THT, Chen YH, Chan CC. Emission-related Heavy Metal Associated with Oxidative Stress in Children: Effect of Antioxidant Intake. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17113920. [PMID: 32492875 PMCID: PMC7312654 DOI: 10.3390/ijerph17113920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/22/2020] [Accepted: 05/30/2020] [Indexed: 12/13/2022]
Abstract
Heavy metals, the common pollutants emitted from industrial activities, are believed to cause harmful effects, partially through the mechanism of elevated oxidative stress, and antioxidant intake has been hypothesized to provide a potential protective effect against oxidative stress. This study aims to investigate the heavy metal exposure and the associated oxidative damage of young children living near a petrochemical complex and to assess the protective effect of antioxidant intake. There were 168 children recruited from the kindergartens near a huge petrochemical complex, with 87 as the high exposure group and 81 as the low exposure group. Urinary concentrations of eleven metals were detected by inductively coupled plasma mass spectrometry, and four biomarkers of oxidative stress were measured in urine by liquid chromatography-tandem mass spectrometry. The food frequency questionnaire was collected to assess participants’ intake of antioxidants. Multiple linear regression was performed to determine the predictors of metals for oxidative stress and to measure the beneficial effect of antioxidants. Weighted quantile sum regression was performed to determine the contributors among metals to the oxidative stress. Results showed that high exposure group had significantly higher concentrations of chromium, manganese, nickel, arsenic, strontium, cadmium, and lead when compared to those in low exposure group. There was no obviously difference on the total antioxidant intake and dietary profile between two groups. The elevated levels of two oxidative stress markers were significantly associated with most of the urinary metal concentrations in all study subjects after adjusting confounders, while no significant association was found between oxidative stress and antioxidant intake. Among the metals, mercury and strontium showed the dominated contributions for elevated levels of oxidative stress. It concluded that higher metal exposure was associated with elevated oxidative stress but with no protective effect by antioxidant intake among the young children residents near a petrochemical industry.
Collapse
Affiliation(s)
- Brittany Killian
- Master of Public Health Degree Program, College of Public Health, National Taiwan University, No. 17, Xu-Zhou Road, Taipei 10055, Taiwan;
| | - Tzu-Hsuen Yuan
- Institute of Environmental and Occupational Health Science, College of Public Health, National Taiwan University, No. 17, Xu-Zhou Road, Taipei 10055, Taiwan; (T.-H.Y.); (Y.-H.C.)
- Innovation and Policy Center for Population Health and Sustainable Environment (Population Health Research Center, PHRC), College of Public Health, National Taiwan University, No. 17, Xu-Zhou Road, Taipei 10055, Taiwan
| | - Cheng-Hsien Tsai
- National Taiwan University Hospital, Yunlin Branch, No.579, Sec. 2, Yunlin Rd., Douliu City, Yunlin County 64041, Taiwan;
| | - Tina H. T. Chiu
- Department of Nutritional Science, Fu-Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhang Dist., New Taipei City 24205, Taiwan;
| | - Yi-Hsuan Chen
- Institute of Environmental and Occupational Health Science, College of Public Health, National Taiwan University, No. 17, Xu-Zhou Road, Taipei 10055, Taiwan; (T.-H.Y.); (Y.-H.C.)
| | - Chang-Chuan Chan
- Institute of Environmental and Occupational Health Science, College of Public Health, National Taiwan University, No. 17, Xu-Zhou Road, Taipei 10055, Taiwan; (T.-H.Y.); (Y.-H.C.)
- Innovation and Policy Center for Population Health and Sustainable Environment (Population Health Research Center, PHRC), College of Public Health, National Taiwan University, No. 17, Xu-Zhou Road, Taipei 10055, Taiwan
- Correspondence:
| |
Collapse
|
49
|
Zhang S, Huo X, Li M, Hou R, Cong X, Xu X. Oral antimicrobial activity weakened in children with electronic waste lead exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:14763-14770. [PMID: 32056098 DOI: 10.1007/s11356-020-08037-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 02/10/2020] [Indexed: 02/05/2023]
Abstract
Environmental lead (Pb) exposure can induce dysbacteriosis, impair oral health, and is associated with the development of dental caries. However, the mechanism is unclear. The aim of this study was to explore the effects of Pb toxicity on oral antimicrobial activity in children in an e-waste area. Results showed higher blood Pb levels in e-waste-exposed group children, accompanied by decreased saliva SAG (salivary agglutinin) concentrations, increased peripheral WBC (white blood cell) counts and monocyte counts, and elevated peripheral monocyte percentage. LnPb (natural logarithmic transformation of blood Pb level) was negatively correlated with saliva SAG concentration, while positively correlated with peripheral monocyte percentage. Saliva SAG concentration played a complete mediating role in the correlation of LnPb to peripheral monocyte percentage. To our knowledge, this is the first study on the relationship of environmental Pb exposure and oral antimicrobial activity in children, showing that environmental Pb exposure may weaken oral antimicrobial activity through reducing saliva SAG concentration, which may raise the risk of oral dysbacteriosis and ultimately pathogen infection.
Collapse
Affiliation(s)
- Shaocheng Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou, 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511486, Guangdong, China
| | - Minghui Li
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou, 515041, Guangdong, China
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
| | - Ruikun Hou
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou, 515041, Guangdong, China
| | - Xiaowei Cong
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou, 515041, Guangdong, China
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou, 515041, Guangdong, China.
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|
50
|
Li Z, Guo C, Li X, Wang Z, Wu J, Qian Y, Wei Y. Associations between metal exposure and global DNA methylation in potentially affected people in E-Waste recycling sites in Taizhou City, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:135100. [PMID: 32000340 DOI: 10.1016/j.scitotenv.2019.135100] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/15/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
Electronic waste (e-waste) has been an emerging environmental health issue, and it has already provoked all aspects of attention. Taizhou is one of the three largest e-waste recycling locations in China. Atpresent, to prevent the environmental problems stem from e-waste dismantling, the local government has shut down all the industries in 2015. In this study, we collected blood samples of residents living near e-waste dismantling factories, and in matched reference areas in Taizhou, in December 2017, after the factories have been shut down for two years. Twenty-five metals were quantified in all blood samples. Among them, the concentrations of As, Ni, Ag, La, and Ce were statistically significant higher in individuals in e-waste recycling locations than those in reference location. Global DNA methylation was measured in blood as a marker of human health. Pearson correlation and multiple linear regression analysis between the changed metals and global DNA methylation in blood were performed. The result showed that only blood Ce was negatively correlated with global DNA methylation level significantly in pre-workers exposed e-waste workers (r = -0.51, p = 0.01). Our findings indicated that high concentrations of exposure to Ce in e-waste dismantling site could have sustained effects on the DNA methylation in blood although the e-waste industry had been closed for 2 years.
Collapse
Affiliation(s)
- Zhigang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chen Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhanshan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jing Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yan Qian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Global Health, School of Public Health, Nanjing Medical University, China.
| |
Collapse
|