1
|
Eens S, Van Hecke M, Van den Bogaert S, Favere K, Cools N, Fransen E, Roskams T, Heidbuchel H, Guns PJ. Endurance Exercise Does Not Exacerbate Cardiac Inflammation in BALB/c Mice Following mRNA COVID-19 Vaccination. Vaccines (Basel) 2024; 12:966. [PMID: 39339998 PMCID: PMC11435831 DOI: 10.3390/vaccines12090966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The mechanism underlying myopericarditis associated with mRNA COVID-19 vaccination, including increased susceptibility in young males, remains poorly understood. This study aims to explore the hypothesis that engaging in physical exercise at the time of mRNA COVID-19 vaccination may promote a cardiac inflammatory response, leading to the development of myopericarditis. Male BALB/c mice underwent treadmill running or remained sedentary for five weeks. Subsequently, two doses of the Pfizer/BioNTech vaccine or vehicle were administered with a 14-day interval, while the exercise regimen continued. The animals were euthanized days after the second vaccination. Vaccination was followed by body weight loss, increased hepatic inflammation, and an antigen-specific T cell response. Small foci of fibrovascular inflammation and focal cell loss were observed in the right ventricle, irrespective of vaccination and/or exercise. Vaccination did not elevate cardiac troponin levels. Cardiac tissue from the vaccinated mice showed upregulated mRNA expression of the genes IFNγ and IL-1β, but not IL-6 or TNFα. This pro-inflammatory signature in the heart was not exacerbated by endurance exercise. Ex vivo vascular reactivity remained unaffected by vaccination. Our data provide evidence for the cardiac safety of mRNA COVID-19 vaccination. The role of exercise in the development of pro-inflammatory cardiac changes post mRNA vaccination could not be established.
Collapse
Affiliation(s)
- Sander Eens
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, 2610 Antwerp, Belgium
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, 2610 Antwerp, Belgium
| | - Manon Van Hecke
- Laboratory of Translational Cell and Tissue Research, Department of Imaging and Pathology, University of Leuven, 3000 Leuven, Belgium
| | - Siel Van den Bogaert
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, 2610 Antwerp, Belgium
| | - Kasper Favere
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, 2610 Antwerp, Belgium
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, 2610 Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, 2650 Antwerp, Belgium
- Department of Internal Medicine, Ghent University, 9000 Ghent, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute, University of Antwerp, 2610 Antwerp, Belgium
| | - Erik Fransen
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2650 Antwerp, Belgium
| | - Tania Roskams
- Laboratory of Translational Cell and Tissue Research, Department of Imaging and Pathology, University of Leuven, 3000 Leuven, Belgium
| | - Hein Heidbuchel
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, 2610 Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, 2650 Antwerp, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
2
|
Tran DT, Batchu SN, Advani A. Interferons and interferon-related pathways in heart disease. Front Cardiovasc Med 2024; 11:1357343. [PMID: 38665231 PMCID: PMC11043610 DOI: 10.3389/fcvm.2024.1357343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Interferons (IFNs) and IFN-related pathways play key roles in the defence against microbial infection. However, these processes may also be activated during the pathogenesis of non-infectious diseases, where they may contribute to organ injury, or function in a compensatory manner. In this review, we explore the roles of IFNs and IFN-related pathways in heart disease. We consider the cardiac effects of type I IFNs and IFN-stimulated genes (ISGs); the emerging role of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway; the seemingly paradoxical effects of the type II IFN, IFN-γ; and the varied actions of the interferon regulatory factor (IRF) family of transcription factors. Recombinant IFNs and small molecule inhibitors of mediators of IFN receptor signaling are already employed in the clinic for the treatment of some autoimmune diseases, infections, and cancers. There has also been renewed interest in IFNs and IFN-related pathways because of their involvement in SARS-CoV-2 infection, and because of the relatively recent emergence of cGAS-STING as a pattern recognition receptor-activated pathway. Whether these advances will ultimately result in improvements in the care of those experiencing heart disease remains to be determined.
Collapse
Affiliation(s)
| | | | - Andrew Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|
3
|
Sandstedt M, Vukusic K, Johansson M, Jonsson M, Magnusson R, Mattsson Hultén L, Dellgren G, Jeppsson A, Lindahl A, Synnergren J, Sandstedt J. Regional transcriptomic profiling reveals immune system enrichment in nonfailing atria and all chambers of the failing human heart. Am J Physiol Heart Circ Physiol 2023; 325:H1430-H1445. [PMID: 37830984 DOI: 10.1152/ajpheart.00438.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/18/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023]
Abstract
The different chambers of the human heart demonstrate regional physiological traits and may be differentially affected during pathological remodeling, resulting in heart failure. Few previous studies, however, have characterized the different chambers at a transcriptomic level. We, therefore, conducted whole tissue RNA sequencing and gene set enrichment analysis of biopsies collected from the four chambers of adult failing (n = 8) and nonfailing (n = 11) human hearts. Atria and ventricles demonstrated distinct transcriptional patterns. When compared with nonfailing ventricles, the transcriptional pattern of nonfailing atria was enriched for many gene sets associated with cardiogenesis, the immune system and bone morphogenetic protein (BMP), transforming growth factor-β (TGF-β), MAPK/JNK, and Wnt signaling. Differences between failing and nonfailing hearts were also determined. The transcriptional pattern of failing atria was distinct compared with that of nonfailing atria and enriched for gene sets associated with the innate and adaptive immune system, TGF-β/SMAD signaling, and changes in endothelial, smooth muscle cell, and cardiomyocyte physiology. Failing ventricles were also enriched for gene sets associated with the immune system. Based on the transcriptomic patterns, upstream regulators associated with heart failure were identified. These included many immune response factors predicted to be similarly activated for all chambers of failing hearts. In summary, the heart chambers demonstrate distinct transcriptional patterns that differ between failing and nonfailing hearts. Immune system signaling may be a hallmark of all four heart chambers in failing hearts and could constitute a novel therapeutic target.NEW & NOTEWORTHY The transcriptomic patterns of the four heart chambers were characterized in failing and nonfailing human hearts. Both nonfailing atria had distinct transcriptomic patterns characterized by cardiogenesis, the immune system and BMP/TGF-β, MAPK/JNK, and Wnt signaling. Failing atria and ventricles were enriched for gene sets associated with the innate and adaptive immune system. Key upstream regulators associated with heart failure were identified, including activated immune response elements, which may constitute novel therapeutic targets.
Collapse
Affiliation(s)
- Mikael Sandstedt
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kristina Vukusic
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Markus Johansson
- Department of Biology and Bioinformatics, School of Bioscience, University of Skövde, Skövde, Sweden
| | - Marianne Jonsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Rasmus Magnusson
- Department of Biology and Bioinformatics, School of Bioscience, University of Skövde, Skövde, Sweden
| | - Lillemor Mattsson Hultén
- Region Västra Götaland, Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Göran Dellgren
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anders Jeppsson
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anders Lindahl
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jane Synnergren
- Department of Biology and Bioinformatics, School of Bioscience, University of Skövde, Skövde, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Joakim Sandstedt
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
4
|
Ribeiro Vitorino T, Ferraz do Prado A, Bruno de Assis Cau S, Rizzi E. MMP-2 and its implications on cardiac function and structure: Interplay with inflammation in hypertension. Biochem Pharmacol 2023; 215:115684. [PMID: 37459959 DOI: 10.1016/j.bcp.2023.115684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
Hypertension is one of the leading risk factors for the development of heart failure. Despite being a multifactorial disease, in recent years, preclinical and clinical studies suggest strong evidence of the pivotal role of inflammatory cells and cytokines in the remodeling process and cardiac dysfunction. During the heart remodeling, activation of extracellular matrix metalloproteinases (MMPs) occurs, with MMP-2 being one of the main proteases secreted by cardiomyocytes, fibroblasts, endothelial and inflammatory cells in cardiac tissue. In this review, we will address the process of cardiac remodeling and injury induced by the increase in MMP-2 and the main signaling pathways involving cytokines and inflammatory cells in the process of transcriptional, secretion and activation of MMP-2. In addition, an interaction and coordinated action between MMP-2 and inflammation are explored and significant in maintaining the cardiac cycle. These observations suggest that new therapeutic opportunities targeting MMP-2 could be used to reduce inflammatory biomarkers and reduce cardiac damage in hypertension.
Collapse
Affiliation(s)
- Thaís Ribeiro Vitorino
- Unit of Biotechnology, University of Ribeirao Preto, UNAERP, Brazil; Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, UNICAMP, Brazil
| | - Alejandro Ferraz do Prado
- Cardiovascular System Pharmacology and Toxicology, Institute of Biological Sciences, Federal University of Para, UFPA, Brazil
| | - Stefany Bruno de Assis Cau
- Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, UFMG, Brazil.
| | - Elen Rizzi
- Unit of Biotechnology, University of Ribeirao Preto, UNAERP, Brazil.
| |
Collapse
|
5
|
Wu Z, Wang X, Liang H, Liu F, Li Y, Zhang H, Wang C, Wang Q. Identification of Signature Genes of Dilated Cardiomyopathy Using Integrated Bioinformatics Analysis. Int J Mol Sci 2023; 24:ijms24087339. [PMID: 37108502 PMCID: PMC10139023 DOI: 10.3390/ijms24087339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is characterized by left ventricular or biventricular enlargement with systolic dysfunction. To date, the underlying molecular mechanisms of dilated cardiomyopathy pathogenesis have not been fully elucidated, although some insights have been presented. In this study, we combined public database resources and a doxorubicin-induced DCM mouse model to explore the significant genes of DCM in full depth. We first retrieved six DCM-related microarray datasets from the GEO database using several keywords. Then we used the "LIMMA" (linear model for microarray data) R package to filter each microarray for differentially expressed genes (DEGs). Robust rank aggregation (RRA), an extremely robust rank aggregation method based on sequential statistics, was then used to integrate the results of the six microarray datasets to filter out the reliable differential genes. To further improve the reliability of our results, we established a doxorubicin-induced DCM model in C57BL/6N mice, using the "DESeq2" software package to identify DEGs in the sequencing data. We cross-validated the results of RRA analysis with those of animal experiments by taking intersections and identified three key differential genes (including BEX1, RGCC and VSIG4) associated with DCM as well as many important biological processes (extracellular matrix organisation, extracellular structural organisation, sulphur compound binding, and extracellular matrix structural components) and a signalling pathway (HIF-1 signalling pathway). In addition, we confirmed the significant effect of these three genes in DCM using binary logistic regression analysis. These findings will help us to better understand the pathogenesis of DCM and may be key targets for future clinical management.
Collapse
Affiliation(s)
- Zhimin Wu
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Xu Wang
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Hao Liang
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Fangfang Liu
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Yingxuan Li
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Huaxing Zhang
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang 050017, China
| | - Chunying Wang
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Qiao Wang
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
6
|
Bezati S, Velliou M, Ventoulis I, Simitsis P, Parissis J, Polyzogopoulou E. Infection as an under-recognized precipitant of acute heart failure: prognostic and therapeutic implications. Heart Fail Rev 2023:10.1007/s10741-023-10303-8. [PMID: 36897491 PMCID: PMC9999079 DOI: 10.1007/s10741-023-10303-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 03/11/2023]
Abstract
As the prevalence of heart failure (HF) continues to rise, prompt diagnosis and management of various medical conditions, which may lead to HF exacerbation and result in poor patient outcomes, are of paramount importance. Infection has been identified as a common, though under-recognized, precipitating factor of acute heart failure (AHF), which can cause rapid development or deterioration of HF signs and symptoms. Available evidence indicates that infection-related hospitalizations of patients with AHF are associated with higher mortality, protracted length of stay, and increased readmission rates. Understanding the intricate interaction of both clinical entities may provide further therapeutic strategies to prevent the occurrence of cardiac complications and improve prognosis of patients with AHF triggered by infection. The purpose of this review is to investigate the incidence of infection as a causative factor in AHF, explore its prognostic implications, elucidate the underlying pathophysiological mechanisms, and highlight the basic principles of the initial diagnostic and therapeutic interventions in the emergency department.
Collapse
Affiliation(s)
- Sofia Bezati
- Emergency Medicine Department, Attikon University Hospital, Rimini 1, Chaidari, 12462, Athens, Greece.
| | - Maria Velliou
- Emergency Medicine Department, Attikon University Hospital, Rimini 1, Chaidari, 12462, Athens, Greece
| | - Ioannis Ventoulis
- Department of Occupational Therapy, University of Western Macedonia, Keptse Area, Ptolemaida, 50200, Greece
| | - Panagiotis Simitsis
- National and Kapodistrian University of Athens, 2nd Department of Cardiology, Heart Failure Unit, Attikon University Hospital, Athens, Greece
| | - John Parissis
- Emergency Medicine Department, Attikon University Hospital, Rimini 1, Chaidari, 12462, Athens, Greece.,Emergency Medicine Department, National and Kapodistrian University of Athens, Athens, Greece
| | - Effie Polyzogopoulou
- Emergency Medicine Department, Attikon University Hospital, Rimini 1, Chaidari, 12462, Athens, Greece.,Emergency Medicine Department, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
Puwei S, Siyu M, ZhuoGa D, Kede W, Zhaocong Y, Patel N, Xiaoxu L, Xuming M. The potential value of cuprotosis in myocardial immune infiltration that occurs in pediatric congenital heart disease in response to surgery with cardiopulmonary bypass. Immun Inflamm Dis 2023; 11:e795. [PMID: 36988255 PMCID: PMC10013412 DOI: 10.1002/iid3.795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/01/2023] [Accepted: 02/15/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Cardiopulmonary bypass may cause malfunction in the myocardium. Cuproptosis is a novel cell death aggregating mitochondrial proteins. However, the research on cardiopulmonary bypass-caused heart tissue injury in immune infiltration and cuproptosis is limited. METHOD Immune infiltration, enrichment analysis, protein-protein interaction network, and medication prediction are applied to reanalysis differentially expressed genes and cuproptosis-related genes in gene expression omnibus data set GSE132176. RESULTS Seven cuproptosis related genes (PDHA1, LIPT1, LIAS, DLST, DLD, DLAT, and DBT) and dendritic cells and Th1 cells are involved in heart tissue injury in response to surgery with cardiopulmonary bypass. CONCLUSIONS Immune infiltration and cuproptosis are potential mechanisms by which cardiopulmonary bypass surgery may cause damage to heart tissue, which may be a new therapeutic target.
Collapse
Affiliation(s)
- Song Puwei
- Department of Cardiothoracic SurgeryChildren's Hospital of Nanjing Medical UniversityNanjingChina
| | - Ma Siyu
- Department of Cardiothoracic SurgeryChildren's Hospital of Nanjing Medical UniversityNanjingChina
| | - DeQin ZhuoGa
- Department of Cardiothoracic Surgery, Nanjing Children's HospitalMedical School of Nanjing UniversityNanjingChina
| | - Wu Kede
- Department of Cardiothoracic SurgeryChildren's Hospital of Nanjing Medical UniversityNanjingChina
| | - Yang Zhaocong
- Department of Cardiothoracic SurgeryChildren's Hospital of Nanjing Medical UniversityNanjingChina
| | - Nishant Patel
- Department of Cardiothoracic SurgeryChildren's Hospital of Nanjing Medical UniversityNanjingChina
| | | | - Mo Xuming
- Department of Cardiothoracic SurgeryChildren's Hospital of Nanjing Medical UniversityNanjingChina
- Department of Cardiothoracic Surgery, Nanjing Children's HospitalMedical School of Nanjing UniversityNanjingChina
| |
Collapse
|
8
|
Ibrahim Fouad G. Sulforaphane, an Nrf-2 Agonist, Modulates Oxidative Stress and Inflammation in a Rat Model of Cuprizone-Induced Cardiotoxicity and Hepatotoxicity. Cardiovasc Toxicol 2023; 23:46-60. [PMID: 36650404 PMCID: PMC9859885 DOI: 10.1007/s12012-022-09776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 12/27/2022] [Indexed: 01/19/2023]
Abstract
Cuprizone (CPZ) is a neurotoxic agent that is used to induce demyelination and neurotoxicity in rats. This study aimed to investigate the protective potential of sulforaphane (SF), nuclear factor E2 related factor (Nrf-2) activator, against CPZ-induced cardiotoxicity and hepatotoxicity. Male adult Wistar rats (n = 18) were fed with a regular diet or a CPZ-contained diet (0.2%) for four weeks. The rats were divided into three groups (n = 6): negative control rats, CPZ-exposed rats, and CPZ + SF treated rats. SF was intraperitoneally administrated (2 mg/kg/day) for two weeks. The anti-inflammatory and anti-oxidative functions of SF were investigated biochemically, histologically, and immunohistochemically. CPZ increased serum levels of cardiac troponin 1 (CTn1), aspartate amino transaminase (AST), alanine amino transaminase (ALT), and alkaline phosphatase (ALP). In addition, serum levels of inflammatory interferon-gamma (IFN-γ), and pro-inflammatory interleukin 1β (IL-1β) were significantly elevated. Moreover, CPZ administration provoked oxidative stress as manifested by declined serum levels of total antioxidant capacity (TAC), as well as, stimulated lipid peroxidation and decreased catalase activities in both cardiac and hepatic tissues. SF treatment reversed all these biochemical alterations through exerting anti-oxidative and anti-inflammatory activities, and this was supported by histopathological investigations in both cardiac and hepatic tissues. This SF-triggered modulation of oxidative stress and inflammation is strongly associated with Nrf-2 activation, as evidenced by activated immunoexpression in both cardiac and hepatic tissues. This highlights the cardioprotective and hepatoprotective activities of SF via Nrf-2 activation and enhancing catalase function.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
9
|
Rypdal KB, Olav Melleby A, Robinson EL, Li J, Palmero S, Seifert DE, Martin D, Clark C, López B, Andreassen K, Dahl CP, Sjaastad I, Tønnessen T, Stokke MK, Louch WE, González A, Heymans S, Christensen G, Apte SS, Lunde IG. ADAMTSL3 knock-out mice develop cardiac dysfunction and dilatation with increased TGFβ signalling after pressure overload. Commun Biol 2022; 5:1392. [PMID: 36539599 PMCID: PMC9767913 DOI: 10.1038/s42003-022-04361-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Heart failure is a major cause of morbidity and mortality worldwide, and can result from pressure overload, where cardiac remodelling is characterized by cardiomyocyte hypertrophy and death, fibrosis, and inflammation. In failing hearts, transforming growth factor (TGF)β drives cardiac fibroblast (CFB) to myofibroblast differentiation causing excessive extracellular matrix production and cardiac remodelling. New strategies to target pathological TGFβ signalling in heart failure are needed. Here we show that the secreted glycoprotein ADAMTSL3 regulates TGFβ in the heart. We found that Adamtsl3 knock-out mice develop exacerbated cardiac dysfunction and dilatation with increased mortality, and hearts show increased TGFβ activity and CFB activation after pressure overload by aortic banding. Further, ADAMTSL3 overexpression in cultured CFBs inhibits TGFβ signalling, myofibroblast differentiation and collagen synthesis, suggesting a cardioprotective role for ADAMTSL3 by regulating TGFβ activity and CFB phenotype. These results warrant future investigation of the potential beneficial effects of ADAMTSL3 in heart failure.
Collapse
Affiliation(s)
- Karoline B Rypdal
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway. .,Division of Diagnostics and Technology, Akershus University Hospital, Lørenskog, Norway. .,K.G. Jebsen Center for Cardiac Biomarkers, University of Oslo, Oslo, Norway.
| | - A Olav Melleby
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Emma L Robinson
- Department of Cardiology, Maastricht University, CARIM School for Cardiovascular Diseases, Maastricht, Netherlands
| | - Jia Li
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Sheryl Palmero
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Deborah E Seifert
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Daniel Martin
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Catelyn Clark
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Begoña López
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain.,CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Kristine Andreassen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Christen P Dahl
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Theis Tønnessen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,Department of Cardiothoracic Surgery, Oslo University Hospital Ullevål, Oslo, Norway
| | - Mathis K Stokke
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain.,CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Stephane Heymans
- Department of Cardiology, Maastricht University, CARIM School for Cardiovascular Diseases, Maastricht, Netherlands.,Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Leuven, Belgium
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Ida G Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,Division of Diagnostics and Technology, Akershus University Hospital, Lørenskog, Norway.,K.G. Jebsen Center for Cardiac Biomarkers, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Sarohi V, Chakraborty S, Basak T. Exploring the cardiac ECM during fibrosis: A new era with next-gen proteomics. Front Mol Biosci 2022; 9:1030226. [PMID: 36483540 PMCID: PMC9722982 DOI: 10.3389/fmolb.2022.1030226] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/31/2022] [Indexed: 10/24/2023] Open
Abstract
Extracellular matrix (ECM) plays a critical role in maintaining elasticity in cardiac tissues. Elasticity is required in the heart for properly pumping blood to the whole body. Dysregulated ECM remodeling causes fibrosis in the cardiac tissues. Cardiac fibrosis leads to stiffness in the heart tissues, resulting in heart failure. During cardiac fibrosis, ECM proteins get excessively deposited in the cardiac tissues. In the ECM, cardiac fibroblast proliferates into myofibroblast upon various kinds of stimulations. Fibroblast activation (myofibroblast) contributes majorly toward cardiac fibrosis. Other than cardiac fibroblasts, cardiomyocytes, epithelial/endothelial cells, and immune system cells can also contribute to cardiac fibrosis. Alteration in the expression of the ECM core and ECM-modifier proteins causes different types of cardiac fibrosis. These different components of ECM culminated into different pathways inducing transdifferentiation of cardiac fibroblast into myofibroblast. In this review, we summarize the role of different ECM components during cardiac fibrosis progression leading to heart failure. Furthermore, we highlight the importance of applying mass-spectrometry-based proteomics to understand the key changes occurring in the ECM during fibrotic progression. Next-gen proteomics studies will broaden the potential to identify key targets to combat cardiac fibrosis in order to achieve precise medicine-development in the future.
Collapse
Affiliation(s)
- Vivek Sarohi
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
- BioX Center, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
| | - Sanchari Chakraborty
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
- BioX Center, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
| | - Trayambak Basak
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
- BioX Center, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
| |
Collapse
|
11
|
Yang K, Liu J, Gong Y, Li Y, Liu Q. Bioinformatics and systems biology approaches to identify molecular targeting mechanism influenced by COVID-19 on heart failure. Front Immunol 2022; 13:1052850. [DOI: 10.3389/fimmu.2022.1052850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as a contemporary hazard to people. It has been known that COVID-19 can both induce heart failure (HF) and raise the risk of patient mortality. However, the mechanism underlying the association between COVID-19 and HF remains unclear. The common molecular pathways between COVID-19 and HF were identified using bioinformatic and systems biology techniques. Transcriptome analysis was performed to identify differentially expressed genes (DEGs). To identify gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways, common DEGs were used for enrichment analysis. The results showed that COVID-19 and HF have several common immune mechanisms, including differentiation of T helper (Th) 1, Th 2, Th 17 cells; activation of lymphocytes; and binding of major histocompatibility complex class I and II protein complexes. Furthermore, a protein-protein interaction network was constructed to identify hub genes, and immune cell infiltration analysis was performed. Six hub genes (FCGR3A, CD69, IFNG, CCR7, CCL5, and CCL4) were closely associated with COVID-19 and HF. These targets were associated with immune cells (central memory CD8 T cells, T follicular helper cells, regulatory T cells, myeloid-derived suppressor cells, plasmacytoid dendritic cells, macrophages, eosinophils, and neutrophils). Additionally, transcription factors, microRNAs, drugs, and chemicals that are closely associated with COVID-19 and HF were identified through the interaction network.
Collapse
|
12
|
Scavello F, Piacentini L, Castiglione S, Zeni F, Macrì F, Casaburo M, Vinci MC, Colombo GI, Raucci A. Effects of RAGE Deletion on the Cardiac Transcriptome during Aging. Int J Mol Sci 2022; 23:ijms231911130. [PMID: 36232442 PMCID: PMC9569842 DOI: 10.3390/ijms231911130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022] Open
Abstract
Cardiac aging is characterized by increased cardiomyocyte hypertrophy, myocardial stiffness, and fibrosis, which enhance cardiovascular risk. The receptor for advanced glycation end-products (RAGE) is involved in several age-related diseases. RAGE knockout (Rage−/−) mice show an acceleration of cardiac dimension changes and interstitial fibrosis with aging. This study identifies the age-associated cardiac gene expression signature induced by RAGE deletion. We analyzed the left ventricle transcriptome of 2.5-(Young), 12-(Middle age, MA), and 21-(Old) months-old female Rage−/− and C57BL/6N (WT) mice. By comparing Young, MA, and Old Rage−/− versus age-matched WT mice, we identified 122, 192, and 12 differently expressed genes, respectively. Functional inference analysis showed that RAGE deletion is associated with: (i) down-regulation of genes involved in antigen processing and presentation of exogenous antigen, adaptive immune response, and cellular responses to interferon beta and gamma in Young animals; (ii) up-regulation of genes related to fatty acid oxidation, cardiac structure remodeling and cellular response to hypoxia in MA mice; (iii) up-regulation of few genes belonging to complement activation and triglyceride biosynthetic process in Old animals. Our findings show that the age-dependent cardiac phenotype of Rage−/− mice is associated with alterations of genes related to adaptive immunity and cardiac stress pathways.
Collapse
Affiliation(s)
- Francesco Scavello
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Luca Piacentini
- Bioinformatics and Artificial Intelligence Facility, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Stefania Castiglione
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Filippo Zeni
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Federica Macrì
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Manuel Casaburo
- Animal Facility, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Maria Cristina Vinci
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Gualtiero I. Colombo
- Unit of Immunology and Functional Genomics, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
- Correspondence: (G.I.C.); (A.R.); Tel.: +39-025-800-2464 (G.I.C.); +39-025-800-2802 (A.R.); Fax: +39-025-800-2342 (G.I.C. & A.R.)
| | - Angela Raucci
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
- Animal Facility, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
- Correspondence: (G.I.C.); (A.R.); Tel.: +39-025-800-2464 (G.I.C.); +39-025-800-2802 (A.R.); Fax: +39-025-800-2342 (G.I.C. & A.R.)
| |
Collapse
|
13
|
The role of temporal changes of pro-inflammatory cytokines in the development of adverse cardiac remodeling after ST-elevation myocardial infarction. Adv Cardiol 2022; 18:217-227. [PMID: 36751290 PMCID: PMC9885240 DOI: 10.5114/aic.2022.120938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/10/2022] [Indexed: 11/18/2022]
Abstract
Introduction Increasing evidence supports the view that pro-inflammatory cytokines play a role in fibrosis after myocardial infarction (MI). It has been suggested that interleukin (IL)-12p40, a pro-inflammatory cytokine, can induce interferon γ (IFN-γ) and matrix metalloproteinase (MMP). However, the role of IL-12p40 in adverse cardiac remodeling (AR) after ST-elevation MI (STEMI) is unclear. Aim To examine the role of temporal changes of pro-inflammatory cytokines in the development of post-STEMI AR. Material and methods A total of 43 patients with STEMI for the first time ever were prospectively analyzed. In cardiac magnetic resonance imaging at 6 months after STEMI, a decrease of left ventricular end-diastolic volume by ≥ 12% was defined as reverse cardiac remodeling (RR), and a 12% increase was defined as AR. Cytokine concentrations were measured on the first day (baseline) and 2 weeks after STEMI. Results Mean IL-12p40 (59.1 ±14.5 vs. 46.7 ±9.1 pq/ml, p = 0.001), median IFN-γ (20.4 vs. 16.2 pq/ml, p = 0.048) and median MMP-2 (33866 vs. 20691 pq/ml, p = 0.011) baseline concentrations were higher in AR than RR. In patients with AR, IL-12p40 level was lower at 2 weeks than baseline (p < 0.001). There was a positive correlation between the baseline concentrations of IL-12p40, IFN-γ, MMP-2, C-reactive protein and infarct size (p < 0.05). Increased IL-12p40 and MMP-2 baseline levels were independently associated with AR (OR = 1.14, p = 0.010; OR = 1.08, p = 0.035). Conclusions In the initial phase of MI, greater release of pro-inflammatory cytokines was associated with increased MMP-2 levels. Elevated expression of IL-12 and MMP-2 had an independent association with AR. This may be related to the excessive inflammatory response in the initial phase of MI.
Collapse
|
14
|
Szabó D, Sárszegi Z, Polgár B, Sághy É, Reglődi D, Tóth T, Onódi Z, Leszek P, Varga ZV, Helyes Z, Kemény Á, Ferdinandy P, Tamás A. PACAP-38 and PAC1 Receptor Alterations in Plasma and Cardiac Tissue Samples of Heart Failure Patients. Int J Mol Sci 2022; 23:ijms23073715. [PMID: 35409075 PMCID: PMC8998504 DOI: 10.3390/ijms23073715] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/07/2023] Open
Abstract
Pituitary adenylate cyclase activating polypeptide-38 (PACAP-38) is a multifunctional neuropeptide, which may play a role in cardioprotection. However, little is known about the presence of PACAP-38 in heart failure (HF) patients. The aim of our study was to measure the alterations of PACAP-38 like immunoreactivity (LI) in acute (n = 13) and chronic HF (n = 33) and to examine potential correlations between PACAP-38 and HF predictors (cytokines, NT-proBNP). Tissue PACAP-38 LI and PAC1 receptor levels were also investigated in heart tissue samples of patients with HF. Significantly higher plasma PACAP-38 LI was detected in patients with acute HF, while in chronic HF patients, a lower level of immunoreactivity was observed compared to healthy controls (n = 13). Strong negative correlation was identified between plasma PACAP-38 and NT-proBNP levels in chronic HF, as opposed to the positive connection seen in the acute HF group. Plasma IL-1 β, IL-2 and IL-4 levels were significantly lower in chronic HF, and IL-10 was significantly higher in patients with acute HF. PACAP-38 levels of myocardial tissues were lower in all end-stage HF patients and lower PAC1 receptor levels were detected in the primary dilated cardiomyopathy group compared to the controls. We conclude that PACAP-38 and PAC1 expression correlates with some biomarkers of acute and chronic HF; therefore, further studies are necessary to explore whether PACAP could be a suitable prognostic biomarker in HF patients.
Collapse
Affiliation(s)
- Dóra Szabó
- Heart Institute, Clinical Centre, Medical School, University of Pecs, 7624 Pecs, Hungary; (D.S.); (Z.S.)
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pecs, 7624 Pecs, Hungary; (D.R.); (T.T.)
- Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary; (Z.H.); (Á.K.)
| | - Zsolt Sárszegi
- Heart Institute, Clinical Centre, Medical School, University of Pecs, 7624 Pecs, Hungary; (D.S.); (Z.S.)
| | - Beáta Polgár
- Department of Medical Microbiology and Immunology, Clinical Centre, Medical School, University of Pecs, 7624 Pecs, Hungary;
| | - Éva Sághy
- Cardiometabolic Research Group, MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (É.S.); (Z.O.); (Z.V.V.); (P.F.)
| | - Dóra Reglődi
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pecs, 7624 Pecs, Hungary; (D.R.); (T.T.)
- Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary; (Z.H.); (Á.K.)
| | - Tünde Tóth
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pecs, 7624 Pecs, Hungary; (D.R.); (T.T.)
- Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary; (Z.H.); (Á.K.)
| | - Zsófia Onódi
- Cardiometabolic Research Group, MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (É.S.); (Z.O.); (Z.V.V.); (P.F.)
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, 1089 Budapest, Hungary
| | - Przemyslaw Leszek
- Department of Heart Failure and Transplantology, Cardinal Stefan Wyszyński National Institute of Cardiology, 04-628 Warszawa, Poland;
| | - Zoltán V. Varga
- Cardiometabolic Research Group, MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (É.S.); (Z.O.); (Z.V.V.); (P.F.)
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, 1089 Budapest, Hungary
| | - Zsuzsanna Helyes
- Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary; (Z.H.); (Á.K.)
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, 7624 Pecs, Hungary
| | - Ágnes Kemény
- Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary; (Z.H.); (Á.K.)
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, 7624 Pecs, Hungary
- Department of Medical Biology, Medical School, University of Pecs, 7624 Pecs, Hungary
| | - Péter Ferdinandy
- Cardiometabolic Research Group, MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (É.S.); (Z.O.); (Z.V.V.); (P.F.)
- Pharmahungary Group, 6720 Szeged, Hungary
| | - Andrea Tamás
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pecs, 7624 Pecs, Hungary; (D.R.); (T.T.)
- Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary; (Z.H.); (Á.K.)
- Correspondence: or ; Tel.: +36-72-536-001 (ext. 36421)
| |
Collapse
|
15
|
Baron MA, Ferreira LRP, Teixeira PC, Moretti AIS, Santos RHB, Frade AF, Kuramoto A, Debbas V, Benvenuti LA, Gaiotto FA, Bacal F, Pomerantzeff P, Chevillard C, Kalil J, Cunha-Neto E. Matrix Metalloproteinase 2 and 9 Enzymatic Activities are Selectively Increased in the Myocardium of Chronic Chagas Disease Cardiomyopathy Patients: Role of TIMPs. Front Cell Infect Microbiol 2022; 12:836242. [PMID: 35372112 PMCID: PMC8968914 DOI: 10.3389/fcimb.2022.836242] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic Chagas disease (CCC) is an inflammatory dilated cardiomyopathy with a worse prognosis compared to other cardiomyopathies. We show the expression and activity of Matrix Metalloproteinases (MMP) and of their inhibitors TIMP (tissue inhibitor of metalloproteinases) in myocardial samples of end stage CCC, idiopathic dilated cardiomyopathy (DCM) patients, and from organ donors. Our results showed significantly increased mRNA expression of several MMPs, several TIMPs and EMMPRIN in CCC and DCM samples. MMP-2 and TIMP-2 protein levels were significantly elevated in both sample groups, while MMP-9 protein level was exclusively increased in CCC. MMPs 2 and 9 activities were also exclusively increased in CCC. Results suggest that the balance between proteins that inhibit the MMP-2 and 9 is shifted toward their activation. Inflammation-induced increases in MMP-2 and 9 activity and expression associated with imbalanced TIMP regulation could be related to a more extensive heart remodeling and poorer prognosis in CCC patients.
Collapse
Affiliation(s)
- Monique Andrade Baron
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology, Institutos Nacionais de Ciência e Tecnologia (INCT), São Paulo, Brazil
| | - Ludmila Rodrigues Pinto Ferreira
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology, Institutos Nacionais de Ciência e Tecnologia (INCT), São Paulo, Brazil
- Department of Bioengineering, Universidade Santo Amaro, São Paulo, Brazil
| | - Priscila Camillo Teixeira
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology, Institutos Nacionais de Ciência e Tecnologia (INCT), São Paulo, Brazil
| | - Ana Iochabel Soares Moretti
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | | | - Amanda Farage Frade
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology, Institutos Nacionais de Ciência e Tecnologia (INCT), São Paulo, Brazil
| | - Andréia Kuramoto
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology, Institutos Nacionais de Ciência e Tecnologia (INCT), São Paulo, Brazil
| | - Victor Debbas
- Department of Bioengineering, Universidade Santo Amaro, São Paulo, Brazil
| | - Luiz Alberto Benvenuti
- Division of Transplantation, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Fabio Antônio Gaiotto
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Fernando Bacal
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Pablo Pomerantzeff
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Christophe Chevillard
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France
- *Correspondence: Edecio Cunha-Neto, ; Christophe Chevillard,
| | - Jorge Kalil
- Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology, Institutos Nacionais de Ciência e Tecnologia (INCT), São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology, Institutos Nacionais de Ciência e Tecnologia (INCT), São Paulo, Brazil
- *Correspondence: Edecio Cunha-Neto, ; Christophe Chevillard,
| |
Collapse
|
16
|
Rogers JD, Richardson WJ. Fibroblast mechanotransduction network predicts targets for mechano-adaptive infarct therapies. eLife 2022; 11:e62856. [PMID: 35138248 PMCID: PMC8849334 DOI: 10.7554/elife.62856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Regional control of fibrosis after myocardial infarction is critical for maintaining structural integrity in the infarct while preventing collagen accumulation in non-infarcted areas. Cardiac fibroblasts modulate matrix turnover in response to biochemical and biomechanical cues, but the complex interactions between signaling pathways confound efforts to develop therapies for regional scar formation. We employed a logic-based ordinary differential equation model of fibroblast mechano-chemo signal transduction to predict matrix protein expression in response to canonical biochemical stimuli and mechanical tension. Functional analysis of mechano-chemo interactions showed extensive pathway crosstalk with tension amplifying, dampening, or reversing responses to biochemical stimuli. Comprehensive drug target screens identified 13 mechano-adaptive therapies that promote matrix accumulation in regions where it is needed and reduce matrix levels in regions where it is not needed. Our predictions suggest that mechano-chemo interactions likely mediate cell behavior across many tissues and demonstrate the utility of multi-pathway signaling networks in discovering therapies for context-specific disease states.
Collapse
Affiliation(s)
- Jesse D Rogers
- Department of Bioengineering; Clemson UniversityClemsonUnited States
| | | |
Collapse
|
17
|
Hoste L, Roels L, Naesens L, Bosteels V, Vanhee S, Dupont S, Bosteels C, Browaeys R, Vandamme N, Verstaen K, Roels J, Van Damme KF, Maes B, De Leeuw E, Declercq J, Aegerter H, Seys L, Smole U, De Prijck S, Vanheerswynghels M, Claes K, Debacker V, Van Isterdael G, Backers L, Claes KB, Bastard P, Jouanguy E, Zhang SY, Mets G, Dehoorne J, Vandekerckhove K, Schelstraete P, Willems J, Stordeur P, Janssens S, Beyaert R, Saeys Y, Casanova JL, Lambrecht BN, Haerynck F, Tavernier SJ. TIM3+ TRBV11-2 T cells and IFNγ signature in patrolling monocytes and CD16+ NK cells delineate MIS-C. J Exp Med 2022; 219:e20211381. [PMID: 34914824 PMCID: PMC8685281 DOI: 10.1084/jem.20211381] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/01/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022] Open
Abstract
In rare instances, pediatric SARS-CoV-2 infection results in a novel immunodysregulation syndrome termed multisystem inflammatory syndrome in children (MIS-C). We compared MIS-C immunopathology with severe COVID-19 in adults. MIS-C does not result in pneumocyte damage but is associated with vascular endotheliitis and gastrointestinal epithelial injury. In MIS-C, the cytokine release syndrome is characterized by IFNγ and not type I interferon. Persistence of patrolling monocytes differentiates MIS-C from severe COVID-19, which is dominated by HLA-DRlo classical monocytes. IFNγ levels correlate with granzyme B production in CD16+ NK cells and TIM3 expression on CD38+/HLA-DR+ T cells. Single-cell TCR profiling reveals a skewed TCRβ repertoire enriched for TRBV11-2 and a superantigenic signature in TIM3+/CD38+/HLA-DR+ T cells. Using NicheNet, we confirm IFNγ as a central cytokine in the communication between TIM3+/CD38+/HLA-DR+ T cells, CD16+ NK cells, and patrolling monocytes. Normalization of IFNγ, loss of TIM3, quiescence of CD16+ NK cells, and contraction of patrolling monocytes upon clinical resolution highlight their potential role in MIS-C immunopathogenesis.
Collapse
Affiliation(s)
- Levi Hoste
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Division of Pediatric Pulmonology, Infectious Diseases and Inborn Errors of Immunity, Ghent University Hospital, Ghent, Belgium
| | - Lisa Roels
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Division of Pediatric Pulmonology, Infectious Diseases and Inborn Errors of Immunity, Ghent University Hospital, Ghent, Belgium
| | - Leslie Naesens
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Division of Pediatric Pulmonology, Infectious Diseases and Inborn Errors of Immunity, Ghent University Hospital, Ghent, Belgium
| | - Victor Bosteels
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory for Endoplasmic Reticulum Stress and Inflammation, VIB, Ghent, Belgium
| | - Stijn Vanhee
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Sam Dupont
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Cedric Bosteels
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Robin Browaeys
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Niels Vandamme
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Kevin Verstaen
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Jana Roels
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Karel F.A. Van Damme
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Bastiaan Maes
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Elisabeth De Leeuw
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Jozefien Declercq
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Helena Aegerter
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Leen Seys
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Ursula Smole
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Sofie De Prijck
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Manon Vanheerswynghels
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Karlien Claes
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Division of Pediatric Pulmonology, Infectious Diseases and Inborn Errors of Immunity, Ghent University Hospital, Ghent, Belgium
| | - Veronique Debacker
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Division of Pediatric Pulmonology, Infectious Diseases and Inborn Errors of Immunity, Ghent University Hospital, Ghent, Belgium
| | | | - Lynn Backers
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University and Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Kathleen B.M. Claes
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University and Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Gilles Mets
- Department of Internal Medicine and Pediatrics, Division of Pediatric Cardiology, Ghent University Hospital, Ghent, Belgium
| | - Joke Dehoorne
- Department of Internal Medicine and Pediatrics, Division of Pediatric Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Kristof Vandekerckhove
- Department of Internal Medicine and Pediatrics, Division of Pediatric Cardiology, Ghent University Hospital, Ghent, Belgium
| | - Petra Schelstraete
- Department of Internal Medicine and Pediatrics, Division of Pediatric Pulmonology, Infectious Diseases and Inborn Errors of Immunity, Ghent University Hospital, Ghent, Belgium
| | - Jef Willems
- Department of Critical Care, Division of Pediatric Intensive Care, Ghent University Hospital, Ghent, Belgium
| | | | - Patrick Stordeur
- Belgian National Reference Center for the Complement System, Laboratory of Immunology, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
| | - Sophie Janssens
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory for Endoplasmic Reticulum Stress and Inflammation, VIB, Ghent, Belgium
| | - Rudi Beyaert
- Center for Inflammation Research, Laboratory of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Howard Hughes Medical Institute, New York, NY
- Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Bart N. Lambrecht
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Pulmonary Medicine, ErasmusMC, Rotterdam, The Netherlands
| | - Filomeen Haerynck
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Division of Pediatric Pulmonology, Infectious Diseases and Inborn Errors of Immunity, Ghent University Hospital, Ghent, Belgium
| | - Simon J. Tavernier
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Ibrahim Fouad G, Ahmed KA. Curcumin Ameliorates Doxorubicin-Induced Cardiotoxicity and Hepatotoxicity Via Suppressing Oxidative Stress and Modulating iNOS, NF-κB, and TNF-α in Rats. Cardiovasc Toxicol 2022; 22:152-166. [PMID: 34837640 DOI: 10.1007/s12012-021-09710-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/19/2021] [Indexed: 01/14/2023]
Abstract
Doxorubicin (DOX) is one of the widely used anti-tumor drugs. However, DOX-induced cardiotoxicity (DIC) and hepatotoxicity (DIH) are among the side effects that limited its therapeutic efficiency and clinical applicability. This study aimed to investigate the cardioprotective and hepatoprotective potentials of curcumin (CMN)-a bioactive polyphenolic compound-in alleviating DOX-induced cardiotoxicity (DIC) and hepatotoxicity (DIH) in male rats. A single intraperitoneal (i.p.) dose of DOX (20 mg/kg) was used to induce DIC and DIH. DOX-intoxicated rats were co-treated with CMN (100 mg/kg, oral) for 10 days before and 5 days after a single dose of DOX. We studied the anti-inflammatory and anti-oxidative activities of CMN on biochemical and immunohistochemical aspects. DOX disrupted cardiac and hepatic functions and stimulated oxidative stress and inflammation in both tissues that was confirmed biochemically and immunohistochemically. DOX enhanced inflammatory interferon-gamma (IFN-γ) and upregulated immunoexpression of nuclear factor-κB (NF-κB), inducible nitric oxide synthase (iNOS), and tumor necrosis factor-alpha (TNF-α). DOX induced structural alterations in both cardiac and hepatic tissues. CMN demonstrated cardioprotective potential through reducing cardiac troponin I (cTn1) and aspartate amino transaminase (AST). In addition, CMN significantly ameliorated liver function through decreasing alanine amino transaminase (ALT) and, gamma-glutamyl transferase (GGT), total cholesterol (TC), and triglycerides (TG). CMN demonstrated anti-inflammatory potential through decreasing IFN-γ levels and immunoexpression of iNOS, NF-κB, and TNF-α. Histopathologically, CMN restored DOX-associated cardiac and liver structural alterations. CMN showed anti-oxidative and anti-inflammatory potentials in both the cardiac and hepatic tissues. In addition, cTn1, IFN-γ, and AST could be used as blood-based biomarkers.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt.
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
19
|
Teixeira PC, Ducret A, Langen H, Nogoceke E, Santos RHB, Silva Nunes JP, Benvenuti L, Levy D, Bydlowski SP, Bocchi EA, Kuramoto Takara A, Fiorelli AI, Stolf NA, Pomeranzeff P, Chevillard C, Kalil J, Cunha-Neto E. Impairment of Multiple Mitochondrial Energy Metabolism Pathways in the Heart of Chagas Disease Cardiomyopathy Patients. Front Immunol 2021; 12:755782. [PMID: 34867990 PMCID: PMC8633876 DOI: 10.3389/fimmu.2021.755782] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022] Open
Abstract
Chagas disease cardiomyopathy (CCC) is an inflammatory dilated cardiomyopathy occurring in 30% of the 6 million infected with the protozoan Trypanosoma cruzi in Latin America. Survival is significantly lower in CCC than ischemic (IC) and idiopathic dilated cardiomyopathy (DCM). Previous studies disclosed a selective decrease in mitochondrial ATP synthase alpha expression and creatine kinase activity in CCC myocardium as compared to IDC and IC, as well as decreased in vivo myocardial ATP production. Aiming to identify additional constraints in energy metabolism specific to CCC, we performed a proteomic study in myocardial tissue samples from CCC, IC and DCM obtained at transplantation, in comparison with control myocardial tissue samples from organ donors. Left ventricle free wall myocardial samples were subject to two-dimensional electrophoresis with fluorescent labeling (2D-DIGE) and protein identification by mass spectrometry. We found altered expression of proteins related to mitochondrial energy metabolism, cardiac remodeling, and oxidative stress in the 3 patient groups. Pathways analysis of proteins differentially expressed in CCC disclosed mitochondrial dysfunction, fatty acid metabolism and transmembrane potential of mitochondria. CCC patients’ myocardium displayed reduced expression of 22 mitochondrial proteins belonging to energy metabolism pathways, as compared to 17 in DCM and 3 in IC. Significantly, 6 beta-oxidation enzymes were reduced in CCC, while only 2 of them were down-regulated in DCM and 1 in IC. We also observed that the cytokine IFN-gamma, previously described with increased levels in CCC, reduces mitochondrial membrane potential in cardiomyocytes. Results suggest a major reduction of mitochondrial energy metabolism and mitochondrial dysfunction in CCC myocardium which may be in part linked to IFN-gamma. This may partially explain the worse prognosis of CCC as compared to DCM or IC.
Collapse
Affiliation(s)
- Priscila Camillo Teixeira
- Laboratory of Immunology, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Axel Ducret
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Hanno Langen
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Everson Nogoceke
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | | | - João Paulo Silva Nunes
- Laboratory of Immunology, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,INSERM, UMR_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France.,Division of Clinical Immunology and Allergy, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia, INCT, iii- Institute for Investigation in Immunology, São Paulo, Brazil
| | - Luiz Benvenuti
- Anatomical Pathology Division, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Debora Levy
- Laboratory of Immunology, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Sergio Paulo Bydlowski
- Laboratory of Immunology, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Edimar Alcides Bocchi
- Heart Failure Team, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Andréia Kuramoto Takara
- Laboratory of Immunology, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Alfredo Inácio Fiorelli
- Division of Surgery, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Noedir Antonio Stolf
- Division of Surgery, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Pablo Pomeranzeff
- Division of Surgery, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Christophe Chevillard
- INSERM, UMR_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France
| | - Jorge Kalil
- Laboratory of Immunology, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Division of Clinical Immunology and Allergy, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia, INCT, iii- Institute for Investigation in Immunology, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Division of Clinical Immunology and Allergy, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia, INCT, iii- Institute for Investigation in Immunology, São Paulo, Brazil
| |
Collapse
|
20
|
Nunes JPS, Andrieux P, Brochet P, Almeida RR, Kitano E, Honda AK, Iwai LK, Andrade-Silva D, Goudenège D, Alcântara Silva KD, Vieira RDS, Levy D, Bydlowski SP, Gallardo F, Torres M, Bocchi EA, Mano M, Santos RHB, Bacal F, Pomerantzeff P, Laurindo FRM, Teixeira PC, Nakaya HI, Kalil J, Procaccio V, Chevillard C, Cunha-Neto E. Co-Exposure of Cardiomyocytes to IFN-γ and TNF-α Induces Mitochondrial Dysfunction and Nitro-Oxidative Stress: Implications for the Pathogenesis of Chronic Chagas Disease Cardiomyopathy. Front Immunol 2021; 12:755862. [PMID: 34867992 PMCID: PMC8632642 DOI: 10.3389/fimmu.2021.755862] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
Infection by the protozoan Trypanosoma cruzi causes Chagas disease cardiomyopathy (CCC) and can lead to arrhythmia, heart failure and death. Chagas disease affects 8 million people worldwide, and chronic production of the cytokines IFN-γ and TNF-α by T cells together with mitochondrial dysfunction are important players for the poor prognosis of the disease. Mitochondria occupy 40% of the cardiomyocytes volume and produce 95% of cellular ATP that sustain the life-long cycles of heart contraction. As IFN-γ and TNF-α have been described to affect mitochondrial function, we hypothesized that IFN-γ and TNF-α are involved in the myocardial mitochondrial dysfunction observed in CCC patients. In this study, we quantified markers of mitochondrial dysfunction and nitro-oxidative stress in CCC heart tissue and in IFN-γ/TNF-α-stimulated AC-16 human cardiomyocytes. We found that CCC myocardium displayed increased levels of nitro-oxidative stress and reduced mitochondrial DNA as compared with myocardial tissue from patients with dilated cardiomyopathy (DCM). IFN-γ/TNF-α treatment of AC-16 cardiomyocytes induced increased nitro-oxidative stress and decreased the mitochondrial membrane potential (ΔΨm). We found that the STAT1/NF-κB/NOS2 axis is involved in the IFN-γ/TNF-α-induced decrease of ΔΨm in AC-16 cardiomyocytes. Furthermore, treatment with mitochondria-sparing agonists of AMPK, NRF2 and SIRT1 rescues ΔΨm in IFN-γ/TNF-α-stimulated cells. Proteomic and gene expression analyses revealed that IFN-γ/TNF-α-treated cells corroborate mitochondrial dysfunction, transmembrane potential of mitochondria, altered fatty acid metabolism and cardiac necrosis/cell death. Functional assays conducted on Seahorse respirometer showed that cytokine-stimulated cells display decreased glycolytic and mitochondrial ATP production, dependency of fatty acid oxidation as well as increased proton leak and non-mitochondrial oxygen consumption. Together, our results suggest that IFN-γ and TNF-α cause direct damage to cardiomyocytes’ mitochondria by promoting oxidative and nitrosative stress and impairing energy production pathways. We hypothesize that treatment with agonists of AMPK, NRF2 and SIRT1 might be an approach to ameliorate the progression of Chagas disease cardiomyopathy.
Collapse
Affiliation(s)
- João Paulo Silva Nunes
- Laboratory of Immunology, Heart Institute (Incor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Division of Clinical Immunology and Allergy, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,iii-Institute for Investigation in Immunology, Instituto Nacional de Ciência e Tecnologia (INCT), São Paulo, Brazil.,INSERM, UMR_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France
| | - Pauline Andrieux
- INSERM, UMR_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France
| | - Pauline Brochet
- INSERM, UMR_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France
| | - Rafael Ribeiro Almeida
- Laboratory of Immunology, Heart Institute (Incor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,iii-Institute for Investigation in Immunology, Instituto Nacional de Ciência e Tecnologia (INCT), São Paulo, Brazil
| | - Eduardo Kitano
- Laboratory of Immunology, Heart Institute (Incor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - André Kenji Honda
- Laboratory of Immunology, Heart Institute (Incor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Leo Kei Iwai
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Débora Andrade-Silva
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - David Goudenège
- Department of Biochemistry and Genetics, University Hospital of Angers, Angers, France
| | - Karla Deysiree Alcântara Silva
- Laboratory of Immunology, Heart Institute (Incor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Division of Clinical Immunology and Allergy, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Raquel de Souza Vieira
- Laboratory of Immunology, Heart Institute (Incor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Débora Levy
- Laboratory of Immunology, Heart Institute (Incor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Sergio Paulo Bydlowski
- Laboratory of Immunology, Heart Institute (Incor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Frédéric Gallardo
- INSERM, UMR_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France
| | - Magali Torres
- INSERM, UMR_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France
| | - Edimar Alcides Bocchi
- Heart Failure Team, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Miguel Mano
- Functional Genomics and RNA-based Therapeutics Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | | | - Fernando Bacal
- Division of Surgery, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Pablo Pomerantzeff
- Division of Surgery, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Priscila Camillo Teixeira
- Translational Research Sciences, Pharma Research and Early Development F. Hoffmann-La Roche, Basel, Switzerland
| | | | - Jorge Kalil
- Laboratory of Immunology, Heart Institute (Incor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Division of Clinical Immunology and Allergy, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,iii-Institute for Investigation in Immunology, Instituto Nacional de Ciência e Tecnologia (INCT), São Paulo, Brazil
| | - Vincent Procaccio
- MitoLab, UMR CNRS 6015-INSERM U1083, Université d'Angers, Angers, France
| | - Christophe Chevillard
- INSERM, UMR_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France
| | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute (Incor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Division of Clinical Immunology and Allergy, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,iii-Institute for Investigation in Immunology, Instituto Nacional de Ciência e Tecnologia (INCT), São Paulo, Brazil
| |
Collapse
|
21
|
Hiram R. Cardiac cytokine therapy? Relevance of targeting inflammatory mediators to combat cardiac arrhythmogenic remodeling. IJC HEART & VASCULATURE 2021; 37:100918. [PMID: 34849391 PMCID: PMC8607203 DOI: 10.1016/j.ijcha.2021.100918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/24/2022]
Key Words
- AF, Atrial Fibrillation
- CCL2, C-C motif Chemokine Ligand 2
- CM, Cardiomyocyte
- CamKII, Calcium/calmodulin-dependent protein kinase-II
- IFN-γ, Interferon gamma
- IL, Interleukin
- LA, Left Atrium
- LVZ, Low Voltage Zone
- NLRP3, NACHT, LRR, and PYD domains-containing protein-3
- Th-cell, T helper cell
Collapse
Affiliation(s)
- Roddy Hiram
- Montreal Heart Institute (MHI), Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Espinel-Mesa DX, González Rugeles CI, Mantilla Hernández JC, Stashenko EE, Villegas-Lanau CA, Quimbaya Ramírez JJ, García Sánchez LT. Immunomodulation and Antioxidant Activities as Possible Trypanocidal and Cardioprotective Mechanisms of Major Terpenes from Lippia alba Essential Oils in an Experimental Model of Chronic Chagas Disease. Antioxidants (Basel) 2021; 10:antiox10111851. [PMID: 34829722 PMCID: PMC8614928 DOI: 10.3390/antiox10111851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022] Open
Abstract
In the late phase of Trypanosoma cruzi infection, parasite persistence and an exaggerated immune response accompanied by oxidative stress play a crucial role in the genesis of Chronic Chagasic Cardiomyopathy (CCC). Current treatments (Benznidazole (BNZ) and Nifurtimox) can effect only the elimination of the parasite, but are ineffective for late stage treatment and for preventing heart damage and disease progression. In vivo trypanocidal and cardioprotective activity has been reported for Lippia alba essential oils (EOs), ascribed to their two major terpenes, limonene and caryophyllene oxide. To investigate the role of antioxidant and immunomodulatory mechanisms behind these properties, chronic-T. cruzi-infected rats were treated with oral synergistic mixtures of the aforementioned EOs. For this purpose, the EOs were optimized through limonene-enrichment fractioning and by the addition of exogenous caryophyllene oxide (LIMOX) and used alone or in combined therapy with subtherapeutic doses of BNZ (LIMOXBNZ). Clinical, toxicity, inflammatory, oxidative, and parasitological (qPCR) parameters were assessed in cardiac tissue. These therapies demonstrated meaningful antioxidant and immunomodulatory activity on markers involved in CCC pathogenesis (IFN-γ, TNF-α, IL-4, IL-10, and iNOS), which could explain their significant trypanocidal properties and their noteworthy role in preventing, and even reversing, the progression of cardiac damage in chronic Chagas disease.
Collapse
Affiliation(s)
- Denerieth Ximena Espinel-Mesa
- Infectious Diseases Postgraduate Program, Instituto de Investigación Masira, Universidad de Santander, Bucaramanga 680006, Santander, Colombia; (D.X.E.-M.); (J.J.Q.R.)
| | - Clara Isabel González Rugeles
- Immunology and Molecular Epidemiology Group, School of Microbiology, Universidad Industrial de Santander, Bucaramanga 680002, Santander, Colombia;
| | | | - Elena E. Stashenko
- National Research Center for the Agroindustrialization of Tropical Aromatic and Medicinal Plant Species—CENIVAM, Universidad Industrial de Santander, Bucaramanga 680002, Santander, Colombia;
| | | | - John Jaime Quimbaya Ramírez
- Infectious Diseases Postgraduate Program, Instituto de Investigación Masira, Universidad de Santander, Bucaramanga 680006, Santander, Colombia; (D.X.E.-M.); (J.J.Q.R.)
| | - Liliana Torcoroma García Sánchez
- Infectious Diseases Postgraduate Program, Instituto de Investigación Masira, Universidad de Santander, Bucaramanga 680006, Santander, Colombia; (D.X.E.-M.); (J.J.Q.R.)
- Correspondence:
| |
Collapse
|
23
|
Association between serum inflammatory biomarkers and atrial low voltage in patients with atrial fibrillation: A phase 1 FIB-MARK study. IJC HEART & VASCULATURE 2021; 37:100904. [PMID: 34765718 PMCID: PMC8571495 DOI: 10.1016/j.ijcha.2021.100904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 12/22/2022]
Abstract
Background The mechanisms leading to atrial fibrosis in patients with atrial fibrillation (AF), especially in relation to inflammation, remain unclear. Methods and Results Forty biomarkers were measured in peripheral blood samples collected prior to catheter ablation, and the association with left atrial (LVZ) was evaluated in 16 consecutive patients. The median %LVZ was 17%. In Pearson’s correlation analysis, interleukin(IL)-17A and interferon(IFN)-γ showed the most significant positive and negative correlations with %LVZ (R = 0.35 and 0.43, P < 0.001). Furthermore, the IL-17A/IFN-γ ratio was significantly associated with %LVZ (R = 0.65, P = 0.007), as was the macrophage inflammatory protein (MIP)-1δ/IFN-γ ratio (R = 0.73, P = 0.001). The area under the receiver operator characteristics curves of the IL-17A/IFN-γ and MIP-1δ/IFN-γ ratios for detecting severe LVZ (%LVZ ≥ 10% as a reference standard) were 0.88 and 0.90, respectively. The IL-17A/IFN-γ ratio was significantly higher in patients with severe LVZ than those without (1.41 versus 0.97, P = 0.01). Furthermore, the sensitivity, specificity, and accuracy for detecting severe LVZ were 60%, 100%, and 75.0%, respectively, at a cut-off value of 1.3. Conclusions Among inflammatory biomarkers, the serum IL-17A/IFN-γ ratio was associated with severe left atrial LVZ in patients with AF. However, further studies are needed to clarify the role of inflammatory biomarkers in the development and progression of atrial fibrosis in patients with AF.
Collapse
|
24
|
Markousis-Mavrogenis G, Tromp J, Ouwerkerk W, Ferreira JP, Anker SD, Cleland JG, Dickstein K, Filippatos G, Lang CC, Metra M, Samani NJ, de Boer RA, van Veldhuisen DJ, Voors AA, van der Meer P. Multimarker profiling identifies protective and harmful immune processes in heart failure: findings from BIOSTAT-CHF. Cardiovasc Res 2021; 118:1964-1977. [PMID: 34264317 PMCID: PMC9239579 DOI: 10.1093/cvr/cvab235] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/16/2021] [Indexed: 11/18/2022] Open
Abstract
Aims The exploration of novel immunomodulatory interventions to improve outcome in heart
failure (HF) is hampered by the complexity/redundancies of inflammatory pathways, which
remain poorly understood. We thus aimed to investigate the associations between the
activation of diverse immune processes and outcomes in patients with HF. Methods and results We measured 355 biomarkers in 2022 patients with worsening HF and an independent
validation cohort (n = 1691) (BIOSTAT-CHF index and validation
cohorts), and classified them according to their functions into biological processes
based on the gene ontology classification. Principal component analyses were used to
extract weighted scores per process. We investigated the association of these processes
with all-cause mortality at 2-year follow-up. The contribution of each biomarker to the
weighted score(s) of the processes was used to identify potential therapeutic targets.
Mean age was 69 (±12.0) years and 537 (27%) patients were women. We identified 64 unique
overrepresented immune-related processes representing 188 of 355 biomarkers. Of these
processes, 19 were associated with all-cause mortality (10 positively and 9 negatively).
Increased activation of ‘T-cell costimulation’ and ‘response to
interferon-gamma/positive regulation of interferon-gamma production’ showed
the most consistent positive and negative associations with all-cause mortality,
respectively, after external validation. Within T-cell costimulation,
inducible costimulator ligand, CD28, CD70, and tumour necrosis factor superfamily
member-14 were identified as potential therapeutic targets. Conclusions We demonstrate the divergent protective and harmful effects of different immune
processes in HF and suggest novel therapeutic targets. These findings constitute a rich
knowledge base for informing future studies of inflammation in HF.
Collapse
Affiliation(s)
| | | | - Wouter Ouwerkerk
- Saw Swee Hock School of Public Health, National University of
Singapore, 12 Science Drive 2, #10-01, Singapore
117549, Singapore
- Department of Dermatology, Amsterdam UMC, University of Amsterdam,
Amsterdam Infection & Immunity Institute, De Boelelaan
1117, 1118, 1081 HV Amsterdam, The
Netherlands
| | - João Pedro Ferreira
- Université de Lorraine, Inserm, Centre d'Investigations Cliniques, -
PlurithÕmatique 14-33, and Inserm U1116, CHRU, F-CRIN
INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
- Cardiovascular Research and Development Center, Department of Surgery and
Physiology, Faculty of Medicine of the University of Porto,
Porto, Portugal
| | - Stefan D Anker
- Division of Cardiology and Metabolism – Heart Failure, Cachexia &
Sarcopenia, Department of Cardiology (CVK), Berlin-Brandenburg Center for Regenerative
Therapies (BCRT), at Charité University Medicine, Charitépl.
1, 10117 Berlin, Germany
- Department of Cardiology and Pneumology, University Medicine Göttingen
(UMG), Robert-Koch-Straße 40, 37075 Göttingen,
Germany
- DZHK (German Center for Cardiovascular Research),
Potsdamer Str. 58 10785 Berlin, Germany
| | - John G Cleland
- Robertson Centre for Biostatistics, Institute of Health and Wellbeing,
University of Glasgow, Glasgow G12 8QQ, UK
- National Heart & Lung Institute, Imperial College,
Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
| | - Kenneth Dickstein
- University of Bergen, Stavanger University Hospital,
Gerd-Ragna Bloch Thorsens gate 8, 4011 Stavanger, Norway
| | - Gerasimos Filippatos
- Heart Failure Unit, Department of Cardiology, National and Kapodistrian
University of Athens, School of Medicine, Athens University Hospital
Attikon, Rimini 1, Chaidari 124 62, Athens,
Greece
| | - Chim C Lang
- Division of Molecular & Clinical Medicine, University of
Dundee, Dundee DD1 9SY, UK
| | - Marco Metra
- Department of Medical and Surgical Specialties, Radiological Sciences and
Public Health, Institute of Cardiology, University of Brescia,
Piazza del Mercato, 15, 25121 Brescia BS, Italy
| | - Nilesh J Samani
- Division of Molecular & Clinical Medicine, University of
Dundee, Dundee DD1 9SY, UK
| | | | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University
of Groningen, Hanzeplein 1, 9713 GZ Groningen,
TheNetherlands
| | - Dirk J van Veldhuisen
- Department of Cardiology, University Medical Center Groningen, University
of Groningen, Hanzeplein 1, 9713 GZ Groningen,
TheNetherlands
| | - Adriaan A Voors
- Department of Cardiology, University Medical Center Groningen, University
of Groningen, Hanzeplein 1, 9713 GZ Groningen,
TheNetherlands
| | | |
Collapse
|
25
|
Zhen C, Liu H, Gao L, Tong Y, He C. Signal transducer and transcriptional activation 1 protects against pressure overload-induced cardiac hypertrophy. FASEB J 2021; 35:e21240. [PMID: 33377257 DOI: 10.1096/fj.202000325rrr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022]
Abstract
Signal transducers and transcriptional activation 1 (Stat1) is a member of the STATs family, and its role in various biological responses, including cell proliferation, differentiation, migration, apoptosis, and immune regulation has been extensively studied. We aimed to investigate its role in pathological cardiac hypertrophy, which is currently poorly understood. Experiments using H9C2 cardiomyocytes, Stat1, and IfngR cardiomyocyte-specific knockout mice revealed that Stat1 had a protective effect on cardiac hypertrophy. Using transverse aortic constriction (TAC)-induced cardiac hypertrophy in mice, we analyzed the degree of hypertrophy using echocardiography, pathology, and at the molecular level. Mice lacking Stat1 had more pronounced cardiac hypertrophy and fibrosis than wild-type TAC mice. Analysis of the molecular mechanisms suggested that Stat1 downregulated the mRNA levels of hypertrophy and fibrosis markers to inhibit cardiac hypertrophy, and promotes mitochondrial fission through the Ucp2/P-Drp1 pathway, enhancing mitochondrial function, and increasing compensatory myocardial ATP production in the compensatory phase for cardiac hypertrophy inhibition. Overall, this comprehensive analysis revealed that Stat1 inhibits cardiac hypertrophy by downregulating hypertrophic and fibrotic marker genes and enhancing the mitochondrial function to enhance cardiomyocyte function through the Ucp2/P-Drp1 signaling pathway.
Collapse
Affiliation(s)
- Changlin Zhen
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Hongxia Liu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Li Gao
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Yuanyuan Tong
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Chaoyong He
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
26
|
Gordon HP, Katz MG, Fazal S, Gillespie VL, Fargnoli AS, Gubara SM, Madjarova SJ, Cohen JA. Inflammatory Responses with Left Ventricular Compromise after Induction of Myocardial Infarcts in Sheep (Ovis aries). Comp Med 2021; 71:240-246. [PMID: 34082856 DOI: 10.30802/aalas-cm-21-000005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Ischemic myocardial disease is a major cause of death among humans worldwide; it results in scarring and pallor of the myocardium and triggers an inflammatory response that contributes to impaired left ventricular function. This response includes and is evidenced by the production of several inflammatory cytokines including TNFα, IL1β, IL4, IFNγ, IL10 and IL6. In the current study, myocardial infarcts were induced in 6 mo old male castrated sheep by ligation of the left circumflex obtuse marginal arteries (OM 1 and 2). MRI was used to measure parameters of left ventricular function that include EDV, ESV, EF, SVI, dp/dt max and dp/dt min at baseline and at 4 wk and 3 mo after infarct induction. We also measured serum concentrations of an array of cytokines. Postmortem histologic findings corroborate the existence of left ventricular myocardial injury and deterioration. Our data show a correlation between serum cytokine concentrations and the development of myocardial damage and left ventricular functional compromise.
Collapse
Affiliation(s)
- Hylton P Gordon
- Center for Comparative Medicine and Surgery, Icahn School of Medicine at Mt. Sinai, New York, New York;,
| | - Michael G Katz
- Department of Cardiology, Icahn School of Medicine at Mt. Sinai, New York, New York
| | - Shahood Fazal
- Department of Cardiology, Icahn School of Medicine at Mt. Sinai, New York, New York
| | - Virginia L Gillespie
- Center for Comparative Medicine and Surgery, Icahn School of Medicine at Mt. Sinai, New York, New York
| | - Anthony S Fargnoli
- Department of Cardiology, Icahn School of Medicine at Mt. Sinai, New York, New York
| | - Sarah M Gubara
- Department of Cardiology, Icahn School of Medicine at Mt. Sinai, New York, New York
| | - Sophia J Madjarova
- Department of Biology, Columbia University School of Medicine, New York, New York
| | - Jonathan A Cohen
- Center for Comparative Medicine and Surgery, Icahn School of Medicine at Mt. Sinai, New York, New York
| |
Collapse
|
27
|
Wingard MC, Dalal S, Shook PL, Myers R, Connelly BA, Thewke DP, Singh M, Singh K. Deficiency of ataxia-telangiectasia mutated kinase modulates functional and biochemical parameters of the heart in response to Western-type diet. Am J Physiol Heart Circ Physiol 2021; 320:H2324-H2338. [PMID: 33929897 PMCID: PMC8289354 DOI: 10.1152/ajpheart.00990.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/31/2021] [Accepted: 04/14/2021] [Indexed: 02/08/2023]
Abstract
Ataxia-telangiectasia mutated (ATM) kinase deficiency exacerbates heart dysfunction late after myocardial infarction. Here, we hypothesized that ATM deficiency modulates Western-type diet (WD)-induced cardiac remodeling with an emphasis on functional and biochemical parameters of the heart. Weight gain was assessed in male wild-type (WT) and ATM heterozygous knockout (hKO) mice on weekly basis, whereas cardiac functional and biochemical parameters were measured 14 wk post-WD. hKO-WD mice exhibited rapid body weight gain at weeks 5, 6, 7, 8, and 10 versus WT-WD. WD decreased percent fractional shortening and ejection fraction, and increased end-systolic volumes and diameters to a similar extent in both genotypes. However, WD decreased stroke volume, cardiac output, peak velocity of early ventricular filling, and aortic ejection time and increased isovolumetric relaxation time (IVRT) and Tei index versus WT-NC (normal chow). Conversely, IVRT, isovolumetric contraction time, and Tei index were lower in hKO-WD versus hKO-NC and WT-WD. Myocyte apoptosis and hypertrophy were higher in hKO-WD versus WT-WD. WD increased fibrosis and expression of collagen-1α1, matrix metalloproteinase (MMP)-2, and MMP-9 in WT. WD enhanced AMPK activation, while decreasing mTOR activation in hKO. Akt and IKK-α/β activation, and Bax, PARP-1, and Glut-4 expression were higher in WT-WD versus WT-NC, whereas NF-κB activation and Glut-4 expression were lower in hKO-WD versus hKO-NC. Circulating concentrations of IL-12(p70), eotaxin, IFN-γ, macrophage inflammatory protein (MIP)-1α, and MIP-1β were higher in hKO-WD versus WT-WD. Thus, ATM deficiency accelerates weight gain, induces systolic dysfunction with increased preload, and associates with increased apoptosis, hypertrophy, and inflammation in response to WD.NEW & NOTEWORTHY Ataxia-telangiectasia mutated (ATM) kinase deficiency in humans associates with enhanced susceptibility to ischemic heart disease. Here, we provide evidence that ATM deficiency accelerates body weight gain and associates with increased cardiac preload, hypertrophy, and apoptosis in mice fed with Western-type diet (WD). Further investigations of the role of ATM deficiency in WD-induced alterations in function and biochemical parameters of the heart may provide clinically applicable information on treatment and/or nutritional counseling for patients with ATM deficiency.
Collapse
Affiliation(s)
- Mary C Wingard
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Suman Dalal
- Department of Health Sciences, East Tennessee State University, Johnson City, Tennessee
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee
| | - Paige L Shook
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Rachel Myers
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Barbara A Connelly
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
- James H Quillen Veterans Affairs Medical Center, East Tennessee State University, Johnson City, Tennessee
| | - Douglas P Thewke
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Mahipal Singh
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Krishna Singh
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee
- James H Quillen Veterans Affairs Medical Center, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
28
|
Zhan RZ, Rao L, Chen Z, Strash N, Bursac N. Loss of sarcomeric proteins via upregulation of JAK/STAT signaling underlies interferon-γ-induced contractile deficit in engineered human myocardium. Acta Biomater 2021; 126:144-153. [PMID: 33705988 DOI: 10.1016/j.actbio.2021.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 12/19/2022]
Abstract
The level of circulating interferon-γ (IFNγ) is elevated in various clinical conditions including autoimmune and inflammatory diseases, sepsis, acute coronary syndrome, and viral infections. As these conditions are associated with high risk of myocardial dysfunction, we investigated the effects of IFNγ on 3D fibrin-based engineered human cardiac tissues ("cardiobundles"). Cardiobundles were fabricated from human pluripotent stem cell-derived cardiomyocytes, exposed to 0-20 ng/ml of IFNγ on culture days 7-14, and assessed for changes in tissue structure, viability, contractile force and calcium transient generation, action potential propagation, cytokine secretion, and expression of select genes and proteins. We found that application of IFNγ induced a dose-dependent reduction in contractile force generation, deterioration of sarcomeric organization, and cardiomyocyte disarray, without significantly altering cell viability, action potential propagation, or calcium transient amplitude. At molecular level, the IFNγ-induced structural and functional deficits could be attributed to altered balance of pro- and anti-inflammatory cytokines, upregulation of JAK/STAT signaling pathway (JAK1, JAK2, and STAT1), and reduced expression of myosin heavy chain, myosin light chain-2v, and sarcomeric α-actinin. Application of clinically used JAK/STAT inhibitors, tofacitinib and baricitinib, fully prevented IFNγ-induced cardiomyopathy, confirming the critical roles of this signaling pathway in inflammatory cardiac disease. Taken together, our in vitro studies in engineered myocardial tissues reveal direct adverse effects of pro-inflammatory cytokine IFNγ on human cardiomyocytes and establish the foundation for a potential use of cardiobundle platform in modeling of inflammatory myocardial disease and therapy. STATEMENT OF SIGNIFICANCE: Various inflammatory and autoimmune diseases including rheumatoid arthritis, sepsis, lupus erythematosus, Chagas disease, and others, as well as viral infections including H1N1 influenza and COVID-19 show increased systemic levels of a pro-inflammatory cytokine interferon-γ (IFNγ) and are associated with high risk of heart disease. Here we explored for the first time if chronically elevated levels of IFNγ can negatively affect structure and function of engineered human heart tissues in vitro. Our studies revealed IFNγ-induced deterioration of myofibrillar organization and contractile force production in human cardiomyocytes, attributed to decreased expression of multiple sarcomeric proteins and upregulation of JAK/STAT signaling pathway. FDA-approved JAK inhibitors fully blocked the adverse effects of IFNγ, suggesting a potentially effective strategy against human inflammatory cardiomyopathy.
Collapse
|
29
|
Aroor AR, Mummidi S, Lopez-Alvarenga JC, Das N, Habibi J, Jia G, Lastra G, Chandrasekar B, DeMarco VG. Sacubitril/valsartan inhibits obesity-associated diastolic dysfunction through suppression of ventricular-vascular stiffness. Cardiovasc Diabetol 2021; 20:80. [PMID: 33882908 PMCID: PMC8061206 DOI: 10.1186/s12933-021-01270-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Cardiac diastolic dysfunction (DD) and arterial stiffness are early manifestations of obesity-associated prediabetes, and both serve as risk factors for the development of heart failure with preserved ejection fraction (HFpEF). Since the incidence of DD and arterial stiffness are increasing worldwide due to exponential growth in obesity, an effective treatment is urgently needed to blunt their development and progression. Here we investigated whether the combination of an inhibitor of neprilysin (sacubitril), a natriuretic peptide-degrading enzyme, and an angiotensin II type 1 receptor blocker (valsartan), suppresses DD and arterial stiffness in an animal model of prediabetes more effectively than valsartan monotherapy. METHODS Sixteen-week-old male Zucker Obese rats (ZO; n = 64) were assigned randomly to 4 different groups: Group 1: saline control (ZOC); Group 2: sacubitril/valsartan (sac/val; 68 mg•kg-1•day-1; ZOSV); Group 3: valsartan (31 mg•kg-1•day-1; ZOV) and Group 4: hydralazine, an anti-hypertensive drug (30 mg•kg-1•day-1; ZOH). Six Zucker Lean (ZL) rats that received saline only (Group 5) served as lean controls (ZLC). Drugs were administered daily for 10 weeks by oral gavage. RESULTS Sac/val improved echocardiographic parameters of impaired left ventricular (LV) stiffness in untreated ZO rats, without altering the amount of food consumed or body weight gained. In addition to improving DD, sac/val decreased aortic stiffness and reversed impairment in nitric oxide-induced vascular relaxation in ZO rats. However, sac/val had no impact on LV hypertrophy. Notably, sac/val was more effective than val in ameliorating DD. Although, hydralazine was as effective as sac/val in improving these parameters, it adversely affected LV mass index. Further, cytokine array revealed distinct effects of sac/val, including marked suppression of Notch-1 by both valsartan and sac/val, suggesting that cardiovascular protection afforded by both share some common mechanisms; however, sac/val, but not val, increased IL-4, which is increasingly recognized for its cardiovascular protection, possibly contributing, in part, to more favorable effects of sac/val over val alone in improving obesity-associated DD. CONCLUSIONS These studies suggest that sac/val is superior to val in reversing obesity-associated DD. It is an effective drug combination to blunt progression of asymptomatic DD and vascular stiffness to HFpEF development in a preclinical model of obesity-associated prediabetes.
Collapse
Affiliation(s)
- Annayya R Aroor
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri-Columbia School of Medicine, D110, DC043.0 One Hospital Dr, Columbia, MO, 65212, USA
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Srinivas Mummidi
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Juan Carlos Lopez-Alvarenga
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Nitin Das
- Department of Cardiothoracic Surgery, University of Texas Health Science Center, San Antonio, TX, USA
| | - Javad Habibi
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri-Columbia School of Medicine, D110, DC043.0 One Hospital Dr, Columbia, MO, 65212, USA
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Guanghong Jia
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri-Columbia School of Medicine, D110, DC043.0 One Hospital Dr, Columbia, MO, 65212, USA
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Guido Lastra
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri-Columbia School of Medicine, D110, DC043.0 One Hospital Dr, Columbia, MO, 65212, USA
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Bysani Chandrasekar
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri-Columbia School of Medicine, One Hospital Dr, Columbia, MO, 65212, USA.
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.
| | - Vincent G DeMarco
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA.
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri-Columbia School of Medicine, D110, DC043.0 One Hospital Dr, Columbia, MO, 65212, USA.
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
30
|
Mills RJ, Humphrey SJ, Fortuna PRJ, Lor M, Foster SR, Quaife-Ryan GA, Johnston RL, Dumenil T, Bishop C, Rudraraju R, Rawle DJ, Le T, Zhao W, Lee L, Mackenzie-Kludas C, Mehdiabadi NR, Halliday C, Gilham D, Fu L, Nicholls SJ, Johansson J, Sweeney M, Wong NCW, Kulikowski E, Sokolowski KA, Tse BWC, Devilée L, Voges HK, Reynolds LT, Krumeich S, Mathieson E, Abu-Bonsrah D, Karavendzas K, Griffen B, Titmarsh D, Elliott DA, McMahon J, Suhrbier A, Subbarao K, Porrello ER, Smyth MJ, Engwerda CR, MacDonald KPA, Bald T, James DE, Hudson JE. BET inhibition blocks inflammation-induced cardiac dysfunction and SARS-CoV-2 infection. Cell 2021; 184:2167-2182.e22. [PMID: 33811809 PMCID: PMC7962543 DOI: 10.1016/j.cell.2021.03.026] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/10/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022]
Abstract
Cardiac injury and dysfunction occur in COVID-19 patients and increase the risk of mortality. Causes are ill defined but could be through direct cardiac infection and/or inflammation-induced dysfunction. To identify mechanisms and cardio-protective drugs, we use a state-of-the-art pipeline combining human cardiac organoids with phosphoproteomics and single nuclei RNA sequencing. We identify an inflammatory "cytokine-storm", a cocktail of interferon gamma, interleukin 1β, and poly(I:C), induced diastolic dysfunction. Bromodomain-containing protein 4 is activated along with a viral response that is consistent in both human cardiac organoids (hCOs) and hearts of SARS-CoV-2-infected K18-hACE2 mice. Bromodomain and extraterminal family inhibitors (BETi) recover dysfunction in hCOs and completely prevent cardiac dysfunction and death in a mouse cytokine-storm model. Additionally, BETi decreases transcription of genes in the viral response, decreases ACE2 expression, and reduces SARS-CoV-2 infection of cardiomyocytes. Together, BETi, including the Food and Drug Administration (FDA) breakthrough designated drug, apabetalone, are promising candidates to prevent COVID-19 mediated cardiac damage.
Collapse
Affiliation(s)
- Richard J Mills
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Sean J Humphrey
- Charles Perkins Centre, School of Life and Environmental Science, The University of Sydney, Sydney 2006, NSW, Australia
| | | | - Mary Lor
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Simon R Foster
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | | | - Rebecca L Johnston
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Troy Dumenil
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Cameron Bishop
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Rajeev Rudraraju
- The WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, VIC, Australia; Department of Microbiology and Immunology, The University of Melbourne, Melbourne 3052, VIC, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, VIC, Australia
| | - Daniel J Rawle
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Thuy Le
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Wei Zhao
- The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, VIC, Australia
| | - Leo Lee
- The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, VIC, Australia
| | | | - Neda R Mehdiabadi
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne 3052, VIC, Australia
| | | | - Dean Gilham
- Resverlogix Corp., Calgary T3E 6L1, AB, Canada
| | - Li Fu
- Resverlogix Corp., Calgary T3E 6L1, AB, Canada
| | - Stephen J Nicholls
- Victorian Heart Hospital, Monash University, Clayton 3168, VIC, Australia
| | | | | | | | | | - Kamil A Sokolowski
- Preclinical Imaging Facility, Translational Research Institute, Brisbane, QLD, Australia
| | - Brian W C Tse
- Preclinical Imaging Facility, Translational Research Institute, Brisbane, QLD, Australia
| | - Lynn Devilée
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Holly K Voges
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Liam T Reynolds
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Sophie Krumeich
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Ellen Mathieson
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Dad Abu-Bonsrah
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne 3052, VIC, Australia; Department of Paediatrics, The University of Melbourne, Melbourne 3052, VIC, Australia
| | - Kathy Karavendzas
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne 3052, VIC, Australia
| | - Brendan Griffen
- Dynomics Inc., San Mateo, CA 94401, USA; Dynomics Pty Ltd, Brisbane 4000, QLD, Australia
| | - Drew Titmarsh
- Dynomics Inc., San Mateo, CA 94401, USA; Dynomics Pty Ltd, Brisbane 4000, QLD, Australia
| | - David A Elliott
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne 3052, VIC, Australia
| | - James McMahon
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne 3004, VIC, Australia; Department of Infectious Diseases, Monash Medical Centre, Clayton 3168, VIC, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia; GVN Center of Excellence, Australian Infectious Diseases Research Centre, Brisbane, QLD, Australia
| | - Kanta Subbarao
- The WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, VIC, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, VIC, Australia
| | - Enzo R Porrello
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne 3052, VIC, Australia; Department of Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne 3052, VIC, Australia
| | - Mark J Smyth
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | | | | | - Tobias Bald
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia; Institute of Experimental Oncology, University Hospital Bonn, Bonn 53127, Germany
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Science, The University of Sydney, Sydney 2006, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney 2006, NSW, Australia
| | - James E Hudson
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia.
| |
Collapse
|
31
|
Nonaka CKV, Sampaio GL, de Aragão França L, Cavalcante BR, Silva KN, Khouri R, Torres FG, Meira CS, de Souza Santos E, Macedo CT, Paredes BD, Rocha VPC, Rogatto SR, Ribeiro dos Santos R, Souza BSDF, Soares MBP. Therapeutic miR-21 Silencing Reduces Cardiac Fibrosis and Modulates Inflammatory Response in Chronic Chagas Disease. Int J Mol Sci 2021; 22:3307. [PMID: 33804922 PMCID: PMC8036348 DOI: 10.3390/ijms22073307] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/11/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022] Open
Abstract
Chagas disease, caused by the parasite Trypanosoma cruzi (T. cruzi), remains a serious public health problem for which there is no effective treatment in the chronic stage. Intense cardiac fibrosis and inflammation are hallmarks of chronic Chagas disease cardiomyopathy (CCC). Previously, we identified upregulation of circulating and cardiac miR-21, a pro-fibrotic microRNA (miRNA), in subjects with CCC. Here, we explored the potential role of miR-21 as a therapeutic target in a model of chronic Chagas disease. PCR array-based 88 microRNA screening was performed in heart samples obtained from C57Bl/6 mice chronically infected with T. cruzi and serum samples collected from CCC patients. MiR-21 was found upregulated in both human and mouse samples, which was corroborated by an in silico analysis of miRNA-mRNA target prediction. In vitro miR-21 functional assays (gain-and loss-of-function) were performed in cardiac fibroblasts, showing upregulation of miR-21 and collagen expression upon transforming growth factor beta 1 (TGFβ1) and T. cruzi stimulation, while miR-21 blockage reduced collagen expression. Finally, treatment of T. cruzi-infected mice with locked nucleic acid (LNA)-anti-miR-21 inhibitor promoted a significant reduction in cardiac fibrosis. Our data suggest that miR-21 is a mediator involved in the pathogenesis of cardiac fibrosis and indicates the pharmacological silencing of miR-21 as a potential therapeutic approach for CCC.
Collapse
Affiliation(s)
- Carolina Kymie Vasques Nonaka
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador 41253-190, Brazil; (C.K.V.N.); (L.d.A.F); (K.N.S.); (B.D.P); (B.S.d.F.S.)
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil; (G.L.S.); (B.R.C); (R.K.); (F.G.T); (C.S.M); (E.d.S.S); (C.T.M.); (V.P.C.R); (R.R.d.S.)
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro 20000-000, Brazil
| | - Gabriela Louise Sampaio
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil; (G.L.S.); (B.R.C); (R.K.); (F.G.T); (C.S.M); (E.d.S.S); (C.T.M.); (V.P.C.R); (R.R.d.S.)
- Senai Institute of Innovation in Advanced Health Systems, SENAI CIMATEC, Salvador 41253-190, Brazil
| | - Luciana de Aragão França
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador 41253-190, Brazil; (C.K.V.N.); (L.d.A.F); (K.N.S.); (B.D.P); (B.S.d.F.S.)
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro 20000-000, Brazil
| | - Bruno Raphael Cavalcante
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador 41253-190, Brazil; (C.K.V.N.); (L.d.A.F); (K.N.S.); (B.D.P); (B.S.d.F.S.)
| | - Katia Nunes Silva
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador 41253-190, Brazil; (C.K.V.N.); (L.d.A.F); (K.N.S.); (B.D.P); (B.S.d.F.S.)
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil; (G.L.S.); (B.R.C); (R.K.); (F.G.T); (C.S.M); (E.d.S.S); (C.T.M.); (V.P.C.R); (R.R.d.S.)
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro 20000-000, Brazil
| | - Ricardo Khouri
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil; (G.L.S.); (B.R.C); (R.K.); (F.G.T); (C.S.M); (E.d.S.S); (C.T.M.); (V.P.C.R); (R.R.d.S.)
| | - Felipe Guimarães Torres
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil; (G.L.S.); (B.R.C); (R.K.); (F.G.T); (C.S.M); (E.d.S.S); (C.T.M.); (V.P.C.R); (R.R.d.S.)
| | - Cassio Santana Meira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil; (G.L.S.); (B.R.C); (R.K.); (F.G.T); (C.S.M); (E.d.S.S); (C.T.M.); (V.P.C.R); (R.R.d.S.)
- Senai Institute of Innovation in Advanced Health Systems, SENAI CIMATEC, Salvador 41253-190, Brazil
| | - Emanuelle de Souza Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil; (G.L.S.); (B.R.C); (R.K.); (F.G.T); (C.S.M); (E.d.S.S); (C.T.M.); (V.P.C.R); (R.R.d.S.)
- Senai Institute of Innovation in Advanced Health Systems, SENAI CIMATEC, Salvador 41253-190, Brazil
| | - Carolina Thé Macedo
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil; (G.L.S.); (B.R.C); (R.K.); (F.G.T); (C.S.M); (E.d.S.S); (C.T.M.); (V.P.C.R); (R.R.d.S.)
- Senai Institute of Innovation in Advanced Health Systems, SENAI CIMATEC, Salvador 41253-190, Brazil
- Department of Cardiology, São Rafael Hospital, Salvador 41253-190, Brazil
| | - Bruno Diaz Paredes
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil; (G.L.S.); (B.R.C); (R.K.); (F.G.T); (C.S.M); (E.d.S.S); (C.T.M.); (V.P.C.R); (R.R.d.S.)
- Senai Institute of Innovation in Advanced Health Systems, SENAI CIMATEC, Salvador 41253-190, Brazil
| | - Vinicius Pinto Costa Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil; (G.L.S.); (B.R.C); (R.K.); (F.G.T); (C.S.M); (E.d.S.S); (C.T.M.); (V.P.C.R); (R.R.d.S.)
- Senai Institute of Innovation in Advanced Health Systems, SENAI CIMATEC, Salvador 41253-190, Brazil
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark-Vejle, 7100 Vejle, Denmark;
| | - Ricardo Ribeiro dos Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil; (G.L.S.); (B.R.C); (R.K.); (F.G.T); (C.S.M); (E.d.S.S); (C.T.M.); (V.P.C.R); (R.R.d.S.)
- Senai Institute of Innovation in Advanced Health Systems, SENAI CIMATEC, Salvador 41253-190, Brazil
| | - Bruno Solano de Freitas Souza
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador 41253-190, Brazil; (C.K.V.N.); (L.d.A.F); (K.N.S.); (B.D.P); (B.S.d.F.S.)
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil; (G.L.S.); (B.R.C); (R.K.); (F.G.T); (C.S.M); (E.d.S.S); (C.T.M.); (V.P.C.R); (R.R.d.S.)
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro 20000-000, Brazil
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil; (G.L.S.); (B.R.C); (R.K.); (F.G.T); (C.S.M); (E.d.S.S); (C.T.M.); (V.P.C.R); (R.R.d.S.)
- Senai Institute of Innovation in Advanced Health Systems, SENAI CIMATEC, Salvador 41253-190, Brazil
| |
Collapse
|
32
|
Rare Pathogenic Variants in Mitochondrial and Inflammation-Associated Genes May Lead to Inflammatory Cardiomyopathy in Chagas Disease. J Clin Immunol 2021; 41:1048-1063. [PMID: 33660144 PMCID: PMC8249271 DOI: 10.1007/s10875-021-01000-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/15/2021] [Indexed: 01/21/2023]
Abstract
Abstract Cardiomyopathies are an important cause of heart failure and sudden cardiac death. Little is known about the role of rare genetic variants in inflammatory cardiomyopathy. Chronic Chagas disease cardiomyopathy (CCC) is an inflammatory cardiomyopathy prevalent in Latin America, developing in 30% of the 6 million patients chronically infected by the protozoan Trypanosoma cruzi, while 60% remain free of heart disease (asymptomatic (ASY)). The cytokine interferon-γ and mitochondrial dysfunction are known to play a major pathogenetic role. Chagas disease provides a unique model to probe for genetic variants involved in inflammatory cardiomyopathy. Methods We used whole exome sequencing to study nuclear families containing multiple cases of Chagas disease. We searched for rare pathogenic variants shared by all family members with CCC but absent in infected ASY siblings and in unrelated ASY. Results We identified heterozygous, pathogenic variants linked to CCC in all tested families on 22 distinct genes, from which 20 were mitochondrial or inflammation-related – most of the latter involved in proinflammatory cytokine production. Significantly, incubation with IFN-γ on a human cardiomyocyte line treated with an inhibitor of dihydroorotate dehydrogenase brequinar (enzyme showing a loss-of-function variant in one family) markedly reduced mitochondrial membrane potential (ΔψM), indicating mitochondrial dysfunction. Conclusion Mitochondrial dysfunction and inflammation may be genetically determined in CCC, driven by rare genetic variants. We hypothesize that CCC-linked genetic variants increase mitochondrial susceptibility to IFN-γ-induced damage in the myocardium, leading to the cardiomyopathy phenotype in Chagas disease. This mechanism may also be operative in other inflammatory cardiomyopathies. Supplementary Information The online version contains supplementary material available at 10.1007/s10875-021-01000-y.
Collapse
|
33
|
Laugier L, Ferreira LRP, Ferreira FM, Cabantous S, Frade AF, Nunes JP, Ribeiro RA, Brochet P, Teixeira PC, Santos RHB, Bocchi EA, Bacal F, Cândido DDS, Maso VE, Nakaya HI, Kalil J, Cunha-Neto E, Chevillard C. miRNAs may play a major role in the control of gene expression in key pathobiological processes in Chagas disease cardiomyopathy. PLoS Negl Trop Dis 2020; 14:e0008889. [PMID: 33351798 PMCID: PMC7787679 DOI: 10.1371/journal.pntd.0008889] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 01/06/2021] [Accepted: 10/14/2020] [Indexed: 01/19/2023] Open
Abstract
Chronic Chagas disease cardiomyopathy (CCC), an especially aggressive inflammatory dilated cardiomyopathy caused by lifelong infection with the protozoan Trypanosoma cruzi, is a major cause of cardiomyopathy in Latin America. Although chronic myocarditis may play a major pathogenetic role, little is known about the molecular mechanisms responsible for its severity. The aim of this study is to study the genes and microRNAs expression in tissues and their connections in regards to the pathobiological processes. To do so, we integrated for the first time global microRNA and mRNA expression profiling from myocardial tissue of CCC patients employing pathways and network analyses. We observed an enrichment in biological processes and pathways associated with the immune response and metabolism. IFNγ, TNF and NFkB were the top upstream regulators. The intersections between differentially expressed microRNAs and differentially expressed target mRNAs showed an enrichment in biological processes such as Inflammation, inflammation, Th1/IFN-γ-inducible genes, fibrosis, hypertrophy, and mitochondrial/oxidative stress/antioxidant response. MicroRNAs also played a role in the regulation of gene expression involved in the key cardiomyopathy-related processes fibrosis, hypertrophy, myocarditis and arrhythmia. Significantly, a discrete number of differentially expressed microRNAs targeted a high number of differentially expressed mRNAs (>20) in multiple processes. Our results suggest that miRNAs orchestrate expression of multiple genes in the major pathophysiological processes in CCC heart tissue. This may have a bearing on pathogenesis, biomarkers and therapy. Chronic Chagas disease cardiomyopathy (CCC), an aggressive dilated cardiomyopathy caused by Trypanosoma cruzi, is a major cause of cardiomyopathy in Latin America. Little is known about the molecular mechanisms responsible for its severity. Authors study the possible role of microRNAs in the regulation of gene expression in relevant pathways and pathobiological processes. Differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) -small RNAs that can regulate gene expression—associated to severe cardiomyopathy development. The inflammatory mediator Interferon-γ was the most likely inducer of gene expression in CCC, and most genes belonged to the immune response, fibrosis, hypertrophy and mitochondrial metabolism. A discrete number of differentially expressed mRNAs targeted a high number of differentially expressed mRNAs in multiple processes. Moreover, several pathways had multiple targets regulated by microRNAs, suggesting synergic effect. Results suggest that microRNAs orchestrate expression of multiple genes in the major pathophysiological processes in CCC heart tissue.
Collapse
Affiliation(s)
- Laurie Laugier
- Aix Marseille Université, Génétique et Immunologie des Maladies Parasitaires, Unité Mixte de Recherche S906, Marseille, France; INSERM, U906, Marseille, France
| | - Ludmila Rodrigues Pinto Ferreira
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil.,Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Frederico Moraes Ferreira
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil.,Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Sandrine Cabantous
- Aix Marseille Université, Génétique et Immunologie des Maladies Parasitaires, Unité Mixte de Recherche S906, Marseille, France; INSERM, U906, Marseille, France
| | - Amanda Farage Frade
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil.,Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Joao Paulo Nunes
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil.,Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Rafael Almeida Ribeiro
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil.,Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Pauline Brochet
- Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Inserm, INSERM, UMR_1090, Marseille, France
| | - Priscila Camillo Teixeira
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil.,Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | | | - Edimar A Bocchi
- Division of Transplantation, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Fernando Bacal
- Division of Transplantation, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Darlan da Silva Cândido
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil.,Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Vanessa Escolano Maso
- Department of Pathophysiology and Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Helder I Nakaya
- Department of Pathophysiology and Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Scientific Platform Pasteur, University of São Paulo, São Paulo, Brazil
| | - Jorge Kalil
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil.,Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil.,Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Christophe Chevillard
- Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Inserm, INSERM, UMR_1090, Marseille, France
| |
Collapse
|
34
|
Greco S, Madè A, Gaetano C, Devaux Y, Emanueli C, Martelli F. Noncoding RNAs implication in cardiovascular diseases in the COVID-19 era. J Transl Med 2020; 18:408. [PMID: 33129318 PMCID: PMC7602761 DOI: 10.1186/s12967-020-02582-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/24/2020] [Indexed: 12/21/2022] Open
Abstract
COronaVIrus Disease 19 (COVID-19) is caused by the infection of the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2). Although the main clinical manifestations of COVID-19 are respiratory, many patients also display acute myocardial injury and chronic damage to the cardiovascular system. Understanding both direct and indirect damage caused to the heart and the vascular system by SARS-CoV-2 infection is necessary to identify optimal clinical care strategies. The homeostasis of the cardiovascular system requires a tight regulation of the gene expression, which is controlled by multiple types of RNA molecules, including RNA encoding proteins (messenger RNAs) (mRNAs) and those lacking protein-coding potential, the noncoding-RNAs. In the last few years, dysregulation of noncoding-RNAs has emerged as a crucial component in the pathophysiology of virtually all cardiovascular diseases. Here we will discuss the potential role of noncoding RNAs in COVID-19 disease mechanisms and their possible use as biomarkers of clinical use.
Collapse
Affiliation(s)
- S Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097, Milan, Italy
| | - A Madè
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097, Milan, Italy
| | - C Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - Y Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen, Luxembourg
| | - C Emanueli
- Imperial College London, National Heart and Lung Institute, Hammersmith Campus, London, W12 0NN, UK
| | - F Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097, Milan, Italy.
| |
Collapse
|
35
|
Aspirin enhances regulatory functional activities of monocytes and downregulates CD16 and CD40 expression in myocardial infarction autoinflammatory disease. Int Immunopharmacol 2020; 83:106349. [DOI: 10.1016/j.intimp.2020.106349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
|
36
|
Houssari M, Dumesnil A, Tardif V, Kivelä R, Pizzinat N, Boukhalfa I, Godefroy D, Schapman D, Hemanthakumar KA, Bizou M, Henry JP, Renet S, Riou G, Rondeaux J, Anouar Y, Adriouch S, Fraineau S, Alitalo K, Richard V, Mulder P, Brakenhielm E. Lymphatic and Immune Cell Cross-Talk Regulates Cardiac Recovery After Experimental Myocardial Infarction. Arterioscler Thromb Vasc Biol 2020; 40:1722-1737. [PMID: 32404007 PMCID: PMC7310303 DOI: 10.1161/atvbaha.120.314370] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Supplemental Digital Content is available in the text. Objective: Lymphatics play an essential pathophysiological role in promoting fluid and immune cell tissue clearance. Conversely, immune cells may influence lymphatic function and remodeling. Recently, cardiac lymphangiogenesis has been proposed as a therapeutic target to prevent heart failure after myocardial infarction (MI). We investigated the effects of gene therapy to modulate cardiac lymphangiogenesis post-MI in rodents. Second, we determined the impact of cardiac-infiltrating T cells on lymphatic remodeling in the heart. Approach and Results: Comparing adenoviral versus adeno-associated viral gene delivery in mice, we found that only sustained VEGF (vascular endothelial growth factor)-CC156S therapy, achieved by adeno-associated viral vectors, increased cardiac lymphangiogenesis, and led to reduced cardiac inflammation and dysfunction by 3 weeks post-MI. Conversely, inhibition of VEGF-C/-D signaling, through adeno-associated viral delivery of soluble VEGFR3 (vascular endothelial growth factor receptor 3), limited infarct lymphangiogenesis. Unexpectedly, this treatment improved cardiac function post-MI in both mice and rats, linked to reduced infarct thinning due to acute suppression of T-cell infiltration. Finally, using pharmacological, genetic, and antibody-mediated prevention of cardiac T-cell recruitment in mice, we discovered that both CD4+ and CD8+ T cells potently suppress, in part through interferon-γ, cardiac lymphangiogenesis post-MI. Conclusions: We show that resolution of cardiac inflammation after MI may be accelerated by therapeutic lymphangiogenesis based on adeno-associated viral gene delivery of VEGF-CC156S. Conversely, our work uncovers a major negative role of cardiac-recruited T cells on lymphatic remodeling. Our results give new insight into the interconnection between immune cells and lymphatics in orchestration of cardiac repair after injury.
Collapse
Affiliation(s)
- Mahmoud Houssari
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Anais Dumesnil
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Virginie Tardif
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Riikka Kivelä
- Wihuri Research Institute and Translational Cancer Biology Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Finland (R.K., K.A.H., K.A.)
| | - Nathalie Pizzinat
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Inserm UMR1048, Université de Toulouse III, France (N.P., M.B.)
| | - Ines Boukhalfa
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - David Godefroy
- Normandy University, UniRouen, Inserm UMR1239 (DC2N Laboratory), Mont Saint Aignan, France (D.G., Y.A.)
| | - Damien Schapman
- Normandy University, UniRouen, PRIMACEN, Mont Saint Aignan, France (D.S.)
| | - Karthik A Hemanthakumar
- Wihuri Research Institute and Translational Cancer Biology Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Finland (R.K., K.A.H., K.A.)
| | - Mathilde Bizou
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Inserm UMR1048, Université de Toulouse III, France (N.P., M.B.)
| | - Jean-Paul Henry
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Sylvanie Renet
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Gaetan Riou
- Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1234 (PANTHER Laboratory), Rouen, France (G.R., S.A.)
| | - Julie Rondeaux
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Youssef Anouar
- Normandy University, UniRouen, Inserm UMR1239 (DC2N Laboratory), Mont Saint Aignan, France (D.G., Y.A.)
| | - Sahil Adriouch
- Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1234 (PANTHER Laboratory), Rouen, France (G.R., S.A.)
| | - Sylvain Fraineau
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Finland (R.K., K.A.H., K.A.)
| | - Vincent Richard
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Paul Mulder
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | | |
Collapse
|
37
|
Lund A, Nordrehaug JE, Slettom G, Solvang SEH, Pedersen EKR, Midttun Ø, Ulvik A, Ueland PM, Nygård O, Giil LM. Plasma kynurenines and prognosis in patients with heart failure. PLoS One 2020; 15:e0227365. [PMID: 31923223 PMCID: PMC6953806 DOI: 10.1371/journal.pone.0227365] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/17/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Metabolites of the kynurenine pathway (mKP) relate to important aspects of heart failure pathophysiology, such as inflammation, energy-homeostasis, apoptosis, and oxidative stress. We aimed to investigate whether mKP predict mortality in patients with heart failure. METHODS The study included 202 patients with heart failure (73.8% with coronary artery disease (CAD)), propensity score matched to 384 controls without heart disease, and 807 controls with CAD (71%). All underwent coronary angiography and ventriculography at baseline. Plasma mKP, pyridoxal 5'phosphate (PLP) and CRP were measured at baseline. Case-control differences were assessed by logistic regression and survival by Cox regression, adjusted for age, gender, smoking, diabetes, ejection fraction, PLP, eGFR and CRP. Effect measures are reported per standard deviation increments. RESULTS Higher plasma levels of kynurenine, 3- hydroxykynurenine (HK), quinolinic acid (QA), the kynurenine-tryptophan-ratio (KTR) and the ratio of HK to xanthurenic acid (HK/XA) were detected in heart failure compared to both control groups. The mortality rate per 1000 person-years was 55.5 in patients with heart failure, 14.6 in controls without heart disease and 22.2 in CAD controls. QA [HR 1.80, p = 0.013], HK [HR 1.77, p = 0.005], HK/XA [HR 1.67, p < 0.001] and KTR [HR 1.55, p = 0.009] were associated with increased mortality in patients with heart failure, while XA [HR 0.68-0.80, p = 0.013-0.037] were associated with lower mortality in all groups. HK and HK/XA had weak associations with increased mortality in CAD-controls. CONCLUSION Elevated plasma levels of mKP and metabolite ratios are associated with increased mortality, independent of CAD, in patients with heart failure.
Collapse
Affiliation(s)
- Anders Lund
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jan Erik Nordrehaug
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Cardiology, Stavanger University Hospital, Stavanger, Norway
| | - Grete Slettom
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Stein-Erik Hafstad Solvang
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Eva Kristine Ringdal Pedersen
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | | | | | - Per Magne Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Laboratory of Clinical Biochemistry, Haukeland University Hospital, Bergen, Norway
| | - Ottar Nygård
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Lasse Melvaer Giil
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| |
Collapse
|
38
|
Effects of doxorubicin on the heart: From molecular mechanisms to intervention strategies. Eur J Pharmacol 2019; 866:172818. [PMID: 31758940 DOI: 10.1016/j.ejphar.2019.172818] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 12/24/2022]
Abstract
Cancer remains a major public health problem worldwide and was responsible for 9.6 million deaths in 2018. Oncologic treatments such as doxorubicin (Dox) and trastuzumab (Trz) are chemotherapeutic drugs used to treat several types of cancer, including solid and non-solid malignancies. Although these drugs have a significant impact on the reduction in mortality of cancer patients, this treatment has an adverse effect on the cardiovascular system. The mechanisms associated with Dox-induced cardiotoxicity involve inflammation, oxidative stress, apoptosis, mitochondria impairment and dysregulation of autophagy. Unfortunately, Trz, an effective anti-cancer drug, can potentiate these adverse effects. Trz is a recombinant DNA-derived humanized monoclonal antibody against human epidermal growth factor receptor 2 (HER2). Despite its high anti-cancer efficacy, Trz also has a cardiotoxic effect. Unlike Dox, this adverse effect of Trz on the heart is mostly reversible. A strategy to prevent this undesirable effect is urgently needed. Currently, several pharmacological interventions have shown promising results that might effectively attenuate Dox- and Trz-induced cardiac dysfunction. In this review, reports from in vitro, in vivo and clinical studies pertinent to the underlying mechanisms involved in chemotherapy-induced cardiotoxicity, are comprehensively summarized and discussed. In addition, the potential pharmacological interventions to prevent these cardiotoxic effects are described.
Collapse
|
39
|
Miralles F, Collinot H, Boumerdassi Y, Ducat A, Duché A, Renault G, Marchiol C, Lagoutte I, Bertholle C, Andrieu M, Jacques S, Méhats C, Vaiman D. Long-term cardiovascular disorders in the STOX1 mouse model of preeclampsia. Sci Rep 2019; 9:11918. [PMID: 31417152 PMCID: PMC6695383 DOI: 10.1038/s41598-019-48427-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022] Open
Abstract
Adverse long-term cardiovascular (CV) consequences of PE are well established in women. However, the mechanism responsible for that risk remains unknown. Here, we mated wild-type female mice of the FVB/N strain to STOX1A-overexpressing mice to mimic severe PE and investigated the long-term consequences on the maternal cardiovascular system. Ultrasonography parameters were analyzed in mice before pregnancy and at 3 and 6 months post-pregnancy. At 6 months post-pregnancy, cardiac stress test induced by dobutamine injection revealed an abnormal ultrasonography Doppler profile in mice with previous PE. Eight months post-pregnancy, the heart, endothelial cells (ECs) and plasma of females were analyzed and compared to controls. The heart of mice with PE showed left-ventricular hypertrophy associated with altered histology (fibrosis). Transcriptomic analysis revealed the deregulation of 1149 genes in purified ECs and of 165 genes in the hearts, many being involved in heart hypertrophy. In ECs, the upregulated genes were associated with inflammation and cellular stress. Systems biology analysis identified interleukin 6 (IL-6) as a hub gene connecting these pathways. Plasma profiling of 33 cytokines showed that, 8 of them (Cxcl13, Cxcl16, Cxcl11, IL-16, IL-10, IL-2, IL-4 and Ccl1) allowed to discriminate mice with previous PE from controls. Thus, PE triggers female long-term CV consequences on the STOX1 mouse model.
Collapse
Affiliation(s)
- Francisco Miralles
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, Team "From Gametes To Birth", 24 rue du Faubourg St Jacques, 75014, Paris, France
| | - Hélène Collinot
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, Team "From Gametes To Birth", 24 rue du Faubourg St Jacques, 75014, Paris, France
| | - Yasmine Boumerdassi
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, Team "From Gametes To Birth", 24 rue du Faubourg St Jacques, 75014, Paris, France
| | - Aurélien Ducat
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, Team "From Gametes To Birth", 24 rue du Faubourg St Jacques, 75014, Paris, France
| | - Angéline Duché
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, Genom'IC Platform, Bâtiment Gustave Roussy, 27 rue du faubourg Saint Jacques, 75014, Paris, France
| | - Gilles Renault
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, PIV Platform, 22 rue Méchain, 75014, Paris, France
| | - Carmen Marchiol
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, PIV Platform, 22 rue Méchain, 75014, Paris, France
| | - Isabelle Lagoutte
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, PIV Platform, 22 rue Méchain, 75014, Paris, France
| | - Céline Bertholle
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, CYBIO Platform, 27 rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Muriel Andrieu
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, CYBIO Platform, 27 rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Sébastien Jacques
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, Genom'IC Platform, Bâtiment Gustave Roussy, 27 rue du faubourg Saint Jacques, 75014, Paris, France
| | - Céline Méhats
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, Team "From Gametes To Birth", 24 rue du Faubourg St Jacques, 75014, Paris, France
| | - Daniel Vaiman
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, Team "From Gametes To Birth", 24 rue du Faubourg St Jacques, 75014, Paris, France.
| |
Collapse
|
40
|
Co-treatment with interferon-γ and 1-methyl tryptophan ameliorates cardiac fibrosis through cardiac myofibroblasts apoptosis. Mol Cell Biochem 2019; 458:197-205. [PMID: 31006829 PMCID: PMC6616223 DOI: 10.1007/s11010-019-03542-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 02/23/2019] [Indexed: 01/07/2023]
Abstract
Cardiac remodeling characterized by cardiac fibrosis is a pathologic process occurring after acute myocardial infarction. Fibrosis can be ameliorated by interferon-gamma (IFN-γ), which is a soluble cytokine showing various effects such as anti-fibrosis, apoptosis, anti-proliferation, immunomodulation, and anti-viral activities. However, the role of IFN-γ in cardiac myofibroblasts is not well established. Therefore, we investigated the anti-fibrotic effects of IFN-γ in human cardiac myofibroblasts (hCMs) in vitro and whether indoleamine 2,3-dioxygenase (IDO), induced by IFN-γ and resulting in cell cycle arrest, plays an important role in regulating the biological activity of hCMs. After IFN-γ treatment, cell signaling pathways and DNA contents were analyzed to assess the biological activity of IFN-γ in hCMs. In addition, an IDO inhibitor (1-methyl tryptophan; 1-MT) was used to assess whether IDO plays a key role in regulating hCMs. IFN-γ significantly inhibited hCM proliferation, and IFN-γ-induced IDO expression caused cell cycle arrest in G0/G1 through tryptophan depletion. Moreover, IFN-γ treatment gradually suppressed the expression of α-smooth muscle actin. When IDO activity was inhibited by 1-MT, marked apoptosis was observed in hCMs through the induction of interferon regulatory factor, Fas, and Fas ligand. Our results suggest that IFN-γ plays key roles in anti-proliferative and anti-fibrotic activities in hCMs and further induces apoptosis via IDO inhibition. In conclusion, co-treatment with IFN-γ and 1-MT can ameliorate fibrosis in cardiac myofibroblasts through apoptosis.
Collapse
|
41
|
Mitrokhin V, Filatova T, Shim A, Bilichenko A, Abramochkin D, Kamkin A, Mladenov M. L-type Ca2+ channels’ involvement in IFN-γ-induced signaling in rat ventricular cardiomyocytes. J Physiol Biochem 2019; 75:109-115. [DOI: 10.1007/s13105-019-00662-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 01/22/2019] [Indexed: 12/31/2022]
|
42
|
Ni C, Ma P, Wang R, Lou X, Liu X, Qin Y, Xue R, Blasig I, Erben U, Qin Z. Doxorubicin‐induced cardiotoxicity involves IFNγ‐mediated metabolic reprogramming in cardiomyocytes. J Pathol 2019; 247:320-332. [PMID: 30426505 DOI: 10.1002/path.5192] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Chen Ni
- Medical Research Center, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou University Zhengzhou PR China
| | - Pan Ma
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS‐University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of SciencesUniversity of the Chinese Academy of Sciences Beijing PR China
| | - Ruirui Wang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou University Zhengzhou PR China
| | - Xiaohan Lou
- Medical Research Center, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou University Zhengzhou PR China
| | - Xiaomeng Liu
- Medical Research Center, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou University Zhengzhou PR China
| | - Yue Qin
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS‐University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of SciencesUniversity of the Chinese Academy of Sciences Beijing PR China
| | - Rui Xue
- Medical Research Center, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou University Zhengzhou PR China
| | - Ingolf Blasig
- Leibniz Institut für Molekulare Pharmakologie Berlin‐Buch Germany
| | - Ulrike Erben
- Medical Research Center, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou University Zhengzhou PR China
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS‐University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of SciencesUniversity of the Chinese Academy of Sciences Beijing PR China
| | - Zhihai Qin
- Medical Research Center, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou University Zhengzhou PR China
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS‐University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of SciencesUniversity of the Chinese Academy of Sciences Beijing PR China
| |
Collapse
|
43
|
Du Y, Zhang S, Hao W, Xu W, Yan L, Liu H. Pro-remodeling effect of autoantibody against β 1-adrenoceptor on cardiomyocytes involves T cells dysfunction under the pathological condition of heart failure. Biochem Biophys Res Commun 2019; 510:163-170. [PMID: 30678811 DOI: 10.1016/j.bbrc.2019.01.072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/16/2019] [Indexed: 11/24/2022]
Abstract
Autoantibody against β1-adrenoceptor (β1-AA) has been shown to be closely linked to the aggravation of heart failure. Removal of β1-AA remarkably attenuated patients' cardiac dysfunction. We found that β1-AA induced rat heart failure with increased CD4+ T cells. However, whether or not β1-AA interacts with T cells isolated from heart failure patients remains unknown. Twenty-one β1-AA-negative heart failure patients were divided into those taking β-adrenergic blocker and those not. The effects of β1-AA monoclonal antibodies (β1-AAmAb) on T cells proliferation were detected using the CCK-8 assay. IFN-γ and IL-4 production by human T cells were measured by after the administration of β1-AAmAb. The levels of cardiomyocyte apoptosis and hypertrophy were detected after co-cultured with the supernatant of T cells pre-stimulated by β1-AAmAb. It was found that β1-AAmAb promoted T cell proliferation via the β1-AR/cAMP/PKA pathway in patients who not take β-blocker. β1-AAmAb inhibited the characteristic cytokine secretion of Th1, IFN-γ, but had no significant effect on the Th2 cytokine IL-4. Supernatant resulted from the T cells pre-treated with β1-AAmAb induced cardiomyocytes remodeling, as evidenced by increased levels of cardiomyocytes apoptosis and hypertrophy. We propose that heart failure is likely to be an interference factor for Th-mediated immunity, and the presence of β1-AAmAb may aggravate this effect and deteriorate concomitant inflammatory injury in cardiomyocytes, partially via β1-AR/cAMP/PKA pathway.
Collapse
Affiliation(s)
- Yunhui Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Shihan Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wenjing Hao
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Wenli Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Li Yan
- Department of Pathophysiology, Institute of Basic Medical Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Huirong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
44
|
Chevillard C, Nunes JPS, Frade AF, Almeida RR, Pandey RP, Nascimento MS, Kalil J, Cunha-Neto E. Disease Tolerance and Pathogen Resistance Genes May Underlie Trypanosoma cruzi Persistence and Differential Progression to Chagas Disease Cardiomyopathy. Front Immunol 2018; 9:2791. [PMID: 30559742 PMCID: PMC6286977 DOI: 10.3389/fimmu.2018.02791] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 11/13/2018] [Indexed: 01/01/2023] Open
Abstract
Chagas disease is caused by infection with the protozoan Trypanosoma cruzi and affects over 8 million people worldwide. In spite of a powerful innate and adaptive immune response in acute infection, the parasite evades eradication, leading to a chronic persistent infection with low parasitism. Chronically infected subjects display differential patterns of disease progression. While 30% develop chronic Chagas disease cardiomyopathy (CCC)—a severe inflammatory dilated cardiomyopathy—decades after infection, 60% of the patients remain disease-free, in the asymptomatic/indeterminate (ASY) form, and 10% develop gastrointestinal disease. Infection of genetically deficient mice provided a map of genes relevant for resistance to T. cruzi infection, leading to the identification of multiple genes linked to survival to infection. These include pathogen resistance genes (PRG) needed for intracellular parasite destruction, and genes involved in disease tolerance (protection against tissue damage and acute phase death—DTG). All identified DTGs were found to directly or indirectly inhibit IFN-γ production or Th1 differentiation. We hypothesize that the absolute need for DTG to control potentially lethal IFN-γ PRG activity leads to T. cruzi persistence and establishment of chronic infection. IFN-γ production is higher in CCC than ASY patients, and is the most highly expressed cytokine in CCC hearts. Key DTGs that downmodulate IFN-γ, like IL-10, and Ebi3/IL27p28, are higher in ASY patients. Polymorphisms in PRG and DTG are associated with differential disease progression. We thus hypothesize that ASY patients are disease tolerant, while an imbalance of DTG and IFN-γ PRG activity leads to the inflammatory heart damage of CCC.
Collapse
Affiliation(s)
| | - João Paulo Silva Nunes
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.,Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Amanda Farage Frade
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil.,Department of Bioengineering, Brazil University, São Paulo, Brazil
| | - Rafael Ribeiro Almeida
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.,Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Ramendra Pati Pandey
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.,Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Marilda Savóia Nascimento
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.,Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Jorge Kalil
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.,Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.,Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| |
Collapse
|
45
|
Halu A, Wang JG, Iwata H, Mojcher A, Abib AL, Singh SA, Aikawa M, Sharma A. Context-enriched interactome powered by proteomics helps the identification of novel regulators of macrophage activation. eLife 2018; 7:37059. [PMID: 30303482 PMCID: PMC6179386 DOI: 10.7554/elife.37059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
The role of pro-inflammatory macrophage activation in cardiovascular disease (CVD) is a complex one amenable to network approaches. While an indispensible tool for elucidating the molecular underpinnings of complex diseases including CVD, the interactome is limited in its utility as it is not specific to any cell type, experimental condition or disease state. We introduced context-specificity to the interactome by combining it with co-abundance networks derived from unbiased proteomics measurements from activated macrophage-like cells. Each macrophage phenotype contributed to certain regions of the interactome. Using a network proximity-based prioritization method on the combined network, we predicted potential regulators of macrophage activation. Prediction performance significantly increased with the addition of co-abundance edges, and the prioritized candidates captured inflammation, immunity and CVD signatures. Integrating the novel network topology with transcriptomics and proteomics revealed top candidate drivers of inflammation. In vitro loss-of-function experiments demonstrated the regulatory role of these proteins in pro-inflammatory signaling. When human cells or tissues are injured, the body triggers a response known as inflammation to repair the damage and protect itself from further harm. However, if the same issue keeps recurring, the tissues become inflamed for longer periods of time, which may ultimately lead to health problems. This is what could be happening in cardiovascular diseases, where long-term inflammation could damage the heart and blood vessels. Many different proteins interact with each other to control inflammation; gaining an insight into the nature of these interactions could help to pinpoint the role of each molecular actor. Researchers have used a combination of unbiased, large-scale experimental and computational approaches to develop the interactome, a map of the known interactions between all proteins in humans. However, interactions between proteins can change between cell types, or during disease. Here, Halu et al. aimed to refine the human interactome and identify new proteins involved in inflammation, especially in the context of cardiovascular disease. Cells called macrophages produce signals that trigger inflammation whey they detect damage in other cells or tissues. The experiments used a technique called proteomics to measure the amounts of all the proteins in human macrophages. Combining these data with the human interactome made it possible to predict new links between proteins known to have a role in inflammation and other proteins in the interactome. Further analysis using other sets of data from macrophages helped identify two new candidate proteins – GBP1 and WARS – that may promote inflammation. Halu et al. then used a genetic approach to deactivate the genes and decrease the levels of these two proteins in macrophages, which caused the signals that encourage inflammation to drop. These findings suggest that GBP1 and WARS regulate the activity of macrophages to promote inflammation. The two proteins could therefore be used as drug targets to treat cardiovascular diseases and other disorders linked to inflammation, but further studies will be needed to precisely dissect how GBP1 and WARS work in humans.
Collapse
Affiliation(s)
- Arda Halu
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, United States.,Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Jian-Guo Wang
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Hiroshi Iwata
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Alexander Mojcher
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Ana Luisa Abib
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Amitabh Sharma
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| |
Collapse
|
46
|
Toll-Like Receptor 4 and NLRP3 Caspase 1- Interleukin-1β-Axis are Not Involved in Colon Ascendens Stent Peritonitis-Associated Heart Disease. Shock 2018; 50:483-492. [DOI: 10.1097/shk.0000000000001059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
47
|
Clarke R, Valdes-Marquez E, Hill M, Gordon J, Farrall M, Hamsten A, Watkins H, Hopewell JC. Plasma cytokines and risk of coronary heart disease in the PROCARDIS study. Open Heart 2018; 5:e000807. [PMID: 29713486 PMCID: PMC5922567 DOI: 10.1136/openhrt-2018-000807] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/23/2018] [Accepted: 04/03/2018] [Indexed: 12/15/2022] Open
Abstract
Objective The aims of the study were to examine the associations of plasma levels of five cytokines (interleukin (IL)-6, IL-5, interferon-gamma (IFN-γ), tumour necrosis factor-alpha (TNF-α) and IL-6 receptor (IL-6R)) and C reactive protein (CRP) with risk of coronary heart disease (CHD). Methods In a case–control study of 931 CHD cases and 974 controls, logistic regression was used to estimate the OR and 95% CI of CHD for extreme thirds of biomarkers after adjustment for established risk factors. Sensitivity analyses were conducted in non-statin and in non-aspirin users. Results Plasma levels of CRP were moderately correlated with IL-6 (r=0.45) in controls, but more weakly correlated with other cytokines. Likewise, all other cytokines were only weakly correlated with each other. After adjustment for established risk factors, the ORs (95% CI) for CHD comparing extreme thirds of cytokine levels (defined in controls) were 2.53 (1.86 to 3.43) for IL-6, 1.46 (1.11 to 1.93) for IL-5 and 1.46 (1.09 to 1.95) for IFN-γ, respectively. However, neither TNF-α, IL-6R nor CRP was significantly associated with CHD. After further adjustment for the associated cytokines, only IL-5 (1.34; 1.00 to 1.80) and IL-6 (2.39; 1.73 to 3.30) remained significantly associated with CHD. The risk associations of cytokines in non-users of statins or aspirin were comparable with the overall population. Conclusions This study confirmed the importance of IL-6 as the most strongly associated cytokine with CHD risk, but also demonstrated novel and independent associations of IL-5 with CHD that warrant further investigation using larger panels of cytokines.
Collapse
Affiliation(s)
- Robert Clarke
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Elsa Valdes-Marquez
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Michael Hill
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Joanne Gordon
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Martin Farrall
- Radcliffe Department of Medicine, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Anders Hamsten
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hugh Watkins
- Radcliffe Department of Medicine, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jemma C Hopewell
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| |
Collapse
|
48
|
Essential role for smooth muscle cell stromal interaction molecule-1 in myocardial infarction. J Hypertens 2018; 36:377-386. [PMID: 29611835 DOI: 10.1097/hjh.0000000000001518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Stromal interacting molecule-1 (STIM1) plays a role in coordinating calcium signaling in different cell types. The increase or deletion of STIM1 expression in cardiomyocyte causes cardiac complication. Moreover, the deletion of STIM1 in endothelial cell causes vascular endothelial dysfunction. However, the disruption of STIM1 in smooth muscle cells (SMC) has no effect on endothelial function but protects vascular function when mice are infused with angiotensin-II. Nevertheless, the role of SMC-STIM1 in acute and chronic myocardial infarction (MI) induced by acute ischemia-reperfusion injury and permanent coronary artery occlusion is unknown. METHODS AND RESULTS Stim1 were generated and crossed into the SM22α-Cre backgrounds. SM22α-Cre causes deletion of STIM1 floxed genes in adult SMC (Stim1). Control and Stim1 mice were subjected to acute ischemia-reperfusion injury. Hearts were then harvested and incubated with triphenyltetrazolium chloride to determine the infarct size. In control mice which are subjected to ischemia-reperfusion, the heart developed a significant infarct associated with an increase in STIM1 expression. Interestingly, the infarct size was substantially reduced in Stim1 mice. The protection in Stim1 mice against ischemia-reperfusion injury involves the modulation of endoplasmic reticulum stress, apoptosis, oxidative stress, protein kinase B, and mitogen-activated protein (MAP) kinase (ERK1/2 and p38) signaling, and inflammation. Furthermore, in another model of chronic MI induced by permanent coronary artery occlusion, SMC-STIM1 disruption significantly reduced myocardial infarct size and improved cardiac function. CONCLUSION Our results provide new evidence that SMC-STIM1 disruption is a novel mechanism that protects the heart from MI through reduction of endoplasmic reticulum stress, oxidative stress, MAP-Kinase, apoptosis, and inflammation.
Collapse
|
49
|
Kimura A, Ishida Y, Furuta M, Nosaka M, Kuninaka Y, Taruya A, Mukaida N, Kondo T. Protective Roles of Interferon-γ in Cardiac Hypertrophy Induced by Sustained Pressure Overload. J Am Heart Assoc 2018; 7:e008145. [PMID: 29555642 PMCID: PMC5907566 DOI: 10.1161/jaha.117.008145] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 02/14/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND A clear understanding of the molecular mechanisms underlying hemodynamic stress-initiated cardiac hypertrophy is important for preventing heart failure. Interferon-γ (IFN-γ) has been suggested to play crucial roles in various diseases other than immunological disorders by modulating the expression of myriad genes. However, the involvement of IFN-γ in the pathogenesis of cardiac hypertrophy still remains unclear. METHODS AND RESULTS In order to elucidate the roles of IFN-γ in pressure overload-induced cardiac pathology, we subjected Balb/c wild-type (WT) or IFN-γ-deficient (Ifng-/-) mice to transverse aortic constriction (TAC). Three weeks after TAC, Ifng-/- mice developed more severe cardiac hypertrophy, fibrosis, and dysfunction than WT mice. Bone marrow-derived immune cells including macrophages were a source of IFN-γ in hearts after TAC. The activation of PI3K/Akt signaling, a key signaling pathway in compensatory hypertrophy, was detected 3 days after TAC in the left ventricles of WT mice and was markedly attenuated in Ifng-/- mice. The administration of a neutralizing anti-IFN-γ antibody abrogated PI3K/Akt signal activation in WT mice during compensatory hypertrophy, while that of IFN-γ activated PI3K/Akt signaling in Ifng-/- mice. TAC also induced the phosphorylation of Stat5, but not Stat1 in the left ventricles of WT mice 3 days after TAC. Furthermore, IFN-γ induced Stat5 and Akt phosphorylation in rat cardiomyocytes cultured under stretch conditions. A Stat5 inhibitor significantly suppressed PI3K/Akt signaling activation in the left ventricles of WT mice, and aggravated pressure overload-induced cardiac hypertrophy. CONCLUSIONS The IFN-γ/Stat5 axis may be protective against persistent pressure overload-induced cardiac hypertrophy by activating the PI3K/Akt pathway.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Disease Models, Animal
- Fibrosis
- Heart Ventricles/metabolism
- Heart Ventricles/physiopathology
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/prevention & control
- Interferon-gamma/deficiency
- Interferon-gamma/genetics
- Interferon-gamma/metabolism
- Male
- Mice, Inbred BALB C
- Mice, Knockout
- Myocytes, Cardiac/metabolism
- Phosphatidylinositol 3-Kinase/metabolism
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- Rats, Sprague-Dawley
- Receptors, Interferon/genetics
- Receptors, Interferon/metabolism
- STAT5 Transcription Factor/metabolism
- Signal Transduction
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/prevention & control
- Ventricular Function, Left
- Ventricular Remodeling
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Akihiko Kimura
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yuko Ishida
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Machi Furuta
- Department of Clinical Laboratory Medicine, Wakayama Medical University, Wakayama, Japan
| | - Mizuho Nosaka
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yumi Kuninaka
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Akira Taruya
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| | - Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute Kanazawa University, Kanazawa, Japan
| | - Toshikazu Kondo
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
50
|
Rastogi M, Sarkar S, Makol A, Sandip Singh R, Saikia UN, Banerjee D, Chopra S, Chakraborti A. Anti-endothelial cell antibody rich sera from rheumatic heart disease patients induces proinflammatory phenotype and methylation alteration in endothelial cells. Genes Dis 2018; 5:275-289. [PMID: 30320192 PMCID: PMC6176156 DOI: 10.1016/j.gendis.2018.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/05/2018] [Indexed: 01/06/2023] Open
Abstract
Rheumatic heart disease (RHD) is a major cause of cardiovascular morbidity and mortality in developing nations like India. RHD commonly affects the mitral valve which is lined by a single layer of endothelial cells (ECs). The role of ECs in mitral valve damage during RHD is not well elucidated. In here, anti-endothelial cell antibody from RHD patients has been used to stimulate the ECs (HUVECs and HMVECs). ECs proinflammatory phenotype with increased expression of TNFα, IL-6, IL-8, IFNγ, IL-1β, ICAM1, VCAM1, E-selectin, laminin B, and vimentin was documented in both ECs. The promoter hypomethylation of various key inflammatory cytokines (TNFα, IL-6, and IL-8), integrin (ICAM1) associated with leukocyte transendothelial migration, and extracellular matrix genes (vimentin, and laminin) were also observed. Further, the in-vitro data was in accordance with ex-vivo observations which correlated significantly with the etiological factors such as smoking, socioeconomic status, and housing. Thus, the study sheds light on the role of ECs in RHD which is a step forward in the elucidation of disease pathogenesis.
Collapse
Affiliation(s)
- Mukul Rastogi
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Subendu Sarkar
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ankita Makol
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Rana Sandip Singh
- Department of Cardiothoracic and Vascular Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Uma Nahar Saikia
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Dibyajyoti Banerjee
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Seema Chopra
- Department of Obstetrics and Gynaecology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Anuradha Chakraborti
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| |
Collapse
|